]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915/skl: Implement WaBarrierPerformanceFixDisable
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
2cfcd32a 35#include <linux/oom.h>
5949eac4 36#include <linux/shmem_fs.h>
5a0e3ad6 37#include <linux/slab.h>
673a394b 38#include <linux/swap.h>
79e53945 39#include <linux/pci.h>
1286ff73 40#include <linux/dma-buf.h>
673a394b 41
05394f39 42static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 43static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43 63static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 64
c76ce038
CW
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
2c22569b
CW
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
61050808
CW
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
5d82e3e6 87 obj->fence_dirty = false;
61050808
CW
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
73aa808f
CW
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
c20e8355 104 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
c20e8355 107 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108}
109
21dd3734 110static int
33196ded 111i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 112{
30dbf0c0
CW
113 int ret;
114
7abb690a
DV
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
1f83fee0 117 if (EXIT_COND)
30dbf0c0
CW
118 return 0;
119
0a6759c6
DV
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
1f83fee0
DV
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
0a6759c6
DV
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
30dbf0c0 132 return ret;
0a6759c6 133 }
1f83fee0 134#undef EXIT_COND
30dbf0c0 135
21dd3734 136 return 0;
30dbf0c0
CW
137}
138
54cf91dc 139int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 140{
33196ded 141 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
142 int ret;
143
33196ded 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
23bc5982 152 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
153 return 0;
154}
30dbf0c0 155
5a125c3c
EA
156int
157i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 158 struct drm_file *file)
5a125c3c 159{
73aa808f 160 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 161 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
162 struct drm_i915_gem_object *obj;
163 size_t pinned;
5a125c3c 164
6299f992 165 pinned = 0;
73aa808f 166 mutex_lock(&dev->struct_mutex);
35c20a60 167 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 168 if (i915_gem_obj_is_pinned(obj))
f343c5f6 169 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 170 mutex_unlock(&dev->struct_mutex);
5a125c3c 171
853ba5d2 172 args->aper_size = dev_priv->gtt.base.total;
0206e353 173 args->aper_available_size = args->aper_size - pinned;
6299f992 174
5a125c3c
EA
175 return 0;
176}
177
6a2c4232
CW
178static int
179i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 180{
6a2c4232
CW
181 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
182 char *vaddr = obj->phys_handle->vaddr;
183 struct sg_table *st;
184 struct scatterlist *sg;
185 int i;
00731155 186
6a2c4232
CW
187 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
188 return -EINVAL;
189
190 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191 struct page *page;
192 char *src;
193
194 page = shmem_read_mapping_page(mapping, i);
195 if (IS_ERR(page))
196 return PTR_ERR(page);
197
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 kunmap_atomic(src);
202
203 page_cache_release(page);
204 vaddr += PAGE_SIZE;
205 }
206
207 i915_gem_chipset_flush(obj->base.dev);
208
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
210 if (st == NULL)
211 return -ENOMEM;
212
213 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
214 kfree(st);
215 return -ENOMEM;
216 }
217
218 sg = st->sgl;
219 sg->offset = 0;
220 sg->length = obj->base.size;
00731155 221
6a2c4232
CW
222 sg_dma_address(sg) = obj->phys_handle->busaddr;
223 sg_dma_len(sg) = obj->base.size;
224
225 obj->pages = st;
226 obj->has_dma_mapping = true;
227 return 0;
228}
229
230static void
231i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
232{
233 int ret;
234
235 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 236
6a2c4232
CW
237 ret = i915_gem_object_set_to_cpu_domain(obj, true);
238 if (ret) {
239 /* In the event of a disaster, abandon all caches and
240 * hope for the best.
241 */
242 WARN_ON(ret != -EIO);
243 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
244 }
245
246 if (obj->madv == I915_MADV_DONTNEED)
247 obj->dirty = 0;
248
249 if (obj->dirty) {
00731155 250 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 251 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
252 int i;
253
254 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
255 struct page *page;
256 char *dst;
257
258 page = shmem_read_mapping_page(mapping, i);
259 if (IS_ERR(page))
260 continue;
261
262 dst = kmap_atomic(page);
263 drm_clflush_virt_range(vaddr, PAGE_SIZE);
264 memcpy(dst, vaddr, PAGE_SIZE);
265 kunmap_atomic(dst);
266
267 set_page_dirty(page);
268 if (obj->madv == I915_MADV_WILLNEED)
00731155 269 mark_page_accessed(page);
6a2c4232 270 page_cache_release(page);
00731155
CW
271 vaddr += PAGE_SIZE;
272 }
6a2c4232 273 obj->dirty = 0;
00731155
CW
274 }
275
6a2c4232
CW
276 sg_free_table(obj->pages);
277 kfree(obj->pages);
278
279 obj->has_dma_mapping = false;
280}
281
282static void
283i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
284{
285 drm_pci_free(obj->base.dev, obj->phys_handle);
286}
287
288static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
289 .get_pages = i915_gem_object_get_pages_phys,
290 .put_pages = i915_gem_object_put_pages_phys,
291 .release = i915_gem_object_release_phys,
292};
293
294static int
295drop_pages(struct drm_i915_gem_object *obj)
296{
297 struct i915_vma *vma, *next;
298 int ret;
299
300 drm_gem_object_reference(&obj->base);
301 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
302 if (i915_vma_unbind(vma))
303 break;
304
305 ret = i915_gem_object_put_pages(obj);
306 drm_gem_object_unreference(&obj->base);
307
308 return ret;
00731155
CW
309}
310
311int
312i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
313 int align)
314{
315 drm_dma_handle_t *phys;
6a2c4232 316 int ret;
00731155
CW
317
318 if (obj->phys_handle) {
319 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
320 return -EBUSY;
321
322 return 0;
323 }
324
325 if (obj->madv != I915_MADV_WILLNEED)
326 return -EFAULT;
327
328 if (obj->base.filp == NULL)
329 return -EINVAL;
330
6a2c4232
CW
331 ret = drop_pages(obj);
332 if (ret)
333 return ret;
334
00731155
CW
335 /* create a new object */
336 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
337 if (!phys)
338 return -ENOMEM;
339
00731155 340 obj->phys_handle = phys;
6a2c4232
CW
341 obj->ops = &i915_gem_phys_ops;
342
343 return i915_gem_object_get_pages(obj);
00731155
CW
344}
345
346static int
347i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
348 struct drm_i915_gem_pwrite *args,
349 struct drm_file *file_priv)
350{
351 struct drm_device *dev = obj->base.dev;
352 void *vaddr = obj->phys_handle->vaddr + args->offset;
353 char __user *user_data = to_user_ptr(args->data_ptr);
6a2c4232
CW
354 int ret;
355
356 /* We manually control the domain here and pretend that it
357 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
358 */
359 ret = i915_gem_object_wait_rendering(obj, false);
360 if (ret)
361 return ret;
00731155
CW
362
363 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
364 unsigned long unwritten;
365
366 /* The physical object once assigned is fixed for the lifetime
367 * of the obj, so we can safely drop the lock and continue
368 * to access vaddr.
369 */
370 mutex_unlock(&dev->struct_mutex);
371 unwritten = copy_from_user(vaddr, user_data, args->size);
372 mutex_lock(&dev->struct_mutex);
373 if (unwritten)
374 return -EFAULT;
375 }
376
6a2c4232 377 drm_clflush_virt_range(vaddr, args->size);
00731155
CW
378 i915_gem_chipset_flush(dev);
379 return 0;
380}
381
42dcedd4
CW
382void *i915_gem_object_alloc(struct drm_device *dev)
383{
384 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 385 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
386}
387
388void i915_gem_object_free(struct drm_i915_gem_object *obj)
389{
390 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
391 kmem_cache_free(dev_priv->slab, obj);
392}
393
ff72145b
DA
394static int
395i915_gem_create(struct drm_file *file,
396 struct drm_device *dev,
397 uint64_t size,
398 uint32_t *handle_p)
673a394b 399{
05394f39 400 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
401 int ret;
402 u32 handle;
673a394b 403
ff72145b 404 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
405 if (size == 0)
406 return -EINVAL;
673a394b
EA
407
408 /* Allocate the new object */
ff72145b 409 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
410 if (obj == NULL)
411 return -ENOMEM;
412
05394f39 413 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 414 /* drop reference from allocate - handle holds it now */
d861e338
DV
415 drm_gem_object_unreference_unlocked(&obj->base);
416 if (ret)
417 return ret;
202f2fef 418
ff72145b 419 *handle_p = handle;
673a394b
EA
420 return 0;
421}
422
ff72145b
DA
423int
424i915_gem_dumb_create(struct drm_file *file,
425 struct drm_device *dev,
426 struct drm_mode_create_dumb *args)
427{
428 /* have to work out size/pitch and return them */
de45eaf7 429 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
430 args->size = args->pitch * args->height;
431 return i915_gem_create(file, dev,
da6b51d0 432 args->size, &args->handle);
ff72145b
DA
433}
434
ff72145b
DA
435/**
436 * Creates a new mm object and returns a handle to it.
437 */
438int
439i915_gem_create_ioctl(struct drm_device *dev, void *data,
440 struct drm_file *file)
441{
442 struct drm_i915_gem_create *args = data;
63ed2cb2 443
ff72145b 444 return i915_gem_create(file, dev,
da6b51d0 445 args->size, &args->handle);
ff72145b
DA
446}
447
8461d226
DV
448static inline int
449__copy_to_user_swizzled(char __user *cpu_vaddr,
450 const char *gpu_vaddr, int gpu_offset,
451 int length)
452{
453 int ret, cpu_offset = 0;
454
455 while (length > 0) {
456 int cacheline_end = ALIGN(gpu_offset + 1, 64);
457 int this_length = min(cacheline_end - gpu_offset, length);
458 int swizzled_gpu_offset = gpu_offset ^ 64;
459
460 ret = __copy_to_user(cpu_vaddr + cpu_offset,
461 gpu_vaddr + swizzled_gpu_offset,
462 this_length);
463 if (ret)
464 return ret + length;
465
466 cpu_offset += this_length;
467 gpu_offset += this_length;
468 length -= this_length;
469 }
470
471 return 0;
472}
473
8c59967c 474static inline int
4f0c7cfb
BW
475__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
476 const char __user *cpu_vaddr,
8c59967c
DV
477 int length)
478{
479 int ret, cpu_offset = 0;
480
481 while (length > 0) {
482 int cacheline_end = ALIGN(gpu_offset + 1, 64);
483 int this_length = min(cacheline_end - gpu_offset, length);
484 int swizzled_gpu_offset = gpu_offset ^ 64;
485
486 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
487 cpu_vaddr + cpu_offset,
488 this_length);
489 if (ret)
490 return ret + length;
491
492 cpu_offset += this_length;
493 gpu_offset += this_length;
494 length -= this_length;
495 }
496
497 return 0;
498}
499
4c914c0c
BV
500/*
501 * Pins the specified object's pages and synchronizes the object with
502 * GPU accesses. Sets needs_clflush to non-zero if the caller should
503 * flush the object from the CPU cache.
504 */
505int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
506 int *needs_clflush)
507{
508 int ret;
509
510 *needs_clflush = 0;
511
512 if (!obj->base.filp)
513 return -EINVAL;
514
515 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
516 /* If we're not in the cpu read domain, set ourself into the gtt
517 * read domain and manually flush cachelines (if required). This
518 * optimizes for the case when the gpu will dirty the data
519 * anyway again before the next pread happens. */
520 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
521 obj->cache_level);
522 ret = i915_gem_object_wait_rendering(obj, true);
523 if (ret)
524 return ret;
c8725f3d
CW
525
526 i915_gem_object_retire(obj);
4c914c0c
BV
527 }
528
529 ret = i915_gem_object_get_pages(obj);
530 if (ret)
531 return ret;
532
533 i915_gem_object_pin_pages(obj);
534
535 return ret;
536}
537
d174bd64
DV
538/* Per-page copy function for the shmem pread fastpath.
539 * Flushes invalid cachelines before reading the target if
540 * needs_clflush is set. */
eb01459f 541static int
d174bd64
DV
542shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
543 char __user *user_data,
544 bool page_do_bit17_swizzling, bool needs_clflush)
545{
546 char *vaddr;
547 int ret;
548
e7e58eb5 549 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
550 return -EINVAL;
551
552 vaddr = kmap_atomic(page);
553 if (needs_clflush)
554 drm_clflush_virt_range(vaddr + shmem_page_offset,
555 page_length);
556 ret = __copy_to_user_inatomic(user_data,
557 vaddr + shmem_page_offset,
558 page_length);
559 kunmap_atomic(vaddr);
560
f60d7f0c 561 return ret ? -EFAULT : 0;
d174bd64
DV
562}
563
23c18c71
DV
564static void
565shmem_clflush_swizzled_range(char *addr, unsigned long length,
566 bool swizzled)
567{
e7e58eb5 568 if (unlikely(swizzled)) {
23c18c71
DV
569 unsigned long start = (unsigned long) addr;
570 unsigned long end = (unsigned long) addr + length;
571
572 /* For swizzling simply ensure that we always flush both
573 * channels. Lame, but simple and it works. Swizzled
574 * pwrite/pread is far from a hotpath - current userspace
575 * doesn't use it at all. */
576 start = round_down(start, 128);
577 end = round_up(end, 128);
578
579 drm_clflush_virt_range((void *)start, end - start);
580 } else {
581 drm_clflush_virt_range(addr, length);
582 }
583
584}
585
d174bd64
DV
586/* Only difference to the fast-path function is that this can handle bit17
587 * and uses non-atomic copy and kmap functions. */
588static int
589shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
590 char __user *user_data,
591 bool page_do_bit17_swizzling, bool needs_clflush)
592{
593 char *vaddr;
594 int ret;
595
596 vaddr = kmap(page);
597 if (needs_clflush)
23c18c71
DV
598 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
599 page_length,
600 page_do_bit17_swizzling);
d174bd64
DV
601
602 if (page_do_bit17_swizzling)
603 ret = __copy_to_user_swizzled(user_data,
604 vaddr, shmem_page_offset,
605 page_length);
606 else
607 ret = __copy_to_user(user_data,
608 vaddr + shmem_page_offset,
609 page_length);
610 kunmap(page);
611
f60d7f0c 612 return ret ? - EFAULT : 0;
d174bd64
DV
613}
614
eb01459f 615static int
dbf7bff0
DV
616i915_gem_shmem_pread(struct drm_device *dev,
617 struct drm_i915_gem_object *obj,
618 struct drm_i915_gem_pread *args,
619 struct drm_file *file)
eb01459f 620{
8461d226 621 char __user *user_data;
eb01459f 622 ssize_t remain;
8461d226 623 loff_t offset;
eb2c0c81 624 int shmem_page_offset, page_length, ret = 0;
8461d226 625 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 626 int prefaulted = 0;
8489731c 627 int needs_clflush = 0;
67d5a50c 628 struct sg_page_iter sg_iter;
eb01459f 629
2bb4629a 630 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
631 remain = args->size;
632
8461d226 633 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 634
4c914c0c 635 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
636 if (ret)
637 return ret;
638
8461d226 639 offset = args->offset;
eb01459f 640
67d5a50c
ID
641 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
642 offset >> PAGE_SHIFT) {
2db76d7c 643 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
644
645 if (remain <= 0)
646 break;
647
eb01459f
EA
648 /* Operation in this page
649 *
eb01459f 650 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
651 * page_length = bytes to copy for this page
652 */
c8cbbb8b 653 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
654 page_length = remain;
655 if ((shmem_page_offset + page_length) > PAGE_SIZE)
656 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 657
8461d226
DV
658 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
659 (page_to_phys(page) & (1 << 17)) != 0;
660
d174bd64
DV
661 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
662 user_data, page_do_bit17_swizzling,
663 needs_clflush);
664 if (ret == 0)
665 goto next_page;
dbf7bff0 666
dbf7bff0
DV
667 mutex_unlock(&dev->struct_mutex);
668
d330a953 669 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 670 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
671 /* Userspace is tricking us, but we've already clobbered
672 * its pages with the prefault and promised to write the
673 * data up to the first fault. Hence ignore any errors
674 * and just continue. */
675 (void)ret;
676 prefaulted = 1;
677 }
eb01459f 678
d174bd64
DV
679 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
680 user_data, page_do_bit17_swizzling,
681 needs_clflush);
eb01459f 682
dbf7bff0 683 mutex_lock(&dev->struct_mutex);
f60d7f0c 684
f60d7f0c 685 if (ret)
8461d226 686 goto out;
8461d226 687
17793c9a 688next_page:
eb01459f 689 remain -= page_length;
8461d226 690 user_data += page_length;
eb01459f
EA
691 offset += page_length;
692 }
693
4f27b75d 694out:
f60d7f0c
CW
695 i915_gem_object_unpin_pages(obj);
696
eb01459f
EA
697 return ret;
698}
699
673a394b
EA
700/**
701 * Reads data from the object referenced by handle.
702 *
703 * On error, the contents of *data are undefined.
704 */
705int
706i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 707 struct drm_file *file)
673a394b
EA
708{
709 struct drm_i915_gem_pread *args = data;
05394f39 710 struct drm_i915_gem_object *obj;
35b62a89 711 int ret = 0;
673a394b 712
51311d0a
CW
713 if (args->size == 0)
714 return 0;
715
716 if (!access_ok(VERIFY_WRITE,
2bb4629a 717 to_user_ptr(args->data_ptr),
51311d0a
CW
718 args->size))
719 return -EFAULT;
720
4f27b75d 721 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 722 if (ret)
4f27b75d 723 return ret;
673a394b 724
05394f39 725 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 726 if (&obj->base == NULL) {
1d7cfea1
CW
727 ret = -ENOENT;
728 goto unlock;
4f27b75d 729 }
673a394b 730
7dcd2499 731 /* Bounds check source. */
05394f39
CW
732 if (args->offset > obj->base.size ||
733 args->size > obj->base.size - args->offset) {
ce9d419d 734 ret = -EINVAL;
35b62a89 735 goto out;
ce9d419d
CW
736 }
737
1286ff73
DV
738 /* prime objects have no backing filp to GEM pread/pwrite
739 * pages from.
740 */
741 if (!obj->base.filp) {
742 ret = -EINVAL;
743 goto out;
744 }
745
db53a302
CW
746 trace_i915_gem_object_pread(obj, args->offset, args->size);
747
dbf7bff0 748 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 749
35b62a89 750out:
05394f39 751 drm_gem_object_unreference(&obj->base);
1d7cfea1 752unlock:
4f27b75d 753 mutex_unlock(&dev->struct_mutex);
eb01459f 754 return ret;
673a394b
EA
755}
756
0839ccb8
KP
757/* This is the fast write path which cannot handle
758 * page faults in the source data
9b7530cc 759 */
0839ccb8
KP
760
761static inline int
762fast_user_write(struct io_mapping *mapping,
763 loff_t page_base, int page_offset,
764 char __user *user_data,
765 int length)
9b7530cc 766{
4f0c7cfb
BW
767 void __iomem *vaddr_atomic;
768 void *vaddr;
0839ccb8 769 unsigned long unwritten;
9b7530cc 770
3e4d3af5 771 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
772 /* We can use the cpu mem copy function because this is X86. */
773 vaddr = (void __force*)vaddr_atomic + page_offset;
774 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 775 user_data, length);
3e4d3af5 776 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 777 return unwritten;
0839ccb8
KP
778}
779
3de09aa3
EA
780/**
781 * This is the fast pwrite path, where we copy the data directly from the
782 * user into the GTT, uncached.
783 */
673a394b 784static int
05394f39
CW
785i915_gem_gtt_pwrite_fast(struct drm_device *dev,
786 struct drm_i915_gem_object *obj,
3de09aa3 787 struct drm_i915_gem_pwrite *args,
05394f39 788 struct drm_file *file)
673a394b 789{
3e31c6c0 790 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 791 ssize_t remain;
0839ccb8 792 loff_t offset, page_base;
673a394b 793 char __user *user_data;
935aaa69
DV
794 int page_offset, page_length, ret;
795
1ec9e26d 796 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
797 if (ret)
798 goto out;
799
800 ret = i915_gem_object_set_to_gtt_domain(obj, true);
801 if (ret)
802 goto out_unpin;
803
804 ret = i915_gem_object_put_fence(obj);
805 if (ret)
806 goto out_unpin;
673a394b 807
2bb4629a 808 user_data = to_user_ptr(args->data_ptr);
673a394b 809 remain = args->size;
673a394b 810
f343c5f6 811 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
812
813 while (remain > 0) {
814 /* Operation in this page
815 *
0839ccb8
KP
816 * page_base = page offset within aperture
817 * page_offset = offset within page
818 * page_length = bytes to copy for this page
673a394b 819 */
c8cbbb8b
CW
820 page_base = offset & PAGE_MASK;
821 page_offset = offset_in_page(offset);
0839ccb8
KP
822 page_length = remain;
823 if ((page_offset + remain) > PAGE_SIZE)
824 page_length = PAGE_SIZE - page_offset;
825
0839ccb8 826 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
827 * source page isn't available. Return the error and we'll
828 * retry in the slow path.
0839ccb8 829 */
5d4545ae 830 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
831 page_offset, user_data, page_length)) {
832 ret = -EFAULT;
833 goto out_unpin;
834 }
673a394b 835
0839ccb8
KP
836 remain -= page_length;
837 user_data += page_length;
838 offset += page_length;
673a394b 839 }
673a394b 840
935aaa69 841out_unpin:
d7f46fc4 842 i915_gem_object_ggtt_unpin(obj);
935aaa69 843out:
3de09aa3 844 return ret;
673a394b
EA
845}
846
d174bd64
DV
847/* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
3043c60c 851static int
d174bd64
DV
852shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
673a394b 857{
d174bd64 858 char *vaddr;
673a394b 859 int ret;
3de09aa3 860
e7e58eb5 861 if (unlikely(page_do_bit17_swizzling))
d174bd64 862 return -EINVAL;
3de09aa3 863
d174bd64
DV
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
c2831a94
CW
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
d174bd64
DV
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
3de09aa3 874
755d2218 875 return ret ? -EFAULT : 0;
3de09aa3
EA
876}
877
d174bd64
DV
878/* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
3043c60c 880static int
d174bd64
DV
881shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
673a394b 886{
d174bd64
DV
887 char *vaddr;
888 int ret;
e5281ccd 889
d174bd64 890 vaddr = kmap(page);
e7e58eb5 891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
d174bd64
DV
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
897 user_data,
898 page_length);
d174bd64
DV
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
23c18c71
DV
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
d174bd64 907 kunmap(page);
40123c1f 908
755d2218 909 return ret ? -EFAULT : 0;
40123c1f
EA
910}
911
40123c1f 912static int
e244a443
DV
913i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
40123c1f 917{
40123c1f 918 ssize_t remain;
8c59967c
DV
919 loff_t offset;
920 char __user *user_data;
eb2c0c81 921 int shmem_page_offset, page_length, ret = 0;
8c59967c 922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 923 int hit_slowpath = 0;
58642885
DV
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
67d5a50c 926 struct sg_page_iter sg_iter;
40123c1f 927
2bb4629a 928 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
929 remain = args->size;
930
8c59967c 931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 932
58642885
DV
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
2c22569b 938 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
c8725f3d
CW
942
943 i915_gem_object_retire(obj);
58642885 944 }
c76ce038
CW
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 950
755d2218
CW
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
955 i915_gem_object_pin_pages(obj);
956
673a394b 957 offset = args->offset;
05394f39 958 obj->dirty = 1;
673a394b 959
67d5a50c
ID
960 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
961 offset >> PAGE_SHIFT) {
2db76d7c 962 struct page *page = sg_page_iter_page(&sg_iter);
58642885 963 int partial_cacheline_write;
e5281ccd 964
9da3da66
CW
965 if (remain <= 0)
966 break;
967
40123c1f
EA
968 /* Operation in this page
969 *
40123c1f 970 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
971 * page_length = bytes to copy for this page
972 */
c8cbbb8b 973 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
974
975 page_length = remain;
976 if ((shmem_page_offset + page_length) > PAGE_SIZE)
977 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 978
58642885
DV
979 /* If we don't overwrite a cacheline completely we need to be
980 * careful to have up-to-date data by first clflushing. Don't
981 * overcomplicate things and flush the entire patch. */
982 partial_cacheline_write = needs_clflush_before &&
983 ((shmem_page_offset | page_length)
984 & (boot_cpu_data.x86_clflush_size - 1));
985
8c59967c
DV
986 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
987 (page_to_phys(page) & (1 << 17)) != 0;
988
d174bd64
DV
989 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
990 user_data, page_do_bit17_swizzling,
991 partial_cacheline_write,
992 needs_clflush_after);
993 if (ret == 0)
994 goto next_page;
e244a443
DV
995
996 hit_slowpath = 1;
e244a443 997 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
998 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
999 user_data, page_do_bit17_swizzling,
1000 partial_cacheline_write,
1001 needs_clflush_after);
40123c1f 1002
e244a443 1003 mutex_lock(&dev->struct_mutex);
755d2218 1004
755d2218 1005 if (ret)
8c59967c 1006 goto out;
8c59967c 1007
17793c9a 1008next_page:
40123c1f 1009 remain -= page_length;
8c59967c 1010 user_data += page_length;
40123c1f 1011 offset += page_length;
673a394b
EA
1012 }
1013
fbd5a26d 1014out:
755d2218
CW
1015 i915_gem_object_unpin_pages(obj);
1016
e244a443 1017 if (hit_slowpath) {
8dcf015e
DV
1018 /*
1019 * Fixup: Flush cpu caches in case we didn't flush the dirty
1020 * cachelines in-line while writing and the object moved
1021 * out of the cpu write domain while we've dropped the lock.
1022 */
1023 if (!needs_clflush_after &&
1024 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1025 if (i915_gem_clflush_object(obj, obj->pin_display))
1026 i915_gem_chipset_flush(dev);
e244a443 1027 }
8c59967c 1028 }
673a394b 1029
58642885 1030 if (needs_clflush_after)
e76e9aeb 1031 i915_gem_chipset_flush(dev);
58642885 1032
40123c1f 1033 return ret;
673a394b
EA
1034}
1035
1036/**
1037 * Writes data to the object referenced by handle.
1038 *
1039 * On error, the contents of the buffer that were to be modified are undefined.
1040 */
1041int
1042i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1043 struct drm_file *file)
673a394b 1044{
5d77d9c5 1045 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1046 struct drm_i915_gem_pwrite *args = data;
05394f39 1047 struct drm_i915_gem_object *obj;
51311d0a
CW
1048 int ret;
1049
1050 if (args->size == 0)
1051 return 0;
1052
1053 if (!access_ok(VERIFY_READ,
2bb4629a 1054 to_user_ptr(args->data_ptr),
51311d0a
CW
1055 args->size))
1056 return -EFAULT;
1057
d330a953 1058 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1059 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1060 args->size);
1061 if (ret)
1062 return -EFAULT;
1063 }
673a394b 1064
5d77d9c5
ID
1065 intel_runtime_pm_get(dev_priv);
1066
fbd5a26d 1067 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1068 if (ret)
5d77d9c5 1069 goto put_rpm;
1d7cfea1 1070
05394f39 1071 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1072 if (&obj->base == NULL) {
1d7cfea1
CW
1073 ret = -ENOENT;
1074 goto unlock;
fbd5a26d 1075 }
673a394b 1076
7dcd2499 1077 /* Bounds check destination. */
05394f39
CW
1078 if (args->offset > obj->base.size ||
1079 args->size > obj->base.size - args->offset) {
ce9d419d 1080 ret = -EINVAL;
35b62a89 1081 goto out;
ce9d419d
CW
1082 }
1083
1286ff73
DV
1084 /* prime objects have no backing filp to GEM pread/pwrite
1085 * pages from.
1086 */
1087 if (!obj->base.filp) {
1088 ret = -EINVAL;
1089 goto out;
1090 }
1091
db53a302
CW
1092 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1093
935aaa69 1094 ret = -EFAULT;
673a394b
EA
1095 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1096 * it would end up going through the fenced access, and we'll get
1097 * different detiling behavior between reading and writing.
1098 * pread/pwrite currently are reading and writing from the CPU
1099 * perspective, requiring manual detiling by the client.
1100 */
2c22569b
CW
1101 if (obj->tiling_mode == I915_TILING_NONE &&
1102 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1103 cpu_write_needs_clflush(obj)) {
fbd5a26d 1104 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1105 /* Note that the gtt paths might fail with non-page-backed user
1106 * pointers (e.g. gtt mappings when moving data between
1107 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1108 }
673a394b 1109
6a2c4232
CW
1110 if (ret == -EFAULT || ret == -ENOSPC) {
1111 if (obj->phys_handle)
1112 ret = i915_gem_phys_pwrite(obj, args, file);
1113 else
1114 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1115 }
5c0480f2 1116
35b62a89 1117out:
05394f39 1118 drm_gem_object_unreference(&obj->base);
1d7cfea1 1119unlock:
fbd5a26d 1120 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1121put_rpm:
1122 intel_runtime_pm_put(dev_priv);
1123
673a394b
EA
1124 return ret;
1125}
1126
b361237b 1127int
33196ded 1128i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1129 bool interruptible)
1130{
1f83fee0 1131 if (i915_reset_in_progress(error)) {
b361237b
CW
1132 /* Non-interruptible callers can't handle -EAGAIN, hence return
1133 * -EIO unconditionally for these. */
1134 if (!interruptible)
1135 return -EIO;
1136
1f83fee0
DV
1137 /* Recovery complete, but the reset failed ... */
1138 if (i915_terminally_wedged(error))
b361237b
CW
1139 return -EIO;
1140
6689c167
MA
1141 /*
1142 * Check if GPU Reset is in progress - we need intel_ring_begin
1143 * to work properly to reinit the hw state while the gpu is
1144 * still marked as reset-in-progress. Handle this with a flag.
1145 */
1146 if (!error->reload_in_reset)
1147 return -EAGAIN;
b361237b
CW
1148 }
1149
1150 return 0;
1151}
1152
1153/*
b6660d59 1154 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1155 */
84c33a64 1156int
b6660d59 1157i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b
CW
1158{
1159 int ret;
1160
b6660d59 1161 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b
CW
1162
1163 ret = 0;
b6660d59 1164 if (req == req->ring->outstanding_lazy_request)
9400ae5c 1165 ret = i915_add_request(req->ring);
b361237b
CW
1166
1167 return ret;
1168}
1169
094f9a54
CW
1170static void fake_irq(unsigned long data)
1171{
1172 wake_up_process((struct task_struct *)data);
1173}
1174
1175static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1176 struct intel_engine_cs *ring)
094f9a54
CW
1177{
1178 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1179}
1180
b29c19b6
CW
1181static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1182{
1183 if (file_priv == NULL)
1184 return true;
1185
1186 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1187}
1188
b361237b 1189/**
9c654818
JH
1190 * __i915_wait_request - wait until execution of request has finished
1191 * @req: duh!
1192 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1193 * @interruptible: do an interruptible wait (normally yes)
1194 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1195 *
f69061be
DV
1196 * Note: It is of utmost importance that the passed in seqno and reset_counter
1197 * values have been read by the caller in an smp safe manner. Where read-side
1198 * locks are involved, it is sufficient to read the reset_counter before
1199 * unlocking the lock that protects the seqno. For lockless tricks, the
1200 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1201 * inserted.
1202 *
9c654818 1203 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1204 * errno with remaining time filled in timeout argument.
1205 */
9c654818 1206int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1207 unsigned reset_counter,
b29c19b6 1208 bool interruptible,
5ed0bdf2 1209 s64 *timeout,
b29c19b6 1210 struct drm_i915_file_private *file_priv)
b361237b 1211{
9c654818 1212 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1213 struct drm_device *dev = ring->dev;
3e31c6c0 1214 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1215 const bool irq_test_in_progress =
1216 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1217 DEFINE_WAIT(wait);
47e9766d 1218 unsigned long timeout_expire;
5ed0bdf2 1219 s64 before, now;
b361237b
CW
1220 int ret;
1221
9df7575f 1222 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1223
1b5a433a 1224 if (i915_gem_request_completed(req, true))
b361237b
CW
1225 return 0;
1226
7bd0e226
DV
1227 timeout_expire = timeout ?
1228 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1229
ec5cc0f9 1230 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1231 gen6_rps_boost(dev_priv);
1232 if (file_priv)
1233 mod_delayed_work(dev_priv->wq,
1234 &file_priv->mm.idle_work,
1235 msecs_to_jiffies(100));
1236 }
1237
168c3f21 1238 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1239 return -ENODEV;
1240
094f9a54 1241 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1242 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1243 before = ktime_get_raw_ns();
094f9a54
CW
1244 for (;;) {
1245 struct timer_list timer;
b361237b 1246
094f9a54
CW
1247 prepare_to_wait(&ring->irq_queue, &wait,
1248 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1249
f69061be
DV
1250 /* We need to check whether any gpu reset happened in between
1251 * the caller grabbing the seqno and now ... */
094f9a54
CW
1252 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1253 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1254 * is truely gone. */
1255 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1256 if (ret == 0)
1257 ret = -EAGAIN;
1258 break;
1259 }
f69061be 1260
1b5a433a 1261 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1262 ret = 0;
1263 break;
1264 }
b361237b 1265
094f9a54
CW
1266 if (interruptible && signal_pending(current)) {
1267 ret = -ERESTARTSYS;
1268 break;
1269 }
1270
47e9766d 1271 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1272 ret = -ETIME;
1273 break;
1274 }
1275
1276 timer.function = NULL;
1277 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1278 unsigned long expire;
1279
094f9a54 1280 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1281 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1282 mod_timer(&timer, expire);
1283 }
1284
5035c275 1285 io_schedule();
094f9a54 1286
094f9a54
CW
1287 if (timer.function) {
1288 del_singleshot_timer_sync(&timer);
1289 destroy_timer_on_stack(&timer);
1290 }
1291 }
5ed0bdf2 1292 now = ktime_get_raw_ns();
74328ee5 1293 trace_i915_gem_request_wait_end(req);
b361237b 1294
168c3f21
MK
1295 if (!irq_test_in_progress)
1296 ring->irq_put(ring);
094f9a54
CW
1297
1298 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1299
1300 if (timeout) {
5ed0bdf2
TG
1301 s64 tres = *timeout - (now - before);
1302
1303 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1304
1305 /*
1306 * Apparently ktime isn't accurate enough and occasionally has a
1307 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1308 * things up to make the test happy. We allow up to 1 jiffy.
1309 *
1310 * This is a regrssion from the timespec->ktime conversion.
1311 */
1312 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1313 *timeout = 0;
b361237b
CW
1314 }
1315
094f9a54 1316 return ret;
b361237b
CW
1317}
1318
1319/**
a4b3a571 1320 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1321 * request and object lists appropriately for that event.
1322 */
1323int
a4b3a571 1324i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1325{
a4b3a571
DV
1326 struct drm_device *dev;
1327 struct drm_i915_private *dev_priv;
1328 bool interruptible;
16e9a21f 1329 unsigned reset_counter;
b361237b
CW
1330 int ret;
1331
a4b3a571
DV
1332 BUG_ON(req == NULL);
1333
1334 dev = req->ring->dev;
1335 dev_priv = dev->dev_private;
1336 interruptible = dev_priv->mm.interruptible;
1337
b361237b 1338 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1339
33196ded 1340 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1341 if (ret)
1342 return ret;
1343
a4b3a571 1344 ret = i915_gem_check_olr(req);
b361237b
CW
1345 if (ret)
1346 return ret;
1347
16e9a21f 1348 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
a4b3a571 1349 i915_gem_request_reference(req);
9c654818
JH
1350 ret = __i915_wait_request(req, reset_counter,
1351 interruptible, NULL, NULL);
a4b3a571
DV
1352 i915_gem_request_unreference(req);
1353 return ret;
b361237b
CW
1354}
1355
d26e3af8 1356static int
8e639549 1357i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
d26e3af8 1358{
c8725f3d
CW
1359 if (!obj->active)
1360 return 0;
d26e3af8
CW
1361
1362 /* Manually manage the write flush as we may have not yet
1363 * retired the buffer.
1364 *
97b2a6a1
JH
1365 * Note that the last_write_req is always the earlier of
1366 * the two (read/write) requests, so if we haved successfully waited,
d26e3af8
CW
1367 * we know we have passed the last write.
1368 */
97b2a6a1 1369 i915_gem_request_assign(&obj->last_write_req, NULL);
d26e3af8
CW
1370
1371 return 0;
1372}
1373
b361237b
CW
1374/**
1375 * Ensures that all rendering to the object has completed and the object is
1376 * safe to unbind from the GTT or access from the CPU.
1377 */
1378static __must_check int
1379i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1380 bool readonly)
1381{
97b2a6a1 1382 struct drm_i915_gem_request *req;
b361237b
CW
1383 int ret;
1384
97b2a6a1
JH
1385 req = readonly ? obj->last_write_req : obj->last_read_req;
1386 if (!req)
b361237b
CW
1387 return 0;
1388
a4b3a571 1389 ret = i915_wait_request(req);
b361237b
CW
1390 if (ret)
1391 return ret;
1392
8e639549 1393 return i915_gem_object_wait_rendering__tail(obj);
b361237b
CW
1394}
1395
3236f57a
CW
1396/* A nonblocking variant of the above wait. This is a highly dangerous routine
1397 * as the object state may change during this call.
1398 */
1399static __must_check int
1400i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1401 struct drm_i915_file_private *file_priv,
3236f57a
CW
1402 bool readonly)
1403{
97b2a6a1 1404 struct drm_i915_gem_request *req;
3236f57a
CW
1405 struct drm_device *dev = obj->base.dev;
1406 struct drm_i915_private *dev_priv = dev->dev_private;
f69061be 1407 unsigned reset_counter;
3236f57a
CW
1408 int ret;
1409
1410 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1411 BUG_ON(!dev_priv->mm.interruptible);
1412
97b2a6a1
JH
1413 req = readonly ? obj->last_write_req : obj->last_read_req;
1414 if (!req)
3236f57a
CW
1415 return 0;
1416
33196ded 1417 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1418 if (ret)
1419 return ret;
1420
b6660d59 1421 ret = i915_gem_check_olr(req);
3236f57a
CW
1422 if (ret)
1423 return ret;
1424
f69061be 1425 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 1426 i915_gem_request_reference(req);
3236f57a 1427 mutex_unlock(&dev->struct_mutex);
9c654818 1428 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
3236f57a 1429 mutex_lock(&dev->struct_mutex);
ff865885 1430 i915_gem_request_unreference(req);
d26e3af8
CW
1431 if (ret)
1432 return ret;
3236f57a 1433
8e639549 1434 return i915_gem_object_wait_rendering__tail(obj);
3236f57a
CW
1435}
1436
673a394b 1437/**
2ef7eeaa
EA
1438 * Called when user space prepares to use an object with the CPU, either
1439 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1440 */
1441int
1442i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1443 struct drm_file *file)
673a394b
EA
1444{
1445 struct drm_i915_gem_set_domain *args = data;
05394f39 1446 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1447 uint32_t read_domains = args->read_domains;
1448 uint32_t write_domain = args->write_domain;
673a394b
EA
1449 int ret;
1450
2ef7eeaa 1451 /* Only handle setting domains to types used by the CPU. */
21d509e3 1452 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1453 return -EINVAL;
1454
21d509e3 1455 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1456 return -EINVAL;
1457
1458 /* Having something in the write domain implies it's in the read
1459 * domain, and only that read domain. Enforce that in the request.
1460 */
1461 if (write_domain != 0 && read_domains != write_domain)
1462 return -EINVAL;
1463
76c1dec1 1464 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1465 if (ret)
76c1dec1 1466 return ret;
1d7cfea1 1467
05394f39 1468 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1469 if (&obj->base == NULL) {
1d7cfea1
CW
1470 ret = -ENOENT;
1471 goto unlock;
76c1dec1 1472 }
673a394b 1473
3236f57a
CW
1474 /* Try to flush the object off the GPU without holding the lock.
1475 * We will repeat the flush holding the lock in the normal manner
1476 * to catch cases where we are gazumped.
1477 */
6e4930f6
CW
1478 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1479 file->driver_priv,
1480 !write_domain);
3236f57a
CW
1481 if (ret)
1482 goto unref;
1483
43566ded 1484 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1485 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1486 else
e47c68e9 1487 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1488
3236f57a 1489unref:
05394f39 1490 drm_gem_object_unreference(&obj->base);
1d7cfea1 1491unlock:
673a394b
EA
1492 mutex_unlock(&dev->struct_mutex);
1493 return ret;
1494}
1495
1496/**
1497 * Called when user space has done writes to this buffer
1498 */
1499int
1500i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1501 struct drm_file *file)
673a394b
EA
1502{
1503 struct drm_i915_gem_sw_finish *args = data;
05394f39 1504 struct drm_i915_gem_object *obj;
673a394b
EA
1505 int ret = 0;
1506
76c1dec1 1507 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1508 if (ret)
76c1dec1 1509 return ret;
1d7cfea1 1510
05394f39 1511 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1512 if (&obj->base == NULL) {
1d7cfea1
CW
1513 ret = -ENOENT;
1514 goto unlock;
673a394b
EA
1515 }
1516
673a394b 1517 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1518 if (obj->pin_display)
e62b59e4 1519 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1520
05394f39 1521 drm_gem_object_unreference(&obj->base);
1d7cfea1 1522unlock:
673a394b
EA
1523 mutex_unlock(&dev->struct_mutex);
1524 return ret;
1525}
1526
1527/**
1528 * Maps the contents of an object, returning the address it is mapped
1529 * into.
1530 *
1531 * While the mapping holds a reference on the contents of the object, it doesn't
1532 * imply a ref on the object itself.
34367381
DV
1533 *
1534 * IMPORTANT:
1535 *
1536 * DRM driver writers who look a this function as an example for how to do GEM
1537 * mmap support, please don't implement mmap support like here. The modern way
1538 * to implement DRM mmap support is with an mmap offset ioctl (like
1539 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1540 * That way debug tooling like valgrind will understand what's going on, hiding
1541 * the mmap call in a driver private ioctl will break that. The i915 driver only
1542 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1543 */
1544int
1545i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1546 struct drm_file *file)
673a394b
EA
1547{
1548 struct drm_i915_gem_mmap *args = data;
1549 struct drm_gem_object *obj;
673a394b
EA
1550 unsigned long addr;
1551
1816f923
AG
1552 if (args->flags & ~(I915_MMAP_WC))
1553 return -EINVAL;
1554
1555 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1556 return -ENODEV;
1557
05394f39 1558 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1559 if (obj == NULL)
bf79cb91 1560 return -ENOENT;
673a394b 1561
1286ff73
DV
1562 /* prime objects have no backing filp to GEM mmap
1563 * pages from.
1564 */
1565 if (!obj->filp) {
1566 drm_gem_object_unreference_unlocked(obj);
1567 return -EINVAL;
1568 }
1569
6be5ceb0 1570 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1571 PROT_READ | PROT_WRITE, MAP_SHARED,
1572 args->offset);
1816f923
AG
1573 if (args->flags & I915_MMAP_WC) {
1574 struct mm_struct *mm = current->mm;
1575 struct vm_area_struct *vma;
1576
1577 down_write(&mm->mmap_sem);
1578 vma = find_vma(mm, addr);
1579 if (vma)
1580 vma->vm_page_prot =
1581 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1582 else
1583 addr = -ENOMEM;
1584 up_write(&mm->mmap_sem);
1585 }
bc9025bd 1586 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1587 if (IS_ERR((void *)addr))
1588 return addr;
1589
1590 args->addr_ptr = (uint64_t) addr;
1591
1592 return 0;
1593}
1594
de151cf6
JB
1595/**
1596 * i915_gem_fault - fault a page into the GTT
1597 * vma: VMA in question
1598 * vmf: fault info
1599 *
1600 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1601 * from userspace. The fault handler takes care of binding the object to
1602 * the GTT (if needed), allocating and programming a fence register (again,
1603 * only if needed based on whether the old reg is still valid or the object
1604 * is tiled) and inserting a new PTE into the faulting process.
1605 *
1606 * Note that the faulting process may involve evicting existing objects
1607 * from the GTT and/or fence registers to make room. So performance may
1608 * suffer if the GTT working set is large or there are few fence registers
1609 * left.
1610 */
1611int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1612{
05394f39
CW
1613 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1614 struct drm_device *dev = obj->base.dev;
3e31c6c0 1615 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1616 pgoff_t page_offset;
1617 unsigned long pfn;
1618 int ret = 0;
0f973f27 1619 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1620
f65c9168
PZ
1621 intel_runtime_pm_get(dev_priv);
1622
de151cf6
JB
1623 /* We don't use vmf->pgoff since that has the fake offset */
1624 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1625 PAGE_SHIFT;
1626
d9bc7e9f
CW
1627 ret = i915_mutex_lock_interruptible(dev);
1628 if (ret)
1629 goto out;
a00b10c3 1630
db53a302
CW
1631 trace_i915_gem_object_fault(obj, page_offset, true, write);
1632
6e4930f6
CW
1633 /* Try to flush the object off the GPU first without holding the lock.
1634 * Upon reacquiring the lock, we will perform our sanity checks and then
1635 * repeat the flush holding the lock in the normal manner to catch cases
1636 * where we are gazumped.
1637 */
1638 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1639 if (ret)
1640 goto unlock;
1641
eb119bd6
CW
1642 /* Access to snoopable pages through the GTT is incoherent. */
1643 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1644 ret = -EFAULT;
eb119bd6
CW
1645 goto unlock;
1646 }
1647
d9bc7e9f 1648 /* Now bind it into the GTT if needed */
1ec9e26d 1649 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1650 if (ret)
1651 goto unlock;
4a684a41 1652
c9839303
CW
1653 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1654 if (ret)
1655 goto unpin;
74898d7e 1656
06d98131 1657 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1658 if (ret)
c9839303 1659 goto unpin;
7d1c4804 1660
b90b91d8 1661 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1662 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1663 pfn >>= PAGE_SHIFT;
de151cf6 1664
b90b91d8 1665 if (!obj->fault_mappable) {
beff0d0f
VS
1666 unsigned long size = min_t(unsigned long,
1667 vma->vm_end - vma->vm_start,
1668 obj->base.size);
b90b91d8
CW
1669 int i;
1670
beff0d0f 1671 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1672 ret = vm_insert_pfn(vma,
1673 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1674 pfn + i);
1675 if (ret)
1676 break;
1677 }
1678
1679 obj->fault_mappable = true;
1680 } else
1681 ret = vm_insert_pfn(vma,
1682 (unsigned long)vmf->virtual_address,
1683 pfn + page_offset);
c9839303 1684unpin:
d7f46fc4 1685 i915_gem_object_ggtt_unpin(obj);
c715089f 1686unlock:
de151cf6 1687 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1688out:
de151cf6 1689 switch (ret) {
d9bc7e9f 1690 case -EIO:
2232f031
DV
1691 /*
1692 * We eat errors when the gpu is terminally wedged to avoid
1693 * userspace unduly crashing (gl has no provisions for mmaps to
1694 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1695 * and so needs to be reported.
1696 */
1697 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1698 ret = VM_FAULT_SIGBUS;
1699 break;
1700 }
045e769a 1701 case -EAGAIN:
571c608d
DV
1702 /*
1703 * EAGAIN means the gpu is hung and we'll wait for the error
1704 * handler to reset everything when re-faulting in
1705 * i915_mutex_lock_interruptible.
d9bc7e9f 1706 */
c715089f
CW
1707 case 0:
1708 case -ERESTARTSYS:
bed636ab 1709 case -EINTR:
e79e0fe3
DR
1710 case -EBUSY:
1711 /*
1712 * EBUSY is ok: this just means that another thread
1713 * already did the job.
1714 */
f65c9168
PZ
1715 ret = VM_FAULT_NOPAGE;
1716 break;
de151cf6 1717 case -ENOMEM:
f65c9168
PZ
1718 ret = VM_FAULT_OOM;
1719 break;
a7c2e1aa 1720 case -ENOSPC:
45d67817 1721 case -EFAULT:
f65c9168
PZ
1722 ret = VM_FAULT_SIGBUS;
1723 break;
de151cf6 1724 default:
a7c2e1aa 1725 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1726 ret = VM_FAULT_SIGBUS;
1727 break;
de151cf6 1728 }
f65c9168
PZ
1729
1730 intel_runtime_pm_put(dev_priv);
1731 return ret;
de151cf6
JB
1732}
1733
901782b2
CW
1734/**
1735 * i915_gem_release_mmap - remove physical page mappings
1736 * @obj: obj in question
1737 *
af901ca1 1738 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1739 * relinquish ownership of the pages back to the system.
1740 *
1741 * It is vital that we remove the page mapping if we have mapped a tiled
1742 * object through the GTT and then lose the fence register due to
1743 * resource pressure. Similarly if the object has been moved out of the
1744 * aperture, than pages mapped into userspace must be revoked. Removing the
1745 * mapping will then trigger a page fault on the next user access, allowing
1746 * fixup by i915_gem_fault().
1747 */
d05ca301 1748void
05394f39 1749i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1750{
6299f992
CW
1751 if (!obj->fault_mappable)
1752 return;
901782b2 1753
6796cb16
DH
1754 drm_vma_node_unmap(&obj->base.vma_node,
1755 obj->base.dev->anon_inode->i_mapping);
6299f992 1756 obj->fault_mappable = false;
901782b2
CW
1757}
1758
eedd10f4
CW
1759void
1760i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1761{
1762 struct drm_i915_gem_object *obj;
1763
1764 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1765 i915_gem_release_mmap(obj);
1766}
1767
0fa87796 1768uint32_t
e28f8711 1769i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1770{
e28f8711 1771 uint32_t gtt_size;
92b88aeb
CW
1772
1773 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1774 tiling_mode == I915_TILING_NONE)
1775 return size;
92b88aeb
CW
1776
1777 /* Previous chips need a power-of-two fence region when tiling */
1778 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1779 gtt_size = 1024*1024;
92b88aeb 1780 else
e28f8711 1781 gtt_size = 512*1024;
92b88aeb 1782
e28f8711
CW
1783 while (gtt_size < size)
1784 gtt_size <<= 1;
92b88aeb 1785
e28f8711 1786 return gtt_size;
92b88aeb
CW
1787}
1788
de151cf6
JB
1789/**
1790 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1791 * @obj: object to check
1792 *
1793 * Return the required GTT alignment for an object, taking into account
5e783301 1794 * potential fence register mapping.
de151cf6 1795 */
d865110c
ID
1796uint32_t
1797i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1798 int tiling_mode, bool fenced)
de151cf6 1799{
de151cf6
JB
1800 /*
1801 * Minimum alignment is 4k (GTT page size), but might be greater
1802 * if a fence register is needed for the object.
1803 */
d865110c 1804 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1805 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1806 return 4096;
1807
a00b10c3
CW
1808 /*
1809 * Previous chips need to be aligned to the size of the smallest
1810 * fence register that can contain the object.
1811 */
e28f8711 1812 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1813}
1814
d8cb5086
CW
1815static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1816{
1817 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1818 int ret;
1819
0de23977 1820 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1821 return 0;
1822
da494d7c
DV
1823 dev_priv->mm.shrinker_no_lock_stealing = true;
1824
d8cb5086
CW
1825 ret = drm_gem_create_mmap_offset(&obj->base);
1826 if (ret != -ENOSPC)
da494d7c 1827 goto out;
d8cb5086
CW
1828
1829 /* Badly fragmented mmap space? The only way we can recover
1830 * space is by destroying unwanted objects. We can't randomly release
1831 * mmap_offsets as userspace expects them to be persistent for the
1832 * lifetime of the objects. The closest we can is to release the
1833 * offsets on purgeable objects by truncating it and marking it purged,
1834 * which prevents userspace from ever using that object again.
1835 */
21ab4e74
CW
1836 i915_gem_shrink(dev_priv,
1837 obj->base.size >> PAGE_SHIFT,
1838 I915_SHRINK_BOUND |
1839 I915_SHRINK_UNBOUND |
1840 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1841 ret = drm_gem_create_mmap_offset(&obj->base);
1842 if (ret != -ENOSPC)
da494d7c 1843 goto out;
d8cb5086
CW
1844
1845 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1846 ret = drm_gem_create_mmap_offset(&obj->base);
1847out:
1848 dev_priv->mm.shrinker_no_lock_stealing = false;
1849
1850 return ret;
d8cb5086
CW
1851}
1852
1853static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1854{
d8cb5086
CW
1855 drm_gem_free_mmap_offset(&obj->base);
1856}
1857
da6b51d0 1858int
ff72145b
DA
1859i915_gem_mmap_gtt(struct drm_file *file,
1860 struct drm_device *dev,
da6b51d0 1861 uint32_t handle,
ff72145b 1862 uint64_t *offset)
de151cf6 1863{
da761a6e 1864 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1865 struct drm_i915_gem_object *obj;
de151cf6
JB
1866 int ret;
1867
76c1dec1 1868 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1869 if (ret)
76c1dec1 1870 return ret;
de151cf6 1871
ff72145b 1872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1873 if (&obj->base == NULL) {
1d7cfea1
CW
1874 ret = -ENOENT;
1875 goto unlock;
1876 }
de151cf6 1877
5d4545ae 1878 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1879 ret = -E2BIG;
ff56b0bc 1880 goto out;
da761a6e
CW
1881 }
1882
05394f39 1883 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1884 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1885 ret = -EFAULT;
1d7cfea1 1886 goto out;
ab18282d
CW
1887 }
1888
d8cb5086
CW
1889 ret = i915_gem_object_create_mmap_offset(obj);
1890 if (ret)
1891 goto out;
de151cf6 1892
0de23977 1893 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1894
1d7cfea1 1895out:
05394f39 1896 drm_gem_object_unreference(&obj->base);
1d7cfea1 1897unlock:
de151cf6 1898 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1899 return ret;
de151cf6
JB
1900}
1901
ff72145b
DA
1902/**
1903 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1904 * @dev: DRM device
1905 * @data: GTT mapping ioctl data
1906 * @file: GEM object info
1907 *
1908 * Simply returns the fake offset to userspace so it can mmap it.
1909 * The mmap call will end up in drm_gem_mmap(), which will set things
1910 * up so we can get faults in the handler above.
1911 *
1912 * The fault handler will take care of binding the object into the GTT
1913 * (since it may have been evicted to make room for something), allocating
1914 * a fence register, and mapping the appropriate aperture address into
1915 * userspace.
1916 */
1917int
1918i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1919 struct drm_file *file)
1920{
1921 struct drm_i915_gem_mmap_gtt *args = data;
1922
da6b51d0 1923 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
1924}
1925
5537252b
CW
1926static inline int
1927i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1928{
1929 return obj->madv == I915_MADV_DONTNEED;
1930}
1931
225067ee
DV
1932/* Immediately discard the backing storage */
1933static void
1934i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1935{
4d6294bf 1936 i915_gem_object_free_mmap_offset(obj);
1286ff73 1937
4d6294bf
CW
1938 if (obj->base.filp == NULL)
1939 return;
e5281ccd 1940
225067ee
DV
1941 /* Our goal here is to return as much of the memory as
1942 * is possible back to the system as we are called from OOM.
1943 * To do this we must instruct the shmfs to drop all of its
1944 * backing pages, *now*.
1945 */
5537252b 1946 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1947 obj->madv = __I915_MADV_PURGED;
1948}
e5281ccd 1949
5537252b
CW
1950/* Try to discard unwanted pages */
1951static void
1952i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1953{
5537252b
CW
1954 struct address_space *mapping;
1955
1956 switch (obj->madv) {
1957 case I915_MADV_DONTNEED:
1958 i915_gem_object_truncate(obj);
1959 case __I915_MADV_PURGED:
1960 return;
1961 }
1962
1963 if (obj->base.filp == NULL)
1964 return;
1965
1966 mapping = file_inode(obj->base.filp)->i_mapping,
1967 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1968}
1969
5cdf5881 1970static void
05394f39 1971i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1972{
90797e6d
ID
1973 struct sg_page_iter sg_iter;
1974 int ret;
1286ff73 1975
05394f39 1976 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1977
6c085a72
CW
1978 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1979 if (ret) {
1980 /* In the event of a disaster, abandon all caches and
1981 * hope for the best.
1982 */
1983 WARN_ON(ret != -EIO);
2c22569b 1984 i915_gem_clflush_object(obj, true);
6c085a72
CW
1985 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1986 }
1987
6dacfd2f 1988 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1989 i915_gem_object_save_bit_17_swizzle(obj);
1990
05394f39
CW
1991 if (obj->madv == I915_MADV_DONTNEED)
1992 obj->dirty = 0;
3ef94daa 1993
90797e6d 1994 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1995 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1996
05394f39 1997 if (obj->dirty)
9da3da66 1998 set_page_dirty(page);
3ef94daa 1999
05394f39 2000 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2001 mark_page_accessed(page);
3ef94daa 2002
9da3da66 2003 page_cache_release(page);
3ef94daa 2004 }
05394f39 2005 obj->dirty = 0;
673a394b 2006
9da3da66
CW
2007 sg_free_table(obj->pages);
2008 kfree(obj->pages);
37e680a1 2009}
6c085a72 2010
dd624afd 2011int
37e680a1
CW
2012i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2013{
2014 const struct drm_i915_gem_object_ops *ops = obj->ops;
2015
2f745ad3 2016 if (obj->pages == NULL)
37e680a1
CW
2017 return 0;
2018
a5570178
CW
2019 if (obj->pages_pin_count)
2020 return -EBUSY;
2021
9843877d 2022 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2023
a2165e31
CW
2024 /* ->put_pages might need to allocate memory for the bit17 swizzle
2025 * array, hence protect them from being reaped by removing them from gtt
2026 * lists early. */
35c20a60 2027 list_del(&obj->global_list);
a2165e31 2028
37e680a1 2029 ops->put_pages(obj);
05394f39 2030 obj->pages = NULL;
37e680a1 2031
5537252b 2032 i915_gem_object_invalidate(obj);
6c085a72
CW
2033
2034 return 0;
2035}
2036
21ab4e74
CW
2037unsigned long
2038i915_gem_shrink(struct drm_i915_private *dev_priv,
2039 long target, unsigned flags)
6c085a72 2040{
60a53727
CW
2041 const struct {
2042 struct list_head *list;
2043 unsigned int bit;
2044 } phases[] = {
2045 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2046 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2047 { NULL, 0 },
2048 }, *phase;
d9973b43 2049 unsigned long count = 0;
6c085a72 2050
57094f82 2051 /*
c8725f3d 2052 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
2053 * (due to retiring requests) we have to strictly process only
2054 * one element of the list at the time, and recheck the list
2055 * on every iteration.
c8725f3d
CW
2056 *
2057 * In particular, we must hold a reference whilst removing the
2058 * object as we may end up waiting for and/or retiring the objects.
2059 * This might release the final reference (held by the active list)
2060 * and result in the object being freed from under us. This is
2061 * similar to the precautions the eviction code must take whilst
2062 * removing objects.
2063 *
2064 * Also note that although these lists do not hold a reference to
2065 * the object we can safely grab one here: The final object
2066 * unreferencing and the bound_list are both protected by the
2067 * dev->struct_mutex and so we won't ever be able to observe an
2068 * object on the bound_list with a reference count equals 0.
57094f82 2069 */
60a53727 2070 for (phase = phases; phase->list; phase++) {
21ab4e74 2071 struct list_head still_in_list;
c8725f3d 2072
60a53727
CW
2073 if ((flags & phase->bit) == 0)
2074 continue;
80dcfdbd 2075
21ab4e74 2076 INIT_LIST_HEAD(&still_in_list);
60a53727 2077 while (count < target && !list_empty(phase->list)) {
21ab4e74
CW
2078 struct drm_i915_gem_object *obj;
2079 struct i915_vma *vma, *v;
57094f82 2080
60a53727 2081 obj = list_first_entry(phase->list,
21ab4e74
CW
2082 typeof(*obj), global_list);
2083 list_move_tail(&obj->global_list, &still_in_list);
80dcfdbd 2084
60a53727
CW
2085 if (flags & I915_SHRINK_PURGEABLE &&
2086 !i915_gem_object_is_purgeable(obj))
21ab4e74 2087 continue;
57094f82 2088
21ab4e74 2089 drm_gem_object_reference(&obj->base);
80dcfdbd 2090
60a53727
CW
2091 /* For the unbound phase, this should be a no-op! */
2092 list_for_each_entry_safe(vma, v,
2093 &obj->vma_list, vma_link)
21ab4e74
CW
2094 if (i915_vma_unbind(vma))
2095 break;
57094f82 2096
21ab4e74
CW
2097 if (i915_gem_object_put_pages(obj) == 0)
2098 count += obj->base.size >> PAGE_SHIFT;
2099
2100 drm_gem_object_unreference(&obj->base);
2101 }
60a53727 2102 list_splice(&still_in_list, phase->list);
6c085a72
CW
2103 }
2104
2105 return count;
2106}
2107
d9973b43 2108static unsigned long
6c085a72
CW
2109i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2110{
6c085a72 2111 i915_gem_evict_everything(dev_priv->dev);
21ab4e74
CW
2112 return i915_gem_shrink(dev_priv, LONG_MAX,
2113 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
225067ee
DV
2114}
2115
37e680a1 2116static int
6c085a72 2117i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2118{
6c085a72 2119 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2120 int page_count, i;
2121 struct address_space *mapping;
9da3da66
CW
2122 struct sg_table *st;
2123 struct scatterlist *sg;
90797e6d 2124 struct sg_page_iter sg_iter;
e5281ccd 2125 struct page *page;
90797e6d 2126 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2127 gfp_t gfp;
e5281ccd 2128
6c085a72
CW
2129 /* Assert that the object is not currently in any GPU domain. As it
2130 * wasn't in the GTT, there shouldn't be any way it could have been in
2131 * a GPU cache
2132 */
2133 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2134 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2135
9da3da66
CW
2136 st = kmalloc(sizeof(*st), GFP_KERNEL);
2137 if (st == NULL)
2138 return -ENOMEM;
2139
05394f39 2140 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2141 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2142 kfree(st);
e5281ccd 2143 return -ENOMEM;
9da3da66 2144 }
e5281ccd 2145
9da3da66
CW
2146 /* Get the list of pages out of our struct file. They'll be pinned
2147 * at this point until we release them.
2148 *
2149 * Fail silently without starting the shrinker
2150 */
496ad9aa 2151 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2152 gfp = mapping_gfp_mask(mapping);
caf49191 2153 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2154 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2155 sg = st->sgl;
2156 st->nents = 0;
2157 for (i = 0; i < page_count; i++) {
6c085a72
CW
2158 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2159 if (IS_ERR(page)) {
21ab4e74
CW
2160 i915_gem_shrink(dev_priv,
2161 page_count,
2162 I915_SHRINK_BOUND |
2163 I915_SHRINK_UNBOUND |
2164 I915_SHRINK_PURGEABLE);
6c085a72
CW
2165 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2166 }
2167 if (IS_ERR(page)) {
2168 /* We've tried hard to allocate the memory by reaping
2169 * our own buffer, now let the real VM do its job and
2170 * go down in flames if truly OOM.
2171 */
6c085a72 2172 i915_gem_shrink_all(dev_priv);
f461d1be 2173 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2174 if (IS_ERR(page))
2175 goto err_pages;
6c085a72 2176 }
426729dc
KRW
2177#ifdef CONFIG_SWIOTLB
2178 if (swiotlb_nr_tbl()) {
2179 st->nents++;
2180 sg_set_page(sg, page, PAGE_SIZE, 0);
2181 sg = sg_next(sg);
2182 continue;
2183 }
2184#endif
90797e6d
ID
2185 if (!i || page_to_pfn(page) != last_pfn + 1) {
2186 if (i)
2187 sg = sg_next(sg);
2188 st->nents++;
2189 sg_set_page(sg, page, PAGE_SIZE, 0);
2190 } else {
2191 sg->length += PAGE_SIZE;
2192 }
2193 last_pfn = page_to_pfn(page);
3bbbe706
DV
2194
2195 /* Check that the i965g/gm workaround works. */
2196 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2197 }
426729dc
KRW
2198#ifdef CONFIG_SWIOTLB
2199 if (!swiotlb_nr_tbl())
2200#endif
2201 sg_mark_end(sg);
74ce6b6c
CW
2202 obj->pages = st;
2203
6dacfd2f 2204 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2205 i915_gem_object_do_bit_17_swizzle(obj);
2206
656bfa3a
DV
2207 if (obj->tiling_mode != I915_TILING_NONE &&
2208 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2209 i915_gem_object_pin_pages(obj);
2210
e5281ccd
CW
2211 return 0;
2212
2213err_pages:
90797e6d
ID
2214 sg_mark_end(sg);
2215 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2216 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2217 sg_free_table(st);
2218 kfree(st);
0820baf3
CW
2219
2220 /* shmemfs first checks if there is enough memory to allocate the page
2221 * and reports ENOSPC should there be insufficient, along with the usual
2222 * ENOMEM for a genuine allocation failure.
2223 *
2224 * We use ENOSPC in our driver to mean that we have run out of aperture
2225 * space and so want to translate the error from shmemfs back to our
2226 * usual understanding of ENOMEM.
2227 */
2228 if (PTR_ERR(page) == -ENOSPC)
2229 return -ENOMEM;
2230 else
2231 return PTR_ERR(page);
673a394b
EA
2232}
2233
37e680a1
CW
2234/* Ensure that the associated pages are gathered from the backing storage
2235 * and pinned into our object. i915_gem_object_get_pages() may be called
2236 * multiple times before they are released by a single call to
2237 * i915_gem_object_put_pages() - once the pages are no longer referenced
2238 * either as a result of memory pressure (reaping pages under the shrinker)
2239 * or as the object is itself released.
2240 */
2241int
2242i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2243{
2244 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245 const struct drm_i915_gem_object_ops *ops = obj->ops;
2246 int ret;
2247
2f745ad3 2248 if (obj->pages)
37e680a1
CW
2249 return 0;
2250
43e28f09 2251 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2252 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2253 return -EFAULT;
43e28f09
CW
2254 }
2255
a5570178
CW
2256 BUG_ON(obj->pages_pin_count);
2257
37e680a1
CW
2258 ret = ops->get_pages(obj);
2259 if (ret)
2260 return ret;
2261
35c20a60 2262 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2263 return 0;
673a394b
EA
2264}
2265
e2d05a8b 2266static void
05394f39 2267i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2268 struct intel_engine_cs *ring)
673a394b 2269{
41c52415
JH
2270 struct drm_i915_gem_request *req;
2271 struct intel_engine_cs *old_ring;
617dbe27 2272
852835f3 2273 BUG_ON(ring == NULL);
41c52415
JH
2274
2275 req = intel_ring_get_request(ring);
2276 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2277
2278 if (old_ring != ring && obj->last_write_req) {
97b2a6a1
JH
2279 /* Keep the request relative to the current ring */
2280 i915_gem_request_assign(&obj->last_write_req, req);
02978ff5 2281 }
673a394b
EA
2282
2283 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2284 if (!obj->active) {
2285 drm_gem_object_reference(&obj->base);
2286 obj->active = 1;
673a394b 2287 }
e35a41de 2288
05394f39 2289 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2290
97b2a6a1 2291 i915_gem_request_assign(&obj->last_read_req, req);
caea7476
CW
2292}
2293
e2d05a8b 2294void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2295 struct intel_engine_cs *ring)
e2d05a8b
BW
2296{
2297 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2298 return i915_gem_object_move_to_active(vma->obj, ring);
2299}
2300
caea7476 2301static void
caea7476 2302i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2303{
feb822cf 2304 struct i915_vma *vma;
ce44b0ea 2305
65ce3027 2306 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2307 BUG_ON(!obj->active);
caea7476 2308
fe14d5f4
TU
2309 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2310 if (!list_empty(&vma->mm_list))
2311 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2312 }
caea7476 2313
f99d7069
DV
2314 intel_fb_obj_flush(obj, true);
2315
65ce3027 2316 list_del_init(&obj->ring_list);
caea7476 2317
97b2a6a1
JH
2318 i915_gem_request_assign(&obj->last_read_req, NULL);
2319 i915_gem_request_assign(&obj->last_write_req, NULL);
65ce3027
CW
2320 obj->base.write_domain = 0;
2321
97b2a6a1 2322 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476
CW
2323
2324 obj->active = 0;
2325 drm_gem_object_unreference(&obj->base);
2326
2327 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2328}
673a394b 2329
c8725f3d
CW
2330static void
2331i915_gem_object_retire(struct drm_i915_gem_object *obj)
2332{
41c52415 2333 if (obj->last_read_req == NULL)
c8725f3d
CW
2334 return;
2335
1b5a433a 2336 if (i915_gem_request_completed(obj->last_read_req, true))
c8725f3d
CW
2337 i915_gem_object_move_to_inactive(obj);
2338}
2339
9d773091 2340static int
fca26bb4 2341i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2342{
9d773091 2343 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2344 struct intel_engine_cs *ring;
9d773091 2345 int ret, i, j;
53d227f2 2346
107f27a5 2347 /* Carefully retire all requests without writing to the rings */
9d773091 2348 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2349 ret = intel_ring_idle(ring);
2350 if (ret)
2351 return ret;
9d773091 2352 }
9d773091 2353 i915_gem_retire_requests(dev);
107f27a5
CW
2354
2355 /* Finally reset hw state */
9d773091 2356 for_each_ring(ring, dev_priv, i) {
fca26bb4 2357 intel_ring_init_seqno(ring, seqno);
498d2ac1 2358
ebc348b2
BW
2359 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2360 ring->semaphore.sync_seqno[j] = 0;
9d773091 2361 }
53d227f2 2362
9d773091 2363 return 0;
53d227f2
DV
2364}
2365
fca26bb4
MK
2366int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2367{
2368 struct drm_i915_private *dev_priv = dev->dev_private;
2369 int ret;
2370
2371 if (seqno == 0)
2372 return -EINVAL;
2373
2374 /* HWS page needs to be set less than what we
2375 * will inject to ring
2376 */
2377 ret = i915_gem_init_seqno(dev, seqno - 1);
2378 if (ret)
2379 return ret;
2380
2381 /* Carefully set the last_seqno value so that wrap
2382 * detection still works
2383 */
2384 dev_priv->next_seqno = seqno;
2385 dev_priv->last_seqno = seqno - 1;
2386 if (dev_priv->last_seqno == 0)
2387 dev_priv->last_seqno--;
2388
2389 return 0;
2390}
2391
9d773091
CW
2392int
2393i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2394{
9d773091
CW
2395 struct drm_i915_private *dev_priv = dev->dev_private;
2396
2397 /* reserve 0 for non-seqno */
2398 if (dev_priv->next_seqno == 0) {
fca26bb4 2399 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2400 if (ret)
2401 return ret;
53d227f2 2402
9d773091
CW
2403 dev_priv->next_seqno = 1;
2404 }
53d227f2 2405
f72b3435 2406 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2407 return 0;
53d227f2
DV
2408}
2409
a4872ba6 2410int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2411 struct drm_file *file,
9400ae5c 2412 struct drm_i915_gem_object *obj)
673a394b 2413{
3e31c6c0 2414 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2415 struct drm_i915_gem_request *request;
48e29f55 2416 struct intel_ringbuffer *ringbuf;
6d3d8274 2417 u32 request_start;
3cce469c
CW
2418 int ret;
2419
6259cead 2420 request = ring->outstanding_lazy_request;
48e29f55
OM
2421 if (WARN_ON(request == NULL))
2422 return -ENOMEM;
2423
2424 if (i915.enable_execlists) {
21076372 2425 ringbuf = request->ctx->engine[ring->id].ringbuf;
48e29f55
OM
2426 } else
2427 ringbuf = ring->buffer;
2428
2429 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2430 /*
2431 * Emit any outstanding flushes - execbuf can fail to emit the flush
2432 * after having emitted the batchbuffer command. Hence we need to fix
2433 * things up similar to emitting the lazy request. The difference here
2434 * is that the flush _must_ happen before the next request, no matter
2435 * what.
2436 */
48e29f55 2437 if (i915.enable_execlists) {
21076372 2438 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
48e29f55
OM
2439 if (ret)
2440 return ret;
2441 } else {
2442 ret = intel_ring_flush_all_caches(ring);
2443 if (ret)
2444 return ret;
2445 }
cc889e0f 2446
a71d8d94
CW
2447 /* Record the position of the start of the request so that
2448 * should we detect the updated seqno part-way through the
2449 * GPU processing the request, we never over-estimate the
2450 * position of the head.
2451 */
6d3d8274 2452 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2453
48e29f55 2454 if (i915.enable_execlists) {
72f95afa 2455 ret = ring->emit_request(ringbuf, request);
48e29f55
OM
2456 if (ret)
2457 return ret;
2458 } else {
2459 ret = ring->add_request(ring);
2460 if (ret)
2461 return ret;
2462 }
673a394b 2463
7d736f4f 2464 request->head = request_start;
6d3d8274 2465 request->tail = intel_ring_get_tail(ringbuf);
7d736f4f
MK
2466
2467 /* Whilst this request exists, batch_obj will be on the
2468 * active_list, and so will hold the active reference. Only when this
2469 * request is retired will the the batch_obj be moved onto the
2470 * inactive_list and lose its active reference. Hence we do not need
2471 * to explicitly hold another reference here.
2472 */
9a7e0c2a 2473 request->batch_obj = obj;
0e50e96b 2474
48e29f55
OM
2475 if (!i915.enable_execlists) {
2476 /* Hold a reference to the current context so that we can inspect
2477 * it later in case a hangcheck error event fires.
2478 */
2479 request->ctx = ring->last_context;
2480 if (request->ctx)
2481 i915_gem_context_reference(request->ctx);
2482 }
0e50e96b 2483
673a394b 2484 request->emitted_jiffies = jiffies;
852835f3 2485 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2486 request->file_priv = NULL;
852835f3 2487
db53a302
CW
2488 if (file) {
2489 struct drm_i915_file_private *file_priv = file->driver_priv;
2490
1c25595f 2491 spin_lock(&file_priv->mm.lock);
f787a5f5 2492 request->file_priv = file_priv;
b962442e 2493 list_add_tail(&request->client_list,
f787a5f5 2494 &file_priv->mm.request_list);
1c25595f 2495 spin_unlock(&file_priv->mm.lock);
b962442e 2496 }
673a394b 2497
74328ee5 2498 trace_i915_gem_request_add(request);
6259cead 2499 ring->outstanding_lazy_request = NULL;
db53a302 2500
87255483 2501 i915_queue_hangcheck(ring->dev);
10cd45b6 2502
87255483
DV
2503 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2504 queue_delayed_work(dev_priv->wq,
2505 &dev_priv->mm.retire_work,
2506 round_jiffies_up_relative(HZ));
2507 intel_mark_busy(dev_priv->dev);
cc889e0f 2508
3cce469c 2509 return 0;
673a394b
EA
2510}
2511
f787a5f5
CW
2512static inline void
2513i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2514{
1c25595f 2515 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2516
1c25595f
CW
2517 if (!file_priv)
2518 return;
1c5d22f7 2519
1c25595f 2520 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2521 list_del(&request->client_list);
2522 request->file_priv = NULL;
1c25595f 2523 spin_unlock(&file_priv->mm.lock);
673a394b 2524}
673a394b 2525
939fd762 2526static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2527 const struct intel_context *ctx)
be62acb4 2528{
44e2c070 2529 unsigned long elapsed;
be62acb4 2530
44e2c070
MK
2531 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2532
2533 if (ctx->hang_stats.banned)
be62acb4
MK
2534 return true;
2535
676fa572
CW
2536 if (ctx->hang_stats.ban_period_seconds &&
2537 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2538 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2539 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2540 return true;
88b4aa87
MK
2541 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2542 if (i915_stop_ring_allow_warn(dev_priv))
2543 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2544 return true;
3fac8978 2545 }
be62acb4
MK
2546 }
2547
2548 return false;
2549}
2550
939fd762 2551static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2552 struct intel_context *ctx,
b6b0fac0 2553 const bool guilty)
aa60c664 2554{
44e2c070
MK
2555 struct i915_ctx_hang_stats *hs;
2556
2557 if (WARN_ON(!ctx))
2558 return;
aa60c664 2559
44e2c070
MK
2560 hs = &ctx->hang_stats;
2561
2562 if (guilty) {
939fd762 2563 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2564 hs->batch_active++;
2565 hs->guilty_ts = get_seconds();
2566 } else {
2567 hs->batch_pending++;
aa60c664
MK
2568 }
2569}
2570
0e50e96b
MK
2571static void i915_gem_free_request(struct drm_i915_gem_request *request)
2572{
2573 list_del(&request->list);
2574 i915_gem_request_remove_from_client(request);
2575
abfe262a
JH
2576 i915_gem_request_unreference(request);
2577}
2578
2579void i915_gem_request_free(struct kref *req_ref)
2580{
2581 struct drm_i915_gem_request *req = container_of(req_ref,
2582 typeof(*req), ref);
2583 struct intel_context *ctx = req->ctx;
2584
0794aed3
TD
2585 if (ctx) {
2586 if (i915.enable_execlists) {
abfe262a 2587 struct intel_engine_cs *ring = req->ring;
0e50e96b 2588
0794aed3
TD
2589 if (ctx != ring->default_context)
2590 intel_lr_context_unpin(ring, ctx);
2591 }
abfe262a 2592
dcb4c12a
OM
2593 i915_gem_context_unreference(ctx);
2594 }
abfe262a
JH
2595
2596 kfree(req);
0e50e96b
MK
2597}
2598
8d9fc7fd 2599struct drm_i915_gem_request *
a4872ba6 2600i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2601{
4db080f9
CW
2602 struct drm_i915_gem_request *request;
2603
2604 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2605 if (i915_gem_request_completed(request, false))
4db080f9 2606 continue;
aa60c664 2607
b6b0fac0 2608 return request;
4db080f9 2609 }
b6b0fac0
MK
2610
2611 return NULL;
2612}
2613
2614static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2615 struct intel_engine_cs *ring)
b6b0fac0
MK
2616{
2617 struct drm_i915_gem_request *request;
2618 bool ring_hung;
2619
8d9fc7fd 2620 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2621
2622 if (request == NULL)
2623 return;
2624
2625 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2626
939fd762 2627 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2628
2629 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2630 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2631}
aa60c664 2632
4db080f9 2633static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2634 struct intel_engine_cs *ring)
4db080f9 2635{
dfaae392 2636 while (!list_empty(&ring->active_list)) {
05394f39 2637 struct drm_i915_gem_object *obj;
9375e446 2638
05394f39
CW
2639 obj = list_first_entry(&ring->active_list,
2640 struct drm_i915_gem_object,
2641 ring_list);
9375e446 2642
05394f39 2643 i915_gem_object_move_to_inactive(obj);
673a394b 2644 }
1d62beea 2645
dcb4c12a
OM
2646 /*
2647 * Clear the execlists queue up before freeing the requests, as those
2648 * are the ones that keep the context and ringbuffer backing objects
2649 * pinned in place.
2650 */
2651 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2652 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2653
2654 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2655 struct drm_i915_gem_request,
dcb4c12a
OM
2656 execlist_link);
2657 list_del(&submit_req->execlist_link);
2658 intel_runtime_pm_put(dev_priv);
1197b4f2
MK
2659
2660 if (submit_req->ctx != ring->default_context)
2661 intel_lr_context_unpin(ring, submit_req->ctx);
2662
6d3d8274 2663 i915_gem_context_unreference(submit_req->ctx);
dcb4c12a
OM
2664 kfree(submit_req);
2665 }
2666
1d62beea
BW
2667 /*
2668 * We must free the requests after all the corresponding objects have
2669 * been moved off active lists. Which is the same order as the normal
2670 * retire_requests function does. This is important if object hold
2671 * implicit references on things like e.g. ppgtt address spaces through
2672 * the request.
2673 */
2674 while (!list_empty(&ring->request_list)) {
2675 struct drm_i915_gem_request *request;
2676
2677 request = list_first_entry(&ring->request_list,
2678 struct drm_i915_gem_request,
2679 list);
2680
2681 i915_gem_free_request(request);
2682 }
e3efda49 2683
6259cead
JH
2684 /* This may not have been flushed before the reset, so clean it now */
2685 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2686}
2687
19b2dbde 2688void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2689{
2690 struct drm_i915_private *dev_priv = dev->dev_private;
2691 int i;
2692
4b9de737 2693 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2694 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2695
94a335db
DV
2696 /*
2697 * Commit delayed tiling changes if we have an object still
2698 * attached to the fence, otherwise just clear the fence.
2699 */
2700 if (reg->obj) {
2701 i915_gem_object_update_fence(reg->obj, reg,
2702 reg->obj->tiling_mode);
2703 } else {
2704 i915_gem_write_fence(dev, i, NULL);
2705 }
312817a3
CW
2706 }
2707}
2708
069efc1d 2709void i915_gem_reset(struct drm_device *dev)
673a394b 2710{
77f01230 2711 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2712 struct intel_engine_cs *ring;
1ec14ad3 2713 int i;
673a394b 2714
4db080f9
CW
2715 /*
2716 * Before we free the objects from the requests, we need to inspect
2717 * them for finding the guilty party. As the requests only borrow
2718 * their reference to the objects, the inspection must be done first.
2719 */
2720 for_each_ring(ring, dev_priv, i)
2721 i915_gem_reset_ring_status(dev_priv, ring);
2722
b4519513 2723 for_each_ring(ring, dev_priv, i)
4db080f9 2724 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2725
acce9ffa
BW
2726 i915_gem_context_reset(dev);
2727
19b2dbde 2728 i915_gem_restore_fences(dev);
673a394b
EA
2729}
2730
2731/**
2732 * This function clears the request list as sequence numbers are passed.
2733 */
1cf0ba14 2734void
a4872ba6 2735i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2736{
db53a302 2737 if (list_empty(&ring->request_list))
6c0594a3
KW
2738 return;
2739
db53a302 2740 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2741
e9103038
CW
2742 /* Move any buffers on the active list that are no longer referenced
2743 * by the ringbuffer to the flushing/inactive lists as appropriate,
2744 * before we free the context associated with the requests.
2745 */
2746 while (!list_empty(&ring->active_list)) {
2747 struct drm_i915_gem_object *obj;
2748
2749 obj = list_first_entry(&ring->active_list,
2750 struct drm_i915_gem_object,
2751 ring_list);
2752
1b5a433a 2753 if (!i915_gem_request_completed(obj->last_read_req, true))
e9103038
CW
2754 break;
2755
2756 i915_gem_object_move_to_inactive(obj);
2757 }
2758
2759
852835f3 2760 while (!list_empty(&ring->request_list)) {
673a394b 2761 struct drm_i915_gem_request *request;
48e29f55 2762 struct intel_ringbuffer *ringbuf;
673a394b 2763
852835f3 2764 request = list_first_entry(&ring->request_list,
673a394b
EA
2765 struct drm_i915_gem_request,
2766 list);
673a394b 2767
1b5a433a 2768 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2769 break;
2770
74328ee5 2771 trace_i915_gem_request_retire(request);
48e29f55
OM
2772
2773 /* This is one of the few common intersection points
2774 * between legacy ringbuffer submission and execlists:
2775 * we need to tell them apart in order to find the correct
2776 * ringbuffer to which the request belongs to.
2777 */
2778 if (i915.enable_execlists) {
2779 struct intel_context *ctx = request->ctx;
2780 ringbuf = ctx->engine[ring->id].ringbuf;
2781 } else
2782 ringbuf = ring->buffer;
2783
a71d8d94
CW
2784 /* We know the GPU must have read the request to have
2785 * sent us the seqno + interrupt, so use the position
2786 * of tail of the request to update the last known position
2787 * of the GPU head.
2788 */
72f95afa 2789 ringbuf->last_retired_head = request->postfix;
b84d5f0c 2790
0e50e96b 2791 i915_gem_free_request(request);
b84d5f0c 2792 }
673a394b 2793
581c26e8
JH
2794 if (unlikely(ring->trace_irq_req &&
2795 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2796 ring->irq_put(ring);
581c26e8 2797 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2798 }
23bc5982 2799
db53a302 2800 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2801}
2802
b29c19b6 2803bool
b09a1fec
CW
2804i915_gem_retire_requests(struct drm_device *dev)
2805{
3e31c6c0 2806 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2807 struct intel_engine_cs *ring;
b29c19b6 2808 bool idle = true;
1ec14ad3 2809 int i;
b09a1fec 2810
b29c19b6 2811 for_each_ring(ring, dev_priv, i) {
b4519513 2812 i915_gem_retire_requests_ring(ring);
b29c19b6 2813 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2814 if (i915.enable_execlists) {
2815 unsigned long flags;
2816
2817 spin_lock_irqsave(&ring->execlist_lock, flags);
2818 idle &= list_empty(&ring->execlist_queue);
2819 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2820
2821 intel_execlists_retire_requests(ring);
2822 }
b29c19b6
CW
2823 }
2824
2825 if (idle)
2826 mod_delayed_work(dev_priv->wq,
2827 &dev_priv->mm.idle_work,
2828 msecs_to_jiffies(100));
2829
2830 return idle;
b09a1fec
CW
2831}
2832
75ef9da2 2833static void
673a394b
EA
2834i915_gem_retire_work_handler(struct work_struct *work)
2835{
b29c19b6
CW
2836 struct drm_i915_private *dev_priv =
2837 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2838 struct drm_device *dev = dev_priv->dev;
0a58705b 2839 bool idle;
673a394b 2840
891b48cf 2841 /* Come back later if the device is busy... */
b29c19b6
CW
2842 idle = false;
2843 if (mutex_trylock(&dev->struct_mutex)) {
2844 idle = i915_gem_retire_requests(dev);
2845 mutex_unlock(&dev->struct_mutex);
673a394b 2846 }
b29c19b6 2847 if (!idle)
bcb45086
CW
2848 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2849 round_jiffies_up_relative(HZ));
b29c19b6 2850}
0a58705b 2851
b29c19b6
CW
2852static void
2853i915_gem_idle_work_handler(struct work_struct *work)
2854{
2855 struct drm_i915_private *dev_priv =
2856 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2857
2858 intel_mark_idle(dev_priv->dev);
673a394b
EA
2859}
2860
30dfebf3
DV
2861/**
2862 * Ensures that an object will eventually get non-busy by flushing any required
2863 * write domains, emitting any outstanding lazy request and retiring and
2864 * completed requests.
2865 */
2866static int
2867i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2868{
41c52415 2869 struct intel_engine_cs *ring;
30dfebf3
DV
2870 int ret;
2871
2872 if (obj->active) {
41c52415
JH
2873 ring = i915_gem_request_get_ring(obj->last_read_req);
2874
b6660d59 2875 ret = i915_gem_check_olr(obj->last_read_req);
30dfebf3
DV
2876 if (ret)
2877 return ret;
2878
41c52415 2879 i915_gem_retire_requests_ring(ring);
30dfebf3
DV
2880 }
2881
2882 return 0;
2883}
2884
23ba4fd0
BW
2885/**
2886 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2887 * @DRM_IOCTL_ARGS: standard ioctl arguments
2888 *
2889 * Returns 0 if successful, else an error is returned with the remaining time in
2890 * the timeout parameter.
2891 * -ETIME: object is still busy after timeout
2892 * -ERESTARTSYS: signal interrupted the wait
2893 * -ENONENT: object doesn't exist
2894 * Also possible, but rare:
2895 * -EAGAIN: GPU wedged
2896 * -ENOMEM: damn
2897 * -ENODEV: Internal IRQ fail
2898 * -E?: The add request failed
2899 *
2900 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2901 * non-zero timeout parameter the wait ioctl will wait for the given number of
2902 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2903 * without holding struct_mutex the object may become re-busied before this
2904 * function completes. A similar but shorter * race condition exists in the busy
2905 * ioctl
2906 */
2907int
2908i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2909{
3e31c6c0 2910 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2911 struct drm_i915_gem_wait *args = data;
2912 struct drm_i915_gem_object *obj;
ff865885 2913 struct drm_i915_gem_request *req;
f69061be 2914 unsigned reset_counter;
23ba4fd0
BW
2915 int ret = 0;
2916
11b5d511
DV
2917 if (args->flags != 0)
2918 return -EINVAL;
2919
23ba4fd0
BW
2920 ret = i915_mutex_lock_interruptible(dev);
2921 if (ret)
2922 return ret;
2923
2924 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2925 if (&obj->base == NULL) {
2926 mutex_unlock(&dev->struct_mutex);
2927 return -ENOENT;
2928 }
2929
30dfebf3
DV
2930 /* Need to make sure the object gets inactive eventually. */
2931 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2932 if (ret)
2933 goto out;
2934
97b2a6a1
JH
2935 if (!obj->active || !obj->last_read_req)
2936 goto out;
23ba4fd0 2937
ff865885 2938 req = obj->last_read_req;
23ba4fd0 2939
23ba4fd0 2940 /* Do this after OLR check to make sure we make forward progress polling
5ed0bdf2 2941 * on this IOCTL with a timeout <=0 (like busy ioctl)
23ba4fd0 2942 */
5ed0bdf2 2943 if (args->timeout_ns <= 0) {
23ba4fd0
BW
2944 ret = -ETIME;
2945 goto out;
2946 }
2947
2948 drm_gem_object_unreference(&obj->base);
f69061be 2949 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 2950 i915_gem_request_reference(req);
23ba4fd0
BW
2951 mutex_unlock(&dev->struct_mutex);
2952
9c654818
JH
2953 ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
2954 file->driver_priv);
ff865885
JH
2955 mutex_lock(&dev->struct_mutex);
2956 i915_gem_request_unreference(req);
2957 mutex_unlock(&dev->struct_mutex);
2958 return ret;
23ba4fd0
BW
2959
2960out:
2961 drm_gem_object_unreference(&obj->base);
2962 mutex_unlock(&dev->struct_mutex);
2963 return ret;
2964}
2965
5816d648
BW
2966/**
2967 * i915_gem_object_sync - sync an object to a ring.
2968 *
2969 * @obj: object which may be in use on another ring.
2970 * @to: ring we wish to use the object on. May be NULL.
2971 *
2972 * This code is meant to abstract object synchronization with the GPU.
2973 * Calling with NULL implies synchronizing the object with the CPU
2974 * rather than a particular GPU ring.
2975 *
2976 * Returns 0 if successful, else propagates up the lower layer error.
2977 */
2911a35b
BW
2978int
2979i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2980 struct intel_engine_cs *to)
2911a35b 2981{
41c52415 2982 struct intel_engine_cs *from;
2911a35b
BW
2983 u32 seqno;
2984 int ret, idx;
2985
41c52415
JH
2986 from = i915_gem_request_get_ring(obj->last_read_req);
2987
2911a35b
BW
2988 if (from == NULL || to == from)
2989 return 0;
2990
5816d648 2991 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2992 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2993
2994 idx = intel_ring_sync_index(from, to);
2995
97b2a6a1 2996 seqno = i915_gem_request_get_seqno(obj->last_read_req);
ddd4dbc6
RV
2997 /* Optimization: Avoid semaphore sync when we are sure we already
2998 * waited for an object with higher seqno */
ebc348b2 2999 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
3000 return 0;
3001
b6660d59 3002 ret = i915_gem_check_olr(obj->last_read_req);
b4aca010
BW
3003 if (ret)
3004 return ret;
2911a35b 3005
74328ee5 3006 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
ebc348b2 3007 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 3008 if (!ret)
97b2a6a1 3009 /* We use last_read_req because sync_to()
7b01e260
MK
3010 * might have just caused seqno wrap under
3011 * the radar.
3012 */
97b2a6a1
JH
3013 from->semaphore.sync_seqno[idx] =
3014 i915_gem_request_get_seqno(obj->last_read_req);
2911a35b 3015
e3a5a225 3016 return ret;
2911a35b
BW
3017}
3018
b5ffc9bc
CW
3019static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3020{
3021 u32 old_write_domain, old_read_domains;
3022
b5ffc9bc
CW
3023 /* Force a pagefault for domain tracking on next user access */
3024 i915_gem_release_mmap(obj);
3025
b97c3d9c
KP
3026 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3027 return;
3028
97c809fd
CW
3029 /* Wait for any direct GTT access to complete */
3030 mb();
3031
b5ffc9bc
CW
3032 old_read_domains = obj->base.read_domains;
3033 old_write_domain = obj->base.write_domain;
3034
3035 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3036 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3037
3038 trace_i915_gem_object_change_domain(obj,
3039 old_read_domains,
3040 old_write_domain);
3041}
3042
07fe0b12 3043int i915_vma_unbind(struct i915_vma *vma)
673a394b 3044{
07fe0b12 3045 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3046 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3047 int ret;
673a394b 3048
07fe0b12 3049 if (list_empty(&vma->vma_link))
673a394b
EA
3050 return 0;
3051
0ff501cb
DV
3052 if (!drm_mm_node_allocated(&vma->node)) {
3053 i915_gem_vma_destroy(vma);
0ff501cb
DV
3054 return 0;
3055 }
433544bd 3056
d7f46fc4 3057 if (vma->pin_count)
31d8d651 3058 return -EBUSY;
673a394b 3059
c4670ad0
CW
3060 BUG_ON(obj->pages == NULL);
3061
a8198eea 3062 ret = i915_gem_object_finish_gpu(obj);
1488fc08 3063 if (ret)
a8198eea
CW
3064 return ret;
3065 /* Continue on if we fail due to EIO, the GPU is hung so we
3066 * should be safe and we need to cleanup or else we might
3067 * cause memory corruption through use-after-free.
3068 */
3069
fe14d5f4
TU
3070 if (i915_is_ggtt(vma->vm) &&
3071 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3072 i915_gem_object_finish_gtt(obj);
5323fd04 3073
8b1bc9b4
DV
3074 /* release the fence reg _after_ flushing */
3075 ret = i915_gem_object_put_fence(obj);
3076 if (ret)
3077 return ret;
3078 }
96b47b65 3079
07fe0b12 3080 trace_i915_vma_unbind(vma);
db53a302 3081
6f65e29a
BW
3082 vma->unbind_vma(vma);
3083
64bf9303 3084 list_del_init(&vma->mm_list);
fe14d5f4
TU
3085 if (i915_is_ggtt(vma->vm)) {
3086 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3087 obj->map_and_fenceable = false;
3088 } else if (vma->ggtt_view.pages) {
3089 sg_free_table(vma->ggtt_view.pages);
3090 kfree(vma->ggtt_view.pages);
3091 vma->ggtt_view.pages = NULL;
3092 }
3093 }
673a394b 3094
2f633156
BW
3095 drm_mm_remove_node(&vma->node);
3096 i915_gem_vma_destroy(vma);
3097
3098 /* Since the unbound list is global, only move to that list if
b93dab6e 3099 * no more VMAs exist. */
9490edb5 3100 if (list_empty(&obj->vma_list)) {
fe14d5f4
TU
3101 /* Throw away the active reference before
3102 * moving to the unbound list. */
3103 i915_gem_object_retire(obj);
3104
9490edb5 3105 i915_gem_gtt_finish_object(obj);
2f633156 3106 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3107 }
673a394b 3108
70903c3b
CW
3109 /* And finally now the object is completely decoupled from this vma,
3110 * we can drop its hold on the backing storage and allow it to be
3111 * reaped by the shrinker.
3112 */
3113 i915_gem_object_unpin_pages(obj);
3114
88241785 3115 return 0;
54cf91dc
CW
3116}
3117
b2da9fe5 3118int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3119{
3e31c6c0 3120 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3121 struct intel_engine_cs *ring;
1ec14ad3 3122 int ret, i;
4df2faf4 3123
4df2faf4 3124 /* Flush everything onto the inactive list. */
b4519513 3125 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3126 if (!i915.enable_execlists) {
3127 ret = i915_switch_context(ring, ring->default_context);
3128 if (ret)
3129 return ret;
3130 }
b6c7488d 3131
3e960501 3132 ret = intel_ring_idle(ring);
1ec14ad3
CW
3133 if (ret)
3134 return ret;
3135 }
4df2faf4 3136
8a1a49f9 3137 return 0;
4df2faf4
DV
3138}
3139
9ce079e4
CW
3140static void i965_write_fence_reg(struct drm_device *dev, int reg,
3141 struct drm_i915_gem_object *obj)
de151cf6 3142{
3e31c6c0 3143 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3144 int fence_reg;
3145 int fence_pitch_shift;
de151cf6 3146
56c844e5
ID
3147 if (INTEL_INFO(dev)->gen >= 6) {
3148 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3149 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3150 } else {
3151 fence_reg = FENCE_REG_965_0;
3152 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3153 }
3154
d18b9619
CW
3155 fence_reg += reg * 8;
3156
3157 /* To w/a incoherency with non-atomic 64-bit register updates,
3158 * we split the 64-bit update into two 32-bit writes. In order
3159 * for a partial fence not to be evaluated between writes, we
3160 * precede the update with write to turn off the fence register,
3161 * and only enable the fence as the last step.
3162 *
3163 * For extra levels of paranoia, we make sure each step lands
3164 * before applying the next step.
3165 */
3166 I915_WRITE(fence_reg, 0);
3167 POSTING_READ(fence_reg);
3168
9ce079e4 3169 if (obj) {
f343c5f6 3170 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3171 uint64_t val;
de151cf6 3172
f343c5f6 3173 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3174 0xfffff000) << 32;
f343c5f6 3175 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3176 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3177 if (obj->tiling_mode == I915_TILING_Y)
3178 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3179 val |= I965_FENCE_REG_VALID;
c6642782 3180
d18b9619
CW
3181 I915_WRITE(fence_reg + 4, val >> 32);
3182 POSTING_READ(fence_reg + 4);
3183
3184 I915_WRITE(fence_reg + 0, val);
3185 POSTING_READ(fence_reg);
3186 } else {
3187 I915_WRITE(fence_reg + 4, 0);
3188 POSTING_READ(fence_reg + 4);
3189 }
de151cf6
JB
3190}
3191
9ce079e4
CW
3192static void i915_write_fence_reg(struct drm_device *dev, int reg,
3193 struct drm_i915_gem_object *obj)
de151cf6 3194{
3e31c6c0 3195 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3196 u32 val;
de151cf6 3197
9ce079e4 3198 if (obj) {
f343c5f6 3199 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3200 int pitch_val;
3201 int tile_width;
c6642782 3202
f343c5f6 3203 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3204 (size & -size) != size ||
f343c5f6
BW
3205 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3206 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3207 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3208
9ce079e4
CW
3209 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3210 tile_width = 128;
3211 else
3212 tile_width = 512;
3213
3214 /* Note: pitch better be a power of two tile widths */
3215 pitch_val = obj->stride / tile_width;
3216 pitch_val = ffs(pitch_val) - 1;
3217
f343c5f6 3218 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3219 if (obj->tiling_mode == I915_TILING_Y)
3220 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3221 val |= I915_FENCE_SIZE_BITS(size);
3222 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3223 val |= I830_FENCE_REG_VALID;
3224 } else
3225 val = 0;
3226
3227 if (reg < 8)
3228 reg = FENCE_REG_830_0 + reg * 4;
3229 else
3230 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3231
3232 I915_WRITE(reg, val);
3233 POSTING_READ(reg);
de151cf6
JB
3234}
3235
9ce079e4
CW
3236static void i830_write_fence_reg(struct drm_device *dev, int reg,
3237 struct drm_i915_gem_object *obj)
de151cf6 3238{
3e31c6c0 3239 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3240 uint32_t val;
de151cf6 3241
9ce079e4 3242 if (obj) {
f343c5f6 3243 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3244 uint32_t pitch_val;
de151cf6 3245
f343c5f6 3246 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3247 (size & -size) != size ||
f343c5f6
BW
3248 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3249 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3250 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3251
9ce079e4
CW
3252 pitch_val = obj->stride / 128;
3253 pitch_val = ffs(pitch_val) - 1;
de151cf6 3254
f343c5f6 3255 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3256 if (obj->tiling_mode == I915_TILING_Y)
3257 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3258 val |= I830_FENCE_SIZE_BITS(size);
3259 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3260 val |= I830_FENCE_REG_VALID;
3261 } else
3262 val = 0;
c6642782 3263
9ce079e4
CW
3264 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3265 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3266}
3267
d0a57789
CW
3268inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3269{
3270 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3271}
3272
9ce079e4
CW
3273static void i915_gem_write_fence(struct drm_device *dev, int reg,
3274 struct drm_i915_gem_object *obj)
3275{
d0a57789
CW
3276 struct drm_i915_private *dev_priv = dev->dev_private;
3277
3278 /* Ensure that all CPU reads are completed before installing a fence
3279 * and all writes before removing the fence.
3280 */
3281 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3282 mb();
3283
94a335db
DV
3284 WARN(obj && (!obj->stride || !obj->tiling_mode),
3285 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3286 obj->stride, obj->tiling_mode);
3287
ce38ab05
RV
3288 if (IS_GEN2(dev))
3289 i830_write_fence_reg(dev, reg, obj);
3290 else if (IS_GEN3(dev))
3291 i915_write_fence_reg(dev, reg, obj);
3292 else if (INTEL_INFO(dev)->gen >= 4)
3293 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3294
3295 /* And similarly be paranoid that no direct access to this region
3296 * is reordered to before the fence is installed.
3297 */
3298 if (i915_gem_object_needs_mb(obj))
3299 mb();
de151cf6
JB
3300}
3301
61050808
CW
3302static inline int fence_number(struct drm_i915_private *dev_priv,
3303 struct drm_i915_fence_reg *fence)
3304{
3305 return fence - dev_priv->fence_regs;
3306}
3307
3308static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3309 struct drm_i915_fence_reg *fence,
3310 bool enable)
3311{
2dc8aae0 3312 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3313 int reg = fence_number(dev_priv, fence);
3314
3315 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3316
3317 if (enable) {
46a0b638 3318 obj->fence_reg = reg;
61050808
CW
3319 fence->obj = obj;
3320 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3321 } else {
3322 obj->fence_reg = I915_FENCE_REG_NONE;
3323 fence->obj = NULL;
3324 list_del_init(&fence->lru_list);
3325 }
94a335db 3326 obj->fence_dirty = false;
61050808
CW
3327}
3328
d9e86c0e 3329static int
d0a57789 3330i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3331{
97b2a6a1 3332 if (obj->last_fenced_req) {
a4b3a571 3333 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3334 if (ret)
3335 return ret;
d9e86c0e 3336
97b2a6a1 3337 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3338 }
3339
3340 return 0;
3341}
3342
3343int
3344i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3345{
61050808 3346 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3347 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3348 int ret;
3349
d0a57789 3350 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3351 if (ret)
3352 return ret;
3353
61050808
CW
3354 if (obj->fence_reg == I915_FENCE_REG_NONE)
3355 return 0;
d9e86c0e 3356
f9c513e9
CW
3357 fence = &dev_priv->fence_regs[obj->fence_reg];
3358
aff10b30
DV
3359 if (WARN_ON(fence->pin_count))
3360 return -EBUSY;
3361
61050808 3362 i915_gem_object_fence_lost(obj);
f9c513e9 3363 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3364
3365 return 0;
3366}
3367
3368static struct drm_i915_fence_reg *
a360bb1a 3369i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3370{
ae3db24a 3371 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3372 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3373 int i;
ae3db24a
DV
3374
3375 /* First try to find a free reg */
d9e86c0e 3376 avail = NULL;
ae3db24a
DV
3377 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3378 reg = &dev_priv->fence_regs[i];
3379 if (!reg->obj)
d9e86c0e 3380 return reg;
ae3db24a 3381
1690e1eb 3382 if (!reg->pin_count)
d9e86c0e 3383 avail = reg;
ae3db24a
DV
3384 }
3385
d9e86c0e 3386 if (avail == NULL)
5dce5b93 3387 goto deadlock;
ae3db24a
DV
3388
3389 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3390 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3391 if (reg->pin_count)
ae3db24a
DV
3392 continue;
3393
8fe301ad 3394 return reg;
ae3db24a
DV
3395 }
3396
5dce5b93
CW
3397deadlock:
3398 /* Wait for completion of pending flips which consume fences */
3399 if (intel_has_pending_fb_unpin(dev))
3400 return ERR_PTR(-EAGAIN);
3401
3402 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3403}
3404
de151cf6 3405/**
9a5a53b3 3406 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3407 * @obj: object to map through a fence reg
3408 *
3409 * When mapping objects through the GTT, userspace wants to be able to write
3410 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3411 * This function walks the fence regs looking for a free one for @obj,
3412 * stealing one if it can't find any.
3413 *
3414 * It then sets up the reg based on the object's properties: address, pitch
3415 * and tiling format.
9a5a53b3
CW
3416 *
3417 * For an untiled surface, this removes any existing fence.
de151cf6 3418 */
8c4b8c3f 3419int
06d98131 3420i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3421{
05394f39 3422 struct drm_device *dev = obj->base.dev;
79e53945 3423 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3424 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3425 struct drm_i915_fence_reg *reg;
ae3db24a 3426 int ret;
de151cf6 3427
14415745
CW
3428 /* Have we updated the tiling parameters upon the object and so
3429 * will need to serialise the write to the associated fence register?
3430 */
5d82e3e6 3431 if (obj->fence_dirty) {
d0a57789 3432 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3433 if (ret)
3434 return ret;
3435 }
9a5a53b3 3436
d9e86c0e 3437 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3438 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3439 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3440 if (!obj->fence_dirty) {
14415745
CW
3441 list_move_tail(&reg->lru_list,
3442 &dev_priv->mm.fence_list);
3443 return 0;
3444 }
3445 } else if (enable) {
e6a84468
CW
3446 if (WARN_ON(!obj->map_and_fenceable))
3447 return -EINVAL;
3448
14415745 3449 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3450 if (IS_ERR(reg))
3451 return PTR_ERR(reg);
d9e86c0e 3452
14415745
CW
3453 if (reg->obj) {
3454 struct drm_i915_gem_object *old = reg->obj;
3455
d0a57789 3456 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3457 if (ret)
3458 return ret;
3459
14415745 3460 i915_gem_object_fence_lost(old);
29c5a587 3461 }
14415745 3462 } else
a09ba7fa 3463 return 0;
a09ba7fa 3464
14415745 3465 i915_gem_object_update_fence(obj, reg, enable);
14415745 3466
9ce079e4 3467 return 0;
de151cf6
JB
3468}
3469
4144f9b5 3470static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3471 unsigned long cache_level)
3472{
4144f9b5 3473 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3474 struct drm_mm_node *other;
3475
4144f9b5
CW
3476 /*
3477 * On some machines we have to be careful when putting differing types
3478 * of snoopable memory together to avoid the prefetcher crossing memory
3479 * domains and dying. During vm initialisation, we decide whether or not
3480 * these constraints apply and set the drm_mm.color_adjust
3481 * appropriately.
42d6ab48 3482 */
4144f9b5 3483 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3484 return true;
3485
c6cfb325 3486 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3487 return true;
3488
3489 if (list_empty(&gtt_space->node_list))
3490 return true;
3491
3492 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3493 if (other->allocated && !other->hole_follows && other->color != cache_level)
3494 return false;
3495
3496 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3497 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3498 return false;
3499
3500 return true;
3501}
3502
673a394b
EA
3503/**
3504 * Finds free space in the GTT aperture and binds the object there.
3505 */
262de145 3506static struct i915_vma *
07fe0b12
BW
3507i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3508 struct i915_address_space *vm,
3509 unsigned alignment,
fe14d5f4
TU
3510 uint64_t flags,
3511 const struct i915_ggtt_view *view)
673a394b 3512{
05394f39 3513 struct drm_device *dev = obj->base.dev;
3e31c6c0 3514 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3515 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3516 unsigned long start =
3517 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3518 unsigned long end =
1ec9e26d 3519 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3520 struct i915_vma *vma;
07f73f69 3521 int ret;
673a394b 3522
e28f8711
CW
3523 fence_size = i915_gem_get_gtt_size(dev,
3524 obj->base.size,
3525 obj->tiling_mode);
3526 fence_alignment = i915_gem_get_gtt_alignment(dev,
3527 obj->base.size,
d865110c 3528 obj->tiling_mode, true);
e28f8711 3529 unfenced_alignment =
d865110c 3530 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3531 obj->base.size,
3532 obj->tiling_mode, false);
a00b10c3 3533
673a394b 3534 if (alignment == 0)
1ec9e26d 3535 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3536 unfenced_alignment;
1ec9e26d 3537 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3538 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3539 return ERR_PTR(-EINVAL);
673a394b
EA
3540 }
3541
1ec9e26d 3542 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3543
654fc607
CW
3544 /* If the object is bigger than the entire aperture, reject it early
3545 * before evicting everything in a vain attempt to find space.
3546 */
d23db88c
CW
3547 if (obj->base.size > end) {
3548 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3549 obj->base.size,
1ec9e26d 3550 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3551 end);
262de145 3552 return ERR_PTR(-E2BIG);
654fc607
CW
3553 }
3554
37e680a1 3555 ret = i915_gem_object_get_pages(obj);
6c085a72 3556 if (ret)
262de145 3557 return ERR_PTR(ret);
6c085a72 3558
fbdda6fb
CW
3559 i915_gem_object_pin_pages(obj);
3560
fe14d5f4 3561 vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
262de145 3562 if (IS_ERR(vma))
bc6bc15b 3563 goto err_unpin;
2f633156 3564
0a9ae0d7 3565search_free:
07fe0b12 3566 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3567 size, alignment,
d23db88c
CW
3568 obj->cache_level,
3569 start, end,
62347f9e
LK
3570 DRM_MM_SEARCH_DEFAULT,
3571 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3572 if (ret) {
f6cd1f15 3573 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3574 obj->cache_level,
3575 start, end,
3576 flags);
dc9dd7a2
CW
3577 if (ret == 0)
3578 goto search_free;
9731129c 3579
bc6bc15b 3580 goto err_free_vma;
673a394b 3581 }
4144f9b5 3582 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3583 ret = -EINVAL;
bc6bc15b 3584 goto err_remove_node;
673a394b
EA
3585 }
3586
74163907 3587 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3588 if (ret)
bc6bc15b 3589 goto err_remove_node;
673a394b 3590
fe14d5f4
TU
3591 trace_i915_vma_bind(vma, flags);
3592 ret = i915_vma_bind(vma, obj->cache_level,
3593 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3594 if (ret)
3595 goto err_finish_gtt;
3596
35c20a60 3597 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3598 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3599
262de145 3600 return vma;
2f633156 3601
fe14d5f4
TU
3602err_finish_gtt:
3603 i915_gem_gtt_finish_object(obj);
bc6bc15b 3604err_remove_node:
6286ef9b 3605 drm_mm_remove_node(&vma->node);
bc6bc15b 3606err_free_vma:
2f633156 3607 i915_gem_vma_destroy(vma);
262de145 3608 vma = ERR_PTR(ret);
bc6bc15b 3609err_unpin:
2f633156 3610 i915_gem_object_unpin_pages(obj);
262de145 3611 return vma;
673a394b
EA
3612}
3613
000433b6 3614bool
2c22569b
CW
3615i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3616 bool force)
673a394b 3617{
673a394b
EA
3618 /* If we don't have a page list set up, then we're not pinned
3619 * to GPU, and we can ignore the cache flush because it'll happen
3620 * again at bind time.
3621 */
05394f39 3622 if (obj->pages == NULL)
000433b6 3623 return false;
673a394b 3624
769ce464
ID
3625 /*
3626 * Stolen memory is always coherent with the GPU as it is explicitly
3627 * marked as wc by the system, or the system is cache-coherent.
3628 */
6a2c4232 3629 if (obj->stolen || obj->phys_handle)
000433b6 3630 return false;
769ce464 3631
9c23f7fc
CW
3632 /* If the GPU is snooping the contents of the CPU cache,
3633 * we do not need to manually clear the CPU cache lines. However,
3634 * the caches are only snooped when the render cache is
3635 * flushed/invalidated. As we always have to emit invalidations
3636 * and flushes when moving into and out of the RENDER domain, correct
3637 * snooping behaviour occurs naturally as the result of our domain
3638 * tracking.
3639 */
0f71979a
CW
3640 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3641 obj->cache_dirty = true;
000433b6 3642 return false;
0f71979a 3643 }
9c23f7fc 3644
1c5d22f7 3645 trace_i915_gem_object_clflush(obj);
9da3da66 3646 drm_clflush_sg(obj->pages);
0f71979a 3647 obj->cache_dirty = false;
000433b6
CW
3648
3649 return true;
e47c68e9
EA
3650}
3651
3652/** Flushes the GTT write domain for the object if it's dirty. */
3653static void
05394f39 3654i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3655{
1c5d22f7
CW
3656 uint32_t old_write_domain;
3657
05394f39 3658 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3659 return;
3660
63256ec5 3661 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3662 * to it immediately go to main memory as far as we know, so there's
3663 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3664 *
3665 * However, we do have to enforce the order so that all writes through
3666 * the GTT land before any writes to the device, such as updates to
3667 * the GATT itself.
e47c68e9 3668 */
63256ec5
CW
3669 wmb();
3670
05394f39
CW
3671 old_write_domain = obj->base.write_domain;
3672 obj->base.write_domain = 0;
1c5d22f7 3673
f99d7069
DV
3674 intel_fb_obj_flush(obj, false);
3675
1c5d22f7 3676 trace_i915_gem_object_change_domain(obj,
05394f39 3677 obj->base.read_domains,
1c5d22f7 3678 old_write_domain);
e47c68e9
EA
3679}
3680
3681/** Flushes the CPU write domain for the object if it's dirty. */
3682static void
e62b59e4 3683i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3684{
1c5d22f7 3685 uint32_t old_write_domain;
e47c68e9 3686
05394f39 3687 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3688 return;
3689
e62b59e4 3690 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3691 i915_gem_chipset_flush(obj->base.dev);
3692
05394f39
CW
3693 old_write_domain = obj->base.write_domain;
3694 obj->base.write_domain = 0;
1c5d22f7 3695
f99d7069
DV
3696 intel_fb_obj_flush(obj, false);
3697
1c5d22f7 3698 trace_i915_gem_object_change_domain(obj,
05394f39 3699 obj->base.read_domains,
1c5d22f7 3700 old_write_domain);
e47c68e9
EA
3701}
3702
2ef7eeaa
EA
3703/**
3704 * Moves a single object to the GTT read, and possibly write domain.
3705 *
3706 * This function returns when the move is complete, including waiting on
3707 * flushes to occur.
3708 */
79e53945 3709int
2021746e 3710i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3711{
1c5d22f7 3712 uint32_t old_write_domain, old_read_domains;
43566ded 3713 struct i915_vma *vma;
e47c68e9 3714 int ret;
2ef7eeaa 3715
8d7e3de1
CW
3716 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3717 return 0;
3718
0201f1ec 3719 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3720 if (ret)
3721 return ret;
3722
c8725f3d 3723 i915_gem_object_retire(obj);
43566ded
CW
3724
3725 /* Flush and acquire obj->pages so that we are coherent through
3726 * direct access in memory with previous cached writes through
3727 * shmemfs and that our cache domain tracking remains valid.
3728 * For example, if the obj->filp was moved to swap without us
3729 * being notified and releasing the pages, we would mistakenly
3730 * continue to assume that the obj remained out of the CPU cached
3731 * domain.
3732 */
3733 ret = i915_gem_object_get_pages(obj);
3734 if (ret)
3735 return ret;
3736
e62b59e4 3737 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3738
d0a57789
CW
3739 /* Serialise direct access to this object with the barriers for
3740 * coherent writes from the GPU, by effectively invalidating the
3741 * GTT domain upon first access.
3742 */
3743 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3744 mb();
3745
05394f39
CW
3746 old_write_domain = obj->base.write_domain;
3747 old_read_domains = obj->base.read_domains;
1c5d22f7 3748
e47c68e9
EA
3749 /* It should now be out of any other write domains, and we can update
3750 * the domain values for our changes.
3751 */
05394f39
CW
3752 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3753 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3754 if (write) {
05394f39
CW
3755 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3756 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3757 obj->dirty = 1;
2ef7eeaa
EA
3758 }
3759
f99d7069
DV
3760 if (write)
3761 intel_fb_obj_invalidate(obj, NULL);
3762
1c5d22f7
CW
3763 trace_i915_gem_object_change_domain(obj,
3764 old_read_domains,
3765 old_write_domain);
3766
8325a09d 3767 /* And bump the LRU for this access */
43566ded
CW
3768 vma = i915_gem_obj_to_ggtt(obj);
3769 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3770 list_move_tail(&vma->mm_list,
43566ded 3771 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3772
e47c68e9
EA
3773 return 0;
3774}
3775
e4ffd173
CW
3776int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3777 enum i915_cache_level cache_level)
3778{
7bddb01f 3779 struct drm_device *dev = obj->base.dev;
df6f783a 3780 struct i915_vma *vma, *next;
e4ffd173
CW
3781 int ret;
3782
3783 if (obj->cache_level == cache_level)
3784 return 0;
3785
d7f46fc4 3786 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3787 DRM_DEBUG("can not change the cache level of pinned objects\n");
3788 return -EBUSY;
3789 }
3790
df6f783a 3791 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3792 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3793 ret = i915_vma_unbind(vma);
3089c6f2
BW
3794 if (ret)
3795 return ret;
3089c6f2 3796 }
42d6ab48
CW
3797 }
3798
3089c6f2 3799 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3800 ret = i915_gem_object_finish_gpu(obj);
3801 if (ret)
3802 return ret;
3803
3804 i915_gem_object_finish_gtt(obj);
3805
3806 /* Before SandyBridge, you could not use tiling or fence
3807 * registers with snooped memory, so relinquish any fences
3808 * currently pointing to our region in the aperture.
3809 */
42d6ab48 3810 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3811 ret = i915_gem_object_put_fence(obj);
3812 if (ret)
3813 return ret;
3814 }
3815
6f65e29a 3816 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
3817 if (drm_mm_node_allocated(&vma->node)) {
3818 ret = i915_vma_bind(vma, cache_level,
3819 vma->bound & GLOBAL_BIND);
3820 if (ret)
3821 return ret;
3822 }
e4ffd173
CW
3823 }
3824
2c22569b
CW
3825 list_for_each_entry(vma, &obj->vma_list, vma_link)
3826 vma->node.color = cache_level;
3827 obj->cache_level = cache_level;
3828
0f71979a
CW
3829 if (obj->cache_dirty &&
3830 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3831 cpu_write_needs_clflush(obj)) {
3832 if (i915_gem_clflush_object(obj, true))
3833 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3834 }
3835
e4ffd173
CW
3836 return 0;
3837}
3838
199adf40
BW
3839int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3840 struct drm_file *file)
e6994aee 3841{
199adf40 3842 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3843 struct drm_i915_gem_object *obj;
3844 int ret;
3845
3846 ret = i915_mutex_lock_interruptible(dev);
3847 if (ret)
3848 return ret;
3849
3850 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3851 if (&obj->base == NULL) {
3852 ret = -ENOENT;
3853 goto unlock;
3854 }
3855
651d794f
CW
3856 switch (obj->cache_level) {
3857 case I915_CACHE_LLC:
3858 case I915_CACHE_L3_LLC:
3859 args->caching = I915_CACHING_CACHED;
3860 break;
3861
4257d3ba
CW
3862 case I915_CACHE_WT:
3863 args->caching = I915_CACHING_DISPLAY;
3864 break;
3865
651d794f
CW
3866 default:
3867 args->caching = I915_CACHING_NONE;
3868 break;
3869 }
e6994aee
CW
3870
3871 drm_gem_object_unreference(&obj->base);
3872unlock:
3873 mutex_unlock(&dev->struct_mutex);
3874 return ret;
3875}
3876
199adf40
BW
3877int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3878 struct drm_file *file)
e6994aee 3879{
199adf40 3880 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3881 struct drm_i915_gem_object *obj;
3882 enum i915_cache_level level;
3883 int ret;
3884
199adf40
BW
3885 switch (args->caching) {
3886 case I915_CACHING_NONE:
e6994aee
CW
3887 level = I915_CACHE_NONE;
3888 break;
199adf40 3889 case I915_CACHING_CACHED:
e6994aee
CW
3890 level = I915_CACHE_LLC;
3891 break;
4257d3ba
CW
3892 case I915_CACHING_DISPLAY:
3893 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3894 break;
e6994aee
CW
3895 default:
3896 return -EINVAL;
3897 }
3898
3bc2913e
BW
3899 ret = i915_mutex_lock_interruptible(dev);
3900 if (ret)
3901 return ret;
3902
e6994aee
CW
3903 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3904 if (&obj->base == NULL) {
3905 ret = -ENOENT;
3906 goto unlock;
3907 }
3908
3909 ret = i915_gem_object_set_cache_level(obj, level);
3910
3911 drm_gem_object_unreference(&obj->base);
3912unlock:
3913 mutex_unlock(&dev->struct_mutex);
3914 return ret;
3915}
3916
cc98b413
CW
3917static bool is_pin_display(struct drm_i915_gem_object *obj)
3918{
19656430
OM
3919 struct i915_vma *vma;
3920
19656430
OM
3921 vma = i915_gem_obj_to_ggtt(obj);
3922 if (!vma)
3923 return false;
3924
4feb7659 3925 /* There are 2 sources that pin objects:
cc98b413
CW
3926 * 1. The display engine (scanouts, sprites, cursors);
3927 * 2. Reservations for execbuffer;
cc98b413
CW
3928 *
3929 * We can ignore reservations as we hold the struct_mutex and
4feb7659 3930 * are only called outside of the reservation path.
cc98b413 3931 */
4feb7659 3932 return vma->pin_count;
cc98b413
CW
3933}
3934
b9241ea3 3935/*
2da3b9b9
CW
3936 * Prepare buffer for display plane (scanout, cursors, etc).
3937 * Can be called from an uninterruptible phase (modesetting) and allows
3938 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3939 */
3940int
2da3b9b9
CW
3941i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3942 u32 alignment,
a4872ba6 3943 struct intel_engine_cs *pipelined)
b9241ea3 3944{
2da3b9b9 3945 u32 old_read_domains, old_write_domain;
19656430 3946 bool was_pin_display;
b9241ea3
ZW
3947 int ret;
3948
41c52415 3949 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
2911a35b
BW
3950 ret = i915_gem_object_sync(obj, pipelined);
3951 if (ret)
b9241ea3
ZW
3952 return ret;
3953 }
3954
cc98b413
CW
3955 /* Mark the pin_display early so that we account for the
3956 * display coherency whilst setting up the cache domains.
3957 */
19656430 3958 was_pin_display = obj->pin_display;
cc98b413
CW
3959 obj->pin_display = true;
3960
a7ef0640
EA
3961 /* The display engine is not coherent with the LLC cache on gen6. As
3962 * a result, we make sure that the pinning that is about to occur is
3963 * done with uncached PTEs. This is lowest common denominator for all
3964 * chipsets.
3965 *
3966 * However for gen6+, we could do better by using the GFDT bit instead
3967 * of uncaching, which would allow us to flush all the LLC-cached data
3968 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3969 */
651d794f
CW
3970 ret = i915_gem_object_set_cache_level(obj,
3971 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3972 if (ret)
cc98b413 3973 goto err_unpin_display;
a7ef0640 3974
2da3b9b9
CW
3975 /* As the user may map the buffer once pinned in the display plane
3976 * (e.g. libkms for the bootup splash), we have to ensure that we
3977 * always use map_and_fenceable for all scanout buffers.
3978 */
1ec9e26d 3979 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3980 if (ret)
cc98b413 3981 goto err_unpin_display;
2da3b9b9 3982
e62b59e4 3983 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3984
2da3b9b9 3985 old_write_domain = obj->base.write_domain;
05394f39 3986 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3987
3988 /* It should now be out of any other write domains, and we can update
3989 * the domain values for our changes.
3990 */
e5f1d962 3991 obj->base.write_domain = 0;
05394f39 3992 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3993
3994 trace_i915_gem_object_change_domain(obj,
3995 old_read_domains,
2da3b9b9 3996 old_write_domain);
b9241ea3
ZW
3997
3998 return 0;
cc98b413
CW
3999
4000err_unpin_display:
19656430
OM
4001 WARN_ON(was_pin_display != is_pin_display(obj));
4002 obj->pin_display = was_pin_display;
cc98b413
CW
4003 return ret;
4004}
4005
4006void
4007i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4008{
d7f46fc4 4009 i915_gem_object_ggtt_unpin(obj);
cc98b413 4010 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
4011}
4012
85345517 4013int
a8198eea 4014i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 4015{
88241785
CW
4016 int ret;
4017
a8198eea 4018 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
4019 return 0;
4020
0201f1ec 4021 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
4022 if (ret)
4023 return ret;
4024
a8198eea
CW
4025 /* Ensure that we invalidate the GPU's caches and TLBs. */
4026 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 4027 return 0;
85345517
CW
4028}
4029
e47c68e9
EA
4030/**
4031 * Moves a single object to the CPU read, and possibly write domain.
4032 *
4033 * This function returns when the move is complete, including waiting on
4034 * flushes to occur.
4035 */
dabdfe02 4036int
919926ae 4037i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4038{
1c5d22f7 4039 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4040 int ret;
4041
8d7e3de1
CW
4042 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4043 return 0;
4044
0201f1ec 4045 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4046 if (ret)
4047 return ret;
4048
c8725f3d 4049 i915_gem_object_retire(obj);
e47c68e9 4050 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4051
05394f39
CW
4052 old_write_domain = obj->base.write_domain;
4053 old_read_domains = obj->base.read_domains;
1c5d22f7 4054
e47c68e9 4055 /* Flush the CPU cache if it's still invalid. */
05394f39 4056 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4057 i915_gem_clflush_object(obj, false);
2ef7eeaa 4058
05394f39 4059 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4060 }
4061
4062 /* It should now be out of any other write domains, and we can update
4063 * the domain values for our changes.
4064 */
05394f39 4065 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4066
4067 /* If we're writing through the CPU, then the GPU read domains will
4068 * need to be invalidated at next use.
4069 */
4070 if (write) {
05394f39
CW
4071 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4072 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4073 }
2ef7eeaa 4074
f99d7069
DV
4075 if (write)
4076 intel_fb_obj_invalidate(obj, NULL);
4077
1c5d22f7
CW
4078 trace_i915_gem_object_change_domain(obj,
4079 old_read_domains,
4080 old_write_domain);
4081
2ef7eeaa
EA
4082 return 0;
4083}
4084
673a394b
EA
4085/* Throttle our rendering by waiting until the ring has completed our requests
4086 * emitted over 20 msec ago.
4087 *
b962442e
EA
4088 * Note that if we were to use the current jiffies each time around the loop,
4089 * we wouldn't escape the function with any frames outstanding if the time to
4090 * render a frame was over 20ms.
4091 *
673a394b
EA
4092 * This should get us reasonable parallelism between CPU and GPU but also
4093 * relatively low latency when blocking on a particular request to finish.
4094 */
40a5f0de 4095static int
f787a5f5 4096i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4097{
f787a5f5
CW
4098 struct drm_i915_private *dev_priv = dev->dev_private;
4099 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4100 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
54fb2411 4101 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4102 unsigned reset_counter;
f787a5f5 4103 int ret;
93533c29 4104
308887aa
DV
4105 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4106 if (ret)
4107 return ret;
4108
4109 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4110 if (ret)
4111 return ret;
e110e8d6 4112
1c25595f 4113 spin_lock(&file_priv->mm.lock);
f787a5f5 4114 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4115 if (time_after_eq(request->emitted_jiffies, recent_enough))
4116 break;
40a5f0de 4117
54fb2411 4118 target = request;
b962442e 4119 }
f69061be 4120 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4121 if (target)
4122 i915_gem_request_reference(target);
1c25595f 4123 spin_unlock(&file_priv->mm.lock);
40a5f0de 4124
54fb2411 4125 if (target == NULL)
f787a5f5 4126 return 0;
2bc43b5c 4127
9c654818 4128 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4129 if (ret == 0)
4130 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4131
ff865885
JH
4132 mutex_lock(&dev->struct_mutex);
4133 i915_gem_request_unreference(target);
4134 mutex_unlock(&dev->struct_mutex);
4135
40a5f0de
EA
4136 return ret;
4137}
4138
d23db88c
CW
4139static bool
4140i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4141{
4142 struct drm_i915_gem_object *obj = vma->obj;
4143
4144 if (alignment &&
4145 vma->node.start & (alignment - 1))
4146 return true;
4147
4148 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4149 return true;
4150
4151 if (flags & PIN_OFFSET_BIAS &&
4152 vma->node.start < (flags & PIN_OFFSET_MASK))
4153 return true;
4154
4155 return false;
4156}
4157
673a394b 4158int
fe14d5f4
TU
4159i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
4160 struct i915_address_space *vm,
4161 uint32_t alignment,
4162 uint64_t flags,
4163 const struct i915_ggtt_view *view)
673a394b 4164{
6e7186af 4165 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4166 struct i915_vma *vma;
ef79e17c 4167 unsigned bound;
673a394b
EA
4168 int ret;
4169
6e7186af
BW
4170 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4171 return -ENODEV;
4172
bf3d149b 4173 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4174 return -EINVAL;
07fe0b12 4175
c826c449
CW
4176 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4177 return -EINVAL;
4178
fe14d5f4 4179 vma = i915_gem_obj_to_vma_view(obj, vm, view);
07fe0b12 4180 if (vma) {
d7f46fc4
BW
4181 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4182 return -EBUSY;
4183
d23db88c 4184 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4185 WARN(vma->pin_count,
ae7d49d8 4186 "bo is already pinned with incorrect alignment:"
f343c5f6 4187 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4188 " obj->map_and_fenceable=%d\n",
fe14d5f4
TU
4189 i915_gem_obj_offset_view(obj, vm, view->type),
4190 alignment,
d23db88c 4191 !!(flags & PIN_MAPPABLE),
05394f39 4192 obj->map_and_fenceable);
07fe0b12 4193 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4194 if (ret)
4195 return ret;
8ea99c92
DV
4196
4197 vma = NULL;
ac0c6b5a
CW
4198 }
4199 }
4200
ef79e17c 4201 bound = vma ? vma->bound : 0;
8ea99c92 4202 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
fe14d5f4
TU
4203 vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
4204 flags, view);
262de145
DV
4205 if (IS_ERR(vma))
4206 return PTR_ERR(vma);
22c344e9 4207 }
76446cac 4208
fe14d5f4
TU
4209 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4210 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4211 if (ret)
4212 return ret;
4213 }
74898d7e 4214
ef79e17c
CW
4215 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4216 bool mappable, fenceable;
4217 u32 fence_size, fence_alignment;
4218
4219 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4220 obj->base.size,
4221 obj->tiling_mode);
4222 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4223 obj->base.size,
4224 obj->tiling_mode,
4225 true);
4226
4227 fenceable = (vma->node.size == fence_size &&
4228 (vma->node.start & (fence_alignment - 1)) == 0);
4229
4230 mappable = (vma->node.start + obj->base.size <=
4231 dev_priv->gtt.mappable_end);
4232
4233 obj->map_and_fenceable = mappable && fenceable;
4234 }
4235
4236 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4237
8ea99c92 4238 vma->pin_count++;
1ec9e26d
DV
4239 if (flags & PIN_MAPPABLE)
4240 obj->pin_mappable |= true;
673a394b
EA
4241
4242 return 0;
4243}
4244
4245void
d7f46fc4 4246i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4247{
d7f46fc4 4248 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4249
d7f46fc4
BW
4250 BUG_ON(!vma);
4251 BUG_ON(vma->pin_count == 0);
4252 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4253
4254 if (--vma->pin_count == 0)
6299f992 4255 obj->pin_mappable = false;
673a394b
EA
4256}
4257
d8ffa60b
DV
4258bool
4259i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4260{
4261 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4262 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4263 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4264
4265 WARN_ON(!ggtt_vma ||
4266 dev_priv->fence_regs[obj->fence_reg].pin_count >
4267 ggtt_vma->pin_count);
4268 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4269 return true;
4270 } else
4271 return false;
4272}
4273
4274void
4275i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4276{
4277 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4278 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4279 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4280 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4281 }
4282}
4283
673a394b
EA
4284int
4285i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4286 struct drm_file *file)
673a394b
EA
4287{
4288 struct drm_i915_gem_busy *args = data;
05394f39 4289 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4290 int ret;
4291
76c1dec1 4292 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4293 if (ret)
76c1dec1 4294 return ret;
673a394b 4295
05394f39 4296 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4297 if (&obj->base == NULL) {
1d7cfea1
CW
4298 ret = -ENOENT;
4299 goto unlock;
673a394b 4300 }
d1b851fc 4301
0be555b6
CW
4302 /* Count all active objects as busy, even if they are currently not used
4303 * by the gpu. Users of this interface expect objects to eventually
4304 * become non-busy without any further actions, therefore emit any
4305 * necessary flushes here.
c4de0a5d 4306 */
30dfebf3 4307 ret = i915_gem_object_flush_active(obj);
0be555b6 4308
30dfebf3 4309 args->busy = obj->active;
41c52415
JH
4310 if (obj->last_read_req) {
4311 struct intel_engine_cs *ring;
e9808edd 4312 BUILD_BUG_ON(I915_NUM_RINGS > 16);
41c52415
JH
4313 ring = i915_gem_request_get_ring(obj->last_read_req);
4314 args->busy |= intel_ring_flag(ring) << 16;
e9808edd 4315 }
673a394b 4316
05394f39 4317 drm_gem_object_unreference(&obj->base);
1d7cfea1 4318unlock:
673a394b 4319 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4320 return ret;
673a394b
EA
4321}
4322
4323int
4324i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4325 struct drm_file *file_priv)
4326{
0206e353 4327 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4328}
4329
3ef94daa
CW
4330int
4331i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4332 struct drm_file *file_priv)
4333{
656bfa3a 4334 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4335 struct drm_i915_gem_madvise *args = data;
05394f39 4336 struct drm_i915_gem_object *obj;
76c1dec1 4337 int ret;
3ef94daa
CW
4338
4339 switch (args->madv) {
4340 case I915_MADV_DONTNEED:
4341 case I915_MADV_WILLNEED:
4342 break;
4343 default:
4344 return -EINVAL;
4345 }
4346
1d7cfea1
CW
4347 ret = i915_mutex_lock_interruptible(dev);
4348 if (ret)
4349 return ret;
4350
05394f39 4351 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4352 if (&obj->base == NULL) {
1d7cfea1
CW
4353 ret = -ENOENT;
4354 goto unlock;
3ef94daa 4355 }
3ef94daa 4356
d7f46fc4 4357 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4358 ret = -EINVAL;
4359 goto out;
3ef94daa
CW
4360 }
4361
656bfa3a
DV
4362 if (obj->pages &&
4363 obj->tiling_mode != I915_TILING_NONE &&
4364 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4365 if (obj->madv == I915_MADV_WILLNEED)
4366 i915_gem_object_unpin_pages(obj);
4367 if (args->madv == I915_MADV_WILLNEED)
4368 i915_gem_object_pin_pages(obj);
4369 }
4370
05394f39
CW
4371 if (obj->madv != __I915_MADV_PURGED)
4372 obj->madv = args->madv;
3ef94daa 4373
6c085a72
CW
4374 /* if the object is no longer attached, discard its backing storage */
4375 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4376 i915_gem_object_truncate(obj);
4377
05394f39 4378 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4379
1d7cfea1 4380out:
05394f39 4381 drm_gem_object_unreference(&obj->base);
1d7cfea1 4382unlock:
3ef94daa 4383 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4384 return ret;
3ef94daa
CW
4385}
4386
37e680a1
CW
4387void i915_gem_object_init(struct drm_i915_gem_object *obj,
4388 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4389{
35c20a60 4390 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4391 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4392 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4393 INIT_LIST_HEAD(&obj->vma_list);
493018dc 4394 INIT_LIST_HEAD(&obj->batch_pool_list);
0327d6ba 4395
37e680a1
CW
4396 obj->ops = ops;
4397
0327d6ba
CW
4398 obj->fence_reg = I915_FENCE_REG_NONE;
4399 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4400
4401 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4402}
4403
37e680a1
CW
4404static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4405 .get_pages = i915_gem_object_get_pages_gtt,
4406 .put_pages = i915_gem_object_put_pages_gtt,
4407};
4408
05394f39
CW
4409struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4410 size_t size)
ac52bc56 4411{
c397b908 4412 struct drm_i915_gem_object *obj;
5949eac4 4413 struct address_space *mapping;
1a240d4d 4414 gfp_t mask;
ac52bc56 4415
42dcedd4 4416 obj = i915_gem_object_alloc(dev);
c397b908
DV
4417 if (obj == NULL)
4418 return NULL;
673a394b 4419
c397b908 4420 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4421 i915_gem_object_free(obj);
c397b908
DV
4422 return NULL;
4423 }
673a394b 4424
bed1ea95
CW
4425 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4426 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4427 /* 965gm cannot relocate objects above 4GiB. */
4428 mask &= ~__GFP_HIGHMEM;
4429 mask |= __GFP_DMA32;
4430 }
4431
496ad9aa 4432 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4433 mapping_set_gfp_mask(mapping, mask);
5949eac4 4434
37e680a1 4435 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4436
c397b908
DV
4437 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4438 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4439
3d29b842
ED
4440 if (HAS_LLC(dev)) {
4441 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4442 * cache) for about a 10% performance improvement
4443 * compared to uncached. Graphics requests other than
4444 * display scanout are coherent with the CPU in
4445 * accessing this cache. This means in this mode we
4446 * don't need to clflush on the CPU side, and on the
4447 * GPU side we only need to flush internal caches to
4448 * get data visible to the CPU.
4449 *
4450 * However, we maintain the display planes as UC, and so
4451 * need to rebind when first used as such.
4452 */
4453 obj->cache_level = I915_CACHE_LLC;
4454 } else
4455 obj->cache_level = I915_CACHE_NONE;
4456
d861e338
DV
4457 trace_i915_gem_object_create(obj);
4458
05394f39 4459 return obj;
c397b908
DV
4460}
4461
340fbd8c
CW
4462static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4463{
4464 /* If we are the last user of the backing storage (be it shmemfs
4465 * pages or stolen etc), we know that the pages are going to be
4466 * immediately released. In this case, we can then skip copying
4467 * back the contents from the GPU.
4468 */
4469
4470 if (obj->madv != I915_MADV_WILLNEED)
4471 return false;
4472
4473 if (obj->base.filp == NULL)
4474 return true;
4475
4476 /* At first glance, this looks racy, but then again so would be
4477 * userspace racing mmap against close. However, the first external
4478 * reference to the filp can only be obtained through the
4479 * i915_gem_mmap_ioctl() which safeguards us against the user
4480 * acquiring such a reference whilst we are in the middle of
4481 * freeing the object.
4482 */
4483 return atomic_long_read(&obj->base.filp->f_count) == 1;
4484}
4485
1488fc08 4486void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4487{
1488fc08 4488 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4489 struct drm_device *dev = obj->base.dev;
3e31c6c0 4490 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4491 struct i915_vma *vma, *next;
673a394b 4492
f65c9168
PZ
4493 intel_runtime_pm_get(dev_priv);
4494
26e12f89
CW
4495 trace_i915_gem_object_destroy(obj);
4496
07fe0b12 4497 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4498 int ret;
4499
4500 vma->pin_count = 0;
4501 ret = i915_vma_unbind(vma);
07fe0b12
BW
4502 if (WARN_ON(ret == -ERESTARTSYS)) {
4503 bool was_interruptible;
1488fc08 4504
07fe0b12
BW
4505 was_interruptible = dev_priv->mm.interruptible;
4506 dev_priv->mm.interruptible = false;
1488fc08 4507
07fe0b12 4508 WARN_ON(i915_vma_unbind(vma));
1488fc08 4509
07fe0b12
BW
4510 dev_priv->mm.interruptible = was_interruptible;
4511 }
1488fc08
CW
4512 }
4513
1d64ae71
BW
4514 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4515 * before progressing. */
4516 if (obj->stolen)
4517 i915_gem_object_unpin_pages(obj);
4518
a071fa00
DV
4519 WARN_ON(obj->frontbuffer_bits);
4520
656bfa3a
DV
4521 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4522 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4523 obj->tiling_mode != I915_TILING_NONE)
4524 i915_gem_object_unpin_pages(obj);
4525
401c29f6
BW
4526 if (WARN_ON(obj->pages_pin_count))
4527 obj->pages_pin_count = 0;
340fbd8c 4528 if (discard_backing_storage(obj))
5537252b 4529 obj->madv = I915_MADV_DONTNEED;
37e680a1 4530 i915_gem_object_put_pages(obj);
d8cb5086 4531 i915_gem_object_free_mmap_offset(obj);
de151cf6 4532
9da3da66
CW
4533 BUG_ON(obj->pages);
4534
2f745ad3
CW
4535 if (obj->base.import_attach)
4536 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4537
5cc9ed4b
CW
4538 if (obj->ops->release)
4539 obj->ops->release(obj);
4540
05394f39
CW
4541 drm_gem_object_release(&obj->base);
4542 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4543
05394f39 4544 kfree(obj->bit_17);
42dcedd4 4545 i915_gem_object_free(obj);
f65c9168
PZ
4546
4547 intel_runtime_pm_put(dev_priv);
673a394b
EA
4548}
4549
fe14d5f4
TU
4550struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
4551 struct i915_address_space *vm,
4552 const struct i915_ggtt_view *view)
e656a6cb
DV
4553{
4554 struct i915_vma *vma;
4555 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4 4556 if (vma->vm == vm && vma->ggtt_view.type == view->type)
e656a6cb
DV
4557 return vma;
4558
4559 return NULL;
4560}
4561
2f633156
BW
4562void i915_gem_vma_destroy(struct i915_vma *vma)
4563{
b9d06dd9 4564 struct i915_address_space *vm = NULL;
2f633156 4565 WARN_ON(vma->node.allocated);
aaa05667
CW
4566
4567 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4568 if (!list_empty(&vma->exec_list))
4569 return;
4570
b9d06dd9 4571 vm = vma->vm;
b9d06dd9 4572
841cd773
DV
4573 if (!i915_is_ggtt(vm))
4574 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4575
8b9c2b94 4576 list_del(&vma->vma_link);
b93dab6e 4577
2f633156
BW
4578 kfree(vma);
4579}
4580
e3efda49
CW
4581static void
4582i915_gem_stop_ringbuffers(struct drm_device *dev)
4583{
4584 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4585 struct intel_engine_cs *ring;
e3efda49
CW
4586 int i;
4587
4588 for_each_ring(ring, dev_priv, i)
a83014d3 4589 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4590}
4591
29105ccc 4592int
45c5f202 4593i915_gem_suspend(struct drm_device *dev)
29105ccc 4594{
3e31c6c0 4595 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4596 int ret = 0;
28dfe52a 4597
45c5f202 4598 mutex_lock(&dev->struct_mutex);
b2da9fe5 4599 ret = i915_gpu_idle(dev);
f7403347 4600 if (ret)
45c5f202 4601 goto err;
f7403347 4602
b2da9fe5 4603 i915_gem_retire_requests(dev);
673a394b 4604
29105ccc 4605 /* Under UMS, be paranoid and evict. */
a39d7efc 4606 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4607 i915_gem_evict_everything(dev);
29105ccc 4608
e3efda49 4609 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4610 mutex_unlock(&dev->struct_mutex);
4611
737b1506 4612 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4613 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4614 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4615
bdcf120b
CW
4616 /* Assert that we sucessfully flushed all the work and
4617 * reset the GPU back to its idle, low power state.
4618 */
4619 WARN_ON(dev_priv->mm.busy);
4620
673a394b 4621 return 0;
45c5f202
CW
4622
4623err:
4624 mutex_unlock(&dev->struct_mutex);
4625 return ret;
673a394b
EA
4626}
4627
a4872ba6 4628int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4629{
c3787e2e 4630 struct drm_device *dev = ring->dev;
3e31c6c0 4631 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4632 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4633 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4634 int i, ret;
b9524a1e 4635
040d2baa 4636 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4637 return 0;
b9524a1e 4638
c3787e2e
BW
4639 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4640 if (ret)
4641 return ret;
b9524a1e 4642
c3787e2e
BW
4643 /*
4644 * Note: We do not worry about the concurrent register cacheline hang
4645 * here because no other code should access these registers other than
4646 * at initialization time.
4647 */
b9524a1e 4648 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4649 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4650 intel_ring_emit(ring, reg_base + i);
4651 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4652 }
4653
c3787e2e 4654 intel_ring_advance(ring);
b9524a1e 4655
c3787e2e 4656 return ret;
b9524a1e
BW
4657}
4658
f691e2f4
DV
4659void i915_gem_init_swizzling(struct drm_device *dev)
4660{
3e31c6c0 4661 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4662
11782b02 4663 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4664 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4665 return;
4666
4667 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4668 DISP_TILE_SURFACE_SWIZZLING);
4669
11782b02
DV
4670 if (IS_GEN5(dev))
4671 return;
4672
f691e2f4
DV
4673 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4674 if (IS_GEN6(dev))
6b26c86d 4675 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4676 else if (IS_GEN7(dev))
6b26c86d 4677 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4678 else if (IS_GEN8(dev))
4679 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4680 else
4681 BUG();
f691e2f4 4682}
e21af88d 4683
67b1b571
CW
4684static bool
4685intel_enable_blt(struct drm_device *dev)
4686{
4687 if (!HAS_BLT(dev))
4688 return false;
4689
4690 /* The blitter was dysfunctional on early prototypes */
4691 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4692 DRM_INFO("BLT not supported on this pre-production hardware;"
4693 " graphics performance will be degraded.\n");
4694 return false;
4695 }
4696
4697 return true;
4698}
4699
81e7f200
VS
4700static void init_unused_ring(struct drm_device *dev, u32 base)
4701{
4702 struct drm_i915_private *dev_priv = dev->dev_private;
4703
4704 I915_WRITE(RING_CTL(base), 0);
4705 I915_WRITE(RING_HEAD(base), 0);
4706 I915_WRITE(RING_TAIL(base), 0);
4707 I915_WRITE(RING_START(base), 0);
4708}
4709
4710static void init_unused_rings(struct drm_device *dev)
4711{
4712 if (IS_I830(dev)) {
4713 init_unused_ring(dev, PRB1_BASE);
4714 init_unused_ring(dev, SRB0_BASE);
4715 init_unused_ring(dev, SRB1_BASE);
4716 init_unused_ring(dev, SRB2_BASE);
4717 init_unused_ring(dev, SRB3_BASE);
4718 } else if (IS_GEN2(dev)) {
4719 init_unused_ring(dev, SRB0_BASE);
4720 init_unused_ring(dev, SRB1_BASE);
4721 } else if (IS_GEN3(dev)) {
4722 init_unused_ring(dev, PRB1_BASE);
4723 init_unused_ring(dev, PRB2_BASE);
4724 }
4725}
4726
a83014d3 4727int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4728{
4fc7c971 4729 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4730 int ret;
68f95ba9 4731
5c1143bb 4732 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4733 if (ret)
b6913e4b 4734 return ret;
68f95ba9
CW
4735
4736 if (HAS_BSD(dev)) {
5c1143bb 4737 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4738 if (ret)
4739 goto cleanup_render_ring;
d1b851fc 4740 }
68f95ba9 4741
67b1b571 4742 if (intel_enable_blt(dev)) {
549f7365
CW
4743 ret = intel_init_blt_ring_buffer(dev);
4744 if (ret)
4745 goto cleanup_bsd_ring;
4746 }
4747
9a8a2213
BW
4748 if (HAS_VEBOX(dev)) {
4749 ret = intel_init_vebox_ring_buffer(dev);
4750 if (ret)
4751 goto cleanup_blt_ring;
4752 }
4753
845f74a7
ZY
4754 if (HAS_BSD2(dev)) {
4755 ret = intel_init_bsd2_ring_buffer(dev);
4756 if (ret)
4757 goto cleanup_vebox_ring;
4758 }
9a8a2213 4759
99433931 4760 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4761 if (ret)
845f74a7 4762 goto cleanup_bsd2_ring;
4fc7c971
BW
4763
4764 return 0;
4765
845f74a7
ZY
4766cleanup_bsd2_ring:
4767 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4768cleanup_vebox_ring:
4769 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4770cleanup_blt_ring:
4771 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4772cleanup_bsd_ring:
4773 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4774cleanup_render_ring:
4775 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4776
4777 return ret;
4778}
4779
4780int
4781i915_gem_init_hw(struct drm_device *dev)
4782{
3e31c6c0 4783 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4784 struct intel_engine_cs *ring;
35a85ac6 4785 int ret, i;
4fc7c971
BW
4786
4787 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4788 return -EIO;
4789
59124506 4790 if (dev_priv->ellc_size)
05e21cc4 4791 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4792
0bf21347
VS
4793 if (IS_HASWELL(dev))
4794 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4795 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4796
88a2b2a3 4797 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4798 if (IS_IVYBRIDGE(dev)) {
4799 u32 temp = I915_READ(GEN7_MSG_CTL);
4800 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4801 I915_WRITE(GEN7_MSG_CTL, temp);
4802 } else if (INTEL_INFO(dev)->gen >= 7) {
4803 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4804 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4805 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4806 }
88a2b2a3
BW
4807 }
4808
4fc7c971
BW
4809 i915_gem_init_swizzling(dev);
4810
d5abdfda
DV
4811 /*
4812 * At least 830 can leave some of the unused rings
4813 * "active" (ie. head != tail) after resume which
4814 * will prevent c3 entry. Makes sure all unused rings
4815 * are totally idle.
4816 */
4817 init_unused_rings(dev);
4818
35a57ffb
DV
4819 for_each_ring(ring, dev_priv, i) {
4820 ret = ring->init_hw(ring);
4821 if (ret)
4822 return ret;
4823 }
99433931 4824
c3787e2e
BW
4825 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4826 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4827
254f965c 4828 /*
2fa48d8d
BW
4829 * XXX: Contexts should only be initialized once. Doing a switch to the
4830 * default context switch however is something we'd like to do after
4831 * reset or thaw (the latter may not actually be necessary for HW, but
4832 * goes with our code better). Context switching requires rings (for
4833 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4834 */
2fa48d8d 4835 ret = i915_gem_context_enable(dev_priv);
60990320 4836 if (ret && ret != -EIO) {
2fa48d8d 4837 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4838 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4839
4840 return ret;
4841 }
4842
4843 ret = i915_ppgtt_init_hw(dev);
4844 if (ret && ret != -EIO) {
4845 DRM_ERROR("PPGTT enable failed %d\n", ret);
4846 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4847 }
e21af88d 4848
2fa48d8d 4849 return ret;
8187a2b7
ZN
4850}
4851
1070a42b
CW
4852int i915_gem_init(struct drm_device *dev)
4853{
4854 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4855 int ret;
4856
127f1003
OM
4857 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4858 i915.enable_execlists);
4859
1070a42b 4860 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4861
4862 if (IS_VALLEYVIEW(dev)) {
4863 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4864 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4865 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4866 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4867 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4868 }
4869
a83014d3
OM
4870 if (!i915.enable_execlists) {
4871 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4872 dev_priv->gt.init_rings = i915_gem_init_rings;
4873 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4874 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd
OM
4875 } else {
4876 dev_priv->gt.do_execbuf = intel_execlists_submission;
4877 dev_priv->gt.init_rings = intel_logical_rings_init;
4878 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4879 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4880 }
4881
6c5566a8 4882 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4883 if (ret)
4884 goto out_unlock;
6c5566a8 4885
d7e5008f 4886 i915_gem_init_global_gtt(dev);
d62b4892 4887
2fa48d8d 4888 ret = i915_gem_context_init(dev);
7bcc3777
JN
4889 if (ret)
4890 goto out_unlock;
2fa48d8d 4891
35a57ffb
DV
4892 ret = dev_priv->gt.init_rings(dev);
4893 if (ret)
7bcc3777 4894 goto out_unlock;
2fa48d8d 4895
1070a42b 4896 ret = i915_gem_init_hw(dev);
60990320
CW
4897 if (ret == -EIO) {
4898 /* Allow ring initialisation to fail by marking the GPU as
4899 * wedged. But we only want to do this where the GPU is angry,
4900 * for all other failure, such as an allocation failure, bail.
4901 */
4902 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4903 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4904 ret = 0;
1070a42b 4905 }
7bcc3777
JN
4906
4907out_unlock:
60990320 4908 mutex_unlock(&dev->struct_mutex);
1070a42b 4909
60990320 4910 return ret;
1070a42b
CW
4911}
4912
8187a2b7
ZN
4913void
4914i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4915{
3e31c6c0 4916 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4917 struct intel_engine_cs *ring;
1ec14ad3 4918 int i;
8187a2b7 4919
b4519513 4920 for_each_ring(ring, dev_priv, i)
a83014d3 4921 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4922}
4923
64193406 4924static void
a4872ba6 4925init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4926{
4927 INIT_LIST_HEAD(&ring->active_list);
4928 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4929}
4930
7e0d96bc
BW
4931void i915_init_vm(struct drm_i915_private *dev_priv,
4932 struct i915_address_space *vm)
fc8c067e 4933{
7e0d96bc
BW
4934 if (!i915_is_ggtt(vm))
4935 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4936 vm->dev = dev_priv->dev;
4937 INIT_LIST_HEAD(&vm->active_list);
4938 INIT_LIST_HEAD(&vm->inactive_list);
4939 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4940 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4941}
4942
673a394b
EA
4943void
4944i915_gem_load(struct drm_device *dev)
4945{
3e31c6c0 4946 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4947 int i;
4948
4949 dev_priv->slab =
4950 kmem_cache_create("i915_gem_object",
4951 sizeof(struct drm_i915_gem_object), 0,
4952 SLAB_HWCACHE_ALIGN,
4953 NULL);
673a394b 4954
fc8c067e
BW
4955 INIT_LIST_HEAD(&dev_priv->vm_list);
4956 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4957
a33afea5 4958 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4959 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4960 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4961 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4962 for (i = 0; i < I915_NUM_RINGS; i++)
4963 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4964 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4965 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4966 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4967 i915_gem_retire_work_handler);
b29c19b6
CW
4968 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4969 i915_gem_idle_work_handler);
1f83fee0 4970 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4971
94400120 4972 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4973 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4974 I915_WRITE(MI_ARB_STATE,
4975 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4976 }
4977
72bfa19c
CW
4978 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4979
de151cf6 4980 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4981 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4982 dev_priv->fence_reg_start = 3;
de151cf6 4983
42b5aeab
VS
4984 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4985 dev_priv->num_fence_regs = 32;
4986 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4987 dev_priv->num_fence_regs = 16;
4988 else
4989 dev_priv->num_fence_regs = 8;
4990
eb82289a
YZ
4991 if (intel_vgpu_active(dev))
4992 dev_priv->num_fence_regs =
4993 I915_READ(vgtif_reg(avail_rs.fence_num));
4994
b5aa8a0f 4995 /* Initialize fence registers to zero */
19b2dbde
CW
4996 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4997 i915_gem_restore_fences(dev);
10ed13e4 4998
673a394b 4999 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5000 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5001
ce453d81
CW
5002 dev_priv->mm.interruptible = true;
5003
ceabbba5
CW
5004 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5005 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5006 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5007 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
5008
5009 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5010 register_oom_notifier(&dev_priv->mm.oom_notifier);
f99d7069 5011
78a42377
BV
5012 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5013
f99d7069 5014 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5015}
71acb5eb 5016
f787a5f5 5017void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5018{
f787a5f5 5019 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 5020
b29c19b6
CW
5021 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5022
b962442e
EA
5023 /* Clean up our request list when the client is going away, so that
5024 * later retire_requests won't dereference our soon-to-be-gone
5025 * file_priv.
5026 */
1c25595f 5027 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5028 while (!list_empty(&file_priv->mm.request_list)) {
5029 struct drm_i915_gem_request *request;
5030
5031 request = list_first_entry(&file_priv->mm.request_list,
5032 struct drm_i915_gem_request,
5033 client_list);
5034 list_del(&request->client_list);
5035 request->file_priv = NULL;
5036 }
1c25595f 5037 spin_unlock(&file_priv->mm.lock);
b962442e 5038}
31169714 5039
b29c19b6
CW
5040static void
5041i915_gem_file_idle_work_handler(struct work_struct *work)
5042{
5043 struct drm_i915_file_private *file_priv =
5044 container_of(work, typeof(*file_priv), mm.idle_work.work);
5045
5046 atomic_set(&file_priv->rps_wait_boost, false);
5047}
5048
5049int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5050{
5051 struct drm_i915_file_private *file_priv;
e422b888 5052 int ret;
b29c19b6
CW
5053
5054 DRM_DEBUG_DRIVER("\n");
5055
5056 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5057 if (!file_priv)
5058 return -ENOMEM;
5059
5060 file->driver_priv = file_priv;
5061 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5062 file_priv->file = file;
b29c19b6
CW
5063
5064 spin_lock_init(&file_priv->mm.lock);
5065 INIT_LIST_HEAD(&file_priv->mm.request_list);
5066 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5067 i915_gem_file_idle_work_handler);
5068
e422b888
BW
5069 ret = i915_gem_context_open(dev, file);
5070 if (ret)
5071 kfree(file_priv);
b29c19b6 5072
e422b888 5073 return ret;
b29c19b6
CW
5074}
5075
b680c37a
DV
5076/**
5077 * i915_gem_track_fb - update frontbuffer tracking
5078 * old: current GEM buffer for the frontbuffer slots
5079 * new: new GEM buffer for the frontbuffer slots
5080 * frontbuffer_bits: bitmask of frontbuffer slots
5081 *
5082 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5083 * from @old and setting them in @new. Both @old and @new can be NULL.
5084 */
a071fa00
DV
5085void i915_gem_track_fb(struct drm_i915_gem_object *old,
5086 struct drm_i915_gem_object *new,
5087 unsigned frontbuffer_bits)
5088{
5089 if (old) {
5090 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5091 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5092 old->frontbuffer_bits &= ~frontbuffer_bits;
5093 }
5094
5095 if (new) {
5096 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5097 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5098 new->frontbuffer_bits |= frontbuffer_bits;
5099 }
5100}
5101
5774506f
CW
5102static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5103{
5104 if (!mutex_is_locked(mutex))
5105 return false;
5106
a5094051 5107#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5774506f
CW
5108 return mutex->owner == task;
5109#else
5110 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5111 return false;
5112#endif
5113}
5114
b453c4db
CW
5115static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5116{
5117 if (!mutex_trylock(&dev->struct_mutex)) {
5118 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5119 return false;
5120
5121 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5122 return false;
5123
5124 *unlock = false;
5125 } else
5126 *unlock = true;
5127
5128 return true;
5129}
5130
ceabbba5
CW
5131static int num_vma_bound(struct drm_i915_gem_object *obj)
5132{
5133 struct i915_vma *vma;
5134 int count = 0;
5135
5136 list_for_each_entry(vma, &obj->vma_list, vma_link)
5137 if (drm_mm_node_allocated(&vma->node))
5138 count++;
5139
5140 return count;
5141}
5142
7dc19d5a 5143static unsigned long
ceabbba5 5144i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5145{
17250b71 5146 struct drm_i915_private *dev_priv =
ceabbba5 5147 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5148 struct drm_device *dev = dev_priv->dev;
6c085a72 5149 struct drm_i915_gem_object *obj;
7dc19d5a 5150 unsigned long count;
b453c4db 5151 bool unlock;
17250b71 5152
b453c4db
CW
5153 if (!i915_gem_shrinker_lock(dev, &unlock))
5154 return 0;
31169714 5155
7dc19d5a 5156 count = 0;
35c20a60 5157 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5158 if (obj->pages_pin_count == 0)
7dc19d5a 5159 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5160
5161 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5162 if (!i915_gem_obj_is_pinned(obj) &&
5163 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5164 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5165 }
17250b71 5166
5774506f
CW
5167 if (unlock)
5168 mutex_unlock(&dev->struct_mutex);
d9973b43 5169
7dc19d5a 5170 return count;
31169714 5171}
a70a3148
BW
5172
5173/* All the new VM stuff */
fe14d5f4
TU
5174unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
5175 struct i915_address_space *vm,
5176 enum i915_ggtt_view_type view)
a70a3148
BW
5177{
5178 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5179 struct i915_vma *vma;
5180
896ab1a5 5181 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5182
a70a3148 5183 list_for_each_entry(vma, &o->vma_list, vma_link) {
fe14d5f4 5184 if (vma->vm == vm && vma->ggtt_view.type == view)
a70a3148
BW
5185 return vma->node.start;
5186
5187 }
f25748ea
DV
5188 WARN(1, "%s vma for this object not found.\n",
5189 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5190 return -1;
5191}
5192
fe14d5f4
TU
5193bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
5194 struct i915_address_space *vm,
5195 enum i915_ggtt_view_type view)
a70a3148
BW
5196{
5197 struct i915_vma *vma;
5198
5199 list_for_each_entry(vma, &o->vma_list, vma_link)
fe14d5f4
TU
5200 if (vma->vm == vm &&
5201 vma->ggtt_view.type == view &&
5202 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5203 return true;
5204
5205 return false;
5206}
5207
5208bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5209{
5a1d5eb0 5210 struct i915_vma *vma;
a70a3148 5211
5a1d5eb0
CW
5212 list_for_each_entry(vma, &o->vma_list, vma_link)
5213 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5214 return true;
5215
5216 return false;
5217}
5218
5219unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5220 struct i915_address_space *vm)
5221{
5222 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5223 struct i915_vma *vma;
5224
896ab1a5 5225 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5226
5227 BUG_ON(list_empty(&o->vma_list));
5228
5229 list_for_each_entry(vma, &o->vma_list, vma_link)
5230 if (vma->vm == vm)
5231 return vma->node.size;
5232
5233 return 0;
5234}
5235
7dc19d5a 5236static unsigned long
ceabbba5 5237i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5238{
5239 struct drm_i915_private *dev_priv =
ceabbba5 5240 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5241 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5242 unsigned long freed;
b453c4db 5243 bool unlock;
7dc19d5a 5244
b453c4db
CW
5245 if (!i915_gem_shrinker_lock(dev, &unlock))
5246 return SHRINK_STOP;
7dc19d5a 5247
21ab4e74
CW
5248 freed = i915_gem_shrink(dev_priv,
5249 sc->nr_to_scan,
5250 I915_SHRINK_BOUND |
5251 I915_SHRINK_UNBOUND |
5252 I915_SHRINK_PURGEABLE);
d9973b43 5253 if (freed < sc->nr_to_scan)
21ab4e74
CW
5254 freed += i915_gem_shrink(dev_priv,
5255 sc->nr_to_scan - freed,
5256 I915_SHRINK_BOUND |
5257 I915_SHRINK_UNBOUND);
7dc19d5a
DC
5258 if (unlock)
5259 mutex_unlock(&dev->struct_mutex);
d9973b43 5260
7dc19d5a
DC
5261 return freed;
5262}
5c2abbea 5263
2cfcd32a
CW
5264static int
5265i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5266{
5267 struct drm_i915_private *dev_priv =
5268 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5269 struct drm_device *dev = dev_priv->dev;
5270 struct drm_i915_gem_object *obj;
5271 unsigned long timeout = msecs_to_jiffies(5000) + 1;
005445c5 5272 unsigned long pinned, bound, unbound, freed_pages;
2cfcd32a
CW
5273 bool was_interruptible;
5274 bool unlock;
5275
a1db2fa7 5276 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
2cfcd32a 5277 schedule_timeout_killable(1);
a1db2fa7
CW
5278 if (fatal_signal_pending(current))
5279 return NOTIFY_DONE;
5280 }
2cfcd32a
CW
5281 if (timeout == 0) {
5282 pr_err("Unable to purge GPU memory due lock contention.\n");
5283 return NOTIFY_DONE;
5284 }
5285
5286 was_interruptible = dev_priv->mm.interruptible;
5287 dev_priv->mm.interruptible = false;
5288
005445c5 5289 freed_pages = i915_gem_shrink_all(dev_priv);
2cfcd32a
CW
5290
5291 dev_priv->mm.interruptible = was_interruptible;
5292
5293 /* Because we may be allocating inside our own driver, we cannot
5294 * assert that there are no objects with pinned pages that are not
5295 * being pointed to by hardware.
5296 */
5297 unbound = bound = pinned = 0;
5298 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5299 if (!obj->base.filp) /* not backed by a freeable object */
5300 continue;
5301
5302 if (obj->pages_pin_count)
5303 pinned += obj->base.size;
5304 else
5305 unbound += obj->base.size;
5306 }
5307 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5308 if (!obj->base.filp)
5309 continue;
5310
5311 if (obj->pages_pin_count)
5312 pinned += obj->base.size;
5313 else
5314 bound += obj->base.size;
5315 }
5316
5317 if (unlock)
5318 mutex_unlock(&dev->struct_mutex);
5319
bb9059d3
CW
5320 if (freed_pages || unbound || bound)
5321 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5322 freed_pages << PAGE_SHIFT, pinned);
2cfcd32a
CW
5323 if (unbound || bound)
5324 pr_err("%lu and %lu bytes still available in the "
5325 "bound and unbound GPU page lists.\n",
5326 bound, unbound);
5327
005445c5 5328 *(unsigned long *)ptr += freed_pages;
2cfcd32a
CW
5329 return NOTIFY_DONE;
5330}
5331
5c2abbea
BW
5332struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5333{
f7635669 5334 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5c2abbea
BW
5335 struct i915_vma *vma;
5336
fe14d5f4
TU
5337 list_for_each_entry(vma, &obj->vma_list, vma_link)
5338 if (vma->vm == ggtt &&
5339 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
f7635669 5340 return vma;
5c2abbea 5341
f7635669 5342 return NULL;
5c2abbea 5343}