]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: ensure lru ordering of fence_list
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
673a394b 34#include <linux/swap.h>
79e53945 35#include <linux/pci.h>
673a394b 36
28dfe52a
EA
37#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
e47c68e9
EA
39static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
42static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 int write);
44static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b 48static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
49static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
de151cf6 51static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
07f73f69 52static int i915_gem_evict_something(struct drm_device *dev, int min_size);
ab5ee576 53static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
71acb5eb
DA
54static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
673a394b 57
31169714
CW
58static LIST_HEAD(shrink_list);
59static DEFINE_SPINLOCK(shrink_list_lock);
60
79e53945
JB
61int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62 unsigned long end)
673a394b
EA
63{
64 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 65
79e53945
JB
66 if (start >= end ||
67 (start & (PAGE_SIZE - 1)) != 0 ||
68 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
69 return -EINVAL;
70 }
71
79e53945
JB
72 drm_mm_init(&dev_priv->mm.gtt_space, start,
73 end - start);
673a394b 74
79e53945
JB
75 dev->gtt_total = (uint32_t) (end - start);
76
77 return 0;
78}
673a394b 79
79e53945
JB
80int
81i915_gem_init_ioctl(struct drm_device *dev, void *data,
82 struct drm_file *file_priv)
83{
84 struct drm_i915_gem_init *args = data;
85 int ret;
86
87 mutex_lock(&dev->struct_mutex);
88 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
89 mutex_unlock(&dev->struct_mutex);
90
79e53945 91 return ret;
673a394b
EA
92}
93
5a125c3c
EA
94int
95i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96 struct drm_file *file_priv)
97{
5a125c3c 98 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
99
100 if (!(dev->driver->driver_features & DRIVER_GEM))
101 return -ENODEV;
102
103 args->aper_size = dev->gtt_total;
2678d9d6
KP
104 args->aper_available_size = (args->aper_size -
105 atomic_read(&dev->pin_memory));
5a125c3c
EA
106
107 return 0;
108}
109
673a394b
EA
110
111/**
112 * Creates a new mm object and returns a handle to it.
113 */
114int
115i915_gem_create_ioctl(struct drm_device *dev, void *data,
116 struct drm_file *file_priv)
117{
118 struct drm_i915_gem_create *args = data;
119 struct drm_gem_object *obj;
a1a2d1d3
PP
120 int ret;
121 u32 handle;
673a394b
EA
122
123 args->size = roundup(args->size, PAGE_SIZE);
124
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
127 if (obj == NULL)
128 return -ENOMEM;
129
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
bc9025bd 131 drm_gem_object_handle_unreference_unlocked(obj);
673a394b
EA
132
133 if (ret)
134 return ret;
135
136 args->handle = handle;
137
138 return 0;
139}
140
eb01459f
EA
141static inline int
142fast_shmem_read(struct page **pages,
143 loff_t page_base, int page_offset,
144 char __user *data,
145 int length)
146{
147 char __iomem *vaddr;
2bc43b5c 148 int unwritten;
eb01459f
EA
149
150 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
151 if (vaddr == NULL)
152 return -ENOMEM;
2bc43b5c 153 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
154 kunmap_atomic(vaddr, KM_USER0);
155
2bc43b5c
FM
156 if (unwritten)
157 return -EFAULT;
158
159 return 0;
eb01459f
EA
160}
161
280b713b
EA
162static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
163{
164 drm_i915_private_t *dev_priv = obj->dev->dev_private;
165 struct drm_i915_gem_object *obj_priv = obj->driver_private;
166
167 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
168 obj_priv->tiling_mode != I915_TILING_NONE;
169}
170
40123c1f
EA
171static inline int
172slow_shmem_copy(struct page *dst_page,
173 int dst_offset,
174 struct page *src_page,
175 int src_offset,
176 int length)
177{
178 char *dst_vaddr, *src_vaddr;
179
180 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
181 if (dst_vaddr == NULL)
182 return -ENOMEM;
183
184 src_vaddr = kmap_atomic(src_page, KM_USER1);
185 if (src_vaddr == NULL) {
186 kunmap_atomic(dst_vaddr, KM_USER0);
187 return -ENOMEM;
188 }
189
190 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
191
192 kunmap_atomic(src_vaddr, KM_USER1);
193 kunmap_atomic(dst_vaddr, KM_USER0);
194
195 return 0;
196}
197
280b713b
EA
198static inline int
199slow_shmem_bit17_copy(struct page *gpu_page,
200 int gpu_offset,
201 struct page *cpu_page,
202 int cpu_offset,
203 int length,
204 int is_read)
205{
206 char *gpu_vaddr, *cpu_vaddr;
207
208 /* Use the unswizzled path if this page isn't affected. */
209 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
210 if (is_read)
211 return slow_shmem_copy(cpu_page, cpu_offset,
212 gpu_page, gpu_offset, length);
213 else
214 return slow_shmem_copy(gpu_page, gpu_offset,
215 cpu_page, cpu_offset, length);
216 }
217
218 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
219 if (gpu_vaddr == NULL)
220 return -ENOMEM;
221
222 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
223 if (cpu_vaddr == NULL) {
224 kunmap_atomic(gpu_vaddr, KM_USER0);
225 return -ENOMEM;
226 }
227
228 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
229 * XORing with the other bits (A9 for Y, A9 and A10 for X)
230 */
231 while (length > 0) {
232 int cacheline_end = ALIGN(gpu_offset + 1, 64);
233 int this_length = min(cacheline_end - gpu_offset, length);
234 int swizzled_gpu_offset = gpu_offset ^ 64;
235
236 if (is_read) {
237 memcpy(cpu_vaddr + cpu_offset,
238 gpu_vaddr + swizzled_gpu_offset,
239 this_length);
240 } else {
241 memcpy(gpu_vaddr + swizzled_gpu_offset,
242 cpu_vaddr + cpu_offset,
243 this_length);
244 }
245 cpu_offset += this_length;
246 gpu_offset += this_length;
247 length -= this_length;
248 }
249
250 kunmap_atomic(cpu_vaddr, KM_USER1);
251 kunmap_atomic(gpu_vaddr, KM_USER0);
252
253 return 0;
254}
255
eb01459f
EA
256/**
257 * This is the fast shmem pread path, which attempts to copy_from_user directly
258 * from the backing pages of the object to the user's address space. On a
259 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
260 */
261static int
262i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
263 struct drm_i915_gem_pread *args,
264 struct drm_file *file_priv)
265{
266 struct drm_i915_gem_object *obj_priv = obj->driver_private;
267 ssize_t remain;
268 loff_t offset, page_base;
269 char __user *user_data;
270 int page_offset, page_length;
271 int ret;
272
273 user_data = (char __user *) (uintptr_t) args->data_ptr;
274 remain = args->size;
275
276 mutex_lock(&dev->struct_mutex);
277
4bdadb97 278 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
279 if (ret != 0)
280 goto fail_unlock;
281
282 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
283 args->size);
284 if (ret != 0)
285 goto fail_put_pages;
286
287 obj_priv = obj->driver_private;
288 offset = args->offset;
289
290 while (remain > 0) {
291 /* Operation in this page
292 *
293 * page_base = page offset within aperture
294 * page_offset = offset within page
295 * page_length = bytes to copy for this page
296 */
297 page_base = (offset & ~(PAGE_SIZE-1));
298 page_offset = offset & (PAGE_SIZE-1);
299 page_length = remain;
300 if ((page_offset + remain) > PAGE_SIZE)
301 page_length = PAGE_SIZE - page_offset;
302
303 ret = fast_shmem_read(obj_priv->pages,
304 page_base, page_offset,
305 user_data, page_length);
306 if (ret)
307 goto fail_put_pages;
308
309 remain -= page_length;
310 user_data += page_length;
311 offset += page_length;
312 }
313
314fail_put_pages:
315 i915_gem_object_put_pages(obj);
316fail_unlock:
317 mutex_unlock(&dev->struct_mutex);
318
319 return ret;
320}
321
07f73f69
CW
322static int
323i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
324{
325 int ret;
326
4bdadb97 327 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
328
329 /* If we've insufficient memory to map in the pages, attempt
330 * to make some space by throwing out some old buffers.
331 */
332 if (ret == -ENOMEM) {
333 struct drm_device *dev = obj->dev;
07f73f69
CW
334
335 ret = i915_gem_evict_something(dev, obj->size);
336 if (ret)
337 return ret;
338
4bdadb97 339 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
340 }
341
342 return ret;
343}
344
eb01459f
EA
345/**
346 * This is the fallback shmem pread path, which allocates temporary storage
347 * in kernel space to copy_to_user into outside of the struct_mutex, so we
348 * can copy out of the object's backing pages while holding the struct mutex
349 * and not take page faults.
350 */
351static int
352i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
353 struct drm_i915_gem_pread *args,
354 struct drm_file *file_priv)
355{
356 struct drm_i915_gem_object *obj_priv = obj->driver_private;
357 struct mm_struct *mm = current->mm;
358 struct page **user_pages;
359 ssize_t remain;
360 loff_t offset, pinned_pages, i;
361 loff_t first_data_page, last_data_page, num_pages;
362 int shmem_page_index, shmem_page_offset;
363 int data_page_index, data_page_offset;
364 int page_length;
365 int ret;
366 uint64_t data_ptr = args->data_ptr;
280b713b 367 int do_bit17_swizzling;
eb01459f
EA
368
369 remain = args->size;
370
371 /* Pin the user pages containing the data. We can't fault while
372 * holding the struct mutex, yet we want to hold it while
373 * dereferencing the user data.
374 */
375 first_data_page = data_ptr / PAGE_SIZE;
376 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
377 num_pages = last_data_page - first_data_page + 1;
378
8e7d2b2c 379 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
380 if (user_pages == NULL)
381 return -ENOMEM;
382
383 down_read(&mm->mmap_sem);
384 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 385 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
386 up_read(&mm->mmap_sem);
387 if (pinned_pages < num_pages) {
388 ret = -EFAULT;
389 goto fail_put_user_pages;
390 }
391
280b713b
EA
392 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
393
eb01459f
EA
394 mutex_lock(&dev->struct_mutex);
395
07f73f69
CW
396 ret = i915_gem_object_get_pages_or_evict(obj);
397 if (ret)
eb01459f
EA
398 goto fail_unlock;
399
400 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
401 args->size);
402 if (ret != 0)
403 goto fail_put_pages;
404
405 obj_priv = obj->driver_private;
406 offset = args->offset;
407
408 while (remain > 0) {
409 /* Operation in this page
410 *
411 * shmem_page_index = page number within shmem file
412 * shmem_page_offset = offset within page in shmem file
413 * data_page_index = page number in get_user_pages return
414 * data_page_offset = offset with data_page_index page.
415 * page_length = bytes to copy for this page
416 */
417 shmem_page_index = offset / PAGE_SIZE;
418 shmem_page_offset = offset & ~PAGE_MASK;
419 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
420 data_page_offset = data_ptr & ~PAGE_MASK;
421
422 page_length = remain;
423 if ((shmem_page_offset + page_length) > PAGE_SIZE)
424 page_length = PAGE_SIZE - shmem_page_offset;
425 if ((data_page_offset + page_length) > PAGE_SIZE)
426 page_length = PAGE_SIZE - data_page_offset;
427
280b713b
EA
428 if (do_bit17_swizzling) {
429 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
430 shmem_page_offset,
431 user_pages[data_page_index],
432 data_page_offset,
433 page_length,
434 1);
435 } else {
436 ret = slow_shmem_copy(user_pages[data_page_index],
437 data_page_offset,
438 obj_priv->pages[shmem_page_index],
439 shmem_page_offset,
440 page_length);
441 }
eb01459f
EA
442 if (ret)
443 goto fail_put_pages;
444
445 remain -= page_length;
446 data_ptr += page_length;
447 offset += page_length;
448 }
449
450fail_put_pages:
451 i915_gem_object_put_pages(obj);
452fail_unlock:
453 mutex_unlock(&dev->struct_mutex);
454fail_put_user_pages:
455 for (i = 0; i < pinned_pages; i++) {
456 SetPageDirty(user_pages[i]);
457 page_cache_release(user_pages[i]);
458 }
8e7d2b2c 459 drm_free_large(user_pages);
eb01459f
EA
460
461 return ret;
462}
463
673a394b
EA
464/**
465 * Reads data from the object referenced by handle.
466 *
467 * On error, the contents of *data are undefined.
468 */
469int
470i915_gem_pread_ioctl(struct drm_device *dev, void *data,
471 struct drm_file *file_priv)
472{
473 struct drm_i915_gem_pread *args = data;
474 struct drm_gem_object *obj;
475 struct drm_i915_gem_object *obj_priv;
673a394b
EA
476 int ret;
477
478 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
479 if (obj == NULL)
480 return -EBADF;
481 obj_priv = obj->driver_private;
482
483 /* Bounds check source.
484 *
485 * XXX: This could use review for overflow issues...
486 */
487 if (args->offset > obj->size || args->size > obj->size ||
488 args->offset + args->size > obj->size) {
bc9025bd 489 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
490 return -EINVAL;
491 }
492
280b713b 493 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 494 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
495 } else {
496 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
497 if (ret != 0)
498 ret = i915_gem_shmem_pread_slow(dev, obj, args,
499 file_priv);
500 }
673a394b 501
bc9025bd 502 drm_gem_object_unreference_unlocked(obj);
673a394b 503
eb01459f 504 return ret;
673a394b
EA
505}
506
0839ccb8
KP
507/* This is the fast write path which cannot handle
508 * page faults in the source data
9b7530cc 509 */
0839ccb8
KP
510
511static inline int
512fast_user_write(struct io_mapping *mapping,
513 loff_t page_base, int page_offset,
514 char __user *user_data,
515 int length)
9b7530cc 516{
9b7530cc 517 char *vaddr_atomic;
0839ccb8 518 unsigned long unwritten;
9b7530cc 519
0839ccb8
KP
520 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
521 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
522 user_data, length);
523 io_mapping_unmap_atomic(vaddr_atomic);
524 if (unwritten)
525 return -EFAULT;
526 return 0;
527}
528
529/* Here's the write path which can sleep for
530 * page faults
531 */
532
533static inline int
3de09aa3
EA
534slow_kernel_write(struct io_mapping *mapping,
535 loff_t gtt_base, int gtt_offset,
536 struct page *user_page, int user_offset,
537 int length)
0839ccb8 538{
3de09aa3 539 char *src_vaddr, *dst_vaddr;
0839ccb8
KP
540 unsigned long unwritten;
541
3de09aa3
EA
542 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
543 src_vaddr = kmap_atomic(user_page, KM_USER1);
544 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
545 src_vaddr + user_offset,
546 length);
547 kunmap_atomic(src_vaddr, KM_USER1);
548 io_mapping_unmap_atomic(dst_vaddr);
0839ccb8
KP
549 if (unwritten)
550 return -EFAULT;
9b7530cc 551 return 0;
9b7530cc
LT
552}
553
40123c1f
EA
554static inline int
555fast_shmem_write(struct page **pages,
556 loff_t page_base, int page_offset,
557 char __user *data,
558 int length)
559{
560 char __iomem *vaddr;
d0088775 561 unsigned long unwritten;
40123c1f
EA
562
563 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
564 if (vaddr == NULL)
565 return -ENOMEM;
d0088775 566 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
567 kunmap_atomic(vaddr, KM_USER0);
568
d0088775
DA
569 if (unwritten)
570 return -EFAULT;
40123c1f
EA
571 return 0;
572}
573
3de09aa3
EA
574/**
575 * This is the fast pwrite path, where we copy the data directly from the
576 * user into the GTT, uncached.
577 */
673a394b 578static int
3de09aa3
EA
579i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
580 struct drm_i915_gem_pwrite *args,
581 struct drm_file *file_priv)
673a394b
EA
582{
583 struct drm_i915_gem_object *obj_priv = obj->driver_private;
0839ccb8 584 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 585 ssize_t remain;
0839ccb8 586 loff_t offset, page_base;
673a394b 587 char __user *user_data;
0839ccb8
KP
588 int page_offset, page_length;
589 int ret;
673a394b
EA
590
591 user_data = (char __user *) (uintptr_t) args->data_ptr;
592 remain = args->size;
593 if (!access_ok(VERIFY_READ, user_data, remain))
594 return -EFAULT;
595
596
597 mutex_lock(&dev->struct_mutex);
598 ret = i915_gem_object_pin(obj, 0);
599 if (ret) {
600 mutex_unlock(&dev->struct_mutex);
601 return ret;
602 }
2ef7eeaa 603 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
604 if (ret)
605 goto fail;
606
607 obj_priv = obj->driver_private;
608 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
609
610 while (remain > 0) {
611 /* Operation in this page
612 *
0839ccb8
KP
613 * page_base = page offset within aperture
614 * page_offset = offset within page
615 * page_length = bytes to copy for this page
673a394b 616 */
0839ccb8
KP
617 page_base = (offset & ~(PAGE_SIZE-1));
618 page_offset = offset & (PAGE_SIZE-1);
619 page_length = remain;
620 if ((page_offset + remain) > PAGE_SIZE)
621 page_length = PAGE_SIZE - page_offset;
622
623 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
624 page_offset, user_data, page_length);
625
626 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
627 * source page isn't available. Return the error and we'll
628 * retry in the slow path.
0839ccb8 629 */
3de09aa3
EA
630 if (ret)
631 goto fail;
673a394b 632
0839ccb8
KP
633 remain -= page_length;
634 user_data += page_length;
635 offset += page_length;
673a394b 636 }
673a394b
EA
637
638fail:
639 i915_gem_object_unpin(obj);
640 mutex_unlock(&dev->struct_mutex);
641
642 return ret;
643}
644
3de09aa3
EA
645/**
646 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
647 * the memory and maps it using kmap_atomic for copying.
648 *
649 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
650 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
651 */
3043c60c 652static int
3de09aa3
EA
653i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
654 struct drm_i915_gem_pwrite *args,
655 struct drm_file *file_priv)
673a394b 656{
3de09aa3
EA
657 struct drm_i915_gem_object *obj_priv = obj->driver_private;
658 drm_i915_private_t *dev_priv = dev->dev_private;
659 ssize_t remain;
660 loff_t gtt_page_base, offset;
661 loff_t first_data_page, last_data_page, num_pages;
662 loff_t pinned_pages, i;
663 struct page **user_pages;
664 struct mm_struct *mm = current->mm;
665 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 666 int ret;
3de09aa3
EA
667 uint64_t data_ptr = args->data_ptr;
668
669 remain = args->size;
670
671 /* Pin the user pages containing the data. We can't fault while
672 * holding the struct mutex, and all of the pwrite implementations
673 * want to hold it while dereferencing the user data.
674 */
675 first_data_page = data_ptr / PAGE_SIZE;
676 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
677 num_pages = last_data_page - first_data_page + 1;
678
8e7d2b2c 679 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
680 if (user_pages == NULL)
681 return -ENOMEM;
682
683 down_read(&mm->mmap_sem);
684 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
685 num_pages, 0, 0, user_pages, NULL);
686 up_read(&mm->mmap_sem);
687 if (pinned_pages < num_pages) {
688 ret = -EFAULT;
689 goto out_unpin_pages;
690 }
673a394b
EA
691
692 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
693 ret = i915_gem_object_pin(obj, 0);
694 if (ret)
695 goto out_unlock;
696
697 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
698 if (ret)
699 goto out_unpin_object;
700
701 obj_priv = obj->driver_private;
702 offset = obj_priv->gtt_offset + args->offset;
703
704 while (remain > 0) {
705 /* Operation in this page
706 *
707 * gtt_page_base = page offset within aperture
708 * gtt_page_offset = offset within page in aperture
709 * data_page_index = page number in get_user_pages return
710 * data_page_offset = offset with data_page_index page.
711 * page_length = bytes to copy for this page
712 */
713 gtt_page_base = offset & PAGE_MASK;
714 gtt_page_offset = offset & ~PAGE_MASK;
715 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
716 data_page_offset = data_ptr & ~PAGE_MASK;
717
718 page_length = remain;
719 if ((gtt_page_offset + page_length) > PAGE_SIZE)
720 page_length = PAGE_SIZE - gtt_page_offset;
721 if ((data_page_offset + page_length) > PAGE_SIZE)
722 page_length = PAGE_SIZE - data_page_offset;
723
724 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
725 gtt_page_base, gtt_page_offset,
726 user_pages[data_page_index],
727 data_page_offset,
728 page_length);
729
730 /* If we get a fault while copying data, then (presumably) our
731 * source page isn't available. Return the error and we'll
732 * retry in the slow path.
733 */
734 if (ret)
735 goto out_unpin_object;
736
737 remain -= page_length;
738 offset += page_length;
739 data_ptr += page_length;
740 }
741
742out_unpin_object:
743 i915_gem_object_unpin(obj);
744out_unlock:
745 mutex_unlock(&dev->struct_mutex);
746out_unpin_pages:
747 for (i = 0; i < pinned_pages; i++)
748 page_cache_release(user_pages[i]);
8e7d2b2c 749 drm_free_large(user_pages);
3de09aa3
EA
750
751 return ret;
752}
753
40123c1f
EA
754/**
755 * This is the fast shmem pwrite path, which attempts to directly
756 * copy_from_user into the kmapped pages backing the object.
757 */
3043c60c 758static int
40123c1f
EA
759i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
760 struct drm_i915_gem_pwrite *args,
761 struct drm_file *file_priv)
673a394b 762{
40123c1f
EA
763 struct drm_i915_gem_object *obj_priv = obj->driver_private;
764 ssize_t remain;
765 loff_t offset, page_base;
766 char __user *user_data;
767 int page_offset, page_length;
673a394b 768 int ret;
40123c1f
EA
769
770 user_data = (char __user *) (uintptr_t) args->data_ptr;
771 remain = args->size;
673a394b
EA
772
773 mutex_lock(&dev->struct_mutex);
774
4bdadb97 775 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
776 if (ret != 0)
777 goto fail_unlock;
673a394b 778
e47c68e9 779 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
780 if (ret != 0)
781 goto fail_put_pages;
782
783 obj_priv = obj->driver_private;
784 offset = args->offset;
785 obj_priv->dirty = 1;
786
787 while (remain > 0) {
788 /* Operation in this page
789 *
790 * page_base = page offset within aperture
791 * page_offset = offset within page
792 * page_length = bytes to copy for this page
793 */
794 page_base = (offset & ~(PAGE_SIZE-1));
795 page_offset = offset & (PAGE_SIZE-1);
796 page_length = remain;
797 if ((page_offset + remain) > PAGE_SIZE)
798 page_length = PAGE_SIZE - page_offset;
799
800 ret = fast_shmem_write(obj_priv->pages,
801 page_base, page_offset,
802 user_data, page_length);
803 if (ret)
804 goto fail_put_pages;
805
806 remain -= page_length;
807 user_data += page_length;
808 offset += page_length;
809 }
810
811fail_put_pages:
812 i915_gem_object_put_pages(obj);
813fail_unlock:
814 mutex_unlock(&dev->struct_mutex);
815
816 return ret;
817}
818
819/**
820 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
821 * the memory and maps it using kmap_atomic for copying.
822 *
823 * This avoids taking mmap_sem for faulting on the user's address while the
824 * struct_mutex is held.
825 */
826static int
827i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
828 struct drm_i915_gem_pwrite *args,
829 struct drm_file *file_priv)
830{
831 struct drm_i915_gem_object *obj_priv = obj->driver_private;
832 struct mm_struct *mm = current->mm;
833 struct page **user_pages;
834 ssize_t remain;
835 loff_t offset, pinned_pages, i;
836 loff_t first_data_page, last_data_page, num_pages;
837 int shmem_page_index, shmem_page_offset;
838 int data_page_index, data_page_offset;
839 int page_length;
840 int ret;
841 uint64_t data_ptr = args->data_ptr;
280b713b 842 int do_bit17_swizzling;
40123c1f
EA
843
844 remain = args->size;
845
846 /* Pin the user pages containing the data. We can't fault while
847 * holding the struct mutex, and all of the pwrite implementations
848 * want to hold it while dereferencing the user data.
849 */
850 first_data_page = data_ptr / PAGE_SIZE;
851 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
852 num_pages = last_data_page - first_data_page + 1;
853
8e7d2b2c 854 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
855 if (user_pages == NULL)
856 return -ENOMEM;
857
858 down_read(&mm->mmap_sem);
859 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
860 num_pages, 0, 0, user_pages, NULL);
861 up_read(&mm->mmap_sem);
862 if (pinned_pages < num_pages) {
863 ret = -EFAULT;
864 goto fail_put_user_pages;
673a394b
EA
865 }
866
280b713b
EA
867 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
868
40123c1f
EA
869 mutex_lock(&dev->struct_mutex);
870
07f73f69
CW
871 ret = i915_gem_object_get_pages_or_evict(obj);
872 if (ret)
40123c1f
EA
873 goto fail_unlock;
874
875 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
876 if (ret != 0)
877 goto fail_put_pages;
878
879 obj_priv = obj->driver_private;
673a394b 880 offset = args->offset;
40123c1f 881 obj_priv->dirty = 1;
673a394b 882
40123c1f
EA
883 while (remain > 0) {
884 /* Operation in this page
885 *
886 * shmem_page_index = page number within shmem file
887 * shmem_page_offset = offset within page in shmem file
888 * data_page_index = page number in get_user_pages return
889 * data_page_offset = offset with data_page_index page.
890 * page_length = bytes to copy for this page
891 */
892 shmem_page_index = offset / PAGE_SIZE;
893 shmem_page_offset = offset & ~PAGE_MASK;
894 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
895 data_page_offset = data_ptr & ~PAGE_MASK;
896
897 page_length = remain;
898 if ((shmem_page_offset + page_length) > PAGE_SIZE)
899 page_length = PAGE_SIZE - shmem_page_offset;
900 if ((data_page_offset + page_length) > PAGE_SIZE)
901 page_length = PAGE_SIZE - data_page_offset;
902
280b713b
EA
903 if (do_bit17_swizzling) {
904 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
905 shmem_page_offset,
906 user_pages[data_page_index],
907 data_page_offset,
908 page_length,
909 0);
910 } else {
911 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
912 shmem_page_offset,
913 user_pages[data_page_index],
914 data_page_offset,
915 page_length);
916 }
40123c1f
EA
917 if (ret)
918 goto fail_put_pages;
919
920 remain -= page_length;
921 data_ptr += page_length;
922 offset += page_length;
673a394b
EA
923 }
924
40123c1f
EA
925fail_put_pages:
926 i915_gem_object_put_pages(obj);
927fail_unlock:
673a394b 928 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
929fail_put_user_pages:
930 for (i = 0; i < pinned_pages; i++)
931 page_cache_release(user_pages[i]);
8e7d2b2c 932 drm_free_large(user_pages);
673a394b 933
40123c1f 934 return ret;
673a394b
EA
935}
936
937/**
938 * Writes data to the object referenced by handle.
939 *
940 * On error, the contents of the buffer that were to be modified are undefined.
941 */
942int
943i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
944 struct drm_file *file_priv)
945{
946 struct drm_i915_gem_pwrite *args = data;
947 struct drm_gem_object *obj;
948 struct drm_i915_gem_object *obj_priv;
949 int ret = 0;
950
951 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
952 if (obj == NULL)
953 return -EBADF;
954 obj_priv = obj->driver_private;
955
956 /* Bounds check destination.
957 *
958 * XXX: This could use review for overflow issues...
959 */
960 if (args->offset > obj->size || args->size > obj->size ||
961 args->offset + args->size > obj->size) {
bc9025bd 962 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
963 return -EINVAL;
964 }
965
966 /* We can only do the GTT pwrite on untiled buffers, as otherwise
967 * it would end up going through the fenced access, and we'll get
968 * different detiling behavior between reading and writing.
969 * pread/pwrite currently are reading and writing from the CPU
970 * perspective, requiring manual detiling by the client.
971 */
71acb5eb
DA
972 if (obj_priv->phys_obj)
973 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
974 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
3de09aa3
EA
975 dev->gtt_total != 0) {
976 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
977 if (ret == -EFAULT) {
978 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
979 file_priv);
980 }
280b713b
EA
981 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
982 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
983 } else {
984 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
985 if (ret == -EFAULT) {
986 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
987 file_priv);
988 }
989 }
673a394b
EA
990
991#if WATCH_PWRITE
992 if (ret)
993 DRM_INFO("pwrite failed %d\n", ret);
994#endif
995
bc9025bd 996 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
997
998 return ret;
999}
1000
1001/**
2ef7eeaa
EA
1002 * Called when user space prepares to use an object with the CPU, either
1003 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1004 */
1005int
1006i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1007 struct drm_file *file_priv)
1008{
a09ba7fa 1009 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1010 struct drm_i915_gem_set_domain *args = data;
1011 struct drm_gem_object *obj;
652c393a 1012 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1013 uint32_t read_domains = args->read_domains;
1014 uint32_t write_domain = args->write_domain;
673a394b
EA
1015 int ret;
1016
1017 if (!(dev->driver->driver_features & DRIVER_GEM))
1018 return -ENODEV;
1019
2ef7eeaa 1020 /* Only handle setting domains to types used by the CPU. */
21d509e3 1021 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1022 return -EINVAL;
1023
21d509e3 1024 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1025 return -EINVAL;
1026
1027 /* Having something in the write domain implies it's in the read
1028 * domain, and only that read domain. Enforce that in the request.
1029 */
1030 if (write_domain != 0 && read_domains != write_domain)
1031 return -EINVAL;
1032
673a394b
EA
1033 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1034 if (obj == NULL)
1035 return -EBADF;
652c393a 1036 obj_priv = obj->driver_private;
673a394b
EA
1037
1038 mutex_lock(&dev->struct_mutex);
652c393a
JB
1039
1040 intel_mark_busy(dev, obj);
1041
673a394b 1042#if WATCH_BUF
cfd43c02 1043 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1044 obj, obj->size, read_domains, write_domain);
673a394b 1045#endif
2ef7eeaa
EA
1046 if (read_domains & I915_GEM_DOMAIN_GTT) {
1047 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1048
a09ba7fa
EA
1049 /* Update the LRU on the fence for the CPU access that's
1050 * about to occur.
1051 */
1052 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1053 list_move_tail(&obj_priv->fence_list,
1054 &dev_priv->mm.fence_list);
1055 }
1056
02354392
EA
1057 /* Silently promote "you're not bound, there was nothing to do"
1058 * to success, since the client was just asking us to
1059 * make sure everything was done.
1060 */
1061 if (ret == -EINVAL)
1062 ret = 0;
2ef7eeaa 1063 } else {
e47c68e9 1064 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1065 }
1066
673a394b
EA
1067 drm_gem_object_unreference(obj);
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1070}
1071
1072/**
1073 * Called when user space has done writes to this buffer
1074 */
1075int
1076i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file_priv)
1078{
1079 struct drm_i915_gem_sw_finish *args = data;
1080 struct drm_gem_object *obj;
1081 struct drm_i915_gem_object *obj_priv;
1082 int ret = 0;
1083
1084 if (!(dev->driver->driver_features & DRIVER_GEM))
1085 return -ENODEV;
1086
1087 mutex_lock(&dev->struct_mutex);
1088 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1089 if (obj == NULL) {
1090 mutex_unlock(&dev->struct_mutex);
1091 return -EBADF;
1092 }
1093
1094#if WATCH_BUF
cfd43c02 1095 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1096 __func__, args->handle, obj, obj->size);
1097#endif
1098 obj_priv = obj->driver_private;
1099
1100 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1101 if (obj_priv->pin_count)
1102 i915_gem_object_flush_cpu_write_domain(obj);
1103
673a394b
EA
1104 drm_gem_object_unreference(obj);
1105 mutex_unlock(&dev->struct_mutex);
1106 return ret;
1107}
1108
1109/**
1110 * Maps the contents of an object, returning the address it is mapped
1111 * into.
1112 *
1113 * While the mapping holds a reference on the contents of the object, it doesn't
1114 * imply a ref on the object itself.
1115 */
1116int
1117i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1118 struct drm_file *file_priv)
1119{
1120 struct drm_i915_gem_mmap *args = data;
1121 struct drm_gem_object *obj;
1122 loff_t offset;
1123 unsigned long addr;
1124
1125 if (!(dev->driver->driver_features & DRIVER_GEM))
1126 return -ENODEV;
1127
1128 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1129 if (obj == NULL)
1130 return -EBADF;
1131
1132 offset = args->offset;
1133
1134 down_write(&current->mm->mmap_sem);
1135 addr = do_mmap(obj->filp, 0, args->size,
1136 PROT_READ | PROT_WRITE, MAP_SHARED,
1137 args->offset);
1138 up_write(&current->mm->mmap_sem);
bc9025bd 1139 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1140 if (IS_ERR((void *)addr))
1141 return addr;
1142
1143 args->addr_ptr = (uint64_t) addr;
1144
1145 return 0;
1146}
1147
de151cf6
JB
1148/**
1149 * i915_gem_fault - fault a page into the GTT
1150 * vma: VMA in question
1151 * vmf: fault info
1152 *
1153 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1154 * from userspace. The fault handler takes care of binding the object to
1155 * the GTT (if needed), allocating and programming a fence register (again,
1156 * only if needed based on whether the old reg is still valid or the object
1157 * is tiled) and inserting a new PTE into the faulting process.
1158 *
1159 * Note that the faulting process may involve evicting existing objects
1160 * from the GTT and/or fence registers to make room. So performance may
1161 * suffer if the GTT working set is large or there are few fence registers
1162 * left.
1163 */
1164int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1165{
1166 struct drm_gem_object *obj = vma->vm_private_data;
1167 struct drm_device *dev = obj->dev;
1168 struct drm_i915_private *dev_priv = dev->dev_private;
1169 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1170 pgoff_t page_offset;
1171 unsigned long pfn;
1172 int ret = 0;
0f973f27 1173 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1174
1175 /* We don't use vmf->pgoff since that has the fake offset */
1176 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1177 PAGE_SHIFT;
1178
1179 /* Now bind it into the GTT if needed */
1180 mutex_lock(&dev->struct_mutex);
1181 if (!obj_priv->gtt_space) {
e67b8ce1 1182 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1183 if (ret)
1184 goto unlock;
07f4f3e8 1185
14b60391 1186 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
07f4f3e8
KH
1187
1188 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1189 if (ret)
1190 goto unlock;
de151cf6
JB
1191 }
1192
1193 /* Need a new fence register? */
a09ba7fa 1194 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1195 ret = i915_gem_object_get_fence_reg(obj);
c715089f
CW
1196 if (ret)
1197 goto unlock;
d9ddcb96 1198 }
de151cf6
JB
1199
1200 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1201 page_offset;
1202
1203 /* Finally, remap it using the new GTT offset */
1204 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1205unlock:
de151cf6
JB
1206 mutex_unlock(&dev->struct_mutex);
1207
1208 switch (ret) {
c715089f
CW
1209 case 0:
1210 case -ERESTARTSYS:
1211 return VM_FAULT_NOPAGE;
de151cf6
JB
1212 case -ENOMEM:
1213 case -EAGAIN:
1214 return VM_FAULT_OOM;
de151cf6 1215 default:
c715089f 1216 return VM_FAULT_SIGBUS;
de151cf6
JB
1217 }
1218}
1219
1220/**
1221 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1222 * @obj: obj in question
1223 *
1224 * GEM memory mapping works by handing back to userspace a fake mmap offset
1225 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1226 * up the object based on the offset and sets up the various memory mapping
1227 * structures.
1228 *
1229 * This routine allocates and attaches a fake offset for @obj.
1230 */
1231static int
1232i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1233{
1234 struct drm_device *dev = obj->dev;
1235 struct drm_gem_mm *mm = dev->mm_private;
1236 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1237 struct drm_map_list *list;
f77d390c 1238 struct drm_local_map *map;
de151cf6
JB
1239 int ret = 0;
1240
1241 /* Set the object up for mmap'ing */
1242 list = &obj->map_list;
9a298b2a 1243 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1244 if (!list->map)
1245 return -ENOMEM;
1246
1247 map = list->map;
1248 map->type = _DRM_GEM;
1249 map->size = obj->size;
1250 map->handle = obj;
1251
1252 /* Get a DRM GEM mmap offset allocated... */
1253 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1254 obj->size / PAGE_SIZE, 0, 0);
1255 if (!list->file_offset_node) {
1256 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1257 ret = -ENOMEM;
1258 goto out_free_list;
1259 }
1260
1261 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1262 obj->size / PAGE_SIZE, 0);
1263 if (!list->file_offset_node) {
1264 ret = -ENOMEM;
1265 goto out_free_list;
1266 }
1267
1268 list->hash.key = list->file_offset_node->start;
1269 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1270 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1271 ret = -ENOMEM;
de151cf6
JB
1272 goto out_free_mm;
1273 }
1274
1275 /* By now we should be all set, any drm_mmap request on the offset
1276 * below will get to our mmap & fault handler */
1277 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1278
1279 return 0;
1280
1281out_free_mm:
1282 drm_mm_put_block(list->file_offset_node);
1283out_free_list:
9a298b2a 1284 kfree(list->map);
de151cf6
JB
1285
1286 return ret;
1287}
1288
901782b2
CW
1289/**
1290 * i915_gem_release_mmap - remove physical page mappings
1291 * @obj: obj in question
1292 *
af901ca1 1293 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1294 * relinquish ownership of the pages back to the system.
1295 *
1296 * It is vital that we remove the page mapping if we have mapped a tiled
1297 * object through the GTT and then lose the fence register due to
1298 * resource pressure. Similarly if the object has been moved out of the
1299 * aperture, than pages mapped into userspace must be revoked. Removing the
1300 * mapping will then trigger a page fault on the next user access, allowing
1301 * fixup by i915_gem_fault().
1302 */
d05ca301 1303void
901782b2
CW
1304i915_gem_release_mmap(struct drm_gem_object *obj)
1305{
1306 struct drm_device *dev = obj->dev;
1307 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1308
1309 if (dev->dev_mapping)
1310 unmap_mapping_range(dev->dev_mapping,
1311 obj_priv->mmap_offset, obj->size, 1);
1312}
1313
ab00b3e5
JB
1314static void
1315i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1316{
1317 struct drm_device *dev = obj->dev;
1318 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1319 struct drm_gem_mm *mm = dev->mm_private;
1320 struct drm_map_list *list;
1321
1322 list = &obj->map_list;
1323 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1324
1325 if (list->file_offset_node) {
1326 drm_mm_put_block(list->file_offset_node);
1327 list->file_offset_node = NULL;
1328 }
1329
1330 if (list->map) {
9a298b2a 1331 kfree(list->map);
ab00b3e5
JB
1332 list->map = NULL;
1333 }
1334
1335 obj_priv->mmap_offset = 0;
1336}
1337
de151cf6
JB
1338/**
1339 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1340 * @obj: object to check
1341 *
1342 * Return the required GTT alignment for an object, taking into account
1343 * potential fence register mapping if needed.
1344 */
1345static uint32_t
1346i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1347{
1348 struct drm_device *dev = obj->dev;
1349 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1350 int start, i;
1351
1352 /*
1353 * Minimum alignment is 4k (GTT page size), but might be greater
1354 * if a fence register is needed for the object.
1355 */
1356 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1357 return 4096;
1358
1359 /*
1360 * Previous chips need to be aligned to the size of the smallest
1361 * fence register that can contain the object.
1362 */
1363 if (IS_I9XX(dev))
1364 start = 1024*1024;
1365 else
1366 start = 512*1024;
1367
1368 for (i = start; i < obj->size; i <<= 1)
1369 ;
1370
1371 return i;
1372}
1373
1374/**
1375 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1376 * @dev: DRM device
1377 * @data: GTT mapping ioctl data
1378 * @file_priv: GEM object info
1379 *
1380 * Simply returns the fake offset to userspace so it can mmap it.
1381 * The mmap call will end up in drm_gem_mmap(), which will set things
1382 * up so we can get faults in the handler above.
1383 *
1384 * The fault handler will take care of binding the object into the GTT
1385 * (since it may have been evicted to make room for something), allocating
1386 * a fence register, and mapping the appropriate aperture address into
1387 * userspace.
1388 */
1389int
1390i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1391 struct drm_file *file_priv)
1392{
1393 struct drm_i915_gem_mmap_gtt *args = data;
1394 struct drm_i915_private *dev_priv = dev->dev_private;
1395 struct drm_gem_object *obj;
1396 struct drm_i915_gem_object *obj_priv;
1397 int ret;
1398
1399 if (!(dev->driver->driver_features & DRIVER_GEM))
1400 return -ENODEV;
1401
1402 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1403 if (obj == NULL)
1404 return -EBADF;
1405
1406 mutex_lock(&dev->struct_mutex);
1407
1408 obj_priv = obj->driver_private;
1409
ab18282d
CW
1410 if (obj_priv->madv != I915_MADV_WILLNEED) {
1411 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1412 drm_gem_object_unreference(obj);
1413 mutex_unlock(&dev->struct_mutex);
1414 return -EINVAL;
1415 }
1416
1417
de151cf6
JB
1418 if (!obj_priv->mmap_offset) {
1419 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1420 if (ret) {
1421 drm_gem_object_unreference(obj);
1422 mutex_unlock(&dev->struct_mutex);
de151cf6 1423 return ret;
13af1062 1424 }
de151cf6
JB
1425 }
1426
1427 args->offset = obj_priv->mmap_offset;
1428
de151cf6
JB
1429 /*
1430 * Pull it into the GTT so that we have a page list (makes the
1431 * initial fault faster and any subsequent flushing possible).
1432 */
1433 if (!obj_priv->agp_mem) {
e67b8ce1 1434 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1435 if (ret) {
1436 drm_gem_object_unreference(obj);
1437 mutex_unlock(&dev->struct_mutex);
1438 return ret;
1439 }
14b60391 1440 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
de151cf6
JB
1441 }
1442
1443 drm_gem_object_unreference(obj);
1444 mutex_unlock(&dev->struct_mutex);
1445
1446 return 0;
1447}
1448
6911a9b8 1449void
856fa198 1450i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b
EA
1451{
1452 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1453 int page_count = obj->size / PAGE_SIZE;
1454 int i;
1455
856fa198 1456 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1457 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1458
856fa198
EA
1459 if (--obj_priv->pages_refcount != 0)
1460 return;
673a394b 1461
280b713b
EA
1462 if (obj_priv->tiling_mode != I915_TILING_NONE)
1463 i915_gem_object_save_bit_17_swizzle(obj);
1464
3ef94daa 1465 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1466 obj_priv->dirty = 0;
3ef94daa
CW
1467
1468 for (i = 0; i < page_count; i++) {
1469 if (obj_priv->pages[i] == NULL)
1470 break;
1471
1472 if (obj_priv->dirty)
1473 set_page_dirty(obj_priv->pages[i]);
1474
1475 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1476 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1477
1478 page_cache_release(obj_priv->pages[i]);
1479 }
673a394b
EA
1480 obj_priv->dirty = 0;
1481
8e7d2b2c 1482 drm_free_large(obj_priv->pages);
856fa198 1483 obj_priv->pages = NULL;
673a394b
EA
1484}
1485
1486static void
ce44b0ea 1487i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
673a394b
EA
1488{
1489 struct drm_device *dev = obj->dev;
1490 drm_i915_private_t *dev_priv = dev->dev_private;
1491 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1492
1493 /* Add a reference if we're newly entering the active list. */
1494 if (!obj_priv->active) {
1495 drm_gem_object_reference(obj);
1496 obj_priv->active = 1;
1497 }
1498 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1499 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1500 list_move_tail(&obj_priv->list,
1501 &dev_priv->mm.active_list);
5e118f41 1502 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1503 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1504}
1505
ce44b0ea
EA
1506static void
1507i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1508{
1509 struct drm_device *dev = obj->dev;
1510 drm_i915_private_t *dev_priv = dev->dev_private;
1511 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1512
1513 BUG_ON(!obj_priv->active);
1514 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1515 obj_priv->last_rendering_seqno = 0;
1516}
673a394b 1517
963b4836
CW
1518/* Immediately discard the backing storage */
1519static void
1520i915_gem_object_truncate(struct drm_gem_object *obj)
1521{
bb6baf76
CW
1522 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1523 struct inode *inode;
963b4836 1524
bb6baf76
CW
1525 inode = obj->filp->f_path.dentry->d_inode;
1526 if (inode->i_op->truncate)
1527 inode->i_op->truncate (inode);
1528
1529 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1530}
1531
1532static inline int
1533i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1534{
1535 return obj_priv->madv == I915_MADV_DONTNEED;
1536}
1537
673a394b
EA
1538static void
1539i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1540{
1541 struct drm_device *dev = obj->dev;
1542 drm_i915_private_t *dev_priv = dev->dev_private;
1543 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1544
1545 i915_verify_inactive(dev, __FILE__, __LINE__);
1546 if (obj_priv->pin_count != 0)
1547 list_del_init(&obj_priv->list);
1548 else
1549 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1550
99fcb766
DV
1551 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1552
ce44b0ea 1553 obj_priv->last_rendering_seqno = 0;
673a394b
EA
1554 if (obj_priv->active) {
1555 obj_priv->active = 0;
1556 drm_gem_object_unreference(obj);
1557 }
1558 i915_verify_inactive(dev, __FILE__, __LINE__);
1559}
1560
63560396
DV
1561static void
1562i915_gem_process_flushing_list(struct drm_device *dev,
1563 uint32_t flush_domains, uint32_t seqno)
1564{
1565 drm_i915_private_t *dev_priv = dev->dev_private;
1566 struct drm_i915_gem_object *obj_priv, *next;
1567
1568 list_for_each_entry_safe(obj_priv, next,
1569 &dev_priv->mm.gpu_write_list,
1570 gpu_write_list) {
1571 struct drm_gem_object *obj = obj_priv->obj;
1572
1573 if ((obj->write_domain & flush_domains) ==
1574 obj->write_domain) {
1575 uint32_t old_write_domain = obj->write_domain;
1576
1577 obj->write_domain = 0;
1578 list_del_init(&obj_priv->gpu_write_list);
1579 i915_gem_object_move_to_active(obj, seqno);
1580
1581 /* update the fence lru list */
1582 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1583 list_move_tail(&obj_priv->fence_list,
1584 &dev_priv->mm.fence_list);
1585
1586 trace_i915_gem_object_change_domain(obj,
1587 obj->read_domains,
1588 old_write_domain);
1589 }
1590 }
1591}
1592
673a394b
EA
1593/**
1594 * Creates a new sequence number, emitting a write of it to the status page
1595 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1596 *
1597 * Must be called with struct_lock held.
1598 *
1599 * Returned sequence numbers are nonzero on success.
1600 */
5a5a0c64 1601uint32_t
b962442e
EA
1602i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1603 uint32_t flush_domains)
673a394b
EA
1604{
1605 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1606 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1607 struct drm_i915_gem_request *request;
1608 uint32_t seqno;
1609 int was_empty;
1610 RING_LOCALS;
1611
b962442e
EA
1612 if (file_priv != NULL)
1613 i915_file_priv = file_priv->driver_priv;
1614
9a298b2a 1615 request = kzalloc(sizeof(*request), GFP_KERNEL);
673a394b
EA
1616 if (request == NULL)
1617 return 0;
1618
1619 /* Grab the seqno we're going to make this request be, and bump the
1620 * next (skipping 0 so it can be the reserved no-seqno value).
1621 */
1622 seqno = dev_priv->mm.next_gem_seqno;
1623 dev_priv->mm.next_gem_seqno++;
1624 if (dev_priv->mm.next_gem_seqno == 0)
1625 dev_priv->mm.next_gem_seqno++;
1626
1627 BEGIN_LP_RING(4);
1628 OUT_RING(MI_STORE_DWORD_INDEX);
1629 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1630 OUT_RING(seqno);
1631
1632 OUT_RING(MI_USER_INTERRUPT);
1633 ADVANCE_LP_RING();
1634
44d98a61 1635 DRM_DEBUG_DRIVER("%d\n", seqno);
673a394b
EA
1636
1637 request->seqno = seqno;
1638 request->emitted_jiffies = jiffies;
673a394b
EA
1639 was_empty = list_empty(&dev_priv->mm.request_list);
1640 list_add_tail(&request->list, &dev_priv->mm.request_list);
b962442e
EA
1641 if (i915_file_priv) {
1642 list_add_tail(&request->client_list,
1643 &i915_file_priv->mm.request_list);
1644 } else {
1645 INIT_LIST_HEAD(&request->client_list);
1646 }
673a394b 1647
ce44b0ea
EA
1648 /* Associate any objects on the flushing list matching the write
1649 * domain we're flushing with our flush.
1650 */
63560396
DV
1651 if (flush_domains != 0)
1652 i915_gem_process_flushing_list(dev, flush_domains, seqno);
ce44b0ea 1653
f65d9421
BG
1654 if (!dev_priv->mm.suspended) {
1655 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1656 if (was_empty)
1657 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1658 }
673a394b
EA
1659 return seqno;
1660}
1661
1662/**
1663 * Command execution barrier
1664 *
1665 * Ensures that all commands in the ring are finished
1666 * before signalling the CPU
1667 */
3043c60c 1668static uint32_t
673a394b
EA
1669i915_retire_commands(struct drm_device *dev)
1670{
1671 drm_i915_private_t *dev_priv = dev->dev_private;
1672 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1673 uint32_t flush_domains = 0;
1674 RING_LOCALS;
1675
1676 /* The sampler always gets flushed on i965 (sigh) */
1677 if (IS_I965G(dev))
1678 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1679 BEGIN_LP_RING(2);
1680 OUT_RING(cmd);
1681 OUT_RING(0); /* noop */
1682 ADVANCE_LP_RING();
1683 return flush_domains;
1684}
1685
1686/**
1687 * Moves buffers associated only with the given active seqno from the active
1688 * to inactive list, potentially freeing them.
1689 */
1690static void
1691i915_gem_retire_request(struct drm_device *dev,
1692 struct drm_i915_gem_request *request)
1693{
1694 drm_i915_private_t *dev_priv = dev->dev_private;
1695
1c5d22f7
CW
1696 trace_i915_gem_request_retire(dev, request->seqno);
1697
673a394b
EA
1698 /* Move any buffers on the active list that are no longer referenced
1699 * by the ringbuffer to the flushing/inactive lists as appropriate.
1700 */
5e118f41 1701 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1702 while (!list_empty(&dev_priv->mm.active_list)) {
1703 struct drm_gem_object *obj;
1704 struct drm_i915_gem_object *obj_priv;
1705
1706 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1707 struct drm_i915_gem_object,
1708 list);
1709 obj = obj_priv->obj;
1710
1711 /* If the seqno being retired doesn't match the oldest in the
1712 * list, then the oldest in the list must still be newer than
1713 * this seqno.
1714 */
1715 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1716 goto out;
de151cf6 1717
673a394b
EA
1718#if WATCH_LRU
1719 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1720 __func__, request->seqno, obj);
1721#endif
1722
ce44b0ea
EA
1723 if (obj->write_domain != 0)
1724 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1725 else {
1726 /* Take a reference on the object so it won't be
1727 * freed while the spinlock is held. The list
1728 * protection for this spinlock is safe when breaking
1729 * the lock like this since the next thing we do
1730 * is just get the head of the list again.
1731 */
1732 drm_gem_object_reference(obj);
673a394b 1733 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1734 spin_unlock(&dev_priv->mm.active_list_lock);
1735 drm_gem_object_unreference(obj);
1736 spin_lock(&dev_priv->mm.active_list_lock);
1737 }
673a394b 1738 }
5e118f41
CW
1739out:
1740 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1741}
1742
1743/**
1744 * Returns true if seq1 is later than seq2.
1745 */
22be1724 1746bool
673a394b
EA
1747i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1748{
1749 return (int32_t)(seq1 - seq2) >= 0;
1750}
1751
1752uint32_t
1753i915_get_gem_seqno(struct drm_device *dev)
1754{
1755 drm_i915_private_t *dev_priv = dev->dev_private;
1756
1757 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1758}
1759
1760/**
1761 * This function clears the request list as sequence numbers are passed.
1762 */
1763void
1764i915_gem_retire_requests(struct drm_device *dev)
1765{
1766 drm_i915_private_t *dev_priv = dev->dev_private;
1767 uint32_t seqno;
1768
9d34e5db 1769 if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
6c0594a3
KW
1770 return;
1771
673a394b
EA
1772 seqno = i915_get_gem_seqno(dev);
1773
1774 while (!list_empty(&dev_priv->mm.request_list)) {
1775 struct drm_i915_gem_request *request;
1776 uint32_t retiring_seqno;
1777
1778 request = list_first_entry(&dev_priv->mm.request_list,
1779 struct drm_i915_gem_request,
1780 list);
1781 retiring_seqno = request->seqno;
1782
1783 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1784 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1785 i915_gem_retire_request(dev, request);
1786
1787 list_del(&request->list);
b962442e 1788 list_del(&request->client_list);
9a298b2a 1789 kfree(request);
673a394b
EA
1790 } else
1791 break;
1792 }
9d34e5db
CW
1793
1794 if (unlikely (dev_priv->trace_irq_seqno &&
1795 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1796 i915_user_irq_put(dev);
1797 dev_priv->trace_irq_seqno = 0;
1798 }
673a394b
EA
1799}
1800
1801void
1802i915_gem_retire_work_handler(struct work_struct *work)
1803{
1804 drm_i915_private_t *dev_priv;
1805 struct drm_device *dev;
1806
1807 dev_priv = container_of(work, drm_i915_private_t,
1808 mm.retire_work.work);
1809 dev = dev_priv->dev;
1810
1811 mutex_lock(&dev->struct_mutex);
1812 i915_gem_retire_requests(dev);
6dbe2772
KP
1813 if (!dev_priv->mm.suspended &&
1814 !list_empty(&dev_priv->mm.request_list))
9c9fe1f8 1815 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1816 mutex_unlock(&dev->struct_mutex);
1817}
1818
5a5a0c64 1819int
48764bf4 1820i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
673a394b
EA
1821{
1822 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1823 u32 ier;
673a394b
EA
1824 int ret = 0;
1825
1826 BUG_ON(seqno == 0);
1827
ba1234d1 1828 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1829 return -EIO;
1830
673a394b 1831 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
bad720ff 1832 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1833 ier = I915_READ(DEIER) | I915_READ(GTIER);
1834 else
1835 ier = I915_READ(IER);
802c7eb6
JB
1836 if (!ier) {
1837 DRM_ERROR("something (likely vbetool) disabled "
1838 "interrupts, re-enabling\n");
1839 i915_driver_irq_preinstall(dev);
1840 i915_driver_irq_postinstall(dev);
1841 }
1842
1c5d22f7
CW
1843 trace_i915_gem_request_wait_begin(dev, seqno);
1844
673a394b
EA
1845 dev_priv->mm.waiting_gem_seqno = seqno;
1846 i915_user_irq_get(dev);
48764bf4
DV
1847 if (interruptible)
1848 ret = wait_event_interruptible(dev_priv->irq_queue,
1849 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1850 atomic_read(&dev_priv->mm.wedged));
1851 else
1852 wait_event(dev_priv->irq_queue,
1853 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1854 atomic_read(&dev_priv->mm.wedged));
1855
673a394b
EA
1856 i915_user_irq_put(dev);
1857 dev_priv->mm.waiting_gem_seqno = 0;
1c5d22f7
CW
1858
1859 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1860 }
ba1234d1 1861 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1862 ret = -EIO;
1863
1864 if (ret && ret != -ERESTARTSYS)
1865 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1866 __func__, ret, seqno, i915_get_gem_seqno(dev));
1867
1868 /* Directly dispatch request retiring. While we have the work queue
1869 * to handle this, the waiter on a request often wants an associated
1870 * buffer to have made it to the inactive list, and we would need
1871 * a separate wait queue to handle that.
1872 */
1873 if (ret == 0)
1874 i915_gem_retire_requests(dev);
1875
1876 return ret;
1877}
1878
48764bf4
DV
1879/**
1880 * Waits for a sequence number to be signaled, and cleans up the
1881 * request and object lists appropriately for that event.
1882 */
1883static int
1884i915_wait_request(struct drm_device *dev, uint32_t seqno)
1885{
1886 return i915_do_wait_request(dev, seqno, 1);
1887}
1888
673a394b
EA
1889static void
1890i915_gem_flush(struct drm_device *dev,
1891 uint32_t invalidate_domains,
1892 uint32_t flush_domains)
1893{
1894 drm_i915_private_t *dev_priv = dev->dev_private;
1895 uint32_t cmd;
1896 RING_LOCALS;
1897
1898#if WATCH_EXEC
1899 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1900 invalidate_domains, flush_domains);
1901#endif
1c5d22f7
CW
1902 trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1903 invalidate_domains, flush_domains);
673a394b
EA
1904
1905 if (flush_domains & I915_GEM_DOMAIN_CPU)
1906 drm_agp_chipset_flush(dev);
1907
21d509e3 1908 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
673a394b
EA
1909 /*
1910 * read/write caches:
1911 *
1912 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1913 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1914 * also flushed at 2d versus 3d pipeline switches.
1915 *
1916 * read-only caches:
1917 *
1918 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1919 * MI_READ_FLUSH is set, and is always flushed on 965.
1920 *
1921 * I915_GEM_DOMAIN_COMMAND may not exist?
1922 *
1923 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1924 * invalidated when MI_EXE_FLUSH is set.
1925 *
1926 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1927 * invalidated with every MI_FLUSH.
1928 *
1929 * TLBs:
1930 *
1931 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1932 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1933 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1934 * are flushed at any MI_FLUSH.
1935 */
1936
1937 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1938 if ((invalidate_domains|flush_domains) &
1939 I915_GEM_DOMAIN_RENDER)
1940 cmd &= ~MI_NO_WRITE_FLUSH;
1941 if (!IS_I965G(dev)) {
1942 /*
1943 * On the 965, the sampler cache always gets flushed
1944 * and this bit is reserved.
1945 */
1946 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1947 cmd |= MI_READ_FLUSH;
1948 }
1949 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1950 cmd |= MI_EXE_FLUSH;
1951
1952#if WATCH_EXEC
1953 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1954#endif
1955 BEGIN_LP_RING(2);
1956 OUT_RING(cmd);
48764bf4 1957 OUT_RING(MI_NOOP);
673a394b
EA
1958 ADVANCE_LP_RING();
1959 }
1960}
1961
1962/**
1963 * Ensures that all rendering to the object has completed and the object is
1964 * safe to unbind from the GTT or access from the CPU.
1965 */
1966static int
1967i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1968{
1969 struct drm_device *dev = obj->dev;
1970 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1971 int ret;
1972
e47c68e9
EA
1973 /* This function only exists to support waiting for existing rendering,
1974 * not for emitting required flushes.
673a394b 1975 */
e47c68e9 1976 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1977
1978 /* If there is rendering queued on the buffer being evicted, wait for
1979 * it.
1980 */
1981 if (obj_priv->active) {
1982#if WATCH_BUF
1983 DRM_INFO("%s: object %p wait for seqno %08x\n",
1984 __func__, obj, obj_priv->last_rendering_seqno);
1985#endif
1986 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1987 if (ret != 0)
1988 return ret;
1989 }
1990
1991 return 0;
1992}
1993
1994/**
1995 * Unbinds an object from the GTT aperture.
1996 */
0f973f27 1997int
673a394b
EA
1998i915_gem_object_unbind(struct drm_gem_object *obj)
1999{
2000 struct drm_device *dev = obj->dev;
4a87b8ca 2001 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
2002 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2003 int ret = 0;
2004
2005#if WATCH_BUF
2006 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2007 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2008#endif
2009 if (obj_priv->gtt_space == NULL)
2010 return 0;
2011
2012 if (obj_priv->pin_count != 0) {
2013 DRM_ERROR("Attempting to unbind pinned buffer\n");
2014 return -EINVAL;
2015 }
2016
5323fd04
EA
2017 /* blow away mappings if mapped through GTT */
2018 i915_gem_release_mmap(obj);
2019
673a394b
EA
2020 /* Move the object to the CPU domain to ensure that
2021 * any possible CPU writes while it's not in the GTT
2022 * are flushed when we go to remap it. This will
2023 * also ensure that all pending GPU writes are finished
2024 * before we unbind.
2025 */
e47c68e9 2026 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b 2027 if (ret) {
e47c68e9
EA
2028 if (ret != -ERESTARTSYS)
2029 DRM_ERROR("set_domain failed: %d\n", ret);
673a394b
EA
2030 return ret;
2031 }
2032
5323fd04
EA
2033 BUG_ON(obj_priv->active);
2034
96b47b65
DV
2035 /* release the fence reg _after_ flushing */
2036 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2037 i915_gem_clear_fence_reg(obj);
2038
673a394b
EA
2039 if (obj_priv->agp_mem != NULL) {
2040 drm_unbind_agp(obj_priv->agp_mem);
2041 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2042 obj_priv->agp_mem = NULL;
2043 }
2044
856fa198 2045 i915_gem_object_put_pages(obj);
a32808c0 2046 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2047
2048 if (obj_priv->gtt_space) {
2049 atomic_dec(&dev->gtt_count);
2050 atomic_sub(obj->size, &dev->gtt_memory);
2051
2052 drm_mm_put_block(obj_priv->gtt_space);
2053 obj_priv->gtt_space = NULL;
2054 }
2055
2056 /* Remove ourselves from the LRU list if present. */
4a87b8ca 2057 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
2058 if (!list_empty(&obj_priv->list))
2059 list_del_init(&obj_priv->list);
4a87b8ca 2060 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b 2061
963b4836
CW
2062 if (i915_gem_object_is_purgeable(obj_priv))
2063 i915_gem_object_truncate(obj);
2064
1c5d22f7
CW
2065 trace_i915_gem_object_unbind(obj);
2066
673a394b
EA
2067 return 0;
2068}
2069
07f73f69
CW
2070static struct drm_gem_object *
2071i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2072{
2073 drm_i915_private_t *dev_priv = dev->dev_private;
2074 struct drm_i915_gem_object *obj_priv;
2075 struct drm_gem_object *best = NULL;
2076 struct drm_gem_object *first = NULL;
2077
2078 /* Try to find the smallest clean object */
2079 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2080 struct drm_gem_object *obj = obj_priv->obj;
2081 if (obj->size >= min_size) {
963b4836
CW
2082 if ((!obj_priv->dirty ||
2083 i915_gem_object_is_purgeable(obj_priv)) &&
07f73f69
CW
2084 (!best || obj->size < best->size)) {
2085 best = obj;
2086 if (best->size == min_size)
2087 return best;
2088 }
2089 if (!first)
2090 first = obj;
2091 }
2092 }
2093
2094 return best ? best : first;
2095}
2096
673a394b 2097static int
07f73f69
CW
2098i915_gem_evict_everything(struct drm_device *dev)
2099{
2100 drm_i915_private_t *dev_priv = dev->dev_private;
07f73f69 2101 int ret;
99fcb766 2102 uint32_t seqno;
07f73f69
CW
2103 bool lists_empty;
2104
07f73f69
CW
2105 spin_lock(&dev_priv->mm.active_list_lock);
2106 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2107 list_empty(&dev_priv->mm.flushing_list) &&
2108 list_empty(&dev_priv->mm.active_list));
2109 spin_unlock(&dev_priv->mm.active_list_lock);
2110
9731129c 2111 if (lists_empty)
07f73f69 2112 return -ENOSPC;
07f73f69
CW
2113
2114 /* Flush everything (on to the inactive lists) and evict */
2115 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2116 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2117 if (seqno == 0)
2118 return -ENOMEM;
2119
2120 ret = i915_wait_request(dev, seqno);
2121 if (ret)
2122 return ret;
2123
99fcb766
DV
2124 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2125
ab5ee576 2126 ret = i915_gem_evict_from_inactive_list(dev);
07f73f69
CW
2127 if (ret)
2128 return ret;
2129
2130 spin_lock(&dev_priv->mm.active_list_lock);
2131 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2132 list_empty(&dev_priv->mm.flushing_list) &&
2133 list_empty(&dev_priv->mm.active_list));
2134 spin_unlock(&dev_priv->mm.active_list_lock);
2135 BUG_ON(!lists_empty);
2136
2137 return 0;
2138}
2139
673a394b 2140static int
07f73f69 2141i915_gem_evict_something(struct drm_device *dev, int min_size)
673a394b
EA
2142{
2143 drm_i915_private_t *dev_priv = dev->dev_private;
2144 struct drm_gem_object *obj;
07f73f69 2145 int ret;
673a394b
EA
2146
2147 for (;;) {
07f73f69
CW
2148 i915_gem_retire_requests(dev);
2149
673a394b
EA
2150 /* If there's an inactive buffer available now, grab it
2151 * and be done.
2152 */
07f73f69
CW
2153 obj = i915_gem_find_inactive_object(dev, min_size);
2154 if (obj) {
2155 struct drm_i915_gem_object *obj_priv;
2156
673a394b
EA
2157#if WATCH_LRU
2158 DRM_INFO("%s: evicting %p\n", __func__, obj);
2159#endif
07f73f69
CW
2160 obj_priv = obj->driver_private;
2161 BUG_ON(obj_priv->pin_count != 0);
673a394b
EA
2162 BUG_ON(obj_priv->active);
2163
2164 /* Wait on the rendering and unbind the buffer. */
07f73f69 2165 return i915_gem_object_unbind(obj);
673a394b
EA
2166 }
2167
2168 /* If we didn't get anything, but the ring is still processing
07f73f69
CW
2169 * things, wait for the next to finish and hopefully leave us
2170 * a buffer to evict.
673a394b
EA
2171 */
2172 if (!list_empty(&dev_priv->mm.request_list)) {
2173 struct drm_i915_gem_request *request;
2174
2175 request = list_first_entry(&dev_priv->mm.request_list,
2176 struct drm_i915_gem_request,
2177 list);
2178
2179 ret = i915_wait_request(dev, request->seqno);
2180 if (ret)
07f73f69 2181 return ret;
673a394b 2182
07f73f69 2183 continue;
673a394b
EA
2184 }
2185
2186 /* If we didn't have anything on the request list but there
2187 * are buffers awaiting a flush, emit one and try again.
2188 * When we wait on it, those buffers waiting for that flush
2189 * will get moved to inactive.
2190 */
2191 if (!list_empty(&dev_priv->mm.flushing_list)) {
07f73f69 2192 struct drm_i915_gem_object *obj_priv;
673a394b 2193
9a1e2582
CW
2194 /* Find an object that we can immediately reuse */
2195 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2196 obj = obj_priv->obj;
2197 if (obj->size >= min_size)
2198 break;
673a394b 2199
9a1e2582
CW
2200 obj = NULL;
2201 }
673a394b 2202
9a1e2582
CW
2203 if (obj != NULL) {
2204 uint32_t seqno;
673a394b 2205
9a1e2582
CW
2206 i915_gem_flush(dev,
2207 obj->write_domain,
2208 obj->write_domain);
2209 seqno = i915_add_request(dev, NULL, obj->write_domain);
2210 if (seqno == 0)
2211 return -ENOMEM;
ac94a962 2212
9a1e2582
CW
2213 ret = i915_wait_request(dev, seqno);
2214 if (ret)
2215 return ret;
2216
2217 continue;
2218 }
673a394b
EA
2219 }
2220
07f73f69
CW
2221 /* If we didn't do any of the above, there's no single buffer
2222 * large enough to swap out for the new one, so just evict
2223 * everything and start again. (This should be rare.)
673a394b 2224 */
9731129c 2225 if (!list_empty (&dev_priv->mm.inactive_list))
ab5ee576 2226 return i915_gem_evict_from_inactive_list(dev);
9731129c 2227 else
07f73f69 2228 return i915_gem_evict_everything(dev);
ac94a962 2229 }
ac94a962
KP
2230}
2231
6911a9b8 2232int
4bdadb97
CW
2233i915_gem_object_get_pages(struct drm_gem_object *obj,
2234 gfp_t gfpmask)
673a394b
EA
2235{
2236 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2237 int page_count, i;
2238 struct address_space *mapping;
2239 struct inode *inode;
2240 struct page *page;
2241 int ret;
2242
856fa198 2243 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2244 return 0;
2245
2246 /* Get the list of pages out of our struct file. They'll be pinned
2247 * at this point until we release them.
2248 */
2249 page_count = obj->size / PAGE_SIZE;
856fa198 2250 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2251 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2252 if (obj_priv->pages == NULL) {
856fa198 2253 obj_priv->pages_refcount--;
673a394b
EA
2254 return -ENOMEM;
2255 }
2256
2257 inode = obj->filp->f_path.dentry->d_inode;
2258 mapping = inode->i_mapping;
2259 for (i = 0; i < page_count; i++) {
4bdadb97
CW
2260 page = read_cache_page_gfp(mapping, i,
2261 mapping_gfp_mask (mapping) |
2262 __GFP_COLD |
2263 gfpmask);
673a394b
EA
2264 if (IS_ERR(page)) {
2265 ret = PTR_ERR(page);
856fa198 2266 i915_gem_object_put_pages(obj);
673a394b
EA
2267 return ret;
2268 }
856fa198 2269 obj_priv->pages[i] = page;
673a394b 2270 }
280b713b
EA
2271
2272 if (obj_priv->tiling_mode != I915_TILING_NONE)
2273 i915_gem_object_do_bit_17_swizzle(obj);
2274
673a394b
EA
2275 return 0;
2276}
2277
4e901fdc
EA
2278static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2279{
2280 struct drm_gem_object *obj = reg->obj;
2281 struct drm_device *dev = obj->dev;
2282 drm_i915_private_t *dev_priv = dev->dev_private;
2283 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2284 int regnum = obj_priv->fence_reg;
2285 uint64_t val;
2286
2287 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2288 0xfffff000) << 32;
2289 val |= obj_priv->gtt_offset & 0xfffff000;
2290 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2291 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2292
2293 if (obj_priv->tiling_mode == I915_TILING_Y)
2294 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2295 val |= I965_FENCE_REG_VALID;
2296
2297 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2298}
2299
de151cf6
JB
2300static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2301{
2302 struct drm_gem_object *obj = reg->obj;
2303 struct drm_device *dev = obj->dev;
2304 drm_i915_private_t *dev_priv = dev->dev_private;
2305 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2306 int regnum = obj_priv->fence_reg;
2307 uint64_t val;
2308
2309 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2310 0xfffff000) << 32;
2311 val |= obj_priv->gtt_offset & 0xfffff000;
2312 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2313 if (obj_priv->tiling_mode == I915_TILING_Y)
2314 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2315 val |= I965_FENCE_REG_VALID;
2316
2317 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2318}
2319
2320static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2321{
2322 struct drm_gem_object *obj = reg->obj;
2323 struct drm_device *dev = obj->dev;
2324 drm_i915_private_t *dev_priv = dev->dev_private;
2325 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2326 int regnum = obj_priv->fence_reg;
0f973f27 2327 int tile_width;
dc529a4f 2328 uint32_t fence_reg, val;
de151cf6
JB
2329 uint32_t pitch_val;
2330
2331 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2332 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2333 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2334 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2335 return;
2336 }
2337
0f973f27
JB
2338 if (obj_priv->tiling_mode == I915_TILING_Y &&
2339 HAS_128_BYTE_Y_TILING(dev))
2340 tile_width = 128;
de151cf6 2341 else
0f973f27
JB
2342 tile_width = 512;
2343
2344 /* Note: pitch better be a power of two tile widths */
2345 pitch_val = obj_priv->stride / tile_width;
2346 pitch_val = ffs(pitch_val) - 1;
de151cf6
JB
2347
2348 val = obj_priv->gtt_offset;
2349 if (obj_priv->tiling_mode == I915_TILING_Y)
2350 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2351 val |= I915_FENCE_SIZE_BITS(obj->size);
2352 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2353 val |= I830_FENCE_REG_VALID;
2354
dc529a4f
EA
2355 if (regnum < 8)
2356 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2357 else
2358 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2359 I915_WRITE(fence_reg, val);
de151cf6
JB
2360}
2361
2362static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2363{
2364 struct drm_gem_object *obj = reg->obj;
2365 struct drm_device *dev = obj->dev;
2366 drm_i915_private_t *dev_priv = dev->dev_private;
2367 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2368 int regnum = obj_priv->fence_reg;
2369 uint32_t val;
2370 uint32_t pitch_val;
8d7773a3 2371 uint32_t fence_size_bits;
de151cf6 2372
8d7773a3 2373 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2374 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2375 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2376 __func__, obj_priv->gtt_offset);
de151cf6
JB
2377 return;
2378 }
2379
e76a16de
EA
2380 pitch_val = obj_priv->stride / 128;
2381 pitch_val = ffs(pitch_val) - 1;
2382 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2383
de151cf6
JB
2384 val = obj_priv->gtt_offset;
2385 if (obj_priv->tiling_mode == I915_TILING_Y)
2386 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2387 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2388 WARN_ON(fence_size_bits & ~0x00000f00);
2389 val |= fence_size_bits;
de151cf6
JB
2390 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2391 val |= I830_FENCE_REG_VALID;
2392
2393 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2394}
2395
ae3db24a
DV
2396static int i915_find_fence_reg(struct drm_device *dev)
2397{
2398 struct drm_i915_fence_reg *reg = NULL;
2399 struct drm_i915_gem_object *obj_priv = NULL;
2400 struct drm_i915_private *dev_priv = dev->dev_private;
2401 struct drm_gem_object *obj = NULL;
2402 int i, avail, ret;
2403
2404 /* First try to find a free reg */
2405 avail = 0;
2406 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2407 reg = &dev_priv->fence_regs[i];
2408 if (!reg->obj)
2409 return i;
2410
2411 obj_priv = reg->obj->driver_private;
2412 if (!obj_priv->pin_count)
2413 avail++;
2414 }
2415
2416 if (avail == 0)
2417 return -ENOSPC;
2418
2419 /* None available, try to steal one or wait for a user to finish */
2420 i = I915_FENCE_REG_NONE;
2421 list_for_each_entry(obj_priv, &dev_priv->mm.fence_list,
2422 fence_list) {
2423 obj = obj_priv->obj;
2424
2425 if (obj_priv->pin_count)
2426 continue;
2427
2428 /* found one! */
2429 i = obj_priv->fence_reg;
2430 break;
2431 }
2432
2433 BUG_ON(i == I915_FENCE_REG_NONE);
2434
2435 /* We only have a reference on obj from the active list. put_fence_reg
2436 * might drop that one, causing a use-after-free in it. So hold a
2437 * private reference to obj like the other callers of put_fence_reg
2438 * (set_tiling ioctl) do. */
2439 drm_gem_object_reference(obj);
2440 ret = i915_gem_object_put_fence_reg(obj);
2441 drm_gem_object_unreference(obj);
2442 if (ret != 0)
2443 return ret;
2444
2445 return i;
2446}
2447
de151cf6
JB
2448/**
2449 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2450 * @obj: object to map through a fence reg
2451 *
2452 * When mapping objects through the GTT, userspace wants to be able to write
2453 * to them without having to worry about swizzling if the object is tiled.
2454 *
2455 * This function walks the fence regs looking for a free one for @obj,
2456 * stealing one if it can't find any.
2457 *
2458 * It then sets up the reg based on the object's properties: address, pitch
2459 * and tiling format.
2460 */
8c4b8c3f
CW
2461int
2462i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2463{
2464 struct drm_device *dev = obj->dev;
79e53945 2465 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
2466 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2467 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2468 int ret;
de151cf6 2469
a09ba7fa
EA
2470 /* Just update our place in the LRU if our fence is getting used. */
2471 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2472 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2473 return 0;
2474 }
2475
de151cf6
JB
2476 switch (obj_priv->tiling_mode) {
2477 case I915_TILING_NONE:
2478 WARN(1, "allocating a fence for non-tiled object?\n");
2479 break;
2480 case I915_TILING_X:
0f973f27
JB
2481 if (!obj_priv->stride)
2482 return -EINVAL;
2483 WARN((obj_priv->stride & (512 - 1)),
2484 "object 0x%08x is X tiled but has non-512B pitch\n",
2485 obj_priv->gtt_offset);
de151cf6
JB
2486 break;
2487 case I915_TILING_Y:
0f973f27
JB
2488 if (!obj_priv->stride)
2489 return -EINVAL;
2490 WARN((obj_priv->stride & (128 - 1)),
2491 "object 0x%08x is Y tiled but has non-128B pitch\n",
2492 obj_priv->gtt_offset);
de151cf6
JB
2493 break;
2494 }
2495
ae3db24a
DV
2496 ret = i915_find_fence_reg(dev);
2497 if (ret < 0)
2498 return ret;
de151cf6 2499
ae3db24a
DV
2500 obj_priv->fence_reg = ret;
2501 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
a09ba7fa
EA
2502 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2503
de151cf6
JB
2504 reg->obj = obj;
2505
4e901fdc
EA
2506 if (IS_GEN6(dev))
2507 sandybridge_write_fence_reg(reg);
2508 else if (IS_I965G(dev))
de151cf6
JB
2509 i965_write_fence_reg(reg);
2510 else if (IS_I9XX(dev))
2511 i915_write_fence_reg(reg);
2512 else
2513 i830_write_fence_reg(reg);
d9ddcb96 2514
ae3db24a
DV
2515 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2516 obj_priv->tiling_mode);
1c5d22f7 2517
d9ddcb96 2518 return 0;
de151cf6
JB
2519}
2520
2521/**
2522 * i915_gem_clear_fence_reg - clear out fence register info
2523 * @obj: object to clear
2524 *
2525 * Zeroes out the fence register itself and clears out the associated
2526 * data structures in dev_priv and obj_priv.
2527 */
2528static void
2529i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2530{
2531 struct drm_device *dev = obj->dev;
79e53945 2532 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2533 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2534
4e901fdc
EA
2535 if (IS_GEN6(dev)) {
2536 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2537 (obj_priv->fence_reg * 8), 0);
2538 } else if (IS_I965G(dev)) {
de151cf6 2539 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
4e901fdc 2540 } else {
dc529a4f
EA
2541 uint32_t fence_reg;
2542
2543 if (obj_priv->fence_reg < 8)
2544 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2545 else
2546 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2547 8) * 4;
2548
2549 I915_WRITE(fence_reg, 0);
2550 }
de151cf6
JB
2551
2552 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2553 obj_priv->fence_reg = I915_FENCE_REG_NONE;
a09ba7fa 2554 list_del_init(&obj_priv->fence_list);
de151cf6
JB
2555}
2556
52dc7d32
CW
2557/**
2558 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2559 * to the buffer to finish, and then resets the fence register.
2560 * @obj: tiled object holding a fence register.
2561 *
2562 * Zeroes out the fence register itself and clears out the associated
2563 * data structures in dev_priv and obj_priv.
2564 */
2565int
2566i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2567{
2568 struct drm_device *dev = obj->dev;
2569 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2570
2571 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2572 return 0;
2573
10ae9bd2
DV
2574 /* If we've changed tiling, GTT-mappings of the object
2575 * need to re-fault to ensure that the correct fence register
2576 * setup is in place.
2577 */
2578 i915_gem_release_mmap(obj);
2579
52dc7d32
CW
2580 /* On the i915, GPU access to tiled buffers is via a fence,
2581 * therefore we must wait for any outstanding access to complete
2582 * before clearing the fence.
2583 */
2584 if (!IS_I965G(dev)) {
2585 int ret;
2586
2587 i915_gem_object_flush_gpu_write_domain(obj);
52dc7d32
CW
2588 ret = i915_gem_object_wait_rendering(obj);
2589 if (ret != 0)
2590 return ret;
2591 }
2592
4a726612 2593 i915_gem_object_flush_gtt_write_domain(obj);
52dc7d32
CW
2594 i915_gem_clear_fence_reg (obj);
2595
2596 return 0;
2597}
2598
673a394b
EA
2599/**
2600 * Finds free space in the GTT aperture and binds the object there.
2601 */
2602static int
2603i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2604{
2605 struct drm_device *dev = obj->dev;
2606 drm_i915_private_t *dev_priv = dev->dev_private;
2607 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2608 struct drm_mm_node *free_space;
4bdadb97 2609 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2610 int ret;
673a394b 2611
bb6baf76 2612 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2613 DRM_ERROR("Attempting to bind a purgeable object\n");
2614 return -EINVAL;
2615 }
2616
673a394b 2617 if (alignment == 0)
0f973f27 2618 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2619 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2620 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2621 return -EINVAL;
2622 }
2623
2624 search_free:
2625 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2626 obj->size, alignment, 0);
2627 if (free_space != NULL) {
2628 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2629 alignment);
2630 if (obj_priv->gtt_space != NULL) {
2631 obj_priv->gtt_space->private = obj;
2632 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2633 }
2634 }
2635 if (obj_priv->gtt_space == NULL) {
2636 /* If the gtt is empty and we're still having trouble
2637 * fitting our object in, we're out of memory.
2638 */
2639#if WATCH_LRU
2640 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2641#endif
07f73f69 2642 ret = i915_gem_evict_something(dev, obj->size);
9731129c 2643 if (ret)
673a394b 2644 return ret;
9731129c 2645
673a394b
EA
2646 goto search_free;
2647 }
2648
2649#if WATCH_BUF
cfd43c02 2650 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2651 obj->size, obj_priv->gtt_offset);
2652#endif
4bdadb97 2653 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2654 if (ret) {
2655 drm_mm_put_block(obj_priv->gtt_space);
2656 obj_priv->gtt_space = NULL;
07f73f69
CW
2657
2658 if (ret == -ENOMEM) {
2659 /* first try to clear up some space from the GTT */
2660 ret = i915_gem_evict_something(dev, obj->size);
2661 if (ret) {
07f73f69 2662 /* now try to shrink everyone else */
4bdadb97
CW
2663 if (gfpmask) {
2664 gfpmask = 0;
2665 goto search_free;
07f73f69
CW
2666 }
2667
2668 return ret;
2669 }
2670
2671 goto search_free;
2672 }
2673
673a394b
EA
2674 return ret;
2675 }
2676
673a394b
EA
2677 /* Create an AGP memory structure pointing at our pages, and bind it
2678 * into the GTT.
2679 */
2680 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2681 obj_priv->pages,
07f73f69 2682 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2683 obj_priv->gtt_offset,
2684 obj_priv->agp_type);
673a394b 2685 if (obj_priv->agp_mem == NULL) {
856fa198 2686 i915_gem_object_put_pages(obj);
673a394b
EA
2687 drm_mm_put_block(obj_priv->gtt_space);
2688 obj_priv->gtt_space = NULL;
07f73f69
CW
2689
2690 ret = i915_gem_evict_something(dev, obj->size);
9731129c 2691 if (ret)
07f73f69 2692 return ret;
07f73f69
CW
2693
2694 goto search_free;
673a394b
EA
2695 }
2696 atomic_inc(&dev->gtt_count);
2697 atomic_add(obj->size, &dev->gtt_memory);
2698
2699 /* Assert that the object is not currently in any GPU domain. As it
2700 * wasn't in the GTT, there shouldn't be any way it could have been in
2701 * a GPU cache
2702 */
21d509e3
CW
2703 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2704 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2705
1c5d22f7
CW
2706 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2707
673a394b
EA
2708 return 0;
2709}
2710
2711void
2712i915_gem_clflush_object(struct drm_gem_object *obj)
2713{
2714 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2715
2716 /* If we don't have a page list set up, then we're not pinned
2717 * to GPU, and we can ignore the cache flush because it'll happen
2718 * again at bind time.
2719 */
856fa198 2720 if (obj_priv->pages == NULL)
673a394b
EA
2721 return;
2722
1c5d22f7 2723 trace_i915_gem_object_clflush(obj);
cfa16a0d 2724
856fa198 2725 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2726}
2727
e47c68e9
EA
2728/** Flushes any GPU write domain for the object if it's dirty. */
2729static void
2730i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2731{
2732 struct drm_device *dev = obj->dev;
2733 uint32_t seqno;
1c5d22f7 2734 uint32_t old_write_domain;
e47c68e9
EA
2735
2736 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2737 return;
2738
2739 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2740 old_write_domain = obj->write_domain;
e47c68e9 2741 i915_gem_flush(dev, 0, obj->write_domain);
b962442e 2742 seqno = i915_add_request(dev, NULL, obj->write_domain);
99fcb766 2743 BUG_ON(obj->write_domain);
e47c68e9 2744 i915_gem_object_move_to_active(obj, seqno);
1c5d22f7
CW
2745
2746 trace_i915_gem_object_change_domain(obj,
2747 obj->read_domains,
2748 old_write_domain);
e47c68e9
EA
2749}
2750
2751/** Flushes the GTT write domain for the object if it's dirty. */
2752static void
2753i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2754{
1c5d22f7
CW
2755 uint32_t old_write_domain;
2756
e47c68e9
EA
2757 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2758 return;
2759
2760 /* No actual flushing is required for the GTT write domain. Writes
2761 * to it immediately go to main memory as far as we know, so there's
2762 * no chipset flush. It also doesn't land in render cache.
2763 */
1c5d22f7 2764 old_write_domain = obj->write_domain;
e47c68e9 2765 obj->write_domain = 0;
1c5d22f7
CW
2766
2767 trace_i915_gem_object_change_domain(obj,
2768 obj->read_domains,
2769 old_write_domain);
e47c68e9
EA
2770}
2771
2772/** Flushes the CPU write domain for the object if it's dirty. */
2773static void
2774i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2775{
2776 struct drm_device *dev = obj->dev;
1c5d22f7 2777 uint32_t old_write_domain;
e47c68e9
EA
2778
2779 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2780 return;
2781
2782 i915_gem_clflush_object(obj);
2783 drm_agp_chipset_flush(dev);
1c5d22f7 2784 old_write_domain = obj->write_domain;
e47c68e9 2785 obj->write_domain = 0;
1c5d22f7
CW
2786
2787 trace_i915_gem_object_change_domain(obj,
2788 obj->read_domains,
2789 old_write_domain);
e47c68e9
EA
2790}
2791
6b95a207
KH
2792void
2793i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2794{
2795 switch (obj->write_domain) {
2796 case I915_GEM_DOMAIN_GTT:
2797 i915_gem_object_flush_gtt_write_domain(obj);
2798 break;
2799 case I915_GEM_DOMAIN_CPU:
2800 i915_gem_object_flush_cpu_write_domain(obj);
2801 break;
2802 default:
2803 i915_gem_object_flush_gpu_write_domain(obj);
2804 break;
2805 }
2806}
2807
2ef7eeaa
EA
2808/**
2809 * Moves a single object to the GTT read, and possibly write domain.
2810 *
2811 * This function returns when the move is complete, including waiting on
2812 * flushes to occur.
2813 */
79e53945 2814int
2ef7eeaa
EA
2815i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2816{
2ef7eeaa 2817 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1c5d22f7 2818 uint32_t old_write_domain, old_read_domains;
e47c68e9 2819 int ret;
2ef7eeaa 2820
02354392
EA
2821 /* Not valid to be called on unbound objects. */
2822 if (obj_priv->gtt_space == NULL)
2823 return -EINVAL;
2824
e47c68e9
EA
2825 i915_gem_object_flush_gpu_write_domain(obj);
2826 /* Wait on any GPU rendering and flushing to occur. */
2827 ret = i915_gem_object_wait_rendering(obj);
2828 if (ret != 0)
2829 return ret;
2830
1c5d22f7
CW
2831 old_write_domain = obj->write_domain;
2832 old_read_domains = obj->read_domains;
2833
e47c68e9
EA
2834 /* If we're writing through the GTT domain, then CPU and GPU caches
2835 * will need to be invalidated at next use.
2ef7eeaa 2836 */
e47c68e9
EA
2837 if (write)
2838 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2839
e47c68e9 2840 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2841
e47c68e9
EA
2842 /* It should now be out of any other write domains, and we can update
2843 * the domain values for our changes.
2844 */
2845 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2846 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2847 if (write) {
2848 obj->write_domain = I915_GEM_DOMAIN_GTT;
2849 obj_priv->dirty = 1;
2ef7eeaa
EA
2850 }
2851
1c5d22f7
CW
2852 trace_i915_gem_object_change_domain(obj,
2853 old_read_domains,
2854 old_write_domain);
2855
e47c68e9
EA
2856 return 0;
2857}
2858
b9241ea3
ZW
2859/*
2860 * Prepare buffer for display plane. Use uninterruptible for possible flush
2861 * wait, as in modesetting process we're not supposed to be interrupted.
2862 */
2863int
2864i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2865{
2866 struct drm_device *dev = obj->dev;
2867 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2868 uint32_t old_write_domain, old_read_domains;
2869 int ret;
2870
2871 /* Not valid to be called on unbound objects. */
2872 if (obj_priv->gtt_space == NULL)
2873 return -EINVAL;
2874
2875 i915_gem_object_flush_gpu_write_domain(obj);
2876
2877 /* Wait on any GPU rendering and flushing to occur. */
2878 if (obj_priv->active) {
2879#if WATCH_BUF
2880 DRM_INFO("%s: object %p wait for seqno %08x\n",
2881 __func__, obj, obj_priv->last_rendering_seqno);
2882#endif
2883 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2884 if (ret != 0)
2885 return ret;
2886 }
2887
2888 old_write_domain = obj->write_domain;
2889 old_read_domains = obj->read_domains;
2890
2891 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2892
2893 i915_gem_object_flush_cpu_write_domain(obj);
2894
2895 /* It should now be out of any other write domains, and we can update
2896 * the domain values for our changes.
2897 */
2898 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2899 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2900 obj->write_domain = I915_GEM_DOMAIN_GTT;
2901 obj_priv->dirty = 1;
2902
2903 trace_i915_gem_object_change_domain(obj,
2904 old_read_domains,
2905 old_write_domain);
2906
2907 return 0;
2908}
2909
e47c68e9
EA
2910/**
2911 * Moves a single object to the CPU read, and possibly write domain.
2912 *
2913 * This function returns when the move is complete, including waiting on
2914 * flushes to occur.
2915 */
2916static int
2917i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2918{
1c5d22f7 2919 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2920 int ret;
2921
2922 i915_gem_object_flush_gpu_write_domain(obj);
2ef7eeaa 2923 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2924 ret = i915_gem_object_wait_rendering(obj);
2925 if (ret != 0)
2926 return ret;
2ef7eeaa 2927
e47c68e9 2928 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2929
e47c68e9
EA
2930 /* If we have a partially-valid cache of the object in the CPU,
2931 * finish invalidating it and free the per-page flags.
2ef7eeaa 2932 */
e47c68e9 2933 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2934
1c5d22f7
CW
2935 old_write_domain = obj->write_domain;
2936 old_read_domains = obj->read_domains;
2937
e47c68e9
EA
2938 /* Flush the CPU cache if it's still invalid. */
2939 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2940 i915_gem_clflush_object(obj);
2ef7eeaa 2941
e47c68e9 2942 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2943 }
2944
2945 /* It should now be out of any other write domains, and we can update
2946 * the domain values for our changes.
2947 */
e47c68e9
EA
2948 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2949
2950 /* If we're writing through the CPU, then the GPU read domains will
2951 * need to be invalidated at next use.
2952 */
2953 if (write) {
2954 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2955 obj->write_domain = I915_GEM_DOMAIN_CPU;
2956 }
2ef7eeaa 2957
1c5d22f7
CW
2958 trace_i915_gem_object_change_domain(obj,
2959 old_read_domains,
2960 old_write_domain);
2961
2ef7eeaa
EA
2962 return 0;
2963}
2964
673a394b
EA
2965/*
2966 * Set the next domain for the specified object. This
2967 * may not actually perform the necessary flushing/invaliding though,
2968 * as that may want to be batched with other set_domain operations
2969 *
2970 * This is (we hope) the only really tricky part of gem. The goal
2971 * is fairly simple -- track which caches hold bits of the object
2972 * and make sure they remain coherent. A few concrete examples may
2973 * help to explain how it works. For shorthand, we use the notation
2974 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2975 * a pair of read and write domain masks.
2976 *
2977 * Case 1: the batch buffer
2978 *
2979 * 1. Allocated
2980 * 2. Written by CPU
2981 * 3. Mapped to GTT
2982 * 4. Read by GPU
2983 * 5. Unmapped from GTT
2984 * 6. Freed
2985 *
2986 * Let's take these a step at a time
2987 *
2988 * 1. Allocated
2989 * Pages allocated from the kernel may still have
2990 * cache contents, so we set them to (CPU, CPU) always.
2991 * 2. Written by CPU (using pwrite)
2992 * The pwrite function calls set_domain (CPU, CPU) and
2993 * this function does nothing (as nothing changes)
2994 * 3. Mapped by GTT
2995 * This function asserts that the object is not
2996 * currently in any GPU-based read or write domains
2997 * 4. Read by GPU
2998 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2999 * As write_domain is zero, this function adds in the
3000 * current read domains (CPU+COMMAND, 0).
3001 * flush_domains is set to CPU.
3002 * invalidate_domains is set to COMMAND
3003 * clflush is run to get data out of the CPU caches
3004 * then i915_dev_set_domain calls i915_gem_flush to
3005 * emit an MI_FLUSH and drm_agp_chipset_flush
3006 * 5. Unmapped from GTT
3007 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3008 * flush_domains and invalidate_domains end up both zero
3009 * so no flushing/invalidating happens
3010 * 6. Freed
3011 * yay, done
3012 *
3013 * Case 2: The shared render buffer
3014 *
3015 * 1. Allocated
3016 * 2. Mapped to GTT
3017 * 3. Read/written by GPU
3018 * 4. set_domain to (CPU,CPU)
3019 * 5. Read/written by CPU
3020 * 6. Read/written by GPU
3021 *
3022 * 1. Allocated
3023 * Same as last example, (CPU, CPU)
3024 * 2. Mapped to GTT
3025 * Nothing changes (assertions find that it is not in the GPU)
3026 * 3. Read/written by GPU
3027 * execbuffer calls set_domain (RENDER, RENDER)
3028 * flush_domains gets CPU
3029 * invalidate_domains gets GPU
3030 * clflush (obj)
3031 * MI_FLUSH and drm_agp_chipset_flush
3032 * 4. set_domain (CPU, CPU)
3033 * flush_domains gets GPU
3034 * invalidate_domains gets CPU
3035 * wait_rendering (obj) to make sure all drawing is complete.
3036 * This will include an MI_FLUSH to get the data from GPU
3037 * to memory
3038 * clflush (obj) to invalidate the CPU cache
3039 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3040 * 5. Read/written by CPU
3041 * cache lines are loaded and dirtied
3042 * 6. Read written by GPU
3043 * Same as last GPU access
3044 *
3045 * Case 3: The constant buffer
3046 *
3047 * 1. Allocated
3048 * 2. Written by CPU
3049 * 3. Read by GPU
3050 * 4. Updated (written) by CPU again
3051 * 5. Read by GPU
3052 *
3053 * 1. Allocated
3054 * (CPU, CPU)
3055 * 2. Written by CPU
3056 * (CPU, CPU)
3057 * 3. Read by GPU
3058 * (CPU+RENDER, 0)
3059 * flush_domains = CPU
3060 * invalidate_domains = RENDER
3061 * clflush (obj)
3062 * MI_FLUSH
3063 * drm_agp_chipset_flush
3064 * 4. Updated (written) by CPU again
3065 * (CPU, CPU)
3066 * flush_domains = 0 (no previous write domain)
3067 * invalidate_domains = 0 (no new read domains)
3068 * 5. Read by GPU
3069 * (CPU+RENDER, 0)
3070 * flush_domains = CPU
3071 * invalidate_domains = RENDER
3072 * clflush (obj)
3073 * MI_FLUSH
3074 * drm_agp_chipset_flush
3075 */
c0d90829 3076static void
8b0e378a 3077i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
3078{
3079 struct drm_device *dev = obj->dev;
3080 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3081 uint32_t invalidate_domains = 0;
3082 uint32_t flush_domains = 0;
1c5d22f7 3083 uint32_t old_read_domains;
e47c68e9 3084
8b0e378a
EA
3085 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3086 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 3087
652c393a
JB
3088 intel_mark_busy(dev, obj);
3089
673a394b
EA
3090#if WATCH_BUF
3091 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3092 __func__, obj,
8b0e378a
EA
3093 obj->read_domains, obj->pending_read_domains,
3094 obj->write_domain, obj->pending_write_domain);
673a394b
EA
3095#endif
3096 /*
3097 * If the object isn't moving to a new write domain,
3098 * let the object stay in multiple read domains
3099 */
8b0e378a
EA
3100 if (obj->pending_write_domain == 0)
3101 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3102 else
3103 obj_priv->dirty = 1;
3104
3105 /*
3106 * Flush the current write domain if
3107 * the new read domains don't match. Invalidate
3108 * any read domains which differ from the old
3109 * write domain
3110 */
8b0e378a
EA
3111 if (obj->write_domain &&
3112 obj->write_domain != obj->pending_read_domains) {
673a394b 3113 flush_domains |= obj->write_domain;
8b0e378a
EA
3114 invalidate_domains |=
3115 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3116 }
3117 /*
3118 * Invalidate any read caches which may have
3119 * stale data. That is, any new read domains.
3120 */
8b0e378a 3121 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
3122 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3123#if WATCH_BUF
3124 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3125 __func__, flush_domains, invalidate_domains);
3126#endif
673a394b
EA
3127 i915_gem_clflush_object(obj);
3128 }
3129
1c5d22f7
CW
3130 old_read_domains = obj->read_domains;
3131
efbeed96
EA
3132 /* The actual obj->write_domain will be updated with
3133 * pending_write_domain after we emit the accumulated flush for all
3134 * of our domain changes in execbuffers (which clears objects'
3135 * write_domains). So if we have a current write domain that we
3136 * aren't changing, set pending_write_domain to that.
3137 */
3138 if (flush_domains == 0 && obj->pending_write_domain == 0)
3139 obj->pending_write_domain = obj->write_domain;
8b0e378a 3140 obj->read_domains = obj->pending_read_domains;
673a394b
EA
3141
3142 dev->invalidate_domains |= invalidate_domains;
3143 dev->flush_domains |= flush_domains;
3144#if WATCH_BUF
3145 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3146 __func__,
3147 obj->read_domains, obj->write_domain,
3148 dev->invalidate_domains, dev->flush_domains);
3149#endif
1c5d22f7
CW
3150
3151 trace_i915_gem_object_change_domain(obj,
3152 old_read_domains,
3153 obj->write_domain);
673a394b
EA
3154}
3155
3156/**
e47c68e9 3157 * Moves the object from a partially CPU read to a full one.
673a394b 3158 *
e47c68e9
EA
3159 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3160 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3161 */
e47c68e9
EA
3162static void
3163i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b
EA
3164{
3165 struct drm_i915_gem_object *obj_priv = obj->driver_private;
673a394b 3166
e47c68e9
EA
3167 if (!obj_priv->page_cpu_valid)
3168 return;
3169
3170 /* If we're partially in the CPU read domain, finish moving it in.
3171 */
3172 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3173 int i;
3174
3175 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3176 if (obj_priv->page_cpu_valid[i])
3177 continue;
856fa198 3178 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3179 }
e47c68e9
EA
3180 }
3181
3182 /* Free the page_cpu_valid mappings which are now stale, whether
3183 * or not we've got I915_GEM_DOMAIN_CPU.
3184 */
9a298b2a 3185 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3186 obj_priv->page_cpu_valid = NULL;
3187}
3188
3189/**
3190 * Set the CPU read domain on a range of the object.
3191 *
3192 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3193 * not entirely valid. The page_cpu_valid member of the object flags which
3194 * pages have been flushed, and will be respected by
3195 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3196 * of the whole object.
3197 *
3198 * This function returns when the move is complete, including waiting on
3199 * flushes to occur.
3200 */
3201static int
3202i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3203 uint64_t offset, uint64_t size)
3204{
3205 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1c5d22f7 3206 uint32_t old_read_domains;
e47c68e9 3207 int i, ret;
673a394b 3208
e47c68e9
EA
3209 if (offset == 0 && size == obj->size)
3210 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3211
e47c68e9
EA
3212 i915_gem_object_flush_gpu_write_domain(obj);
3213 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 3214 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 3215 if (ret != 0)
6a47baa6 3216 return ret;
e47c68e9
EA
3217 i915_gem_object_flush_gtt_write_domain(obj);
3218
3219 /* If we're already fully in the CPU read domain, we're done. */
3220 if (obj_priv->page_cpu_valid == NULL &&
3221 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3222 return 0;
673a394b 3223
e47c68e9
EA
3224 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3225 * newly adding I915_GEM_DOMAIN_CPU
3226 */
673a394b 3227 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3228 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3229 GFP_KERNEL);
e47c68e9
EA
3230 if (obj_priv->page_cpu_valid == NULL)
3231 return -ENOMEM;
3232 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3233 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3234
3235 /* Flush the cache on any pages that are still invalid from the CPU's
3236 * perspective.
3237 */
e47c68e9
EA
3238 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3239 i++) {
673a394b
EA
3240 if (obj_priv->page_cpu_valid[i])
3241 continue;
3242
856fa198 3243 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3244
3245 obj_priv->page_cpu_valid[i] = 1;
3246 }
3247
e47c68e9
EA
3248 /* It should now be out of any other write domains, and we can update
3249 * the domain values for our changes.
3250 */
3251 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3252
1c5d22f7 3253 old_read_domains = obj->read_domains;
e47c68e9
EA
3254 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3255
1c5d22f7
CW
3256 trace_i915_gem_object_change_domain(obj,
3257 old_read_domains,
3258 obj->write_domain);
3259
673a394b
EA
3260 return 0;
3261}
3262
673a394b
EA
3263/**
3264 * Pin an object to the GTT and evaluate the relocations landing in it.
3265 */
3266static int
3267i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3268 struct drm_file *file_priv,
76446cac 3269 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3270 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3271{
3272 struct drm_device *dev = obj->dev;
0839ccb8 3273 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3274 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3275 int i, ret;
0839ccb8 3276 void __iomem *reloc_page;
76446cac
JB
3277 bool need_fence;
3278
3279 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3280 obj_priv->tiling_mode != I915_TILING_NONE;
3281
3282 /* Check fence reg constraints and rebind if necessary */
f590d279
OA
3283 if (need_fence && !i915_gem_object_fence_offset_ok(obj,
3284 obj_priv->tiling_mode))
76446cac 3285 i915_gem_object_unbind(obj);
673a394b
EA
3286
3287 /* Choose the GTT offset for our buffer and put it there. */
3288 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3289 if (ret)
3290 return ret;
3291
76446cac
JB
3292 /*
3293 * Pre-965 chips need a fence register set up in order to
3294 * properly handle blits to/from tiled surfaces.
3295 */
3296 if (need_fence) {
3297 ret = i915_gem_object_get_fence_reg(obj);
3298 if (ret != 0) {
3299 if (ret != -EBUSY && ret != -ERESTARTSYS)
3300 DRM_ERROR("Failure to install fence: %d\n",
3301 ret);
3302 i915_gem_object_unpin(obj);
3303 return ret;
3304 }
3305 }
3306
673a394b
EA
3307 entry->offset = obj_priv->gtt_offset;
3308
673a394b
EA
3309 /* Apply the relocations, using the GTT aperture to avoid cache
3310 * flushing requirements.
3311 */
3312 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3313 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3314 struct drm_gem_object *target_obj;
3315 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3316 uint32_t reloc_val, reloc_offset;
3317 uint32_t __iomem *reloc_entry;
673a394b 3318
673a394b 3319 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3320 reloc->target_handle);
673a394b
EA
3321 if (target_obj == NULL) {
3322 i915_gem_object_unpin(obj);
3323 return -EBADF;
3324 }
3325 target_obj_priv = target_obj->driver_private;
3326
8542a0bb
CW
3327#if WATCH_RELOC
3328 DRM_INFO("%s: obj %p offset %08x target %d "
3329 "read %08x write %08x gtt %08x "
3330 "presumed %08x delta %08x\n",
3331 __func__,
3332 obj,
3333 (int) reloc->offset,
3334 (int) reloc->target_handle,
3335 (int) reloc->read_domains,
3336 (int) reloc->write_domain,
3337 (int) target_obj_priv->gtt_offset,
3338 (int) reloc->presumed_offset,
3339 reloc->delta);
3340#endif
3341
673a394b
EA
3342 /* The target buffer should have appeared before us in the
3343 * exec_object list, so it should have a GTT space bound by now.
3344 */
3345 if (target_obj_priv->gtt_space == NULL) {
3346 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3347 reloc->target_handle);
673a394b
EA
3348 drm_gem_object_unreference(target_obj);
3349 i915_gem_object_unpin(obj);
3350 return -EINVAL;
3351 }
3352
8542a0bb 3353 /* Validate that the target is in a valid r/w GPU domain */
40a5f0de
EA
3354 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3355 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3356 DRM_ERROR("reloc with read/write CPU domains: "
3357 "obj %p target %d offset %d "
3358 "read %08x write %08x",
40a5f0de
EA
3359 obj, reloc->target_handle,
3360 (int) reloc->offset,
3361 reloc->read_domains,
3362 reloc->write_domain);
491152b8
CW
3363 drm_gem_object_unreference(target_obj);
3364 i915_gem_object_unpin(obj);
e47c68e9
EA
3365 return -EINVAL;
3366 }
40a5f0de
EA
3367 if (reloc->write_domain && target_obj->pending_write_domain &&
3368 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3369 DRM_ERROR("Write domain conflict: "
3370 "obj %p target %d offset %d "
3371 "new %08x old %08x\n",
40a5f0de
EA
3372 obj, reloc->target_handle,
3373 (int) reloc->offset,
3374 reloc->write_domain,
673a394b
EA
3375 target_obj->pending_write_domain);
3376 drm_gem_object_unreference(target_obj);
3377 i915_gem_object_unpin(obj);
3378 return -EINVAL;
3379 }
3380
40a5f0de
EA
3381 target_obj->pending_read_domains |= reloc->read_domains;
3382 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3383
3384 /* If the relocation already has the right value in it, no
3385 * more work needs to be done.
3386 */
40a5f0de 3387 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3388 drm_gem_object_unreference(target_obj);
3389 continue;
3390 }
3391
8542a0bb
CW
3392 /* Check that the relocation address is valid... */
3393 if (reloc->offset > obj->size - 4) {
3394 DRM_ERROR("Relocation beyond object bounds: "
3395 "obj %p target %d offset %d size %d.\n",
3396 obj, reloc->target_handle,
3397 (int) reloc->offset, (int) obj->size);
3398 drm_gem_object_unreference(target_obj);
3399 i915_gem_object_unpin(obj);
3400 return -EINVAL;
3401 }
3402 if (reloc->offset & 3) {
3403 DRM_ERROR("Relocation not 4-byte aligned: "
3404 "obj %p target %d offset %d.\n",
3405 obj, reloc->target_handle,
3406 (int) reloc->offset);
3407 drm_gem_object_unreference(target_obj);
3408 i915_gem_object_unpin(obj);
3409 return -EINVAL;
3410 }
3411
3412 /* and points to somewhere within the target object. */
3413 if (reloc->delta >= target_obj->size) {
3414 DRM_ERROR("Relocation beyond target object bounds: "
3415 "obj %p target %d delta %d size %d.\n",
3416 obj, reloc->target_handle,
3417 (int) reloc->delta, (int) target_obj->size);
3418 drm_gem_object_unreference(target_obj);
3419 i915_gem_object_unpin(obj);
3420 return -EINVAL;
3421 }
3422
2ef7eeaa
EA
3423 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3424 if (ret != 0) {
3425 drm_gem_object_unreference(target_obj);
3426 i915_gem_object_unpin(obj);
3427 return -EINVAL;
673a394b
EA
3428 }
3429
3430 /* Map the page containing the relocation we're going to
3431 * perform.
3432 */
40a5f0de 3433 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3434 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3435 (reloc_offset &
3436 ~(PAGE_SIZE - 1)));
3043c60c 3437 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3438 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3439 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3440
3441#if WATCH_BUF
3442 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3443 obj, (unsigned int) reloc->offset,
673a394b
EA
3444 readl(reloc_entry), reloc_val);
3445#endif
3446 writel(reloc_val, reloc_entry);
0839ccb8 3447 io_mapping_unmap_atomic(reloc_page);
673a394b 3448
40a5f0de
EA
3449 /* The updated presumed offset for this entry will be
3450 * copied back out to the user.
673a394b 3451 */
40a5f0de 3452 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3453
3454 drm_gem_object_unreference(target_obj);
3455 }
3456
673a394b
EA
3457#if WATCH_BUF
3458 if (0)
3459 i915_gem_dump_object(obj, 128, __func__, ~0);
3460#endif
3461 return 0;
3462}
3463
3464/** Dispatch a batchbuffer to the ring
3465 */
3466static int
3467i915_dispatch_gem_execbuffer(struct drm_device *dev,
76446cac 3468 struct drm_i915_gem_execbuffer2 *exec,
201361a5 3469 struct drm_clip_rect *cliprects,
673a394b
EA
3470 uint64_t exec_offset)
3471{
3472 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3473 int nbox = exec->num_cliprects;
3474 int i = 0, count;
83d60795 3475 uint32_t exec_start, exec_len;
673a394b
EA
3476 RING_LOCALS;
3477
3478 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3479 exec_len = (uint32_t) exec->batch_len;
3480
8f0dc5bf 3481 trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
1c5d22f7 3482
673a394b
EA
3483 count = nbox ? nbox : 1;
3484
3485 for (i = 0; i < count; i++) {
3486 if (i < nbox) {
201361a5 3487 int ret = i915_emit_box(dev, cliprects, i,
673a394b
EA
3488 exec->DR1, exec->DR4);
3489 if (ret)
3490 return ret;
3491 }
3492
3493 if (IS_I830(dev) || IS_845G(dev)) {
3494 BEGIN_LP_RING(4);
3495 OUT_RING(MI_BATCH_BUFFER);
3496 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3497 OUT_RING(exec_start + exec_len - 4);
3498 OUT_RING(0);
3499 ADVANCE_LP_RING();
3500 } else {
3501 BEGIN_LP_RING(2);
3502 if (IS_I965G(dev)) {
3503 OUT_RING(MI_BATCH_BUFFER_START |
3504 (2 << 6) |
3505 MI_BATCH_NON_SECURE_I965);
3506 OUT_RING(exec_start);
3507 } else {
3508 OUT_RING(MI_BATCH_BUFFER_START |
3509 (2 << 6));
3510 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3511 }
3512 ADVANCE_LP_RING();
3513 }
3514 }
3515
3516 /* XXX breadcrumb */
3517 return 0;
3518}
3519
3520/* Throttle our rendering by waiting until the ring has completed our requests
3521 * emitted over 20 msec ago.
3522 *
b962442e
EA
3523 * Note that if we were to use the current jiffies each time around the loop,
3524 * we wouldn't escape the function with any frames outstanding if the time to
3525 * render a frame was over 20ms.
3526 *
673a394b
EA
3527 * This should get us reasonable parallelism between CPU and GPU but also
3528 * relatively low latency when blocking on a particular request to finish.
3529 */
3530static int
3531i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3532{
3533 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3534 int ret = 0;
b962442e 3535 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3536
3537 mutex_lock(&dev->struct_mutex);
b962442e
EA
3538 while (!list_empty(&i915_file_priv->mm.request_list)) {
3539 struct drm_i915_gem_request *request;
3540
3541 request = list_first_entry(&i915_file_priv->mm.request_list,
3542 struct drm_i915_gem_request,
3543 client_list);
3544
3545 if (time_after_eq(request->emitted_jiffies, recent_enough))
3546 break;
3547
3548 ret = i915_wait_request(dev, request->seqno);
3549 if (ret != 0)
3550 break;
3551 }
673a394b 3552 mutex_unlock(&dev->struct_mutex);
b962442e 3553
673a394b
EA
3554 return ret;
3555}
3556
40a5f0de 3557static int
76446cac 3558i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3559 uint32_t buffer_count,
3560 struct drm_i915_gem_relocation_entry **relocs)
3561{
3562 uint32_t reloc_count = 0, reloc_index = 0, i;
3563 int ret;
3564
3565 *relocs = NULL;
3566 for (i = 0; i < buffer_count; i++) {
3567 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3568 return -EINVAL;
3569 reloc_count += exec_list[i].relocation_count;
3570 }
3571
8e7d2b2c 3572 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3573 if (*relocs == NULL) {
3574 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3575 return -ENOMEM;
76446cac 3576 }
40a5f0de
EA
3577
3578 for (i = 0; i < buffer_count; i++) {
3579 struct drm_i915_gem_relocation_entry __user *user_relocs;
3580
3581 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3582
3583 ret = copy_from_user(&(*relocs)[reloc_index],
3584 user_relocs,
3585 exec_list[i].relocation_count *
3586 sizeof(**relocs));
3587 if (ret != 0) {
8e7d2b2c 3588 drm_free_large(*relocs);
40a5f0de 3589 *relocs = NULL;
2bc43b5c 3590 return -EFAULT;
40a5f0de
EA
3591 }
3592
3593 reloc_index += exec_list[i].relocation_count;
3594 }
3595
2bc43b5c 3596 return 0;
40a5f0de
EA
3597}
3598
3599static int
76446cac 3600i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3601 uint32_t buffer_count,
3602 struct drm_i915_gem_relocation_entry *relocs)
3603{
3604 uint32_t reloc_count = 0, i;
2bc43b5c 3605 int ret = 0;
40a5f0de 3606
93533c29
CW
3607 if (relocs == NULL)
3608 return 0;
3609
40a5f0de
EA
3610 for (i = 0; i < buffer_count; i++) {
3611 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3612 int unwritten;
40a5f0de
EA
3613
3614 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3615
2bc43b5c
FM
3616 unwritten = copy_to_user(user_relocs,
3617 &relocs[reloc_count],
3618 exec_list[i].relocation_count *
3619 sizeof(*relocs));
3620
3621 if (unwritten) {
3622 ret = -EFAULT;
3623 goto err;
40a5f0de
EA
3624 }
3625
3626 reloc_count += exec_list[i].relocation_count;
3627 }
3628
2bc43b5c 3629err:
8e7d2b2c 3630 drm_free_large(relocs);
40a5f0de
EA
3631
3632 return ret;
3633}
3634
83d60795 3635static int
76446cac 3636i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3637 uint64_t exec_offset)
3638{
3639 uint32_t exec_start, exec_len;
3640
3641 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3642 exec_len = (uint32_t) exec->batch_len;
3643
3644 if ((exec_start | exec_len) & 0x7)
3645 return -EINVAL;
3646
3647 if (!exec_start)
3648 return -EINVAL;
3649
3650 return 0;
3651}
3652
6b95a207
KH
3653static int
3654i915_gem_wait_for_pending_flip(struct drm_device *dev,
3655 struct drm_gem_object **object_list,
3656 int count)
3657{
3658 drm_i915_private_t *dev_priv = dev->dev_private;
3659 struct drm_i915_gem_object *obj_priv;
3660 DEFINE_WAIT(wait);
3661 int i, ret = 0;
3662
3663 for (;;) {
3664 prepare_to_wait(&dev_priv->pending_flip_queue,
3665 &wait, TASK_INTERRUPTIBLE);
3666 for (i = 0; i < count; i++) {
3667 obj_priv = object_list[i]->driver_private;
3668 if (atomic_read(&obj_priv->pending_flip) > 0)
3669 break;
3670 }
3671 if (i == count)
3672 break;
3673
3674 if (!signal_pending(current)) {
3675 mutex_unlock(&dev->struct_mutex);
3676 schedule();
3677 mutex_lock(&dev->struct_mutex);
3678 continue;
3679 }
3680 ret = -ERESTARTSYS;
3681 break;
3682 }
3683 finish_wait(&dev_priv->pending_flip_queue, &wait);
3684
3685 return ret;
3686}
3687
673a394b 3688int
76446cac
JB
3689i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3690 struct drm_file *file_priv,
3691 struct drm_i915_gem_execbuffer2 *args,
3692 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3693{
3694 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3695 struct drm_gem_object **object_list = NULL;
3696 struct drm_gem_object *batch_obj;
b70d11da 3697 struct drm_i915_gem_object *obj_priv;
201361a5 3698 struct drm_clip_rect *cliprects = NULL;
93533c29 3699 struct drm_i915_gem_relocation_entry *relocs = NULL;
76446cac 3700 int ret = 0, ret2, i, pinned = 0;
673a394b 3701 uint64_t exec_offset;
40a5f0de 3702 uint32_t seqno, flush_domains, reloc_index;
6b95a207 3703 int pin_tries, flips;
673a394b
EA
3704
3705#if WATCH_EXEC
3706 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3707 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3708#endif
3709
4f481ed2
EA
3710 if (args->buffer_count < 1) {
3711 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3712 return -EINVAL;
3713 }
c8e0f93a 3714 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3715 if (object_list == NULL) {
3716 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3717 args->buffer_count);
3718 ret = -ENOMEM;
3719 goto pre_mutex_err;
3720 }
673a394b 3721
201361a5 3722 if (args->num_cliprects != 0) {
9a298b2a
EA
3723 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3724 GFP_KERNEL);
a40e8d31
OA
3725 if (cliprects == NULL) {
3726 ret = -ENOMEM;
201361a5 3727 goto pre_mutex_err;
a40e8d31 3728 }
201361a5
EA
3729
3730 ret = copy_from_user(cliprects,
3731 (struct drm_clip_rect __user *)
3732 (uintptr_t) args->cliprects_ptr,
3733 sizeof(*cliprects) * args->num_cliprects);
3734 if (ret != 0) {
3735 DRM_ERROR("copy %d cliprects failed: %d\n",
3736 args->num_cliprects, ret);
3737 goto pre_mutex_err;
3738 }
3739 }
3740
40a5f0de
EA
3741 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3742 &relocs);
3743 if (ret != 0)
3744 goto pre_mutex_err;
3745
673a394b
EA
3746 mutex_lock(&dev->struct_mutex);
3747
3748 i915_verify_inactive(dev, __FILE__, __LINE__);
3749
ba1234d1 3750 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3751 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3752 ret = -EIO;
3753 goto pre_mutex_err;
673a394b
EA
3754 }
3755
3756 if (dev_priv->mm.suspended) {
673a394b 3757 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3758 ret = -EBUSY;
3759 goto pre_mutex_err;
673a394b
EA
3760 }
3761
ac94a962 3762 /* Look up object handles */
6b95a207 3763 flips = 0;
673a394b
EA
3764 for (i = 0; i < args->buffer_count; i++) {
3765 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3766 exec_list[i].handle);
3767 if (object_list[i] == NULL) {
3768 DRM_ERROR("Invalid object handle %d at index %d\n",
3769 exec_list[i].handle, i);
0ce907f8
CW
3770 /* prevent error path from reading uninitialized data */
3771 args->buffer_count = i + 1;
673a394b
EA
3772 ret = -EBADF;
3773 goto err;
3774 }
b70d11da
KH
3775
3776 obj_priv = object_list[i]->driver_private;
3777 if (obj_priv->in_execbuffer) {
3778 DRM_ERROR("Object %p appears more than once in object list\n",
3779 object_list[i]);
0ce907f8
CW
3780 /* prevent error path from reading uninitialized data */
3781 args->buffer_count = i + 1;
b70d11da
KH
3782 ret = -EBADF;
3783 goto err;
3784 }
3785 obj_priv->in_execbuffer = true;
6b95a207
KH
3786 flips += atomic_read(&obj_priv->pending_flip);
3787 }
3788
3789 if (flips > 0) {
3790 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3791 args->buffer_count);
3792 if (ret)
3793 goto err;
ac94a962 3794 }
673a394b 3795
ac94a962
KP
3796 /* Pin and relocate */
3797 for (pin_tries = 0; ; pin_tries++) {
3798 ret = 0;
40a5f0de
EA
3799 reloc_index = 0;
3800
ac94a962
KP
3801 for (i = 0; i < args->buffer_count; i++) {
3802 object_list[i]->pending_read_domains = 0;
3803 object_list[i]->pending_write_domain = 0;
3804 ret = i915_gem_object_pin_and_relocate(object_list[i],
3805 file_priv,
40a5f0de
EA
3806 &exec_list[i],
3807 &relocs[reloc_index]);
ac94a962
KP
3808 if (ret)
3809 break;
3810 pinned = i + 1;
40a5f0de 3811 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3812 }
3813 /* success */
3814 if (ret == 0)
3815 break;
3816
3817 /* error other than GTT full, or we've already tried again */
2939e1f5 3818 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3819 if (ret != -ERESTARTSYS) {
3820 unsigned long long total_size = 0;
3821 for (i = 0; i < args->buffer_count; i++)
3822 total_size += object_list[i]->size;
3823 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3824 pinned+1, args->buffer_count,
3825 total_size, ret);
3826 DRM_ERROR("%d objects [%d pinned], "
3827 "%d object bytes [%d pinned], "
3828 "%d/%d gtt bytes\n",
3829 atomic_read(&dev->object_count),
3830 atomic_read(&dev->pin_count),
3831 atomic_read(&dev->object_memory),
3832 atomic_read(&dev->pin_memory),
3833 atomic_read(&dev->gtt_memory),
3834 dev->gtt_total);
3835 }
673a394b
EA
3836 goto err;
3837 }
ac94a962
KP
3838
3839 /* unpin all of our buffers */
3840 for (i = 0; i < pinned; i++)
3841 i915_gem_object_unpin(object_list[i]);
b1177636 3842 pinned = 0;
ac94a962
KP
3843
3844 /* evict everyone we can from the aperture */
3845 ret = i915_gem_evict_everything(dev);
07f73f69 3846 if (ret && ret != -ENOSPC)
ac94a962 3847 goto err;
673a394b
EA
3848 }
3849
3850 /* Set the pending read domains for the batch buffer to COMMAND */
3851 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3852 if (batch_obj->pending_write_domain) {
3853 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3854 ret = -EINVAL;
3855 goto err;
3856 }
3857 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3858
83d60795
CW
3859 /* Sanity check the batch buffer, prior to moving objects */
3860 exec_offset = exec_list[args->buffer_count - 1].offset;
3861 ret = i915_gem_check_execbuffer (args, exec_offset);
3862 if (ret != 0) {
3863 DRM_ERROR("execbuf with invalid offset/length\n");
3864 goto err;
3865 }
3866
673a394b
EA
3867 i915_verify_inactive(dev, __FILE__, __LINE__);
3868
646f0f6e
KP
3869 /* Zero the global flush/invalidate flags. These
3870 * will be modified as new domains are computed
3871 * for each object
3872 */
3873 dev->invalidate_domains = 0;
3874 dev->flush_domains = 0;
3875
673a394b
EA
3876 for (i = 0; i < args->buffer_count; i++) {
3877 struct drm_gem_object *obj = object_list[i];
673a394b 3878
646f0f6e 3879 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3880 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3881 }
3882
3883 i915_verify_inactive(dev, __FILE__, __LINE__);
3884
646f0f6e
KP
3885 if (dev->invalidate_domains | dev->flush_domains) {
3886#if WATCH_EXEC
3887 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3888 __func__,
3889 dev->invalidate_domains,
3890 dev->flush_domains);
3891#endif
3892 i915_gem_flush(dev,
3893 dev->invalidate_domains,
3894 dev->flush_domains);
99fcb766 3895 if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
b962442e
EA
3896 (void)i915_add_request(dev, file_priv,
3897 dev->flush_domains);
646f0f6e 3898 }
673a394b 3899
efbeed96
EA
3900 for (i = 0; i < args->buffer_count; i++) {
3901 struct drm_gem_object *obj = object_list[i];
99fcb766 3902 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1c5d22f7 3903 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3904
3905 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3906 if (obj->write_domain)
3907 list_move_tail(&obj_priv->gpu_write_list,
3908 &dev_priv->mm.gpu_write_list);
3909 else
3910 list_del_init(&obj_priv->gpu_write_list);
3911
1c5d22f7
CW
3912 trace_i915_gem_object_change_domain(obj,
3913 obj->read_domains,
3914 old_write_domain);
efbeed96
EA
3915 }
3916
673a394b
EA
3917 i915_verify_inactive(dev, __FILE__, __LINE__);
3918
3919#if WATCH_COHERENCY
3920 for (i = 0; i < args->buffer_count; i++) {
3921 i915_gem_object_check_coherency(object_list[i],
3922 exec_list[i].handle);
3923 }
3924#endif
3925
673a394b 3926#if WATCH_EXEC
6911a9b8 3927 i915_gem_dump_object(batch_obj,
673a394b
EA
3928 args->batch_len,
3929 __func__,
3930 ~0);
3931#endif
3932
673a394b 3933 /* Exec the batchbuffer */
201361a5 3934 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
673a394b
EA
3935 if (ret) {
3936 DRM_ERROR("dispatch failed %d\n", ret);
3937 goto err;
3938 }
3939
3940 /*
3941 * Ensure that the commands in the batch buffer are
3942 * finished before the interrupt fires
3943 */
3944 flush_domains = i915_retire_commands(dev);
3945
3946 i915_verify_inactive(dev, __FILE__, __LINE__);
3947
3948 /*
3949 * Get a seqno representing the execution of the current buffer,
3950 * which we can wait on. We would like to mitigate these interrupts,
3951 * likely by only creating seqnos occasionally (so that we have
3952 * *some* interrupts representing completion of buffers that we can
3953 * wait on when trying to clear up gtt space).
3954 */
b962442e 3955 seqno = i915_add_request(dev, file_priv, flush_domains);
673a394b 3956 BUG_ON(seqno == 0);
673a394b
EA
3957 for (i = 0; i < args->buffer_count; i++) {
3958 struct drm_gem_object *obj = object_list[i];
673a394b 3959
ce44b0ea 3960 i915_gem_object_move_to_active(obj, seqno);
673a394b
EA
3961#if WATCH_LRU
3962 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3963#endif
3964 }
3965#if WATCH_LRU
3966 i915_dump_lru(dev, __func__);
3967#endif
3968
3969 i915_verify_inactive(dev, __FILE__, __LINE__);
3970
673a394b 3971err:
aad87dff
JL
3972 for (i = 0; i < pinned; i++)
3973 i915_gem_object_unpin(object_list[i]);
3974
b70d11da
KH
3975 for (i = 0; i < args->buffer_count; i++) {
3976 if (object_list[i]) {
3977 obj_priv = object_list[i]->driver_private;
3978 obj_priv->in_execbuffer = false;
3979 }
aad87dff 3980 drm_gem_object_unreference(object_list[i]);
b70d11da 3981 }
673a394b 3982
673a394b
EA
3983 mutex_unlock(&dev->struct_mutex);
3984
93533c29 3985pre_mutex_err:
40a5f0de
EA
3986 /* Copy the updated relocations out regardless of current error
3987 * state. Failure to update the relocs would mean that the next
3988 * time userland calls execbuf, it would do so with presumed offset
3989 * state that didn't match the actual object state.
3990 */
3991 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3992 relocs);
3993 if (ret2 != 0) {
3994 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3995
3996 if (ret == 0)
3997 ret = ret2;
3998 }
3999
8e7d2b2c 4000 drm_free_large(object_list);
9a298b2a 4001 kfree(cliprects);
673a394b
EA
4002
4003 return ret;
4004}
4005
76446cac
JB
4006/*
4007 * Legacy execbuffer just creates an exec2 list from the original exec object
4008 * list array and passes it to the real function.
4009 */
4010int
4011i915_gem_execbuffer(struct drm_device *dev, void *data,
4012 struct drm_file *file_priv)
4013{
4014 struct drm_i915_gem_execbuffer *args = data;
4015 struct drm_i915_gem_execbuffer2 exec2;
4016 struct drm_i915_gem_exec_object *exec_list = NULL;
4017 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4018 int ret, i;
4019
4020#if WATCH_EXEC
4021 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4022 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4023#endif
4024
4025 if (args->buffer_count < 1) {
4026 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4027 return -EINVAL;
4028 }
4029
4030 /* Copy in the exec list from userland */
4031 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4032 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4033 if (exec_list == NULL || exec2_list == NULL) {
4034 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4035 args->buffer_count);
4036 drm_free_large(exec_list);
4037 drm_free_large(exec2_list);
4038 return -ENOMEM;
4039 }
4040 ret = copy_from_user(exec_list,
4041 (struct drm_i915_relocation_entry __user *)
4042 (uintptr_t) args->buffers_ptr,
4043 sizeof(*exec_list) * args->buffer_count);
4044 if (ret != 0) {
4045 DRM_ERROR("copy %d exec entries failed %d\n",
4046 args->buffer_count, ret);
4047 drm_free_large(exec_list);
4048 drm_free_large(exec2_list);
4049 return -EFAULT;
4050 }
4051
4052 for (i = 0; i < args->buffer_count; i++) {
4053 exec2_list[i].handle = exec_list[i].handle;
4054 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4055 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4056 exec2_list[i].alignment = exec_list[i].alignment;
4057 exec2_list[i].offset = exec_list[i].offset;
4058 if (!IS_I965G(dev))
4059 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4060 else
4061 exec2_list[i].flags = 0;
4062 }
4063
4064 exec2.buffers_ptr = args->buffers_ptr;
4065 exec2.buffer_count = args->buffer_count;
4066 exec2.batch_start_offset = args->batch_start_offset;
4067 exec2.batch_len = args->batch_len;
4068 exec2.DR1 = args->DR1;
4069 exec2.DR4 = args->DR4;
4070 exec2.num_cliprects = args->num_cliprects;
4071 exec2.cliprects_ptr = args->cliprects_ptr;
4072 exec2.flags = 0;
4073
4074 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4075 if (!ret) {
4076 /* Copy the new buffer offsets back to the user's exec list. */
4077 for (i = 0; i < args->buffer_count; i++)
4078 exec_list[i].offset = exec2_list[i].offset;
4079 /* ... and back out to userspace */
4080 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4081 (uintptr_t) args->buffers_ptr,
4082 exec_list,
4083 sizeof(*exec_list) * args->buffer_count);
4084 if (ret) {
4085 ret = -EFAULT;
4086 DRM_ERROR("failed to copy %d exec entries "
4087 "back to user (%d)\n",
4088 args->buffer_count, ret);
4089 }
76446cac
JB
4090 }
4091
4092 drm_free_large(exec_list);
4093 drm_free_large(exec2_list);
4094 return ret;
4095}
4096
4097int
4098i915_gem_execbuffer2(struct drm_device *dev, void *data,
4099 struct drm_file *file_priv)
4100{
4101 struct drm_i915_gem_execbuffer2 *args = data;
4102 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4103 int ret;
4104
4105#if WATCH_EXEC
4106 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4107 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4108#endif
4109
4110 if (args->buffer_count < 1) {
4111 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4112 return -EINVAL;
4113 }
4114
4115 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4116 if (exec2_list == NULL) {
4117 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4118 args->buffer_count);
4119 return -ENOMEM;
4120 }
4121 ret = copy_from_user(exec2_list,
4122 (struct drm_i915_relocation_entry __user *)
4123 (uintptr_t) args->buffers_ptr,
4124 sizeof(*exec2_list) * args->buffer_count);
4125 if (ret != 0) {
4126 DRM_ERROR("copy %d exec entries failed %d\n",
4127 args->buffer_count, ret);
4128 drm_free_large(exec2_list);
4129 return -EFAULT;
4130 }
4131
4132 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4133 if (!ret) {
4134 /* Copy the new buffer offsets back to the user's exec list. */
4135 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4136 (uintptr_t) args->buffers_ptr,
4137 exec2_list,
4138 sizeof(*exec2_list) * args->buffer_count);
4139 if (ret) {
4140 ret = -EFAULT;
4141 DRM_ERROR("failed to copy %d exec entries "
4142 "back to user (%d)\n",
4143 args->buffer_count, ret);
4144 }
4145 }
4146
4147 drm_free_large(exec2_list);
4148 return ret;
4149}
4150
673a394b
EA
4151int
4152i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4153{
4154 struct drm_device *dev = obj->dev;
4155 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4156 int ret;
4157
4158 i915_verify_inactive(dev, __FILE__, __LINE__);
4159 if (obj_priv->gtt_space == NULL) {
4160 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4161 if (ret)
673a394b 4162 return ret;
22c344e9 4163 }
76446cac 4164
673a394b
EA
4165 obj_priv->pin_count++;
4166
4167 /* If the object is not active and not pending a flush,
4168 * remove it from the inactive list
4169 */
4170 if (obj_priv->pin_count == 1) {
4171 atomic_inc(&dev->pin_count);
4172 atomic_add(obj->size, &dev->pin_memory);
4173 if (!obj_priv->active &&
21d509e3 4174 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
673a394b
EA
4175 !list_empty(&obj_priv->list))
4176 list_del_init(&obj_priv->list);
4177 }
4178 i915_verify_inactive(dev, __FILE__, __LINE__);
4179
4180 return 0;
4181}
4182
4183void
4184i915_gem_object_unpin(struct drm_gem_object *obj)
4185{
4186 struct drm_device *dev = obj->dev;
4187 drm_i915_private_t *dev_priv = dev->dev_private;
4188 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4189
4190 i915_verify_inactive(dev, __FILE__, __LINE__);
4191 obj_priv->pin_count--;
4192 BUG_ON(obj_priv->pin_count < 0);
4193 BUG_ON(obj_priv->gtt_space == NULL);
4194
4195 /* If the object is no longer pinned, and is
4196 * neither active nor being flushed, then stick it on
4197 * the inactive list
4198 */
4199 if (obj_priv->pin_count == 0) {
4200 if (!obj_priv->active &&
21d509e3 4201 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4202 list_move_tail(&obj_priv->list,
4203 &dev_priv->mm.inactive_list);
4204 atomic_dec(&dev->pin_count);
4205 atomic_sub(obj->size, &dev->pin_memory);
4206 }
4207 i915_verify_inactive(dev, __FILE__, __LINE__);
4208}
4209
4210int
4211i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4212 struct drm_file *file_priv)
4213{
4214 struct drm_i915_gem_pin *args = data;
4215 struct drm_gem_object *obj;
4216 struct drm_i915_gem_object *obj_priv;
4217 int ret;
4218
4219 mutex_lock(&dev->struct_mutex);
4220
4221 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4222 if (obj == NULL) {
4223 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4224 args->handle);
4225 mutex_unlock(&dev->struct_mutex);
4226 return -EBADF;
4227 }
4228 obj_priv = obj->driver_private;
4229
bb6baf76
CW
4230 if (obj_priv->madv != I915_MADV_WILLNEED) {
4231 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4232 drm_gem_object_unreference(obj);
4233 mutex_unlock(&dev->struct_mutex);
4234 return -EINVAL;
4235 }
4236
79e53945
JB
4237 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4238 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4239 args->handle);
96dec61d 4240 drm_gem_object_unreference(obj);
673a394b 4241 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4242 return -EINVAL;
4243 }
4244
4245 obj_priv->user_pin_count++;
4246 obj_priv->pin_filp = file_priv;
4247 if (obj_priv->user_pin_count == 1) {
4248 ret = i915_gem_object_pin(obj, args->alignment);
4249 if (ret != 0) {
4250 drm_gem_object_unreference(obj);
4251 mutex_unlock(&dev->struct_mutex);
4252 return ret;
4253 }
673a394b
EA
4254 }
4255
4256 /* XXX - flush the CPU caches for pinned objects
4257 * as the X server doesn't manage domains yet
4258 */
e47c68e9 4259 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4260 args->offset = obj_priv->gtt_offset;
4261 drm_gem_object_unreference(obj);
4262 mutex_unlock(&dev->struct_mutex);
4263
4264 return 0;
4265}
4266
4267int
4268i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4269 struct drm_file *file_priv)
4270{
4271 struct drm_i915_gem_pin *args = data;
4272 struct drm_gem_object *obj;
79e53945 4273 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4274
4275 mutex_lock(&dev->struct_mutex);
4276
4277 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4278 if (obj == NULL) {
4279 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4280 args->handle);
4281 mutex_unlock(&dev->struct_mutex);
4282 return -EBADF;
4283 }
4284
79e53945
JB
4285 obj_priv = obj->driver_private;
4286 if (obj_priv->pin_filp != file_priv) {
4287 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4288 args->handle);
4289 drm_gem_object_unreference(obj);
4290 mutex_unlock(&dev->struct_mutex);
4291 return -EINVAL;
4292 }
4293 obj_priv->user_pin_count--;
4294 if (obj_priv->user_pin_count == 0) {
4295 obj_priv->pin_filp = NULL;
4296 i915_gem_object_unpin(obj);
4297 }
673a394b
EA
4298
4299 drm_gem_object_unreference(obj);
4300 mutex_unlock(&dev->struct_mutex);
4301 return 0;
4302}
4303
4304int
4305i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4306 struct drm_file *file_priv)
4307{
4308 struct drm_i915_gem_busy *args = data;
4309 struct drm_gem_object *obj;
4310 struct drm_i915_gem_object *obj_priv;
4311
673a394b
EA
4312 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4313 if (obj == NULL) {
4314 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4315 args->handle);
673a394b
EA
4316 return -EBADF;
4317 }
4318
b1ce786c 4319 mutex_lock(&dev->struct_mutex);
f21289b3
EA
4320 /* Update the active list for the hardware's current position.
4321 * Otherwise this only updates on a delayed timer or when irqs are
4322 * actually unmasked, and our working set ends up being larger than
4323 * required.
4324 */
4325 i915_gem_retire_requests(dev);
4326
673a394b 4327 obj_priv = obj->driver_private;
c4de0a5d
EA
4328 /* Don't count being on the flushing list against the object being
4329 * done. Otherwise, a buffer left on the flushing list but not getting
4330 * flushed (because nobody's flushing that domain) won't ever return
4331 * unbusy and get reused by libdrm's bo cache. The other expected
4332 * consumer of this interface, OpenGL's occlusion queries, also specs
4333 * that the objects get unbusy "eventually" without any interference.
4334 */
4335 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
673a394b
EA
4336
4337 drm_gem_object_unreference(obj);
4338 mutex_unlock(&dev->struct_mutex);
4339 return 0;
4340}
4341
4342int
4343i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4344 struct drm_file *file_priv)
4345{
4346 return i915_gem_ring_throttle(dev, file_priv);
4347}
4348
3ef94daa
CW
4349int
4350i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4351 struct drm_file *file_priv)
4352{
4353 struct drm_i915_gem_madvise *args = data;
4354 struct drm_gem_object *obj;
4355 struct drm_i915_gem_object *obj_priv;
4356
4357 switch (args->madv) {
4358 case I915_MADV_DONTNEED:
4359 case I915_MADV_WILLNEED:
4360 break;
4361 default:
4362 return -EINVAL;
4363 }
4364
4365 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4366 if (obj == NULL) {
4367 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4368 args->handle);
4369 return -EBADF;
4370 }
4371
4372 mutex_lock(&dev->struct_mutex);
4373 obj_priv = obj->driver_private;
4374
4375 if (obj_priv->pin_count) {
4376 drm_gem_object_unreference(obj);
4377 mutex_unlock(&dev->struct_mutex);
4378
4379 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4380 return -EINVAL;
4381 }
4382
bb6baf76
CW
4383 if (obj_priv->madv != __I915_MADV_PURGED)
4384 obj_priv->madv = args->madv;
3ef94daa 4385
2d7ef395
CW
4386 /* if the object is no longer bound, discard its backing storage */
4387 if (i915_gem_object_is_purgeable(obj_priv) &&
4388 obj_priv->gtt_space == NULL)
4389 i915_gem_object_truncate(obj);
4390
bb6baf76
CW
4391 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4392
3ef94daa
CW
4393 drm_gem_object_unreference(obj);
4394 mutex_unlock(&dev->struct_mutex);
4395
4396 return 0;
4397}
4398
673a394b
EA
4399int i915_gem_init_object(struct drm_gem_object *obj)
4400{
4401 struct drm_i915_gem_object *obj_priv;
4402
9a298b2a 4403 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
673a394b
EA
4404 if (obj_priv == NULL)
4405 return -ENOMEM;
4406
4407 /*
4408 * We've just allocated pages from the kernel,
4409 * so they've just been written by the CPU with
4410 * zeros. They'll need to be clflushed before we
4411 * use them with the GPU.
4412 */
4413 obj->write_domain = I915_GEM_DOMAIN_CPU;
4414 obj->read_domains = I915_GEM_DOMAIN_CPU;
4415
ba1eb1d8
KP
4416 obj_priv->agp_type = AGP_USER_MEMORY;
4417
673a394b
EA
4418 obj->driver_private = obj_priv;
4419 obj_priv->obj = obj;
de151cf6 4420 obj_priv->fence_reg = I915_FENCE_REG_NONE;
673a394b 4421 INIT_LIST_HEAD(&obj_priv->list);
99fcb766 4422 INIT_LIST_HEAD(&obj_priv->gpu_write_list);
a09ba7fa 4423 INIT_LIST_HEAD(&obj_priv->fence_list);
3ef94daa 4424 obj_priv->madv = I915_MADV_WILLNEED;
de151cf6 4425
1c5d22f7 4426 trace_i915_gem_object_create(obj);
de151cf6 4427
673a394b
EA
4428 return 0;
4429}
4430
4431void i915_gem_free_object(struct drm_gem_object *obj)
4432{
de151cf6 4433 struct drm_device *dev = obj->dev;
673a394b
EA
4434 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4435
1c5d22f7
CW
4436 trace_i915_gem_object_destroy(obj);
4437
673a394b
EA
4438 while (obj_priv->pin_count > 0)
4439 i915_gem_object_unpin(obj);
4440
71acb5eb
DA
4441 if (obj_priv->phys_obj)
4442 i915_gem_detach_phys_object(dev, obj);
4443
673a394b
EA
4444 i915_gem_object_unbind(obj);
4445
7e616158
CW
4446 if (obj_priv->mmap_offset)
4447 i915_gem_free_mmap_offset(obj);
de151cf6 4448
9a298b2a 4449 kfree(obj_priv->page_cpu_valid);
280b713b 4450 kfree(obj_priv->bit_17);
9a298b2a 4451 kfree(obj->driver_private);
673a394b
EA
4452}
4453
ab5ee576 4454/** Unbinds all inactive objects. */
673a394b 4455static int
ab5ee576 4456i915_gem_evict_from_inactive_list(struct drm_device *dev)
673a394b 4457{
ab5ee576 4458 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 4459
ab5ee576
CW
4460 while (!list_empty(&dev_priv->mm.inactive_list)) {
4461 struct drm_gem_object *obj;
4462 int ret;
673a394b 4463
ab5ee576
CW
4464 obj = list_first_entry(&dev_priv->mm.inactive_list,
4465 struct drm_i915_gem_object,
4466 list)->obj;
673a394b
EA
4467
4468 ret = i915_gem_object_unbind(obj);
4469 if (ret != 0) {
ab5ee576 4470 DRM_ERROR("Error unbinding object: %d\n", ret);
673a394b
EA
4471 return ret;
4472 }
4473 }
4474
673a394b
EA
4475 return 0;
4476}
4477
29105ccc
CW
4478static int
4479i915_gpu_idle(struct drm_device *dev)
673a394b
EA
4480{
4481 drm_i915_private_t *dev_priv = dev->dev_private;
29105ccc
CW
4482 bool lists_empty;
4483 uint32_t seqno;
673a394b 4484
29105ccc
CW
4485 spin_lock(&dev_priv->mm.active_list_lock);
4486 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4487 list_empty(&dev_priv->mm.active_list);
4488 spin_unlock(&dev_priv->mm.active_list_lock);
6dbe2772 4489
29105ccc 4490 if (lists_empty)
673a394b 4491 return 0;
673a394b 4492
29105ccc 4493 /* Flush everything onto the inactive list. */
21d509e3
CW
4494 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4495 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
29105ccc 4496 if (seqno == 0)
673a394b 4497 return -ENOMEM;
1c5d22f7 4498
29105ccc
CW
4499 return i915_wait_request(dev, seqno);
4500}
28dfe52a 4501
29105ccc
CW
4502int
4503i915_gem_idle(struct drm_device *dev)
4504{
4505 drm_i915_private_t *dev_priv = dev->dev_private;
4506 int ret;
28dfe52a 4507
29105ccc 4508 mutex_lock(&dev->struct_mutex);
1c5d22f7 4509
29105ccc
CW
4510 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4511 mutex_unlock(&dev->struct_mutex);
4512 return 0;
28dfe52a
EA
4513 }
4514
29105ccc 4515 ret = i915_gpu_idle(dev);
6dbe2772
KP
4516 if (ret) {
4517 mutex_unlock(&dev->struct_mutex);
673a394b 4518 return ret;
6dbe2772 4519 }
673a394b 4520
29105ccc
CW
4521 /* Under UMS, be paranoid and evict. */
4522 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4523 ret = i915_gem_evict_from_inactive_list(dev);
4524 if (ret) {
4525 mutex_unlock(&dev->struct_mutex);
4526 return ret;
4527 }
4528 }
4529
4530 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4531 * We need to replace this with a semaphore, or something.
4532 * And not confound mm.suspended!
4533 */
4534 dev_priv->mm.suspended = 1;
4535 del_timer(&dev_priv->hangcheck_timer);
4536
4537 i915_kernel_lost_context(dev);
6dbe2772 4538 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4539
6dbe2772
KP
4540 mutex_unlock(&dev->struct_mutex);
4541
29105ccc
CW
4542 /* Cancel the retire work handler, which should be idle now. */
4543 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4544
673a394b
EA
4545 return 0;
4546}
4547
4548static int
4549i915_gem_init_hws(struct drm_device *dev)
4550{
4551 drm_i915_private_t *dev_priv = dev->dev_private;
4552 struct drm_gem_object *obj;
4553 struct drm_i915_gem_object *obj_priv;
4554 int ret;
4555
4556 /* If we need a physical address for the status page, it's already
4557 * initialized at driver load time.
4558 */
4559 if (!I915_NEED_GFX_HWS(dev))
4560 return 0;
4561
4562 obj = drm_gem_object_alloc(dev, 4096);
4563 if (obj == NULL) {
4564 DRM_ERROR("Failed to allocate status page\n");
4565 return -ENOMEM;
4566 }
4567 obj_priv = obj->driver_private;
ba1eb1d8 4568 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
4569
4570 ret = i915_gem_object_pin(obj, 4096);
4571 if (ret != 0) {
4572 drm_gem_object_unreference(obj);
4573 return ret;
4574 }
4575
4576 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 4577
856fa198 4578 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
ba1eb1d8 4579 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
4580 DRM_ERROR("Failed to map status page.\n");
4581 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3eb2ee77 4582 i915_gem_object_unpin(obj);
673a394b
EA
4583 drm_gem_object_unreference(obj);
4584 return -EINVAL;
4585 }
4586 dev_priv->hws_obj = obj;
673a394b 4587 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
f6e450a6
EA
4588 if (IS_GEN6(dev)) {
4589 I915_WRITE(HWS_PGA_GEN6, dev_priv->status_gfx_addr);
4590 I915_READ(HWS_PGA_GEN6); /* posting read */
4591 } else {
4592 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4593 I915_READ(HWS_PGA); /* posting read */
4594 }
44d98a61 4595 DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
673a394b
EA
4596
4597 return 0;
4598}
4599
85a7bb98
CW
4600static void
4601i915_gem_cleanup_hws(struct drm_device *dev)
4602{
4603 drm_i915_private_t *dev_priv = dev->dev_private;
bab2d1f6
CW
4604 struct drm_gem_object *obj;
4605 struct drm_i915_gem_object *obj_priv;
85a7bb98
CW
4606
4607 if (dev_priv->hws_obj == NULL)
4608 return;
4609
bab2d1f6
CW
4610 obj = dev_priv->hws_obj;
4611 obj_priv = obj->driver_private;
4612
856fa198 4613 kunmap(obj_priv->pages[0]);
85a7bb98
CW
4614 i915_gem_object_unpin(obj);
4615 drm_gem_object_unreference(obj);
4616 dev_priv->hws_obj = NULL;
bab2d1f6 4617
85a7bb98
CW
4618 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4619 dev_priv->hw_status_page = NULL;
4620
4621 /* Write high address into HWS_PGA when disabling. */
4622 I915_WRITE(HWS_PGA, 0x1ffff000);
4623}
4624
79e53945 4625int
673a394b
EA
4626i915_gem_init_ringbuffer(struct drm_device *dev)
4627{
4628 drm_i915_private_t *dev_priv = dev->dev_private;
4629 struct drm_gem_object *obj;
4630 struct drm_i915_gem_object *obj_priv;
79e53945 4631 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
673a394b 4632 int ret;
50aa253d 4633 u32 head;
673a394b
EA
4634
4635 ret = i915_gem_init_hws(dev);
4636 if (ret != 0)
4637 return ret;
4638
4639 obj = drm_gem_object_alloc(dev, 128 * 1024);
4640 if (obj == NULL) {
4641 DRM_ERROR("Failed to allocate ringbuffer\n");
85a7bb98 4642 i915_gem_cleanup_hws(dev);
673a394b
EA
4643 return -ENOMEM;
4644 }
4645 obj_priv = obj->driver_private;
4646
4647 ret = i915_gem_object_pin(obj, 4096);
4648 if (ret != 0) {
4649 drm_gem_object_unreference(obj);
85a7bb98 4650 i915_gem_cleanup_hws(dev);
673a394b
EA
4651 return ret;
4652 }
4653
4654 /* Set up the kernel mapping for the ring. */
79e53945 4655 ring->Size = obj->size;
673a394b 4656
79e53945
JB
4657 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4658 ring->map.size = obj->size;
4659 ring->map.type = 0;
4660 ring->map.flags = 0;
4661 ring->map.mtrr = 0;
673a394b 4662
79e53945
JB
4663 drm_core_ioremap_wc(&ring->map, dev);
4664 if (ring->map.handle == NULL) {
673a394b
EA
4665 DRM_ERROR("Failed to map ringbuffer.\n");
4666 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
47ed185a 4667 i915_gem_object_unpin(obj);
673a394b 4668 drm_gem_object_unreference(obj);
85a7bb98 4669 i915_gem_cleanup_hws(dev);
673a394b
EA
4670 return -EINVAL;
4671 }
79e53945
JB
4672 ring->ring_obj = obj;
4673 ring->virtual_start = ring->map.handle;
673a394b
EA
4674
4675 /* Stop the ring if it's running. */
4676 I915_WRITE(PRB0_CTL, 0);
673a394b 4677 I915_WRITE(PRB0_TAIL, 0);
50aa253d 4678 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
4679
4680 /* Initialize the ring. */
4681 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
4682 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4683
4684 /* G45 ring initialization fails to reset head to zero */
4685 if (head != 0) {
4686 DRM_ERROR("Ring head not reset to zero "
4687 "ctl %08x head %08x tail %08x start %08x\n",
4688 I915_READ(PRB0_CTL),
4689 I915_READ(PRB0_HEAD),
4690 I915_READ(PRB0_TAIL),
4691 I915_READ(PRB0_START));
4692 I915_WRITE(PRB0_HEAD, 0);
4693
4694 DRM_ERROR("Ring head forced to zero "
4695 "ctl %08x head %08x tail %08x start %08x\n",
4696 I915_READ(PRB0_CTL),
4697 I915_READ(PRB0_HEAD),
4698 I915_READ(PRB0_TAIL),
4699 I915_READ(PRB0_START));
4700 }
4701
673a394b
EA
4702 I915_WRITE(PRB0_CTL,
4703 ((obj->size - 4096) & RING_NR_PAGES) |
4704 RING_NO_REPORT |
4705 RING_VALID);
4706
50aa253d
KP
4707 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4708
4709 /* If the head is still not zero, the ring is dead */
4710 if (head != 0) {
4711 DRM_ERROR("Ring initialization failed "
4712 "ctl %08x head %08x tail %08x start %08x\n",
4713 I915_READ(PRB0_CTL),
4714 I915_READ(PRB0_HEAD),
4715 I915_READ(PRB0_TAIL),
4716 I915_READ(PRB0_START));
4717 return -EIO;
4718 }
4719
673a394b 4720 /* Update our cache of the ring state */
79e53945
JB
4721 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4722 i915_kernel_lost_context(dev);
4723 else {
4724 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4725 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4726 ring->space = ring->head - (ring->tail + 8);
4727 if (ring->space < 0)
4728 ring->space += ring->Size;
4729 }
673a394b
EA
4730
4731 return 0;
4732}
4733
79e53945 4734void
673a394b
EA
4735i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4736{
4737 drm_i915_private_t *dev_priv = dev->dev_private;
4738
4739 if (dev_priv->ring.ring_obj == NULL)
4740 return;
4741
4742 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4743
4744 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4745 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4746 dev_priv->ring.ring_obj = NULL;
4747 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4748
85a7bb98 4749 i915_gem_cleanup_hws(dev);
673a394b
EA
4750}
4751
4752int
4753i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4754 struct drm_file *file_priv)
4755{
4756 drm_i915_private_t *dev_priv = dev->dev_private;
4757 int ret;
4758
79e53945
JB
4759 if (drm_core_check_feature(dev, DRIVER_MODESET))
4760 return 0;
4761
ba1234d1 4762 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4763 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4764 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4765 }
4766
673a394b 4767 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4768 dev_priv->mm.suspended = 0;
4769
4770 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4771 if (ret != 0) {
4772 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4773 return ret;
d816f6ac 4774 }
9bb2d6f9 4775
5e118f41 4776 spin_lock(&dev_priv->mm.active_list_lock);
673a394b 4777 BUG_ON(!list_empty(&dev_priv->mm.active_list));
5e118f41
CW
4778 spin_unlock(&dev_priv->mm.active_list_lock);
4779
673a394b
EA
4780 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4781 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4782 BUG_ON(!list_empty(&dev_priv->mm.request_list));
673a394b 4783 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
4784
4785 drm_irq_install(dev);
4786
673a394b
EA
4787 return 0;
4788}
4789
4790int
4791i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4792 struct drm_file *file_priv)
4793{
79e53945
JB
4794 if (drm_core_check_feature(dev, DRIVER_MODESET))
4795 return 0;
4796
dbb19d30 4797 drm_irq_uninstall(dev);
e6890f6f 4798 return i915_gem_idle(dev);
673a394b
EA
4799}
4800
4801void
4802i915_gem_lastclose(struct drm_device *dev)
4803{
4804 int ret;
673a394b 4805
e806b495
EA
4806 if (drm_core_check_feature(dev, DRIVER_MODESET))
4807 return;
4808
6dbe2772
KP
4809 ret = i915_gem_idle(dev);
4810 if (ret)
4811 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4812}
4813
4814void
4815i915_gem_load(struct drm_device *dev)
4816{
b5aa8a0f 4817 int i;
673a394b
EA
4818 drm_i915_private_t *dev_priv = dev->dev_private;
4819
5e118f41 4820 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b
EA
4821 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4822 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4823 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b
EA
4824 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4825 INIT_LIST_HEAD(&dev_priv->mm.request_list);
a09ba7fa 4826 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
673a394b
EA
4827 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4828 i915_gem_retire_work_handler);
4829 dev_priv->mm.next_gem_seqno = 1;
4830
31169714
CW
4831 spin_lock(&shrink_list_lock);
4832 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4833 spin_unlock(&shrink_list_lock);
4834
de151cf6 4835 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4836 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4837 dev_priv->fence_reg_start = 3;
de151cf6 4838
0f973f27 4839 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4840 dev_priv->num_fence_regs = 16;
4841 else
4842 dev_priv->num_fence_regs = 8;
4843
b5aa8a0f
GH
4844 /* Initialize fence registers to zero */
4845 if (IS_I965G(dev)) {
4846 for (i = 0; i < 16; i++)
4847 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4848 } else {
4849 for (i = 0; i < 8; i++)
4850 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4851 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4852 for (i = 0; i < 8; i++)
4853 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4854 }
673a394b 4855 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4856 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4857}
71acb5eb
DA
4858
4859/*
4860 * Create a physically contiguous memory object for this object
4861 * e.g. for cursor + overlay regs
4862 */
4863int i915_gem_init_phys_object(struct drm_device *dev,
4864 int id, int size)
4865{
4866 drm_i915_private_t *dev_priv = dev->dev_private;
4867 struct drm_i915_gem_phys_object *phys_obj;
4868 int ret;
4869
4870 if (dev_priv->mm.phys_objs[id - 1] || !size)
4871 return 0;
4872
9a298b2a 4873 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4874 if (!phys_obj)
4875 return -ENOMEM;
4876
4877 phys_obj->id = id;
4878
e6be8d9d 4879 phys_obj->handle = drm_pci_alloc(dev, size, 0);
71acb5eb
DA
4880 if (!phys_obj->handle) {
4881 ret = -ENOMEM;
4882 goto kfree_obj;
4883 }
4884#ifdef CONFIG_X86
4885 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4886#endif
4887
4888 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4889
4890 return 0;
4891kfree_obj:
9a298b2a 4892 kfree(phys_obj);
71acb5eb
DA
4893 return ret;
4894}
4895
4896void i915_gem_free_phys_object(struct drm_device *dev, int id)
4897{
4898 drm_i915_private_t *dev_priv = dev->dev_private;
4899 struct drm_i915_gem_phys_object *phys_obj;
4900
4901 if (!dev_priv->mm.phys_objs[id - 1])
4902 return;
4903
4904 phys_obj = dev_priv->mm.phys_objs[id - 1];
4905 if (phys_obj->cur_obj) {
4906 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4907 }
4908
4909#ifdef CONFIG_X86
4910 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4911#endif
4912 drm_pci_free(dev, phys_obj->handle);
4913 kfree(phys_obj);
4914 dev_priv->mm.phys_objs[id - 1] = NULL;
4915}
4916
4917void i915_gem_free_all_phys_object(struct drm_device *dev)
4918{
4919 int i;
4920
260883c8 4921 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4922 i915_gem_free_phys_object(dev, i);
4923}
4924
4925void i915_gem_detach_phys_object(struct drm_device *dev,
4926 struct drm_gem_object *obj)
4927{
4928 struct drm_i915_gem_object *obj_priv;
4929 int i;
4930 int ret;
4931 int page_count;
4932
4933 obj_priv = obj->driver_private;
4934 if (!obj_priv->phys_obj)
4935 return;
4936
4bdadb97 4937 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4938 if (ret)
4939 goto out;
4940
4941 page_count = obj->size / PAGE_SIZE;
4942
4943 for (i = 0; i < page_count; i++) {
856fa198 4944 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4945 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4946
4947 memcpy(dst, src, PAGE_SIZE);
4948 kunmap_atomic(dst, KM_USER0);
4949 }
856fa198 4950 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4951 drm_agp_chipset_flush(dev);
d78b47b9
CW
4952
4953 i915_gem_object_put_pages(obj);
71acb5eb
DA
4954out:
4955 obj_priv->phys_obj->cur_obj = NULL;
4956 obj_priv->phys_obj = NULL;
4957}
4958
4959int
4960i915_gem_attach_phys_object(struct drm_device *dev,
4961 struct drm_gem_object *obj, int id)
4962{
4963 drm_i915_private_t *dev_priv = dev->dev_private;
4964 struct drm_i915_gem_object *obj_priv;
4965 int ret = 0;
4966 int page_count;
4967 int i;
4968
4969 if (id > I915_MAX_PHYS_OBJECT)
4970 return -EINVAL;
4971
4972 obj_priv = obj->driver_private;
4973
4974 if (obj_priv->phys_obj) {
4975 if (obj_priv->phys_obj->id == id)
4976 return 0;
4977 i915_gem_detach_phys_object(dev, obj);
4978 }
4979
4980
4981 /* create a new object */
4982 if (!dev_priv->mm.phys_objs[id - 1]) {
4983 ret = i915_gem_init_phys_object(dev, id,
4984 obj->size);
4985 if (ret) {
aeb565df 4986 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4987 goto out;
4988 }
4989 }
4990
4991 /* bind to the object */
4992 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4993 obj_priv->phys_obj->cur_obj = obj;
4994
4bdadb97 4995 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4996 if (ret) {
4997 DRM_ERROR("failed to get page list\n");
4998 goto out;
4999 }
5000
5001 page_count = obj->size / PAGE_SIZE;
5002
5003 for (i = 0; i < page_count; i++) {
856fa198 5004 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
5005 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5006
5007 memcpy(dst, src, PAGE_SIZE);
5008 kunmap_atomic(src, KM_USER0);
5009 }
5010
d78b47b9
CW
5011 i915_gem_object_put_pages(obj);
5012
71acb5eb
DA
5013 return 0;
5014out:
5015 return ret;
5016}
5017
5018static int
5019i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5020 struct drm_i915_gem_pwrite *args,
5021 struct drm_file *file_priv)
5022{
5023 struct drm_i915_gem_object *obj_priv = obj->driver_private;
5024 void *obj_addr;
5025 int ret;
5026 char __user *user_data;
5027
5028 user_data = (char __user *) (uintptr_t) args->data_ptr;
5029 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5030
44d98a61 5031 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
5032 ret = copy_from_user(obj_addr, user_data, args->size);
5033 if (ret)
5034 return -EFAULT;
5035
5036 drm_agp_chipset_flush(dev);
5037 return 0;
5038}
b962442e
EA
5039
5040void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5041{
5042 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5043
5044 /* Clean up our request list when the client is going away, so that
5045 * later retire_requests won't dereference our soon-to-be-gone
5046 * file_priv.
5047 */
5048 mutex_lock(&dev->struct_mutex);
5049 while (!list_empty(&i915_file_priv->mm.request_list))
5050 list_del_init(i915_file_priv->mm.request_list.next);
5051 mutex_unlock(&dev->struct_mutex);
5052}
31169714 5053
31169714
CW
5054static int
5055i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5056{
5057 drm_i915_private_t *dev_priv, *next_dev;
5058 struct drm_i915_gem_object *obj_priv, *next_obj;
5059 int cnt = 0;
5060 int would_deadlock = 1;
5061
5062 /* "fast-path" to count number of available objects */
5063 if (nr_to_scan == 0) {
5064 spin_lock(&shrink_list_lock);
5065 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5066 struct drm_device *dev = dev_priv->dev;
5067
5068 if (mutex_trylock(&dev->struct_mutex)) {
5069 list_for_each_entry(obj_priv,
5070 &dev_priv->mm.inactive_list,
5071 list)
5072 cnt++;
5073 mutex_unlock(&dev->struct_mutex);
5074 }
5075 }
5076 spin_unlock(&shrink_list_lock);
5077
5078 return (cnt / 100) * sysctl_vfs_cache_pressure;
5079 }
5080
5081 spin_lock(&shrink_list_lock);
5082
5083 /* first scan for clean buffers */
5084 list_for_each_entry_safe(dev_priv, next_dev,
5085 &shrink_list, mm.shrink_list) {
5086 struct drm_device *dev = dev_priv->dev;
5087
5088 if (! mutex_trylock(&dev->struct_mutex))
5089 continue;
5090
5091 spin_unlock(&shrink_list_lock);
5092
5093 i915_gem_retire_requests(dev);
5094
5095 list_for_each_entry_safe(obj_priv, next_obj,
5096 &dev_priv->mm.inactive_list,
5097 list) {
5098 if (i915_gem_object_is_purgeable(obj_priv)) {
963b4836 5099 i915_gem_object_unbind(obj_priv->obj);
31169714
CW
5100 if (--nr_to_scan <= 0)
5101 break;
5102 }
5103 }
5104
5105 spin_lock(&shrink_list_lock);
5106 mutex_unlock(&dev->struct_mutex);
5107
963b4836
CW
5108 would_deadlock = 0;
5109
31169714
CW
5110 if (nr_to_scan <= 0)
5111 break;
5112 }
5113
5114 /* second pass, evict/count anything still on the inactive list */
5115 list_for_each_entry_safe(dev_priv, next_dev,
5116 &shrink_list, mm.shrink_list) {
5117 struct drm_device *dev = dev_priv->dev;
5118
5119 if (! mutex_trylock(&dev->struct_mutex))
5120 continue;
5121
5122 spin_unlock(&shrink_list_lock);
5123
5124 list_for_each_entry_safe(obj_priv, next_obj,
5125 &dev_priv->mm.inactive_list,
5126 list) {
5127 if (nr_to_scan > 0) {
963b4836 5128 i915_gem_object_unbind(obj_priv->obj);
31169714
CW
5129 nr_to_scan--;
5130 } else
5131 cnt++;
5132 }
5133
5134 spin_lock(&shrink_list_lock);
5135 mutex_unlock(&dev->struct_mutex);
5136
5137 would_deadlock = 0;
5138 }
5139
5140 spin_unlock(&shrink_list_lock);
5141
5142 if (would_deadlock)
5143 return -1;
5144 else if (cnt > 0)
5145 return (cnt / 100) * sysctl_vfs_cache_pressure;
5146 else
5147 return 0;
5148}
5149
5150static struct shrinker shrinker = {
5151 .shrink = i915_gem_shrink,
5152 .seeks = DEFAULT_SEEKS,
5153};
5154
5155__init void
5156i915_gem_shrinker_init(void)
5157{
5158 register_shrinker(&shrinker);
5159}
5160
5161__exit void
5162i915_gem_shrinker_exit(void)
5163{
5164 unregister_shrinker(&shrinker);
5165}