]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Use Write-Through cacheing for the display plane on Iris
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39 39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
41 bool force);
07fe0b12
BW
42static __must_check int
43i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
44 struct i915_address_space *vm,
45 unsigned alignment,
46 bool map_and_fenceable,
47 bool nonblocking);
05394f39
CW
48static int i915_gem_phys_pwrite(struct drm_device *dev,
49 struct drm_i915_gem_object *obj,
71acb5eb 50 struct drm_i915_gem_pwrite *args,
05394f39 51 struct drm_file *file);
673a394b 52
61050808
CW
53static void i915_gem_write_fence(struct drm_device *dev, int reg,
54 struct drm_i915_gem_object *obj);
55static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
56 struct drm_i915_fence_reg *fence,
57 bool enable);
58
17250b71 59static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 60 struct shrink_control *sc);
6c085a72
CW
61static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
62static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 63static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 64
c76ce038
CW
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
2c22569b
CW
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
61050808
CW
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
5d82e3e6 87 obj->fence_dirty = false;
61050808
CW
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
73aa808f
CW
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
c20e8355 104 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
c20e8355 107 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108}
109
21dd3734 110static int
33196ded 111i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 112{
30dbf0c0
CW
113 int ret;
114
7abb690a
DV
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
1f83fee0 117 if (EXIT_COND)
30dbf0c0
CW
118 return 0;
119
0a6759c6
DV
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
1f83fee0
DV
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
0a6759c6
DV
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
30dbf0c0 132 return ret;
0a6759c6 133 }
1f83fee0 134#undef EXIT_COND
30dbf0c0 135
21dd3734 136 return 0;
30dbf0c0
CW
137}
138
54cf91dc 139int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 140{
33196ded 141 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
142 int ret;
143
33196ded 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
23bc5982 152 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
153 return 0;
154}
30dbf0c0 155
7d1c4804 156static inline bool
05394f39 157i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 158{
9843877d 159 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
160}
161
79e53945
JB
162int
163i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 164 struct drm_file *file)
79e53945 165{
93d18799 166 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 167 struct drm_i915_gem_init *args = data;
2021746e 168
7bb6fb8d
DV
169 if (drm_core_check_feature(dev, DRIVER_MODESET))
170 return -ENODEV;
171
2021746e
CW
172 if (args->gtt_start >= args->gtt_end ||
173 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174 return -EINVAL;
79e53945 175
f534bc0b
DV
176 /* GEM with user mode setting was never supported on ilk and later. */
177 if (INTEL_INFO(dev)->gen >= 5)
178 return -ENODEV;
179
79e53945 180 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
181 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182 args->gtt_end);
93d18799 183 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
184 mutex_unlock(&dev->struct_mutex);
185
2021746e 186 return 0;
673a394b
EA
187}
188
5a125c3c
EA
189int
190i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 191 struct drm_file *file)
5a125c3c 192{
73aa808f 193 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 194 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
195 struct drm_i915_gem_object *obj;
196 size_t pinned;
5a125c3c 197
6299f992 198 pinned = 0;
73aa808f 199 mutex_lock(&dev->struct_mutex);
35c20a60 200 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1b50247a 201 if (obj->pin_count)
f343c5f6 202 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 203 mutex_unlock(&dev->struct_mutex);
5a125c3c 204
853ba5d2 205 args->aper_size = dev_priv->gtt.base.total;
0206e353 206 args->aper_available_size = args->aper_size - pinned;
6299f992 207
5a125c3c
EA
208 return 0;
209}
210
42dcedd4
CW
211void *i915_gem_object_alloc(struct drm_device *dev)
212{
213 struct drm_i915_private *dev_priv = dev->dev_private;
214 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
215}
216
217void i915_gem_object_free(struct drm_i915_gem_object *obj)
218{
219 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
220 kmem_cache_free(dev_priv->slab, obj);
221}
222
ff72145b
DA
223static int
224i915_gem_create(struct drm_file *file,
225 struct drm_device *dev,
226 uint64_t size,
227 uint32_t *handle_p)
673a394b 228{
05394f39 229 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
230 int ret;
231 u32 handle;
673a394b 232
ff72145b 233 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
234 if (size == 0)
235 return -EINVAL;
673a394b
EA
236
237 /* Allocate the new object */
ff72145b 238 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
239 if (obj == NULL)
240 return -ENOMEM;
241
05394f39 242 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 243 /* drop reference from allocate - handle holds it now */
d861e338
DV
244 drm_gem_object_unreference_unlocked(&obj->base);
245 if (ret)
246 return ret;
202f2fef 247
ff72145b 248 *handle_p = handle;
673a394b
EA
249 return 0;
250}
251
ff72145b
DA
252int
253i915_gem_dumb_create(struct drm_file *file,
254 struct drm_device *dev,
255 struct drm_mode_create_dumb *args)
256{
257 /* have to work out size/pitch and return them */
ed0291fd 258 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
259 args->size = args->pitch * args->height;
260 return i915_gem_create(file, dev,
261 args->size, &args->handle);
262}
263
264int i915_gem_dumb_destroy(struct drm_file *file,
265 struct drm_device *dev,
266 uint32_t handle)
267{
268 return drm_gem_handle_delete(file, handle);
269}
270
271/**
272 * Creates a new mm object and returns a handle to it.
273 */
274int
275i915_gem_create_ioctl(struct drm_device *dev, void *data,
276 struct drm_file *file)
277{
278 struct drm_i915_gem_create *args = data;
63ed2cb2 279
ff72145b
DA
280 return i915_gem_create(file, dev,
281 args->size, &args->handle);
282}
283
8461d226
DV
284static inline int
285__copy_to_user_swizzled(char __user *cpu_vaddr,
286 const char *gpu_vaddr, int gpu_offset,
287 int length)
288{
289 int ret, cpu_offset = 0;
290
291 while (length > 0) {
292 int cacheline_end = ALIGN(gpu_offset + 1, 64);
293 int this_length = min(cacheline_end - gpu_offset, length);
294 int swizzled_gpu_offset = gpu_offset ^ 64;
295
296 ret = __copy_to_user(cpu_vaddr + cpu_offset,
297 gpu_vaddr + swizzled_gpu_offset,
298 this_length);
299 if (ret)
300 return ret + length;
301
302 cpu_offset += this_length;
303 gpu_offset += this_length;
304 length -= this_length;
305 }
306
307 return 0;
308}
309
8c59967c 310static inline int
4f0c7cfb
BW
311__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
312 const char __user *cpu_vaddr,
8c59967c
DV
313 int length)
314{
315 int ret, cpu_offset = 0;
316
317 while (length > 0) {
318 int cacheline_end = ALIGN(gpu_offset + 1, 64);
319 int this_length = min(cacheline_end - gpu_offset, length);
320 int swizzled_gpu_offset = gpu_offset ^ 64;
321
322 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
323 cpu_vaddr + cpu_offset,
324 this_length);
325 if (ret)
326 return ret + length;
327
328 cpu_offset += this_length;
329 gpu_offset += this_length;
330 length -= this_length;
331 }
332
333 return 0;
334}
335
d174bd64
DV
336/* Per-page copy function for the shmem pread fastpath.
337 * Flushes invalid cachelines before reading the target if
338 * needs_clflush is set. */
eb01459f 339static int
d174bd64
DV
340shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
341 char __user *user_data,
342 bool page_do_bit17_swizzling, bool needs_clflush)
343{
344 char *vaddr;
345 int ret;
346
e7e58eb5 347 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
348 return -EINVAL;
349
350 vaddr = kmap_atomic(page);
351 if (needs_clflush)
352 drm_clflush_virt_range(vaddr + shmem_page_offset,
353 page_length);
354 ret = __copy_to_user_inatomic(user_data,
355 vaddr + shmem_page_offset,
356 page_length);
357 kunmap_atomic(vaddr);
358
f60d7f0c 359 return ret ? -EFAULT : 0;
d174bd64
DV
360}
361
23c18c71
DV
362static void
363shmem_clflush_swizzled_range(char *addr, unsigned long length,
364 bool swizzled)
365{
e7e58eb5 366 if (unlikely(swizzled)) {
23c18c71
DV
367 unsigned long start = (unsigned long) addr;
368 unsigned long end = (unsigned long) addr + length;
369
370 /* For swizzling simply ensure that we always flush both
371 * channels. Lame, but simple and it works. Swizzled
372 * pwrite/pread is far from a hotpath - current userspace
373 * doesn't use it at all. */
374 start = round_down(start, 128);
375 end = round_up(end, 128);
376
377 drm_clflush_virt_range((void *)start, end - start);
378 } else {
379 drm_clflush_virt_range(addr, length);
380 }
381
382}
383
d174bd64
DV
384/* Only difference to the fast-path function is that this can handle bit17
385 * and uses non-atomic copy and kmap functions. */
386static int
387shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
388 char __user *user_data,
389 bool page_do_bit17_swizzling, bool needs_clflush)
390{
391 char *vaddr;
392 int ret;
393
394 vaddr = kmap(page);
395 if (needs_clflush)
23c18c71
DV
396 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
397 page_length,
398 page_do_bit17_swizzling);
d174bd64
DV
399
400 if (page_do_bit17_swizzling)
401 ret = __copy_to_user_swizzled(user_data,
402 vaddr, shmem_page_offset,
403 page_length);
404 else
405 ret = __copy_to_user(user_data,
406 vaddr + shmem_page_offset,
407 page_length);
408 kunmap(page);
409
f60d7f0c 410 return ret ? - EFAULT : 0;
d174bd64
DV
411}
412
eb01459f 413static int
dbf7bff0
DV
414i915_gem_shmem_pread(struct drm_device *dev,
415 struct drm_i915_gem_object *obj,
416 struct drm_i915_gem_pread *args,
417 struct drm_file *file)
eb01459f 418{
8461d226 419 char __user *user_data;
eb01459f 420 ssize_t remain;
8461d226 421 loff_t offset;
eb2c0c81 422 int shmem_page_offset, page_length, ret = 0;
8461d226 423 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 424 int prefaulted = 0;
8489731c 425 int needs_clflush = 0;
67d5a50c 426 struct sg_page_iter sg_iter;
eb01459f 427
2bb4629a 428 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
429 remain = args->size;
430
8461d226 431 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 432
8489731c
DV
433 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
434 /* If we're not in the cpu read domain, set ourself into the gtt
435 * read domain and manually flush cachelines (if required). This
436 * optimizes for the case when the gpu will dirty the data
437 * anyway again before the next pread happens. */
c76ce038 438 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
9843877d 439 if (i915_gem_obj_bound_any(obj)) {
6c085a72
CW
440 ret = i915_gem_object_set_to_gtt_domain(obj, false);
441 if (ret)
442 return ret;
443 }
8489731c 444 }
eb01459f 445
f60d7f0c
CW
446 ret = i915_gem_object_get_pages(obj);
447 if (ret)
448 return ret;
449
450 i915_gem_object_pin_pages(obj);
451
8461d226 452 offset = args->offset;
eb01459f 453
67d5a50c
ID
454 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
455 offset >> PAGE_SHIFT) {
2db76d7c 456 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
457
458 if (remain <= 0)
459 break;
460
eb01459f
EA
461 /* Operation in this page
462 *
eb01459f 463 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
464 * page_length = bytes to copy for this page
465 */
c8cbbb8b 466 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
467 page_length = remain;
468 if ((shmem_page_offset + page_length) > PAGE_SIZE)
469 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 470
8461d226
DV
471 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
472 (page_to_phys(page) & (1 << 17)) != 0;
473
d174bd64
DV
474 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
475 user_data, page_do_bit17_swizzling,
476 needs_clflush);
477 if (ret == 0)
478 goto next_page;
dbf7bff0 479
dbf7bff0
DV
480 mutex_unlock(&dev->struct_mutex);
481
0b74b508 482 if (likely(!i915_prefault_disable) && !prefaulted) {
f56f821f 483 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
484 /* Userspace is tricking us, but we've already clobbered
485 * its pages with the prefault and promised to write the
486 * data up to the first fault. Hence ignore any errors
487 * and just continue. */
488 (void)ret;
489 prefaulted = 1;
490 }
eb01459f 491
d174bd64
DV
492 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
493 user_data, page_do_bit17_swizzling,
494 needs_clflush);
eb01459f 495
dbf7bff0 496 mutex_lock(&dev->struct_mutex);
f60d7f0c 497
dbf7bff0 498next_page:
e5281ccd 499 mark_page_accessed(page);
e5281ccd 500
f60d7f0c 501 if (ret)
8461d226 502 goto out;
8461d226 503
eb01459f 504 remain -= page_length;
8461d226 505 user_data += page_length;
eb01459f
EA
506 offset += page_length;
507 }
508
4f27b75d 509out:
f60d7f0c
CW
510 i915_gem_object_unpin_pages(obj);
511
eb01459f
EA
512 return ret;
513}
514
673a394b
EA
515/**
516 * Reads data from the object referenced by handle.
517 *
518 * On error, the contents of *data are undefined.
519 */
520int
521i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 522 struct drm_file *file)
673a394b
EA
523{
524 struct drm_i915_gem_pread *args = data;
05394f39 525 struct drm_i915_gem_object *obj;
35b62a89 526 int ret = 0;
673a394b 527
51311d0a
CW
528 if (args->size == 0)
529 return 0;
530
531 if (!access_ok(VERIFY_WRITE,
2bb4629a 532 to_user_ptr(args->data_ptr),
51311d0a
CW
533 args->size))
534 return -EFAULT;
535
4f27b75d 536 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 537 if (ret)
4f27b75d 538 return ret;
673a394b 539
05394f39 540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 541 if (&obj->base == NULL) {
1d7cfea1
CW
542 ret = -ENOENT;
543 goto unlock;
4f27b75d 544 }
673a394b 545
7dcd2499 546 /* Bounds check source. */
05394f39
CW
547 if (args->offset > obj->base.size ||
548 args->size > obj->base.size - args->offset) {
ce9d419d 549 ret = -EINVAL;
35b62a89 550 goto out;
ce9d419d
CW
551 }
552
1286ff73
DV
553 /* prime objects have no backing filp to GEM pread/pwrite
554 * pages from.
555 */
556 if (!obj->base.filp) {
557 ret = -EINVAL;
558 goto out;
559 }
560
db53a302
CW
561 trace_i915_gem_object_pread(obj, args->offset, args->size);
562
dbf7bff0 563 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 564
35b62a89 565out:
05394f39 566 drm_gem_object_unreference(&obj->base);
1d7cfea1 567unlock:
4f27b75d 568 mutex_unlock(&dev->struct_mutex);
eb01459f 569 return ret;
673a394b
EA
570}
571
0839ccb8
KP
572/* This is the fast write path which cannot handle
573 * page faults in the source data
9b7530cc 574 */
0839ccb8
KP
575
576static inline int
577fast_user_write(struct io_mapping *mapping,
578 loff_t page_base, int page_offset,
579 char __user *user_data,
580 int length)
9b7530cc 581{
4f0c7cfb
BW
582 void __iomem *vaddr_atomic;
583 void *vaddr;
0839ccb8 584 unsigned long unwritten;
9b7530cc 585
3e4d3af5 586 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
587 /* We can use the cpu mem copy function because this is X86. */
588 vaddr = (void __force*)vaddr_atomic + page_offset;
589 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 590 user_data, length);
3e4d3af5 591 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 592 return unwritten;
0839ccb8
KP
593}
594
3de09aa3
EA
595/**
596 * This is the fast pwrite path, where we copy the data directly from the
597 * user into the GTT, uncached.
598 */
673a394b 599static int
05394f39
CW
600i915_gem_gtt_pwrite_fast(struct drm_device *dev,
601 struct drm_i915_gem_object *obj,
3de09aa3 602 struct drm_i915_gem_pwrite *args,
05394f39 603 struct drm_file *file)
673a394b 604{
0839ccb8 605 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 606 ssize_t remain;
0839ccb8 607 loff_t offset, page_base;
673a394b 608 char __user *user_data;
935aaa69
DV
609 int page_offset, page_length, ret;
610
c37e2204 611 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
935aaa69
DV
612 if (ret)
613 goto out;
614
615 ret = i915_gem_object_set_to_gtt_domain(obj, true);
616 if (ret)
617 goto out_unpin;
618
619 ret = i915_gem_object_put_fence(obj);
620 if (ret)
621 goto out_unpin;
673a394b 622
2bb4629a 623 user_data = to_user_ptr(args->data_ptr);
673a394b 624 remain = args->size;
673a394b 625
f343c5f6 626 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
627
628 while (remain > 0) {
629 /* Operation in this page
630 *
0839ccb8
KP
631 * page_base = page offset within aperture
632 * page_offset = offset within page
633 * page_length = bytes to copy for this page
673a394b 634 */
c8cbbb8b
CW
635 page_base = offset & PAGE_MASK;
636 page_offset = offset_in_page(offset);
0839ccb8
KP
637 page_length = remain;
638 if ((page_offset + remain) > PAGE_SIZE)
639 page_length = PAGE_SIZE - page_offset;
640
0839ccb8 641 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
642 * source page isn't available. Return the error and we'll
643 * retry in the slow path.
0839ccb8 644 */
5d4545ae 645 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
646 page_offset, user_data, page_length)) {
647 ret = -EFAULT;
648 goto out_unpin;
649 }
673a394b 650
0839ccb8
KP
651 remain -= page_length;
652 user_data += page_length;
653 offset += page_length;
673a394b 654 }
673a394b 655
935aaa69
DV
656out_unpin:
657 i915_gem_object_unpin(obj);
658out:
3de09aa3 659 return ret;
673a394b
EA
660}
661
d174bd64
DV
662/* Per-page copy function for the shmem pwrite fastpath.
663 * Flushes invalid cachelines before writing to the target if
664 * needs_clflush_before is set and flushes out any written cachelines after
665 * writing if needs_clflush is set. */
3043c60c 666static int
d174bd64
DV
667shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
668 char __user *user_data,
669 bool page_do_bit17_swizzling,
670 bool needs_clflush_before,
671 bool needs_clflush_after)
673a394b 672{
d174bd64 673 char *vaddr;
673a394b 674 int ret;
3de09aa3 675
e7e58eb5 676 if (unlikely(page_do_bit17_swizzling))
d174bd64 677 return -EINVAL;
3de09aa3 678
d174bd64
DV
679 vaddr = kmap_atomic(page);
680 if (needs_clflush_before)
681 drm_clflush_virt_range(vaddr + shmem_page_offset,
682 page_length);
683 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
684 user_data,
685 page_length);
686 if (needs_clflush_after)
687 drm_clflush_virt_range(vaddr + shmem_page_offset,
688 page_length);
689 kunmap_atomic(vaddr);
3de09aa3 690
755d2218 691 return ret ? -EFAULT : 0;
3de09aa3
EA
692}
693
d174bd64
DV
694/* Only difference to the fast-path function is that this can handle bit17
695 * and uses non-atomic copy and kmap functions. */
3043c60c 696static int
d174bd64
DV
697shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
698 char __user *user_data,
699 bool page_do_bit17_swizzling,
700 bool needs_clflush_before,
701 bool needs_clflush_after)
673a394b 702{
d174bd64
DV
703 char *vaddr;
704 int ret;
e5281ccd 705
d174bd64 706 vaddr = kmap(page);
e7e58eb5 707 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
708 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
709 page_length,
710 page_do_bit17_swizzling);
d174bd64
DV
711 if (page_do_bit17_swizzling)
712 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
713 user_data,
714 page_length);
d174bd64
DV
715 else
716 ret = __copy_from_user(vaddr + shmem_page_offset,
717 user_data,
718 page_length);
719 if (needs_clflush_after)
23c18c71
DV
720 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721 page_length,
722 page_do_bit17_swizzling);
d174bd64 723 kunmap(page);
40123c1f 724
755d2218 725 return ret ? -EFAULT : 0;
40123c1f
EA
726}
727
40123c1f 728static int
e244a443
DV
729i915_gem_shmem_pwrite(struct drm_device *dev,
730 struct drm_i915_gem_object *obj,
731 struct drm_i915_gem_pwrite *args,
732 struct drm_file *file)
40123c1f 733{
40123c1f 734 ssize_t remain;
8c59967c
DV
735 loff_t offset;
736 char __user *user_data;
eb2c0c81 737 int shmem_page_offset, page_length, ret = 0;
8c59967c 738 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 739 int hit_slowpath = 0;
58642885
DV
740 int needs_clflush_after = 0;
741 int needs_clflush_before = 0;
67d5a50c 742 struct sg_page_iter sg_iter;
40123c1f 743
2bb4629a 744 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
745 remain = args->size;
746
8c59967c 747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 748
58642885
DV
749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 /* If we're not in the cpu write domain, set ourself into the gtt
751 * write domain and manually flush cachelines (if required). This
752 * optimizes for the case when the gpu will use the data
753 * right away and we therefore have to clflush anyway. */
2c22569b 754 needs_clflush_after = cpu_write_needs_clflush(obj);
9843877d 755 if (i915_gem_obj_bound_any(obj)) {
6c085a72
CW
756 ret = i915_gem_object_set_to_gtt_domain(obj, true);
757 if (ret)
758 return ret;
759 }
58642885 760 }
c76ce038
CW
761 /* Same trick applies to invalidate partially written cachelines read
762 * before writing. */
763 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
764 needs_clflush_before =
765 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 766
755d2218
CW
767 ret = i915_gem_object_get_pages(obj);
768 if (ret)
769 return ret;
770
771 i915_gem_object_pin_pages(obj);
772
673a394b 773 offset = args->offset;
05394f39 774 obj->dirty = 1;
673a394b 775
67d5a50c
ID
776 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
777 offset >> PAGE_SHIFT) {
2db76d7c 778 struct page *page = sg_page_iter_page(&sg_iter);
58642885 779 int partial_cacheline_write;
e5281ccd 780
9da3da66
CW
781 if (remain <= 0)
782 break;
783
40123c1f
EA
784 /* Operation in this page
785 *
40123c1f 786 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
787 * page_length = bytes to copy for this page
788 */
c8cbbb8b 789 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
790
791 page_length = remain;
792 if ((shmem_page_offset + page_length) > PAGE_SIZE)
793 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 794
58642885
DV
795 /* If we don't overwrite a cacheline completely we need to be
796 * careful to have up-to-date data by first clflushing. Don't
797 * overcomplicate things and flush the entire patch. */
798 partial_cacheline_write = needs_clflush_before &&
799 ((shmem_page_offset | page_length)
800 & (boot_cpu_data.x86_clflush_size - 1));
801
8c59967c
DV
802 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803 (page_to_phys(page) & (1 << 17)) != 0;
804
d174bd64
DV
805 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806 user_data, page_do_bit17_swizzling,
807 partial_cacheline_write,
808 needs_clflush_after);
809 if (ret == 0)
810 goto next_page;
e244a443
DV
811
812 hit_slowpath = 1;
e244a443 813 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
814 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
815 user_data, page_do_bit17_swizzling,
816 partial_cacheline_write,
817 needs_clflush_after);
40123c1f 818
e244a443 819 mutex_lock(&dev->struct_mutex);
755d2218 820
e244a443 821next_page:
e5281ccd
CW
822 set_page_dirty(page);
823 mark_page_accessed(page);
e5281ccd 824
755d2218 825 if (ret)
8c59967c 826 goto out;
8c59967c 827
40123c1f 828 remain -= page_length;
8c59967c 829 user_data += page_length;
40123c1f 830 offset += page_length;
673a394b
EA
831 }
832
fbd5a26d 833out:
755d2218
CW
834 i915_gem_object_unpin_pages(obj);
835
e244a443 836 if (hit_slowpath) {
8dcf015e
DV
837 /*
838 * Fixup: Flush cpu caches in case we didn't flush the dirty
839 * cachelines in-line while writing and the object moved
840 * out of the cpu write domain while we've dropped the lock.
841 */
842 if (!needs_clflush_after &&
843 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
844 if (i915_gem_clflush_object(obj, obj->pin_display))
845 i915_gem_chipset_flush(dev);
e244a443 846 }
8c59967c 847 }
673a394b 848
58642885 849 if (needs_clflush_after)
e76e9aeb 850 i915_gem_chipset_flush(dev);
58642885 851
40123c1f 852 return ret;
673a394b
EA
853}
854
855/**
856 * Writes data to the object referenced by handle.
857 *
858 * On error, the contents of the buffer that were to be modified are undefined.
859 */
860int
861i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 862 struct drm_file *file)
673a394b
EA
863{
864 struct drm_i915_gem_pwrite *args = data;
05394f39 865 struct drm_i915_gem_object *obj;
51311d0a
CW
866 int ret;
867
868 if (args->size == 0)
869 return 0;
870
871 if (!access_ok(VERIFY_READ,
2bb4629a 872 to_user_ptr(args->data_ptr),
51311d0a
CW
873 args->size))
874 return -EFAULT;
875
0b74b508
XZ
876 if (likely(!i915_prefault_disable)) {
877 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
878 args->size);
879 if (ret)
880 return -EFAULT;
881 }
673a394b 882
fbd5a26d 883 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 884 if (ret)
fbd5a26d 885 return ret;
1d7cfea1 886
05394f39 887 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 888 if (&obj->base == NULL) {
1d7cfea1
CW
889 ret = -ENOENT;
890 goto unlock;
fbd5a26d 891 }
673a394b 892
7dcd2499 893 /* Bounds check destination. */
05394f39
CW
894 if (args->offset > obj->base.size ||
895 args->size > obj->base.size - args->offset) {
ce9d419d 896 ret = -EINVAL;
35b62a89 897 goto out;
ce9d419d
CW
898 }
899
1286ff73
DV
900 /* prime objects have no backing filp to GEM pread/pwrite
901 * pages from.
902 */
903 if (!obj->base.filp) {
904 ret = -EINVAL;
905 goto out;
906 }
907
db53a302
CW
908 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
909
935aaa69 910 ret = -EFAULT;
673a394b
EA
911 /* We can only do the GTT pwrite on untiled buffers, as otherwise
912 * it would end up going through the fenced access, and we'll get
913 * different detiling behavior between reading and writing.
914 * pread/pwrite currently are reading and writing from the CPU
915 * perspective, requiring manual detiling by the client.
916 */
5c0480f2 917 if (obj->phys_obj) {
fbd5a26d 918 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
919 goto out;
920 }
921
2c22569b
CW
922 if (obj->tiling_mode == I915_TILING_NONE &&
923 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
924 cpu_write_needs_clflush(obj)) {
fbd5a26d 925 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
926 /* Note that the gtt paths might fail with non-page-backed user
927 * pointers (e.g. gtt mappings when moving data between
928 * textures). Fallback to the shmem path in that case. */
fbd5a26d 929 }
673a394b 930
86a1ee26 931 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 932 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 933
35b62a89 934out:
05394f39 935 drm_gem_object_unreference(&obj->base);
1d7cfea1 936unlock:
fbd5a26d 937 mutex_unlock(&dev->struct_mutex);
673a394b
EA
938 return ret;
939}
940
b361237b 941int
33196ded 942i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
943 bool interruptible)
944{
1f83fee0 945 if (i915_reset_in_progress(error)) {
b361237b
CW
946 /* Non-interruptible callers can't handle -EAGAIN, hence return
947 * -EIO unconditionally for these. */
948 if (!interruptible)
949 return -EIO;
950
1f83fee0
DV
951 /* Recovery complete, but the reset failed ... */
952 if (i915_terminally_wedged(error))
b361237b
CW
953 return -EIO;
954
955 return -EAGAIN;
956 }
957
958 return 0;
959}
960
961/*
962 * Compare seqno against outstanding lazy request. Emit a request if they are
963 * equal.
964 */
965static int
966i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
967{
968 int ret;
969
970 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
971
972 ret = 0;
973 if (seqno == ring->outstanding_lazy_request)
0025c077 974 ret = i915_add_request(ring, NULL);
b361237b
CW
975
976 return ret;
977}
978
979/**
980 * __wait_seqno - wait until execution of seqno has finished
981 * @ring: the ring expected to report seqno
982 * @seqno: duh!
f69061be 983 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
984 * @interruptible: do an interruptible wait (normally yes)
985 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
986 *
f69061be
DV
987 * Note: It is of utmost importance that the passed in seqno and reset_counter
988 * values have been read by the caller in an smp safe manner. Where read-side
989 * locks are involved, it is sufficient to read the reset_counter before
990 * unlocking the lock that protects the seqno. For lockless tricks, the
991 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
992 * inserted.
993 *
b361237b
CW
994 * Returns 0 if the seqno was found within the alloted time. Else returns the
995 * errno with remaining time filled in timeout argument.
996 */
997static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 998 unsigned reset_counter,
b361237b
CW
999 bool interruptible, struct timespec *timeout)
1000{
1001 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1002 struct timespec before, now, wait_time={1,0};
1003 unsigned long timeout_jiffies;
1004 long end;
1005 bool wait_forever = true;
1006 int ret;
1007
1008 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1009 return 0;
1010
1011 trace_i915_gem_request_wait_begin(ring, seqno);
1012
1013 if (timeout != NULL) {
1014 wait_time = *timeout;
1015 wait_forever = false;
1016 }
1017
e054cc39 1018 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
b361237b
CW
1019
1020 if (WARN_ON(!ring->irq_get(ring)))
1021 return -ENODEV;
1022
1023 /* Record current time in case interrupted by signal, or wedged * */
1024 getrawmonotonic(&before);
1025
1026#define EXIT_COND \
1027 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
f69061be
DV
1028 i915_reset_in_progress(&dev_priv->gpu_error) || \
1029 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
b361237b
CW
1030 do {
1031 if (interruptible)
1032 end = wait_event_interruptible_timeout(ring->irq_queue,
1033 EXIT_COND,
1034 timeout_jiffies);
1035 else
1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 timeout_jiffies);
1038
f69061be
DV
1039 /* We need to check whether any gpu reset happened in between
1040 * the caller grabbing the seqno and now ... */
1041 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1042 end = -EAGAIN;
1043
1044 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1045 * gone. */
33196ded 1046 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1047 if (ret)
1048 end = ret;
1049 } while (end == 0 && wait_forever);
1050
1051 getrawmonotonic(&now);
1052
1053 ring->irq_put(ring);
1054 trace_i915_gem_request_wait_end(ring, seqno);
1055#undef EXIT_COND
1056
1057 if (timeout) {
1058 struct timespec sleep_time = timespec_sub(now, before);
1059 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1060 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1061 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1062 }
1063
1064 switch (end) {
1065 case -EIO:
1066 case -EAGAIN: /* Wedged */
1067 case -ERESTARTSYS: /* Signal */
1068 return (int)end;
1069 case 0: /* Timeout */
b361237b
CW
1070 return -ETIME;
1071 default: /* Completed */
1072 WARN_ON(end < 0); /* We're not aware of other errors */
1073 return 0;
1074 }
1075}
1076
1077/**
1078 * Waits for a sequence number to be signaled, and cleans up the
1079 * request and object lists appropriately for that event.
1080 */
1081int
1082i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1083{
1084 struct drm_device *dev = ring->dev;
1085 struct drm_i915_private *dev_priv = dev->dev_private;
1086 bool interruptible = dev_priv->mm.interruptible;
1087 int ret;
1088
1089 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1090 BUG_ON(seqno == 0);
1091
33196ded 1092 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1093 if (ret)
1094 return ret;
1095
1096 ret = i915_gem_check_olr(ring, seqno);
1097 if (ret)
1098 return ret;
1099
f69061be
DV
1100 return __wait_seqno(ring, seqno,
1101 atomic_read(&dev_priv->gpu_error.reset_counter),
1102 interruptible, NULL);
b361237b
CW
1103}
1104
d26e3af8
CW
1105static int
1106i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1107 struct intel_ring_buffer *ring)
1108{
1109 i915_gem_retire_requests_ring(ring);
1110
1111 /* Manually manage the write flush as we may have not yet
1112 * retired the buffer.
1113 *
1114 * Note that the last_write_seqno is always the earlier of
1115 * the two (read/write) seqno, so if we haved successfully waited,
1116 * we know we have passed the last write.
1117 */
1118 obj->last_write_seqno = 0;
1119 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1120
1121 return 0;
1122}
1123
b361237b
CW
1124/**
1125 * Ensures that all rendering to the object has completed and the object is
1126 * safe to unbind from the GTT or access from the CPU.
1127 */
1128static __must_check int
1129i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1130 bool readonly)
1131{
1132 struct intel_ring_buffer *ring = obj->ring;
1133 u32 seqno;
1134 int ret;
1135
1136 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1137 if (seqno == 0)
1138 return 0;
1139
1140 ret = i915_wait_seqno(ring, seqno);
1141 if (ret)
1142 return ret;
1143
d26e3af8 1144 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1145}
1146
3236f57a
CW
1147/* A nonblocking variant of the above wait. This is a highly dangerous routine
1148 * as the object state may change during this call.
1149 */
1150static __must_check int
1151i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1152 bool readonly)
1153{
1154 struct drm_device *dev = obj->base.dev;
1155 struct drm_i915_private *dev_priv = dev->dev_private;
1156 struct intel_ring_buffer *ring = obj->ring;
f69061be 1157 unsigned reset_counter;
3236f57a
CW
1158 u32 seqno;
1159 int ret;
1160
1161 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1162 BUG_ON(!dev_priv->mm.interruptible);
1163
1164 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1165 if (seqno == 0)
1166 return 0;
1167
33196ded 1168 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1169 if (ret)
1170 return ret;
1171
1172 ret = i915_gem_check_olr(ring, seqno);
1173 if (ret)
1174 return ret;
1175
f69061be 1176 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1177 mutex_unlock(&dev->struct_mutex);
f69061be 1178 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3236f57a 1179 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1180 if (ret)
1181 return ret;
3236f57a 1182
d26e3af8 1183 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1184}
1185
673a394b 1186/**
2ef7eeaa
EA
1187 * Called when user space prepares to use an object with the CPU, either
1188 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1189 */
1190int
1191i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1192 struct drm_file *file)
673a394b
EA
1193{
1194 struct drm_i915_gem_set_domain *args = data;
05394f39 1195 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1196 uint32_t read_domains = args->read_domains;
1197 uint32_t write_domain = args->write_domain;
673a394b
EA
1198 int ret;
1199
2ef7eeaa 1200 /* Only handle setting domains to types used by the CPU. */
21d509e3 1201 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1202 return -EINVAL;
1203
21d509e3 1204 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1205 return -EINVAL;
1206
1207 /* Having something in the write domain implies it's in the read
1208 * domain, and only that read domain. Enforce that in the request.
1209 */
1210 if (write_domain != 0 && read_domains != write_domain)
1211 return -EINVAL;
1212
76c1dec1 1213 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1214 if (ret)
76c1dec1 1215 return ret;
1d7cfea1 1216
05394f39 1217 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1218 if (&obj->base == NULL) {
1d7cfea1
CW
1219 ret = -ENOENT;
1220 goto unlock;
76c1dec1 1221 }
673a394b 1222
3236f57a
CW
1223 /* Try to flush the object off the GPU without holding the lock.
1224 * We will repeat the flush holding the lock in the normal manner
1225 * to catch cases where we are gazumped.
1226 */
1227 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1228 if (ret)
1229 goto unref;
1230
2ef7eeaa
EA
1231 if (read_domains & I915_GEM_DOMAIN_GTT) {
1232 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1233
1234 /* Silently promote "you're not bound, there was nothing to do"
1235 * to success, since the client was just asking us to
1236 * make sure everything was done.
1237 */
1238 if (ret == -EINVAL)
1239 ret = 0;
2ef7eeaa 1240 } else {
e47c68e9 1241 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1242 }
1243
3236f57a 1244unref:
05394f39 1245 drm_gem_object_unreference(&obj->base);
1d7cfea1 1246unlock:
673a394b
EA
1247 mutex_unlock(&dev->struct_mutex);
1248 return ret;
1249}
1250
1251/**
1252 * Called when user space has done writes to this buffer
1253 */
1254int
1255i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1256 struct drm_file *file)
673a394b
EA
1257{
1258 struct drm_i915_gem_sw_finish *args = data;
05394f39 1259 struct drm_i915_gem_object *obj;
673a394b
EA
1260 int ret = 0;
1261
76c1dec1 1262 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1263 if (ret)
76c1dec1 1264 return ret;
1d7cfea1 1265
05394f39 1266 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1267 if (&obj->base == NULL) {
1d7cfea1
CW
1268 ret = -ENOENT;
1269 goto unlock;
673a394b
EA
1270 }
1271
673a394b 1272 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1273 if (obj->pin_display)
1274 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1275
05394f39 1276 drm_gem_object_unreference(&obj->base);
1d7cfea1 1277unlock:
673a394b
EA
1278 mutex_unlock(&dev->struct_mutex);
1279 return ret;
1280}
1281
1282/**
1283 * Maps the contents of an object, returning the address it is mapped
1284 * into.
1285 *
1286 * While the mapping holds a reference on the contents of the object, it doesn't
1287 * imply a ref on the object itself.
1288 */
1289int
1290i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1291 struct drm_file *file)
673a394b
EA
1292{
1293 struct drm_i915_gem_mmap *args = data;
1294 struct drm_gem_object *obj;
673a394b
EA
1295 unsigned long addr;
1296
05394f39 1297 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1298 if (obj == NULL)
bf79cb91 1299 return -ENOENT;
673a394b 1300
1286ff73
DV
1301 /* prime objects have no backing filp to GEM mmap
1302 * pages from.
1303 */
1304 if (!obj->filp) {
1305 drm_gem_object_unreference_unlocked(obj);
1306 return -EINVAL;
1307 }
1308
6be5ceb0 1309 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1310 PROT_READ | PROT_WRITE, MAP_SHARED,
1311 args->offset);
bc9025bd 1312 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1313 if (IS_ERR((void *)addr))
1314 return addr;
1315
1316 args->addr_ptr = (uint64_t) addr;
1317
1318 return 0;
1319}
1320
de151cf6
JB
1321/**
1322 * i915_gem_fault - fault a page into the GTT
1323 * vma: VMA in question
1324 * vmf: fault info
1325 *
1326 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1327 * from userspace. The fault handler takes care of binding the object to
1328 * the GTT (if needed), allocating and programming a fence register (again,
1329 * only if needed based on whether the old reg is still valid or the object
1330 * is tiled) and inserting a new PTE into the faulting process.
1331 *
1332 * Note that the faulting process may involve evicting existing objects
1333 * from the GTT and/or fence registers to make room. So performance may
1334 * suffer if the GTT working set is large or there are few fence registers
1335 * left.
1336 */
1337int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1338{
05394f39
CW
1339 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1340 struct drm_device *dev = obj->base.dev;
7d1c4804 1341 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1342 pgoff_t page_offset;
1343 unsigned long pfn;
1344 int ret = 0;
0f973f27 1345 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1346
1347 /* We don't use vmf->pgoff since that has the fake offset */
1348 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1349 PAGE_SHIFT;
1350
d9bc7e9f
CW
1351 ret = i915_mutex_lock_interruptible(dev);
1352 if (ret)
1353 goto out;
a00b10c3 1354
db53a302
CW
1355 trace_i915_gem_object_fault(obj, page_offset, true, write);
1356
eb119bd6
CW
1357 /* Access to snoopable pages through the GTT is incoherent. */
1358 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1359 ret = -EINVAL;
1360 goto unlock;
1361 }
1362
d9bc7e9f 1363 /* Now bind it into the GTT if needed */
c37e2204 1364 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
c9839303
CW
1365 if (ret)
1366 goto unlock;
4a684a41 1367
c9839303
CW
1368 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1369 if (ret)
1370 goto unpin;
74898d7e 1371
06d98131 1372 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1373 if (ret)
c9839303 1374 goto unpin;
7d1c4804 1375
6299f992
CW
1376 obj->fault_mappable = true;
1377
f343c5f6
BW
1378 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1379 pfn >>= PAGE_SHIFT;
1380 pfn += page_offset;
de151cf6
JB
1381
1382 /* Finally, remap it using the new GTT offset */
1383 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1384unpin:
1385 i915_gem_object_unpin(obj);
c715089f 1386unlock:
de151cf6 1387 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1388out:
de151cf6 1389 switch (ret) {
d9bc7e9f 1390 case -EIO:
a9340cca
DV
1391 /* If this -EIO is due to a gpu hang, give the reset code a
1392 * chance to clean up the mess. Otherwise return the proper
1393 * SIGBUS. */
1f83fee0 1394 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1395 return VM_FAULT_SIGBUS;
045e769a 1396 case -EAGAIN:
d9bc7e9f
CW
1397 /* Give the error handler a chance to run and move the
1398 * objects off the GPU active list. Next time we service the
1399 * fault, we should be able to transition the page into the
1400 * GTT without touching the GPU (and so avoid further
1401 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1402 * with coherency, just lost writes.
1403 */
045e769a 1404 set_need_resched();
c715089f
CW
1405 case 0:
1406 case -ERESTARTSYS:
bed636ab 1407 case -EINTR:
e79e0fe3
DR
1408 case -EBUSY:
1409 /*
1410 * EBUSY is ok: this just means that another thread
1411 * already did the job.
1412 */
c715089f 1413 return VM_FAULT_NOPAGE;
de151cf6 1414 case -ENOMEM:
de151cf6 1415 return VM_FAULT_OOM;
a7c2e1aa
DV
1416 case -ENOSPC:
1417 return VM_FAULT_SIGBUS;
de151cf6 1418 default:
a7c2e1aa 1419 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1420 return VM_FAULT_SIGBUS;
de151cf6
JB
1421 }
1422}
1423
901782b2
CW
1424/**
1425 * i915_gem_release_mmap - remove physical page mappings
1426 * @obj: obj in question
1427 *
af901ca1 1428 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1429 * relinquish ownership of the pages back to the system.
1430 *
1431 * It is vital that we remove the page mapping if we have mapped a tiled
1432 * object through the GTT and then lose the fence register due to
1433 * resource pressure. Similarly if the object has been moved out of the
1434 * aperture, than pages mapped into userspace must be revoked. Removing the
1435 * mapping will then trigger a page fault on the next user access, allowing
1436 * fixup by i915_gem_fault().
1437 */
d05ca301 1438void
05394f39 1439i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1440{
6299f992
CW
1441 if (!obj->fault_mappable)
1442 return;
901782b2 1443
f6e47884
CW
1444 if (obj->base.dev->dev_mapping)
1445 unmap_mapping_range(obj->base.dev->dev_mapping,
1446 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1447 obj->base.size, 1);
fb7d516a 1448
6299f992 1449 obj->fault_mappable = false;
901782b2
CW
1450}
1451
0fa87796 1452uint32_t
e28f8711 1453i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1454{
e28f8711 1455 uint32_t gtt_size;
92b88aeb
CW
1456
1457 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1458 tiling_mode == I915_TILING_NONE)
1459 return size;
92b88aeb
CW
1460
1461 /* Previous chips need a power-of-two fence region when tiling */
1462 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1463 gtt_size = 1024*1024;
92b88aeb 1464 else
e28f8711 1465 gtt_size = 512*1024;
92b88aeb 1466
e28f8711
CW
1467 while (gtt_size < size)
1468 gtt_size <<= 1;
92b88aeb 1469
e28f8711 1470 return gtt_size;
92b88aeb
CW
1471}
1472
de151cf6
JB
1473/**
1474 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1475 * @obj: object to check
1476 *
1477 * Return the required GTT alignment for an object, taking into account
5e783301 1478 * potential fence register mapping.
de151cf6 1479 */
d865110c
ID
1480uint32_t
1481i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1482 int tiling_mode, bool fenced)
de151cf6 1483{
de151cf6
JB
1484 /*
1485 * Minimum alignment is 4k (GTT page size), but might be greater
1486 * if a fence register is needed for the object.
1487 */
d865110c 1488 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1489 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1490 return 4096;
1491
a00b10c3
CW
1492 /*
1493 * Previous chips need to be aligned to the size of the smallest
1494 * fence register that can contain the object.
1495 */
e28f8711 1496 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1497}
1498
d8cb5086
CW
1499static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1500{
1501 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1502 int ret;
1503
1504 if (obj->base.map_list.map)
1505 return 0;
1506
da494d7c
DV
1507 dev_priv->mm.shrinker_no_lock_stealing = true;
1508
d8cb5086
CW
1509 ret = drm_gem_create_mmap_offset(&obj->base);
1510 if (ret != -ENOSPC)
da494d7c 1511 goto out;
d8cb5086
CW
1512
1513 /* Badly fragmented mmap space? The only way we can recover
1514 * space is by destroying unwanted objects. We can't randomly release
1515 * mmap_offsets as userspace expects them to be persistent for the
1516 * lifetime of the objects. The closest we can is to release the
1517 * offsets on purgeable objects by truncating it and marking it purged,
1518 * which prevents userspace from ever using that object again.
1519 */
1520 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1521 ret = drm_gem_create_mmap_offset(&obj->base);
1522 if (ret != -ENOSPC)
da494d7c 1523 goto out;
d8cb5086
CW
1524
1525 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1526 ret = drm_gem_create_mmap_offset(&obj->base);
1527out:
1528 dev_priv->mm.shrinker_no_lock_stealing = false;
1529
1530 return ret;
d8cb5086
CW
1531}
1532
1533static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1534{
1535 if (!obj->base.map_list.map)
1536 return;
1537
1538 drm_gem_free_mmap_offset(&obj->base);
1539}
1540
de151cf6 1541int
ff72145b
DA
1542i915_gem_mmap_gtt(struct drm_file *file,
1543 struct drm_device *dev,
1544 uint32_t handle,
1545 uint64_t *offset)
de151cf6 1546{
da761a6e 1547 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1548 struct drm_i915_gem_object *obj;
de151cf6
JB
1549 int ret;
1550
76c1dec1 1551 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1552 if (ret)
76c1dec1 1553 return ret;
de151cf6 1554
ff72145b 1555 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1556 if (&obj->base == NULL) {
1d7cfea1
CW
1557 ret = -ENOENT;
1558 goto unlock;
1559 }
de151cf6 1560
5d4545ae 1561 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1562 ret = -E2BIG;
ff56b0bc 1563 goto out;
da761a6e
CW
1564 }
1565
05394f39 1566 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1567 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1568 ret = -EINVAL;
1569 goto out;
ab18282d
CW
1570 }
1571
d8cb5086
CW
1572 ret = i915_gem_object_create_mmap_offset(obj);
1573 if (ret)
1574 goto out;
de151cf6 1575
ff72145b 1576 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1577
1d7cfea1 1578out:
05394f39 1579 drm_gem_object_unreference(&obj->base);
1d7cfea1 1580unlock:
de151cf6 1581 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1582 return ret;
de151cf6
JB
1583}
1584
ff72145b
DA
1585/**
1586 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1587 * @dev: DRM device
1588 * @data: GTT mapping ioctl data
1589 * @file: GEM object info
1590 *
1591 * Simply returns the fake offset to userspace so it can mmap it.
1592 * The mmap call will end up in drm_gem_mmap(), which will set things
1593 * up so we can get faults in the handler above.
1594 *
1595 * The fault handler will take care of binding the object into the GTT
1596 * (since it may have been evicted to make room for something), allocating
1597 * a fence register, and mapping the appropriate aperture address into
1598 * userspace.
1599 */
1600int
1601i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1602 struct drm_file *file)
1603{
1604 struct drm_i915_gem_mmap_gtt *args = data;
1605
ff72145b
DA
1606 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1607}
1608
225067ee
DV
1609/* Immediately discard the backing storage */
1610static void
1611i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1612{
e5281ccd 1613 struct inode *inode;
e5281ccd 1614
4d6294bf 1615 i915_gem_object_free_mmap_offset(obj);
1286ff73 1616
4d6294bf
CW
1617 if (obj->base.filp == NULL)
1618 return;
e5281ccd 1619
225067ee
DV
1620 /* Our goal here is to return as much of the memory as
1621 * is possible back to the system as we are called from OOM.
1622 * To do this we must instruct the shmfs to drop all of its
1623 * backing pages, *now*.
1624 */
496ad9aa 1625 inode = file_inode(obj->base.filp);
225067ee 1626 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1627
225067ee
DV
1628 obj->madv = __I915_MADV_PURGED;
1629}
e5281ccd 1630
225067ee
DV
1631static inline int
1632i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1633{
1634 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1635}
1636
5cdf5881 1637static void
05394f39 1638i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1639{
90797e6d
ID
1640 struct sg_page_iter sg_iter;
1641 int ret;
1286ff73 1642
05394f39 1643 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1644
6c085a72
CW
1645 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1646 if (ret) {
1647 /* In the event of a disaster, abandon all caches and
1648 * hope for the best.
1649 */
1650 WARN_ON(ret != -EIO);
2c22569b 1651 i915_gem_clflush_object(obj, true);
6c085a72
CW
1652 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1653 }
1654
6dacfd2f 1655 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1656 i915_gem_object_save_bit_17_swizzle(obj);
1657
05394f39
CW
1658 if (obj->madv == I915_MADV_DONTNEED)
1659 obj->dirty = 0;
3ef94daa 1660
90797e6d 1661 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1662 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1663
05394f39 1664 if (obj->dirty)
9da3da66 1665 set_page_dirty(page);
3ef94daa 1666
05394f39 1667 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1668 mark_page_accessed(page);
3ef94daa 1669
9da3da66 1670 page_cache_release(page);
3ef94daa 1671 }
05394f39 1672 obj->dirty = 0;
673a394b 1673
9da3da66
CW
1674 sg_free_table(obj->pages);
1675 kfree(obj->pages);
37e680a1 1676}
6c085a72 1677
dd624afd 1678int
37e680a1
CW
1679i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1680{
1681 const struct drm_i915_gem_object_ops *ops = obj->ops;
1682
2f745ad3 1683 if (obj->pages == NULL)
37e680a1
CW
1684 return 0;
1685
a5570178
CW
1686 if (obj->pages_pin_count)
1687 return -EBUSY;
1688
9843877d 1689 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1690
a2165e31
CW
1691 /* ->put_pages might need to allocate memory for the bit17 swizzle
1692 * array, hence protect them from being reaped by removing them from gtt
1693 * lists early. */
35c20a60 1694 list_del(&obj->global_list);
a2165e31 1695
37e680a1 1696 ops->put_pages(obj);
05394f39 1697 obj->pages = NULL;
37e680a1 1698
6c085a72
CW
1699 if (i915_gem_object_is_purgeable(obj))
1700 i915_gem_object_truncate(obj);
1701
1702 return 0;
1703}
1704
1705static long
93927ca5
DV
1706__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1707 bool purgeable_only)
6c085a72
CW
1708{
1709 struct drm_i915_gem_object *obj, *next;
1710 long count = 0;
1711
1712 list_for_each_entry_safe(obj, next,
1713 &dev_priv->mm.unbound_list,
35c20a60 1714 global_list) {
93927ca5 1715 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1716 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1717 count += obj->base.size >> PAGE_SHIFT;
1718 if (count >= target)
1719 return count;
1720 }
1721 }
1722
07fe0b12
BW
1723 list_for_each_entry_safe(obj, next, &dev_priv->mm.bound_list,
1724 global_list) {
1725 struct i915_vma *vma, *v;
80dcfdbd
BW
1726
1727 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1728 continue;
1729
07fe0b12
BW
1730 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1731 if (i915_vma_unbind(vma))
1732 break;
80dcfdbd
BW
1733
1734 if (!i915_gem_object_put_pages(obj)) {
6c085a72
CW
1735 count += obj->base.size >> PAGE_SHIFT;
1736 if (count >= target)
1737 return count;
1738 }
1739 }
1740
1741 return count;
1742}
1743
93927ca5
DV
1744static long
1745i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1746{
1747 return __i915_gem_shrink(dev_priv, target, true);
1748}
1749
6c085a72
CW
1750static void
1751i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1752{
1753 struct drm_i915_gem_object *obj, *next;
1754
1755 i915_gem_evict_everything(dev_priv->dev);
1756
35c20a60
BW
1757 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1758 global_list)
37e680a1 1759 i915_gem_object_put_pages(obj);
225067ee
DV
1760}
1761
37e680a1 1762static int
6c085a72 1763i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1764{
6c085a72 1765 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1766 int page_count, i;
1767 struct address_space *mapping;
9da3da66
CW
1768 struct sg_table *st;
1769 struct scatterlist *sg;
90797e6d 1770 struct sg_page_iter sg_iter;
e5281ccd 1771 struct page *page;
90797e6d 1772 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1773 gfp_t gfp;
e5281ccd 1774
6c085a72
CW
1775 /* Assert that the object is not currently in any GPU domain. As it
1776 * wasn't in the GTT, there shouldn't be any way it could have been in
1777 * a GPU cache
1778 */
1779 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1780 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1781
9da3da66
CW
1782 st = kmalloc(sizeof(*st), GFP_KERNEL);
1783 if (st == NULL)
1784 return -ENOMEM;
1785
05394f39 1786 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1787 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1788 sg_free_table(st);
1789 kfree(st);
e5281ccd 1790 return -ENOMEM;
9da3da66 1791 }
e5281ccd 1792
9da3da66
CW
1793 /* Get the list of pages out of our struct file. They'll be pinned
1794 * at this point until we release them.
1795 *
1796 * Fail silently without starting the shrinker
1797 */
496ad9aa 1798 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1799 gfp = mapping_gfp_mask(mapping);
caf49191 1800 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1801 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1802 sg = st->sgl;
1803 st->nents = 0;
1804 for (i = 0; i < page_count; i++) {
6c085a72
CW
1805 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1806 if (IS_ERR(page)) {
1807 i915_gem_purge(dev_priv, page_count);
1808 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1809 }
1810 if (IS_ERR(page)) {
1811 /* We've tried hard to allocate the memory by reaping
1812 * our own buffer, now let the real VM do its job and
1813 * go down in flames if truly OOM.
1814 */
caf49191 1815 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1816 gfp |= __GFP_IO | __GFP_WAIT;
1817
1818 i915_gem_shrink_all(dev_priv);
1819 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1820 if (IS_ERR(page))
1821 goto err_pages;
1822
caf49191 1823 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1824 gfp &= ~(__GFP_IO | __GFP_WAIT);
1825 }
1625e7e5
KRW
1826#ifdef CONFIG_SWIOTLB
1827 if (swiotlb_nr_tbl()) {
1828 st->nents++;
1829 sg_set_page(sg, page, PAGE_SIZE, 0);
1830 sg = sg_next(sg);
1831 continue;
1832 }
1833#endif
90797e6d
ID
1834 if (!i || page_to_pfn(page) != last_pfn + 1) {
1835 if (i)
1836 sg = sg_next(sg);
1837 st->nents++;
1838 sg_set_page(sg, page, PAGE_SIZE, 0);
1839 } else {
1840 sg->length += PAGE_SIZE;
1841 }
1842 last_pfn = page_to_pfn(page);
e5281ccd 1843 }
1625e7e5
KRW
1844#ifdef CONFIG_SWIOTLB
1845 if (!swiotlb_nr_tbl())
1846#endif
1847 sg_mark_end(sg);
74ce6b6c
CW
1848 obj->pages = st;
1849
6dacfd2f 1850 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1851 i915_gem_object_do_bit_17_swizzle(obj);
1852
1853 return 0;
1854
1855err_pages:
90797e6d
ID
1856 sg_mark_end(sg);
1857 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1858 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1859 sg_free_table(st);
1860 kfree(st);
e5281ccd 1861 return PTR_ERR(page);
673a394b
EA
1862}
1863
37e680a1
CW
1864/* Ensure that the associated pages are gathered from the backing storage
1865 * and pinned into our object. i915_gem_object_get_pages() may be called
1866 * multiple times before they are released by a single call to
1867 * i915_gem_object_put_pages() - once the pages are no longer referenced
1868 * either as a result of memory pressure (reaping pages under the shrinker)
1869 * or as the object is itself released.
1870 */
1871int
1872i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1873{
1874 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1875 const struct drm_i915_gem_object_ops *ops = obj->ops;
1876 int ret;
1877
2f745ad3 1878 if (obj->pages)
37e680a1
CW
1879 return 0;
1880
43e28f09
CW
1881 if (obj->madv != I915_MADV_WILLNEED) {
1882 DRM_ERROR("Attempting to obtain a purgeable object\n");
1883 return -EINVAL;
1884 }
1885
a5570178
CW
1886 BUG_ON(obj->pages_pin_count);
1887
37e680a1
CW
1888 ret = ops->get_pages(obj);
1889 if (ret)
1890 return ret;
1891
35c20a60 1892 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1893 return 0;
673a394b
EA
1894}
1895
54cf91dc 1896void
05394f39 1897i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1898 struct intel_ring_buffer *ring)
673a394b 1899{
05394f39 1900 struct drm_device *dev = obj->base.dev;
69dc4987 1901 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1902 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1903
852835f3 1904 BUG_ON(ring == NULL);
02978ff5
CW
1905 if (obj->ring != ring && obj->last_write_seqno) {
1906 /* Keep the seqno relative to the current ring */
1907 obj->last_write_seqno = seqno;
1908 }
05394f39 1909 obj->ring = ring;
673a394b
EA
1910
1911 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1912 if (!obj->active) {
1913 drm_gem_object_reference(&obj->base);
1914 obj->active = 1;
673a394b 1915 }
e35a41de 1916
05394f39 1917 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1918
0201f1ec 1919 obj->last_read_seqno = seqno;
caea7476 1920
7dd49065 1921 if (obj->fenced_gpu_access) {
caea7476 1922 obj->last_fenced_seqno = seqno;
caea7476 1923
7dd49065
CW
1924 /* Bump MRU to take account of the delayed flush */
1925 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1926 struct drm_i915_fence_reg *reg;
1927
1928 reg = &dev_priv->fence_regs[obj->fence_reg];
1929 list_move_tail(&reg->lru_list,
1930 &dev_priv->mm.fence_list);
1931 }
caea7476
CW
1932 }
1933}
1934
1935static void
caea7476 1936i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1937{
ca191b13
BW
1938 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1939 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1940 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
ce44b0ea 1941
65ce3027 1942 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1943 BUG_ON(!obj->active);
caea7476 1944
ca191b13 1945 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
caea7476 1946
65ce3027 1947 list_del_init(&obj->ring_list);
caea7476
CW
1948 obj->ring = NULL;
1949
65ce3027
CW
1950 obj->last_read_seqno = 0;
1951 obj->last_write_seqno = 0;
1952 obj->base.write_domain = 0;
1953
1954 obj->last_fenced_seqno = 0;
caea7476 1955 obj->fenced_gpu_access = false;
caea7476
CW
1956
1957 obj->active = 0;
1958 drm_gem_object_unreference(&obj->base);
1959
1960 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1961}
673a394b 1962
9d773091 1963static int
fca26bb4 1964i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1965{
9d773091
CW
1966 struct drm_i915_private *dev_priv = dev->dev_private;
1967 struct intel_ring_buffer *ring;
1968 int ret, i, j;
53d227f2 1969
107f27a5 1970 /* Carefully retire all requests without writing to the rings */
9d773091 1971 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1972 ret = intel_ring_idle(ring);
1973 if (ret)
1974 return ret;
9d773091 1975 }
9d773091 1976 i915_gem_retire_requests(dev);
107f27a5
CW
1977
1978 /* Finally reset hw state */
9d773091 1979 for_each_ring(ring, dev_priv, i) {
fca26bb4 1980 intel_ring_init_seqno(ring, seqno);
498d2ac1 1981
9d773091
CW
1982 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1983 ring->sync_seqno[j] = 0;
1984 }
53d227f2 1985
9d773091 1986 return 0;
53d227f2
DV
1987}
1988
fca26bb4
MK
1989int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1990{
1991 struct drm_i915_private *dev_priv = dev->dev_private;
1992 int ret;
1993
1994 if (seqno == 0)
1995 return -EINVAL;
1996
1997 /* HWS page needs to be set less than what we
1998 * will inject to ring
1999 */
2000 ret = i915_gem_init_seqno(dev, seqno - 1);
2001 if (ret)
2002 return ret;
2003
2004 /* Carefully set the last_seqno value so that wrap
2005 * detection still works
2006 */
2007 dev_priv->next_seqno = seqno;
2008 dev_priv->last_seqno = seqno - 1;
2009 if (dev_priv->last_seqno == 0)
2010 dev_priv->last_seqno--;
2011
2012 return 0;
2013}
2014
9d773091
CW
2015int
2016i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2017{
9d773091
CW
2018 struct drm_i915_private *dev_priv = dev->dev_private;
2019
2020 /* reserve 0 for non-seqno */
2021 if (dev_priv->next_seqno == 0) {
fca26bb4 2022 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2023 if (ret)
2024 return ret;
53d227f2 2025
9d773091
CW
2026 dev_priv->next_seqno = 1;
2027 }
53d227f2 2028
f72b3435 2029 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2030 return 0;
53d227f2
DV
2031}
2032
0025c077
MK
2033int __i915_add_request(struct intel_ring_buffer *ring,
2034 struct drm_file *file,
7d736f4f 2035 struct drm_i915_gem_object *obj,
0025c077 2036 u32 *out_seqno)
673a394b 2037{
db53a302 2038 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2039 struct drm_i915_gem_request *request;
7d736f4f 2040 u32 request_ring_position, request_start;
673a394b 2041 int was_empty;
3cce469c
CW
2042 int ret;
2043
7d736f4f 2044 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2045 /*
2046 * Emit any outstanding flushes - execbuf can fail to emit the flush
2047 * after having emitted the batchbuffer command. Hence we need to fix
2048 * things up similar to emitting the lazy request. The difference here
2049 * is that the flush _must_ happen before the next request, no matter
2050 * what.
2051 */
a7b9761d
CW
2052 ret = intel_ring_flush_all_caches(ring);
2053 if (ret)
2054 return ret;
cc889e0f 2055
acb868d3
CW
2056 request = kmalloc(sizeof(*request), GFP_KERNEL);
2057 if (request == NULL)
2058 return -ENOMEM;
cc889e0f 2059
673a394b 2060
a71d8d94
CW
2061 /* Record the position of the start of the request so that
2062 * should we detect the updated seqno part-way through the
2063 * GPU processing the request, we never over-estimate the
2064 * position of the head.
2065 */
2066 request_ring_position = intel_ring_get_tail(ring);
2067
9d773091 2068 ret = ring->add_request(ring);
3bb73aba
CW
2069 if (ret) {
2070 kfree(request);
2071 return ret;
2072 }
673a394b 2073
9d773091 2074 request->seqno = intel_ring_get_seqno(ring);
852835f3 2075 request->ring = ring;
7d736f4f 2076 request->head = request_start;
a71d8d94 2077 request->tail = request_ring_position;
0e50e96b 2078 request->ctx = ring->last_context;
7d736f4f
MK
2079 request->batch_obj = obj;
2080
2081 /* Whilst this request exists, batch_obj will be on the
2082 * active_list, and so will hold the active reference. Only when this
2083 * request is retired will the the batch_obj be moved onto the
2084 * inactive_list and lose its active reference. Hence we do not need
2085 * to explicitly hold another reference here.
2086 */
0e50e96b
MK
2087
2088 if (request->ctx)
2089 i915_gem_context_reference(request->ctx);
2090
673a394b 2091 request->emitted_jiffies = jiffies;
852835f3
ZN
2092 was_empty = list_empty(&ring->request_list);
2093 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2094 request->file_priv = NULL;
852835f3 2095
db53a302
CW
2096 if (file) {
2097 struct drm_i915_file_private *file_priv = file->driver_priv;
2098
1c25595f 2099 spin_lock(&file_priv->mm.lock);
f787a5f5 2100 request->file_priv = file_priv;
b962442e 2101 list_add_tail(&request->client_list,
f787a5f5 2102 &file_priv->mm.request_list);
1c25595f 2103 spin_unlock(&file_priv->mm.lock);
b962442e 2104 }
673a394b 2105
9d773091 2106 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2107 ring->outstanding_lazy_request = 0;
db53a302 2108
db1b76ca 2109 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2110 i915_queue_hangcheck(ring->dev);
2111
f047e395 2112 if (was_empty) {
b3b079db 2113 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2114 &dev_priv->mm.retire_work,
2115 round_jiffies_up_relative(HZ));
f047e395
CW
2116 intel_mark_busy(dev_priv->dev);
2117 }
f65d9421 2118 }
cc889e0f 2119
acb868d3 2120 if (out_seqno)
9d773091 2121 *out_seqno = request->seqno;
3cce469c 2122 return 0;
673a394b
EA
2123}
2124
f787a5f5
CW
2125static inline void
2126i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2127{
1c25595f 2128 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2129
1c25595f
CW
2130 if (!file_priv)
2131 return;
1c5d22f7 2132
1c25595f 2133 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2134 if (request->file_priv) {
2135 list_del(&request->client_list);
2136 request->file_priv = NULL;
2137 }
1c25595f 2138 spin_unlock(&file_priv->mm.lock);
673a394b 2139}
673a394b 2140
d1ccbb5d
BW
2141static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2142 struct i915_address_space *vm)
aa60c664 2143{
d1ccbb5d
BW
2144 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2145 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
aa60c664
MK
2146 return true;
2147
2148 return false;
2149}
2150
2151static bool i915_head_inside_request(const u32 acthd_unmasked,
2152 const u32 request_start,
2153 const u32 request_end)
2154{
2155 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2156
2157 if (request_start < request_end) {
2158 if (acthd >= request_start && acthd < request_end)
2159 return true;
2160 } else if (request_start > request_end) {
2161 if (acthd >= request_start || acthd < request_end)
2162 return true;
2163 }
2164
2165 return false;
2166}
2167
d1ccbb5d
BW
2168static struct i915_address_space *
2169request_to_vm(struct drm_i915_gem_request *request)
2170{
2171 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2172 struct i915_address_space *vm;
2173
2174 vm = &dev_priv->gtt.base;
2175
2176 return vm;
2177}
2178
aa60c664
MK
2179static bool i915_request_guilty(struct drm_i915_gem_request *request,
2180 const u32 acthd, bool *inside)
2181{
2182 /* There is a possibility that unmasked head address
2183 * pointing inside the ring, matches the batch_obj address range.
2184 * However this is extremely unlikely.
2185 */
aa60c664 2186 if (request->batch_obj) {
d1ccbb5d
BW
2187 if (i915_head_inside_object(acthd, request->batch_obj,
2188 request_to_vm(request))) {
aa60c664
MK
2189 *inside = true;
2190 return true;
2191 }
2192 }
2193
2194 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2195 *inside = false;
2196 return true;
2197 }
2198
2199 return false;
2200}
2201
2202static void i915_set_reset_status(struct intel_ring_buffer *ring,
2203 struct drm_i915_gem_request *request,
2204 u32 acthd)
2205{
2206 struct i915_ctx_hang_stats *hs = NULL;
2207 bool inside, guilty;
d1ccbb5d 2208 unsigned long offset = 0;
aa60c664
MK
2209
2210 /* Innocent until proven guilty */
2211 guilty = false;
2212
d1ccbb5d
BW
2213 if (request->batch_obj)
2214 offset = i915_gem_obj_offset(request->batch_obj,
2215 request_to_vm(request));
2216
f2f4d82f 2217 if (ring->hangcheck.action != HANGCHECK_WAIT &&
aa60c664 2218 i915_request_guilty(request, acthd, &inside)) {
f343c5f6 2219 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
aa60c664
MK
2220 ring->name,
2221 inside ? "inside" : "flushing",
d1ccbb5d 2222 offset,
aa60c664
MK
2223 request->ctx ? request->ctx->id : 0,
2224 acthd);
2225
2226 guilty = true;
2227 }
2228
2229 /* If contexts are disabled or this is the default context, use
2230 * file_priv->reset_state
2231 */
2232 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2233 hs = &request->ctx->hang_stats;
2234 else if (request->file_priv)
2235 hs = &request->file_priv->hang_stats;
2236
2237 if (hs) {
2238 if (guilty)
2239 hs->batch_active++;
2240 else
2241 hs->batch_pending++;
2242 }
2243}
2244
0e50e96b
MK
2245static void i915_gem_free_request(struct drm_i915_gem_request *request)
2246{
2247 list_del(&request->list);
2248 i915_gem_request_remove_from_client(request);
2249
2250 if (request->ctx)
2251 i915_gem_context_unreference(request->ctx);
2252
2253 kfree(request);
2254}
2255
dfaae392
CW
2256static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2257 struct intel_ring_buffer *ring)
9375e446 2258{
aa60c664
MK
2259 u32 completed_seqno;
2260 u32 acthd;
2261
2262 acthd = intel_ring_get_active_head(ring);
2263 completed_seqno = ring->get_seqno(ring, false);
2264
dfaae392
CW
2265 while (!list_empty(&ring->request_list)) {
2266 struct drm_i915_gem_request *request;
673a394b 2267
dfaae392
CW
2268 request = list_first_entry(&ring->request_list,
2269 struct drm_i915_gem_request,
2270 list);
de151cf6 2271
aa60c664
MK
2272 if (request->seqno > completed_seqno)
2273 i915_set_reset_status(ring, request, acthd);
2274
0e50e96b 2275 i915_gem_free_request(request);
dfaae392 2276 }
673a394b 2277
dfaae392 2278 while (!list_empty(&ring->active_list)) {
05394f39 2279 struct drm_i915_gem_object *obj;
9375e446 2280
05394f39
CW
2281 obj = list_first_entry(&ring->active_list,
2282 struct drm_i915_gem_object,
2283 ring_list);
9375e446 2284
05394f39 2285 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2286 }
2287}
2288
19b2dbde 2289void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2290{
2291 struct drm_i915_private *dev_priv = dev->dev_private;
2292 int i;
2293
4b9de737 2294 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2295 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2296
94a335db
DV
2297 /*
2298 * Commit delayed tiling changes if we have an object still
2299 * attached to the fence, otherwise just clear the fence.
2300 */
2301 if (reg->obj) {
2302 i915_gem_object_update_fence(reg->obj, reg,
2303 reg->obj->tiling_mode);
2304 } else {
2305 i915_gem_write_fence(dev, i, NULL);
2306 }
312817a3
CW
2307 }
2308}
2309
069efc1d 2310void i915_gem_reset(struct drm_device *dev)
673a394b 2311{
77f01230 2312 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2313 struct intel_ring_buffer *ring;
1ec14ad3 2314 int i;
673a394b 2315
b4519513
CW
2316 for_each_ring(ring, dev_priv, i)
2317 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2318
19b2dbde 2319 i915_gem_restore_fences(dev);
673a394b
EA
2320}
2321
2322/**
2323 * This function clears the request list as sequence numbers are passed.
2324 */
a71d8d94 2325void
db53a302 2326i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2327{
673a394b
EA
2328 uint32_t seqno;
2329
db53a302 2330 if (list_empty(&ring->request_list))
6c0594a3
KW
2331 return;
2332
db53a302 2333 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2334
b2eadbc8 2335 seqno = ring->get_seqno(ring, true);
1ec14ad3 2336
852835f3 2337 while (!list_empty(&ring->request_list)) {
673a394b 2338 struct drm_i915_gem_request *request;
673a394b 2339
852835f3 2340 request = list_first_entry(&ring->request_list,
673a394b
EA
2341 struct drm_i915_gem_request,
2342 list);
673a394b 2343
dfaae392 2344 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2345 break;
2346
db53a302 2347 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2348 /* We know the GPU must have read the request to have
2349 * sent us the seqno + interrupt, so use the position
2350 * of tail of the request to update the last known position
2351 * of the GPU head.
2352 */
2353 ring->last_retired_head = request->tail;
b84d5f0c 2354
0e50e96b 2355 i915_gem_free_request(request);
b84d5f0c 2356 }
673a394b 2357
b84d5f0c
CW
2358 /* Move any buffers on the active list that are no longer referenced
2359 * by the ringbuffer to the flushing/inactive lists as appropriate.
2360 */
2361 while (!list_empty(&ring->active_list)) {
05394f39 2362 struct drm_i915_gem_object *obj;
b84d5f0c 2363
0206e353 2364 obj = list_first_entry(&ring->active_list,
05394f39
CW
2365 struct drm_i915_gem_object,
2366 ring_list);
673a394b 2367
0201f1ec 2368 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2369 break;
b84d5f0c 2370
65ce3027 2371 i915_gem_object_move_to_inactive(obj);
673a394b 2372 }
9d34e5db 2373
db53a302
CW
2374 if (unlikely(ring->trace_irq_seqno &&
2375 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2376 ring->irq_put(ring);
db53a302 2377 ring->trace_irq_seqno = 0;
9d34e5db 2378 }
23bc5982 2379
db53a302 2380 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2381}
2382
b09a1fec
CW
2383void
2384i915_gem_retire_requests(struct drm_device *dev)
2385{
2386 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2387 struct intel_ring_buffer *ring;
1ec14ad3 2388 int i;
b09a1fec 2389
b4519513
CW
2390 for_each_ring(ring, dev_priv, i)
2391 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2392}
2393
75ef9da2 2394static void
673a394b
EA
2395i915_gem_retire_work_handler(struct work_struct *work)
2396{
2397 drm_i915_private_t *dev_priv;
2398 struct drm_device *dev;
b4519513 2399 struct intel_ring_buffer *ring;
0a58705b
CW
2400 bool idle;
2401 int i;
673a394b
EA
2402
2403 dev_priv = container_of(work, drm_i915_private_t,
2404 mm.retire_work.work);
2405 dev = dev_priv->dev;
2406
891b48cf
CW
2407 /* Come back later if the device is busy... */
2408 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2409 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2410 round_jiffies_up_relative(HZ));
891b48cf
CW
2411 return;
2412 }
673a394b 2413
b09a1fec 2414 i915_gem_retire_requests(dev);
673a394b 2415
0a58705b
CW
2416 /* Send a periodic flush down the ring so we don't hold onto GEM
2417 * objects indefinitely.
673a394b 2418 */
0a58705b 2419 idle = true;
b4519513 2420 for_each_ring(ring, dev_priv, i) {
3bb73aba 2421 if (ring->gpu_caches_dirty)
0025c077 2422 i915_add_request(ring, NULL);
0a58705b
CW
2423
2424 idle &= list_empty(&ring->request_list);
673a394b
EA
2425 }
2426
db1b76ca 2427 if (!dev_priv->ums.mm_suspended && !idle)
bcb45086
CW
2428 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2429 round_jiffies_up_relative(HZ));
f047e395
CW
2430 if (idle)
2431 intel_mark_idle(dev);
0a58705b 2432
673a394b 2433 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2434}
2435
30dfebf3
DV
2436/**
2437 * Ensures that an object will eventually get non-busy by flushing any required
2438 * write domains, emitting any outstanding lazy request and retiring and
2439 * completed requests.
2440 */
2441static int
2442i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2443{
2444 int ret;
2445
2446 if (obj->active) {
0201f1ec 2447 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2448 if (ret)
2449 return ret;
2450
30dfebf3
DV
2451 i915_gem_retire_requests_ring(obj->ring);
2452 }
2453
2454 return 0;
2455}
2456
23ba4fd0
BW
2457/**
2458 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2459 * @DRM_IOCTL_ARGS: standard ioctl arguments
2460 *
2461 * Returns 0 if successful, else an error is returned with the remaining time in
2462 * the timeout parameter.
2463 * -ETIME: object is still busy after timeout
2464 * -ERESTARTSYS: signal interrupted the wait
2465 * -ENONENT: object doesn't exist
2466 * Also possible, but rare:
2467 * -EAGAIN: GPU wedged
2468 * -ENOMEM: damn
2469 * -ENODEV: Internal IRQ fail
2470 * -E?: The add request failed
2471 *
2472 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2473 * non-zero timeout parameter the wait ioctl will wait for the given number of
2474 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2475 * without holding struct_mutex the object may become re-busied before this
2476 * function completes. A similar but shorter * race condition exists in the busy
2477 * ioctl
2478 */
2479int
2480i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2481{
f69061be 2482 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2483 struct drm_i915_gem_wait *args = data;
2484 struct drm_i915_gem_object *obj;
2485 struct intel_ring_buffer *ring = NULL;
eac1f14f 2486 struct timespec timeout_stack, *timeout = NULL;
f69061be 2487 unsigned reset_counter;
23ba4fd0
BW
2488 u32 seqno = 0;
2489 int ret = 0;
2490
eac1f14f
BW
2491 if (args->timeout_ns >= 0) {
2492 timeout_stack = ns_to_timespec(args->timeout_ns);
2493 timeout = &timeout_stack;
2494 }
23ba4fd0
BW
2495
2496 ret = i915_mutex_lock_interruptible(dev);
2497 if (ret)
2498 return ret;
2499
2500 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2501 if (&obj->base == NULL) {
2502 mutex_unlock(&dev->struct_mutex);
2503 return -ENOENT;
2504 }
2505
30dfebf3
DV
2506 /* Need to make sure the object gets inactive eventually. */
2507 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2508 if (ret)
2509 goto out;
2510
2511 if (obj->active) {
0201f1ec 2512 seqno = obj->last_read_seqno;
23ba4fd0
BW
2513 ring = obj->ring;
2514 }
2515
2516 if (seqno == 0)
2517 goto out;
2518
23ba4fd0
BW
2519 /* Do this after OLR check to make sure we make forward progress polling
2520 * on this IOCTL with a 0 timeout (like busy ioctl)
2521 */
2522 if (!args->timeout_ns) {
2523 ret = -ETIME;
2524 goto out;
2525 }
2526
2527 drm_gem_object_unreference(&obj->base);
f69061be 2528 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2529 mutex_unlock(&dev->struct_mutex);
2530
f69061be 2531 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
4f42f4ef 2532 if (timeout)
eac1f14f 2533 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2534 return ret;
2535
2536out:
2537 drm_gem_object_unreference(&obj->base);
2538 mutex_unlock(&dev->struct_mutex);
2539 return ret;
2540}
2541
5816d648
BW
2542/**
2543 * i915_gem_object_sync - sync an object to a ring.
2544 *
2545 * @obj: object which may be in use on another ring.
2546 * @to: ring we wish to use the object on. May be NULL.
2547 *
2548 * This code is meant to abstract object synchronization with the GPU.
2549 * Calling with NULL implies synchronizing the object with the CPU
2550 * rather than a particular GPU ring.
2551 *
2552 * Returns 0 if successful, else propagates up the lower layer error.
2553 */
2911a35b
BW
2554int
2555i915_gem_object_sync(struct drm_i915_gem_object *obj,
2556 struct intel_ring_buffer *to)
2557{
2558 struct intel_ring_buffer *from = obj->ring;
2559 u32 seqno;
2560 int ret, idx;
2561
2562 if (from == NULL || to == from)
2563 return 0;
2564
5816d648 2565 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2566 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2567
2568 idx = intel_ring_sync_index(from, to);
2569
0201f1ec 2570 seqno = obj->last_read_seqno;
2911a35b
BW
2571 if (seqno <= from->sync_seqno[idx])
2572 return 0;
2573
b4aca010
BW
2574 ret = i915_gem_check_olr(obj->ring, seqno);
2575 if (ret)
2576 return ret;
2911a35b 2577
1500f7ea 2578 ret = to->sync_to(to, from, seqno);
e3a5a225 2579 if (!ret)
7b01e260
MK
2580 /* We use last_read_seqno because sync_to()
2581 * might have just caused seqno wrap under
2582 * the radar.
2583 */
2584 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2585
e3a5a225 2586 return ret;
2911a35b
BW
2587}
2588
b5ffc9bc
CW
2589static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2590{
2591 u32 old_write_domain, old_read_domains;
2592
b5ffc9bc
CW
2593 /* Force a pagefault for domain tracking on next user access */
2594 i915_gem_release_mmap(obj);
2595
b97c3d9c
KP
2596 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2597 return;
2598
97c809fd
CW
2599 /* Wait for any direct GTT access to complete */
2600 mb();
2601
b5ffc9bc
CW
2602 old_read_domains = obj->base.read_domains;
2603 old_write_domain = obj->base.write_domain;
2604
2605 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2606 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2607
2608 trace_i915_gem_object_change_domain(obj,
2609 old_read_domains,
2610 old_write_domain);
2611}
2612
07fe0b12 2613int i915_vma_unbind(struct i915_vma *vma)
673a394b 2614{
07fe0b12 2615 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2616 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2617 int ret;
673a394b 2618
07fe0b12 2619 if (list_empty(&vma->vma_link))
673a394b
EA
2620 return 0;
2621
31d8d651
CW
2622 if (obj->pin_count)
2623 return -EBUSY;
673a394b 2624
c4670ad0
CW
2625 BUG_ON(obj->pages == NULL);
2626
a8198eea 2627 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2628 if (ret)
a8198eea
CW
2629 return ret;
2630 /* Continue on if we fail due to EIO, the GPU is hung so we
2631 * should be safe and we need to cleanup or else we might
2632 * cause memory corruption through use-after-free.
2633 */
2634
b5ffc9bc 2635 i915_gem_object_finish_gtt(obj);
5323fd04 2636
96b47b65 2637 /* release the fence reg _after_ flushing */
d9e86c0e 2638 ret = i915_gem_object_put_fence(obj);
1488fc08 2639 if (ret)
d9e86c0e 2640 return ret;
96b47b65 2641
07fe0b12 2642 trace_i915_vma_unbind(vma);
db53a302 2643
74898d7e
DV
2644 if (obj->has_global_gtt_mapping)
2645 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2646 if (obj->has_aliasing_ppgtt_mapping) {
2647 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2648 obj->has_aliasing_ppgtt_mapping = 0;
2649 }
74163907 2650 i915_gem_gtt_finish_object(obj);
401c29f6 2651 i915_gem_object_unpin_pages(obj);
7bddb01f 2652
ca191b13 2653 list_del(&vma->mm_list);
75e9e915 2654 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2655 if (i915_is_ggtt(vma->vm))
2656 obj->map_and_fenceable = true;
673a394b 2657
2f633156
BW
2658 drm_mm_remove_node(&vma->node);
2659 i915_gem_vma_destroy(vma);
2660
2661 /* Since the unbound list is global, only move to that list if
2662 * no more VMAs exist.
2663 * NB: Until we have real VMAs there will only ever be one */
2664 WARN_ON(!list_empty(&obj->vma_list));
2665 if (list_empty(&obj->vma_list))
2666 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2667
88241785 2668 return 0;
54cf91dc
CW
2669}
2670
07fe0b12
BW
2671/**
2672 * Unbinds an object from the global GTT aperture.
2673 */
2674int
2675i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2676{
2677 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2678 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2679
58e73e15 2680 if (!i915_gem_obj_ggtt_bound(obj))
07fe0b12
BW
2681 return 0;
2682
2683 if (obj->pin_count)
2684 return -EBUSY;
2685
2686 BUG_ON(obj->pages == NULL);
2687
2688 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2689}
2690
b2da9fe5 2691int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2692{
2693 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2694 struct intel_ring_buffer *ring;
1ec14ad3 2695 int ret, i;
4df2faf4 2696
4df2faf4 2697 /* Flush everything onto the inactive list. */
b4519513 2698 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2699 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2700 if (ret)
2701 return ret;
2702
3e960501 2703 ret = intel_ring_idle(ring);
1ec14ad3
CW
2704 if (ret)
2705 return ret;
2706 }
4df2faf4 2707
8a1a49f9 2708 return 0;
4df2faf4
DV
2709}
2710
9ce079e4
CW
2711static void i965_write_fence_reg(struct drm_device *dev, int reg,
2712 struct drm_i915_gem_object *obj)
de151cf6 2713{
de151cf6 2714 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2715 int fence_reg;
2716 int fence_pitch_shift;
de151cf6 2717
56c844e5
ID
2718 if (INTEL_INFO(dev)->gen >= 6) {
2719 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2720 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2721 } else {
2722 fence_reg = FENCE_REG_965_0;
2723 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2724 }
2725
d18b9619
CW
2726 fence_reg += reg * 8;
2727
2728 /* To w/a incoherency with non-atomic 64-bit register updates,
2729 * we split the 64-bit update into two 32-bit writes. In order
2730 * for a partial fence not to be evaluated between writes, we
2731 * precede the update with write to turn off the fence register,
2732 * and only enable the fence as the last step.
2733 *
2734 * For extra levels of paranoia, we make sure each step lands
2735 * before applying the next step.
2736 */
2737 I915_WRITE(fence_reg, 0);
2738 POSTING_READ(fence_reg);
2739
9ce079e4 2740 if (obj) {
f343c5f6 2741 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2742 uint64_t val;
de151cf6 2743
f343c5f6 2744 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2745 0xfffff000) << 32;
f343c5f6 2746 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2747 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2748 if (obj->tiling_mode == I915_TILING_Y)
2749 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2750 val |= I965_FENCE_REG_VALID;
c6642782 2751
d18b9619
CW
2752 I915_WRITE(fence_reg + 4, val >> 32);
2753 POSTING_READ(fence_reg + 4);
2754
2755 I915_WRITE(fence_reg + 0, val);
2756 POSTING_READ(fence_reg);
2757 } else {
2758 I915_WRITE(fence_reg + 4, 0);
2759 POSTING_READ(fence_reg + 4);
2760 }
de151cf6
JB
2761}
2762
9ce079e4
CW
2763static void i915_write_fence_reg(struct drm_device *dev, int reg,
2764 struct drm_i915_gem_object *obj)
de151cf6 2765{
de151cf6 2766 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2767 u32 val;
de151cf6 2768
9ce079e4 2769 if (obj) {
f343c5f6 2770 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2771 int pitch_val;
2772 int tile_width;
c6642782 2773
f343c5f6 2774 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2775 (size & -size) != size ||
f343c5f6
BW
2776 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2777 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2778 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2779
9ce079e4
CW
2780 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2781 tile_width = 128;
2782 else
2783 tile_width = 512;
2784
2785 /* Note: pitch better be a power of two tile widths */
2786 pitch_val = obj->stride / tile_width;
2787 pitch_val = ffs(pitch_val) - 1;
2788
f343c5f6 2789 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2790 if (obj->tiling_mode == I915_TILING_Y)
2791 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2792 val |= I915_FENCE_SIZE_BITS(size);
2793 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2794 val |= I830_FENCE_REG_VALID;
2795 } else
2796 val = 0;
2797
2798 if (reg < 8)
2799 reg = FENCE_REG_830_0 + reg * 4;
2800 else
2801 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2802
2803 I915_WRITE(reg, val);
2804 POSTING_READ(reg);
de151cf6
JB
2805}
2806
9ce079e4
CW
2807static void i830_write_fence_reg(struct drm_device *dev, int reg,
2808 struct drm_i915_gem_object *obj)
de151cf6 2809{
de151cf6 2810 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2811 uint32_t val;
de151cf6 2812
9ce079e4 2813 if (obj) {
f343c5f6 2814 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2815 uint32_t pitch_val;
de151cf6 2816
f343c5f6 2817 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2818 (size & -size) != size ||
f343c5f6
BW
2819 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2820 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2821 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2822
9ce079e4
CW
2823 pitch_val = obj->stride / 128;
2824 pitch_val = ffs(pitch_val) - 1;
de151cf6 2825
f343c5f6 2826 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2827 if (obj->tiling_mode == I915_TILING_Y)
2828 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2829 val |= I830_FENCE_SIZE_BITS(size);
2830 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2831 val |= I830_FENCE_REG_VALID;
2832 } else
2833 val = 0;
c6642782 2834
9ce079e4
CW
2835 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2836 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2837}
2838
d0a57789
CW
2839inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2840{
2841 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2842}
2843
9ce079e4
CW
2844static void i915_gem_write_fence(struct drm_device *dev, int reg,
2845 struct drm_i915_gem_object *obj)
2846{
d0a57789
CW
2847 struct drm_i915_private *dev_priv = dev->dev_private;
2848
2849 /* Ensure that all CPU reads are completed before installing a fence
2850 * and all writes before removing the fence.
2851 */
2852 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2853 mb();
2854
94a335db
DV
2855 WARN(obj && (!obj->stride || !obj->tiling_mode),
2856 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2857 obj->stride, obj->tiling_mode);
2858
9ce079e4
CW
2859 switch (INTEL_INFO(dev)->gen) {
2860 case 7:
56c844e5 2861 case 6:
9ce079e4
CW
2862 case 5:
2863 case 4: i965_write_fence_reg(dev, reg, obj); break;
2864 case 3: i915_write_fence_reg(dev, reg, obj); break;
2865 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2866 default: BUG();
9ce079e4 2867 }
d0a57789
CW
2868
2869 /* And similarly be paranoid that no direct access to this region
2870 * is reordered to before the fence is installed.
2871 */
2872 if (i915_gem_object_needs_mb(obj))
2873 mb();
de151cf6
JB
2874}
2875
61050808
CW
2876static inline int fence_number(struct drm_i915_private *dev_priv,
2877 struct drm_i915_fence_reg *fence)
2878{
2879 return fence - dev_priv->fence_regs;
2880}
2881
2882static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2883 struct drm_i915_fence_reg *fence,
2884 bool enable)
2885{
2dc8aae0 2886 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2887 int reg = fence_number(dev_priv, fence);
2888
2889 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2890
2891 if (enable) {
46a0b638 2892 obj->fence_reg = reg;
61050808
CW
2893 fence->obj = obj;
2894 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2895 } else {
2896 obj->fence_reg = I915_FENCE_REG_NONE;
2897 fence->obj = NULL;
2898 list_del_init(&fence->lru_list);
2899 }
94a335db 2900 obj->fence_dirty = false;
61050808
CW
2901}
2902
d9e86c0e 2903static int
d0a57789 2904i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2905{
1c293ea3 2906 if (obj->last_fenced_seqno) {
86d5bc37 2907 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2908 if (ret)
2909 return ret;
d9e86c0e
CW
2910
2911 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2912 }
2913
86d5bc37 2914 obj->fenced_gpu_access = false;
d9e86c0e
CW
2915 return 0;
2916}
2917
2918int
2919i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2920{
61050808 2921 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 2922 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
2923 int ret;
2924
d0a57789 2925 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
2926 if (ret)
2927 return ret;
2928
61050808
CW
2929 if (obj->fence_reg == I915_FENCE_REG_NONE)
2930 return 0;
d9e86c0e 2931
f9c513e9
CW
2932 fence = &dev_priv->fence_regs[obj->fence_reg];
2933
61050808 2934 i915_gem_object_fence_lost(obj);
f9c513e9 2935 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
2936
2937 return 0;
2938}
2939
2940static struct drm_i915_fence_reg *
a360bb1a 2941i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2942{
ae3db24a 2943 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2944 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2945 int i;
ae3db24a
DV
2946
2947 /* First try to find a free reg */
d9e86c0e 2948 avail = NULL;
ae3db24a
DV
2949 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2950 reg = &dev_priv->fence_regs[i];
2951 if (!reg->obj)
d9e86c0e 2952 return reg;
ae3db24a 2953
1690e1eb 2954 if (!reg->pin_count)
d9e86c0e 2955 avail = reg;
ae3db24a
DV
2956 }
2957
d9e86c0e
CW
2958 if (avail == NULL)
2959 return NULL;
ae3db24a
DV
2960
2961 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2962 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2963 if (reg->pin_count)
ae3db24a
DV
2964 continue;
2965
8fe301ad 2966 return reg;
ae3db24a
DV
2967 }
2968
8fe301ad 2969 return NULL;
ae3db24a
DV
2970}
2971
de151cf6 2972/**
9a5a53b3 2973 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2974 * @obj: object to map through a fence reg
2975 *
2976 * When mapping objects through the GTT, userspace wants to be able to write
2977 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2978 * This function walks the fence regs looking for a free one for @obj,
2979 * stealing one if it can't find any.
2980 *
2981 * It then sets up the reg based on the object's properties: address, pitch
2982 * and tiling format.
9a5a53b3
CW
2983 *
2984 * For an untiled surface, this removes any existing fence.
de151cf6 2985 */
8c4b8c3f 2986int
06d98131 2987i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2988{
05394f39 2989 struct drm_device *dev = obj->base.dev;
79e53945 2990 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2991 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2992 struct drm_i915_fence_reg *reg;
ae3db24a 2993 int ret;
de151cf6 2994
14415745
CW
2995 /* Have we updated the tiling parameters upon the object and so
2996 * will need to serialise the write to the associated fence register?
2997 */
5d82e3e6 2998 if (obj->fence_dirty) {
d0a57789 2999 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3000 if (ret)
3001 return ret;
3002 }
9a5a53b3 3003
d9e86c0e 3004 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3005 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3006 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3007 if (!obj->fence_dirty) {
14415745
CW
3008 list_move_tail(&reg->lru_list,
3009 &dev_priv->mm.fence_list);
3010 return 0;
3011 }
3012 } else if (enable) {
3013 reg = i915_find_fence_reg(dev);
3014 if (reg == NULL)
3015 return -EDEADLK;
d9e86c0e 3016
14415745
CW
3017 if (reg->obj) {
3018 struct drm_i915_gem_object *old = reg->obj;
3019
d0a57789 3020 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3021 if (ret)
3022 return ret;
3023
14415745 3024 i915_gem_object_fence_lost(old);
29c5a587 3025 }
14415745 3026 } else
a09ba7fa 3027 return 0;
a09ba7fa 3028
14415745 3029 i915_gem_object_update_fence(obj, reg, enable);
14415745 3030
9ce079e4 3031 return 0;
de151cf6
JB
3032}
3033
42d6ab48
CW
3034static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3035 struct drm_mm_node *gtt_space,
3036 unsigned long cache_level)
3037{
3038 struct drm_mm_node *other;
3039
3040 /* On non-LLC machines we have to be careful when putting differing
3041 * types of snoopable memory together to avoid the prefetcher
4239ca77 3042 * crossing memory domains and dying.
42d6ab48
CW
3043 */
3044 if (HAS_LLC(dev))
3045 return true;
3046
c6cfb325 3047 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3048 return true;
3049
3050 if (list_empty(&gtt_space->node_list))
3051 return true;
3052
3053 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3054 if (other->allocated && !other->hole_follows && other->color != cache_level)
3055 return false;
3056
3057 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3058 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3059 return false;
3060
3061 return true;
3062}
3063
3064static void i915_gem_verify_gtt(struct drm_device *dev)
3065{
3066#if WATCH_GTT
3067 struct drm_i915_private *dev_priv = dev->dev_private;
3068 struct drm_i915_gem_object *obj;
3069 int err = 0;
3070
35c20a60 3071 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3072 if (obj->gtt_space == NULL) {
3073 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3074 err++;
3075 continue;
3076 }
3077
3078 if (obj->cache_level != obj->gtt_space->color) {
3079 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3080 i915_gem_obj_ggtt_offset(obj),
3081 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3082 obj->cache_level,
3083 obj->gtt_space->color);
3084 err++;
3085 continue;
3086 }
3087
3088 if (!i915_gem_valid_gtt_space(dev,
3089 obj->gtt_space,
3090 obj->cache_level)) {
3091 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3092 i915_gem_obj_ggtt_offset(obj),
3093 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3094 obj->cache_level);
3095 err++;
3096 continue;
3097 }
3098 }
3099
3100 WARN_ON(err);
3101#endif
3102}
3103
673a394b
EA
3104/**
3105 * Finds free space in the GTT aperture and binds the object there.
3106 */
3107static int
07fe0b12
BW
3108i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3109 struct i915_address_space *vm,
3110 unsigned alignment,
3111 bool map_and_fenceable,
3112 bool nonblocking)
673a394b 3113{
05394f39 3114 struct drm_device *dev = obj->base.dev;
673a394b 3115 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3116 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 3117 bool mappable, fenceable;
07fe0b12
BW
3118 size_t gtt_max =
3119 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3120 struct i915_vma *vma;
07f73f69 3121 int ret;
673a394b 3122
2f633156
BW
3123 if (WARN_ON(!list_empty(&obj->vma_list)))
3124 return -EBUSY;
3125
e28f8711
CW
3126 fence_size = i915_gem_get_gtt_size(dev,
3127 obj->base.size,
3128 obj->tiling_mode);
3129 fence_alignment = i915_gem_get_gtt_alignment(dev,
3130 obj->base.size,
d865110c 3131 obj->tiling_mode, true);
e28f8711 3132 unfenced_alignment =
d865110c 3133 i915_gem_get_gtt_alignment(dev,
e28f8711 3134 obj->base.size,
d865110c 3135 obj->tiling_mode, false);
a00b10c3 3136
673a394b 3137 if (alignment == 0)
5e783301
DV
3138 alignment = map_and_fenceable ? fence_alignment :
3139 unfenced_alignment;
75e9e915 3140 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3141 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3142 return -EINVAL;
3143 }
3144
05394f39 3145 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3146
654fc607
CW
3147 /* If the object is bigger than the entire aperture, reject it early
3148 * before evicting everything in a vain attempt to find space.
3149 */
0a9ae0d7 3150 if (obj->base.size > gtt_max) {
3765f304 3151 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3152 obj->base.size,
3153 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3154 gtt_max);
654fc607
CW
3155 return -E2BIG;
3156 }
3157
37e680a1 3158 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3159 if (ret)
3160 return ret;
3161
fbdda6fb
CW
3162 i915_gem_object_pin_pages(obj);
3163
07fe0b12
BW
3164 /* FIXME: For now we only ever use 1 VMA per object */
3165 BUG_ON(!i915_is_ggtt(vm));
3166 WARN_ON(!list_empty(&obj->vma_list));
3167
3168 vma = i915_gem_vma_create(obj, vm);
db473b36 3169 if (IS_ERR(vma)) {
bc6bc15b
DV
3170 ret = PTR_ERR(vma);
3171 goto err_unpin;
2f633156
BW
3172 }
3173
0a9ae0d7 3174search_free:
07fe0b12 3175 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7
BW
3176 size, alignment,
3177 obj->cache_level, 0, gtt_max);
dc9dd7a2 3178 if (ret) {
f6cd1f15 3179 ret = i915_gem_evict_something(dev, vm, size, alignment,
42d6ab48 3180 obj->cache_level,
86a1ee26
CW
3181 map_and_fenceable,
3182 nonblocking);
dc9dd7a2
CW
3183 if (ret == 0)
3184 goto search_free;
9731129c 3185
bc6bc15b 3186 goto err_free_vma;
673a394b 3187 }
2f633156 3188 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3189 obj->cache_level))) {
2f633156 3190 ret = -EINVAL;
bc6bc15b 3191 goto err_remove_node;
673a394b
EA
3192 }
3193
74163907 3194 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3195 if (ret)
bc6bc15b 3196 goto err_remove_node;
673a394b 3197
35c20a60 3198 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3199 list_add_tail(&vma->mm_list, &vm->inactive_list);
07fe0b12 3200
75e9e915 3201 fenceable =
07fe0b12 3202 i915_is_ggtt(vm) &&
c6cfb325
BW
3203 i915_gem_obj_ggtt_size(obj) == fence_size &&
3204 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
a00b10c3 3205
07fe0b12
BW
3206 mappable =
3207 i915_is_ggtt(vm) &&
3208 vma->node.start + obj->base.size <= dev_priv->gtt.mappable_end;
a00b10c3 3209
5cacaac7
BW
3210 /* Map and fenceable only changes if the VM is the global GGTT */
3211 if (i915_is_ggtt(vm))
3212 obj->map_and_fenceable = mappable && fenceable;
75e9e915 3213
7ace7ef2
BW
3214 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3215
07fe0b12 3216 trace_i915_vma_bind(vma, map_and_fenceable);
42d6ab48 3217 i915_gem_verify_gtt(dev);
673a394b 3218 return 0;
2f633156 3219
bc6bc15b 3220err_remove_node:
6286ef9b 3221 drm_mm_remove_node(&vma->node);
bc6bc15b 3222err_free_vma:
2f633156 3223 i915_gem_vma_destroy(vma);
bc6bc15b 3224err_unpin:
2f633156 3225 i915_gem_object_unpin_pages(obj);
2f633156 3226 return ret;
673a394b
EA
3227}
3228
000433b6 3229bool
2c22569b
CW
3230i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3231 bool force)
673a394b 3232{
673a394b
EA
3233 /* If we don't have a page list set up, then we're not pinned
3234 * to GPU, and we can ignore the cache flush because it'll happen
3235 * again at bind time.
3236 */
05394f39 3237 if (obj->pages == NULL)
000433b6 3238 return false;
673a394b 3239
769ce464
ID
3240 /*
3241 * Stolen memory is always coherent with the GPU as it is explicitly
3242 * marked as wc by the system, or the system is cache-coherent.
3243 */
3244 if (obj->stolen)
000433b6 3245 return false;
769ce464 3246
9c23f7fc
CW
3247 /* If the GPU is snooping the contents of the CPU cache,
3248 * we do not need to manually clear the CPU cache lines. However,
3249 * the caches are only snooped when the render cache is
3250 * flushed/invalidated. As we always have to emit invalidations
3251 * and flushes when moving into and out of the RENDER domain, correct
3252 * snooping behaviour occurs naturally as the result of our domain
3253 * tracking.
3254 */
2c22569b 3255 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3256 return false;
9c23f7fc 3257
1c5d22f7 3258 trace_i915_gem_object_clflush(obj);
9da3da66 3259 drm_clflush_sg(obj->pages);
000433b6
CW
3260
3261 return true;
e47c68e9
EA
3262}
3263
3264/** Flushes the GTT write domain for the object if it's dirty. */
3265static void
05394f39 3266i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3267{
1c5d22f7
CW
3268 uint32_t old_write_domain;
3269
05394f39 3270 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3271 return;
3272
63256ec5 3273 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3274 * to it immediately go to main memory as far as we know, so there's
3275 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3276 *
3277 * However, we do have to enforce the order so that all writes through
3278 * the GTT land before any writes to the device, such as updates to
3279 * the GATT itself.
e47c68e9 3280 */
63256ec5
CW
3281 wmb();
3282
05394f39
CW
3283 old_write_domain = obj->base.write_domain;
3284 obj->base.write_domain = 0;
1c5d22f7
CW
3285
3286 trace_i915_gem_object_change_domain(obj,
05394f39 3287 obj->base.read_domains,
1c5d22f7 3288 old_write_domain);
e47c68e9
EA
3289}
3290
3291/** Flushes the CPU write domain for the object if it's dirty. */
3292static void
2c22569b
CW
3293i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3294 bool force)
e47c68e9 3295{
1c5d22f7 3296 uint32_t old_write_domain;
e47c68e9 3297
05394f39 3298 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3299 return;
3300
000433b6
CW
3301 if (i915_gem_clflush_object(obj, force))
3302 i915_gem_chipset_flush(obj->base.dev);
3303
05394f39
CW
3304 old_write_domain = obj->base.write_domain;
3305 obj->base.write_domain = 0;
1c5d22f7
CW
3306
3307 trace_i915_gem_object_change_domain(obj,
05394f39 3308 obj->base.read_domains,
1c5d22f7 3309 old_write_domain);
e47c68e9
EA
3310}
3311
2ef7eeaa
EA
3312/**
3313 * Moves a single object to the GTT read, and possibly write domain.
3314 *
3315 * This function returns when the move is complete, including waiting on
3316 * flushes to occur.
3317 */
79e53945 3318int
2021746e 3319i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3320{
8325a09d 3321 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3322 uint32_t old_write_domain, old_read_domains;
e47c68e9 3323 int ret;
2ef7eeaa 3324
02354392 3325 /* Not valid to be called on unbound objects. */
9843877d 3326 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3327 return -EINVAL;
3328
8d7e3de1
CW
3329 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3330 return 0;
3331
0201f1ec 3332 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3333 if (ret)
3334 return ret;
3335
2c22569b 3336 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3337
d0a57789
CW
3338 /* Serialise direct access to this object with the barriers for
3339 * coherent writes from the GPU, by effectively invalidating the
3340 * GTT domain upon first access.
3341 */
3342 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3343 mb();
3344
05394f39
CW
3345 old_write_domain = obj->base.write_domain;
3346 old_read_domains = obj->base.read_domains;
1c5d22f7 3347
e47c68e9
EA
3348 /* It should now be out of any other write domains, and we can update
3349 * the domain values for our changes.
3350 */
05394f39
CW
3351 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3352 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3353 if (write) {
05394f39
CW
3354 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3355 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3356 obj->dirty = 1;
2ef7eeaa
EA
3357 }
3358
1c5d22f7
CW
3359 trace_i915_gem_object_change_domain(obj,
3360 old_read_domains,
3361 old_write_domain);
3362
8325a09d 3363 /* And bump the LRU for this access */
ca191b13
BW
3364 if (i915_gem_object_is_inactive(obj)) {
3365 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3366 &dev_priv->gtt.base);
3367 if (vma)
3368 list_move_tail(&vma->mm_list,
3369 &dev_priv->gtt.base.inactive_list);
3370
3371 }
8325a09d 3372
e47c68e9
EA
3373 return 0;
3374}
3375
e4ffd173
CW
3376int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3377 enum i915_cache_level cache_level)
3378{
7bddb01f
DV
3379 struct drm_device *dev = obj->base.dev;
3380 drm_i915_private_t *dev_priv = dev->dev_private;
3089c6f2 3381 struct i915_vma *vma;
e4ffd173
CW
3382 int ret;
3383
3384 if (obj->cache_level == cache_level)
3385 return 0;
3386
3387 if (obj->pin_count) {
3388 DRM_DEBUG("can not change the cache level of pinned objects\n");
3389 return -EBUSY;
3390 }
3391
3089c6f2
BW
3392 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3393 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3394 ret = i915_vma_unbind(vma);
3089c6f2
BW
3395 if (ret)
3396 return ret;
3397
3398 break;
3399 }
42d6ab48
CW
3400 }
3401
3089c6f2 3402 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3403 ret = i915_gem_object_finish_gpu(obj);
3404 if (ret)
3405 return ret;
3406
3407 i915_gem_object_finish_gtt(obj);
3408
3409 /* Before SandyBridge, you could not use tiling or fence
3410 * registers with snooped memory, so relinquish any fences
3411 * currently pointing to our region in the aperture.
3412 */
42d6ab48 3413 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3414 ret = i915_gem_object_put_fence(obj);
3415 if (ret)
3416 return ret;
3417 }
3418
74898d7e
DV
3419 if (obj->has_global_gtt_mapping)
3420 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3421 if (obj->has_aliasing_ppgtt_mapping)
3422 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3423 obj, cache_level);
e4ffd173
CW
3424 }
3425
2c22569b
CW
3426 list_for_each_entry(vma, &obj->vma_list, vma_link)
3427 vma->node.color = cache_level;
3428 obj->cache_level = cache_level;
3429
3430 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3431 u32 old_read_domains, old_write_domain;
3432
3433 /* If we're coming from LLC cached, then we haven't
3434 * actually been tracking whether the data is in the
3435 * CPU cache or not, since we only allow one bit set
3436 * in obj->write_domain and have been skipping the clflushes.
3437 * Just set it to the CPU cache for now.
3438 */
3439 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3440 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3441
3442 old_read_domains = obj->base.read_domains;
3443 old_write_domain = obj->base.write_domain;
3444
3445 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3446 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3447
3448 trace_i915_gem_object_change_domain(obj,
3449 old_read_domains,
3450 old_write_domain);
3451 }
3452
42d6ab48 3453 i915_gem_verify_gtt(dev);
e4ffd173
CW
3454 return 0;
3455}
3456
199adf40
BW
3457int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3458 struct drm_file *file)
e6994aee 3459{
199adf40 3460 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3461 struct drm_i915_gem_object *obj;
3462 int ret;
3463
3464 ret = i915_mutex_lock_interruptible(dev);
3465 if (ret)
3466 return ret;
3467
3468 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3469 if (&obj->base == NULL) {
3470 ret = -ENOENT;
3471 goto unlock;
3472 }
3473
651d794f
CW
3474 switch (obj->cache_level) {
3475 case I915_CACHE_LLC:
3476 case I915_CACHE_L3_LLC:
3477 args->caching = I915_CACHING_CACHED;
3478 break;
3479
3480 default:
3481 args->caching = I915_CACHING_NONE;
3482 break;
3483 }
e6994aee
CW
3484
3485 drm_gem_object_unreference(&obj->base);
3486unlock:
3487 mutex_unlock(&dev->struct_mutex);
3488 return ret;
3489}
3490
199adf40
BW
3491int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3492 struct drm_file *file)
e6994aee 3493{
199adf40 3494 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3495 struct drm_i915_gem_object *obj;
3496 enum i915_cache_level level;
3497 int ret;
3498
199adf40
BW
3499 switch (args->caching) {
3500 case I915_CACHING_NONE:
e6994aee
CW
3501 level = I915_CACHE_NONE;
3502 break;
199adf40 3503 case I915_CACHING_CACHED:
e6994aee
CW
3504 level = I915_CACHE_LLC;
3505 break;
3506 default:
3507 return -EINVAL;
3508 }
3509
3bc2913e
BW
3510 ret = i915_mutex_lock_interruptible(dev);
3511 if (ret)
3512 return ret;
3513
e6994aee
CW
3514 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3515 if (&obj->base == NULL) {
3516 ret = -ENOENT;
3517 goto unlock;
3518 }
3519
3520 ret = i915_gem_object_set_cache_level(obj, level);
3521
3522 drm_gem_object_unreference(&obj->base);
3523unlock:
3524 mutex_unlock(&dev->struct_mutex);
3525 return ret;
3526}
3527
cc98b413
CW
3528static bool is_pin_display(struct drm_i915_gem_object *obj)
3529{
3530 /* There are 3 sources that pin objects:
3531 * 1. The display engine (scanouts, sprites, cursors);
3532 * 2. Reservations for execbuffer;
3533 * 3. The user.
3534 *
3535 * We can ignore reservations as we hold the struct_mutex and
3536 * are only called outside of the reservation path. The user
3537 * can only increment pin_count once, and so if after
3538 * subtracting the potential reference by the user, any pin_count
3539 * remains, it must be due to another use by the display engine.
3540 */
3541 return obj->pin_count - !!obj->user_pin_count;
3542}
3543
b9241ea3 3544/*
2da3b9b9
CW
3545 * Prepare buffer for display plane (scanout, cursors, etc).
3546 * Can be called from an uninterruptible phase (modesetting) and allows
3547 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3548 */
3549int
2da3b9b9
CW
3550i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3551 u32 alignment,
919926ae 3552 struct intel_ring_buffer *pipelined)
b9241ea3 3553{
2da3b9b9 3554 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3555 int ret;
3556
0be73284 3557 if (pipelined != obj->ring) {
2911a35b
BW
3558 ret = i915_gem_object_sync(obj, pipelined);
3559 if (ret)
b9241ea3
ZW
3560 return ret;
3561 }
3562
cc98b413
CW
3563 /* Mark the pin_display early so that we account for the
3564 * display coherency whilst setting up the cache domains.
3565 */
3566 obj->pin_display = true;
3567
a7ef0640
EA
3568 /* The display engine is not coherent with the LLC cache on gen6. As
3569 * a result, we make sure that the pinning that is about to occur is
3570 * done with uncached PTEs. This is lowest common denominator for all
3571 * chipsets.
3572 *
3573 * However for gen6+, we could do better by using the GFDT bit instead
3574 * of uncaching, which would allow us to flush all the LLC-cached data
3575 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3576 */
651d794f
CW
3577 ret = i915_gem_object_set_cache_level(obj,
3578 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3579 if (ret)
cc98b413 3580 goto err_unpin_display;
a7ef0640 3581
2da3b9b9
CW
3582 /* As the user may map the buffer once pinned in the display plane
3583 * (e.g. libkms for the bootup splash), we have to ensure that we
3584 * always use map_and_fenceable for all scanout buffers.
3585 */
c37e2204 3586 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2da3b9b9 3587 if (ret)
cc98b413 3588 goto err_unpin_display;
2da3b9b9 3589
2c22569b 3590 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3591
2da3b9b9 3592 old_write_domain = obj->base.write_domain;
05394f39 3593 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3594
3595 /* It should now be out of any other write domains, and we can update
3596 * the domain values for our changes.
3597 */
e5f1d962 3598 obj->base.write_domain = 0;
05394f39 3599 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3600
3601 trace_i915_gem_object_change_domain(obj,
3602 old_read_domains,
2da3b9b9 3603 old_write_domain);
b9241ea3
ZW
3604
3605 return 0;
cc98b413
CW
3606
3607err_unpin_display:
3608 obj->pin_display = is_pin_display(obj);
3609 return ret;
3610}
3611
3612void
3613i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3614{
3615 i915_gem_object_unpin(obj);
3616 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3617}
3618
85345517 3619int
a8198eea 3620i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3621{
88241785
CW
3622 int ret;
3623
a8198eea 3624 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3625 return 0;
3626
0201f1ec 3627 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3628 if (ret)
3629 return ret;
3630
a8198eea
CW
3631 /* Ensure that we invalidate the GPU's caches and TLBs. */
3632 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3633 return 0;
85345517
CW
3634}
3635
e47c68e9
EA
3636/**
3637 * Moves a single object to the CPU read, and possibly write domain.
3638 *
3639 * This function returns when the move is complete, including waiting on
3640 * flushes to occur.
3641 */
dabdfe02 3642int
919926ae 3643i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3644{
1c5d22f7 3645 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3646 int ret;
3647
8d7e3de1
CW
3648 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3649 return 0;
3650
0201f1ec 3651 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3652 if (ret)
3653 return ret;
3654
e47c68e9 3655 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3656
05394f39
CW
3657 old_write_domain = obj->base.write_domain;
3658 old_read_domains = obj->base.read_domains;
1c5d22f7 3659
e47c68e9 3660 /* Flush the CPU cache if it's still invalid. */
05394f39 3661 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3662 i915_gem_clflush_object(obj, false);
2ef7eeaa 3663
05394f39 3664 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3665 }
3666
3667 /* It should now be out of any other write domains, and we can update
3668 * the domain values for our changes.
3669 */
05394f39 3670 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3671
3672 /* If we're writing through the CPU, then the GPU read domains will
3673 * need to be invalidated at next use.
3674 */
3675 if (write) {
05394f39
CW
3676 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3677 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3678 }
2ef7eeaa 3679
1c5d22f7
CW
3680 trace_i915_gem_object_change_domain(obj,
3681 old_read_domains,
3682 old_write_domain);
3683
2ef7eeaa
EA
3684 return 0;
3685}
3686
673a394b
EA
3687/* Throttle our rendering by waiting until the ring has completed our requests
3688 * emitted over 20 msec ago.
3689 *
b962442e
EA
3690 * Note that if we were to use the current jiffies each time around the loop,
3691 * we wouldn't escape the function with any frames outstanding if the time to
3692 * render a frame was over 20ms.
3693 *
673a394b
EA
3694 * This should get us reasonable parallelism between CPU and GPU but also
3695 * relatively low latency when blocking on a particular request to finish.
3696 */
40a5f0de 3697static int
f787a5f5 3698i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3699{
f787a5f5
CW
3700 struct drm_i915_private *dev_priv = dev->dev_private;
3701 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3702 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3703 struct drm_i915_gem_request *request;
3704 struct intel_ring_buffer *ring = NULL;
f69061be 3705 unsigned reset_counter;
f787a5f5
CW
3706 u32 seqno = 0;
3707 int ret;
93533c29 3708
308887aa
DV
3709 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3710 if (ret)
3711 return ret;
3712
3713 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3714 if (ret)
3715 return ret;
e110e8d6 3716
1c25595f 3717 spin_lock(&file_priv->mm.lock);
f787a5f5 3718 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3719 if (time_after_eq(request->emitted_jiffies, recent_enough))
3720 break;
40a5f0de 3721
f787a5f5
CW
3722 ring = request->ring;
3723 seqno = request->seqno;
b962442e 3724 }
f69061be 3725 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3726 spin_unlock(&file_priv->mm.lock);
40a5f0de 3727
f787a5f5
CW
3728 if (seqno == 0)
3729 return 0;
2bc43b5c 3730
f69061be 3731 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
f787a5f5
CW
3732 if (ret == 0)
3733 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3734
3735 return ret;
3736}
3737
673a394b 3738int
05394f39 3739i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3740 struct i915_address_space *vm,
05394f39 3741 uint32_t alignment,
86a1ee26
CW
3742 bool map_and_fenceable,
3743 bool nonblocking)
673a394b 3744{
07fe0b12 3745 struct i915_vma *vma;
673a394b
EA
3746 int ret;
3747
7e81a42e
CW
3748 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3749 return -EBUSY;
ac0c6b5a 3750
07fe0b12
BW
3751 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3752
3753 vma = i915_gem_obj_to_vma(obj, vm);
3754
3755 if (vma) {
3756 if ((alignment &&
3757 vma->node.start & (alignment - 1)) ||
05394f39
CW
3758 (map_and_fenceable && !obj->map_and_fenceable)) {
3759 WARN(obj->pin_count,
ae7d49d8 3760 "bo is already pinned with incorrect alignment:"
f343c5f6 3761 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3762 " obj->map_and_fenceable=%d\n",
07fe0b12 3763 i915_gem_obj_offset(obj, vm), alignment,
75e9e915 3764 map_and_fenceable,
05394f39 3765 obj->map_and_fenceable);
07fe0b12 3766 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3767 if (ret)
3768 return ret;
3769 }
3770 }
3771
07fe0b12 3772 if (!i915_gem_obj_bound(obj, vm)) {
8742267a
CW
3773 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3774
07fe0b12
BW
3775 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3776 map_and_fenceable,
3777 nonblocking);
9731129c 3778 if (ret)
673a394b 3779 return ret;
8742267a
CW
3780
3781 if (!dev_priv->mm.aliasing_ppgtt)
3782 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3783 }
76446cac 3784
74898d7e
DV
3785 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3786 i915_gem_gtt_bind_object(obj, obj->cache_level);
3787
1b50247a 3788 obj->pin_count++;
6299f992 3789 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3790
3791 return 0;
3792}
3793
3794void
05394f39 3795i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3796{
05394f39 3797 BUG_ON(obj->pin_count == 0);
9843877d 3798 BUG_ON(!i915_gem_obj_bound_any(obj));
673a394b 3799
1b50247a 3800 if (--obj->pin_count == 0)
6299f992 3801 obj->pin_mappable = false;
673a394b
EA
3802}
3803
3804int
3805i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3806 struct drm_file *file)
673a394b
EA
3807{
3808 struct drm_i915_gem_pin *args = data;
05394f39 3809 struct drm_i915_gem_object *obj;
673a394b
EA
3810 int ret;
3811
1d7cfea1
CW
3812 ret = i915_mutex_lock_interruptible(dev);
3813 if (ret)
3814 return ret;
673a394b 3815
05394f39 3816 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3817 if (&obj->base == NULL) {
1d7cfea1
CW
3818 ret = -ENOENT;
3819 goto unlock;
673a394b 3820 }
673a394b 3821
05394f39 3822 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3823 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3824 ret = -EINVAL;
3825 goto out;
3ef94daa
CW
3826 }
3827
05394f39 3828 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3829 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3830 args->handle);
1d7cfea1
CW
3831 ret = -EINVAL;
3832 goto out;
79e53945
JB
3833 }
3834
93be8788 3835 if (obj->user_pin_count == 0) {
c37e2204 3836 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3837 if (ret)
3838 goto out;
673a394b
EA
3839 }
3840
93be8788
CW
3841 obj->user_pin_count++;
3842 obj->pin_filp = file;
3843
f343c5f6 3844 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3845out:
05394f39 3846 drm_gem_object_unreference(&obj->base);
1d7cfea1 3847unlock:
673a394b 3848 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3849 return ret;
673a394b
EA
3850}
3851
3852int
3853i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3854 struct drm_file *file)
673a394b
EA
3855{
3856 struct drm_i915_gem_pin *args = data;
05394f39 3857 struct drm_i915_gem_object *obj;
76c1dec1 3858 int ret;
673a394b 3859
1d7cfea1
CW
3860 ret = i915_mutex_lock_interruptible(dev);
3861 if (ret)
3862 return ret;
673a394b 3863
05394f39 3864 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3865 if (&obj->base == NULL) {
1d7cfea1
CW
3866 ret = -ENOENT;
3867 goto unlock;
673a394b 3868 }
76c1dec1 3869
05394f39 3870 if (obj->pin_filp != file) {
79e53945
JB
3871 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3872 args->handle);
1d7cfea1
CW
3873 ret = -EINVAL;
3874 goto out;
79e53945 3875 }
05394f39
CW
3876 obj->user_pin_count--;
3877 if (obj->user_pin_count == 0) {
3878 obj->pin_filp = NULL;
79e53945
JB
3879 i915_gem_object_unpin(obj);
3880 }
673a394b 3881
1d7cfea1 3882out:
05394f39 3883 drm_gem_object_unreference(&obj->base);
1d7cfea1 3884unlock:
673a394b 3885 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3886 return ret;
673a394b
EA
3887}
3888
3889int
3890i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3891 struct drm_file *file)
673a394b
EA
3892{
3893 struct drm_i915_gem_busy *args = data;
05394f39 3894 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3895 int ret;
3896
76c1dec1 3897 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3898 if (ret)
76c1dec1 3899 return ret;
673a394b 3900
05394f39 3901 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3902 if (&obj->base == NULL) {
1d7cfea1
CW
3903 ret = -ENOENT;
3904 goto unlock;
673a394b 3905 }
d1b851fc 3906
0be555b6
CW
3907 /* Count all active objects as busy, even if they are currently not used
3908 * by the gpu. Users of this interface expect objects to eventually
3909 * become non-busy without any further actions, therefore emit any
3910 * necessary flushes here.
c4de0a5d 3911 */
30dfebf3 3912 ret = i915_gem_object_flush_active(obj);
0be555b6 3913
30dfebf3 3914 args->busy = obj->active;
e9808edd
CW
3915 if (obj->ring) {
3916 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3917 args->busy |= intel_ring_flag(obj->ring) << 16;
3918 }
673a394b 3919
05394f39 3920 drm_gem_object_unreference(&obj->base);
1d7cfea1 3921unlock:
673a394b 3922 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3923 return ret;
673a394b
EA
3924}
3925
3926int
3927i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3928 struct drm_file *file_priv)
3929{
0206e353 3930 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3931}
3932
3ef94daa
CW
3933int
3934i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3935 struct drm_file *file_priv)
3936{
3937 struct drm_i915_gem_madvise *args = data;
05394f39 3938 struct drm_i915_gem_object *obj;
76c1dec1 3939 int ret;
3ef94daa
CW
3940
3941 switch (args->madv) {
3942 case I915_MADV_DONTNEED:
3943 case I915_MADV_WILLNEED:
3944 break;
3945 default:
3946 return -EINVAL;
3947 }
3948
1d7cfea1
CW
3949 ret = i915_mutex_lock_interruptible(dev);
3950 if (ret)
3951 return ret;
3952
05394f39 3953 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3954 if (&obj->base == NULL) {
1d7cfea1
CW
3955 ret = -ENOENT;
3956 goto unlock;
3ef94daa 3957 }
3ef94daa 3958
05394f39 3959 if (obj->pin_count) {
1d7cfea1
CW
3960 ret = -EINVAL;
3961 goto out;
3ef94daa
CW
3962 }
3963
05394f39
CW
3964 if (obj->madv != __I915_MADV_PURGED)
3965 obj->madv = args->madv;
3ef94daa 3966
6c085a72
CW
3967 /* if the object is no longer attached, discard its backing storage */
3968 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3969 i915_gem_object_truncate(obj);
3970
05394f39 3971 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3972
1d7cfea1 3973out:
05394f39 3974 drm_gem_object_unreference(&obj->base);
1d7cfea1 3975unlock:
3ef94daa 3976 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3977 return ret;
3ef94daa
CW
3978}
3979
37e680a1
CW
3980void i915_gem_object_init(struct drm_i915_gem_object *obj,
3981 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3982{
35c20a60 3983 INIT_LIST_HEAD(&obj->global_list);
0327d6ba
CW
3984 INIT_LIST_HEAD(&obj->ring_list);
3985 INIT_LIST_HEAD(&obj->exec_list);
2f633156 3986 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 3987
37e680a1
CW
3988 obj->ops = ops;
3989
0327d6ba
CW
3990 obj->fence_reg = I915_FENCE_REG_NONE;
3991 obj->madv = I915_MADV_WILLNEED;
3992 /* Avoid an unnecessary call to unbind on the first bind. */
3993 obj->map_and_fenceable = true;
3994
3995 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3996}
3997
37e680a1
CW
3998static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3999 .get_pages = i915_gem_object_get_pages_gtt,
4000 .put_pages = i915_gem_object_put_pages_gtt,
4001};
4002
05394f39
CW
4003struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4004 size_t size)
ac52bc56 4005{
c397b908 4006 struct drm_i915_gem_object *obj;
5949eac4 4007 struct address_space *mapping;
1a240d4d 4008 gfp_t mask;
ac52bc56 4009
42dcedd4 4010 obj = i915_gem_object_alloc(dev);
c397b908
DV
4011 if (obj == NULL)
4012 return NULL;
673a394b 4013
c397b908 4014 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4015 i915_gem_object_free(obj);
c397b908
DV
4016 return NULL;
4017 }
673a394b 4018
bed1ea95
CW
4019 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4020 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4021 /* 965gm cannot relocate objects above 4GiB. */
4022 mask &= ~__GFP_HIGHMEM;
4023 mask |= __GFP_DMA32;
4024 }
4025
496ad9aa 4026 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4027 mapping_set_gfp_mask(mapping, mask);
5949eac4 4028
37e680a1 4029 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4030
c397b908
DV
4031 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4032 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4033
3d29b842
ED
4034 if (HAS_LLC(dev)) {
4035 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4036 * cache) for about a 10% performance improvement
4037 * compared to uncached. Graphics requests other than
4038 * display scanout are coherent with the CPU in
4039 * accessing this cache. This means in this mode we
4040 * don't need to clflush on the CPU side, and on the
4041 * GPU side we only need to flush internal caches to
4042 * get data visible to the CPU.
4043 *
4044 * However, we maintain the display planes as UC, and so
4045 * need to rebind when first used as such.
4046 */
4047 obj->cache_level = I915_CACHE_LLC;
4048 } else
4049 obj->cache_level = I915_CACHE_NONE;
4050
d861e338
DV
4051 trace_i915_gem_object_create(obj);
4052
05394f39 4053 return obj;
c397b908
DV
4054}
4055
4056int i915_gem_init_object(struct drm_gem_object *obj)
4057{
4058 BUG();
de151cf6 4059
673a394b
EA
4060 return 0;
4061}
4062
1488fc08 4063void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4064{
1488fc08 4065 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4066 struct drm_device *dev = obj->base.dev;
be72615b 4067 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4068 struct i915_vma *vma, *next;
673a394b 4069
26e12f89
CW
4070 trace_i915_gem_object_destroy(obj);
4071
1488fc08
CW
4072 if (obj->phys_obj)
4073 i915_gem_detach_phys_object(dev, obj);
4074
4075 obj->pin_count = 0;
07fe0b12
BW
4076 /* NB: 0 or 1 elements */
4077 WARN_ON(!list_empty(&obj->vma_list) &&
4078 !list_is_singular(&obj->vma_list));
4079 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4080 int ret = i915_vma_unbind(vma);
4081 if (WARN_ON(ret == -ERESTARTSYS)) {
4082 bool was_interruptible;
1488fc08 4083
07fe0b12
BW
4084 was_interruptible = dev_priv->mm.interruptible;
4085 dev_priv->mm.interruptible = false;
1488fc08 4086
07fe0b12 4087 WARN_ON(i915_vma_unbind(vma));
1488fc08 4088
07fe0b12
BW
4089 dev_priv->mm.interruptible = was_interruptible;
4090 }
1488fc08
CW
4091 }
4092
1d64ae71
BW
4093 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4094 * before progressing. */
4095 if (obj->stolen)
4096 i915_gem_object_unpin_pages(obj);
4097
401c29f6
BW
4098 if (WARN_ON(obj->pages_pin_count))
4099 obj->pages_pin_count = 0;
37e680a1 4100 i915_gem_object_put_pages(obj);
d8cb5086 4101 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4102 i915_gem_object_release_stolen(obj);
de151cf6 4103
9da3da66
CW
4104 BUG_ON(obj->pages);
4105
2f745ad3
CW
4106 if (obj->base.import_attach)
4107 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4108
05394f39
CW
4109 drm_gem_object_release(&obj->base);
4110 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4111
05394f39 4112 kfree(obj->bit_17);
42dcedd4 4113 i915_gem_object_free(obj);
673a394b
EA
4114}
4115
2f633156
BW
4116struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4117 struct i915_address_space *vm)
4118{
4119 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4120 if (vma == NULL)
4121 return ERR_PTR(-ENOMEM);
4122
4123 INIT_LIST_HEAD(&vma->vma_link);
ca191b13 4124 INIT_LIST_HEAD(&vma->mm_list);
2f633156
BW
4125 vma->vm = vm;
4126 vma->obj = obj;
4127
8b9c2b94
BW
4128 /* Keep GGTT vmas first to make debug easier */
4129 if (i915_is_ggtt(vm))
4130 list_add(&vma->vma_link, &obj->vma_list);
4131 else
4132 list_add_tail(&vma->vma_link, &obj->vma_list);
4133
2f633156
BW
4134 return vma;
4135}
4136
4137void i915_gem_vma_destroy(struct i915_vma *vma)
4138{
4139 WARN_ON(vma->node.allocated);
8b9c2b94 4140 list_del(&vma->vma_link);
2f633156
BW
4141 kfree(vma);
4142}
4143
29105ccc
CW
4144int
4145i915_gem_idle(struct drm_device *dev)
4146{
4147 drm_i915_private_t *dev_priv = dev->dev_private;
4148 int ret;
28dfe52a 4149
db1b76ca 4150 if (dev_priv->ums.mm_suspended) {
29105ccc
CW
4151 mutex_unlock(&dev->struct_mutex);
4152 return 0;
28dfe52a
EA
4153 }
4154
b2da9fe5 4155 ret = i915_gpu_idle(dev);
6dbe2772
KP
4156 if (ret) {
4157 mutex_unlock(&dev->struct_mutex);
673a394b 4158 return ret;
6dbe2772 4159 }
b2da9fe5 4160 i915_gem_retire_requests(dev);
673a394b 4161
29105ccc 4162 /* Under UMS, be paranoid and evict. */
a39d7efc 4163 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4164 i915_gem_evict_everything(dev);
29105ccc 4165
99584db3 4166 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc
CW
4167
4168 i915_kernel_lost_context(dev);
6dbe2772 4169 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4170
29105ccc
CW
4171 /* Cancel the retire work handler, which should be idle now. */
4172 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4173
673a394b
EA
4174 return 0;
4175}
4176
b9524a1e
BW
4177void i915_gem_l3_remap(struct drm_device *dev)
4178{
4179 drm_i915_private_t *dev_priv = dev->dev_private;
4180 u32 misccpctl;
4181 int i;
4182
eb32e458 4183 if (!HAS_L3_GPU_CACHE(dev))
b9524a1e
BW
4184 return;
4185
a4da4fa4 4186 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
4187 return;
4188
4189 misccpctl = I915_READ(GEN7_MISCCPCTL);
4190 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4191 POSTING_READ(GEN7_MISCCPCTL);
4192
4193 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4194 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 4195 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
4196 DRM_DEBUG("0x%x was already programmed to %x\n",
4197 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 4198 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 4199 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 4200 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
4201 }
4202
4203 /* Make sure all the writes land before disabling dop clock gating */
4204 POSTING_READ(GEN7_L3LOG_BASE);
4205
4206 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4207}
4208
f691e2f4
DV
4209void i915_gem_init_swizzling(struct drm_device *dev)
4210{
4211 drm_i915_private_t *dev_priv = dev->dev_private;
4212
11782b02 4213 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4214 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4215 return;
4216
4217 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4218 DISP_TILE_SURFACE_SWIZZLING);
4219
11782b02
DV
4220 if (IS_GEN5(dev))
4221 return;
4222
f691e2f4
DV
4223 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4224 if (IS_GEN6(dev))
6b26c86d 4225 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4226 else if (IS_GEN7(dev))
6b26c86d 4227 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
4228 else
4229 BUG();
f691e2f4 4230}
e21af88d 4231
67b1b571
CW
4232static bool
4233intel_enable_blt(struct drm_device *dev)
4234{
4235 if (!HAS_BLT(dev))
4236 return false;
4237
4238 /* The blitter was dysfunctional on early prototypes */
4239 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4240 DRM_INFO("BLT not supported on this pre-production hardware;"
4241 " graphics performance will be degraded.\n");
4242 return false;
4243 }
4244
4245 return true;
4246}
4247
4fc7c971 4248static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4249{
4fc7c971 4250 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4251 int ret;
68f95ba9 4252
5c1143bb 4253 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4254 if (ret)
b6913e4b 4255 return ret;
68f95ba9
CW
4256
4257 if (HAS_BSD(dev)) {
5c1143bb 4258 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4259 if (ret)
4260 goto cleanup_render_ring;
d1b851fc 4261 }
68f95ba9 4262
67b1b571 4263 if (intel_enable_blt(dev)) {
549f7365
CW
4264 ret = intel_init_blt_ring_buffer(dev);
4265 if (ret)
4266 goto cleanup_bsd_ring;
4267 }
4268
9a8a2213
BW
4269 if (HAS_VEBOX(dev)) {
4270 ret = intel_init_vebox_ring_buffer(dev);
4271 if (ret)
4272 goto cleanup_blt_ring;
4273 }
4274
4275
99433931 4276 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4277 if (ret)
9a8a2213 4278 goto cleanup_vebox_ring;
4fc7c971
BW
4279
4280 return 0;
4281
9a8a2213
BW
4282cleanup_vebox_ring:
4283 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4284cleanup_blt_ring:
4285 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4286cleanup_bsd_ring:
4287 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4288cleanup_render_ring:
4289 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4290
4291 return ret;
4292}
4293
4294int
4295i915_gem_init_hw(struct drm_device *dev)
4296{
4297 drm_i915_private_t *dev_priv = dev->dev_private;
4298 int ret;
4299
4300 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4301 return -EIO;
4302
59124506 4303 if (dev_priv->ellc_size)
05e21cc4 4304 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4305
88a2b2a3
BW
4306 if (HAS_PCH_NOP(dev)) {
4307 u32 temp = I915_READ(GEN7_MSG_CTL);
4308 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4309 I915_WRITE(GEN7_MSG_CTL, temp);
4310 }
4311
4fc7c971
BW
4312 i915_gem_l3_remap(dev);
4313
4314 i915_gem_init_swizzling(dev);
4315
4316 ret = i915_gem_init_rings(dev);
99433931
MK
4317 if (ret)
4318 return ret;
4319
254f965c
BW
4320 /*
4321 * XXX: There was some w/a described somewhere suggesting loading
4322 * contexts before PPGTT.
4323 */
4324 i915_gem_context_init(dev);
b7c36d25
BW
4325 if (dev_priv->mm.aliasing_ppgtt) {
4326 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4327 if (ret) {
4328 i915_gem_cleanup_aliasing_ppgtt(dev);
4329 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4330 }
4331 }
e21af88d 4332
68f95ba9 4333 return 0;
8187a2b7
ZN
4334}
4335
1070a42b
CW
4336int i915_gem_init(struct drm_device *dev)
4337{
4338 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4339 int ret;
4340
1070a42b 4341 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4342
4343 if (IS_VALLEYVIEW(dev)) {
4344 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4345 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4346 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4347 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4348 }
4349
d7e5008f 4350 i915_gem_init_global_gtt(dev);
d62b4892 4351
1070a42b
CW
4352 ret = i915_gem_init_hw(dev);
4353 mutex_unlock(&dev->struct_mutex);
4354 if (ret) {
4355 i915_gem_cleanup_aliasing_ppgtt(dev);
4356 return ret;
4357 }
4358
53ca26ca
DV
4359 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4360 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4361 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4362 return 0;
4363}
4364
8187a2b7
ZN
4365void
4366i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4367{
4368 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4369 struct intel_ring_buffer *ring;
1ec14ad3 4370 int i;
8187a2b7 4371
b4519513
CW
4372 for_each_ring(ring, dev_priv, i)
4373 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4374}
4375
673a394b
EA
4376int
4377i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4378 struct drm_file *file_priv)
4379{
db1b76ca 4380 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4381 int ret;
673a394b 4382
79e53945
JB
4383 if (drm_core_check_feature(dev, DRIVER_MODESET))
4384 return 0;
4385
1f83fee0 4386 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4387 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4388 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4389 }
4390
673a394b 4391 mutex_lock(&dev->struct_mutex);
db1b76ca 4392 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4393
f691e2f4 4394 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4395 if (ret != 0) {
4396 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4397 return ret;
d816f6ac 4398 }
9bb2d6f9 4399
5cef07e1 4400 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4401 mutex_unlock(&dev->struct_mutex);
dbb19d30 4402
5f35308b
CW
4403 ret = drm_irq_install(dev);
4404 if (ret)
4405 goto cleanup_ringbuffer;
dbb19d30 4406
673a394b 4407 return 0;
5f35308b
CW
4408
4409cleanup_ringbuffer:
4410 mutex_lock(&dev->struct_mutex);
4411 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4412 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4413 mutex_unlock(&dev->struct_mutex);
4414
4415 return ret;
673a394b
EA
4416}
4417
4418int
4419i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4420 struct drm_file *file_priv)
4421{
db1b76ca
DV
4422 struct drm_i915_private *dev_priv = dev->dev_private;
4423 int ret;
4424
79e53945
JB
4425 if (drm_core_check_feature(dev, DRIVER_MODESET))
4426 return 0;
4427
dbb19d30 4428 drm_irq_uninstall(dev);
db1b76ca
DV
4429
4430 mutex_lock(&dev->struct_mutex);
4431 ret = i915_gem_idle(dev);
4432
4433 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4434 * We need to replace this with a semaphore, or something.
4435 * And not confound ums.mm_suspended!
4436 */
4437 if (ret != 0)
4438 dev_priv->ums.mm_suspended = 1;
4439 mutex_unlock(&dev->struct_mutex);
4440
4441 return ret;
673a394b
EA
4442}
4443
4444void
4445i915_gem_lastclose(struct drm_device *dev)
4446{
4447 int ret;
673a394b 4448
e806b495
EA
4449 if (drm_core_check_feature(dev, DRIVER_MODESET))
4450 return;
4451
db1b76ca 4452 mutex_lock(&dev->struct_mutex);
6dbe2772
KP
4453 ret = i915_gem_idle(dev);
4454 if (ret)
4455 DRM_ERROR("failed to idle hardware: %d\n", ret);
db1b76ca 4456 mutex_unlock(&dev->struct_mutex);
673a394b
EA
4457}
4458
64193406
CW
4459static void
4460init_ring_lists(struct intel_ring_buffer *ring)
4461{
4462 INIT_LIST_HEAD(&ring->active_list);
4463 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4464}
4465
fc8c067e
BW
4466static void i915_init_vm(struct drm_i915_private *dev_priv,
4467 struct i915_address_space *vm)
4468{
4469 vm->dev = dev_priv->dev;
4470 INIT_LIST_HEAD(&vm->active_list);
4471 INIT_LIST_HEAD(&vm->inactive_list);
4472 INIT_LIST_HEAD(&vm->global_link);
4473 list_add(&vm->global_link, &dev_priv->vm_list);
4474}
4475
673a394b
EA
4476void
4477i915_gem_load(struct drm_device *dev)
4478{
4479 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4480 int i;
4481
4482 dev_priv->slab =
4483 kmem_cache_create("i915_gem_object",
4484 sizeof(struct drm_i915_gem_object), 0,
4485 SLAB_HWCACHE_ALIGN,
4486 NULL);
673a394b 4487
fc8c067e
BW
4488 INIT_LIST_HEAD(&dev_priv->vm_list);
4489 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4490
6c085a72
CW
4491 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4492 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4493 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4494 for (i = 0; i < I915_NUM_RINGS; i++)
4495 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4496 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4497 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4498 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4499 i915_gem_retire_work_handler);
1f83fee0 4500 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4501
94400120
DA
4502 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4503 if (IS_GEN3(dev)) {
50743298
DV
4504 I915_WRITE(MI_ARB_STATE,
4505 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4506 }
4507
72bfa19c
CW
4508 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4509
de151cf6 4510 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4511 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4512 dev_priv->fence_reg_start = 3;
de151cf6 4513
42b5aeab
VS
4514 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4515 dev_priv->num_fence_regs = 32;
4516 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4517 dev_priv->num_fence_regs = 16;
4518 else
4519 dev_priv->num_fence_regs = 8;
4520
b5aa8a0f 4521 /* Initialize fence registers to zero */
19b2dbde
CW
4522 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4523 i915_gem_restore_fences(dev);
10ed13e4 4524
673a394b 4525 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4526 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4527
ce453d81
CW
4528 dev_priv->mm.interruptible = true;
4529
17250b71
CW
4530 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4531 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4532 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4533}
71acb5eb
DA
4534
4535/*
4536 * Create a physically contiguous memory object for this object
4537 * e.g. for cursor + overlay regs
4538 */
995b6762
CW
4539static int i915_gem_init_phys_object(struct drm_device *dev,
4540 int id, int size, int align)
71acb5eb
DA
4541{
4542 drm_i915_private_t *dev_priv = dev->dev_private;
4543 struct drm_i915_gem_phys_object *phys_obj;
4544 int ret;
4545
4546 if (dev_priv->mm.phys_objs[id - 1] || !size)
4547 return 0;
4548
9a298b2a 4549 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4550 if (!phys_obj)
4551 return -ENOMEM;
4552
4553 phys_obj->id = id;
4554
6eeefaf3 4555 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4556 if (!phys_obj->handle) {
4557 ret = -ENOMEM;
4558 goto kfree_obj;
4559 }
4560#ifdef CONFIG_X86
4561 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4562#endif
4563
4564 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4565
4566 return 0;
4567kfree_obj:
9a298b2a 4568 kfree(phys_obj);
71acb5eb
DA
4569 return ret;
4570}
4571
995b6762 4572static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4573{
4574 drm_i915_private_t *dev_priv = dev->dev_private;
4575 struct drm_i915_gem_phys_object *phys_obj;
4576
4577 if (!dev_priv->mm.phys_objs[id - 1])
4578 return;
4579
4580 phys_obj = dev_priv->mm.phys_objs[id - 1];
4581 if (phys_obj->cur_obj) {
4582 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4583 }
4584
4585#ifdef CONFIG_X86
4586 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4587#endif
4588 drm_pci_free(dev, phys_obj->handle);
4589 kfree(phys_obj);
4590 dev_priv->mm.phys_objs[id - 1] = NULL;
4591}
4592
4593void i915_gem_free_all_phys_object(struct drm_device *dev)
4594{
4595 int i;
4596
260883c8 4597 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4598 i915_gem_free_phys_object(dev, i);
4599}
4600
4601void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4602 struct drm_i915_gem_object *obj)
71acb5eb 4603{
496ad9aa 4604 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4605 char *vaddr;
71acb5eb 4606 int i;
71acb5eb
DA
4607 int page_count;
4608
05394f39 4609 if (!obj->phys_obj)
71acb5eb 4610 return;
05394f39 4611 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4612
05394f39 4613 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4614 for (i = 0; i < page_count; i++) {
5949eac4 4615 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4616 if (!IS_ERR(page)) {
4617 char *dst = kmap_atomic(page);
4618 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4619 kunmap_atomic(dst);
4620
4621 drm_clflush_pages(&page, 1);
4622
4623 set_page_dirty(page);
4624 mark_page_accessed(page);
4625 page_cache_release(page);
4626 }
71acb5eb 4627 }
e76e9aeb 4628 i915_gem_chipset_flush(dev);
d78b47b9 4629
05394f39
CW
4630 obj->phys_obj->cur_obj = NULL;
4631 obj->phys_obj = NULL;
71acb5eb
DA
4632}
4633
4634int
4635i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4636 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4637 int id,
4638 int align)
71acb5eb 4639{
496ad9aa 4640 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4641 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4642 int ret = 0;
4643 int page_count;
4644 int i;
4645
4646 if (id > I915_MAX_PHYS_OBJECT)
4647 return -EINVAL;
4648
05394f39
CW
4649 if (obj->phys_obj) {
4650 if (obj->phys_obj->id == id)
71acb5eb
DA
4651 return 0;
4652 i915_gem_detach_phys_object(dev, obj);
4653 }
4654
71acb5eb
DA
4655 /* create a new object */
4656 if (!dev_priv->mm.phys_objs[id - 1]) {
4657 ret = i915_gem_init_phys_object(dev, id,
05394f39 4658 obj->base.size, align);
71acb5eb 4659 if (ret) {
05394f39
CW
4660 DRM_ERROR("failed to init phys object %d size: %zu\n",
4661 id, obj->base.size);
e5281ccd 4662 return ret;
71acb5eb
DA
4663 }
4664 }
4665
4666 /* bind to the object */
05394f39
CW
4667 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4668 obj->phys_obj->cur_obj = obj;
71acb5eb 4669
05394f39 4670 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4671
4672 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4673 struct page *page;
4674 char *dst, *src;
4675
5949eac4 4676 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4677 if (IS_ERR(page))
4678 return PTR_ERR(page);
71acb5eb 4679
ff75b9bc 4680 src = kmap_atomic(page);
05394f39 4681 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4682 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4683 kunmap_atomic(src);
71acb5eb 4684
e5281ccd
CW
4685 mark_page_accessed(page);
4686 page_cache_release(page);
4687 }
d78b47b9 4688
71acb5eb 4689 return 0;
71acb5eb
DA
4690}
4691
4692static int
05394f39
CW
4693i915_gem_phys_pwrite(struct drm_device *dev,
4694 struct drm_i915_gem_object *obj,
71acb5eb
DA
4695 struct drm_i915_gem_pwrite *args,
4696 struct drm_file *file_priv)
4697{
05394f39 4698 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4699 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4700
b47b30cc
CW
4701 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4702 unsigned long unwritten;
4703
4704 /* The physical object once assigned is fixed for the lifetime
4705 * of the obj, so we can safely drop the lock and continue
4706 * to access vaddr.
4707 */
4708 mutex_unlock(&dev->struct_mutex);
4709 unwritten = copy_from_user(vaddr, user_data, args->size);
4710 mutex_lock(&dev->struct_mutex);
4711 if (unwritten)
4712 return -EFAULT;
4713 }
71acb5eb 4714
e76e9aeb 4715 i915_gem_chipset_flush(dev);
71acb5eb
DA
4716 return 0;
4717}
b962442e 4718
f787a5f5 4719void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4720{
f787a5f5 4721 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4722
4723 /* Clean up our request list when the client is going away, so that
4724 * later retire_requests won't dereference our soon-to-be-gone
4725 * file_priv.
4726 */
1c25595f 4727 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4728 while (!list_empty(&file_priv->mm.request_list)) {
4729 struct drm_i915_gem_request *request;
4730
4731 request = list_first_entry(&file_priv->mm.request_list,
4732 struct drm_i915_gem_request,
4733 client_list);
4734 list_del(&request->client_list);
4735 request->file_priv = NULL;
4736 }
1c25595f 4737 spin_unlock(&file_priv->mm.lock);
b962442e 4738}
31169714 4739
5774506f
CW
4740static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4741{
4742 if (!mutex_is_locked(mutex))
4743 return false;
4744
4745#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4746 return mutex->owner == task;
4747#else
4748 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4749 return false;
4750#endif
4751}
4752
31169714 4753static int
1495f230 4754i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4755{
17250b71
CW
4756 struct drm_i915_private *dev_priv =
4757 container_of(shrinker,
4758 struct drm_i915_private,
4759 mm.inactive_shrinker);
4760 struct drm_device *dev = dev_priv->dev;
6c085a72 4761 struct drm_i915_gem_object *obj;
1495f230 4762 int nr_to_scan = sc->nr_to_scan;
5774506f 4763 bool unlock = true;
17250b71
CW
4764 int cnt;
4765
5774506f
CW
4766 if (!mutex_trylock(&dev->struct_mutex)) {
4767 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4768 return 0;
4769
677feac2
DV
4770 if (dev_priv->mm.shrinker_no_lock_stealing)
4771 return 0;
4772
5774506f
CW
4773 unlock = false;
4774 }
31169714 4775
6c085a72
CW
4776 if (nr_to_scan) {
4777 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
93927ca5
DV
4778 if (nr_to_scan > 0)
4779 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4780 false);
6c085a72
CW
4781 if (nr_to_scan > 0)
4782 i915_gem_shrink_all(dev_priv);
31169714
CW
4783 }
4784
17250b71 4785 cnt = 0;
35c20a60 4786 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178
CW
4787 if (obj->pages_pin_count == 0)
4788 cnt += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4789
4790 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4791 if (obj->active)
4792 continue;
4793
a5570178 4794 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4795 cnt += obj->base.size >> PAGE_SHIFT;
fcb4a578 4796 }
17250b71 4797
5774506f
CW
4798 if (unlock)
4799 mutex_unlock(&dev->struct_mutex);
6c085a72 4800 return cnt;
31169714 4801}
a70a3148
BW
4802
4803/* All the new VM stuff */
4804unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4805 struct i915_address_space *vm)
4806{
4807 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4808 struct i915_vma *vma;
4809
4810 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4811 vm = &dev_priv->gtt.base;
4812
4813 BUG_ON(list_empty(&o->vma_list));
4814 list_for_each_entry(vma, &o->vma_list, vma_link) {
4815 if (vma->vm == vm)
4816 return vma->node.start;
4817
4818 }
4819 return -1;
4820}
4821
4822bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4823 struct i915_address_space *vm)
4824{
4825 struct i915_vma *vma;
4826
4827 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 4828 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
4829 return true;
4830
4831 return false;
4832}
4833
4834bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4835{
4836 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4837 struct i915_address_space *vm;
4838
4839 list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4840 if (i915_gem_obj_bound(o, vm))
4841 return true;
4842
4843 return false;
4844}
4845
4846unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4847 struct i915_address_space *vm)
4848{
4849 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4850 struct i915_vma *vma;
4851
4852 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4853 vm = &dev_priv->gtt.base;
4854
4855 BUG_ON(list_empty(&o->vma_list));
4856
4857 list_for_each_entry(vma, &o->vma_list, vma_link)
4858 if (vma->vm == vm)
4859 return vma->node.size;
4860
4861 return 0;
4862}
4863
4864struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4865 struct i915_address_space *vm)
4866{
4867 struct i915_vma *vma;
4868 list_for_each_entry(vma, &obj->vma_list, vma_link)
4869 if (vma->vm == vm)
4870 return vma;
4871
4872 return NULL;
4873}