]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: use after free on error path
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
86a1ee26
CW
43 bool map_and_fenceable,
44 bool nonblocking);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
21dd3734 89static int
33196ded 90i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 91{
30dbf0c0
CW
92 int ret;
93
7abb690a
DV
94#define EXIT_COND (!i915_reset_in_progress(error) || \
95 i915_terminally_wedged(error))
1f83fee0 96 if (EXIT_COND)
30dbf0c0
CW
97 return 0;
98
0a6759c6
DV
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
1f83fee0
DV
104 ret = wait_event_interruptible_timeout(error->reset_queue,
105 EXIT_COND,
106 10*HZ);
0a6759c6
DV
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
30dbf0c0 111 return ret;
0a6759c6 112 }
1f83fee0 113#undef EXIT_COND
30dbf0c0 114
21dd3734 115 return 0;
30dbf0c0
CW
116}
117
54cf91dc 118int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 119{
33196ded 120 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
121 int ret;
122
33196ded 123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
124 if (ret)
125 return ret;
126
127 ret = mutex_lock_interruptible(&dev->struct_mutex);
128 if (ret)
129 return ret;
130
23bc5982 131 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
132 return 0;
133}
30dbf0c0 134
7d1c4804 135static inline bool
05394f39 136i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 137{
f343c5f6 138 return i915_gem_obj_ggtt_bound(obj) && !obj->active;
7d1c4804
CW
139}
140
79e53945
JB
141int
142i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 143 struct drm_file *file)
79e53945 144{
93d18799 145 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 146 struct drm_i915_gem_init *args = data;
2021746e 147
7bb6fb8d
DV
148 if (drm_core_check_feature(dev, DRIVER_MODESET))
149 return -ENODEV;
150
2021746e
CW
151 if (args->gtt_start >= args->gtt_end ||
152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 return -EINVAL;
79e53945 154
f534bc0b
DV
155 /* GEM with user mode setting was never supported on ilk and later. */
156 if (INTEL_INFO(dev)->gen >= 5)
157 return -ENODEV;
158
79e53945 159 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 args->gtt_end);
93d18799 162 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
163 mutex_unlock(&dev->struct_mutex);
164
2021746e 165 return 0;
673a394b
EA
166}
167
5a125c3c
EA
168int
169i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 170 struct drm_file *file)
5a125c3c 171{
73aa808f 172 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 173 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
174 struct drm_i915_gem_object *obj;
175 size_t pinned;
5a125c3c 176
6299f992 177 pinned = 0;
73aa808f 178 mutex_lock(&dev->struct_mutex);
35c20a60 179 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1b50247a 180 if (obj->pin_count)
f343c5f6 181 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 182 mutex_unlock(&dev->struct_mutex);
5a125c3c 183
853ba5d2 184 args->aper_size = dev_priv->gtt.base.total;
0206e353 185 args->aper_available_size = args->aper_size - pinned;
6299f992 186
5a125c3c
EA
187 return 0;
188}
189
42dcedd4
CW
190void *i915_gem_object_alloc(struct drm_device *dev)
191{
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194}
195
196void i915_gem_object_free(struct drm_i915_gem_object *obj)
197{
198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 kmem_cache_free(dev_priv->slab, obj);
200}
201
ff72145b
DA
202static int
203i915_gem_create(struct drm_file *file,
204 struct drm_device *dev,
205 uint64_t size,
206 uint32_t *handle_p)
673a394b 207{
05394f39 208 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
209 int ret;
210 u32 handle;
673a394b 211
ff72145b 212 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
213 if (size == 0)
214 return -EINVAL;
673a394b
EA
215
216 /* Allocate the new object */
ff72145b 217 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
218 if (obj == NULL)
219 return -ENOMEM;
220
05394f39 221 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 222 if (ret) {
05394f39
CW
223 drm_gem_object_release(&obj->base);
224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
42dcedd4 225 i915_gem_object_free(obj);
673a394b 226 return ret;
1dfd9754 227 }
673a394b 228
202f2fef 229 /* drop reference from allocate - handle holds it now */
05394f39 230 drm_gem_object_unreference(&obj->base);
202f2fef
CW
231 trace_i915_gem_object_create(obj);
232
ff72145b 233 *handle_p = handle;
673a394b
EA
234 return 0;
235}
236
ff72145b
DA
237int
238i915_gem_dumb_create(struct drm_file *file,
239 struct drm_device *dev,
240 struct drm_mode_create_dumb *args)
241{
242 /* have to work out size/pitch and return them */
ed0291fd 243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
244 args->size = args->pitch * args->height;
245 return i915_gem_create(file, dev,
246 args->size, &args->handle);
247}
248
249int i915_gem_dumb_destroy(struct drm_file *file,
250 struct drm_device *dev,
251 uint32_t handle)
252{
253 return drm_gem_handle_delete(file, handle);
254}
255
256/**
257 * Creates a new mm object and returns a handle to it.
258 */
259int
260i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file)
262{
263 struct drm_i915_gem_create *args = data;
63ed2cb2 264
ff72145b
DA
265 return i915_gem_create(file, dev,
266 args->size, &args->handle);
267}
268
8461d226
DV
269static inline int
270__copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273{
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293}
294
8c59967c 295static inline int
4f0c7cfb
BW
296__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
8c59967c
DV
298 int length)
299{
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319}
320
d174bd64
DV
321/* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
eb01459f 324static int
d174bd64
DV
325shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328{
329 char *vaddr;
330 int ret;
331
e7e58eb5 332 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
f60d7f0c 344 return ret ? -EFAULT : 0;
d174bd64
DV
345}
346
23c18c71
DV
347static void
348shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350{
e7e58eb5 351 if (unlikely(swizzled)) {
23c18c71
DV
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367}
368
d174bd64
DV
369/* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371static int
372shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375{
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
23c18c71
DV
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
d174bd64
DV
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
f60d7f0c 395 return ret ? - EFAULT : 0;
d174bd64
DV
396}
397
eb01459f 398static int
dbf7bff0
DV
399i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
eb01459f 403{
8461d226 404 char __user *user_data;
eb01459f 405 ssize_t remain;
8461d226 406 loff_t offset;
eb2c0c81 407 int shmem_page_offset, page_length, ret = 0;
8461d226 408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 409 int prefaulted = 0;
8489731c 410 int needs_clflush = 0;
67d5a50c 411 struct sg_page_iter sg_iter;
eb01459f 412
2bb4629a 413 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
414 remain = args->size;
415
8461d226 416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 417
8489731c
DV
418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 /* If we're not in the cpu read domain, set ourself into the gtt
420 * read domain and manually flush cachelines (if required). This
421 * optimizes for the case when the gpu will dirty the data
422 * anyway again before the next pread happens. */
423 if (obj->cache_level == I915_CACHE_NONE)
424 needs_clflush = 1;
f343c5f6 425 if (i915_gem_obj_ggtt_bound(obj)) {
6c085a72
CW
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
8489731c 430 }
eb01459f 431
f60d7f0c
CW
432 ret = i915_gem_object_get_pages(obj);
433 if (ret)
434 return ret;
435
436 i915_gem_object_pin_pages(obj);
437
8461d226 438 offset = args->offset;
eb01459f 439
67d5a50c
ID
440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 offset >> PAGE_SHIFT) {
2db76d7c 442 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
443
444 if (remain <= 0)
445 break;
446
eb01459f
EA
447 /* Operation in this page
448 *
eb01459f 449 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
450 * page_length = bytes to copy for this page
451 */
c8cbbb8b 452 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
453 page_length = remain;
454 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 456
8461d226
DV
457 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 (page_to_phys(page) & (1 << 17)) != 0;
459
d174bd64
DV
460 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 user_data, page_do_bit17_swizzling,
462 needs_clflush);
463 if (ret == 0)
464 goto next_page;
dbf7bff0 465
dbf7bff0
DV
466 mutex_unlock(&dev->struct_mutex);
467
96d79b52 468 if (!prefaulted) {
f56f821f 469 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
470 /* Userspace is tricking us, but we've already clobbered
471 * its pages with the prefault and promised to write the
472 * data up to the first fault. Hence ignore any errors
473 * and just continue. */
474 (void)ret;
475 prefaulted = 1;
476 }
eb01459f 477
d174bd64
DV
478 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 user_data, page_do_bit17_swizzling,
480 needs_clflush);
eb01459f 481
dbf7bff0 482 mutex_lock(&dev->struct_mutex);
f60d7f0c 483
dbf7bff0 484next_page:
e5281ccd 485 mark_page_accessed(page);
e5281ccd 486
f60d7f0c 487 if (ret)
8461d226 488 goto out;
8461d226 489
eb01459f 490 remain -= page_length;
8461d226 491 user_data += page_length;
eb01459f
EA
492 offset += page_length;
493 }
494
4f27b75d 495out:
f60d7f0c
CW
496 i915_gem_object_unpin_pages(obj);
497
eb01459f
EA
498 return ret;
499}
500
673a394b
EA
501/**
502 * Reads data from the object referenced by handle.
503 *
504 * On error, the contents of *data are undefined.
505 */
506int
507i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 508 struct drm_file *file)
673a394b
EA
509{
510 struct drm_i915_gem_pread *args = data;
05394f39 511 struct drm_i915_gem_object *obj;
35b62a89 512 int ret = 0;
673a394b 513
51311d0a
CW
514 if (args->size == 0)
515 return 0;
516
517 if (!access_ok(VERIFY_WRITE,
2bb4629a 518 to_user_ptr(args->data_ptr),
51311d0a
CW
519 args->size))
520 return -EFAULT;
521
4f27b75d 522 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 523 if (ret)
4f27b75d 524 return ret;
673a394b 525
05394f39 526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 527 if (&obj->base == NULL) {
1d7cfea1
CW
528 ret = -ENOENT;
529 goto unlock;
4f27b75d 530 }
673a394b 531
7dcd2499 532 /* Bounds check source. */
05394f39
CW
533 if (args->offset > obj->base.size ||
534 args->size > obj->base.size - args->offset) {
ce9d419d 535 ret = -EINVAL;
35b62a89 536 goto out;
ce9d419d
CW
537 }
538
1286ff73
DV
539 /* prime objects have no backing filp to GEM pread/pwrite
540 * pages from.
541 */
542 if (!obj->base.filp) {
543 ret = -EINVAL;
544 goto out;
545 }
546
db53a302
CW
547 trace_i915_gem_object_pread(obj, args->offset, args->size);
548
dbf7bff0 549 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 550
35b62a89 551out:
05394f39 552 drm_gem_object_unreference(&obj->base);
1d7cfea1 553unlock:
4f27b75d 554 mutex_unlock(&dev->struct_mutex);
eb01459f 555 return ret;
673a394b
EA
556}
557
0839ccb8
KP
558/* This is the fast write path which cannot handle
559 * page faults in the source data
9b7530cc 560 */
0839ccb8
KP
561
562static inline int
563fast_user_write(struct io_mapping *mapping,
564 loff_t page_base, int page_offset,
565 char __user *user_data,
566 int length)
9b7530cc 567{
4f0c7cfb
BW
568 void __iomem *vaddr_atomic;
569 void *vaddr;
0839ccb8 570 unsigned long unwritten;
9b7530cc 571
3e4d3af5 572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
573 /* We can use the cpu mem copy function because this is X86. */
574 vaddr = (void __force*)vaddr_atomic + page_offset;
575 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 576 user_data, length);
3e4d3af5 577 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 578 return unwritten;
0839ccb8
KP
579}
580
3de09aa3
EA
581/**
582 * This is the fast pwrite path, where we copy the data directly from the
583 * user into the GTT, uncached.
584 */
673a394b 585static int
05394f39
CW
586i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 struct drm_i915_gem_object *obj,
3de09aa3 588 struct drm_i915_gem_pwrite *args,
05394f39 589 struct drm_file *file)
673a394b 590{
0839ccb8 591 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 592 ssize_t remain;
0839ccb8 593 loff_t offset, page_base;
673a394b 594 char __user *user_data;
935aaa69
DV
595 int page_offset, page_length, ret;
596
86a1ee26 597 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
598 if (ret)
599 goto out;
600
601 ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 if (ret)
603 goto out_unpin;
604
605 ret = i915_gem_object_put_fence(obj);
606 if (ret)
607 goto out_unpin;
673a394b 608
2bb4629a 609 user_data = to_user_ptr(args->data_ptr);
673a394b 610 remain = args->size;
673a394b 611
f343c5f6 612 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
613
614 while (remain > 0) {
615 /* Operation in this page
616 *
0839ccb8
KP
617 * page_base = page offset within aperture
618 * page_offset = offset within page
619 * page_length = bytes to copy for this page
673a394b 620 */
c8cbbb8b
CW
621 page_base = offset & PAGE_MASK;
622 page_offset = offset_in_page(offset);
0839ccb8
KP
623 page_length = remain;
624 if ((page_offset + remain) > PAGE_SIZE)
625 page_length = PAGE_SIZE - page_offset;
626
0839ccb8 627 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
628 * source page isn't available. Return the error and we'll
629 * retry in the slow path.
0839ccb8 630 */
5d4545ae 631 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
632 page_offset, user_data, page_length)) {
633 ret = -EFAULT;
634 goto out_unpin;
635 }
673a394b 636
0839ccb8
KP
637 remain -= page_length;
638 user_data += page_length;
639 offset += page_length;
673a394b 640 }
673a394b 641
935aaa69
DV
642out_unpin:
643 i915_gem_object_unpin(obj);
644out:
3de09aa3 645 return ret;
673a394b
EA
646}
647
d174bd64
DV
648/* Per-page copy function for the shmem pwrite fastpath.
649 * Flushes invalid cachelines before writing to the target if
650 * needs_clflush_before is set and flushes out any written cachelines after
651 * writing if needs_clflush is set. */
3043c60c 652static int
d174bd64
DV
653shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
673a394b 658{
d174bd64 659 char *vaddr;
673a394b 660 int ret;
3de09aa3 661
e7e58eb5 662 if (unlikely(page_do_bit17_swizzling))
d174bd64 663 return -EINVAL;
3de09aa3 664
d174bd64
DV
665 vaddr = kmap_atomic(page);
666 if (needs_clflush_before)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 user_data,
671 page_length);
672 if (needs_clflush_after)
673 drm_clflush_virt_range(vaddr + shmem_page_offset,
674 page_length);
675 kunmap_atomic(vaddr);
3de09aa3 676
755d2218 677 return ret ? -EFAULT : 0;
3de09aa3
EA
678}
679
d174bd64
DV
680/* Only difference to the fast-path function is that this can handle bit17
681 * and uses non-atomic copy and kmap functions. */
3043c60c 682static int
d174bd64
DV
683shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 char __user *user_data,
685 bool page_do_bit17_swizzling,
686 bool needs_clflush_before,
687 bool needs_clflush_after)
673a394b 688{
d174bd64
DV
689 char *vaddr;
690 int ret;
e5281ccd 691
d174bd64 692 vaddr = kmap(page);
e7e58eb5 693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
d174bd64
DV
697 if (page_do_bit17_swizzling)
698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
699 user_data,
700 page_length);
d174bd64
DV
701 else
702 ret = __copy_from_user(vaddr + shmem_page_offset,
703 user_data,
704 page_length);
705 if (needs_clflush_after)
23c18c71
DV
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
d174bd64 709 kunmap(page);
40123c1f 710
755d2218 711 return ret ? -EFAULT : 0;
40123c1f
EA
712}
713
40123c1f 714static int
e244a443
DV
715i915_gem_shmem_pwrite(struct drm_device *dev,
716 struct drm_i915_gem_object *obj,
717 struct drm_i915_gem_pwrite *args,
718 struct drm_file *file)
40123c1f 719{
40123c1f 720 ssize_t remain;
8c59967c
DV
721 loff_t offset;
722 char __user *user_data;
eb2c0c81 723 int shmem_page_offset, page_length, ret = 0;
8c59967c 724 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 725 int hit_slowpath = 0;
58642885
DV
726 int needs_clflush_after = 0;
727 int needs_clflush_before = 0;
67d5a50c 728 struct sg_page_iter sg_iter;
40123c1f 729
2bb4629a 730 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
731 remain = args->size;
732
8c59967c 733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 734
58642885
DV
735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 /* If we're not in the cpu write domain, set ourself into the gtt
737 * write domain and manually flush cachelines (if required). This
738 * optimizes for the case when the gpu will use the data
739 * right away and we therefore have to clflush anyway. */
740 if (obj->cache_level == I915_CACHE_NONE)
741 needs_clflush_after = 1;
f343c5f6 742 if (i915_gem_obj_ggtt_bound(obj)) {
6c085a72
CW
743 ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 if (ret)
745 return ret;
746 }
58642885
DV
747 }
748 /* Same trick applies for invalidate partially written cachelines before
749 * writing. */
750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 && obj->cache_level == I915_CACHE_NONE)
752 needs_clflush_before = 1;
753
755d2218
CW
754 ret = i915_gem_object_get_pages(obj);
755 if (ret)
756 return ret;
757
758 i915_gem_object_pin_pages(obj);
759
673a394b 760 offset = args->offset;
05394f39 761 obj->dirty = 1;
673a394b 762
67d5a50c
ID
763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 offset >> PAGE_SHIFT) {
2db76d7c 765 struct page *page = sg_page_iter_page(&sg_iter);
58642885 766 int partial_cacheline_write;
e5281ccd 767
9da3da66
CW
768 if (remain <= 0)
769 break;
770
40123c1f
EA
771 /* Operation in this page
772 *
40123c1f 773 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
774 * page_length = bytes to copy for this page
775 */
c8cbbb8b 776 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 781
58642885
DV
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
8c59967c
DV
789 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 (page_to_phys(page) & (1 << 17)) != 0;
791
d174bd64
DV
792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 user_data, page_do_bit17_swizzling,
794 partial_cacheline_write,
795 needs_clflush_after);
796 if (ret == 0)
797 goto next_page;
e244a443
DV
798
799 hit_slowpath = 1;
e244a443 800 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
40123c1f 805
e244a443 806 mutex_lock(&dev->struct_mutex);
755d2218 807
e244a443 808next_page:
e5281ccd
CW
809 set_page_dirty(page);
810 mark_page_accessed(page);
e5281ccd 811
755d2218 812 if (ret)
8c59967c 813 goto out;
8c59967c 814
40123c1f 815 remain -= page_length;
8c59967c 816 user_data += page_length;
40123c1f 817 offset += page_length;
673a394b
EA
818 }
819
fbd5a26d 820out:
755d2218
CW
821 i915_gem_object_unpin_pages(obj);
822
e244a443 823 if (hit_slowpath) {
8dcf015e
DV
824 /*
825 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 * cachelines in-line while writing and the object moved
827 * out of the cpu write domain while we've dropped the lock.
828 */
829 if (!needs_clflush_after &&
830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
e244a443 831 i915_gem_clflush_object(obj);
e76e9aeb 832 i915_gem_chipset_flush(dev);
e244a443 833 }
8c59967c 834 }
673a394b 835
58642885 836 if (needs_clflush_after)
e76e9aeb 837 i915_gem_chipset_flush(dev);
58642885 838
40123c1f 839 return ret;
673a394b
EA
840}
841
842/**
843 * Writes data to the object referenced by handle.
844 *
845 * On error, the contents of the buffer that were to be modified are undefined.
846 */
847int
848i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 849 struct drm_file *file)
673a394b
EA
850{
851 struct drm_i915_gem_pwrite *args = data;
05394f39 852 struct drm_i915_gem_object *obj;
51311d0a
CW
853 int ret;
854
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_READ,
2bb4629a 859 to_user_ptr(args->data_ptr),
51311d0a
CW
860 args->size))
861 return -EFAULT;
862
2bb4629a 863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
f56f821f 864 args->size);
51311d0a
CW
865 if (ret)
866 return -EFAULT;
673a394b 867
fbd5a26d 868 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 869 if (ret)
fbd5a26d 870 return ret;
1d7cfea1 871
05394f39 872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 873 if (&obj->base == NULL) {
1d7cfea1
CW
874 ret = -ENOENT;
875 goto unlock;
fbd5a26d 876 }
673a394b 877
7dcd2499 878 /* Bounds check destination. */
05394f39
CW
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
ce9d419d 881 ret = -EINVAL;
35b62a89 882 goto out;
ce9d419d
CW
883 }
884
1286ff73
DV
885 /* prime objects have no backing filp to GEM pread/pwrite
886 * pages from.
887 */
888 if (!obj->base.filp) {
889 ret = -EINVAL;
890 goto out;
891 }
892
db53a302
CW
893 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
935aaa69 895 ret = -EFAULT;
673a394b
EA
896 /* We can only do the GTT pwrite on untiled buffers, as otherwise
897 * it would end up going through the fenced access, and we'll get
898 * different detiling behavior between reading and writing.
899 * pread/pwrite currently are reading and writing from the CPU
900 * perspective, requiring manual detiling by the client.
901 */
5c0480f2 902 if (obj->phys_obj) {
fbd5a26d 903 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
904 goto out;
905 }
906
86a1ee26 907 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 908 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
911 /* Note that the gtt paths might fail with non-page-backed user
912 * pointers (e.g. gtt mappings when moving data between
913 * textures). Fallback to the shmem path in that case. */
fbd5a26d 914 }
673a394b 915
86a1ee26 916 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 917 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 918
35b62a89 919out:
05394f39 920 drm_gem_object_unreference(&obj->base);
1d7cfea1 921unlock:
fbd5a26d 922 mutex_unlock(&dev->struct_mutex);
673a394b
EA
923 return ret;
924}
925
b361237b 926int
33196ded 927i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
928 bool interruptible)
929{
1f83fee0 930 if (i915_reset_in_progress(error)) {
b361237b
CW
931 /* Non-interruptible callers can't handle -EAGAIN, hence return
932 * -EIO unconditionally for these. */
933 if (!interruptible)
934 return -EIO;
935
1f83fee0
DV
936 /* Recovery complete, but the reset failed ... */
937 if (i915_terminally_wedged(error))
b361237b
CW
938 return -EIO;
939
940 return -EAGAIN;
941 }
942
943 return 0;
944}
945
946/*
947 * Compare seqno against outstanding lazy request. Emit a request if they are
948 * equal.
949 */
950static int
951i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952{
953 int ret;
954
955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957 ret = 0;
958 if (seqno == ring->outstanding_lazy_request)
0025c077 959 ret = i915_add_request(ring, NULL);
b361237b
CW
960
961 return ret;
962}
963
964/**
965 * __wait_seqno - wait until execution of seqno has finished
966 * @ring: the ring expected to report seqno
967 * @seqno: duh!
f69061be 968 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
969 * @interruptible: do an interruptible wait (normally yes)
970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971 *
f69061be
DV
972 * Note: It is of utmost importance that the passed in seqno and reset_counter
973 * values have been read by the caller in an smp safe manner. Where read-side
974 * locks are involved, it is sufficient to read the reset_counter before
975 * unlocking the lock that protects the seqno. For lockless tricks, the
976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977 * inserted.
978 *
b361237b
CW
979 * Returns 0 if the seqno was found within the alloted time. Else returns the
980 * errno with remaining time filled in timeout argument.
981 */
982static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 983 unsigned reset_counter,
b361237b
CW
984 bool interruptible, struct timespec *timeout)
985{
986 drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 struct timespec before, now, wait_time={1,0};
988 unsigned long timeout_jiffies;
989 long end;
990 bool wait_forever = true;
991 int ret;
992
993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 return 0;
995
996 trace_i915_gem_request_wait_begin(ring, seqno);
997
998 if (timeout != NULL) {
999 wait_time = *timeout;
1000 wait_forever = false;
1001 }
1002
e054cc39 1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
b361237b
CW
1004
1005 if (WARN_ON(!ring->irq_get(ring)))
1006 return -ENODEV;
1007
1008 /* Record current time in case interrupted by signal, or wedged * */
1009 getrawmonotonic(&before);
1010
1011#define EXIT_COND \
1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
f69061be
DV
1013 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
b361237b
CW
1015 do {
1016 if (interruptible)
1017 end = wait_event_interruptible_timeout(ring->irq_queue,
1018 EXIT_COND,
1019 timeout_jiffies);
1020 else
1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 timeout_jiffies);
1023
f69061be
DV
1024 /* We need to check whether any gpu reset happened in between
1025 * the caller grabbing the seqno and now ... */
1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 end = -EAGAIN;
1028
1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 * gone. */
33196ded 1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1032 if (ret)
1033 end = ret;
1034 } while (end == 0 && wait_forever);
1035
1036 getrawmonotonic(&now);
1037
1038 ring->irq_put(ring);
1039 trace_i915_gem_request_wait_end(ring, seqno);
1040#undef EXIT_COND
1041
1042 if (timeout) {
1043 struct timespec sleep_time = timespec_sub(now, before);
1044 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1047 }
1048
1049 switch (end) {
1050 case -EIO:
1051 case -EAGAIN: /* Wedged */
1052 case -ERESTARTSYS: /* Signal */
1053 return (int)end;
1054 case 0: /* Timeout */
b361237b
CW
1055 return -ETIME;
1056 default: /* Completed */
1057 WARN_ON(end < 0); /* We're not aware of other errors */
1058 return 0;
1059 }
1060}
1061
1062/**
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1065 */
1066int
1067i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068{
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 bool interruptible = dev_priv->mm.interruptible;
1072 int ret;
1073
1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 BUG_ON(seqno == 0);
1076
33196ded 1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1078 if (ret)
1079 return ret;
1080
1081 ret = i915_gem_check_olr(ring, seqno);
1082 if (ret)
1083 return ret;
1084
f69061be
DV
1085 return __wait_seqno(ring, seqno,
1086 atomic_read(&dev_priv->gpu_error.reset_counter),
1087 interruptible, NULL);
b361237b
CW
1088}
1089
d26e3af8
CW
1090static int
1091i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1092 struct intel_ring_buffer *ring)
1093{
1094 i915_gem_retire_requests_ring(ring);
1095
1096 /* Manually manage the write flush as we may have not yet
1097 * retired the buffer.
1098 *
1099 * Note that the last_write_seqno is always the earlier of
1100 * the two (read/write) seqno, so if we haved successfully waited,
1101 * we know we have passed the last write.
1102 */
1103 obj->last_write_seqno = 0;
1104 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1105
1106 return 0;
1107}
1108
b361237b
CW
1109/**
1110 * Ensures that all rendering to the object has completed and the object is
1111 * safe to unbind from the GTT or access from the CPU.
1112 */
1113static __must_check int
1114i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1115 bool readonly)
1116{
1117 struct intel_ring_buffer *ring = obj->ring;
1118 u32 seqno;
1119 int ret;
1120
1121 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1122 if (seqno == 0)
1123 return 0;
1124
1125 ret = i915_wait_seqno(ring, seqno);
1126 if (ret)
1127 return ret;
1128
d26e3af8 1129 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1130}
1131
3236f57a
CW
1132/* A nonblocking variant of the above wait. This is a highly dangerous routine
1133 * as the object state may change during this call.
1134 */
1135static __must_check int
1136i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1137 bool readonly)
1138{
1139 struct drm_device *dev = obj->base.dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 struct intel_ring_buffer *ring = obj->ring;
f69061be 1142 unsigned reset_counter;
3236f57a
CW
1143 u32 seqno;
1144 int ret;
1145
1146 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147 BUG_ON(!dev_priv->mm.interruptible);
1148
1149 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1150 if (seqno == 0)
1151 return 0;
1152
33196ded 1153 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1154 if (ret)
1155 return ret;
1156
1157 ret = i915_gem_check_olr(ring, seqno);
1158 if (ret)
1159 return ret;
1160
f69061be 1161 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1162 mutex_unlock(&dev->struct_mutex);
f69061be 1163 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3236f57a 1164 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1165 if (ret)
1166 return ret;
3236f57a 1167
d26e3af8 1168 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1169}
1170
673a394b 1171/**
2ef7eeaa
EA
1172 * Called when user space prepares to use an object with the CPU, either
1173 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1174 */
1175int
1176i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1177 struct drm_file *file)
673a394b
EA
1178{
1179 struct drm_i915_gem_set_domain *args = data;
05394f39 1180 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1181 uint32_t read_domains = args->read_domains;
1182 uint32_t write_domain = args->write_domain;
673a394b
EA
1183 int ret;
1184
2ef7eeaa 1185 /* Only handle setting domains to types used by the CPU. */
21d509e3 1186 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1187 return -EINVAL;
1188
21d509e3 1189 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1190 return -EINVAL;
1191
1192 /* Having something in the write domain implies it's in the read
1193 * domain, and only that read domain. Enforce that in the request.
1194 */
1195 if (write_domain != 0 && read_domains != write_domain)
1196 return -EINVAL;
1197
76c1dec1 1198 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1199 if (ret)
76c1dec1 1200 return ret;
1d7cfea1 1201
05394f39 1202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1203 if (&obj->base == NULL) {
1d7cfea1
CW
1204 ret = -ENOENT;
1205 goto unlock;
76c1dec1 1206 }
673a394b 1207
3236f57a
CW
1208 /* Try to flush the object off the GPU without holding the lock.
1209 * We will repeat the flush holding the lock in the normal manner
1210 * to catch cases where we are gazumped.
1211 */
1212 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1213 if (ret)
1214 goto unref;
1215
2ef7eeaa
EA
1216 if (read_domains & I915_GEM_DOMAIN_GTT) {
1217 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1218
1219 /* Silently promote "you're not bound, there was nothing to do"
1220 * to success, since the client was just asking us to
1221 * make sure everything was done.
1222 */
1223 if (ret == -EINVAL)
1224 ret = 0;
2ef7eeaa 1225 } else {
e47c68e9 1226 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1227 }
1228
3236f57a 1229unref:
05394f39 1230 drm_gem_object_unreference(&obj->base);
1d7cfea1 1231unlock:
673a394b
EA
1232 mutex_unlock(&dev->struct_mutex);
1233 return ret;
1234}
1235
1236/**
1237 * Called when user space has done writes to this buffer
1238 */
1239int
1240i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1241 struct drm_file *file)
673a394b
EA
1242{
1243 struct drm_i915_gem_sw_finish *args = data;
05394f39 1244 struct drm_i915_gem_object *obj;
673a394b
EA
1245 int ret = 0;
1246
76c1dec1 1247 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1248 if (ret)
76c1dec1 1249 return ret;
1d7cfea1 1250
05394f39 1251 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1252 if (&obj->base == NULL) {
1d7cfea1
CW
1253 ret = -ENOENT;
1254 goto unlock;
673a394b
EA
1255 }
1256
673a394b 1257 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1258 if (obj->pin_count)
e47c68e9
EA
1259 i915_gem_object_flush_cpu_write_domain(obj);
1260
05394f39 1261 drm_gem_object_unreference(&obj->base);
1d7cfea1 1262unlock:
673a394b
EA
1263 mutex_unlock(&dev->struct_mutex);
1264 return ret;
1265}
1266
1267/**
1268 * Maps the contents of an object, returning the address it is mapped
1269 * into.
1270 *
1271 * While the mapping holds a reference on the contents of the object, it doesn't
1272 * imply a ref on the object itself.
1273 */
1274int
1275i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1276 struct drm_file *file)
673a394b
EA
1277{
1278 struct drm_i915_gem_mmap *args = data;
1279 struct drm_gem_object *obj;
673a394b
EA
1280 unsigned long addr;
1281
05394f39 1282 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1283 if (obj == NULL)
bf79cb91 1284 return -ENOENT;
673a394b 1285
1286ff73
DV
1286 /* prime objects have no backing filp to GEM mmap
1287 * pages from.
1288 */
1289 if (!obj->filp) {
1290 drm_gem_object_unreference_unlocked(obj);
1291 return -EINVAL;
1292 }
1293
6be5ceb0 1294 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1295 PROT_READ | PROT_WRITE, MAP_SHARED,
1296 args->offset);
bc9025bd 1297 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1298 if (IS_ERR((void *)addr))
1299 return addr;
1300
1301 args->addr_ptr = (uint64_t) addr;
1302
1303 return 0;
1304}
1305
de151cf6
JB
1306/**
1307 * i915_gem_fault - fault a page into the GTT
1308 * vma: VMA in question
1309 * vmf: fault info
1310 *
1311 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1312 * from userspace. The fault handler takes care of binding the object to
1313 * the GTT (if needed), allocating and programming a fence register (again,
1314 * only if needed based on whether the old reg is still valid or the object
1315 * is tiled) and inserting a new PTE into the faulting process.
1316 *
1317 * Note that the faulting process may involve evicting existing objects
1318 * from the GTT and/or fence registers to make room. So performance may
1319 * suffer if the GTT working set is large or there are few fence registers
1320 * left.
1321 */
1322int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323{
05394f39
CW
1324 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1325 struct drm_device *dev = obj->base.dev;
7d1c4804 1326 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1327 pgoff_t page_offset;
1328 unsigned long pfn;
1329 int ret = 0;
0f973f27 1330 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1331
1332 /* We don't use vmf->pgoff since that has the fake offset */
1333 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1334 PAGE_SHIFT;
1335
d9bc7e9f
CW
1336 ret = i915_mutex_lock_interruptible(dev);
1337 if (ret)
1338 goto out;
a00b10c3 1339
db53a302
CW
1340 trace_i915_gem_object_fault(obj, page_offset, true, write);
1341
eb119bd6
CW
1342 /* Access to snoopable pages through the GTT is incoherent. */
1343 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1344 ret = -EINVAL;
1345 goto unlock;
1346 }
1347
d9bc7e9f 1348 /* Now bind it into the GTT if needed */
c9839303
CW
1349 ret = i915_gem_object_pin(obj, 0, true, false);
1350 if (ret)
1351 goto unlock;
4a684a41 1352
c9839303
CW
1353 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1354 if (ret)
1355 goto unpin;
74898d7e 1356
06d98131 1357 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1358 if (ret)
c9839303 1359 goto unpin;
7d1c4804 1360
6299f992
CW
1361 obj->fault_mappable = true;
1362
f343c5f6
BW
1363 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1364 pfn >>= PAGE_SHIFT;
1365 pfn += page_offset;
de151cf6
JB
1366
1367 /* Finally, remap it using the new GTT offset */
1368 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1369unpin:
1370 i915_gem_object_unpin(obj);
c715089f 1371unlock:
de151cf6 1372 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1373out:
de151cf6 1374 switch (ret) {
d9bc7e9f 1375 case -EIO:
a9340cca
DV
1376 /* If this -EIO is due to a gpu hang, give the reset code a
1377 * chance to clean up the mess. Otherwise return the proper
1378 * SIGBUS. */
1f83fee0 1379 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1380 return VM_FAULT_SIGBUS;
045e769a 1381 case -EAGAIN:
d9bc7e9f
CW
1382 /* Give the error handler a chance to run and move the
1383 * objects off the GPU active list. Next time we service the
1384 * fault, we should be able to transition the page into the
1385 * GTT without touching the GPU (and so avoid further
1386 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387 * with coherency, just lost writes.
1388 */
045e769a 1389 set_need_resched();
c715089f
CW
1390 case 0:
1391 case -ERESTARTSYS:
bed636ab 1392 case -EINTR:
e79e0fe3
DR
1393 case -EBUSY:
1394 /*
1395 * EBUSY is ok: this just means that another thread
1396 * already did the job.
1397 */
c715089f 1398 return VM_FAULT_NOPAGE;
de151cf6 1399 case -ENOMEM:
de151cf6 1400 return VM_FAULT_OOM;
a7c2e1aa
DV
1401 case -ENOSPC:
1402 return VM_FAULT_SIGBUS;
de151cf6 1403 default:
a7c2e1aa 1404 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1405 return VM_FAULT_SIGBUS;
de151cf6
JB
1406 }
1407}
1408
901782b2
CW
1409/**
1410 * i915_gem_release_mmap - remove physical page mappings
1411 * @obj: obj in question
1412 *
af901ca1 1413 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1414 * relinquish ownership of the pages back to the system.
1415 *
1416 * It is vital that we remove the page mapping if we have mapped a tiled
1417 * object through the GTT and then lose the fence register due to
1418 * resource pressure. Similarly if the object has been moved out of the
1419 * aperture, than pages mapped into userspace must be revoked. Removing the
1420 * mapping will then trigger a page fault on the next user access, allowing
1421 * fixup by i915_gem_fault().
1422 */
d05ca301 1423void
05394f39 1424i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1425{
6299f992
CW
1426 if (!obj->fault_mappable)
1427 return;
901782b2 1428
f6e47884
CW
1429 if (obj->base.dev->dev_mapping)
1430 unmap_mapping_range(obj->base.dev->dev_mapping,
1431 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432 obj->base.size, 1);
fb7d516a 1433
6299f992 1434 obj->fault_mappable = false;
901782b2
CW
1435}
1436
0fa87796 1437uint32_t
e28f8711 1438i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1439{
e28f8711 1440 uint32_t gtt_size;
92b88aeb
CW
1441
1442 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1443 tiling_mode == I915_TILING_NONE)
1444 return size;
92b88aeb
CW
1445
1446 /* Previous chips need a power-of-two fence region when tiling */
1447 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1448 gtt_size = 1024*1024;
92b88aeb 1449 else
e28f8711 1450 gtt_size = 512*1024;
92b88aeb 1451
e28f8711
CW
1452 while (gtt_size < size)
1453 gtt_size <<= 1;
92b88aeb 1454
e28f8711 1455 return gtt_size;
92b88aeb
CW
1456}
1457
de151cf6
JB
1458/**
1459 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460 * @obj: object to check
1461 *
1462 * Return the required GTT alignment for an object, taking into account
5e783301 1463 * potential fence register mapping.
de151cf6 1464 */
d865110c
ID
1465uint32_t
1466i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467 int tiling_mode, bool fenced)
de151cf6 1468{
de151cf6
JB
1469 /*
1470 * Minimum alignment is 4k (GTT page size), but might be greater
1471 * if a fence register is needed for the object.
1472 */
d865110c 1473 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1474 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1475 return 4096;
1476
a00b10c3
CW
1477 /*
1478 * Previous chips need to be aligned to the size of the smallest
1479 * fence register that can contain the object.
1480 */
e28f8711 1481 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1482}
1483
d8cb5086
CW
1484static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485{
1486 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487 int ret;
1488
1489 if (obj->base.map_list.map)
1490 return 0;
1491
da494d7c
DV
1492 dev_priv->mm.shrinker_no_lock_stealing = true;
1493
d8cb5086
CW
1494 ret = drm_gem_create_mmap_offset(&obj->base);
1495 if (ret != -ENOSPC)
da494d7c 1496 goto out;
d8cb5086
CW
1497
1498 /* Badly fragmented mmap space? The only way we can recover
1499 * space is by destroying unwanted objects. We can't randomly release
1500 * mmap_offsets as userspace expects them to be persistent for the
1501 * lifetime of the objects. The closest we can is to release the
1502 * offsets on purgeable objects by truncating it and marking it purged,
1503 * which prevents userspace from ever using that object again.
1504 */
1505 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506 ret = drm_gem_create_mmap_offset(&obj->base);
1507 if (ret != -ENOSPC)
da494d7c 1508 goto out;
d8cb5086
CW
1509
1510 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1511 ret = drm_gem_create_mmap_offset(&obj->base);
1512out:
1513 dev_priv->mm.shrinker_no_lock_stealing = false;
1514
1515 return ret;
d8cb5086
CW
1516}
1517
1518static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519{
1520 if (!obj->base.map_list.map)
1521 return;
1522
1523 drm_gem_free_mmap_offset(&obj->base);
1524}
1525
de151cf6 1526int
ff72145b
DA
1527i915_gem_mmap_gtt(struct drm_file *file,
1528 struct drm_device *dev,
1529 uint32_t handle,
1530 uint64_t *offset)
de151cf6 1531{
da761a6e 1532 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1533 struct drm_i915_gem_object *obj;
de151cf6
JB
1534 int ret;
1535
76c1dec1 1536 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1537 if (ret)
76c1dec1 1538 return ret;
de151cf6 1539
ff72145b 1540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1541 if (&obj->base == NULL) {
1d7cfea1
CW
1542 ret = -ENOENT;
1543 goto unlock;
1544 }
de151cf6 1545
5d4545ae 1546 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1547 ret = -E2BIG;
ff56b0bc 1548 goto out;
da761a6e
CW
1549 }
1550
05394f39 1551 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1552 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1553 ret = -EINVAL;
1554 goto out;
ab18282d
CW
1555 }
1556
d8cb5086
CW
1557 ret = i915_gem_object_create_mmap_offset(obj);
1558 if (ret)
1559 goto out;
de151cf6 1560
ff72145b 1561 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1562
1d7cfea1 1563out:
05394f39 1564 drm_gem_object_unreference(&obj->base);
1d7cfea1 1565unlock:
de151cf6 1566 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1567 return ret;
de151cf6
JB
1568}
1569
ff72145b
DA
1570/**
1571 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572 * @dev: DRM device
1573 * @data: GTT mapping ioctl data
1574 * @file: GEM object info
1575 *
1576 * Simply returns the fake offset to userspace so it can mmap it.
1577 * The mmap call will end up in drm_gem_mmap(), which will set things
1578 * up so we can get faults in the handler above.
1579 *
1580 * The fault handler will take care of binding the object into the GTT
1581 * (since it may have been evicted to make room for something), allocating
1582 * a fence register, and mapping the appropriate aperture address into
1583 * userspace.
1584 */
1585int
1586i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587 struct drm_file *file)
1588{
1589 struct drm_i915_gem_mmap_gtt *args = data;
1590
ff72145b
DA
1591 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592}
1593
225067ee
DV
1594/* Immediately discard the backing storage */
1595static void
1596i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1597{
e5281ccd 1598 struct inode *inode;
e5281ccd 1599
4d6294bf 1600 i915_gem_object_free_mmap_offset(obj);
1286ff73 1601
4d6294bf
CW
1602 if (obj->base.filp == NULL)
1603 return;
e5281ccd 1604
225067ee
DV
1605 /* Our goal here is to return as much of the memory as
1606 * is possible back to the system as we are called from OOM.
1607 * To do this we must instruct the shmfs to drop all of its
1608 * backing pages, *now*.
1609 */
496ad9aa 1610 inode = file_inode(obj->base.filp);
225067ee 1611 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1612
225067ee
DV
1613 obj->madv = __I915_MADV_PURGED;
1614}
e5281ccd 1615
225067ee
DV
1616static inline int
1617i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618{
1619 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1620}
1621
5cdf5881 1622static void
05394f39 1623i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1624{
90797e6d
ID
1625 struct sg_page_iter sg_iter;
1626 int ret;
1286ff73 1627
05394f39 1628 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1629
6c085a72
CW
1630 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631 if (ret) {
1632 /* In the event of a disaster, abandon all caches and
1633 * hope for the best.
1634 */
1635 WARN_ON(ret != -EIO);
1636 i915_gem_clflush_object(obj);
1637 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638 }
1639
6dacfd2f 1640 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1641 i915_gem_object_save_bit_17_swizzle(obj);
1642
05394f39
CW
1643 if (obj->madv == I915_MADV_DONTNEED)
1644 obj->dirty = 0;
3ef94daa 1645
90797e6d 1646 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1647 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1648
05394f39 1649 if (obj->dirty)
9da3da66 1650 set_page_dirty(page);
3ef94daa 1651
05394f39 1652 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1653 mark_page_accessed(page);
3ef94daa 1654
9da3da66 1655 page_cache_release(page);
3ef94daa 1656 }
05394f39 1657 obj->dirty = 0;
673a394b 1658
9da3da66
CW
1659 sg_free_table(obj->pages);
1660 kfree(obj->pages);
37e680a1 1661}
6c085a72 1662
dd624afd 1663int
37e680a1
CW
1664i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665{
1666 const struct drm_i915_gem_object_ops *ops = obj->ops;
1667
2f745ad3 1668 if (obj->pages == NULL)
37e680a1
CW
1669 return 0;
1670
f343c5f6 1671 BUG_ON(i915_gem_obj_ggtt_bound(obj));
6c085a72 1672
a5570178
CW
1673 if (obj->pages_pin_count)
1674 return -EBUSY;
1675
a2165e31
CW
1676 /* ->put_pages might need to allocate memory for the bit17 swizzle
1677 * array, hence protect them from being reaped by removing them from gtt
1678 * lists early. */
35c20a60 1679 list_del(&obj->global_list);
a2165e31 1680
37e680a1 1681 ops->put_pages(obj);
05394f39 1682 obj->pages = NULL;
37e680a1 1683
6c085a72
CW
1684 if (i915_gem_object_is_purgeable(obj))
1685 i915_gem_object_truncate(obj);
1686
1687 return 0;
1688}
1689
1690static long
93927ca5
DV
1691__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692 bool purgeable_only)
6c085a72
CW
1693{
1694 struct drm_i915_gem_object *obj, *next;
5cef07e1 1695 struct i915_address_space *vm = &dev_priv->gtt.base;
6c085a72
CW
1696 long count = 0;
1697
1698 list_for_each_entry_safe(obj, next,
1699 &dev_priv->mm.unbound_list,
35c20a60 1700 global_list) {
93927ca5 1701 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1702 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1703 count += obj->base.size >> PAGE_SHIFT;
1704 if (count >= target)
1705 return count;
1706 }
1707 }
1708
5cef07e1 1709 list_for_each_entry_safe(obj, next, &vm->inactive_list, mm_list) {
93927ca5 1710 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
6c085a72 1711 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1712 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1713 count += obj->base.size >> PAGE_SHIFT;
1714 if (count >= target)
1715 return count;
1716 }
1717 }
1718
1719 return count;
1720}
1721
93927ca5
DV
1722static long
1723i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1724{
1725 return __i915_gem_shrink(dev_priv, target, true);
1726}
1727
6c085a72
CW
1728static void
1729i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1730{
1731 struct drm_i915_gem_object *obj, *next;
1732
1733 i915_gem_evict_everything(dev_priv->dev);
1734
35c20a60
BW
1735 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1736 global_list)
37e680a1 1737 i915_gem_object_put_pages(obj);
225067ee
DV
1738}
1739
37e680a1 1740static int
6c085a72 1741i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1742{
6c085a72 1743 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1744 int page_count, i;
1745 struct address_space *mapping;
9da3da66
CW
1746 struct sg_table *st;
1747 struct scatterlist *sg;
90797e6d 1748 struct sg_page_iter sg_iter;
e5281ccd 1749 struct page *page;
90797e6d 1750 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1751 gfp_t gfp;
e5281ccd 1752
6c085a72
CW
1753 /* Assert that the object is not currently in any GPU domain. As it
1754 * wasn't in the GTT, there shouldn't be any way it could have been in
1755 * a GPU cache
1756 */
1757 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759
9da3da66
CW
1760 st = kmalloc(sizeof(*st), GFP_KERNEL);
1761 if (st == NULL)
1762 return -ENOMEM;
1763
05394f39 1764 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1765 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766 sg_free_table(st);
1767 kfree(st);
e5281ccd 1768 return -ENOMEM;
9da3da66 1769 }
e5281ccd 1770
9da3da66
CW
1771 /* Get the list of pages out of our struct file. They'll be pinned
1772 * at this point until we release them.
1773 *
1774 * Fail silently without starting the shrinker
1775 */
496ad9aa 1776 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1777 gfp = mapping_gfp_mask(mapping);
caf49191 1778 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1779 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1780 sg = st->sgl;
1781 st->nents = 0;
1782 for (i = 0; i < page_count; i++) {
6c085a72
CW
1783 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784 if (IS_ERR(page)) {
1785 i915_gem_purge(dev_priv, page_count);
1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 }
1788 if (IS_ERR(page)) {
1789 /* We've tried hard to allocate the memory by reaping
1790 * our own buffer, now let the real VM do its job and
1791 * go down in flames if truly OOM.
1792 */
caf49191 1793 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1794 gfp |= __GFP_IO | __GFP_WAIT;
1795
1796 i915_gem_shrink_all(dev_priv);
1797 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 if (IS_ERR(page))
1799 goto err_pages;
1800
caf49191 1801 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1802 gfp &= ~(__GFP_IO | __GFP_WAIT);
1803 }
1625e7e5
KRW
1804#ifdef CONFIG_SWIOTLB
1805 if (swiotlb_nr_tbl()) {
1806 st->nents++;
1807 sg_set_page(sg, page, PAGE_SIZE, 0);
1808 sg = sg_next(sg);
1809 continue;
1810 }
1811#endif
90797e6d
ID
1812 if (!i || page_to_pfn(page) != last_pfn + 1) {
1813 if (i)
1814 sg = sg_next(sg);
1815 st->nents++;
1816 sg_set_page(sg, page, PAGE_SIZE, 0);
1817 } else {
1818 sg->length += PAGE_SIZE;
1819 }
1820 last_pfn = page_to_pfn(page);
e5281ccd 1821 }
1625e7e5
KRW
1822#ifdef CONFIG_SWIOTLB
1823 if (!swiotlb_nr_tbl())
1824#endif
1825 sg_mark_end(sg);
74ce6b6c
CW
1826 obj->pages = st;
1827
6dacfd2f 1828 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1829 i915_gem_object_do_bit_17_swizzle(obj);
1830
1831 return 0;
1832
1833err_pages:
90797e6d
ID
1834 sg_mark_end(sg);
1835 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1836 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1837 sg_free_table(st);
1838 kfree(st);
e5281ccd 1839 return PTR_ERR(page);
673a394b
EA
1840}
1841
37e680a1
CW
1842/* Ensure that the associated pages are gathered from the backing storage
1843 * and pinned into our object. i915_gem_object_get_pages() may be called
1844 * multiple times before they are released by a single call to
1845 * i915_gem_object_put_pages() - once the pages are no longer referenced
1846 * either as a result of memory pressure (reaping pages under the shrinker)
1847 * or as the object is itself released.
1848 */
1849int
1850i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851{
1852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853 const struct drm_i915_gem_object_ops *ops = obj->ops;
1854 int ret;
1855
2f745ad3 1856 if (obj->pages)
37e680a1
CW
1857 return 0;
1858
43e28f09
CW
1859 if (obj->madv != I915_MADV_WILLNEED) {
1860 DRM_ERROR("Attempting to obtain a purgeable object\n");
1861 return -EINVAL;
1862 }
1863
a5570178
CW
1864 BUG_ON(obj->pages_pin_count);
1865
37e680a1
CW
1866 ret = ops->get_pages(obj);
1867 if (ret)
1868 return ret;
1869
35c20a60 1870 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1871 return 0;
673a394b
EA
1872}
1873
54cf91dc 1874void
05394f39 1875i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1876 struct intel_ring_buffer *ring)
673a394b 1877{
05394f39 1878 struct drm_device *dev = obj->base.dev;
69dc4987 1879 struct drm_i915_private *dev_priv = dev->dev_private;
5cef07e1 1880 struct i915_address_space *vm = &dev_priv->gtt.base;
9d773091 1881 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1882
852835f3 1883 BUG_ON(ring == NULL);
05394f39 1884 obj->ring = ring;
673a394b
EA
1885
1886 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1887 if (!obj->active) {
1888 drm_gem_object_reference(&obj->base);
1889 obj->active = 1;
673a394b 1890 }
e35a41de 1891
673a394b 1892 /* Move from whatever list we were on to the tail of execution. */
5cef07e1 1893 list_move_tail(&obj->mm_list, &vm->active_list);
05394f39 1894 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1895
0201f1ec 1896 obj->last_read_seqno = seqno;
caea7476 1897
7dd49065 1898 if (obj->fenced_gpu_access) {
caea7476 1899 obj->last_fenced_seqno = seqno;
caea7476 1900
7dd49065
CW
1901 /* Bump MRU to take account of the delayed flush */
1902 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1903 struct drm_i915_fence_reg *reg;
1904
1905 reg = &dev_priv->fence_regs[obj->fence_reg];
1906 list_move_tail(&reg->lru_list,
1907 &dev_priv->mm.fence_list);
1908 }
caea7476
CW
1909 }
1910}
1911
1912static void
caea7476 1913i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1914{
05394f39 1915 struct drm_device *dev = obj->base.dev;
caea7476 1916 struct drm_i915_private *dev_priv = dev->dev_private;
5cef07e1 1917 struct i915_address_space *vm = &dev_priv->gtt.base;
ce44b0ea 1918
65ce3027 1919 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1920 BUG_ON(!obj->active);
caea7476 1921
5cef07e1 1922 list_move_tail(&obj->mm_list, &vm->inactive_list);
caea7476 1923
65ce3027 1924 list_del_init(&obj->ring_list);
caea7476
CW
1925 obj->ring = NULL;
1926
65ce3027
CW
1927 obj->last_read_seqno = 0;
1928 obj->last_write_seqno = 0;
1929 obj->base.write_domain = 0;
1930
1931 obj->last_fenced_seqno = 0;
caea7476 1932 obj->fenced_gpu_access = false;
caea7476
CW
1933
1934 obj->active = 0;
1935 drm_gem_object_unreference(&obj->base);
1936
1937 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1938}
673a394b 1939
9d773091 1940static int
fca26bb4 1941i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1942{
9d773091
CW
1943 struct drm_i915_private *dev_priv = dev->dev_private;
1944 struct intel_ring_buffer *ring;
1945 int ret, i, j;
53d227f2 1946
107f27a5 1947 /* Carefully retire all requests without writing to the rings */
9d773091 1948 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1949 ret = intel_ring_idle(ring);
1950 if (ret)
1951 return ret;
9d773091 1952 }
9d773091 1953 i915_gem_retire_requests(dev);
107f27a5
CW
1954
1955 /* Finally reset hw state */
9d773091 1956 for_each_ring(ring, dev_priv, i) {
fca26bb4 1957 intel_ring_init_seqno(ring, seqno);
498d2ac1 1958
9d773091
CW
1959 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1960 ring->sync_seqno[j] = 0;
1961 }
53d227f2 1962
9d773091 1963 return 0;
53d227f2
DV
1964}
1965
fca26bb4
MK
1966int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1967{
1968 struct drm_i915_private *dev_priv = dev->dev_private;
1969 int ret;
1970
1971 if (seqno == 0)
1972 return -EINVAL;
1973
1974 /* HWS page needs to be set less than what we
1975 * will inject to ring
1976 */
1977 ret = i915_gem_init_seqno(dev, seqno - 1);
1978 if (ret)
1979 return ret;
1980
1981 /* Carefully set the last_seqno value so that wrap
1982 * detection still works
1983 */
1984 dev_priv->next_seqno = seqno;
1985 dev_priv->last_seqno = seqno - 1;
1986 if (dev_priv->last_seqno == 0)
1987 dev_priv->last_seqno--;
1988
1989 return 0;
1990}
1991
9d773091
CW
1992int
1993i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 1994{
9d773091
CW
1995 struct drm_i915_private *dev_priv = dev->dev_private;
1996
1997 /* reserve 0 for non-seqno */
1998 if (dev_priv->next_seqno == 0) {
fca26bb4 1999 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2000 if (ret)
2001 return ret;
53d227f2 2002
9d773091
CW
2003 dev_priv->next_seqno = 1;
2004 }
53d227f2 2005
f72b3435 2006 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2007 return 0;
53d227f2
DV
2008}
2009
0025c077
MK
2010int __i915_add_request(struct intel_ring_buffer *ring,
2011 struct drm_file *file,
7d736f4f 2012 struct drm_i915_gem_object *obj,
0025c077 2013 u32 *out_seqno)
673a394b 2014{
db53a302 2015 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2016 struct drm_i915_gem_request *request;
7d736f4f 2017 u32 request_ring_position, request_start;
673a394b 2018 int was_empty;
3cce469c
CW
2019 int ret;
2020
7d736f4f 2021 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2022 /*
2023 * Emit any outstanding flushes - execbuf can fail to emit the flush
2024 * after having emitted the batchbuffer command. Hence we need to fix
2025 * things up similar to emitting the lazy request. The difference here
2026 * is that the flush _must_ happen before the next request, no matter
2027 * what.
2028 */
a7b9761d
CW
2029 ret = intel_ring_flush_all_caches(ring);
2030 if (ret)
2031 return ret;
cc889e0f 2032
acb868d3
CW
2033 request = kmalloc(sizeof(*request), GFP_KERNEL);
2034 if (request == NULL)
2035 return -ENOMEM;
cc889e0f 2036
673a394b 2037
a71d8d94
CW
2038 /* Record the position of the start of the request so that
2039 * should we detect the updated seqno part-way through the
2040 * GPU processing the request, we never over-estimate the
2041 * position of the head.
2042 */
2043 request_ring_position = intel_ring_get_tail(ring);
2044
9d773091 2045 ret = ring->add_request(ring);
3bb73aba
CW
2046 if (ret) {
2047 kfree(request);
2048 return ret;
2049 }
673a394b 2050
9d773091 2051 request->seqno = intel_ring_get_seqno(ring);
852835f3 2052 request->ring = ring;
7d736f4f 2053 request->head = request_start;
a71d8d94 2054 request->tail = request_ring_position;
0e50e96b 2055 request->ctx = ring->last_context;
7d736f4f
MK
2056 request->batch_obj = obj;
2057
2058 /* Whilst this request exists, batch_obj will be on the
2059 * active_list, and so will hold the active reference. Only when this
2060 * request is retired will the the batch_obj be moved onto the
2061 * inactive_list and lose its active reference. Hence we do not need
2062 * to explicitly hold another reference here.
2063 */
0e50e96b
MK
2064
2065 if (request->ctx)
2066 i915_gem_context_reference(request->ctx);
2067
673a394b 2068 request->emitted_jiffies = jiffies;
852835f3
ZN
2069 was_empty = list_empty(&ring->request_list);
2070 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2071 request->file_priv = NULL;
852835f3 2072
db53a302
CW
2073 if (file) {
2074 struct drm_i915_file_private *file_priv = file->driver_priv;
2075
1c25595f 2076 spin_lock(&file_priv->mm.lock);
f787a5f5 2077 request->file_priv = file_priv;
b962442e 2078 list_add_tail(&request->client_list,
f787a5f5 2079 &file_priv->mm.request_list);
1c25595f 2080 spin_unlock(&file_priv->mm.lock);
b962442e 2081 }
673a394b 2082
9d773091 2083 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2084 ring->outstanding_lazy_request = 0;
db53a302 2085
db1b76ca 2086 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2087 i915_queue_hangcheck(ring->dev);
2088
f047e395 2089 if (was_empty) {
b3b079db 2090 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2091 &dev_priv->mm.retire_work,
2092 round_jiffies_up_relative(HZ));
f047e395
CW
2093 intel_mark_busy(dev_priv->dev);
2094 }
f65d9421 2095 }
cc889e0f 2096
acb868d3 2097 if (out_seqno)
9d773091 2098 *out_seqno = request->seqno;
3cce469c 2099 return 0;
673a394b
EA
2100}
2101
f787a5f5
CW
2102static inline void
2103i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2104{
1c25595f 2105 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2106
1c25595f
CW
2107 if (!file_priv)
2108 return;
1c5d22f7 2109
1c25595f 2110 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2111 if (request->file_priv) {
2112 list_del(&request->client_list);
2113 request->file_priv = NULL;
2114 }
1c25595f 2115 spin_unlock(&file_priv->mm.lock);
673a394b 2116}
673a394b 2117
aa60c664
MK
2118static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2119{
f343c5f6
BW
2120 if (acthd >= i915_gem_obj_ggtt_offset(obj) &&
2121 acthd < i915_gem_obj_ggtt_offset(obj) + obj->base.size)
aa60c664
MK
2122 return true;
2123
2124 return false;
2125}
2126
2127static bool i915_head_inside_request(const u32 acthd_unmasked,
2128 const u32 request_start,
2129 const u32 request_end)
2130{
2131 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2132
2133 if (request_start < request_end) {
2134 if (acthd >= request_start && acthd < request_end)
2135 return true;
2136 } else if (request_start > request_end) {
2137 if (acthd >= request_start || acthd < request_end)
2138 return true;
2139 }
2140
2141 return false;
2142}
2143
2144static bool i915_request_guilty(struct drm_i915_gem_request *request,
2145 const u32 acthd, bool *inside)
2146{
2147 /* There is a possibility that unmasked head address
2148 * pointing inside the ring, matches the batch_obj address range.
2149 * However this is extremely unlikely.
2150 */
2151
2152 if (request->batch_obj) {
2153 if (i915_head_inside_object(acthd, request->batch_obj)) {
2154 *inside = true;
2155 return true;
2156 }
2157 }
2158
2159 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2160 *inside = false;
2161 return true;
2162 }
2163
2164 return false;
2165}
2166
2167static void i915_set_reset_status(struct intel_ring_buffer *ring,
2168 struct drm_i915_gem_request *request,
2169 u32 acthd)
2170{
2171 struct i915_ctx_hang_stats *hs = NULL;
2172 bool inside, guilty;
2173
2174 /* Innocent until proven guilty */
2175 guilty = false;
2176
2177 if (ring->hangcheck.action != wait &&
2178 i915_request_guilty(request, acthd, &inside)) {
f343c5f6 2179 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
aa60c664
MK
2180 ring->name,
2181 inside ? "inside" : "flushing",
2182 request->batch_obj ?
f343c5f6 2183 i915_gem_obj_ggtt_offset(request->batch_obj) : 0,
aa60c664
MK
2184 request->ctx ? request->ctx->id : 0,
2185 acthd);
2186
2187 guilty = true;
2188 }
2189
2190 /* If contexts are disabled or this is the default context, use
2191 * file_priv->reset_state
2192 */
2193 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2194 hs = &request->ctx->hang_stats;
2195 else if (request->file_priv)
2196 hs = &request->file_priv->hang_stats;
2197
2198 if (hs) {
2199 if (guilty)
2200 hs->batch_active++;
2201 else
2202 hs->batch_pending++;
2203 }
2204}
2205
0e50e96b
MK
2206static void i915_gem_free_request(struct drm_i915_gem_request *request)
2207{
2208 list_del(&request->list);
2209 i915_gem_request_remove_from_client(request);
2210
2211 if (request->ctx)
2212 i915_gem_context_unreference(request->ctx);
2213
2214 kfree(request);
2215}
2216
dfaae392
CW
2217static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2218 struct intel_ring_buffer *ring)
9375e446 2219{
aa60c664
MK
2220 u32 completed_seqno;
2221 u32 acthd;
2222
2223 acthd = intel_ring_get_active_head(ring);
2224 completed_seqno = ring->get_seqno(ring, false);
2225
dfaae392
CW
2226 while (!list_empty(&ring->request_list)) {
2227 struct drm_i915_gem_request *request;
673a394b 2228
dfaae392
CW
2229 request = list_first_entry(&ring->request_list,
2230 struct drm_i915_gem_request,
2231 list);
de151cf6 2232
aa60c664
MK
2233 if (request->seqno > completed_seqno)
2234 i915_set_reset_status(ring, request, acthd);
2235
0e50e96b 2236 i915_gem_free_request(request);
dfaae392 2237 }
673a394b 2238
dfaae392 2239 while (!list_empty(&ring->active_list)) {
05394f39 2240 struct drm_i915_gem_object *obj;
9375e446 2241
05394f39
CW
2242 obj = list_first_entry(&ring->active_list,
2243 struct drm_i915_gem_object,
2244 ring_list);
9375e446 2245
05394f39 2246 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2247 }
2248}
2249
312817a3
CW
2250static void i915_gem_reset_fences(struct drm_device *dev)
2251{
2252 struct drm_i915_private *dev_priv = dev->dev_private;
2253 int i;
2254
4b9de737 2255 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2256 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2257
ada726c7
CW
2258 if (reg->obj)
2259 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2260
f9c513e9
CW
2261 i915_gem_write_fence(dev, i, NULL);
2262
ada726c7
CW
2263 reg->pin_count = 0;
2264 reg->obj = NULL;
2265 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2266 }
ada726c7
CW
2267
2268 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2269}
2270
069efc1d 2271void i915_gem_reset(struct drm_device *dev)
673a394b 2272{
77f01230 2273 struct drm_i915_private *dev_priv = dev->dev_private;
5cef07e1 2274 struct i915_address_space *vm = &dev_priv->gtt.base;
05394f39 2275 struct drm_i915_gem_object *obj;
b4519513 2276 struct intel_ring_buffer *ring;
1ec14ad3 2277 int i;
673a394b 2278
b4519513
CW
2279 for_each_ring(ring, dev_priv, i)
2280 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2281
dfaae392
CW
2282 /* Move everything out of the GPU domains to ensure we do any
2283 * necessary invalidation upon reuse.
2284 */
5cef07e1 2285 list_for_each_entry(obj, &vm->inactive_list, mm_list)
05394f39 2286 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
069efc1d
CW
2287
2288 /* The fence registers are invalidated so clear them out */
312817a3 2289 i915_gem_reset_fences(dev);
673a394b
EA
2290}
2291
2292/**
2293 * This function clears the request list as sequence numbers are passed.
2294 */
a71d8d94 2295void
db53a302 2296i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2297{
673a394b
EA
2298 uint32_t seqno;
2299
db53a302 2300 if (list_empty(&ring->request_list))
6c0594a3
KW
2301 return;
2302
db53a302 2303 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2304
b2eadbc8 2305 seqno = ring->get_seqno(ring, true);
1ec14ad3 2306
852835f3 2307 while (!list_empty(&ring->request_list)) {
673a394b 2308 struct drm_i915_gem_request *request;
673a394b 2309
852835f3 2310 request = list_first_entry(&ring->request_list,
673a394b
EA
2311 struct drm_i915_gem_request,
2312 list);
673a394b 2313
dfaae392 2314 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2315 break;
2316
db53a302 2317 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2318 /* We know the GPU must have read the request to have
2319 * sent us the seqno + interrupt, so use the position
2320 * of tail of the request to update the last known position
2321 * of the GPU head.
2322 */
2323 ring->last_retired_head = request->tail;
b84d5f0c 2324
0e50e96b 2325 i915_gem_free_request(request);
b84d5f0c 2326 }
673a394b 2327
b84d5f0c
CW
2328 /* Move any buffers on the active list that are no longer referenced
2329 * by the ringbuffer to the flushing/inactive lists as appropriate.
2330 */
2331 while (!list_empty(&ring->active_list)) {
05394f39 2332 struct drm_i915_gem_object *obj;
b84d5f0c 2333
0206e353 2334 obj = list_first_entry(&ring->active_list,
05394f39
CW
2335 struct drm_i915_gem_object,
2336 ring_list);
673a394b 2337
0201f1ec 2338 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2339 break;
b84d5f0c 2340
65ce3027 2341 i915_gem_object_move_to_inactive(obj);
673a394b 2342 }
9d34e5db 2343
db53a302
CW
2344 if (unlikely(ring->trace_irq_seqno &&
2345 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2346 ring->irq_put(ring);
db53a302 2347 ring->trace_irq_seqno = 0;
9d34e5db 2348 }
23bc5982 2349
db53a302 2350 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2351}
2352
b09a1fec
CW
2353void
2354i915_gem_retire_requests(struct drm_device *dev)
2355{
2356 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2357 struct intel_ring_buffer *ring;
1ec14ad3 2358 int i;
b09a1fec 2359
b4519513
CW
2360 for_each_ring(ring, dev_priv, i)
2361 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2362}
2363
75ef9da2 2364static void
673a394b
EA
2365i915_gem_retire_work_handler(struct work_struct *work)
2366{
2367 drm_i915_private_t *dev_priv;
2368 struct drm_device *dev;
b4519513 2369 struct intel_ring_buffer *ring;
0a58705b
CW
2370 bool idle;
2371 int i;
673a394b
EA
2372
2373 dev_priv = container_of(work, drm_i915_private_t,
2374 mm.retire_work.work);
2375 dev = dev_priv->dev;
2376
891b48cf
CW
2377 /* Come back later if the device is busy... */
2378 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2379 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2380 round_jiffies_up_relative(HZ));
891b48cf
CW
2381 return;
2382 }
673a394b 2383
b09a1fec 2384 i915_gem_retire_requests(dev);
673a394b 2385
0a58705b
CW
2386 /* Send a periodic flush down the ring so we don't hold onto GEM
2387 * objects indefinitely.
673a394b 2388 */
0a58705b 2389 idle = true;
b4519513 2390 for_each_ring(ring, dev_priv, i) {
3bb73aba 2391 if (ring->gpu_caches_dirty)
0025c077 2392 i915_add_request(ring, NULL);
0a58705b
CW
2393
2394 idle &= list_empty(&ring->request_list);
673a394b
EA
2395 }
2396
db1b76ca 2397 if (!dev_priv->ums.mm_suspended && !idle)
bcb45086
CW
2398 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2399 round_jiffies_up_relative(HZ));
f047e395
CW
2400 if (idle)
2401 intel_mark_idle(dev);
0a58705b 2402
673a394b 2403 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2404}
2405
30dfebf3
DV
2406/**
2407 * Ensures that an object will eventually get non-busy by flushing any required
2408 * write domains, emitting any outstanding lazy request and retiring and
2409 * completed requests.
2410 */
2411static int
2412i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2413{
2414 int ret;
2415
2416 if (obj->active) {
0201f1ec 2417 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2418 if (ret)
2419 return ret;
2420
30dfebf3
DV
2421 i915_gem_retire_requests_ring(obj->ring);
2422 }
2423
2424 return 0;
2425}
2426
23ba4fd0
BW
2427/**
2428 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2429 * @DRM_IOCTL_ARGS: standard ioctl arguments
2430 *
2431 * Returns 0 if successful, else an error is returned with the remaining time in
2432 * the timeout parameter.
2433 * -ETIME: object is still busy after timeout
2434 * -ERESTARTSYS: signal interrupted the wait
2435 * -ENONENT: object doesn't exist
2436 * Also possible, but rare:
2437 * -EAGAIN: GPU wedged
2438 * -ENOMEM: damn
2439 * -ENODEV: Internal IRQ fail
2440 * -E?: The add request failed
2441 *
2442 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2443 * non-zero timeout parameter the wait ioctl will wait for the given number of
2444 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2445 * without holding struct_mutex the object may become re-busied before this
2446 * function completes. A similar but shorter * race condition exists in the busy
2447 * ioctl
2448 */
2449int
2450i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2451{
f69061be 2452 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2453 struct drm_i915_gem_wait *args = data;
2454 struct drm_i915_gem_object *obj;
2455 struct intel_ring_buffer *ring = NULL;
eac1f14f 2456 struct timespec timeout_stack, *timeout = NULL;
f69061be 2457 unsigned reset_counter;
23ba4fd0
BW
2458 u32 seqno = 0;
2459 int ret = 0;
2460
eac1f14f
BW
2461 if (args->timeout_ns >= 0) {
2462 timeout_stack = ns_to_timespec(args->timeout_ns);
2463 timeout = &timeout_stack;
2464 }
23ba4fd0
BW
2465
2466 ret = i915_mutex_lock_interruptible(dev);
2467 if (ret)
2468 return ret;
2469
2470 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2471 if (&obj->base == NULL) {
2472 mutex_unlock(&dev->struct_mutex);
2473 return -ENOENT;
2474 }
2475
30dfebf3
DV
2476 /* Need to make sure the object gets inactive eventually. */
2477 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2478 if (ret)
2479 goto out;
2480
2481 if (obj->active) {
0201f1ec 2482 seqno = obj->last_read_seqno;
23ba4fd0
BW
2483 ring = obj->ring;
2484 }
2485
2486 if (seqno == 0)
2487 goto out;
2488
23ba4fd0
BW
2489 /* Do this after OLR check to make sure we make forward progress polling
2490 * on this IOCTL with a 0 timeout (like busy ioctl)
2491 */
2492 if (!args->timeout_ns) {
2493 ret = -ETIME;
2494 goto out;
2495 }
2496
2497 drm_gem_object_unreference(&obj->base);
f69061be 2498 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2499 mutex_unlock(&dev->struct_mutex);
2500
f69061be 2501 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
4f42f4ef 2502 if (timeout)
eac1f14f 2503 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2504 return ret;
2505
2506out:
2507 drm_gem_object_unreference(&obj->base);
2508 mutex_unlock(&dev->struct_mutex);
2509 return ret;
2510}
2511
5816d648
BW
2512/**
2513 * i915_gem_object_sync - sync an object to a ring.
2514 *
2515 * @obj: object which may be in use on another ring.
2516 * @to: ring we wish to use the object on. May be NULL.
2517 *
2518 * This code is meant to abstract object synchronization with the GPU.
2519 * Calling with NULL implies synchronizing the object with the CPU
2520 * rather than a particular GPU ring.
2521 *
2522 * Returns 0 if successful, else propagates up the lower layer error.
2523 */
2911a35b
BW
2524int
2525i915_gem_object_sync(struct drm_i915_gem_object *obj,
2526 struct intel_ring_buffer *to)
2527{
2528 struct intel_ring_buffer *from = obj->ring;
2529 u32 seqno;
2530 int ret, idx;
2531
2532 if (from == NULL || to == from)
2533 return 0;
2534
5816d648 2535 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2536 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2537
2538 idx = intel_ring_sync_index(from, to);
2539
0201f1ec 2540 seqno = obj->last_read_seqno;
2911a35b
BW
2541 if (seqno <= from->sync_seqno[idx])
2542 return 0;
2543
b4aca010
BW
2544 ret = i915_gem_check_olr(obj->ring, seqno);
2545 if (ret)
2546 return ret;
2911a35b 2547
1500f7ea 2548 ret = to->sync_to(to, from, seqno);
e3a5a225 2549 if (!ret)
7b01e260
MK
2550 /* We use last_read_seqno because sync_to()
2551 * might have just caused seqno wrap under
2552 * the radar.
2553 */
2554 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2555
e3a5a225 2556 return ret;
2911a35b
BW
2557}
2558
b5ffc9bc
CW
2559static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2560{
2561 u32 old_write_domain, old_read_domains;
2562
b5ffc9bc
CW
2563 /* Force a pagefault for domain tracking on next user access */
2564 i915_gem_release_mmap(obj);
2565
b97c3d9c
KP
2566 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2567 return;
2568
97c809fd
CW
2569 /* Wait for any direct GTT access to complete */
2570 mb();
2571
b5ffc9bc
CW
2572 old_read_domains = obj->base.read_domains;
2573 old_write_domain = obj->base.write_domain;
2574
2575 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2576 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2577
2578 trace_i915_gem_object_change_domain(obj,
2579 old_read_domains,
2580 old_write_domain);
2581}
2582
673a394b
EA
2583/**
2584 * Unbinds an object from the GTT aperture.
2585 */
0f973f27 2586int
05394f39 2587i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2588{
7bddb01f 2589 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2f633156 2590 struct i915_vma *vma;
43e28f09 2591 int ret;
673a394b 2592
f343c5f6 2593 if (!i915_gem_obj_ggtt_bound(obj))
673a394b
EA
2594 return 0;
2595
31d8d651
CW
2596 if (obj->pin_count)
2597 return -EBUSY;
673a394b 2598
c4670ad0
CW
2599 BUG_ON(obj->pages == NULL);
2600
a8198eea 2601 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2602 if (ret)
a8198eea
CW
2603 return ret;
2604 /* Continue on if we fail due to EIO, the GPU is hung so we
2605 * should be safe and we need to cleanup or else we might
2606 * cause memory corruption through use-after-free.
2607 */
2608
b5ffc9bc 2609 i915_gem_object_finish_gtt(obj);
5323fd04 2610
96b47b65 2611 /* release the fence reg _after_ flushing */
d9e86c0e 2612 ret = i915_gem_object_put_fence(obj);
1488fc08 2613 if (ret)
d9e86c0e 2614 return ret;
96b47b65 2615
db53a302
CW
2616 trace_i915_gem_object_unbind(obj);
2617
74898d7e
DV
2618 if (obj->has_global_gtt_mapping)
2619 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2620 if (obj->has_aliasing_ppgtt_mapping) {
2621 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2622 obj->has_aliasing_ppgtt_mapping = 0;
2623 }
74163907 2624 i915_gem_gtt_finish_object(obj);
401c29f6 2625 i915_gem_object_unpin_pages(obj);
7bddb01f 2626
6c085a72 2627 list_del(&obj->mm_list);
75e9e915 2628 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2629 obj->map_and_fenceable = true;
673a394b 2630
2f633156
BW
2631 vma = __i915_gem_obj_to_vma(obj);
2632 list_del(&vma->vma_link);
2633 drm_mm_remove_node(&vma->node);
2634 i915_gem_vma_destroy(vma);
2635
2636 /* Since the unbound list is global, only move to that list if
2637 * no more VMAs exist.
2638 * NB: Until we have real VMAs there will only ever be one */
2639 WARN_ON(!list_empty(&obj->vma_list));
2640 if (list_empty(&obj->vma_list))
2641 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2642
88241785 2643 return 0;
54cf91dc
CW
2644}
2645
b2da9fe5 2646int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2647{
2648 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2649 struct intel_ring_buffer *ring;
1ec14ad3 2650 int ret, i;
4df2faf4 2651
4df2faf4 2652 /* Flush everything onto the inactive list. */
b4519513 2653 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2654 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2655 if (ret)
2656 return ret;
2657
3e960501 2658 ret = intel_ring_idle(ring);
1ec14ad3
CW
2659 if (ret)
2660 return ret;
2661 }
4df2faf4 2662
8a1a49f9 2663 return 0;
4df2faf4
DV
2664}
2665
9ce079e4
CW
2666static void i965_write_fence_reg(struct drm_device *dev, int reg,
2667 struct drm_i915_gem_object *obj)
de151cf6 2668{
de151cf6 2669 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2670 int fence_reg;
2671 int fence_pitch_shift;
de151cf6
JB
2672 uint64_t val;
2673
56c844e5
ID
2674 if (INTEL_INFO(dev)->gen >= 6) {
2675 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2676 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2677 } else {
2678 fence_reg = FENCE_REG_965_0;
2679 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2680 }
2681
9ce079e4 2682 if (obj) {
f343c5f6 2683 u32 size = i915_gem_obj_ggtt_size(obj);
de151cf6 2684
f343c5f6 2685 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2686 0xfffff000) << 32;
f343c5f6 2687 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2688 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2689 if (obj->tiling_mode == I915_TILING_Y)
2690 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2691 val |= I965_FENCE_REG_VALID;
2692 } else
2693 val = 0;
c6642782 2694
56c844e5
ID
2695 fence_reg += reg * 8;
2696 I915_WRITE64(fence_reg, val);
2697 POSTING_READ(fence_reg);
de151cf6
JB
2698}
2699
9ce079e4
CW
2700static void i915_write_fence_reg(struct drm_device *dev, int reg,
2701 struct drm_i915_gem_object *obj)
de151cf6 2702{
de151cf6 2703 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2704 u32 val;
de151cf6 2705
9ce079e4 2706 if (obj) {
f343c5f6 2707 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2708 int pitch_val;
2709 int tile_width;
c6642782 2710
f343c5f6 2711 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2712 (size & -size) != size ||
f343c5f6
BW
2713 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2714 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2715 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2716
9ce079e4
CW
2717 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2718 tile_width = 128;
2719 else
2720 tile_width = 512;
2721
2722 /* Note: pitch better be a power of two tile widths */
2723 pitch_val = obj->stride / tile_width;
2724 pitch_val = ffs(pitch_val) - 1;
2725
f343c5f6 2726 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2727 if (obj->tiling_mode == I915_TILING_Y)
2728 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2729 val |= I915_FENCE_SIZE_BITS(size);
2730 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2731 val |= I830_FENCE_REG_VALID;
2732 } else
2733 val = 0;
2734
2735 if (reg < 8)
2736 reg = FENCE_REG_830_0 + reg * 4;
2737 else
2738 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2739
2740 I915_WRITE(reg, val);
2741 POSTING_READ(reg);
de151cf6
JB
2742}
2743
9ce079e4
CW
2744static void i830_write_fence_reg(struct drm_device *dev, int reg,
2745 struct drm_i915_gem_object *obj)
de151cf6 2746{
de151cf6 2747 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2748 uint32_t val;
de151cf6 2749
9ce079e4 2750 if (obj) {
f343c5f6 2751 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2752 uint32_t pitch_val;
de151cf6 2753
f343c5f6 2754 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2755 (size & -size) != size ||
f343c5f6
BW
2756 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2757 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2758 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2759
9ce079e4
CW
2760 pitch_val = obj->stride / 128;
2761 pitch_val = ffs(pitch_val) - 1;
de151cf6 2762
f343c5f6 2763 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2764 if (obj->tiling_mode == I915_TILING_Y)
2765 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2766 val |= I830_FENCE_SIZE_BITS(size);
2767 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2768 val |= I830_FENCE_REG_VALID;
2769 } else
2770 val = 0;
c6642782 2771
9ce079e4
CW
2772 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2773 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2774}
2775
d0a57789
CW
2776inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2777{
2778 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2779}
2780
9ce079e4
CW
2781static void i915_gem_write_fence(struct drm_device *dev, int reg,
2782 struct drm_i915_gem_object *obj)
2783{
d0a57789
CW
2784 struct drm_i915_private *dev_priv = dev->dev_private;
2785
2786 /* Ensure that all CPU reads are completed before installing a fence
2787 * and all writes before removing the fence.
2788 */
2789 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2790 mb();
2791
9ce079e4
CW
2792 switch (INTEL_INFO(dev)->gen) {
2793 case 7:
56c844e5 2794 case 6:
9ce079e4
CW
2795 case 5:
2796 case 4: i965_write_fence_reg(dev, reg, obj); break;
2797 case 3: i915_write_fence_reg(dev, reg, obj); break;
2798 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2799 default: BUG();
9ce079e4 2800 }
d0a57789
CW
2801
2802 /* And similarly be paranoid that no direct access to this region
2803 * is reordered to before the fence is installed.
2804 */
2805 if (i915_gem_object_needs_mb(obj))
2806 mb();
de151cf6
JB
2807}
2808
61050808
CW
2809static inline int fence_number(struct drm_i915_private *dev_priv,
2810 struct drm_i915_fence_reg *fence)
2811{
2812 return fence - dev_priv->fence_regs;
2813}
2814
2dc8aae0
CW
2815struct write_fence {
2816 struct drm_device *dev;
2817 struct drm_i915_gem_object *obj;
2818 int fence;
2819};
2820
25ff1195
CW
2821static void i915_gem_write_fence__ipi(void *data)
2822{
2dc8aae0
CW
2823 struct write_fence *args = data;
2824
2825 /* Required for SNB+ with LLC */
25ff1195 2826 wbinvd();
2dc8aae0
CW
2827
2828 /* Required for VLV */
2829 i915_gem_write_fence(args->dev, args->fence, args->obj);
25ff1195
CW
2830}
2831
61050808
CW
2832static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2833 struct drm_i915_fence_reg *fence,
2834 bool enable)
2835{
2dc8aae0
CW
2836 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2837 struct write_fence args = {
2838 .dev = obj->base.dev,
2839 .fence = fence_number(dev_priv, fence),
2840 .obj = enable ? obj : NULL,
2841 };
25ff1195
CW
2842
2843 /* In order to fully serialize access to the fenced region and
2844 * the update to the fence register we need to take extreme
2845 * measures on SNB+. In theory, the write to the fence register
2846 * flushes all memory transactions before, and coupled with the
2847 * mb() placed around the register write we serialise all memory
2848 * operations with respect to the changes in the tiler. Yet, on
2849 * SNB+ we need to take a step further and emit an explicit wbinvd()
2850 * on each processor in order to manually flush all memory
2851 * transactions before updating the fence register.
2dc8aae0
CW
2852 *
2853 * However, Valleyview complicates matter. There the wbinvd is
2854 * insufficient and unlike SNB/IVB requires the serialising
2855 * register write. (Note that that register write by itself is
2856 * conversely not sufficient for SNB+.) To compromise, we do both.
25ff1195 2857 */
2dc8aae0
CW
2858 if (INTEL_INFO(args.dev)->gen >= 6)
2859 on_each_cpu(i915_gem_write_fence__ipi, &args, 1);
2860 else
2861 i915_gem_write_fence(args.dev, args.fence, args.obj);
61050808
CW
2862
2863 if (enable) {
2dc8aae0 2864 obj->fence_reg = args.fence;
61050808
CW
2865 fence->obj = obj;
2866 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2867 } else {
2868 obj->fence_reg = I915_FENCE_REG_NONE;
2869 fence->obj = NULL;
2870 list_del_init(&fence->lru_list);
2871 }
2872}
2873
d9e86c0e 2874static int
d0a57789 2875i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2876{
1c293ea3 2877 if (obj->last_fenced_seqno) {
86d5bc37 2878 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2879 if (ret)
2880 return ret;
d9e86c0e
CW
2881
2882 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2883 }
2884
86d5bc37 2885 obj->fenced_gpu_access = false;
d9e86c0e
CW
2886 return 0;
2887}
2888
2889int
2890i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2891{
61050808 2892 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 2893 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
2894 int ret;
2895
d0a57789 2896 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
2897 if (ret)
2898 return ret;
2899
61050808
CW
2900 if (obj->fence_reg == I915_FENCE_REG_NONE)
2901 return 0;
d9e86c0e 2902
f9c513e9
CW
2903 fence = &dev_priv->fence_regs[obj->fence_reg];
2904
61050808 2905 i915_gem_object_fence_lost(obj);
f9c513e9 2906 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
2907
2908 return 0;
2909}
2910
2911static struct drm_i915_fence_reg *
a360bb1a 2912i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2913{
ae3db24a 2914 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2915 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2916 int i;
ae3db24a
DV
2917
2918 /* First try to find a free reg */
d9e86c0e 2919 avail = NULL;
ae3db24a
DV
2920 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2921 reg = &dev_priv->fence_regs[i];
2922 if (!reg->obj)
d9e86c0e 2923 return reg;
ae3db24a 2924
1690e1eb 2925 if (!reg->pin_count)
d9e86c0e 2926 avail = reg;
ae3db24a
DV
2927 }
2928
d9e86c0e
CW
2929 if (avail == NULL)
2930 return NULL;
ae3db24a
DV
2931
2932 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2933 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2934 if (reg->pin_count)
ae3db24a
DV
2935 continue;
2936
8fe301ad 2937 return reg;
ae3db24a
DV
2938 }
2939
8fe301ad 2940 return NULL;
ae3db24a
DV
2941}
2942
de151cf6 2943/**
9a5a53b3 2944 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2945 * @obj: object to map through a fence reg
2946 *
2947 * When mapping objects through the GTT, userspace wants to be able to write
2948 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2949 * This function walks the fence regs looking for a free one for @obj,
2950 * stealing one if it can't find any.
2951 *
2952 * It then sets up the reg based on the object's properties: address, pitch
2953 * and tiling format.
9a5a53b3
CW
2954 *
2955 * For an untiled surface, this removes any existing fence.
de151cf6 2956 */
8c4b8c3f 2957int
06d98131 2958i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2959{
05394f39 2960 struct drm_device *dev = obj->base.dev;
79e53945 2961 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2962 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2963 struct drm_i915_fence_reg *reg;
ae3db24a 2964 int ret;
de151cf6 2965
14415745
CW
2966 /* Have we updated the tiling parameters upon the object and so
2967 * will need to serialise the write to the associated fence register?
2968 */
5d82e3e6 2969 if (obj->fence_dirty) {
d0a57789 2970 ret = i915_gem_object_wait_fence(obj);
14415745
CW
2971 if (ret)
2972 return ret;
2973 }
9a5a53b3 2974
d9e86c0e 2975 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2976 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2977 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2978 if (!obj->fence_dirty) {
14415745
CW
2979 list_move_tail(&reg->lru_list,
2980 &dev_priv->mm.fence_list);
2981 return 0;
2982 }
2983 } else if (enable) {
2984 reg = i915_find_fence_reg(dev);
2985 if (reg == NULL)
2986 return -EDEADLK;
d9e86c0e 2987
14415745
CW
2988 if (reg->obj) {
2989 struct drm_i915_gem_object *old = reg->obj;
2990
d0a57789 2991 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
2992 if (ret)
2993 return ret;
2994
14415745 2995 i915_gem_object_fence_lost(old);
29c5a587 2996 }
14415745 2997 } else
a09ba7fa 2998 return 0;
a09ba7fa 2999
14415745 3000 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 3001 obj->fence_dirty = false;
14415745 3002
9ce079e4 3003 return 0;
de151cf6
JB
3004}
3005
42d6ab48
CW
3006static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3007 struct drm_mm_node *gtt_space,
3008 unsigned long cache_level)
3009{
3010 struct drm_mm_node *other;
3011
3012 /* On non-LLC machines we have to be careful when putting differing
3013 * types of snoopable memory together to avoid the prefetcher
4239ca77 3014 * crossing memory domains and dying.
42d6ab48
CW
3015 */
3016 if (HAS_LLC(dev))
3017 return true;
3018
c6cfb325 3019 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3020 return true;
3021
3022 if (list_empty(&gtt_space->node_list))
3023 return true;
3024
3025 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3026 if (other->allocated && !other->hole_follows && other->color != cache_level)
3027 return false;
3028
3029 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3030 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3031 return false;
3032
3033 return true;
3034}
3035
3036static void i915_gem_verify_gtt(struct drm_device *dev)
3037{
3038#if WATCH_GTT
3039 struct drm_i915_private *dev_priv = dev->dev_private;
3040 struct drm_i915_gem_object *obj;
3041 int err = 0;
3042
35c20a60 3043 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3044 if (obj->gtt_space == NULL) {
3045 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3046 err++;
3047 continue;
3048 }
3049
3050 if (obj->cache_level != obj->gtt_space->color) {
3051 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3052 i915_gem_obj_ggtt_offset(obj),
3053 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3054 obj->cache_level,
3055 obj->gtt_space->color);
3056 err++;
3057 continue;
3058 }
3059
3060 if (!i915_gem_valid_gtt_space(dev,
3061 obj->gtt_space,
3062 obj->cache_level)) {
3063 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3064 i915_gem_obj_ggtt_offset(obj),
3065 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3066 obj->cache_level);
3067 err++;
3068 continue;
3069 }
3070 }
3071
3072 WARN_ON(err);
3073#endif
3074}
3075
673a394b
EA
3076/**
3077 * Finds free space in the GTT aperture and binds the object there.
3078 */
3079static int
05394f39 3080i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 3081 unsigned alignment,
86a1ee26
CW
3082 bool map_and_fenceable,
3083 bool nonblocking)
673a394b 3084{
05394f39 3085 struct drm_device *dev = obj->base.dev;
673a394b 3086 drm_i915_private_t *dev_priv = dev->dev_private;
5cef07e1 3087 struct i915_address_space *vm = &dev_priv->gtt.base;
5e783301 3088 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 3089 bool mappable, fenceable;
0a9ae0d7 3090 size_t gtt_max = map_and_fenceable ?
853ba5d2 3091 dev_priv->gtt.mappable_end : dev_priv->gtt.base.total;
2f633156 3092 struct i915_vma *vma;
07f73f69 3093 int ret;
673a394b 3094
2f633156
BW
3095 if (WARN_ON(!list_empty(&obj->vma_list)))
3096 return -EBUSY;
3097
e28f8711
CW
3098 fence_size = i915_gem_get_gtt_size(dev,
3099 obj->base.size,
3100 obj->tiling_mode);
3101 fence_alignment = i915_gem_get_gtt_alignment(dev,
3102 obj->base.size,
d865110c 3103 obj->tiling_mode, true);
e28f8711 3104 unfenced_alignment =
d865110c 3105 i915_gem_get_gtt_alignment(dev,
e28f8711 3106 obj->base.size,
d865110c 3107 obj->tiling_mode, false);
a00b10c3 3108
673a394b 3109 if (alignment == 0)
5e783301
DV
3110 alignment = map_and_fenceable ? fence_alignment :
3111 unfenced_alignment;
75e9e915 3112 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3113 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3114 return -EINVAL;
3115 }
3116
05394f39 3117 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3118
654fc607
CW
3119 /* If the object is bigger than the entire aperture, reject it early
3120 * before evicting everything in a vain attempt to find space.
3121 */
0a9ae0d7 3122 if (obj->base.size > gtt_max) {
3765f304 3123 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3124 obj->base.size,
3125 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3126 gtt_max);
654fc607
CW
3127 return -E2BIG;
3128 }
3129
37e680a1 3130 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3131 if (ret)
3132 return ret;
3133
fbdda6fb
CW
3134 i915_gem_object_pin_pages(obj);
3135
2f633156 3136 vma = i915_gem_vma_create(obj, &dev_priv->gtt.base);
db473b36 3137 if (IS_ERR(vma)) {
2f633156 3138 i915_gem_object_unpin_pages(obj);
db473b36 3139 return PTR_ERR(vma);
2f633156
BW
3140 }
3141
0a9ae0d7 3142search_free:
93bd8649 3143 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
2f633156 3144 &vma->node,
0a9ae0d7
BW
3145 size, alignment,
3146 obj->cache_level, 0, gtt_max);
dc9dd7a2 3147 if (ret) {
75e9e915 3148 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 3149 obj->cache_level,
86a1ee26
CW
3150 map_and_fenceable,
3151 nonblocking);
dc9dd7a2
CW
3152 if (ret == 0)
3153 goto search_free;
9731129c 3154
2f633156 3155 goto err_out;
673a394b 3156 }
2f633156 3157 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3158 obj->cache_level))) {
2f633156
BW
3159 ret = -EINVAL;
3160 goto err_out;
673a394b
EA
3161 }
3162
74163907 3163 ret = i915_gem_gtt_prepare_object(obj);
2f633156
BW
3164 if (ret)
3165 goto err_out;
673a394b 3166
35c20a60 3167 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
5cef07e1 3168 list_add_tail(&obj->mm_list, &vm->inactive_list);
2f633156 3169 list_add(&vma->vma_link, &obj->vma_list);
bf1a1092 3170
75e9e915 3171 fenceable =
c6cfb325
BW
3172 i915_gem_obj_ggtt_size(obj) == fence_size &&
3173 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
a00b10c3 3174
f343c5f6
BW
3175 mappable = i915_gem_obj_ggtt_offset(obj) + obj->base.size <=
3176 dev_priv->gtt.mappable_end;
a00b10c3 3177
05394f39 3178 obj->map_and_fenceable = mappable && fenceable;
75e9e915 3179
db53a302 3180 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 3181 i915_gem_verify_gtt(dev);
673a394b 3182 return 0;
2f633156
BW
3183
3184err_out:
6286ef9b 3185 drm_mm_remove_node(&vma->node);
2f633156
BW
3186 i915_gem_vma_destroy(vma);
3187 i915_gem_object_unpin_pages(obj);
2f633156 3188 return ret;
673a394b
EA
3189}
3190
3191void
05394f39 3192i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3193{
673a394b
EA
3194 /* If we don't have a page list set up, then we're not pinned
3195 * to GPU, and we can ignore the cache flush because it'll happen
3196 * again at bind time.
3197 */
05394f39 3198 if (obj->pages == NULL)
673a394b
EA
3199 return;
3200
769ce464
ID
3201 /*
3202 * Stolen memory is always coherent with the GPU as it is explicitly
3203 * marked as wc by the system, or the system is cache-coherent.
3204 */
3205 if (obj->stolen)
3206 return;
3207
9c23f7fc
CW
3208 /* If the GPU is snooping the contents of the CPU cache,
3209 * we do not need to manually clear the CPU cache lines. However,
3210 * the caches are only snooped when the render cache is
3211 * flushed/invalidated. As we always have to emit invalidations
3212 * and flushes when moving into and out of the RENDER domain, correct
3213 * snooping behaviour occurs naturally as the result of our domain
3214 * tracking.
3215 */
3216 if (obj->cache_level != I915_CACHE_NONE)
3217 return;
3218
1c5d22f7 3219 trace_i915_gem_object_clflush(obj);
cfa16a0d 3220
9da3da66 3221 drm_clflush_sg(obj->pages);
e47c68e9
EA
3222}
3223
3224/** Flushes the GTT write domain for the object if it's dirty. */
3225static void
05394f39 3226i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3227{
1c5d22f7
CW
3228 uint32_t old_write_domain;
3229
05394f39 3230 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3231 return;
3232
63256ec5 3233 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3234 * to it immediately go to main memory as far as we know, so there's
3235 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3236 *
3237 * However, we do have to enforce the order so that all writes through
3238 * the GTT land before any writes to the device, such as updates to
3239 * the GATT itself.
e47c68e9 3240 */
63256ec5
CW
3241 wmb();
3242
05394f39
CW
3243 old_write_domain = obj->base.write_domain;
3244 obj->base.write_domain = 0;
1c5d22f7
CW
3245
3246 trace_i915_gem_object_change_domain(obj,
05394f39 3247 obj->base.read_domains,
1c5d22f7 3248 old_write_domain);
e47c68e9
EA
3249}
3250
3251/** Flushes the CPU write domain for the object if it's dirty. */
3252static void
05394f39 3253i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3254{
1c5d22f7 3255 uint32_t old_write_domain;
e47c68e9 3256
05394f39 3257 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3258 return;
3259
3260 i915_gem_clflush_object(obj);
e76e9aeb 3261 i915_gem_chipset_flush(obj->base.dev);
05394f39
CW
3262 old_write_domain = obj->base.write_domain;
3263 obj->base.write_domain = 0;
1c5d22f7
CW
3264
3265 trace_i915_gem_object_change_domain(obj,
05394f39 3266 obj->base.read_domains,
1c5d22f7 3267 old_write_domain);
e47c68e9
EA
3268}
3269
2ef7eeaa
EA
3270/**
3271 * Moves a single object to the GTT read, and possibly write domain.
3272 *
3273 * This function returns when the move is complete, including waiting on
3274 * flushes to occur.
3275 */
79e53945 3276int
2021746e 3277i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3278{
8325a09d 3279 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3280 uint32_t old_write_domain, old_read_domains;
e47c68e9 3281 int ret;
2ef7eeaa 3282
02354392 3283 /* Not valid to be called on unbound objects. */
f343c5f6 3284 if (!i915_gem_obj_ggtt_bound(obj))
02354392
EA
3285 return -EINVAL;
3286
8d7e3de1
CW
3287 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3288 return 0;
3289
0201f1ec 3290 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3291 if (ret)
3292 return ret;
3293
7213342d 3294 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3295
d0a57789
CW
3296 /* Serialise direct access to this object with the barriers for
3297 * coherent writes from the GPU, by effectively invalidating the
3298 * GTT domain upon first access.
3299 */
3300 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3301 mb();
3302
05394f39
CW
3303 old_write_domain = obj->base.write_domain;
3304 old_read_domains = obj->base.read_domains;
1c5d22f7 3305
e47c68e9
EA
3306 /* It should now be out of any other write domains, and we can update
3307 * the domain values for our changes.
3308 */
05394f39
CW
3309 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3310 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3311 if (write) {
05394f39
CW
3312 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3313 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3314 obj->dirty = 1;
2ef7eeaa
EA
3315 }
3316
1c5d22f7
CW
3317 trace_i915_gem_object_change_domain(obj,
3318 old_read_domains,
3319 old_write_domain);
3320
8325a09d
CW
3321 /* And bump the LRU for this access */
3322 if (i915_gem_object_is_inactive(obj))
5cef07e1
BW
3323 list_move_tail(&obj->mm_list,
3324 &dev_priv->gtt.base.inactive_list);
8325a09d 3325
e47c68e9
EA
3326 return 0;
3327}
3328
e4ffd173
CW
3329int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3330 enum i915_cache_level cache_level)
3331{
7bddb01f
DV
3332 struct drm_device *dev = obj->base.dev;
3333 drm_i915_private_t *dev_priv = dev->dev_private;
2f633156 3334 struct i915_vma *vma = __i915_gem_obj_to_vma(obj);
e4ffd173
CW
3335 int ret;
3336
3337 if (obj->cache_level == cache_level)
3338 return 0;
3339
3340 if (obj->pin_count) {
3341 DRM_DEBUG("can not change the cache level of pinned objects\n");
3342 return -EBUSY;
3343 }
3344
2f633156 3345 if (vma && !i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
42d6ab48
CW
3346 ret = i915_gem_object_unbind(obj);
3347 if (ret)
3348 return ret;
3349 }
3350
f343c5f6 3351 if (i915_gem_obj_ggtt_bound(obj)) {
e4ffd173
CW
3352 ret = i915_gem_object_finish_gpu(obj);
3353 if (ret)
3354 return ret;
3355
3356 i915_gem_object_finish_gtt(obj);
3357
3358 /* Before SandyBridge, you could not use tiling or fence
3359 * registers with snooped memory, so relinquish any fences
3360 * currently pointing to our region in the aperture.
3361 */
42d6ab48 3362 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3363 ret = i915_gem_object_put_fence(obj);
3364 if (ret)
3365 return ret;
3366 }
3367
74898d7e
DV
3368 if (obj->has_global_gtt_mapping)
3369 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3370 if (obj->has_aliasing_ppgtt_mapping)
3371 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3372 obj, cache_level);
42d6ab48 3373
f343c5f6 3374 i915_gem_obj_ggtt_set_color(obj, cache_level);
e4ffd173
CW
3375 }
3376
3377 if (cache_level == I915_CACHE_NONE) {
3378 u32 old_read_domains, old_write_domain;
3379
3380 /* If we're coming from LLC cached, then we haven't
3381 * actually been tracking whether the data is in the
3382 * CPU cache or not, since we only allow one bit set
3383 * in obj->write_domain and have been skipping the clflushes.
3384 * Just set it to the CPU cache for now.
3385 */
3386 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3387 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3388
3389 old_read_domains = obj->base.read_domains;
3390 old_write_domain = obj->base.write_domain;
3391
3392 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3393 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3394
3395 trace_i915_gem_object_change_domain(obj,
3396 old_read_domains,
3397 old_write_domain);
3398 }
3399
3400 obj->cache_level = cache_level;
42d6ab48 3401 i915_gem_verify_gtt(dev);
e4ffd173
CW
3402 return 0;
3403}
3404
199adf40
BW
3405int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3406 struct drm_file *file)
e6994aee 3407{
199adf40 3408 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3409 struct drm_i915_gem_object *obj;
3410 int ret;
3411
3412 ret = i915_mutex_lock_interruptible(dev);
3413 if (ret)
3414 return ret;
3415
3416 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3417 if (&obj->base == NULL) {
3418 ret = -ENOENT;
3419 goto unlock;
3420 }
3421
199adf40 3422 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3423
3424 drm_gem_object_unreference(&obj->base);
3425unlock:
3426 mutex_unlock(&dev->struct_mutex);
3427 return ret;
3428}
3429
199adf40
BW
3430int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3431 struct drm_file *file)
e6994aee 3432{
199adf40 3433 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3434 struct drm_i915_gem_object *obj;
3435 enum i915_cache_level level;
3436 int ret;
3437
199adf40
BW
3438 switch (args->caching) {
3439 case I915_CACHING_NONE:
e6994aee
CW
3440 level = I915_CACHE_NONE;
3441 break;
199adf40 3442 case I915_CACHING_CACHED:
e6994aee
CW
3443 level = I915_CACHE_LLC;
3444 break;
3445 default:
3446 return -EINVAL;
3447 }
3448
3bc2913e
BW
3449 ret = i915_mutex_lock_interruptible(dev);
3450 if (ret)
3451 return ret;
3452
e6994aee
CW
3453 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3454 if (&obj->base == NULL) {
3455 ret = -ENOENT;
3456 goto unlock;
3457 }
3458
3459 ret = i915_gem_object_set_cache_level(obj, level);
3460
3461 drm_gem_object_unreference(&obj->base);
3462unlock:
3463 mutex_unlock(&dev->struct_mutex);
3464 return ret;
3465}
3466
b9241ea3 3467/*
2da3b9b9
CW
3468 * Prepare buffer for display plane (scanout, cursors, etc).
3469 * Can be called from an uninterruptible phase (modesetting) and allows
3470 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3471 */
3472int
2da3b9b9
CW
3473i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3474 u32 alignment,
919926ae 3475 struct intel_ring_buffer *pipelined)
b9241ea3 3476{
2da3b9b9 3477 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3478 int ret;
3479
0be73284 3480 if (pipelined != obj->ring) {
2911a35b
BW
3481 ret = i915_gem_object_sync(obj, pipelined);
3482 if (ret)
b9241ea3
ZW
3483 return ret;
3484 }
3485
a7ef0640
EA
3486 /* The display engine is not coherent with the LLC cache on gen6. As
3487 * a result, we make sure that the pinning that is about to occur is
3488 * done with uncached PTEs. This is lowest common denominator for all
3489 * chipsets.
3490 *
3491 * However for gen6+, we could do better by using the GFDT bit instead
3492 * of uncaching, which would allow us to flush all the LLC-cached data
3493 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3494 */
3495 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3496 if (ret)
3497 return ret;
3498
2da3b9b9
CW
3499 /* As the user may map the buffer once pinned in the display plane
3500 * (e.g. libkms for the bootup splash), we have to ensure that we
3501 * always use map_and_fenceable for all scanout buffers.
3502 */
86a1ee26 3503 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3504 if (ret)
3505 return ret;
3506
b118c1e3
CW
3507 i915_gem_object_flush_cpu_write_domain(obj);
3508
2da3b9b9 3509 old_write_domain = obj->base.write_domain;
05394f39 3510 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3511
3512 /* It should now be out of any other write domains, and we can update
3513 * the domain values for our changes.
3514 */
e5f1d962 3515 obj->base.write_domain = 0;
05394f39 3516 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3517
3518 trace_i915_gem_object_change_domain(obj,
3519 old_read_domains,
2da3b9b9 3520 old_write_domain);
b9241ea3
ZW
3521
3522 return 0;
3523}
3524
85345517 3525int
a8198eea 3526i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3527{
88241785
CW
3528 int ret;
3529
a8198eea 3530 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3531 return 0;
3532
0201f1ec 3533 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3534 if (ret)
3535 return ret;
3536
a8198eea
CW
3537 /* Ensure that we invalidate the GPU's caches and TLBs. */
3538 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3539 return 0;
85345517
CW
3540}
3541
e47c68e9
EA
3542/**
3543 * Moves a single object to the CPU read, and possibly write domain.
3544 *
3545 * This function returns when the move is complete, including waiting on
3546 * flushes to occur.
3547 */
dabdfe02 3548int
919926ae 3549i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3550{
1c5d22f7 3551 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3552 int ret;
3553
8d7e3de1
CW
3554 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3555 return 0;
3556
0201f1ec 3557 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3558 if (ret)
3559 return ret;
3560
e47c68e9 3561 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3562
05394f39
CW
3563 old_write_domain = obj->base.write_domain;
3564 old_read_domains = obj->base.read_domains;
1c5d22f7 3565
e47c68e9 3566 /* Flush the CPU cache if it's still invalid. */
05394f39 3567 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3568 i915_gem_clflush_object(obj);
2ef7eeaa 3569
05394f39 3570 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3571 }
3572
3573 /* It should now be out of any other write domains, and we can update
3574 * the domain values for our changes.
3575 */
05394f39 3576 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3577
3578 /* If we're writing through the CPU, then the GPU read domains will
3579 * need to be invalidated at next use.
3580 */
3581 if (write) {
05394f39
CW
3582 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3583 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3584 }
2ef7eeaa 3585
1c5d22f7
CW
3586 trace_i915_gem_object_change_domain(obj,
3587 old_read_domains,
3588 old_write_domain);
3589
2ef7eeaa
EA
3590 return 0;
3591}
3592
673a394b
EA
3593/* Throttle our rendering by waiting until the ring has completed our requests
3594 * emitted over 20 msec ago.
3595 *
b962442e
EA
3596 * Note that if we were to use the current jiffies each time around the loop,
3597 * we wouldn't escape the function with any frames outstanding if the time to
3598 * render a frame was over 20ms.
3599 *
673a394b
EA
3600 * This should get us reasonable parallelism between CPU and GPU but also
3601 * relatively low latency when blocking on a particular request to finish.
3602 */
40a5f0de 3603static int
f787a5f5 3604i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3605{
f787a5f5
CW
3606 struct drm_i915_private *dev_priv = dev->dev_private;
3607 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3608 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3609 struct drm_i915_gem_request *request;
3610 struct intel_ring_buffer *ring = NULL;
f69061be 3611 unsigned reset_counter;
f787a5f5
CW
3612 u32 seqno = 0;
3613 int ret;
93533c29 3614
308887aa
DV
3615 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3616 if (ret)
3617 return ret;
3618
3619 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3620 if (ret)
3621 return ret;
e110e8d6 3622
1c25595f 3623 spin_lock(&file_priv->mm.lock);
f787a5f5 3624 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3625 if (time_after_eq(request->emitted_jiffies, recent_enough))
3626 break;
40a5f0de 3627
f787a5f5
CW
3628 ring = request->ring;
3629 seqno = request->seqno;
b962442e 3630 }
f69061be 3631 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3632 spin_unlock(&file_priv->mm.lock);
40a5f0de 3633
f787a5f5
CW
3634 if (seqno == 0)
3635 return 0;
2bc43b5c 3636
f69061be 3637 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
f787a5f5
CW
3638 if (ret == 0)
3639 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3640
3641 return ret;
3642}
3643
673a394b 3644int
05394f39
CW
3645i915_gem_object_pin(struct drm_i915_gem_object *obj,
3646 uint32_t alignment,
86a1ee26
CW
3647 bool map_and_fenceable,
3648 bool nonblocking)
673a394b 3649{
673a394b
EA
3650 int ret;
3651
7e81a42e
CW
3652 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3653 return -EBUSY;
ac0c6b5a 3654
f343c5f6
BW
3655 if (i915_gem_obj_ggtt_bound(obj)) {
3656 if ((alignment && i915_gem_obj_ggtt_offset(obj) & (alignment - 1)) ||
05394f39
CW
3657 (map_and_fenceable && !obj->map_and_fenceable)) {
3658 WARN(obj->pin_count,
ae7d49d8 3659 "bo is already pinned with incorrect alignment:"
f343c5f6 3660 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3661 " obj->map_and_fenceable=%d\n",
f343c5f6 3662 i915_gem_obj_ggtt_offset(obj), alignment,
75e9e915 3663 map_and_fenceable,
05394f39 3664 obj->map_and_fenceable);
ac0c6b5a
CW
3665 ret = i915_gem_object_unbind(obj);
3666 if (ret)
3667 return ret;
3668 }
3669 }
3670
f343c5f6 3671 if (!i915_gem_obj_ggtt_bound(obj)) {
8742267a
CW
3672 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3673
a00b10c3 3674 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3675 map_and_fenceable,
3676 nonblocking);
9731129c 3677 if (ret)
673a394b 3678 return ret;
8742267a
CW
3679
3680 if (!dev_priv->mm.aliasing_ppgtt)
3681 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3682 }
76446cac 3683
74898d7e
DV
3684 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3685 i915_gem_gtt_bind_object(obj, obj->cache_level);
3686
1b50247a 3687 obj->pin_count++;
6299f992 3688 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3689
3690 return 0;
3691}
3692
3693void
05394f39 3694i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3695{
05394f39 3696 BUG_ON(obj->pin_count == 0);
f343c5f6 3697 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
673a394b 3698
1b50247a 3699 if (--obj->pin_count == 0)
6299f992 3700 obj->pin_mappable = false;
673a394b
EA
3701}
3702
3703int
3704i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3705 struct drm_file *file)
673a394b
EA
3706{
3707 struct drm_i915_gem_pin *args = data;
05394f39 3708 struct drm_i915_gem_object *obj;
673a394b
EA
3709 int ret;
3710
1d7cfea1
CW
3711 ret = i915_mutex_lock_interruptible(dev);
3712 if (ret)
3713 return ret;
673a394b 3714
05394f39 3715 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3716 if (&obj->base == NULL) {
1d7cfea1
CW
3717 ret = -ENOENT;
3718 goto unlock;
673a394b 3719 }
673a394b 3720
05394f39 3721 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3722 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3723 ret = -EINVAL;
3724 goto out;
3ef94daa
CW
3725 }
3726
05394f39 3727 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3728 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3729 args->handle);
1d7cfea1
CW
3730 ret = -EINVAL;
3731 goto out;
79e53945
JB
3732 }
3733
93be8788 3734 if (obj->user_pin_count == 0) {
86a1ee26 3735 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3736 if (ret)
3737 goto out;
673a394b
EA
3738 }
3739
93be8788
CW
3740 obj->user_pin_count++;
3741 obj->pin_filp = file;
3742
673a394b
EA
3743 /* XXX - flush the CPU caches for pinned objects
3744 * as the X server doesn't manage domains yet
3745 */
e47c68e9 3746 i915_gem_object_flush_cpu_write_domain(obj);
f343c5f6 3747 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3748out:
05394f39 3749 drm_gem_object_unreference(&obj->base);
1d7cfea1 3750unlock:
673a394b 3751 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3752 return ret;
673a394b
EA
3753}
3754
3755int
3756i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3757 struct drm_file *file)
673a394b
EA
3758{
3759 struct drm_i915_gem_pin *args = data;
05394f39 3760 struct drm_i915_gem_object *obj;
76c1dec1 3761 int ret;
673a394b 3762
1d7cfea1
CW
3763 ret = i915_mutex_lock_interruptible(dev);
3764 if (ret)
3765 return ret;
673a394b 3766
05394f39 3767 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3768 if (&obj->base == NULL) {
1d7cfea1
CW
3769 ret = -ENOENT;
3770 goto unlock;
673a394b 3771 }
76c1dec1 3772
05394f39 3773 if (obj->pin_filp != file) {
79e53945
JB
3774 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3775 args->handle);
1d7cfea1
CW
3776 ret = -EINVAL;
3777 goto out;
79e53945 3778 }
05394f39
CW
3779 obj->user_pin_count--;
3780 if (obj->user_pin_count == 0) {
3781 obj->pin_filp = NULL;
79e53945
JB
3782 i915_gem_object_unpin(obj);
3783 }
673a394b 3784
1d7cfea1 3785out:
05394f39 3786 drm_gem_object_unreference(&obj->base);
1d7cfea1 3787unlock:
673a394b 3788 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3789 return ret;
673a394b
EA
3790}
3791
3792int
3793i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3794 struct drm_file *file)
673a394b
EA
3795{
3796 struct drm_i915_gem_busy *args = data;
05394f39 3797 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3798 int ret;
3799
76c1dec1 3800 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3801 if (ret)
76c1dec1 3802 return ret;
673a394b 3803
05394f39 3804 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3805 if (&obj->base == NULL) {
1d7cfea1
CW
3806 ret = -ENOENT;
3807 goto unlock;
673a394b 3808 }
d1b851fc 3809
0be555b6
CW
3810 /* Count all active objects as busy, even if they are currently not used
3811 * by the gpu. Users of this interface expect objects to eventually
3812 * become non-busy without any further actions, therefore emit any
3813 * necessary flushes here.
c4de0a5d 3814 */
30dfebf3 3815 ret = i915_gem_object_flush_active(obj);
0be555b6 3816
30dfebf3 3817 args->busy = obj->active;
e9808edd
CW
3818 if (obj->ring) {
3819 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3820 args->busy |= intel_ring_flag(obj->ring) << 16;
3821 }
673a394b 3822
05394f39 3823 drm_gem_object_unreference(&obj->base);
1d7cfea1 3824unlock:
673a394b 3825 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3826 return ret;
673a394b
EA
3827}
3828
3829int
3830i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3831 struct drm_file *file_priv)
3832{
0206e353 3833 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3834}
3835
3ef94daa
CW
3836int
3837i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3838 struct drm_file *file_priv)
3839{
3840 struct drm_i915_gem_madvise *args = data;
05394f39 3841 struct drm_i915_gem_object *obj;
76c1dec1 3842 int ret;
3ef94daa
CW
3843
3844 switch (args->madv) {
3845 case I915_MADV_DONTNEED:
3846 case I915_MADV_WILLNEED:
3847 break;
3848 default:
3849 return -EINVAL;
3850 }
3851
1d7cfea1
CW
3852 ret = i915_mutex_lock_interruptible(dev);
3853 if (ret)
3854 return ret;
3855
05394f39 3856 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3857 if (&obj->base == NULL) {
1d7cfea1
CW
3858 ret = -ENOENT;
3859 goto unlock;
3ef94daa 3860 }
3ef94daa 3861
05394f39 3862 if (obj->pin_count) {
1d7cfea1
CW
3863 ret = -EINVAL;
3864 goto out;
3ef94daa
CW
3865 }
3866
05394f39
CW
3867 if (obj->madv != __I915_MADV_PURGED)
3868 obj->madv = args->madv;
3ef94daa 3869
6c085a72
CW
3870 /* if the object is no longer attached, discard its backing storage */
3871 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3872 i915_gem_object_truncate(obj);
3873
05394f39 3874 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3875
1d7cfea1 3876out:
05394f39 3877 drm_gem_object_unreference(&obj->base);
1d7cfea1 3878unlock:
3ef94daa 3879 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3880 return ret;
3ef94daa
CW
3881}
3882
37e680a1
CW
3883void i915_gem_object_init(struct drm_i915_gem_object *obj,
3884 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3885{
0327d6ba 3886 INIT_LIST_HEAD(&obj->mm_list);
35c20a60 3887 INIT_LIST_HEAD(&obj->global_list);
0327d6ba
CW
3888 INIT_LIST_HEAD(&obj->ring_list);
3889 INIT_LIST_HEAD(&obj->exec_list);
2f633156 3890 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 3891
37e680a1
CW
3892 obj->ops = ops;
3893
0327d6ba
CW
3894 obj->fence_reg = I915_FENCE_REG_NONE;
3895 obj->madv = I915_MADV_WILLNEED;
3896 /* Avoid an unnecessary call to unbind on the first bind. */
3897 obj->map_and_fenceable = true;
3898
3899 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3900}
3901
37e680a1
CW
3902static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3903 .get_pages = i915_gem_object_get_pages_gtt,
3904 .put_pages = i915_gem_object_put_pages_gtt,
3905};
3906
05394f39
CW
3907struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3908 size_t size)
ac52bc56 3909{
c397b908 3910 struct drm_i915_gem_object *obj;
5949eac4 3911 struct address_space *mapping;
1a240d4d 3912 gfp_t mask;
ac52bc56 3913
42dcedd4 3914 obj = i915_gem_object_alloc(dev);
c397b908
DV
3915 if (obj == NULL)
3916 return NULL;
673a394b 3917
c397b908 3918 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 3919 i915_gem_object_free(obj);
c397b908
DV
3920 return NULL;
3921 }
673a394b 3922
bed1ea95
CW
3923 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3924 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3925 /* 965gm cannot relocate objects above 4GiB. */
3926 mask &= ~__GFP_HIGHMEM;
3927 mask |= __GFP_DMA32;
3928 }
3929
496ad9aa 3930 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 3931 mapping_set_gfp_mask(mapping, mask);
5949eac4 3932
37e680a1 3933 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3934
c397b908
DV
3935 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3936 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3937
3d29b842
ED
3938 if (HAS_LLC(dev)) {
3939 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3940 * cache) for about a 10% performance improvement
3941 * compared to uncached. Graphics requests other than
3942 * display scanout are coherent with the CPU in
3943 * accessing this cache. This means in this mode we
3944 * don't need to clflush on the CPU side, and on the
3945 * GPU side we only need to flush internal caches to
3946 * get data visible to the CPU.
3947 *
3948 * However, we maintain the display planes as UC, and so
3949 * need to rebind when first used as such.
3950 */
3951 obj->cache_level = I915_CACHE_LLC;
3952 } else
3953 obj->cache_level = I915_CACHE_NONE;
3954
05394f39 3955 return obj;
c397b908
DV
3956}
3957
3958int i915_gem_init_object(struct drm_gem_object *obj)
3959{
3960 BUG();
de151cf6 3961
673a394b
EA
3962 return 0;
3963}
3964
1488fc08 3965void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3966{
1488fc08 3967 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3968 struct drm_device *dev = obj->base.dev;
be72615b 3969 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3970
26e12f89
CW
3971 trace_i915_gem_object_destroy(obj);
3972
1488fc08
CW
3973 if (obj->phys_obj)
3974 i915_gem_detach_phys_object(dev, obj);
3975
3976 obj->pin_count = 0;
3977 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3978 bool was_interruptible;
3979
3980 was_interruptible = dev_priv->mm.interruptible;
3981 dev_priv->mm.interruptible = false;
3982
3983 WARN_ON(i915_gem_object_unbind(obj));
3984
3985 dev_priv->mm.interruptible = was_interruptible;
3986 }
3987
1d64ae71
BW
3988 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3989 * before progressing. */
3990 if (obj->stolen)
3991 i915_gem_object_unpin_pages(obj);
3992
401c29f6
BW
3993 if (WARN_ON(obj->pages_pin_count))
3994 obj->pages_pin_count = 0;
37e680a1 3995 i915_gem_object_put_pages(obj);
d8cb5086 3996 i915_gem_object_free_mmap_offset(obj);
0104fdbb 3997 i915_gem_object_release_stolen(obj);
de151cf6 3998
9da3da66
CW
3999 BUG_ON(obj->pages);
4000
2f745ad3
CW
4001 if (obj->base.import_attach)
4002 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4003
05394f39
CW
4004 drm_gem_object_release(&obj->base);
4005 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4006
05394f39 4007 kfree(obj->bit_17);
42dcedd4 4008 i915_gem_object_free(obj);
673a394b
EA
4009}
4010
2f633156
BW
4011struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4012 struct i915_address_space *vm)
4013{
4014 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4015 if (vma == NULL)
4016 return ERR_PTR(-ENOMEM);
4017
4018 INIT_LIST_HEAD(&vma->vma_link);
4019 vma->vm = vm;
4020 vma->obj = obj;
4021
4022 return vma;
4023}
4024
4025void i915_gem_vma_destroy(struct i915_vma *vma)
4026{
4027 WARN_ON(vma->node.allocated);
4028 kfree(vma);
4029}
4030
29105ccc
CW
4031int
4032i915_gem_idle(struct drm_device *dev)
4033{
4034 drm_i915_private_t *dev_priv = dev->dev_private;
4035 int ret;
28dfe52a 4036
db1b76ca 4037 if (dev_priv->ums.mm_suspended) {
29105ccc
CW
4038 mutex_unlock(&dev->struct_mutex);
4039 return 0;
28dfe52a
EA
4040 }
4041
b2da9fe5 4042 ret = i915_gpu_idle(dev);
6dbe2772
KP
4043 if (ret) {
4044 mutex_unlock(&dev->struct_mutex);
673a394b 4045 return ret;
6dbe2772 4046 }
b2da9fe5 4047 i915_gem_retire_requests(dev);
673a394b 4048
29105ccc 4049 /* Under UMS, be paranoid and evict. */
a39d7efc 4050 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4051 i915_gem_evict_everything(dev);
29105ccc 4052
312817a3
CW
4053 i915_gem_reset_fences(dev);
4054
99584db3 4055 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc
CW
4056
4057 i915_kernel_lost_context(dev);
6dbe2772 4058 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4059
29105ccc
CW
4060 /* Cancel the retire work handler, which should be idle now. */
4061 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4062
673a394b
EA
4063 return 0;
4064}
4065
b9524a1e
BW
4066void i915_gem_l3_remap(struct drm_device *dev)
4067{
4068 drm_i915_private_t *dev_priv = dev->dev_private;
4069 u32 misccpctl;
4070 int i;
4071
eb32e458 4072 if (!HAS_L3_GPU_CACHE(dev))
b9524a1e
BW
4073 return;
4074
a4da4fa4 4075 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
4076 return;
4077
4078 misccpctl = I915_READ(GEN7_MISCCPCTL);
4079 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4080 POSTING_READ(GEN7_MISCCPCTL);
4081
4082 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4083 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 4084 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
4085 DRM_DEBUG("0x%x was already programmed to %x\n",
4086 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 4087 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 4088 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 4089 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
4090 }
4091
4092 /* Make sure all the writes land before disabling dop clock gating */
4093 POSTING_READ(GEN7_L3LOG_BASE);
4094
4095 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4096}
4097
f691e2f4
DV
4098void i915_gem_init_swizzling(struct drm_device *dev)
4099{
4100 drm_i915_private_t *dev_priv = dev->dev_private;
4101
11782b02 4102 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4103 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4104 return;
4105
4106 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4107 DISP_TILE_SURFACE_SWIZZLING);
4108
11782b02
DV
4109 if (IS_GEN5(dev))
4110 return;
4111
f691e2f4
DV
4112 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4113 if (IS_GEN6(dev))
6b26c86d 4114 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4115 else if (IS_GEN7(dev))
6b26c86d 4116 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
4117 else
4118 BUG();
f691e2f4 4119}
e21af88d 4120
67b1b571
CW
4121static bool
4122intel_enable_blt(struct drm_device *dev)
4123{
4124 if (!HAS_BLT(dev))
4125 return false;
4126
4127 /* The blitter was dysfunctional on early prototypes */
4128 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4129 DRM_INFO("BLT not supported on this pre-production hardware;"
4130 " graphics performance will be degraded.\n");
4131 return false;
4132 }
4133
4134 return true;
4135}
4136
4fc7c971 4137static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4138{
4fc7c971 4139 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4140 int ret;
68f95ba9 4141
5c1143bb 4142 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4143 if (ret)
b6913e4b 4144 return ret;
68f95ba9
CW
4145
4146 if (HAS_BSD(dev)) {
5c1143bb 4147 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4148 if (ret)
4149 goto cleanup_render_ring;
d1b851fc 4150 }
68f95ba9 4151
67b1b571 4152 if (intel_enable_blt(dev)) {
549f7365
CW
4153 ret = intel_init_blt_ring_buffer(dev);
4154 if (ret)
4155 goto cleanup_bsd_ring;
4156 }
4157
9a8a2213
BW
4158 if (HAS_VEBOX(dev)) {
4159 ret = intel_init_vebox_ring_buffer(dev);
4160 if (ret)
4161 goto cleanup_blt_ring;
4162 }
4163
4164
99433931 4165 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4166 if (ret)
9a8a2213 4167 goto cleanup_vebox_ring;
4fc7c971
BW
4168
4169 return 0;
4170
9a8a2213
BW
4171cleanup_vebox_ring:
4172 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4173cleanup_blt_ring:
4174 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4175cleanup_bsd_ring:
4176 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4177cleanup_render_ring:
4178 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4179
4180 return ret;
4181}
4182
4183int
4184i915_gem_init_hw(struct drm_device *dev)
4185{
4186 drm_i915_private_t *dev_priv = dev->dev_private;
4187 int ret;
4188
4189 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4190 return -EIO;
4191
59124506 4192 if (dev_priv->ellc_size)
05e21cc4 4193 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4194
88a2b2a3
BW
4195 if (HAS_PCH_NOP(dev)) {
4196 u32 temp = I915_READ(GEN7_MSG_CTL);
4197 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4198 I915_WRITE(GEN7_MSG_CTL, temp);
4199 }
4200
4fc7c971
BW
4201 i915_gem_l3_remap(dev);
4202
4203 i915_gem_init_swizzling(dev);
4204
4205 ret = i915_gem_init_rings(dev);
99433931
MK
4206 if (ret)
4207 return ret;
4208
254f965c
BW
4209 /*
4210 * XXX: There was some w/a described somewhere suggesting loading
4211 * contexts before PPGTT.
4212 */
4213 i915_gem_context_init(dev);
b7c36d25
BW
4214 if (dev_priv->mm.aliasing_ppgtt) {
4215 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4216 if (ret) {
4217 i915_gem_cleanup_aliasing_ppgtt(dev);
4218 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4219 }
4220 }
e21af88d 4221
68f95ba9 4222 return 0;
8187a2b7
ZN
4223}
4224
1070a42b
CW
4225int i915_gem_init(struct drm_device *dev)
4226{
4227 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4228 int ret;
4229
1070a42b 4230 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4231
4232 if (IS_VALLEYVIEW(dev)) {
4233 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4234 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4235 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4236 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4237 }
4238
d7e5008f 4239 i915_gem_init_global_gtt(dev);
d62b4892 4240
1070a42b
CW
4241 ret = i915_gem_init_hw(dev);
4242 mutex_unlock(&dev->struct_mutex);
4243 if (ret) {
4244 i915_gem_cleanup_aliasing_ppgtt(dev);
4245 return ret;
4246 }
4247
53ca26ca
DV
4248 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4249 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4250 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4251 return 0;
4252}
4253
8187a2b7
ZN
4254void
4255i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4256{
4257 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4258 struct intel_ring_buffer *ring;
1ec14ad3 4259 int i;
8187a2b7 4260
b4519513
CW
4261 for_each_ring(ring, dev_priv, i)
4262 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4263}
4264
673a394b
EA
4265int
4266i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4267 struct drm_file *file_priv)
4268{
db1b76ca 4269 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4270 int ret;
673a394b 4271
79e53945
JB
4272 if (drm_core_check_feature(dev, DRIVER_MODESET))
4273 return 0;
4274
1f83fee0 4275 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4276 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4277 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4278 }
4279
673a394b 4280 mutex_lock(&dev->struct_mutex);
db1b76ca 4281 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4282
f691e2f4 4283 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4284 if (ret != 0) {
4285 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4286 return ret;
d816f6ac 4287 }
9bb2d6f9 4288
5cef07e1 4289 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4290 mutex_unlock(&dev->struct_mutex);
dbb19d30 4291
5f35308b
CW
4292 ret = drm_irq_install(dev);
4293 if (ret)
4294 goto cleanup_ringbuffer;
dbb19d30 4295
673a394b 4296 return 0;
5f35308b
CW
4297
4298cleanup_ringbuffer:
4299 mutex_lock(&dev->struct_mutex);
4300 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4301 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4302 mutex_unlock(&dev->struct_mutex);
4303
4304 return ret;
673a394b
EA
4305}
4306
4307int
4308i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4309 struct drm_file *file_priv)
4310{
db1b76ca
DV
4311 struct drm_i915_private *dev_priv = dev->dev_private;
4312 int ret;
4313
79e53945
JB
4314 if (drm_core_check_feature(dev, DRIVER_MODESET))
4315 return 0;
4316
dbb19d30 4317 drm_irq_uninstall(dev);
db1b76ca
DV
4318
4319 mutex_lock(&dev->struct_mutex);
4320 ret = i915_gem_idle(dev);
4321
4322 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4323 * We need to replace this with a semaphore, or something.
4324 * And not confound ums.mm_suspended!
4325 */
4326 if (ret != 0)
4327 dev_priv->ums.mm_suspended = 1;
4328 mutex_unlock(&dev->struct_mutex);
4329
4330 return ret;
673a394b
EA
4331}
4332
4333void
4334i915_gem_lastclose(struct drm_device *dev)
4335{
4336 int ret;
673a394b 4337
e806b495
EA
4338 if (drm_core_check_feature(dev, DRIVER_MODESET))
4339 return;
4340
db1b76ca 4341 mutex_lock(&dev->struct_mutex);
6dbe2772
KP
4342 ret = i915_gem_idle(dev);
4343 if (ret)
4344 DRM_ERROR("failed to idle hardware: %d\n", ret);
db1b76ca 4345 mutex_unlock(&dev->struct_mutex);
673a394b
EA
4346}
4347
64193406
CW
4348static void
4349init_ring_lists(struct intel_ring_buffer *ring)
4350{
4351 INIT_LIST_HEAD(&ring->active_list);
4352 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4353}
4354
673a394b
EA
4355void
4356i915_gem_load(struct drm_device *dev)
4357{
4358 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4359 int i;
4360
4361 dev_priv->slab =
4362 kmem_cache_create("i915_gem_object",
4363 sizeof(struct drm_i915_gem_object), 0,
4364 SLAB_HWCACHE_ALIGN,
4365 NULL);
673a394b 4366
5cef07e1
BW
4367 INIT_LIST_HEAD(&dev_priv->gtt.base.active_list);
4368 INIT_LIST_HEAD(&dev_priv->gtt.base.inactive_list);
6c085a72
CW
4369 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4370 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4371 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4372 for (i = 0; i < I915_NUM_RINGS; i++)
4373 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4374 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4375 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4376 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4377 i915_gem_retire_work_handler);
1f83fee0 4378 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4379
94400120
DA
4380 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4381 if (IS_GEN3(dev)) {
50743298
DV
4382 I915_WRITE(MI_ARB_STATE,
4383 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4384 }
4385
72bfa19c
CW
4386 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4387
de151cf6 4388 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4389 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4390 dev_priv->fence_reg_start = 3;
de151cf6 4391
42b5aeab
VS
4392 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4393 dev_priv->num_fence_regs = 32;
4394 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4395 dev_priv->num_fence_regs = 16;
4396 else
4397 dev_priv->num_fence_regs = 8;
4398
b5aa8a0f 4399 /* Initialize fence registers to zero */
ada726c7 4400 i915_gem_reset_fences(dev);
10ed13e4 4401
673a394b 4402 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4403 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4404
ce453d81
CW
4405 dev_priv->mm.interruptible = true;
4406
17250b71
CW
4407 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4408 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4409 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4410}
71acb5eb
DA
4411
4412/*
4413 * Create a physically contiguous memory object for this object
4414 * e.g. for cursor + overlay regs
4415 */
995b6762
CW
4416static int i915_gem_init_phys_object(struct drm_device *dev,
4417 int id, int size, int align)
71acb5eb
DA
4418{
4419 drm_i915_private_t *dev_priv = dev->dev_private;
4420 struct drm_i915_gem_phys_object *phys_obj;
4421 int ret;
4422
4423 if (dev_priv->mm.phys_objs[id - 1] || !size)
4424 return 0;
4425
9a298b2a 4426 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4427 if (!phys_obj)
4428 return -ENOMEM;
4429
4430 phys_obj->id = id;
4431
6eeefaf3 4432 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4433 if (!phys_obj->handle) {
4434 ret = -ENOMEM;
4435 goto kfree_obj;
4436 }
4437#ifdef CONFIG_X86
4438 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4439#endif
4440
4441 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4442
4443 return 0;
4444kfree_obj:
9a298b2a 4445 kfree(phys_obj);
71acb5eb
DA
4446 return ret;
4447}
4448
995b6762 4449static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4450{
4451 drm_i915_private_t *dev_priv = dev->dev_private;
4452 struct drm_i915_gem_phys_object *phys_obj;
4453
4454 if (!dev_priv->mm.phys_objs[id - 1])
4455 return;
4456
4457 phys_obj = dev_priv->mm.phys_objs[id - 1];
4458 if (phys_obj->cur_obj) {
4459 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4460 }
4461
4462#ifdef CONFIG_X86
4463 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4464#endif
4465 drm_pci_free(dev, phys_obj->handle);
4466 kfree(phys_obj);
4467 dev_priv->mm.phys_objs[id - 1] = NULL;
4468}
4469
4470void i915_gem_free_all_phys_object(struct drm_device *dev)
4471{
4472 int i;
4473
260883c8 4474 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4475 i915_gem_free_phys_object(dev, i);
4476}
4477
4478void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4479 struct drm_i915_gem_object *obj)
71acb5eb 4480{
496ad9aa 4481 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4482 char *vaddr;
71acb5eb 4483 int i;
71acb5eb
DA
4484 int page_count;
4485
05394f39 4486 if (!obj->phys_obj)
71acb5eb 4487 return;
05394f39 4488 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4489
05394f39 4490 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4491 for (i = 0; i < page_count; i++) {
5949eac4 4492 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4493 if (!IS_ERR(page)) {
4494 char *dst = kmap_atomic(page);
4495 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4496 kunmap_atomic(dst);
4497
4498 drm_clflush_pages(&page, 1);
4499
4500 set_page_dirty(page);
4501 mark_page_accessed(page);
4502 page_cache_release(page);
4503 }
71acb5eb 4504 }
e76e9aeb 4505 i915_gem_chipset_flush(dev);
d78b47b9 4506
05394f39
CW
4507 obj->phys_obj->cur_obj = NULL;
4508 obj->phys_obj = NULL;
71acb5eb
DA
4509}
4510
4511int
4512i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4513 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4514 int id,
4515 int align)
71acb5eb 4516{
496ad9aa 4517 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4518 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4519 int ret = 0;
4520 int page_count;
4521 int i;
4522
4523 if (id > I915_MAX_PHYS_OBJECT)
4524 return -EINVAL;
4525
05394f39
CW
4526 if (obj->phys_obj) {
4527 if (obj->phys_obj->id == id)
71acb5eb
DA
4528 return 0;
4529 i915_gem_detach_phys_object(dev, obj);
4530 }
4531
71acb5eb
DA
4532 /* create a new object */
4533 if (!dev_priv->mm.phys_objs[id - 1]) {
4534 ret = i915_gem_init_phys_object(dev, id,
05394f39 4535 obj->base.size, align);
71acb5eb 4536 if (ret) {
05394f39
CW
4537 DRM_ERROR("failed to init phys object %d size: %zu\n",
4538 id, obj->base.size);
e5281ccd 4539 return ret;
71acb5eb
DA
4540 }
4541 }
4542
4543 /* bind to the object */
05394f39
CW
4544 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4545 obj->phys_obj->cur_obj = obj;
71acb5eb 4546
05394f39 4547 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4548
4549 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4550 struct page *page;
4551 char *dst, *src;
4552
5949eac4 4553 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4554 if (IS_ERR(page))
4555 return PTR_ERR(page);
71acb5eb 4556
ff75b9bc 4557 src = kmap_atomic(page);
05394f39 4558 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4559 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4560 kunmap_atomic(src);
71acb5eb 4561
e5281ccd
CW
4562 mark_page_accessed(page);
4563 page_cache_release(page);
4564 }
d78b47b9 4565
71acb5eb 4566 return 0;
71acb5eb
DA
4567}
4568
4569static int
05394f39
CW
4570i915_gem_phys_pwrite(struct drm_device *dev,
4571 struct drm_i915_gem_object *obj,
71acb5eb
DA
4572 struct drm_i915_gem_pwrite *args,
4573 struct drm_file *file_priv)
4574{
05394f39 4575 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4576 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4577
b47b30cc
CW
4578 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4579 unsigned long unwritten;
4580
4581 /* The physical object once assigned is fixed for the lifetime
4582 * of the obj, so we can safely drop the lock and continue
4583 * to access vaddr.
4584 */
4585 mutex_unlock(&dev->struct_mutex);
4586 unwritten = copy_from_user(vaddr, user_data, args->size);
4587 mutex_lock(&dev->struct_mutex);
4588 if (unwritten)
4589 return -EFAULT;
4590 }
71acb5eb 4591
e76e9aeb 4592 i915_gem_chipset_flush(dev);
71acb5eb
DA
4593 return 0;
4594}
b962442e 4595
f787a5f5 4596void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4597{
f787a5f5 4598 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4599
4600 /* Clean up our request list when the client is going away, so that
4601 * later retire_requests won't dereference our soon-to-be-gone
4602 * file_priv.
4603 */
1c25595f 4604 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4605 while (!list_empty(&file_priv->mm.request_list)) {
4606 struct drm_i915_gem_request *request;
4607
4608 request = list_first_entry(&file_priv->mm.request_list,
4609 struct drm_i915_gem_request,
4610 client_list);
4611 list_del(&request->client_list);
4612 request->file_priv = NULL;
4613 }
1c25595f 4614 spin_unlock(&file_priv->mm.lock);
b962442e 4615}
31169714 4616
5774506f
CW
4617static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4618{
4619 if (!mutex_is_locked(mutex))
4620 return false;
4621
4622#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4623 return mutex->owner == task;
4624#else
4625 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4626 return false;
4627#endif
4628}
4629
31169714 4630static int
1495f230 4631i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4632{
17250b71
CW
4633 struct drm_i915_private *dev_priv =
4634 container_of(shrinker,
4635 struct drm_i915_private,
4636 mm.inactive_shrinker);
4637 struct drm_device *dev = dev_priv->dev;
5cef07e1 4638 struct i915_address_space *vm = &dev_priv->gtt.base;
6c085a72 4639 struct drm_i915_gem_object *obj;
1495f230 4640 int nr_to_scan = sc->nr_to_scan;
5774506f 4641 bool unlock = true;
17250b71
CW
4642 int cnt;
4643
5774506f
CW
4644 if (!mutex_trylock(&dev->struct_mutex)) {
4645 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4646 return 0;
4647
677feac2
DV
4648 if (dev_priv->mm.shrinker_no_lock_stealing)
4649 return 0;
4650
5774506f
CW
4651 unlock = false;
4652 }
31169714 4653
6c085a72
CW
4654 if (nr_to_scan) {
4655 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
93927ca5
DV
4656 if (nr_to_scan > 0)
4657 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4658 false);
6c085a72
CW
4659 if (nr_to_scan > 0)
4660 i915_gem_shrink_all(dev_priv);
31169714
CW
4661 }
4662
17250b71 4663 cnt = 0;
35c20a60 4664 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178
CW
4665 if (obj->pages_pin_count == 0)
4666 cnt += obj->base.size >> PAGE_SHIFT;
5cef07e1 4667 list_for_each_entry(obj, &vm->inactive_list, global_list)
a5570178 4668 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4669 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4670
5774506f
CW
4671 if (unlock)
4672 mutex_unlock(&dev->struct_mutex);
6c085a72 4673 return cnt;
31169714 4674}