]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
i915: Added function to initialize VBT settings
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
5cdf5881
CW
61static int
62i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
64
65static void
66i915_gem_object_put_pages(struct drm_gem_object *obj);
67
31169714
CW
68static LIST_HEAD(shrink_list);
69static DEFINE_SPINLOCK(shrink_list_lock);
70
30dbf0c0
CW
71int
72i915_gem_check_is_wedged(struct drm_device *dev)
73{
74 struct drm_i915_private *dev_priv = dev->dev_private;
75 struct completion *x = &dev_priv->error_completion;
76 unsigned long flags;
77 int ret;
78
79 if (!atomic_read(&dev_priv->mm.wedged))
80 return 0;
81
82 ret = wait_for_completion_interruptible(x);
83 if (ret)
84 return ret;
85
86 /* Success, we reset the GPU! */
87 if (!atomic_read(&dev_priv->mm.wedged))
88 return 0;
89
90 /* GPU is hung, bump the completion count to account for
91 * the token we just consumed so that we never hit zero and
92 * end up waiting upon a subsequent completion event that
93 * will never happen.
94 */
95 spin_lock_irqsave(&x->wait.lock, flags);
96 x->done++;
97 spin_unlock_irqrestore(&x->wait.lock, flags);
98 return -EIO;
99}
100
76c1dec1
CW
101static int i915_mutex_lock_interruptible(struct drm_device *dev)
102{
103 struct drm_i915_private *dev_priv = dev->dev_private;
104 int ret;
105
106 ret = i915_gem_check_is_wedged(dev);
107 if (ret)
108 return ret;
109
110 ret = mutex_lock_interruptible(&dev->struct_mutex);
111 if (ret)
112 return ret;
113
114 if (atomic_read(&dev_priv->mm.wedged)) {
115 mutex_unlock(&dev->struct_mutex);
116 return -EAGAIN;
117 }
118
23bc5982 119 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
120 return 0;
121}
30dbf0c0 122
7d1c4804
CW
123static inline bool
124i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
125{
126 return obj_priv->gtt_space &&
127 !obj_priv->active &&
128 obj_priv->pin_count == 0;
129}
130
79e53945
JB
131int i915_gem_do_init(struct drm_device *dev, unsigned long start,
132 unsigned long end)
673a394b
EA
133{
134 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 135
79e53945
JB
136 if (start >= end ||
137 (start & (PAGE_SIZE - 1)) != 0 ||
138 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
139 return -EINVAL;
140 }
141
79e53945
JB
142 drm_mm_init(&dev_priv->mm.gtt_space, start,
143 end - start);
673a394b 144
79e53945
JB
145 dev->gtt_total = (uint32_t) (end - start);
146
147 return 0;
148}
673a394b 149
79e53945
JB
150int
151i915_gem_init_ioctl(struct drm_device *dev, void *data,
152 struct drm_file *file_priv)
153{
154 struct drm_i915_gem_init *args = data;
155 int ret;
156
157 mutex_lock(&dev->struct_mutex);
158 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
159 mutex_unlock(&dev->struct_mutex);
160
79e53945 161 return ret;
673a394b
EA
162}
163
5a125c3c
EA
164int
165i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
166 struct drm_file *file_priv)
167{
5a125c3c 168 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
169
170 if (!(dev->driver->driver_features & DRIVER_GEM))
171 return -ENODEV;
172
173 args->aper_size = dev->gtt_total;
2678d9d6
KP
174 args->aper_available_size = (args->aper_size -
175 atomic_read(&dev->pin_memory));
5a125c3c
EA
176
177 return 0;
178}
179
673a394b
EA
180
181/**
182 * Creates a new mm object and returns a handle to it.
183 */
184int
185i915_gem_create_ioctl(struct drm_device *dev, void *data,
186 struct drm_file *file_priv)
187{
188 struct drm_i915_gem_create *args = data;
189 struct drm_gem_object *obj;
a1a2d1d3
PP
190 int ret;
191 u32 handle;
673a394b
EA
192
193 args->size = roundup(args->size, PAGE_SIZE);
194
195 /* Allocate the new object */
ac52bc56 196 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
197 if (obj == NULL)
198 return -ENOMEM;
199
200 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754
CW
201 if (ret) {
202 drm_gem_object_unreference_unlocked(obj);
673a394b 203 return ret;
1dfd9754 204 }
673a394b 205
1dfd9754
CW
206 /* Sink the floating reference from kref_init(handlecount) */
207 drm_gem_object_handle_unreference_unlocked(obj);
673a394b 208
1dfd9754 209 args->handle = handle;
673a394b
EA
210 return 0;
211}
212
eb01459f
EA
213static inline int
214fast_shmem_read(struct page **pages,
215 loff_t page_base, int page_offset,
216 char __user *data,
217 int length)
218{
219 char __iomem *vaddr;
2bc43b5c 220 int unwritten;
eb01459f
EA
221
222 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
223 if (vaddr == NULL)
224 return -ENOMEM;
2bc43b5c 225 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
226 kunmap_atomic(vaddr, KM_USER0);
227
2bc43b5c
FM
228 if (unwritten)
229 return -EFAULT;
230
231 return 0;
eb01459f
EA
232}
233
280b713b
EA
234static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
235{
236 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 237 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
238
239 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
240 obj_priv->tiling_mode != I915_TILING_NONE;
241}
242
99a03df5 243static inline void
40123c1f
EA
244slow_shmem_copy(struct page *dst_page,
245 int dst_offset,
246 struct page *src_page,
247 int src_offset,
248 int length)
249{
250 char *dst_vaddr, *src_vaddr;
251
99a03df5
CW
252 dst_vaddr = kmap(dst_page);
253 src_vaddr = kmap(src_page);
40123c1f
EA
254
255 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
256
99a03df5
CW
257 kunmap(src_page);
258 kunmap(dst_page);
40123c1f
EA
259}
260
99a03df5 261static inline void
280b713b
EA
262slow_shmem_bit17_copy(struct page *gpu_page,
263 int gpu_offset,
264 struct page *cpu_page,
265 int cpu_offset,
266 int length,
267 int is_read)
268{
269 char *gpu_vaddr, *cpu_vaddr;
270
271 /* Use the unswizzled path if this page isn't affected. */
272 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
273 if (is_read)
274 return slow_shmem_copy(cpu_page, cpu_offset,
275 gpu_page, gpu_offset, length);
276 else
277 return slow_shmem_copy(gpu_page, gpu_offset,
278 cpu_page, cpu_offset, length);
279 }
280
99a03df5
CW
281 gpu_vaddr = kmap(gpu_page);
282 cpu_vaddr = kmap(cpu_page);
280b713b
EA
283
284 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
285 * XORing with the other bits (A9 for Y, A9 and A10 for X)
286 */
287 while (length > 0) {
288 int cacheline_end = ALIGN(gpu_offset + 1, 64);
289 int this_length = min(cacheline_end - gpu_offset, length);
290 int swizzled_gpu_offset = gpu_offset ^ 64;
291
292 if (is_read) {
293 memcpy(cpu_vaddr + cpu_offset,
294 gpu_vaddr + swizzled_gpu_offset,
295 this_length);
296 } else {
297 memcpy(gpu_vaddr + swizzled_gpu_offset,
298 cpu_vaddr + cpu_offset,
299 this_length);
300 }
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
99a03df5
CW
306 kunmap(cpu_page);
307 kunmap(gpu_page);
280b713b
EA
308}
309
eb01459f
EA
310/**
311 * This is the fast shmem pread path, which attempts to copy_from_user directly
312 * from the backing pages of the object to the user's address space. On a
313 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
314 */
315static int
316i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
317 struct drm_i915_gem_pread *args,
318 struct drm_file *file_priv)
319{
23010e43 320 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
321 ssize_t remain;
322 loff_t offset, page_base;
323 char __user *user_data;
324 int page_offset, page_length;
325 int ret;
326
327 user_data = (char __user *) (uintptr_t) args->data_ptr;
328 remain = args->size;
329
76c1dec1
CW
330 ret = i915_mutex_lock_interruptible(dev);
331 if (ret)
332 return ret;
eb01459f 333
4bdadb97 334 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
335 if (ret != 0)
336 goto fail_unlock;
337
338 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
339 args->size);
340 if (ret != 0)
341 goto fail_put_pages;
342
23010e43 343 obj_priv = to_intel_bo(obj);
eb01459f
EA
344 offset = args->offset;
345
346 while (remain > 0) {
347 /* Operation in this page
348 *
349 * page_base = page offset within aperture
350 * page_offset = offset within page
351 * page_length = bytes to copy for this page
352 */
353 page_base = (offset & ~(PAGE_SIZE-1));
354 page_offset = offset & (PAGE_SIZE-1);
355 page_length = remain;
356 if ((page_offset + remain) > PAGE_SIZE)
357 page_length = PAGE_SIZE - page_offset;
358
359 ret = fast_shmem_read(obj_priv->pages,
360 page_base, page_offset,
361 user_data, page_length);
362 if (ret)
363 goto fail_put_pages;
364
365 remain -= page_length;
366 user_data += page_length;
367 offset += page_length;
368 }
369
370fail_put_pages:
371 i915_gem_object_put_pages(obj);
372fail_unlock:
373 mutex_unlock(&dev->struct_mutex);
374
375 return ret;
376}
377
07f73f69
CW
378static int
379i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
380{
381 int ret;
382
4bdadb97 383 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
384
385 /* If we've insufficient memory to map in the pages, attempt
386 * to make some space by throwing out some old buffers.
387 */
388 if (ret == -ENOMEM) {
389 struct drm_device *dev = obj->dev;
07f73f69 390
0108a3ed
DV
391 ret = i915_gem_evict_something(dev, obj->size,
392 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
393 if (ret)
394 return ret;
395
4bdadb97 396 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
397 }
398
399 return ret;
400}
401
eb01459f
EA
402/**
403 * This is the fallback shmem pread path, which allocates temporary storage
404 * in kernel space to copy_to_user into outside of the struct_mutex, so we
405 * can copy out of the object's backing pages while holding the struct mutex
406 * and not take page faults.
407 */
408static int
409i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
410 struct drm_i915_gem_pread *args,
411 struct drm_file *file_priv)
412{
23010e43 413 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
414 struct mm_struct *mm = current->mm;
415 struct page **user_pages;
416 ssize_t remain;
417 loff_t offset, pinned_pages, i;
418 loff_t first_data_page, last_data_page, num_pages;
419 int shmem_page_index, shmem_page_offset;
420 int data_page_index, data_page_offset;
421 int page_length;
422 int ret;
423 uint64_t data_ptr = args->data_ptr;
280b713b 424 int do_bit17_swizzling;
eb01459f
EA
425
426 remain = args->size;
427
428 /* Pin the user pages containing the data. We can't fault while
429 * holding the struct mutex, yet we want to hold it while
430 * dereferencing the user data.
431 */
432 first_data_page = data_ptr / PAGE_SIZE;
433 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
434 num_pages = last_data_page - first_data_page + 1;
435
8e7d2b2c 436 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
437 if (user_pages == NULL)
438 return -ENOMEM;
439
440 down_read(&mm->mmap_sem);
441 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 442 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
443 up_read(&mm->mmap_sem);
444 if (pinned_pages < num_pages) {
445 ret = -EFAULT;
446 goto fail_put_user_pages;
447 }
448
280b713b
EA
449 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
450
76c1dec1
CW
451 ret = i915_mutex_lock_interruptible(dev);
452 if (ret)
453 goto fail_put_user_pages;
eb01459f 454
07f73f69
CW
455 ret = i915_gem_object_get_pages_or_evict(obj);
456 if (ret)
eb01459f
EA
457 goto fail_unlock;
458
459 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
460 args->size);
461 if (ret != 0)
462 goto fail_put_pages;
463
23010e43 464 obj_priv = to_intel_bo(obj);
eb01459f
EA
465 offset = args->offset;
466
467 while (remain > 0) {
468 /* Operation in this page
469 *
470 * shmem_page_index = page number within shmem file
471 * shmem_page_offset = offset within page in shmem file
472 * data_page_index = page number in get_user_pages return
473 * data_page_offset = offset with data_page_index page.
474 * page_length = bytes to copy for this page
475 */
476 shmem_page_index = offset / PAGE_SIZE;
477 shmem_page_offset = offset & ~PAGE_MASK;
478 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
479 data_page_offset = data_ptr & ~PAGE_MASK;
480
481 page_length = remain;
482 if ((shmem_page_offset + page_length) > PAGE_SIZE)
483 page_length = PAGE_SIZE - shmem_page_offset;
484 if ((data_page_offset + page_length) > PAGE_SIZE)
485 page_length = PAGE_SIZE - data_page_offset;
486
280b713b 487 if (do_bit17_swizzling) {
99a03df5 488 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 489 shmem_page_offset,
99a03df5
CW
490 user_pages[data_page_index],
491 data_page_offset,
492 page_length,
493 1);
494 } else {
495 slow_shmem_copy(user_pages[data_page_index],
496 data_page_offset,
497 obj_priv->pages[shmem_page_index],
498 shmem_page_offset,
499 page_length);
280b713b 500 }
eb01459f
EA
501
502 remain -= page_length;
503 data_ptr += page_length;
504 offset += page_length;
505 }
506
507fail_put_pages:
508 i915_gem_object_put_pages(obj);
509fail_unlock:
510 mutex_unlock(&dev->struct_mutex);
511fail_put_user_pages:
512 for (i = 0; i < pinned_pages; i++) {
513 SetPageDirty(user_pages[i]);
514 page_cache_release(user_pages[i]);
515 }
8e7d2b2c 516 drm_free_large(user_pages);
eb01459f
EA
517
518 return ret;
519}
520
673a394b
EA
521/**
522 * Reads data from the object referenced by handle.
523 *
524 * On error, the contents of *data are undefined.
525 */
526int
527i915_gem_pread_ioctl(struct drm_device *dev, void *data,
528 struct drm_file *file_priv)
529{
530 struct drm_i915_gem_pread *args = data;
531 struct drm_gem_object *obj;
532 struct drm_i915_gem_object *obj_priv;
673a394b
EA
533 int ret;
534
535 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
536 if (obj == NULL)
bf79cb91 537 return -ENOENT;
23010e43 538 obj_priv = to_intel_bo(obj);
673a394b
EA
539
540 /* Bounds check source.
541 *
542 * XXX: This could use review for overflow issues...
543 */
544 if (args->offset > obj->size || args->size > obj->size ||
545 args->offset + args->size > obj->size) {
bc9025bd 546 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
547 return -EINVAL;
548 }
549
280b713b 550 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 551 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
552 } else {
553 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
554 if (ret != 0)
555 ret = i915_gem_shmem_pread_slow(dev, obj, args,
556 file_priv);
557 }
673a394b 558
bc9025bd 559 drm_gem_object_unreference_unlocked(obj);
673a394b 560
eb01459f 561 return ret;
673a394b
EA
562}
563
0839ccb8
KP
564/* This is the fast write path which cannot handle
565 * page faults in the source data
9b7530cc 566 */
0839ccb8
KP
567
568static inline int
569fast_user_write(struct io_mapping *mapping,
570 loff_t page_base, int page_offset,
571 char __user *user_data,
572 int length)
9b7530cc 573{
9b7530cc 574 char *vaddr_atomic;
0839ccb8 575 unsigned long unwritten;
9b7530cc 576
fca3ec01 577 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
578 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
579 user_data, length);
fca3ec01 580 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
581 if (unwritten)
582 return -EFAULT;
583 return 0;
584}
585
586/* Here's the write path which can sleep for
587 * page faults
588 */
589
ab34c226 590static inline void
3de09aa3
EA
591slow_kernel_write(struct io_mapping *mapping,
592 loff_t gtt_base, int gtt_offset,
593 struct page *user_page, int user_offset,
594 int length)
0839ccb8 595{
ab34c226
CW
596 char __iomem *dst_vaddr;
597 char *src_vaddr;
0839ccb8 598
ab34c226
CW
599 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
600 src_vaddr = kmap(user_page);
601
602 memcpy_toio(dst_vaddr + gtt_offset,
603 src_vaddr + user_offset,
604 length);
605
606 kunmap(user_page);
607 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
608}
609
40123c1f
EA
610static inline int
611fast_shmem_write(struct page **pages,
612 loff_t page_base, int page_offset,
613 char __user *data,
614 int length)
615{
616 char __iomem *vaddr;
d0088775 617 unsigned long unwritten;
40123c1f
EA
618
619 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
620 if (vaddr == NULL)
621 return -ENOMEM;
d0088775 622 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
623 kunmap_atomic(vaddr, KM_USER0);
624
d0088775
DA
625 if (unwritten)
626 return -EFAULT;
40123c1f
EA
627 return 0;
628}
629
3de09aa3
EA
630/**
631 * This is the fast pwrite path, where we copy the data directly from the
632 * user into the GTT, uncached.
633 */
673a394b 634static int
3de09aa3
EA
635i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
636 struct drm_i915_gem_pwrite *args,
637 struct drm_file *file_priv)
673a394b 638{
23010e43 639 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 640 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 641 ssize_t remain;
0839ccb8 642 loff_t offset, page_base;
673a394b 643 char __user *user_data;
0839ccb8
KP
644 int page_offset, page_length;
645 int ret;
673a394b
EA
646
647 user_data = (char __user *) (uintptr_t) args->data_ptr;
648 remain = args->size;
649 if (!access_ok(VERIFY_READ, user_data, remain))
650 return -EFAULT;
651
76c1dec1
CW
652 ret = i915_mutex_lock_interruptible(dev);
653 if (ret)
654 return ret;
673a394b 655
673a394b
EA
656 ret = i915_gem_object_pin(obj, 0);
657 if (ret) {
658 mutex_unlock(&dev->struct_mutex);
659 return ret;
660 }
2ef7eeaa 661 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
662 if (ret)
663 goto fail;
664
23010e43 665 obj_priv = to_intel_bo(obj);
673a394b 666 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
667
668 while (remain > 0) {
669 /* Operation in this page
670 *
0839ccb8
KP
671 * page_base = page offset within aperture
672 * page_offset = offset within page
673 * page_length = bytes to copy for this page
673a394b 674 */
0839ccb8
KP
675 page_base = (offset & ~(PAGE_SIZE-1));
676 page_offset = offset & (PAGE_SIZE-1);
677 page_length = remain;
678 if ((page_offset + remain) > PAGE_SIZE)
679 page_length = PAGE_SIZE - page_offset;
680
681 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
682 page_offset, user_data, page_length);
683
684 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
685 * source page isn't available. Return the error and we'll
686 * retry in the slow path.
0839ccb8 687 */
3de09aa3
EA
688 if (ret)
689 goto fail;
673a394b 690
0839ccb8
KP
691 remain -= page_length;
692 user_data += page_length;
693 offset += page_length;
673a394b 694 }
673a394b
EA
695
696fail:
697 i915_gem_object_unpin(obj);
698 mutex_unlock(&dev->struct_mutex);
699
700 return ret;
701}
702
3de09aa3
EA
703/**
704 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
705 * the memory and maps it using kmap_atomic for copying.
706 *
707 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
708 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
709 */
3043c60c 710static int
3de09aa3
EA
711i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
712 struct drm_i915_gem_pwrite *args,
713 struct drm_file *file_priv)
673a394b 714{
23010e43 715 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
716 drm_i915_private_t *dev_priv = dev->dev_private;
717 ssize_t remain;
718 loff_t gtt_page_base, offset;
719 loff_t first_data_page, last_data_page, num_pages;
720 loff_t pinned_pages, i;
721 struct page **user_pages;
722 struct mm_struct *mm = current->mm;
723 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 724 int ret;
3de09aa3
EA
725 uint64_t data_ptr = args->data_ptr;
726
727 remain = args->size;
728
729 /* Pin the user pages containing the data. We can't fault while
730 * holding the struct mutex, and all of the pwrite implementations
731 * want to hold it while dereferencing the user data.
732 */
733 first_data_page = data_ptr / PAGE_SIZE;
734 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
735 num_pages = last_data_page - first_data_page + 1;
736
8e7d2b2c 737 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
738 if (user_pages == NULL)
739 return -ENOMEM;
740
741 down_read(&mm->mmap_sem);
742 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
743 num_pages, 0, 0, user_pages, NULL);
744 up_read(&mm->mmap_sem);
745 if (pinned_pages < num_pages) {
746 ret = -EFAULT;
747 goto out_unpin_pages;
748 }
673a394b 749
76c1dec1
CW
750 ret = i915_mutex_lock_interruptible(dev);
751 if (ret)
752 goto out_unpin_pages;
753
3de09aa3
EA
754 ret = i915_gem_object_pin(obj, 0);
755 if (ret)
756 goto out_unlock;
757
758 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
759 if (ret)
760 goto out_unpin_object;
761
23010e43 762 obj_priv = to_intel_bo(obj);
3de09aa3
EA
763 offset = obj_priv->gtt_offset + args->offset;
764
765 while (remain > 0) {
766 /* Operation in this page
767 *
768 * gtt_page_base = page offset within aperture
769 * gtt_page_offset = offset within page in aperture
770 * data_page_index = page number in get_user_pages return
771 * data_page_offset = offset with data_page_index page.
772 * page_length = bytes to copy for this page
773 */
774 gtt_page_base = offset & PAGE_MASK;
775 gtt_page_offset = offset & ~PAGE_MASK;
776 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
777 data_page_offset = data_ptr & ~PAGE_MASK;
778
779 page_length = remain;
780 if ((gtt_page_offset + page_length) > PAGE_SIZE)
781 page_length = PAGE_SIZE - gtt_page_offset;
782 if ((data_page_offset + page_length) > PAGE_SIZE)
783 page_length = PAGE_SIZE - data_page_offset;
784
ab34c226
CW
785 slow_kernel_write(dev_priv->mm.gtt_mapping,
786 gtt_page_base, gtt_page_offset,
787 user_pages[data_page_index],
788 data_page_offset,
789 page_length);
3de09aa3
EA
790
791 remain -= page_length;
792 offset += page_length;
793 data_ptr += page_length;
794 }
795
796out_unpin_object:
797 i915_gem_object_unpin(obj);
798out_unlock:
799 mutex_unlock(&dev->struct_mutex);
800out_unpin_pages:
801 for (i = 0; i < pinned_pages; i++)
802 page_cache_release(user_pages[i]);
8e7d2b2c 803 drm_free_large(user_pages);
3de09aa3
EA
804
805 return ret;
806}
807
40123c1f
EA
808/**
809 * This is the fast shmem pwrite path, which attempts to directly
810 * copy_from_user into the kmapped pages backing the object.
811 */
3043c60c 812static int
40123c1f
EA
813i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
814 struct drm_i915_gem_pwrite *args,
815 struct drm_file *file_priv)
673a394b 816{
23010e43 817 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
818 ssize_t remain;
819 loff_t offset, page_base;
820 char __user *user_data;
821 int page_offset, page_length;
673a394b 822 int ret;
40123c1f
EA
823
824 user_data = (char __user *) (uintptr_t) args->data_ptr;
825 remain = args->size;
673a394b 826
76c1dec1
CW
827 ret = i915_mutex_lock_interruptible(dev);
828 if (ret)
829 return ret;
673a394b 830
4bdadb97 831 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
832 if (ret != 0)
833 goto fail_unlock;
673a394b 834
e47c68e9 835 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
836 if (ret != 0)
837 goto fail_put_pages;
838
23010e43 839 obj_priv = to_intel_bo(obj);
40123c1f
EA
840 offset = args->offset;
841 obj_priv->dirty = 1;
842
843 while (remain > 0) {
844 /* Operation in this page
845 *
846 * page_base = page offset within aperture
847 * page_offset = offset within page
848 * page_length = bytes to copy for this page
849 */
850 page_base = (offset & ~(PAGE_SIZE-1));
851 page_offset = offset & (PAGE_SIZE-1);
852 page_length = remain;
853 if ((page_offset + remain) > PAGE_SIZE)
854 page_length = PAGE_SIZE - page_offset;
855
856 ret = fast_shmem_write(obj_priv->pages,
857 page_base, page_offset,
858 user_data, page_length);
859 if (ret)
860 goto fail_put_pages;
861
862 remain -= page_length;
863 user_data += page_length;
864 offset += page_length;
865 }
866
867fail_put_pages:
868 i915_gem_object_put_pages(obj);
869fail_unlock:
870 mutex_unlock(&dev->struct_mutex);
871
872 return ret;
873}
874
875/**
876 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
877 * the memory and maps it using kmap_atomic for copying.
878 *
879 * This avoids taking mmap_sem for faulting on the user's address while the
880 * struct_mutex is held.
881 */
882static int
883i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
884 struct drm_i915_gem_pwrite *args,
885 struct drm_file *file_priv)
886{
23010e43 887 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
888 struct mm_struct *mm = current->mm;
889 struct page **user_pages;
890 ssize_t remain;
891 loff_t offset, pinned_pages, i;
892 loff_t first_data_page, last_data_page, num_pages;
893 int shmem_page_index, shmem_page_offset;
894 int data_page_index, data_page_offset;
895 int page_length;
896 int ret;
897 uint64_t data_ptr = args->data_ptr;
280b713b 898 int do_bit17_swizzling;
40123c1f
EA
899
900 remain = args->size;
901
902 /* Pin the user pages containing the data. We can't fault while
903 * holding the struct mutex, and all of the pwrite implementations
904 * want to hold it while dereferencing the user data.
905 */
906 first_data_page = data_ptr / PAGE_SIZE;
907 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
908 num_pages = last_data_page - first_data_page + 1;
909
8e7d2b2c 910 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
911 if (user_pages == NULL)
912 return -ENOMEM;
913
914 down_read(&mm->mmap_sem);
915 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
916 num_pages, 0, 0, user_pages, NULL);
917 up_read(&mm->mmap_sem);
918 if (pinned_pages < num_pages) {
919 ret = -EFAULT;
920 goto fail_put_user_pages;
673a394b
EA
921 }
922
280b713b
EA
923 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
924
76c1dec1
CW
925 ret = i915_mutex_lock_interruptible(dev);
926 if (ret)
927 goto fail_put_user_pages;
40123c1f 928
07f73f69
CW
929 ret = i915_gem_object_get_pages_or_evict(obj);
930 if (ret)
40123c1f
EA
931 goto fail_unlock;
932
933 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
934 if (ret != 0)
935 goto fail_put_pages;
936
23010e43 937 obj_priv = to_intel_bo(obj);
673a394b 938 offset = args->offset;
40123c1f 939 obj_priv->dirty = 1;
673a394b 940
40123c1f
EA
941 while (remain > 0) {
942 /* Operation in this page
943 *
944 * shmem_page_index = page number within shmem file
945 * shmem_page_offset = offset within page in shmem file
946 * data_page_index = page number in get_user_pages return
947 * data_page_offset = offset with data_page_index page.
948 * page_length = bytes to copy for this page
949 */
950 shmem_page_index = offset / PAGE_SIZE;
951 shmem_page_offset = offset & ~PAGE_MASK;
952 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
953 data_page_offset = data_ptr & ~PAGE_MASK;
954
955 page_length = remain;
956 if ((shmem_page_offset + page_length) > PAGE_SIZE)
957 page_length = PAGE_SIZE - shmem_page_offset;
958 if ((data_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - data_page_offset;
960
280b713b 961 if (do_bit17_swizzling) {
99a03df5 962 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
963 shmem_page_offset,
964 user_pages[data_page_index],
965 data_page_offset,
99a03df5
CW
966 page_length,
967 0);
968 } else {
969 slow_shmem_copy(obj_priv->pages[shmem_page_index],
970 shmem_page_offset,
971 user_pages[data_page_index],
972 data_page_offset,
973 page_length);
280b713b 974 }
40123c1f
EA
975
976 remain -= page_length;
977 data_ptr += page_length;
978 offset += page_length;
673a394b
EA
979 }
980
40123c1f
EA
981fail_put_pages:
982 i915_gem_object_put_pages(obj);
983fail_unlock:
673a394b 984 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
985fail_put_user_pages:
986 for (i = 0; i < pinned_pages; i++)
987 page_cache_release(user_pages[i]);
8e7d2b2c 988 drm_free_large(user_pages);
673a394b 989
40123c1f 990 return ret;
673a394b
EA
991}
992
993/**
994 * Writes data to the object referenced by handle.
995 *
996 * On error, the contents of the buffer that were to be modified are undefined.
997 */
998int
999i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1000 struct drm_file *file_priv)
1001{
1002 struct drm_i915_gem_pwrite *args = data;
1003 struct drm_gem_object *obj;
1004 struct drm_i915_gem_object *obj_priv;
1005 int ret = 0;
1006
1007 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1008 if (obj == NULL)
bf79cb91 1009 return -ENOENT;
23010e43 1010 obj_priv = to_intel_bo(obj);
673a394b
EA
1011
1012 /* Bounds check destination.
1013 *
1014 * XXX: This could use review for overflow issues...
1015 */
1016 if (args->offset > obj->size || args->size > obj->size ||
1017 args->offset + args->size > obj->size) {
bc9025bd 1018 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1019 return -EINVAL;
1020 }
1021
1022 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1023 * it would end up going through the fenced access, and we'll get
1024 * different detiling behavior between reading and writing.
1025 * pread/pwrite currently are reading and writing from the CPU
1026 * perspective, requiring manual detiling by the client.
1027 */
71acb5eb
DA
1028 if (obj_priv->phys_obj)
1029 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
1030 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
5cdf5881 1031 obj_priv->gtt_space &&
9b8c4a0b 1032 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
1033 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
1034 if (ret == -EFAULT) {
1035 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
1036 file_priv);
1037 }
280b713b
EA
1038 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1039 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
1040 } else {
1041 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1042 if (ret == -EFAULT) {
1043 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1044 file_priv);
1045 }
1046 }
673a394b
EA
1047
1048#if WATCH_PWRITE
1049 if (ret)
1050 DRM_INFO("pwrite failed %d\n", ret);
1051#endif
1052
bc9025bd 1053 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1054
1055 return ret;
1056}
1057
1058/**
2ef7eeaa
EA
1059 * Called when user space prepares to use an object with the CPU, either
1060 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1061 */
1062int
1063i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1064 struct drm_file *file_priv)
1065{
a09ba7fa 1066 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1067 struct drm_i915_gem_set_domain *args = data;
1068 struct drm_gem_object *obj;
652c393a 1069 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1070 uint32_t read_domains = args->read_domains;
1071 uint32_t write_domain = args->write_domain;
673a394b
EA
1072 int ret;
1073
1074 if (!(dev->driver->driver_features & DRIVER_GEM))
1075 return -ENODEV;
1076
2ef7eeaa 1077 /* Only handle setting domains to types used by the CPU. */
21d509e3 1078 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1079 return -EINVAL;
1080
21d509e3 1081 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1082 return -EINVAL;
1083
1084 /* Having something in the write domain implies it's in the read
1085 * domain, and only that read domain. Enforce that in the request.
1086 */
1087 if (write_domain != 0 && read_domains != write_domain)
1088 return -EINVAL;
1089
673a394b
EA
1090 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1091 if (obj == NULL)
bf79cb91 1092 return -ENOENT;
23010e43 1093 obj_priv = to_intel_bo(obj);
673a394b 1094
76c1dec1
CW
1095 ret = i915_mutex_lock_interruptible(dev);
1096 if (ret) {
1097 drm_gem_object_unreference_unlocked(obj);
1098 return ret;
1099 }
652c393a
JB
1100
1101 intel_mark_busy(dev, obj);
1102
2ef7eeaa
EA
1103 if (read_domains & I915_GEM_DOMAIN_GTT) {
1104 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1105
a09ba7fa
EA
1106 /* Update the LRU on the fence for the CPU access that's
1107 * about to occur.
1108 */
1109 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1110 struct drm_i915_fence_reg *reg =
1111 &dev_priv->fence_regs[obj_priv->fence_reg];
1112 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1113 &dev_priv->mm.fence_list);
1114 }
1115
02354392
EA
1116 /* Silently promote "you're not bound, there was nothing to do"
1117 * to success, since the client was just asking us to
1118 * make sure everything was done.
1119 */
1120 if (ret == -EINVAL)
1121 ret = 0;
2ef7eeaa 1122 } else {
e47c68e9 1123 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1124 }
1125
7d1c4804
CW
1126 /* Maintain LRU order of "inactive" objects */
1127 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1128 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1129
673a394b
EA
1130 drm_gem_object_unreference(obj);
1131 mutex_unlock(&dev->struct_mutex);
1132 return ret;
1133}
1134
1135/**
1136 * Called when user space has done writes to this buffer
1137 */
1138int
1139i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1140 struct drm_file *file_priv)
1141{
1142 struct drm_i915_gem_sw_finish *args = data;
1143 struct drm_gem_object *obj;
673a394b
EA
1144 int ret = 0;
1145
1146 if (!(dev->driver->driver_features & DRIVER_GEM))
1147 return -ENODEV;
1148
673a394b 1149 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
76c1dec1 1150 if (obj == NULL)
bf79cb91 1151 return -ENOENT;
76c1dec1
CW
1152
1153 ret = i915_mutex_lock_interruptible(dev);
1154 if (ret) {
1155 drm_gem_object_unreference_unlocked(obj);
1156 return ret;
673a394b
EA
1157 }
1158
673a394b 1159 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1160 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1161 i915_gem_object_flush_cpu_write_domain(obj);
1162
673a394b
EA
1163 drm_gem_object_unreference(obj);
1164 mutex_unlock(&dev->struct_mutex);
1165 return ret;
1166}
1167
1168/**
1169 * Maps the contents of an object, returning the address it is mapped
1170 * into.
1171 *
1172 * While the mapping holds a reference on the contents of the object, it doesn't
1173 * imply a ref on the object itself.
1174 */
1175int
1176i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1177 struct drm_file *file_priv)
1178{
1179 struct drm_i915_gem_mmap *args = data;
1180 struct drm_gem_object *obj;
1181 loff_t offset;
1182 unsigned long addr;
1183
1184 if (!(dev->driver->driver_features & DRIVER_GEM))
1185 return -ENODEV;
1186
1187 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1188 if (obj == NULL)
bf79cb91 1189 return -ENOENT;
673a394b
EA
1190
1191 offset = args->offset;
1192
1193 down_write(&current->mm->mmap_sem);
1194 addr = do_mmap(obj->filp, 0, args->size,
1195 PROT_READ | PROT_WRITE, MAP_SHARED,
1196 args->offset);
1197 up_write(&current->mm->mmap_sem);
bc9025bd 1198 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1199 if (IS_ERR((void *)addr))
1200 return addr;
1201
1202 args->addr_ptr = (uint64_t) addr;
1203
1204 return 0;
1205}
1206
de151cf6
JB
1207/**
1208 * i915_gem_fault - fault a page into the GTT
1209 * vma: VMA in question
1210 * vmf: fault info
1211 *
1212 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1213 * from userspace. The fault handler takes care of binding the object to
1214 * the GTT (if needed), allocating and programming a fence register (again,
1215 * only if needed based on whether the old reg is still valid or the object
1216 * is tiled) and inserting a new PTE into the faulting process.
1217 *
1218 * Note that the faulting process may involve evicting existing objects
1219 * from the GTT and/or fence registers to make room. So performance may
1220 * suffer if the GTT working set is large or there are few fence registers
1221 * left.
1222 */
1223int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1224{
1225 struct drm_gem_object *obj = vma->vm_private_data;
1226 struct drm_device *dev = obj->dev;
7d1c4804 1227 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1228 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1229 pgoff_t page_offset;
1230 unsigned long pfn;
1231 int ret = 0;
0f973f27 1232 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1233
1234 /* We don't use vmf->pgoff since that has the fake offset */
1235 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1236 PAGE_SHIFT;
1237
1238 /* Now bind it into the GTT if needed */
1239 mutex_lock(&dev->struct_mutex);
1240 if (!obj_priv->gtt_space) {
e67b8ce1 1241 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1242 if (ret)
1243 goto unlock;
07f4f3e8 1244
07f4f3e8 1245 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1246 if (ret)
1247 goto unlock;
de151cf6
JB
1248 }
1249
1250 /* Need a new fence register? */
a09ba7fa 1251 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1252 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1253 if (ret)
1254 goto unlock;
d9ddcb96 1255 }
de151cf6 1256
7d1c4804
CW
1257 if (i915_gem_object_is_inactive(obj_priv))
1258 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1259
de151cf6
JB
1260 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1261 page_offset;
1262
1263 /* Finally, remap it using the new GTT offset */
1264 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1265unlock:
de151cf6
JB
1266 mutex_unlock(&dev->struct_mutex);
1267
1268 switch (ret) {
c715089f
CW
1269 case 0:
1270 case -ERESTARTSYS:
1271 return VM_FAULT_NOPAGE;
de151cf6
JB
1272 case -ENOMEM:
1273 case -EAGAIN:
1274 return VM_FAULT_OOM;
de151cf6 1275 default:
c715089f 1276 return VM_FAULT_SIGBUS;
de151cf6
JB
1277 }
1278}
1279
1280/**
1281 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1282 * @obj: obj in question
1283 *
1284 * GEM memory mapping works by handing back to userspace a fake mmap offset
1285 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1286 * up the object based on the offset and sets up the various memory mapping
1287 * structures.
1288 *
1289 * This routine allocates and attaches a fake offset for @obj.
1290 */
1291static int
1292i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1293{
1294 struct drm_device *dev = obj->dev;
1295 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1296 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1297 struct drm_map_list *list;
f77d390c 1298 struct drm_local_map *map;
de151cf6
JB
1299 int ret = 0;
1300
1301 /* Set the object up for mmap'ing */
1302 list = &obj->map_list;
9a298b2a 1303 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1304 if (!list->map)
1305 return -ENOMEM;
1306
1307 map = list->map;
1308 map->type = _DRM_GEM;
1309 map->size = obj->size;
1310 map->handle = obj;
1311
1312 /* Get a DRM GEM mmap offset allocated... */
1313 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1314 obj->size / PAGE_SIZE, 0, 0);
1315 if (!list->file_offset_node) {
1316 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1317 ret = -ENOSPC;
de151cf6
JB
1318 goto out_free_list;
1319 }
1320
1321 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1322 obj->size / PAGE_SIZE, 0);
1323 if (!list->file_offset_node) {
1324 ret = -ENOMEM;
1325 goto out_free_list;
1326 }
1327
1328 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1329 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1330 if (ret) {
de151cf6
JB
1331 DRM_ERROR("failed to add to map hash\n");
1332 goto out_free_mm;
1333 }
1334
1335 /* By now we should be all set, any drm_mmap request on the offset
1336 * below will get to our mmap & fault handler */
1337 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1338
1339 return 0;
1340
1341out_free_mm:
1342 drm_mm_put_block(list->file_offset_node);
1343out_free_list:
9a298b2a 1344 kfree(list->map);
de151cf6
JB
1345
1346 return ret;
1347}
1348
901782b2
CW
1349/**
1350 * i915_gem_release_mmap - remove physical page mappings
1351 * @obj: obj in question
1352 *
af901ca1 1353 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1354 * relinquish ownership of the pages back to the system.
1355 *
1356 * It is vital that we remove the page mapping if we have mapped a tiled
1357 * object through the GTT and then lose the fence register due to
1358 * resource pressure. Similarly if the object has been moved out of the
1359 * aperture, than pages mapped into userspace must be revoked. Removing the
1360 * mapping will then trigger a page fault on the next user access, allowing
1361 * fixup by i915_gem_fault().
1362 */
d05ca301 1363void
901782b2
CW
1364i915_gem_release_mmap(struct drm_gem_object *obj)
1365{
1366 struct drm_device *dev = obj->dev;
23010e43 1367 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1368
1369 if (dev->dev_mapping)
1370 unmap_mapping_range(dev->dev_mapping,
1371 obj_priv->mmap_offset, obj->size, 1);
1372}
1373
ab00b3e5
JB
1374static void
1375i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1376{
1377 struct drm_device *dev = obj->dev;
23010e43 1378 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1379 struct drm_gem_mm *mm = dev->mm_private;
1380 struct drm_map_list *list;
1381
1382 list = &obj->map_list;
1383 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1384
1385 if (list->file_offset_node) {
1386 drm_mm_put_block(list->file_offset_node);
1387 list->file_offset_node = NULL;
1388 }
1389
1390 if (list->map) {
9a298b2a 1391 kfree(list->map);
ab00b3e5
JB
1392 list->map = NULL;
1393 }
1394
1395 obj_priv->mmap_offset = 0;
1396}
1397
de151cf6
JB
1398/**
1399 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1400 * @obj: object to check
1401 *
1402 * Return the required GTT alignment for an object, taking into account
1403 * potential fence register mapping if needed.
1404 */
1405static uint32_t
1406i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1407{
1408 struct drm_device *dev = obj->dev;
23010e43 1409 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1410 int start, i;
1411
1412 /*
1413 * Minimum alignment is 4k (GTT page size), but might be greater
1414 * if a fence register is needed for the object.
1415 */
a6c45cf0 1416 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1417 return 4096;
1418
1419 /*
1420 * Previous chips need to be aligned to the size of the smallest
1421 * fence register that can contain the object.
1422 */
a6c45cf0 1423 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1424 start = 1024*1024;
1425 else
1426 start = 512*1024;
1427
1428 for (i = start; i < obj->size; i <<= 1)
1429 ;
1430
1431 return i;
1432}
1433
1434/**
1435 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1436 * @dev: DRM device
1437 * @data: GTT mapping ioctl data
1438 * @file_priv: GEM object info
1439 *
1440 * Simply returns the fake offset to userspace so it can mmap it.
1441 * The mmap call will end up in drm_gem_mmap(), which will set things
1442 * up so we can get faults in the handler above.
1443 *
1444 * The fault handler will take care of binding the object into the GTT
1445 * (since it may have been evicted to make room for something), allocating
1446 * a fence register, and mapping the appropriate aperture address into
1447 * userspace.
1448 */
1449int
1450i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1451 struct drm_file *file_priv)
1452{
1453 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1454 struct drm_gem_object *obj;
1455 struct drm_i915_gem_object *obj_priv;
1456 int ret;
1457
1458 if (!(dev->driver->driver_features & DRIVER_GEM))
1459 return -ENODEV;
1460
1461 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1462 if (obj == NULL)
bf79cb91 1463 return -ENOENT;
de151cf6 1464
76c1dec1
CW
1465 ret = i915_mutex_lock_interruptible(dev);
1466 if (ret) {
1467 drm_gem_object_unreference_unlocked(obj);
1468 return ret;
1469 }
de151cf6 1470
23010e43 1471 obj_priv = to_intel_bo(obj);
de151cf6 1472
ab18282d
CW
1473 if (obj_priv->madv != I915_MADV_WILLNEED) {
1474 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1475 drm_gem_object_unreference(obj);
1476 mutex_unlock(&dev->struct_mutex);
1477 return -EINVAL;
1478 }
1479
1480
de151cf6
JB
1481 if (!obj_priv->mmap_offset) {
1482 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1483 if (ret) {
1484 drm_gem_object_unreference(obj);
1485 mutex_unlock(&dev->struct_mutex);
de151cf6 1486 return ret;
13af1062 1487 }
de151cf6
JB
1488 }
1489
1490 args->offset = obj_priv->mmap_offset;
1491
de151cf6
JB
1492 /*
1493 * Pull it into the GTT so that we have a page list (makes the
1494 * initial fault faster and any subsequent flushing possible).
1495 */
1496 if (!obj_priv->agp_mem) {
e67b8ce1 1497 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1498 if (ret) {
1499 drm_gem_object_unreference(obj);
1500 mutex_unlock(&dev->struct_mutex);
1501 return ret;
1502 }
de151cf6
JB
1503 }
1504
1505 drm_gem_object_unreference(obj);
1506 mutex_unlock(&dev->struct_mutex);
1507
1508 return 0;
1509}
1510
5cdf5881 1511static void
856fa198 1512i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1513{
23010e43 1514 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1515 int page_count = obj->size / PAGE_SIZE;
1516 int i;
1517
856fa198 1518 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1519 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1520
856fa198
EA
1521 if (--obj_priv->pages_refcount != 0)
1522 return;
673a394b 1523
280b713b
EA
1524 if (obj_priv->tiling_mode != I915_TILING_NONE)
1525 i915_gem_object_save_bit_17_swizzle(obj);
1526
3ef94daa 1527 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1528 obj_priv->dirty = 0;
3ef94daa
CW
1529
1530 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1531 if (obj_priv->dirty)
1532 set_page_dirty(obj_priv->pages[i]);
1533
1534 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1535 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1536
1537 page_cache_release(obj_priv->pages[i]);
1538 }
673a394b
EA
1539 obj_priv->dirty = 0;
1540
8e7d2b2c 1541 drm_free_large(obj_priv->pages);
856fa198 1542 obj_priv->pages = NULL;
673a394b
EA
1543}
1544
a56ba56c
CW
1545static uint32_t
1546i915_gem_next_request_seqno(struct drm_device *dev,
1547 struct intel_ring_buffer *ring)
1548{
1549 drm_i915_private_t *dev_priv = dev->dev_private;
1550
1551 ring->outstanding_lazy_request = true;
1552 return dev_priv->next_seqno;
1553}
1554
673a394b 1555static void
617dbe27 1556i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1557 struct intel_ring_buffer *ring)
673a394b 1558{
a56ba56c 1559 struct drm_device *dev = obj->dev;
23010e43 1560 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1561 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1562
852835f3
ZN
1563 BUG_ON(ring == NULL);
1564 obj_priv->ring = ring;
673a394b
EA
1565
1566 /* Add a reference if we're newly entering the active list. */
1567 if (!obj_priv->active) {
1568 drm_gem_object_reference(obj);
1569 obj_priv->active = 1;
1570 }
e35a41de 1571
673a394b 1572 /* Move from whatever list we were on to the tail of execution. */
852835f3 1573 list_move_tail(&obj_priv->list, &ring->active_list);
a56ba56c 1574 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1575}
1576
ce44b0ea
EA
1577static void
1578i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1579{
1580 struct drm_device *dev = obj->dev;
1581 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1582 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1583
1584 BUG_ON(!obj_priv->active);
1585 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1586 obj_priv->last_rendering_seqno = 0;
1587}
673a394b 1588
963b4836
CW
1589/* Immediately discard the backing storage */
1590static void
1591i915_gem_object_truncate(struct drm_gem_object *obj)
1592{
23010e43 1593 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1594 struct inode *inode;
963b4836 1595
ae9fed6b
CW
1596 /* Our goal here is to return as much of the memory as
1597 * is possible back to the system as we are called from OOM.
1598 * To do this we must instruct the shmfs to drop all of its
1599 * backing pages, *now*. Here we mirror the actions taken
1600 * when by shmem_delete_inode() to release the backing store.
1601 */
bb6baf76 1602 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1603 truncate_inode_pages(inode->i_mapping, 0);
1604 if (inode->i_op->truncate_range)
1605 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1606
1607 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1608}
1609
1610static inline int
1611i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1612{
1613 return obj_priv->madv == I915_MADV_DONTNEED;
1614}
1615
673a394b
EA
1616static void
1617i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1618{
1619 struct drm_device *dev = obj->dev;
1620 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1621 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 1622
673a394b 1623 if (obj_priv->pin_count != 0)
f13d3f73 1624 list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
673a394b
EA
1625 else
1626 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1627
99fcb766
DV
1628 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1629
ce44b0ea 1630 obj_priv->last_rendering_seqno = 0;
852835f3 1631 obj_priv->ring = NULL;
673a394b
EA
1632 if (obj_priv->active) {
1633 obj_priv->active = 0;
1634 drm_gem_object_unreference(obj);
1635 }
23bc5982 1636 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1637}
1638
9220434a 1639static void
63560396 1640i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1641 uint32_t flush_domains,
852835f3 1642 struct intel_ring_buffer *ring)
63560396
DV
1643{
1644 drm_i915_private_t *dev_priv = dev->dev_private;
1645 struct drm_i915_gem_object *obj_priv, *next;
1646
1647 list_for_each_entry_safe(obj_priv, next,
1648 &dev_priv->mm.gpu_write_list,
1649 gpu_write_list) {
a8089e84 1650 struct drm_gem_object *obj = &obj_priv->base;
63560396 1651
2b6efaa4
CW
1652 if (obj->write_domain & flush_domains &&
1653 obj_priv->ring == ring) {
63560396
DV
1654 uint32_t old_write_domain = obj->write_domain;
1655
1656 obj->write_domain = 0;
1657 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1658 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1659
1660 /* update the fence lru list */
007cc8ac
DV
1661 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1662 struct drm_i915_fence_reg *reg =
1663 &dev_priv->fence_regs[obj_priv->fence_reg];
1664 list_move_tail(&reg->lru_list,
63560396 1665 &dev_priv->mm.fence_list);
007cc8ac 1666 }
63560396
DV
1667
1668 trace_i915_gem_object_change_domain(obj,
1669 obj->read_domains,
1670 old_write_domain);
1671 }
1672 }
1673}
8187a2b7 1674
5a5a0c64 1675uint32_t
8a1a49f9 1676i915_add_request(struct drm_device *dev,
f787a5f5 1677 struct drm_file *file,
8dc5d147 1678 struct drm_i915_gem_request *request,
8a1a49f9 1679 struct intel_ring_buffer *ring)
673a394b
EA
1680{
1681 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1682 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1683 uint32_t seqno;
1684 int was_empty;
673a394b 1685
f787a5f5
CW
1686 if (file != NULL)
1687 file_priv = file->driver_priv;
b962442e 1688
8dc5d147
CW
1689 if (request == NULL) {
1690 request = kzalloc(sizeof(*request), GFP_KERNEL);
1691 if (request == NULL)
1692 return 0;
1693 }
673a394b 1694
f787a5f5 1695 seqno = ring->add_request(dev, ring, 0);
a56ba56c 1696 ring->outstanding_lazy_request = false;
673a394b
EA
1697
1698 request->seqno = seqno;
852835f3 1699 request->ring = ring;
673a394b 1700 request->emitted_jiffies = jiffies;
852835f3
ZN
1701 was_empty = list_empty(&ring->request_list);
1702 list_add_tail(&request->list, &ring->request_list);
1703
f787a5f5 1704 if (file_priv) {
1c25595f 1705 spin_lock(&file_priv->mm.lock);
f787a5f5 1706 request->file_priv = file_priv;
b962442e 1707 list_add_tail(&request->client_list,
f787a5f5 1708 &file_priv->mm.request_list);
1c25595f 1709 spin_unlock(&file_priv->mm.lock);
b962442e 1710 }
673a394b 1711
f65d9421 1712 if (!dev_priv->mm.suspended) {
b3b079db
CW
1713 mod_timer(&dev_priv->hangcheck_timer,
1714 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1715 if (was_empty)
b3b079db
CW
1716 queue_delayed_work(dev_priv->wq,
1717 &dev_priv->mm.retire_work, HZ);
f65d9421 1718 }
673a394b
EA
1719 return seqno;
1720}
1721
1722/**
1723 * Command execution barrier
1724 *
1725 * Ensures that all commands in the ring are finished
1726 * before signalling the CPU
1727 */
8a1a49f9 1728static void
852835f3 1729i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1730{
673a394b 1731 uint32_t flush_domains = 0;
673a394b
EA
1732
1733 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1734 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1735 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1736
1737 ring->flush(dev, ring,
1738 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1739}
1740
f787a5f5
CW
1741static inline void
1742i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1743{
1c25595f
CW
1744 struct drm_i915_file_private *file_priv = request->file_priv;
1745
1746 if (!file_priv)
1747 return;
1748
1749 spin_lock(&file_priv->mm.lock);
1750 list_del(&request->client_list);
1751 request->file_priv = NULL;
1752 spin_unlock(&file_priv->mm.lock);
673a394b
EA
1753}
1754
dfaae392
CW
1755static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1756 struct intel_ring_buffer *ring)
9375e446 1757{
dfaae392
CW
1758 while (!list_empty(&ring->request_list)) {
1759 struct drm_i915_gem_request *request;
9375e446 1760
dfaae392
CW
1761 request = list_first_entry(&ring->request_list,
1762 struct drm_i915_gem_request,
1763 list);
1764
1765 list_del(&request->list);
f787a5f5 1766 i915_gem_request_remove_from_client(request);
dfaae392
CW
1767 kfree(request);
1768 }
1769
1770 while (!list_empty(&ring->active_list)) {
9375e446
CW
1771 struct drm_i915_gem_object *obj_priv;
1772
dfaae392 1773 obj_priv = list_first_entry(&ring->active_list,
9375e446
CW
1774 struct drm_i915_gem_object,
1775 list);
1776
1777 obj_priv->base.write_domain = 0;
dfaae392 1778 list_del_init(&obj_priv->gpu_write_list);
9375e446
CW
1779 i915_gem_object_move_to_inactive(&obj_priv->base);
1780 }
1781}
1782
dfaae392 1783void i915_gem_reset_lists(struct drm_device *dev)
77f01230
CW
1784{
1785 struct drm_i915_private *dev_priv = dev->dev_private;
1786 struct drm_i915_gem_object *obj_priv;
1787
dfaae392
CW
1788 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1789 if (HAS_BSD(dev))
1790 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1791
1792 /* Remove anything from the flushing lists. The GPU cache is likely
1793 * to be lost on reset along with the data, so simply move the
1794 * lost bo to the inactive list.
1795 */
1796 while (!list_empty(&dev_priv->mm.flushing_list)) {
1797 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1798 struct drm_i915_gem_object,
1799 list);
1800
1801 obj_priv->base.write_domain = 0;
1802 list_del_init(&obj_priv->gpu_write_list);
1803 i915_gem_object_move_to_inactive(&obj_priv->base);
1804 }
1805
1806 /* Move everything out of the GPU domains to ensure we do any
1807 * necessary invalidation upon reuse.
1808 */
77f01230
CW
1809 list_for_each_entry(obj_priv,
1810 &dev_priv->mm.inactive_list,
1811 list)
1812 {
1813 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1814 }
1815}
1816
673a394b
EA
1817/**
1818 * This function clears the request list as sequence numbers are passed.
1819 */
b09a1fec
CW
1820static void
1821i915_gem_retire_requests_ring(struct drm_device *dev,
1822 struct intel_ring_buffer *ring)
673a394b
EA
1823{
1824 drm_i915_private_t *dev_priv = dev->dev_private;
1825 uint32_t seqno;
1826
b84d5f0c
CW
1827 if (!ring->status_page.page_addr ||
1828 list_empty(&ring->request_list))
6c0594a3
KW
1829 return;
1830
23bc5982
CW
1831 WARN_ON(i915_verify_lists(dev));
1832
f787a5f5 1833 seqno = ring->get_seqno(dev, ring);
852835f3 1834 while (!list_empty(&ring->request_list)) {
673a394b 1835 struct drm_i915_gem_request *request;
673a394b 1836
852835f3 1837 request = list_first_entry(&ring->request_list,
673a394b
EA
1838 struct drm_i915_gem_request,
1839 list);
673a394b 1840
dfaae392 1841 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1842 break;
1843
1844 trace_i915_gem_request_retire(dev, request->seqno);
1845
1846 list_del(&request->list);
f787a5f5 1847 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1848 kfree(request);
1849 }
1850
1851 /* Move any buffers on the active list that are no longer referenced
1852 * by the ringbuffer to the flushing/inactive lists as appropriate.
1853 */
1854 while (!list_empty(&ring->active_list)) {
1855 struct drm_gem_object *obj;
1856 struct drm_i915_gem_object *obj_priv;
1857
1858 obj_priv = list_first_entry(&ring->active_list,
1859 struct drm_i915_gem_object,
1860 list);
673a394b 1861
dfaae392 1862 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1863 break;
b84d5f0c
CW
1864
1865 obj = &obj_priv->base;
b84d5f0c
CW
1866 if (obj->write_domain != 0)
1867 i915_gem_object_move_to_flushing(obj);
1868 else
1869 i915_gem_object_move_to_inactive(obj);
673a394b 1870 }
9d34e5db
CW
1871
1872 if (unlikely (dev_priv->trace_irq_seqno &&
1873 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7 1874 ring->user_irq_put(dev, ring);
9d34e5db
CW
1875 dev_priv->trace_irq_seqno = 0;
1876 }
23bc5982
CW
1877
1878 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1879}
1880
b09a1fec
CW
1881void
1882i915_gem_retire_requests(struct drm_device *dev)
1883{
1884 drm_i915_private_t *dev_priv = dev->dev_private;
1885
be72615b
CW
1886 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1887 struct drm_i915_gem_object *obj_priv, *tmp;
1888
1889 /* We must be careful that during unbind() we do not
1890 * accidentally infinitely recurse into retire requests.
1891 * Currently:
1892 * retire -> free -> unbind -> wait -> retire_ring
1893 */
1894 list_for_each_entry_safe(obj_priv, tmp,
1895 &dev_priv->mm.deferred_free_list,
1896 list)
1897 i915_gem_free_object_tail(&obj_priv->base);
1898 }
1899
b09a1fec
CW
1900 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1901 if (HAS_BSD(dev))
1902 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1903}
1904
75ef9da2 1905static void
673a394b
EA
1906i915_gem_retire_work_handler(struct work_struct *work)
1907{
1908 drm_i915_private_t *dev_priv;
1909 struct drm_device *dev;
1910
1911 dev_priv = container_of(work, drm_i915_private_t,
1912 mm.retire_work.work);
1913 dev = dev_priv->dev;
1914
891b48cf
CW
1915 /* Come back later if the device is busy... */
1916 if (!mutex_trylock(&dev->struct_mutex)) {
1917 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1918 return;
1919 }
1920
b09a1fec 1921 i915_gem_retire_requests(dev);
d1b851fc 1922
6dbe2772 1923 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1924 (!list_empty(&dev_priv->render_ring.request_list) ||
1925 (HAS_BSD(dev) &&
1926 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1927 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1928 mutex_unlock(&dev->struct_mutex);
1929}
1930
5a5a0c64 1931int
852835f3 1932i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1933 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1934{
1935 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1936 u32 ier;
673a394b
EA
1937 int ret = 0;
1938
1939 BUG_ON(seqno == 0);
1940
30dbf0c0
CW
1941 if (atomic_read(&dev_priv->mm.wedged))
1942 return -EAGAIN;
1943
a56ba56c 1944 if (ring->outstanding_lazy_request) {
8dc5d147 1945 seqno = i915_add_request(dev, NULL, NULL, ring);
e35a41de
DV
1946 if (seqno == 0)
1947 return -ENOMEM;
1948 }
a56ba56c 1949 BUG_ON(seqno == dev_priv->next_seqno);
e35a41de 1950
f787a5f5 1951 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
bad720ff 1952 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1953 ier = I915_READ(DEIER) | I915_READ(GTIER);
1954 else
1955 ier = I915_READ(IER);
802c7eb6
JB
1956 if (!ier) {
1957 DRM_ERROR("something (likely vbetool) disabled "
1958 "interrupts, re-enabling\n");
1959 i915_driver_irq_preinstall(dev);
1960 i915_driver_irq_postinstall(dev);
1961 }
1962
1c5d22f7
CW
1963 trace_i915_gem_request_wait_begin(dev, seqno);
1964
852835f3 1965 ring->waiting_gem_seqno = seqno;
8187a2b7 1966 ring->user_irq_get(dev, ring);
48764bf4 1967 if (interruptible)
852835f3
ZN
1968 ret = wait_event_interruptible(ring->irq_queue,
1969 i915_seqno_passed(
f787a5f5 1970 ring->get_seqno(dev, ring), seqno)
852835f3 1971 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1972 else
852835f3
ZN
1973 wait_event(ring->irq_queue,
1974 i915_seqno_passed(
f787a5f5 1975 ring->get_seqno(dev, ring), seqno)
852835f3 1976 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1977
8187a2b7 1978 ring->user_irq_put(dev, ring);
852835f3 1979 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1980
1981 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1982 }
ba1234d1 1983 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1984 ret = -EAGAIN;
673a394b
EA
1985
1986 if (ret && ret != -ERESTARTSYS)
8bff917c 1987 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
f787a5f5 1988 __func__, ret, seqno, ring->get_seqno(dev, ring),
8bff917c 1989 dev_priv->next_seqno);
673a394b
EA
1990
1991 /* Directly dispatch request retiring. While we have the work queue
1992 * to handle this, the waiter on a request often wants an associated
1993 * buffer to have made it to the inactive list, and we would need
1994 * a separate wait queue to handle that.
1995 */
1996 if (ret == 0)
b09a1fec 1997 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1998
1999 return ret;
2000}
2001
48764bf4
DV
2002/**
2003 * Waits for a sequence number to be signaled, and cleans up the
2004 * request and object lists appropriately for that event.
2005 */
2006static int
852835f3 2007i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2008 struct intel_ring_buffer *ring)
48764bf4 2009{
852835f3 2010 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2011}
2012
20f0cd55 2013static void
9220434a 2014i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2015 struct drm_file *file_priv,
9220434a
CW
2016 struct intel_ring_buffer *ring,
2017 uint32_t invalidate_domains,
2018 uint32_t flush_domains)
2019{
2020 ring->flush(dev, ring, invalidate_domains, flush_domains);
2021 i915_gem_process_flushing_list(dev, flush_domains, ring);
2022}
2023
8187a2b7
ZN
2024static void
2025i915_gem_flush(struct drm_device *dev,
c78ec30b 2026 struct drm_file *file_priv,
8187a2b7 2027 uint32_t invalidate_domains,
9220434a
CW
2028 uint32_t flush_domains,
2029 uint32_t flush_rings)
8187a2b7
ZN
2030{
2031 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2032
8187a2b7
ZN
2033 if (flush_domains & I915_GEM_DOMAIN_CPU)
2034 drm_agp_chipset_flush(dev);
8bff917c 2035
9220434a
CW
2036 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2037 if (flush_rings & RING_RENDER)
c78ec30b 2038 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2039 &dev_priv->render_ring,
2040 invalidate_domains, flush_domains);
2041 if (flush_rings & RING_BSD)
c78ec30b 2042 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2043 &dev_priv->bsd_ring,
2044 invalidate_domains, flush_domains);
2045 }
8187a2b7
ZN
2046}
2047
673a394b
EA
2048/**
2049 * Ensures that all rendering to the object has completed and the object is
2050 * safe to unbind from the GTT or access from the CPU.
2051 */
2052static int
2cf34d7b
CW
2053i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2054 bool interruptible)
673a394b
EA
2055{
2056 struct drm_device *dev = obj->dev;
23010e43 2057 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2058 int ret;
2059
e47c68e9
EA
2060 /* This function only exists to support waiting for existing rendering,
2061 * not for emitting required flushes.
673a394b 2062 */
e47c68e9 2063 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2064
2065 /* If there is rendering queued on the buffer being evicted, wait for
2066 * it.
2067 */
2068 if (obj_priv->active) {
2cf34d7b
CW
2069 ret = i915_do_wait_request(dev,
2070 obj_priv->last_rendering_seqno,
2071 interruptible,
2072 obj_priv->ring);
2073 if (ret)
673a394b
EA
2074 return ret;
2075 }
2076
2077 return 0;
2078}
2079
2080/**
2081 * Unbinds an object from the GTT aperture.
2082 */
0f973f27 2083int
673a394b
EA
2084i915_gem_object_unbind(struct drm_gem_object *obj)
2085{
2086 struct drm_device *dev = obj->dev;
23010e43 2087 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2088 int ret = 0;
2089
673a394b
EA
2090 if (obj_priv->gtt_space == NULL)
2091 return 0;
2092
2093 if (obj_priv->pin_count != 0) {
2094 DRM_ERROR("Attempting to unbind pinned buffer\n");
2095 return -EINVAL;
2096 }
2097
5323fd04
EA
2098 /* blow away mappings if mapped through GTT */
2099 i915_gem_release_mmap(obj);
2100
673a394b
EA
2101 /* Move the object to the CPU domain to ensure that
2102 * any possible CPU writes while it's not in the GTT
2103 * are flushed when we go to remap it. This will
2104 * also ensure that all pending GPU writes are finished
2105 * before we unbind.
2106 */
e47c68e9 2107 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2108 if (ret == -ERESTARTSYS)
673a394b 2109 return ret;
8dc1775d
CW
2110 /* Continue on if we fail due to EIO, the GPU is hung so we
2111 * should be safe and we need to cleanup or else we might
2112 * cause memory corruption through use-after-free.
2113 */
673a394b 2114
96b47b65
DV
2115 /* release the fence reg _after_ flushing */
2116 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2117 i915_gem_clear_fence_reg(obj);
2118
673a394b
EA
2119 if (obj_priv->agp_mem != NULL) {
2120 drm_unbind_agp(obj_priv->agp_mem);
2121 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2122 obj_priv->agp_mem = NULL;
2123 }
2124
856fa198 2125 i915_gem_object_put_pages(obj);
a32808c0 2126 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2127
2128 if (obj_priv->gtt_space) {
2129 atomic_dec(&dev->gtt_count);
2130 atomic_sub(obj->size, &dev->gtt_memory);
2131
2132 drm_mm_put_block(obj_priv->gtt_space);
2133 obj_priv->gtt_space = NULL;
2134 }
2135
f13d3f73 2136 list_del_init(&obj_priv->list);
673a394b 2137
963b4836
CW
2138 if (i915_gem_object_is_purgeable(obj_priv))
2139 i915_gem_object_truncate(obj);
2140
1c5d22f7
CW
2141 trace_i915_gem_object_unbind(obj);
2142
8dc1775d 2143 return ret;
673a394b
EA
2144}
2145
a56ba56c
CW
2146static int i915_ring_idle(struct drm_device *dev,
2147 struct intel_ring_buffer *ring)
2148{
2149 i915_gem_flush_ring(dev, NULL, ring,
2150 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2151 return i915_wait_request(dev,
2152 i915_gem_next_request_seqno(dev, ring),
2153 ring);
2154}
2155
b47eb4a2 2156int
4df2faf4
DV
2157i915_gpu_idle(struct drm_device *dev)
2158{
2159 drm_i915_private_t *dev_priv = dev->dev_private;
2160 bool lists_empty;
852835f3 2161 int ret;
4df2faf4 2162
d1b851fc
ZN
2163 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2164 list_empty(&dev_priv->render_ring.active_list) &&
2165 (!HAS_BSD(dev) ||
2166 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2167 if (lists_empty)
2168 return 0;
2169
2170 /* Flush everything onto the inactive list. */
a56ba56c 2171 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2172 if (ret)
2173 return ret;
d1b851fc
ZN
2174
2175 if (HAS_BSD(dev)) {
a56ba56c 2176 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
d1b851fc
ZN
2177 if (ret)
2178 return ret;
2179 }
2180
8a1a49f9 2181 return 0;
4df2faf4
DV
2182}
2183
5cdf5881 2184static int
4bdadb97
CW
2185i915_gem_object_get_pages(struct drm_gem_object *obj,
2186 gfp_t gfpmask)
673a394b 2187{
23010e43 2188 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2189 int page_count, i;
2190 struct address_space *mapping;
2191 struct inode *inode;
2192 struct page *page;
673a394b 2193
778c3544
DV
2194 BUG_ON(obj_priv->pages_refcount
2195 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2196
856fa198 2197 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2198 return 0;
2199
2200 /* Get the list of pages out of our struct file. They'll be pinned
2201 * at this point until we release them.
2202 */
2203 page_count = obj->size / PAGE_SIZE;
856fa198 2204 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2205 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2206 if (obj_priv->pages == NULL) {
856fa198 2207 obj_priv->pages_refcount--;
673a394b
EA
2208 return -ENOMEM;
2209 }
2210
2211 inode = obj->filp->f_path.dentry->d_inode;
2212 mapping = inode->i_mapping;
2213 for (i = 0; i < page_count; i++) {
4bdadb97 2214 page = read_cache_page_gfp(mapping, i,
985b823b 2215 GFP_HIGHUSER |
4bdadb97 2216 __GFP_COLD |
cd9f040d 2217 __GFP_RECLAIMABLE |
4bdadb97 2218 gfpmask);
1f2b1013
CW
2219 if (IS_ERR(page))
2220 goto err_pages;
2221
856fa198 2222 obj_priv->pages[i] = page;
673a394b 2223 }
280b713b
EA
2224
2225 if (obj_priv->tiling_mode != I915_TILING_NONE)
2226 i915_gem_object_do_bit_17_swizzle(obj);
2227
673a394b 2228 return 0;
1f2b1013
CW
2229
2230err_pages:
2231 while (i--)
2232 page_cache_release(obj_priv->pages[i]);
2233
2234 drm_free_large(obj_priv->pages);
2235 obj_priv->pages = NULL;
2236 obj_priv->pages_refcount--;
2237 return PTR_ERR(page);
673a394b
EA
2238}
2239
4e901fdc
EA
2240static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2241{
2242 struct drm_gem_object *obj = reg->obj;
2243 struct drm_device *dev = obj->dev;
2244 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2245 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2246 int regnum = obj_priv->fence_reg;
2247 uint64_t val;
2248
2249 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2250 0xfffff000) << 32;
2251 val |= obj_priv->gtt_offset & 0xfffff000;
2252 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2253 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2254
2255 if (obj_priv->tiling_mode == I915_TILING_Y)
2256 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2257 val |= I965_FENCE_REG_VALID;
2258
2259 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2260}
2261
de151cf6
JB
2262static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2263{
2264 struct drm_gem_object *obj = reg->obj;
2265 struct drm_device *dev = obj->dev;
2266 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2267 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2268 int regnum = obj_priv->fence_reg;
2269 uint64_t val;
2270
2271 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2272 0xfffff000) << 32;
2273 val |= obj_priv->gtt_offset & 0xfffff000;
2274 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2275 if (obj_priv->tiling_mode == I915_TILING_Y)
2276 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2277 val |= I965_FENCE_REG_VALID;
2278
2279 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2280}
2281
2282static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2283{
2284 struct drm_gem_object *obj = reg->obj;
2285 struct drm_device *dev = obj->dev;
2286 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2287 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2288 int regnum = obj_priv->fence_reg;
0f973f27 2289 int tile_width;
dc529a4f 2290 uint32_t fence_reg, val;
de151cf6
JB
2291 uint32_t pitch_val;
2292
2293 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2294 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2295 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2296 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2297 return;
2298 }
2299
0f973f27
JB
2300 if (obj_priv->tiling_mode == I915_TILING_Y &&
2301 HAS_128_BYTE_Y_TILING(dev))
2302 tile_width = 128;
de151cf6 2303 else
0f973f27
JB
2304 tile_width = 512;
2305
2306 /* Note: pitch better be a power of two tile widths */
2307 pitch_val = obj_priv->stride / tile_width;
2308 pitch_val = ffs(pitch_val) - 1;
de151cf6 2309
c36a2a6d
DV
2310 if (obj_priv->tiling_mode == I915_TILING_Y &&
2311 HAS_128_BYTE_Y_TILING(dev))
2312 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2313 else
2314 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2315
de151cf6
JB
2316 val = obj_priv->gtt_offset;
2317 if (obj_priv->tiling_mode == I915_TILING_Y)
2318 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2319 val |= I915_FENCE_SIZE_BITS(obj->size);
2320 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2321 val |= I830_FENCE_REG_VALID;
2322
dc529a4f
EA
2323 if (regnum < 8)
2324 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2325 else
2326 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2327 I915_WRITE(fence_reg, val);
de151cf6
JB
2328}
2329
2330static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2331{
2332 struct drm_gem_object *obj = reg->obj;
2333 struct drm_device *dev = obj->dev;
2334 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2335 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2336 int regnum = obj_priv->fence_reg;
2337 uint32_t val;
2338 uint32_t pitch_val;
8d7773a3 2339 uint32_t fence_size_bits;
de151cf6 2340
8d7773a3 2341 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2342 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2343 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2344 __func__, obj_priv->gtt_offset);
de151cf6
JB
2345 return;
2346 }
2347
e76a16de
EA
2348 pitch_val = obj_priv->stride / 128;
2349 pitch_val = ffs(pitch_val) - 1;
2350 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2351
de151cf6
JB
2352 val = obj_priv->gtt_offset;
2353 if (obj_priv->tiling_mode == I915_TILING_Y)
2354 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2355 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2356 WARN_ON(fence_size_bits & ~0x00000f00);
2357 val |= fence_size_bits;
de151cf6
JB
2358 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2359 val |= I830_FENCE_REG_VALID;
2360
2361 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2362}
2363
2cf34d7b
CW
2364static int i915_find_fence_reg(struct drm_device *dev,
2365 bool interruptible)
ae3db24a
DV
2366{
2367 struct drm_i915_fence_reg *reg = NULL;
2368 struct drm_i915_gem_object *obj_priv = NULL;
2369 struct drm_i915_private *dev_priv = dev->dev_private;
2370 struct drm_gem_object *obj = NULL;
2371 int i, avail, ret;
2372
2373 /* First try to find a free reg */
2374 avail = 0;
2375 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2376 reg = &dev_priv->fence_regs[i];
2377 if (!reg->obj)
2378 return i;
2379
23010e43 2380 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2381 if (!obj_priv->pin_count)
2382 avail++;
2383 }
2384
2385 if (avail == 0)
2386 return -ENOSPC;
2387
2388 /* None available, try to steal one or wait for a user to finish */
2389 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2390 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2391 lru_list) {
2392 obj = reg->obj;
2393 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2394
2395 if (obj_priv->pin_count)
2396 continue;
2397
2398 /* found one! */
2399 i = obj_priv->fence_reg;
2400 break;
2401 }
2402
2403 BUG_ON(i == I915_FENCE_REG_NONE);
2404
2405 /* We only have a reference on obj from the active list. put_fence_reg
2406 * might drop that one, causing a use-after-free in it. So hold a
2407 * private reference to obj like the other callers of put_fence_reg
2408 * (set_tiling ioctl) do. */
2409 drm_gem_object_reference(obj);
2cf34d7b 2410 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2411 drm_gem_object_unreference(obj);
2412 if (ret != 0)
2413 return ret;
2414
2415 return i;
2416}
2417
de151cf6
JB
2418/**
2419 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2420 * @obj: object to map through a fence reg
2421 *
2422 * When mapping objects through the GTT, userspace wants to be able to write
2423 * to them without having to worry about swizzling if the object is tiled.
2424 *
2425 * This function walks the fence regs looking for a free one for @obj,
2426 * stealing one if it can't find any.
2427 *
2428 * It then sets up the reg based on the object's properties: address, pitch
2429 * and tiling format.
2430 */
8c4b8c3f 2431int
2cf34d7b
CW
2432i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2433 bool interruptible)
de151cf6
JB
2434{
2435 struct drm_device *dev = obj->dev;
79e53945 2436 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2437 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2438 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2439 int ret;
de151cf6 2440
a09ba7fa
EA
2441 /* Just update our place in the LRU if our fence is getting used. */
2442 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2443 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2444 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2445 return 0;
2446 }
2447
de151cf6
JB
2448 switch (obj_priv->tiling_mode) {
2449 case I915_TILING_NONE:
2450 WARN(1, "allocating a fence for non-tiled object?\n");
2451 break;
2452 case I915_TILING_X:
0f973f27
JB
2453 if (!obj_priv->stride)
2454 return -EINVAL;
2455 WARN((obj_priv->stride & (512 - 1)),
2456 "object 0x%08x is X tiled but has non-512B pitch\n",
2457 obj_priv->gtt_offset);
de151cf6
JB
2458 break;
2459 case I915_TILING_Y:
0f973f27
JB
2460 if (!obj_priv->stride)
2461 return -EINVAL;
2462 WARN((obj_priv->stride & (128 - 1)),
2463 "object 0x%08x is Y tiled but has non-128B pitch\n",
2464 obj_priv->gtt_offset);
de151cf6
JB
2465 break;
2466 }
2467
2cf34d7b 2468 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2469 if (ret < 0)
2470 return ret;
de151cf6 2471
ae3db24a
DV
2472 obj_priv->fence_reg = ret;
2473 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2474 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2475
de151cf6
JB
2476 reg->obj = obj;
2477
e259befd
CW
2478 switch (INTEL_INFO(dev)->gen) {
2479 case 6:
4e901fdc 2480 sandybridge_write_fence_reg(reg);
e259befd
CW
2481 break;
2482 case 5:
2483 case 4:
de151cf6 2484 i965_write_fence_reg(reg);
e259befd
CW
2485 break;
2486 case 3:
de151cf6 2487 i915_write_fence_reg(reg);
e259befd
CW
2488 break;
2489 case 2:
de151cf6 2490 i830_write_fence_reg(reg);
e259befd
CW
2491 break;
2492 }
d9ddcb96 2493
ae3db24a
DV
2494 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2495 obj_priv->tiling_mode);
1c5d22f7 2496
d9ddcb96 2497 return 0;
de151cf6
JB
2498}
2499
2500/**
2501 * i915_gem_clear_fence_reg - clear out fence register info
2502 * @obj: object to clear
2503 *
2504 * Zeroes out the fence register itself and clears out the associated
2505 * data structures in dev_priv and obj_priv.
2506 */
2507static void
2508i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2509{
2510 struct drm_device *dev = obj->dev;
79e53945 2511 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2512 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2513 struct drm_i915_fence_reg *reg =
2514 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2515 uint32_t fence_reg;
de151cf6 2516
e259befd
CW
2517 switch (INTEL_INFO(dev)->gen) {
2518 case 6:
4e901fdc
EA
2519 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2520 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2521 break;
2522 case 5:
2523 case 4:
de151cf6 2524 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2525 break;
2526 case 3:
9b74f734 2527 if (obj_priv->fence_reg >= 8)
e259befd 2528 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2529 else
e259befd
CW
2530 case 2:
2531 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2532
2533 I915_WRITE(fence_reg, 0);
e259befd 2534 break;
dc529a4f 2535 }
de151cf6 2536
007cc8ac 2537 reg->obj = NULL;
de151cf6 2538 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2539 list_del_init(&reg->lru_list);
de151cf6
JB
2540}
2541
52dc7d32
CW
2542/**
2543 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2544 * to the buffer to finish, and then resets the fence register.
2545 * @obj: tiled object holding a fence register.
2cf34d7b 2546 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2547 *
2548 * Zeroes out the fence register itself and clears out the associated
2549 * data structures in dev_priv and obj_priv.
2550 */
2551int
2cf34d7b
CW
2552i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2553 bool interruptible)
52dc7d32
CW
2554{
2555 struct drm_device *dev = obj->dev;
53640e1d 2556 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2557 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2558 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2559
2560 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2561 return 0;
2562
10ae9bd2
DV
2563 /* If we've changed tiling, GTT-mappings of the object
2564 * need to re-fault to ensure that the correct fence register
2565 * setup is in place.
2566 */
2567 i915_gem_release_mmap(obj);
2568
52dc7d32
CW
2569 /* On the i915, GPU access to tiled buffers is via a fence,
2570 * therefore we must wait for any outstanding access to complete
2571 * before clearing the fence.
2572 */
53640e1d
CW
2573 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2574 if (reg->gpu) {
52dc7d32
CW
2575 int ret;
2576
2cf34d7b 2577 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad
CW
2578 if (ret)
2579 return ret;
2580
2cf34d7b 2581 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2582 if (ret)
52dc7d32 2583 return ret;
53640e1d
CW
2584
2585 reg->gpu = false;
52dc7d32
CW
2586 }
2587
4a726612 2588 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2589 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2590
2591 return 0;
2592}
2593
673a394b
EA
2594/**
2595 * Finds free space in the GTT aperture and binds the object there.
2596 */
2597static int
2598i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2599{
2600 struct drm_device *dev = obj->dev;
2601 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2602 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2603 struct drm_mm_node *free_space;
4bdadb97 2604 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2605 int ret;
673a394b 2606
bb6baf76 2607 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2608 DRM_ERROR("Attempting to bind a purgeable object\n");
2609 return -EINVAL;
2610 }
2611
673a394b 2612 if (alignment == 0)
0f973f27 2613 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2614 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2615 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2616 return -EINVAL;
2617 }
2618
654fc607
CW
2619 /* If the object is bigger than the entire aperture, reject it early
2620 * before evicting everything in a vain attempt to find space.
2621 */
2622 if (obj->size > dev->gtt_total) {
2623 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2624 return -E2BIG;
2625 }
2626
673a394b
EA
2627 search_free:
2628 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2629 obj->size, alignment, 0);
2630 if (free_space != NULL) {
2631 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2632 alignment);
db3307a9 2633 if (obj_priv->gtt_space != NULL)
673a394b 2634 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2635 }
2636 if (obj_priv->gtt_space == NULL) {
2637 /* If the gtt is empty and we're still having trouble
2638 * fitting our object in, we're out of memory.
2639 */
0108a3ed 2640 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2641 if (ret)
673a394b 2642 return ret;
9731129c 2643
673a394b
EA
2644 goto search_free;
2645 }
2646
4bdadb97 2647 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2648 if (ret) {
2649 drm_mm_put_block(obj_priv->gtt_space);
2650 obj_priv->gtt_space = NULL;
07f73f69
CW
2651
2652 if (ret == -ENOMEM) {
2653 /* first try to clear up some space from the GTT */
0108a3ed
DV
2654 ret = i915_gem_evict_something(dev, obj->size,
2655 alignment);
07f73f69 2656 if (ret) {
07f73f69 2657 /* now try to shrink everyone else */
4bdadb97
CW
2658 if (gfpmask) {
2659 gfpmask = 0;
2660 goto search_free;
07f73f69
CW
2661 }
2662
2663 return ret;
2664 }
2665
2666 goto search_free;
2667 }
2668
673a394b
EA
2669 return ret;
2670 }
2671
673a394b
EA
2672 /* Create an AGP memory structure pointing at our pages, and bind it
2673 * into the GTT.
2674 */
2675 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2676 obj_priv->pages,
07f73f69 2677 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2678 obj_priv->gtt_offset,
2679 obj_priv->agp_type);
673a394b 2680 if (obj_priv->agp_mem == NULL) {
856fa198 2681 i915_gem_object_put_pages(obj);
673a394b
EA
2682 drm_mm_put_block(obj_priv->gtt_space);
2683 obj_priv->gtt_space = NULL;
07f73f69 2684
0108a3ed 2685 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2686 if (ret)
07f73f69 2687 return ret;
07f73f69
CW
2688
2689 goto search_free;
673a394b
EA
2690 }
2691 atomic_inc(&dev->gtt_count);
2692 atomic_add(obj->size, &dev->gtt_memory);
2693
bf1a1092
CW
2694 /* keep track of bounds object by adding it to the inactive list */
2695 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2696
673a394b
EA
2697 /* Assert that the object is not currently in any GPU domain. As it
2698 * wasn't in the GTT, there shouldn't be any way it could have been in
2699 * a GPU cache
2700 */
21d509e3
CW
2701 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2702 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2703
1c5d22f7
CW
2704 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2705
673a394b
EA
2706 return 0;
2707}
2708
2709void
2710i915_gem_clflush_object(struct drm_gem_object *obj)
2711{
23010e43 2712 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2713
2714 /* If we don't have a page list set up, then we're not pinned
2715 * to GPU, and we can ignore the cache flush because it'll happen
2716 * again at bind time.
2717 */
856fa198 2718 if (obj_priv->pages == NULL)
673a394b
EA
2719 return;
2720
1c5d22f7 2721 trace_i915_gem_object_clflush(obj);
cfa16a0d 2722
856fa198 2723 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2724}
2725
e47c68e9 2726/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2727static int
ba3d8d74
DV
2728i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2729 bool pipelined)
e47c68e9
EA
2730{
2731 struct drm_device *dev = obj->dev;
1c5d22f7 2732 uint32_t old_write_domain;
e47c68e9
EA
2733
2734 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2735 return 0;
e47c68e9
EA
2736
2737 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2738 old_write_domain = obj->write_domain;
c78ec30b 2739 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2740 to_intel_bo(obj)->ring,
2741 0, obj->write_domain);
48b956c5 2742 BUG_ON(obj->write_domain);
1c5d22f7
CW
2743
2744 trace_i915_gem_object_change_domain(obj,
2745 obj->read_domains,
2746 old_write_domain);
ba3d8d74
DV
2747
2748 if (pipelined)
2749 return 0;
2750
2cf34d7b 2751 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2752}
2753
2754/** Flushes the GTT write domain for the object if it's dirty. */
2755static void
2756i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2757{
1c5d22f7
CW
2758 uint32_t old_write_domain;
2759
e47c68e9
EA
2760 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2761 return;
2762
2763 /* No actual flushing is required for the GTT write domain. Writes
2764 * to it immediately go to main memory as far as we know, so there's
2765 * no chipset flush. It also doesn't land in render cache.
2766 */
1c5d22f7 2767 old_write_domain = obj->write_domain;
e47c68e9 2768 obj->write_domain = 0;
1c5d22f7
CW
2769
2770 trace_i915_gem_object_change_domain(obj,
2771 obj->read_domains,
2772 old_write_domain);
e47c68e9
EA
2773}
2774
2775/** Flushes the CPU write domain for the object if it's dirty. */
2776static void
2777i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2778{
2779 struct drm_device *dev = obj->dev;
1c5d22f7 2780 uint32_t old_write_domain;
e47c68e9
EA
2781
2782 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2783 return;
2784
2785 i915_gem_clflush_object(obj);
2786 drm_agp_chipset_flush(dev);
1c5d22f7 2787 old_write_domain = obj->write_domain;
e47c68e9 2788 obj->write_domain = 0;
1c5d22f7
CW
2789
2790 trace_i915_gem_object_change_domain(obj,
2791 obj->read_domains,
2792 old_write_domain);
e47c68e9
EA
2793}
2794
2ef7eeaa
EA
2795/**
2796 * Moves a single object to the GTT read, and possibly write domain.
2797 *
2798 * This function returns when the move is complete, including waiting on
2799 * flushes to occur.
2800 */
79e53945 2801int
2ef7eeaa
EA
2802i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2803{
23010e43 2804 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2805 uint32_t old_write_domain, old_read_domains;
e47c68e9 2806 int ret;
2ef7eeaa 2807
02354392
EA
2808 /* Not valid to be called on unbound objects. */
2809 if (obj_priv->gtt_space == NULL)
2810 return -EINVAL;
2811
ba3d8d74 2812 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2813 if (ret != 0)
2814 return ret;
2815
7213342d 2816 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2817
ba3d8d74 2818 if (write) {
2cf34d7b 2819 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2820 if (ret)
2821 return ret;
ba3d8d74 2822 }
2ef7eeaa 2823
7213342d
CW
2824 old_write_domain = obj->write_domain;
2825 old_read_domains = obj->read_domains;
2ef7eeaa 2826
e47c68e9
EA
2827 /* It should now be out of any other write domains, and we can update
2828 * the domain values for our changes.
2829 */
2830 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2831 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2832 if (write) {
7213342d 2833 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2834 obj->write_domain = I915_GEM_DOMAIN_GTT;
2835 obj_priv->dirty = 1;
2ef7eeaa
EA
2836 }
2837
1c5d22f7
CW
2838 trace_i915_gem_object_change_domain(obj,
2839 old_read_domains,
2840 old_write_domain);
2841
e47c68e9
EA
2842 return 0;
2843}
2844
b9241ea3
ZW
2845/*
2846 * Prepare buffer for display plane. Use uninterruptible for possible flush
2847 * wait, as in modesetting process we're not supposed to be interrupted.
2848 */
2849int
48b956c5
CW
2850i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2851 bool pipelined)
b9241ea3 2852{
23010e43 2853 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2854 uint32_t old_read_domains;
b9241ea3
ZW
2855 int ret;
2856
2857 /* Not valid to be called on unbound objects. */
2858 if (obj_priv->gtt_space == NULL)
2859 return -EINVAL;
2860
ced270fa 2861 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
48b956c5 2862 if (ret)
e35a41de 2863 return ret;
b9241ea3 2864
ced270fa
CW
2865 /* Currently, we are always called from an non-interruptible context. */
2866 if (!pipelined) {
2867 ret = i915_gem_object_wait_rendering(obj, false);
2868 if (ret)
2869 return ret;
2870 }
2871
b118c1e3
CW
2872 i915_gem_object_flush_cpu_write_domain(obj);
2873
b9241ea3 2874 old_read_domains = obj->read_domains;
c78ec30b 2875 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2876
2877 trace_i915_gem_object_change_domain(obj,
2878 old_read_domains,
ba3d8d74 2879 obj->write_domain);
b9241ea3
ZW
2880
2881 return 0;
2882}
2883
e47c68e9
EA
2884/**
2885 * Moves a single object to the CPU read, and possibly write domain.
2886 *
2887 * This function returns when the move is complete, including waiting on
2888 * flushes to occur.
2889 */
2890static int
2891i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2892{
1c5d22f7 2893 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2894 int ret;
2895
ba3d8d74 2896 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2897 if (ret != 0)
2898 return ret;
2ef7eeaa 2899
e47c68e9 2900 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2901
e47c68e9
EA
2902 /* If we have a partially-valid cache of the object in the CPU,
2903 * finish invalidating it and free the per-page flags.
2ef7eeaa 2904 */
e47c68e9 2905 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2906
7213342d 2907 if (write) {
2cf34d7b 2908 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
2909 if (ret)
2910 return ret;
2911 }
2912
1c5d22f7
CW
2913 old_write_domain = obj->write_domain;
2914 old_read_domains = obj->read_domains;
2915
e47c68e9
EA
2916 /* Flush the CPU cache if it's still invalid. */
2917 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2918 i915_gem_clflush_object(obj);
2ef7eeaa 2919
e47c68e9 2920 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2921 }
2922
2923 /* It should now be out of any other write domains, and we can update
2924 * the domain values for our changes.
2925 */
e47c68e9
EA
2926 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2927
2928 /* If we're writing through the CPU, then the GPU read domains will
2929 * need to be invalidated at next use.
2930 */
2931 if (write) {
c78ec30b 2932 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
2933 obj->write_domain = I915_GEM_DOMAIN_CPU;
2934 }
2ef7eeaa 2935
1c5d22f7
CW
2936 trace_i915_gem_object_change_domain(obj,
2937 old_read_domains,
2938 old_write_domain);
2939
2ef7eeaa
EA
2940 return 0;
2941}
2942
673a394b
EA
2943/*
2944 * Set the next domain for the specified object. This
2945 * may not actually perform the necessary flushing/invaliding though,
2946 * as that may want to be batched with other set_domain operations
2947 *
2948 * This is (we hope) the only really tricky part of gem. The goal
2949 * is fairly simple -- track which caches hold bits of the object
2950 * and make sure they remain coherent. A few concrete examples may
2951 * help to explain how it works. For shorthand, we use the notation
2952 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2953 * a pair of read and write domain masks.
2954 *
2955 * Case 1: the batch buffer
2956 *
2957 * 1. Allocated
2958 * 2. Written by CPU
2959 * 3. Mapped to GTT
2960 * 4. Read by GPU
2961 * 5. Unmapped from GTT
2962 * 6. Freed
2963 *
2964 * Let's take these a step at a time
2965 *
2966 * 1. Allocated
2967 * Pages allocated from the kernel may still have
2968 * cache contents, so we set them to (CPU, CPU) always.
2969 * 2. Written by CPU (using pwrite)
2970 * The pwrite function calls set_domain (CPU, CPU) and
2971 * this function does nothing (as nothing changes)
2972 * 3. Mapped by GTT
2973 * This function asserts that the object is not
2974 * currently in any GPU-based read or write domains
2975 * 4. Read by GPU
2976 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2977 * As write_domain is zero, this function adds in the
2978 * current read domains (CPU+COMMAND, 0).
2979 * flush_domains is set to CPU.
2980 * invalidate_domains is set to COMMAND
2981 * clflush is run to get data out of the CPU caches
2982 * then i915_dev_set_domain calls i915_gem_flush to
2983 * emit an MI_FLUSH and drm_agp_chipset_flush
2984 * 5. Unmapped from GTT
2985 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2986 * flush_domains and invalidate_domains end up both zero
2987 * so no flushing/invalidating happens
2988 * 6. Freed
2989 * yay, done
2990 *
2991 * Case 2: The shared render buffer
2992 *
2993 * 1. Allocated
2994 * 2. Mapped to GTT
2995 * 3. Read/written by GPU
2996 * 4. set_domain to (CPU,CPU)
2997 * 5. Read/written by CPU
2998 * 6. Read/written by GPU
2999 *
3000 * 1. Allocated
3001 * Same as last example, (CPU, CPU)
3002 * 2. Mapped to GTT
3003 * Nothing changes (assertions find that it is not in the GPU)
3004 * 3. Read/written by GPU
3005 * execbuffer calls set_domain (RENDER, RENDER)
3006 * flush_domains gets CPU
3007 * invalidate_domains gets GPU
3008 * clflush (obj)
3009 * MI_FLUSH and drm_agp_chipset_flush
3010 * 4. set_domain (CPU, CPU)
3011 * flush_domains gets GPU
3012 * invalidate_domains gets CPU
3013 * wait_rendering (obj) to make sure all drawing is complete.
3014 * This will include an MI_FLUSH to get the data from GPU
3015 * to memory
3016 * clflush (obj) to invalidate the CPU cache
3017 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3018 * 5. Read/written by CPU
3019 * cache lines are loaded and dirtied
3020 * 6. Read written by GPU
3021 * Same as last GPU access
3022 *
3023 * Case 3: The constant buffer
3024 *
3025 * 1. Allocated
3026 * 2. Written by CPU
3027 * 3. Read by GPU
3028 * 4. Updated (written) by CPU again
3029 * 5. Read by GPU
3030 *
3031 * 1. Allocated
3032 * (CPU, CPU)
3033 * 2. Written by CPU
3034 * (CPU, CPU)
3035 * 3. Read by GPU
3036 * (CPU+RENDER, 0)
3037 * flush_domains = CPU
3038 * invalidate_domains = RENDER
3039 * clflush (obj)
3040 * MI_FLUSH
3041 * drm_agp_chipset_flush
3042 * 4. Updated (written) by CPU again
3043 * (CPU, CPU)
3044 * flush_domains = 0 (no previous write domain)
3045 * invalidate_domains = 0 (no new read domains)
3046 * 5. Read by GPU
3047 * (CPU+RENDER, 0)
3048 * flush_domains = CPU
3049 * invalidate_domains = RENDER
3050 * clflush (obj)
3051 * MI_FLUSH
3052 * drm_agp_chipset_flush
3053 */
c0d90829 3054static void
8b0e378a 3055i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
3056{
3057 struct drm_device *dev = obj->dev;
9220434a 3058 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 3059 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3060 uint32_t invalidate_domains = 0;
3061 uint32_t flush_domains = 0;
1c5d22f7 3062 uint32_t old_read_domains;
e47c68e9 3063
8b0e378a
EA
3064 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3065 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 3066
652c393a
JB
3067 intel_mark_busy(dev, obj);
3068
673a394b
EA
3069 /*
3070 * If the object isn't moving to a new write domain,
3071 * let the object stay in multiple read domains
3072 */
8b0e378a
EA
3073 if (obj->pending_write_domain == 0)
3074 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3075 else
3076 obj_priv->dirty = 1;
3077
3078 /*
3079 * Flush the current write domain if
3080 * the new read domains don't match. Invalidate
3081 * any read domains which differ from the old
3082 * write domain
3083 */
8b0e378a
EA
3084 if (obj->write_domain &&
3085 obj->write_domain != obj->pending_read_domains) {
673a394b 3086 flush_domains |= obj->write_domain;
8b0e378a
EA
3087 invalidate_domains |=
3088 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3089 }
3090 /*
3091 * Invalidate any read caches which may have
3092 * stale data. That is, any new read domains.
3093 */
8b0e378a 3094 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3095 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3096 i915_gem_clflush_object(obj);
673a394b 3097
1c5d22f7
CW
3098 old_read_domains = obj->read_domains;
3099
efbeed96
EA
3100 /* The actual obj->write_domain will be updated with
3101 * pending_write_domain after we emit the accumulated flush for all
3102 * of our domain changes in execbuffers (which clears objects'
3103 * write_domains). So if we have a current write domain that we
3104 * aren't changing, set pending_write_domain to that.
3105 */
3106 if (flush_domains == 0 && obj->pending_write_domain == 0)
3107 obj->pending_write_domain = obj->write_domain;
8b0e378a 3108 obj->read_domains = obj->pending_read_domains;
673a394b
EA
3109
3110 dev->invalidate_domains |= invalidate_domains;
3111 dev->flush_domains |= flush_domains;
9220434a
CW
3112 if (obj_priv->ring)
3113 dev_priv->mm.flush_rings |= obj_priv->ring->id;
1c5d22f7
CW
3114
3115 trace_i915_gem_object_change_domain(obj,
3116 old_read_domains,
3117 obj->write_domain);
673a394b
EA
3118}
3119
3120/**
e47c68e9 3121 * Moves the object from a partially CPU read to a full one.
673a394b 3122 *
e47c68e9
EA
3123 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3124 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3125 */
e47c68e9
EA
3126static void
3127i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3128{
23010e43 3129 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3130
e47c68e9
EA
3131 if (!obj_priv->page_cpu_valid)
3132 return;
3133
3134 /* If we're partially in the CPU read domain, finish moving it in.
3135 */
3136 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3137 int i;
3138
3139 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3140 if (obj_priv->page_cpu_valid[i])
3141 continue;
856fa198 3142 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3143 }
e47c68e9
EA
3144 }
3145
3146 /* Free the page_cpu_valid mappings which are now stale, whether
3147 * or not we've got I915_GEM_DOMAIN_CPU.
3148 */
9a298b2a 3149 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3150 obj_priv->page_cpu_valid = NULL;
3151}
3152
3153/**
3154 * Set the CPU read domain on a range of the object.
3155 *
3156 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3157 * not entirely valid. The page_cpu_valid member of the object flags which
3158 * pages have been flushed, and will be respected by
3159 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3160 * of the whole object.
3161 *
3162 * This function returns when the move is complete, including waiting on
3163 * flushes to occur.
3164 */
3165static int
3166i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3167 uint64_t offset, uint64_t size)
3168{
23010e43 3169 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3170 uint32_t old_read_domains;
e47c68e9 3171 int i, ret;
673a394b 3172
e47c68e9
EA
3173 if (offset == 0 && size == obj->size)
3174 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3175
ba3d8d74 3176 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3177 if (ret != 0)
6a47baa6 3178 return ret;
e47c68e9
EA
3179 i915_gem_object_flush_gtt_write_domain(obj);
3180
3181 /* If we're already fully in the CPU read domain, we're done. */
3182 if (obj_priv->page_cpu_valid == NULL &&
3183 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3184 return 0;
673a394b 3185
e47c68e9
EA
3186 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3187 * newly adding I915_GEM_DOMAIN_CPU
3188 */
673a394b 3189 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3190 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3191 GFP_KERNEL);
e47c68e9
EA
3192 if (obj_priv->page_cpu_valid == NULL)
3193 return -ENOMEM;
3194 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3195 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3196
3197 /* Flush the cache on any pages that are still invalid from the CPU's
3198 * perspective.
3199 */
e47c68e9
EA
3200 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3201 i++) {
673a394b
EA
3202 if (obj_priv->page_cpu_valid[i])
3203 continue;
3204
856fa198 3205 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3206
3207 obj_priv->page_cpu_valid[i] = 1;
3208 }
3209
e47c68e9
EA
3210 /* It should now be out of any other write domains, and we can update
3211 * the domain values for our changes.
3212 */
3213 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3214
1c5d22f7 3215 old_read_domains = obj->read_domains;
e47c68e9
EA
3216 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3217
1c5d22f7
CW
3218 trace_i915_gem_object_change_domain(obj,
3219 old_read_domains,
3220 obj->write_domain);
3221
673a394b
EA
3222 return 0;
3223}
3224
673a394b
EA
3225/**
3226 * Pin an object to the GTT and evaluate the relocations landing in it.
3227 */
3228static int
3229i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3230 struct drm_file *file_priv,
76446cac 3231 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3232 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3233{
3234 struct drm_device *dev = obj->dev;
0839ccb8 3235 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3236 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3237 int i, ret;
0839ccb8 3238 void __iomem *reloc_page;
76446cac
JB
3239 bool need_fence;
3240
3241 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3242 obj_priv->tiling_mode != I915_TILING_NONE;
3243
3244 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3245 if (need_fence &&
3246 !i915_gem_object_fence_offset_ok(obj,
3247 obj_priv->tiling_mode)) {
3248 ret = i915_gem_object_unbind(obj);
3249 if (ret)
3250 return ret;
3251 }
673a394b
EA
3252
3253 /* Choose the GTT offset for our buffer and put it there. */
3254 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3255 if (ret)
3256 return ret;
3257
76446cac
JB
3258 /*
3259 * Pre-965 chips need a fence register set up in order to
3260 * properly handle blits to/from tiled surfaces.
3261 */
3262 if (need_fence) {
53640e1d 3263 ret = i915_gem_object_get_fence_reg(obj, true);
76446cac 3264 if (ret != 0) {
76446cac
JB
3265 i915_gem_object_unpin(obj);
3266 return ret;
3267 }
53640e1d
CW
3268
3269 dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
76446cac
JB
3270 }
3271
673a394b
EA
3272 entry->offset = obj_priv->gtt_offset;
3273
673a394b
EA
3274 /* Apply the relocations, using the GTT aperture to avoid cache
3275 * flushing requirements.
3276 */
3277 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3278 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3279 struct drm_gem_object *target_obj;
3280 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3281 uint32_t reloc_val, reloc_offset;
3282 uint32_t __iomem *reloc_entry;
673a394b 3283
673a394b 3284 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3285 reloc->target_handle);
673a394b
EA
3286 if (target_obj == NULL) {
3287 i915_gem_object_unpin(obj);
bf79cb91 3288 return -ENOENT;
673a394b 3289 }
23010e43 3290 target_obj_priv = to_intel_bo(target_obj);
673a394b 3291
8542a0bb
CW
3292#if WATCH_RELOC
3293 DRM_INFO("%s: obj %p offset %08x target %d "
3294 "read %08x write %08x gtt %08x "
3295 "presumed %08x delta %08x\n",
3296 __func__,
3297 obj,
3298 (int) reloc->offset,
3299 (int) reloc->target_handle,
3300 (int) reloc->read_domains,
3301 (int) reloc->write_domain,
3302 (int) target_obj_priv->gtt_offset,
3303 (int) reloc->presumed_offset,
3304 reloc->delta);
3305#endif
3306
673a394b
EA
3307 /* The target buffer should have appeared before us in the
3308 * exec_object list, so it should have a GTT space bound by now.
3309 */
3310 if (target_obj_priv->gtt_space == NULL) {
3311 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3312 reloc->target_handle);
673a394b
EA
3313 drm_gem_object_unreference(target_obj);
3314 i915_gem_object_unpin(obj);
3315 return -EINVAL;
3316 }
3317
8542a0bb 3318 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3319 if (reloc->write_domain & (reloc->write_domain - 1)) {
3320 DRM_ERROR("reloc with multiple write domains: "
3321 "obj %p target %d offset %d "
3322 "read %08x write %08x",
3323 obj, reloc->target_handle,
3324 (int) reloc->offset,
3325 reloc->read_domains,
3326 reloc->write_domain);
3327 return -EINVAL;
3328 }
40a5f0de
EA
3329 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3330 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3331 DRM_ERROR("reloc with read/write CPU domains: "
3332 "obj %p target %d offset %d "
3333 "read %08x write %08x",
40a5f0de
EA
3334 obj, reloc->target_handle,
3335 (int) reloc->offset,
3336 reloc->read_domains,
3337 reloc->write_domain);
491152b8
CW
3338 drm_gem_object_unreference(target_obj);
3339 i915_gem_object_unpin(obj);
e47c68e9
EA
3340 return -EINVAL;
3341 }
40a5f0de
EA
3342 if (reloc->write_domain && target_obj->pending_write_domain &&
3343 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3344 DRM_ERROR("Write domain conflict: "
3345 "obj %p target %d offset %d "
3346 "new %08x old %08x\n",
40a5f0de
EA
3347 obj, reloc->target_handle,
3348 (int) reloc->offset,
3349 reloc->write_domain,
673a394b
EA
3350 target_obj->pending_write_domain);
3351 drm_gem_object_unreference(target_obj);
3352 i915_gem_object_unpin(obj);
3353 return -EINVAL;
3354 }
3355
40a5f0de
EA
3356 target_obj->pending_read_domains |= reloc->read_domains;
3357 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3358
3359 /* If the relocation already has the right value in it, no
3360 * more work needs to be done.
3361 */
40a5f0de 3362 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3363 drm_gem_object_unreference(target_obj);
3364 continue;
3365 }
3366
8542a0bb
CW
3367 /* Check that the relocation address is valid... */
3368 if (reloc->offset > obj->size - 4) {
3369 DRM_ERROR("Relocation beyond object bounds: "
3370 "obj %p target %d offset %d size %d.\n",
3371 obj, reloc->target_handle,
3372 (int) reloc->offset, (int) obj->size);
3373 drm_gem_object_unreference(target_obj);
3374 i915_gem_object_unpin(obj);
3375 return -EINVAL;
3376 }
3377 if (reloc->offset & 3) {
3378 DRM_ERROR("Relocation not 4-byte aligned: "
3379 "obj %p target %d offset %d.\n",
3380 obj, reloc->target_handle,
3381 (int) reloc->offset);
3382 drm_gem_object_unreference(target_obj);
3383 i915_gem_object_unpin(obj);
3384 return -EINVAL;
3385 }
3386
3387 /* and points to somewhere within the target object. */
3388 if (reloc->delta >= target_obj->size) {
3389 DRM_ERROR("Relocation beyond target object bounds: "
3390 "obj %p target %d delta %d size %d.\n",
3391 obj, reloc->target_handle,
3392 (int) reloc->delta, (int) target_obj->size);
3393 drm_gem_object_unreference(target_obj);
3394 i915_gem_object_unpin(obj);
3395 return -EINVAL;
3396 }
3397
2ef7eeaa
EA
3398 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3399 if (ret != 0) {
3400 drm_gem_object_unreference(target_obj);
3401 i915_gem_object_unpin(obj);
3402 return -EINVAL;
673a394b
EA
3403 }
3404
3405 /* Map the page containing the relocation we're going to
3406 * perform.
3407 */
40a5f0de 3408 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3409 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3410 (reloc_offset &
fca3ec01
CW
3411 ~(PAGE_SIZE - 1)),
3412 KM_USER0);
3043c60c 3413 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3414 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3415 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b 3416
673a394b 3417 writel(reloc_val, reloc_entry);
fca3ec01 3418 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3419
40a5f0de
EA
3420 /* The updated presumed offset for this entry will be
3421 * copied back out to the user.
673a394b 3422 */
40a5f0de 3423 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3424
3425 drm_gem_object_unreference(target_obj);
3426 }
3427
673a394b
EA
3428 return 0;
3429}
3430
673a394b
EA
3431/* Throttle our rendering by waiting until the ring has completed our requests
3432 * emitted over 20 msec ago.
3433 *
b962442e
EA
3434 * Note that if we were to use the current jiffies each time around the loop,
3435 * we wouldn't escape the function with any frames outstanding if the time to
3436 * render a frame was over 20ms.
3437 *
673a394b
EA
3438 * This should get us reasonable parallelism between CPU and GPU but also
3439 * relatively low latency when blocking on a particular request to finish.
3440 */
3441static int
f787a5f5 3442i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
673a394b 3443{
f787a5f5
CW
3444 struct drm_i915_private *dev_priv = dev->dev_private;
3445 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3446 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3447 struct drm_i915_gem_request *request;
3448 struct intel_ring_buffer *ring = NULL;
3449 u32 seqno = 0;
3450 int ret;
673a394b 3451
1c25595f 3452 spin_lock(&file_priv->mm.lock);
f787a5f5 3453 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3454 if (time_after_eq(request->emitted_jiffies, recent_enough))
3455 break;
3456
f787a5f5
CW
3457 ring = request->ring;
3458 seqno = request->seqno;
b962442e 3459 }
1c25595f 3460 spin_unlock(&file_priv->mm.lock);
f787a5f5
CW
3461
3462 if (seqno == 0)
3463 return 0;
3464
3465 ret = 0;
3466 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3467 /* And wait for the seqno passing without holding any locks and
3468 * causing extra latency for others. This is safe as the irq
3469 * generation is designed to be run atomically and so is
3470 * lockless.
3471 */
3472 ring->user_irq_get(dev, ring);
3473 ret = wait_event_interruptible(ring->irq_queue,
3474 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3475 || atomic_read(&dev_priv->mm.wedged));
3476 ring->user_irq_put(dev, ring);
3477
3478 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3479 ret = -EIO;
3480 }
3481
3482 if (ret == 0)
3483 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
b962442e 3484
673a394b
EA
3485 return ret;
3486}
3487
40a5f0de 3488static int
76446cac 3489i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3490 uint32_t buffer_count,
3491 struct drm_i915_gem_relocation_entry **relocs)
3492{
3493 uint32_t reloc_count = 0, reloc_index = 0, i;
3494 int ret;
3495
3496 *relocs = NULL;
3497 for (i = 0; i < buffer_count; i++) {
3498 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3499 return -EINVAL;
3500 reloc_count += exec_list[i].relocation_count;
3501 }
3502
8e7d2b2c 3503 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3504 if (*relocs == NULL) {
3505 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3506 return -ENOMEM;
76446cac 3507 }
40a5f0de
EA
3508
3509 for (i = 0; i < buffer_count; i++) {
3510 struct drm_i915_gem_relocation_entry __user *user_relocs;
3511
3512 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3513
3514 ret = copy_from_user(&(*relocs)[reloc_index],
3515 user_relocs,
3516 exec_list[i].relocation_count *
3517 sizeof(**relocs));
3518 if (ret != 0) {
8e7d2b2c 3519 drm_free_large(*relocs);
40a5f0de 3520 *relocs = NULL;
2bc43b5c 3521 return -EFAULT;
40a5f0de
EA
3522 }
3523
3524 reloc_index += exec_list[i].relocation_count;
3525 }
3526
2bc43b5c 3527 return 0;
40a5f0de
EA
3528}
3529
3530static int
76446cac 3531i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3532 uint32_t buffer_count,
3533 struct drm_i915_gem_relocation_entry *relocs)
3534{
3535 uint32_t reloc_count = 0, i;
2bc43b5c 3536 int ret = 0;
40a5f0de 3537
93533c29
CW
3538 if (relocs == NULL)
3539 return 0;
3540
40a5f0de
EA
3541 for (i = 0; i < buffer_count; i++) {
3542 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3543 int unwritten;
40a5f0de
EA
3544
3545 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3546
2bc43b5c
FM
3547 unwritten = copy_to_user(user_relocs,
3548 &relocs[reloc_count],
3549 exec_list[i].relocation_count *
3550 sizeof(*relocs));
3551
3552 if (unwritten) {
3553 ret = -EFAULT;
3554 goto err;
40a5f0de
EA
3555 }
3556
3557 reloc_count += exec_list[i].relocation_count;
3558 }
3559
2bc43b5c 3560err:
8e7d2b2c 3561 drm_free_large(relocs);
40a5f0de
EA
3562
3563 return ret;
3564}
3565
83d60795 3566static int
76446cac 3567i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3568 uint64_t exec_offset)
3569{
3570 uint32_t exec_start, exec_len;
3571
3572 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3573 exec_len = (uint32_t) exec->batch_len;
3574
3575 if ((exec_start | exec_len) & 0x7)
3576 return -EINVAL;
3577
3578 if (!exec_start)
3579 return -EINVAL;
3580
3581 return 0;
3582}
3583
e6c3a2a6 3584static int
6b95a207
KH
3585i915_gem_wait_for_pending_flip(struct drm_device *dev,
3586 struct drm_gem_object **object_list,
3587 int count)
3588{
3589 drm_i915_private_t *dev_priv = dev->dev_private;
3590 struct drm_i915_gem_object *obj_priv;
3591 DEFINE_WAIT(wait);
3592 int i, ret = 0;
3593
3594 for (;;) {
3595 prepare_to_wait(&dev_priv->pending_flip_queue,
3596 &wait, TASK_INTERRUPTIBLE);
3597 for (i = 0; i < count; i++) {
23010e43 3598 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3599 if (atomic_read(&obj_priv->pending_flip) > 0)
3600 break;
3601 }
3602 if (i == count)
3603 break;
3604
3605 if (!signal_pending(current)) {
3606 mutex_unlock(&dev->struct_mutex);
3607 schedule();
3608 mutex_lock(&dev->struct_mutex);
3609 continue;
3610 }
3611 ret = -ERESTARTSYS;
3612 break;
3613 }
3614 finish_wait(&dev_priv->pending_flip_queue, &wait);
3615
3616 return ret;
3617}
3618
8dc5d147 3619static int
76446cac
JB
3620i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3621 struct drm_file *file_priv,
3622 struct drm_i915_gem_execbuffer2 *args,
3623 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3624{
3625 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3626 struct drm_gem_object **object_list = NULL;
3627 struct drm_gem_object *batch_obj;
b70d11da 3628 struct drm_i915_gem_object *obj_priv;
201361a5 3629 struct drm_clip_rect *cliprects = NULL;
93533c29 3630 struct drm_i915_gem_relocation_entry *relocs = NULL;
8dc5d147 3631 struct drm_i915_gem_request *request = NULL;
30dbf0c0 3632 int ret, ret2, i, pinned = 0;
673a394b 3633 uint64_t exec_offset;
5c12a07e 3634 uint32_t reloc_index;
6b95a207 3635 int pin_tries, flips;
673a394b 3636
852835f3
ZN
3637 struct intel_ring_buffer *ring = NULL;
3638
30dbf0c0
CW
3639 ret = i915_gem_check_is_wedged(dev);
3640 if (ret)
3641 return ret;
3642
673a394b
EA
3643#if WATCH_EXEC
3644 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3645 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3646#endif
d1b851fc
ZN
3647 if (args->flags & I915_EXEC_BSD) {
3648 if (!HAS_BSD(dev)) {
3649 DRM_ERROR("execbuf with wrong flag\n");
3650 return -EINVAL;
3651 }
3652 ring = &dev_priv->bsd_ring;
3653 } else {
3654 ring = &dev_priv->render_ring;
3655 }
3656
4f481ed2
EA
3657 if (args->buffer_count < 1) {
3658 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3659 return -EINVAL;
3660 }
c8e0f93a 3661 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3662 if (object_list == NULL) {
3663 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3664 args->buffer_count);
3665 ret = -ENOMEM;
3666 goto pre_mutex_err;
3667 }
673a394b 3668
201361a5 3669 if (args->num_cliprects != 0) {
9a298b2a
EA
3670 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3671 GFP_KERNEL);
a40e8d31
OA
3672 if (cliprects == NULL) {
3673 ret = -ENOMEM;
201361a5 3674 goto pre_mutex_err;
a40e8d31 3675 }
201361a5
EA
3676
3677 ret = copy_from_user(cliprects,
3678 (struct drm_clip_rect __user *)
3679 (uintptr_t) args->cliprects_ptr,
3680 sizeof(*cliprects) * args->num_cliprects);
3681 if (ret != 0) {
3682 DRM_ERROR("copy %d cliprects failed: %d\n",
3683 args->num_cliprects, ret);
c877cdce 3684 ret = -EFAULT;
201361a5
EA
3685 goto pre_mutex_err;
3686 }
3687 }
3688
8dc5d147
CW
3689 request = kzalloc(sizeof(*request), GFP_KERNEL);
3690 if (request == NULL) {
3691 ret = -ENOMEM;
3692 goto pre_mutex_err;
3693 }
3694
40a5f0de
EA
3695 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3696 &relocs);
3697 if (ret != 0)
3698 goto pre_mutex_err;
3699
76c1dec1
CW
3700 ret = i915_mutex_lock_interruptible(dev);
3701 if (ret)
3702 goto pre_mutex_err;
673a394b 3703
673a394b 3704 if (dev_priv->mm.suspended) {
673a394b 3705 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3706 ret = -EBUSY;
3707 goto pre_mutex_err;
673a394b
EA
3708 }
3709
ac94a962 3710 /* Look up object handles */
6b95a207 3711 flips = 0;
673a394b
EA
3712 for (i = 0; i < args->buffer_count; i++) {
3713 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3714 exec_list[i].handle);
3715 if (object_list[i] == NULL) {
3716 DRM_ERROR("Invalid object handle %d at index %d\n",
3717 exec_list[i].handle, i);
0ce907f8
CW
3718 /* prevent error path from reading uninitialized data */
3719 args->buffer_count = i + 1;
bf79cb91 3720 ret = -ENOENT;
673a394b
EA
3721 goto err;
3722 }
b70d11da 3723
23010e43 3724 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3725 if (obj_priv->in_execbuffer) {
3726 DRM_ERROR("Object %p appears more than once in object list\n",
3727 object_list[i]);
0ce907f8
CW
3728 /* prevent error path from reading uninitialized data */
3729 args->buffer_count = i + 1;
bf79cb91 3730 ret = -EINVAL;
b70d11da
KH
3731 goto err;
3732 }
3733 obj_priv->in_execbuffer = true;
6b95a207
KH
3734 flips += atomic_read(&obj_priv->pending_flip);
3735 }
3736
3737 if (flips > 0) {
3738 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3739 args->buffer_count);
3740 if (ret)
3741 goto err;
ac94a962 3742 }
673a394b 3743
ac94a962
KP
3744 /* Pin and relocate */
3745 for (pin_tries = 0; ; pin_tries++) {
3746 ret = 0;
40a5f0de
EA
3747 reloc_index = 0;
3748
ac94a962
KP
3749 for (i = 0; i < args->buffer_count; i++) {
3750 object_list[i]->pending_read_domains = 0;
3751 object_list[i]->pending_write_domain = 0;
3752 ret = i915_gem_object_pin_and_relocate(object_list[i],
3753 file_priv,
40a5f0de
EA
3754 &exec_list[i],
3755 &relocs[reloc_index]);
ac94a962
KP
3756 if (ret)
3757 break;
3758 pinned = i + 1;
40a5f0de 3759 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3760 }
3761 /* success */
3762 if (ret == 0)
3763 break;
3764
3765 /* error other than GTT full, or we've already tried again */
2939e1f5 3766 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3767 if (ret != -ERESTARTSYS) {
3768 unsigned long long total_size = 0;
3d1cc470
CW
3769 int num_fences = 0;
3770 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3771 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3772
07f73f69 3773 total_size += object_list[i]->size;
3d1cc470
CW
3774 num_fences +=
3775 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3776 obj_priv->tiling_mode != I915_TILING_NONE;
3777 }
3778 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3779 pinned+1, args->buffer_count,
3d1cc470
CW
3780 total_size, num_fences,
3781 ret);
07f73f69
CW
3782 DRM_ERROR("%d objects [%d pinned], "
3783 "%d object bytes [%d pinned], "
3784 "%d/%d gtt bytes\n",
3785 atomic_read(&dev->object_count),
3786 atomic_read(&dev->pin_count),
3787 atomic_read(&dev->object_memory),
3788 atomic_read(&dev->pin_memory),
3789 atomic_read(&dev->gtt_memory),
3790 dev->gtt_total);
3791 }
673a394b
EA
3792 goto err;
3793 }
ac94a962
KP
3794
3795 /* unpin all of our buffers */
3796 for (i = 0; i < pinned; i++)
3797 i915_gem_object_unpin(object_list[i]);
b1177636 3798 pinned = 0;
ac94a962
KP
3799
3800 /* evict everyone we can from the aperture */
3801 ret = i915_gem_evict_everything(dev);
07f73f69 3802 if (ret && ret != -ENOSPC)
ac94a962 3803 goto err;
673a394b
EA
3804 }
3805
3806 /* Set the pending read domains for the batch buffer to COMMAND */
3807 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3808 if (batch_obj->pending_write_domain) {
3809 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3810 ret = -EINVAL;
3811 goto err;
3812 }
3813 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3814
83d60795
CW
3815 /* Sanity check the batch buffer, prior to moving objects */
3816 exec_offset = exec_list[args->buffer_count - 1].offset;
3817 ret = i915_gem_check_execbuffer (args, exec_offset);
3818 if (ret != 0) {
3819 DRM_ERROR("execbuf with invalid offset/length\n");
3820 goto err;
3821 }
3822
646f0f6e
KP
3823 /* Zero the global flush/invalidate flags. These
3824 * will be modified as new domains are computed
3825 * for each object
3826 */
3827 dev->invalidate_domains = 0;
3828 dev->flush_domains = 0;
9220434a 3829 dev_priv->mm.flush_rings = 0;
646f0f6e 3830
673a394b
EA
3831 for (i = 0; i < args->buffer_count; i++) {
3832 struct drm_gem_object *obj = object_list[i];
673a394b 3833
646f0f6e 3834 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3835 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3836 }
3837
646f0f6e
KP
3838 if (dev->invalidate_domains | dev->flush_domains) {
3839#if WATCH_EXEC
3840 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3841 __func__,
3842 dev->invalidate_domains,
3843 dev->flush_domains);
3844#endif
c78ec30b 3845 i915_gem_flush(dev, file_priv,
646f0f6e 3846 dev->invalidate_domains,
9220434a
CW
3847 dev->flush_domains,
3848 dev_priv->mm.flush_rings);
a6910434
DV
3849 }
3850
efbeed96
EA
3851 for (i = 0; i < args->buffer_count; i++) {
3852 struct drm_gem_object *obj = object_list[i];
23010e43 3853 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3854 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3855
3856 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3857 if (obj->write_domain)
3858 list_move_tail(&obj_priv->gpu_write_list,
3859 &dev_priv->mm.gpu_write_list);
99fcb766 3860
1c5d22f7
CW
3861 trace_i915_gem_object_change_domain(obj,
3862 obj->read_domains,
3863 old_write_domain);
efbeed96
EA
3864 }
3865
673a394b
EA
3866#if WATCH_COHERENCY
3867 for (i = 0; i < args->buffer_count; i++) {
3868 i915_gem_object_check_coherency(object_list[i],
3869 exec_list[i].handle);
3870 }
3871#endif
3872
673a394b 3873#if WATCH_EXEC
6911a9b8 3874 i915_gem_dump_object(batch_obj,
673a394b
EA
3875 args->batch_len,
3876 __func__,
3877 ~0);
3878#endif
3879
673a394b 3880 /* Exec the batchbuffer */
852835f3
ZN
3881 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3882 cliprects, exec_offset);
673a394b
EA
3883 if (ret) {
3884 DRM_ERROR("dispatch failed %d\n", ret);
3885 goto err;
3886 }
3887
3888 /*
3889 * Ensure that the commands in the batch buffer are
3890 * finished before the interrupt fires
3891 */
8a1a49f9 3892 i915_retire_commands(dev, ring);
673a394b 3893
617dbe27
DV
3894 for (i = 0; i < args->buffer_count; i++) {
3895 struct drm_gem_object *obj = object_list[i];
3896 obj_priv = to_intel_bo(obj);
3897
3898 i915_gem_object_move_to_active(obj, ring);
617dbe27 3899 }
a56ba56c 3900
5c12a07e 3901 i915_add_request(dev, file_priv, request, ring);
8dc5d147 3902 request = NULL;
673a394b 3903
673a394b 3904err:
aad87dff
JL
3905 for (i = 0; i < pinned; i++)
3906 i915_gem_object_unpin(object_list[i]);
3907
b70d11da
KH
3908 for (i = 0; i < args->buffer_count; i++) {
3909 if (object_list[i]) {
23010e43 3910 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3911 obj_priv->in_execbuffer = false;
3912 }
aad87dff 3913 drm_gem_object_unreference(object_list[i]);
b70d11da 3914 }
673a394b 3915
673a394b
EA
3916 mutex_unlock(&dev->struct_mutex);
3917
93533c29 3918pre_mutex_err:
40a5f0de
EA
3919 /* Copy the updated relocations out regardless of current error
3920 * state. Failure to update the relocs would mean that the next
3921 * time userland calls execbuf, it would do so with presumed offset
3922 * state that didn't match the actual object state.
3923 */
3924 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3925 relocs);
3926 if (ret2 != 0) {
3927 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3928
3929 if (ret == 0)
3930 ret = ret2;
3931 }
3932
8e7d2b2c 3933 drm_free_large(object_list);
9a298b2a 3934 kfree(cliprects);
8dc5d147 3935 kfree(request);
673a394b
EA
3936
3937 return ret;
3938}
3939
76446cac
JB
3940/*
3941 * Legacy execbuffer just creates an exec2 list from the original exec object
3942 * list array and passes it to the real function.
3943 */
3944int
3945i915_gem_execbuffer(struct drm_device *dev, void *data,
3946 struct drm_file *file_priv)
3947{
3948 struct drm_i915_gem_execbuffer *args = data;
3949 struct drm_i915_gem_execbuffer2 exec2;
3950 struct drm_i915_gem_exec_object *exec_list = NULL;
3951 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3952 int ret, i;
3953
3954#if WATCH_EXEC
3955 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3956 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3957#endif
3958
3959 if (args->buffer_count < 1) {
3960 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3961 return -EINVAL;
3962 }
3963
3964 /* Copy in the exec list from userland */
3965 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3966 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3967 if (exec_list == NULL || exec2_list == NULL) {
3968 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3969 args->buffer_count);
3970 drm_free_large(exec_list);
3971 drm_free_large(exec2_list);
3972 return -ENOMEM;
3973 }
3974 ret = copy_from_user(exec_list,
3975 (struct drm_i915_relocation_entry __user *)
3976 (uintptr_t) args->buffers_ptr,
3977 sizeof(*exec_list) * args->buffer_count);
3978 if (ret != 0) {
3979 DRM_ERROR("copy %d exec entries failed %d\n",
3980 args->buffer_count, ret);
3981 drm_free_large(exec_list);
3982 drm_free_large(exec2_list);
3983 return -EFAULT;
3984 }
3985
3986 for (i = 0; i < args->buffer_count; i++) {
3987 exec2_list[i].handle = exec_list[i].handle;
3988 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3989 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3990 exec2_list[i].alignment = exec_list[i].alignment;
3991 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 3992 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
3993 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3994 else
3995 exec2_list[i].flags = 0;
3996 }
3997
3998 exec2.buffers_ptr = args->buffers_ptr;
3999 exec2.buffer_count = args->buffer_count;
4000 exec2.batch_start_offset = args->batch_start_offset;
4001 exec2.batch_len = args->batch_len;
4002 exec2.DR1 = args->DR1;
4003 exec2.DR4 = args->DR4;
4004 exec2.num_cliprects = args->num_cliprects;
4005 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 4006 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
4007
4008 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4009 if (!ret) {
4010 /* Copy the new buffer offsets back to the user's exec list. */
4011 for (i = 0; i < args->buffer_count; i++)
4012 exec_list[i].offset = exec2_list[i].offset;
4013 /* ... and back out to userspace */
4014 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4015 (uintptr_t) args->buffers_ptr,
4016 exec_list,
4017 sizeof(*exec_list) * args->buffer_count);
4018 if (ret) {
4019 ret = -EFAULT;
4020 DRM_ERROR("failed to copy %d exec entries "
4021 "back to user (%d)\n",
4022 args->buffer_count, ret);
4023 }
76446cac
JB
4024 }
4025
4026 drm_free_large(exec_list);
4027 drm_free_large(exec2_list);
4028 return ret;
4029}
4030
4031int
4032i915_gem_execbuffer2(struct drm_device *dev, void *data,
4033 struct drm_file *file_priv)
4034{
4035 struct drm_i915_gem_execbuffer2 *args = data;
4036 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4037 int ret;
4038
4039#if WATCH_EXEC
4040 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4041 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4042#endif
4043
4044 if (args->buffer_count < 1) {
4045 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4046 return -EINVAL;
4047 }
4048
4049 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4050 if (exec2_list == NULL) {
4051 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4052 args->buffer_count);
4053 return -ENOMEM;
4054 }
4055 ret = copy_from_user(exec2_list,
4056 (struct drm_i915_relocation_entry __user *)
4057 (uintptr_t) args->buffers_ptr,
4058 sizeof(*exec2_list) * args->buffer_count);
4059 if (ret != 0) {
4060 DRM_ERROR("copy %d exec entries failed %d\n",
4061 args->buffer_count, ret);
4062 drm_free_large(exec2_list);
4063 return -EFAULT;
4064 }
4065
4066 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4067 if (!ret) {
4068 /* Copy the new buffer offsets back to the user's exec list. */
4069 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4070 (uintptr_t) args->buffers_ptr,
4071 exec2_list,
4072 sizeof(*exec2_list) * args->buffer_count);
4073 if (ret) {
4074 ret = -EFAULT;
4075 DRM_ERROR("failed to copy %d exec entries "
4076 "back to user (%d)\n",
4077 args->buffer_count, ret);
4078 }
4079 }
4080
4081 drm_free_large(exec2_list);
4082 return ret;
4083}
4084
673a394b
EA
4085int
4086i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4087{
4088 struct drm_device *dev = obj->dev;
f13d3f73 4089 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4090 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4091 int ret;
4092
778c3544 4093 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 4094 WARN_ON(i915_verify_lists(dev));
ac0c6b5a
CW
4095
4096 if (obj_priv->gtt_space != NULL) {
4097 if (alignment == 0)
4098 alignment = i915_gem_get_gtt_alignment(obj);
4099 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4100 WARN(obj_priv->pin_count,
4101 "bo is already pinned with incorrect alignment:"
4102 " offset=%x, req.alignment=%x\n",
4103 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4104 ret = i915_gem_object_unbind(obj);
4105 if (ret)
4106 return ret;
4107 }
4108 }
4109
673a394b
EA
4110 if (obj_priv->gtt_space == NULL) {
4111 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4112 if (ret)
673a394b 4113 return ret;
22c344e9 4114 }
76446cac 4115
673a394b
EA
4116 obj_priv->pin_count++;
4117
4118 /* If the object is not active and not pending a flush,
4119 * remove it from the inactive list
4120 */
4121 if (obj_priv->pin_count == 1) {
4122 atomic_inc(&dev->pin_count);
4123 atomic_add(obj->size, &dev->pin_memory);
f13d3f73
CW
4124 if (!obj_priv->active)
4125 list_move_tail(&obj_priv->list,
4126 &dev_priv->mm.pinned_list);
673a394b 4127 }
673a394b 4128
23bc5982 4129 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4130 return 0;
4131}
4132
4133void
4134i915_gem_object_unpin(struct drm_gem_object *obj)
4135{
4136 struct drm_device *dev = obj->dev;
4137 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4138 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4139
23bc5982 4140 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4141 obj_priv->pin_count--;
4142 BUG_ON(obj_priv->pin_count < 0);
4143 BUG_ON(obj_priv->gtt_space == NULL);
4144
4145 /* If the object is no longer pinned, and is
4146 * neither active nor being flushed, then stick it on
4147 * the inactive list
4148 */
4149 if (obj_priv->pin_count == 0) {
f13d3f73 4150 if (!obj_priv->active)
673a394b
EA
4151 list_move_tail(&obj_priv->list,
4152 &dev_priv->mm.inactive_list);
4153 atomic_dec(&dev->pin_count);
4154 atomic_sub(obj->size, &dev->pin_memory);
4155 }
23bc5982 4156 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4157}
4158
4159int
4160i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4161 struct drm_file *file_priv)
4162{
4163 struct drm_i915_gem_pin *args = data;
4164 struct drm_gem_object *obj;
4165 struct drm_i915_gem_object *obj_priv;
4166 int ret;
4167
673a394b
EA
4168 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4169 if (obj == NULL) {
4170 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4171 args->handle);
bf79cb91 4172 return -ENOENT;
673a394b 4173 }
23010e43 4174 obj_priv = to_intel_bo(obj);
673a394b 4175
76c1dec1
CW
4176 ret = i915_mutex_lock_interruptible(dev);
4177 if (ret) {
4178 drm_gem_object_unreference_unlocked(obj);
4179 return ret;
4180 }
4181
bb6baf76
CW
4182 if (obj_priv->madv != I915_MADV_WILLNEED) {
4183 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4184 drm_gem_object_unreference(obj);
4185 mutex_unlock(&dev->struct_mutex);
4186 return -EINVAL;
4187 }
4188
79e53945
JB
4189 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4190 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4191 args->handle);
96dec61d 4192 drm_gem_object_unreference(obj);
673a394b 4193 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4194 return -EINVAL;
4195 }
4196
4197 obj_priv->user_pin_count++;
4198 obj_priv->pin_filp = file_priv;
4199 if (obj_priv->user_pin_count == 1) {
4200 ret = i915_gem_object_pin(obj, args->alignment);
4201 if (ret != 0) {
4202 drm_gem_object_unreference(obj);
4203 mutex_unlock(&dev->struct_mutex);
4204 return ret;
4205 }
673a394b
EA
4206 }
4207
4208 /* XXX - flush the CPU caches for pinned objects
4209 * as the X server doesn't manage domains yet
4210 */
e47c68e9 4211 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4212 args->offset = obj_priv->gtt_offset;
4213 drm_gem_object_unreference(obj);
4214 mutex_unlock(&dev->struct_mutex);
4215
4216 return 0;
4217}
4218
4219int
4220i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4221 struct drm_file *file_priv)
4222{
4223 struct drm_i915_gem_pin *args = data;
4224 struct drm_gem_object *obj;
79e53945 4225 struct drm_i915_gem_object *obj_priv;
76c1dec1 4226 int ret;
673a394b
EA
4227
4228 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4229 if (obj == NULL) {
4230 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4231 args->handle);
bf79cb91 4232 return -ENOENT;
673a394b
EA
4233 }
4234
23010e43 4235 obj_priv = to_intel_bo(obj);
76c1dec1
CW
4236
4237 ret = i915_mutex_lock_interruptible(dev);
4238 if (ret) {
4239 drm_gem_object_unreference_unlocked(obj);
4240 return ret;
4241 }
4242
79e53945
JB
4243 if (obj_priv->pin_filp != file_priv) {
4244 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4245 args->handle);
4246 drm_gem_object_unreference(obj);
4247 mutex_unlock(&dev->struct_mutex);
4248 return -EINVAL;
4249 }
4250 obj_priv->user_pin_count--;
4251 if (obj_priv->user_pin_count == 0) {
4252 obj_priv->pin_filp = NULL;
4253 i915_gem_object_unpin(obj);
4254 }
673a394b
EA
4255
4256 drm_gem_object_unreference(obj);
4257 mutex_unlock(&dev->struct_mutex);
4258 return 0;
4259}
4260
4261int
4262i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4263 struct drm_file *file_priv)
4264{
4265 struct drm_i915_gem_busy *args = data;
4266 struct drm_gem_object *obj;
4267 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4268 int ret;
4269
673a394b
EA
4270 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4271 if (obj == NULL) {
4272 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4273 args->handle);
bf79cb91 4274 return -ENOENT;
673a394b
EA
4275 }
4276
76c1dec1
CW
4277 ret = i915_mutex_lock_interruptible(dev);
4278 if (ret) {
4279 drm_gem_object_unreference_unlocked(obj);
4280 return ret;
30dbf0c0
CW
4281 }
4282
0be555b6
CW
4283 /* Count all active objects as busy, even if they are currently not used
4284 * by the gpu. Users of this interface expect objects to eventually
4285 * become non-busy without any further actions, therefore emit any
4286 * necessary flushes here.
c4de0a5d 4287 */
0be555b6
CW
4288 obj_priv = to_intel_bo(obj);
4289 args->busy = obj_priv->active;
4290 if (args->busy) {
4291 /* Unconditionally flush objects, even when the gpu still uses this
4292 * object. Userspace calling this function indicates that it wants to
4293 * use this buffer rather sooner than later, so issuing the required
4294 * flush earlier is beneficial.
4295 */
c78ec30b
CW
4296 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4297 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4298 obj_priv->ring,
4299 0, obj->write_domain);
0be555b6
CW
4300
4301 /* Update the active list for the hardware's current position.
4302 * Otherwise this only updates on a delayed timer or when irqs
4303 * are actually unmasked, and our working set ends up being
4304 * larger than required.
4305 */
4306 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4307
4308 args->busy = obj_priv->active;
4309 }
673a394b
EA
4310
4311 drm_gem_object_unreference(obj);
4312 mutex_unlock(&dev->struct_mutex);
76c1dec1 4313 return 0;
673a394b
EA
4314}
4315
4316int
4317i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4318 struct drm_file *file_priv)
4319{
4320 return i915_gem_ring_throttle(dev, file_priv);
4321}
4322
3ef94daa
CW
4323int
4324i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4325 struct drm_file *file_priv)
4326{
4327 struct drm_i915_gem_madvise *args = data;
4328 struct drm_gem_object *obj;
4329 struct drm_i915_gem_object *obj_priv;
76c1dec1 4330 int ret;
3ef94daa
CW
4331
4332 switch (args->madv) {
4333 case I915_MADV_DONTNEED:
4334 case I915_MADV_WILLNEED:
4335 break;
4336 default:
4337 return -EINVAL;
4338 }
4339
4340 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4341 if (obj == NULL) {
4342 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4343 args->handle);
bf79cb91 4344 return -ENOENT;
3ef94daa 4345 }
23010e43 4346 obj_priv = to_intel_bo(obj);
3ef94daa 4347
76c1dec1
CW
4348 ret = i915_mutex_lock_interruptible(dev);
4349 if (ret) {
4350 drm_gem_object_unreference_unlocked(obj);
4351 return ret;
4352 }
4353
3ef94daa
CW
4354 if (obj_priv->pin_count) {
4355 drm_gem_object_unreference(obj);
4356 mutex_unlock(&dev->struct_mutex);
4357
4358 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4359 return -EINVAL;
4360 }
4361
bb6baf76
CW
4362 if (obj_priv->madv != __I915_MADV_PURGED)
4363 obj_priv->madv = args->madv;
3ef94daa 4364
2d7ef395
CW
4365 /* if the object is no longer bound, discard its backing storage */
4366 if (i915_gem_object_is_purgeable(obj_priv) &&
4367 obj_priv->gtt_space == NULL)
4368 i915_gem_object_truncate(obj);
4369
bb6baf76
CW
4370 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4371
3ef94daa
CW
4372 drm_gem_object_unreference(obj);
4373 mutex_unlock(&dev->struct_mutex);
4374
4375 return 0;
4376}
4377
ac52bc56
DV
4378struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4379 size_t size)
4380{
c397b908 4381 struct drm_i915_gem_object *obj;
ac52bc56 4382
c397b908
DV
4383 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4384 if (obj == NULL)
4385 return NULL;
673a394b 4386
c397b908
DV
4387 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4388 kfree(obj);
4389 return NULL;
4390 }
673a394b 4391
c397b908
DV
4392 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4393 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4394
c397b908 4395 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4396 obj->base.driver_private = NULL;
c397b908
DV
4397 obj->fence_reg = I915_FENCE_REG_NONE;
4398 INIT_LIST_HEAD(&obj->list);
4399 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4400 obj->madv = I915_MADV_WILLNEED;
de151cf6 4401
c397b908
DV
4402 trace_i915_gem_object_create(&obj->base);
4403
4404 return &obj->base;
4405}
4406
4407int i915_gem_init_object(struct drm_gem_object *obj)
4408{
4409 BUG();
de151cf6 4410
673a394b
EA
4411 return 0;
4412}
4413
be72615b 4414static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4415{
de151cf6 4416 struct drm_device *dev = obj->dev;
be72615b 4417 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4418 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4419 int ret;
673a394b 4420
be72615b
CW
4421 ret = i915_gem_object_unbind(obj);
4422 if (ret == -ERESTARTSYS) {
4423 list_move(&obj_priv->list,
4424 &dev_priv->mm.deferred_free_list);
4425 return;
4426 }
673a394b 4427
7e616158
CW
4428 if (obj_priv->mmap_offset)
4429 i915_gem_free_mmap_offset(obj);
de151cf6 4430
c397b908
DV
4431 drm_gem_object_release(obj);
4432
9a298b2a 4433 kfree(obj_priv->page_cpu_valid);
280b713b 4434 kfree(obj_priv->bit_17);
c397b908 4435 kfree(obj_priv);
673a394b
EA
4436}
4437
be72615b
CW
4438void i915_gem_free_object(struct drm_gem_object *obj)
4439{
4440 struct drm_device *dev = obj->dev;
4441 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4442
4443 trace_i915_gem_object_destroy(obj);
4444
4445 while (obj_priv->pin_count > 0)
4446 i915_gem_object_unpin(obj);
4447
4448 if (obj_priv->phys_obj)
4449 i915_gem_detach_phys_object(dev, obj);
4450
4451 i915_gem_free_object_tail(obj);
4452}
4453
29105ccc
CW
4454int
4455i915_gem_idle(struct drm_device *dev)
4456{
4457 drm_i915_private_t *dev_priv = dev->dev_private;
4458 int ret;
28dfe52a 4459
29105ccc 4460 mutex_lock(&dev->struct_mutex);
1c5d22f7 4461
8187a2b7 4462 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4463 (dev_priv->render_ring.gem_object == NULL) ||
4464 (HAS_BSD(dev) &&
4465 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4466 mutex_unlock(&dev->struct_mutex);
4467 return 0;
28dfe52a
EA
4468 }
4469
29105ccc 4470 ret = i915_gpu_idle(dev);
6dbe2772
KP
4471 if (ret) {
4472 mutex_unlock(&dev->struct_mutex);
673a394b 4473 return ret;
6dbe2772 4474 }
673a394b 4475
29105ccc
CW
4476 /* Under UMS, be paranoid and evict. */
4477 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4478 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4479 if (ret) {
4480 mutex_unlock(&dev->struct_mutex);
4481 return ret;
4482 }
4483 }
4484
4485 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4486 * We need to replace this with a semaphore, or something.
4487 * And not confound mm.suspended!
4488 */
4489 dev_priv->mm.suspended = 1;
bc0c7f14 4490 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4491
4492 i915_kernel_lost_context(dev);
6dbe2772 4493 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4494
6dbe2772
KP
4495 mutex_unlock(&dev->struct_mutex);
4496
29105ccc
CW
4497 /* Cancel the retire work handler, which should be idle now. */
4498 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4499
673a394b
EA
4500 return 0;
4501}
4502
e552eb70
JB
4503/*
4504 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4505 * over cache flushing.
4506 */
8187a2b7 4507static int
e552eb70
JB
4508i915_gem_init_pipe_control(struct drm_device *dev)
4509{
4510 drm_i915_private_t *dev_priv = dev->dev_private;
4511 struct drm_gem_object *obj;
4512 struct drm_i915_gem_object *obj_priv;
4513 int ret;
4514
34dc4d44 4515 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4516 if (obj == NULL) {
4517 DRM_ERROR("Failed to allocate seqno page\n");
4518 ret = -ENOMEM;
4519 goto err;
4520 }
4521 obj_priv = to_intel_bo(obj);
4522 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4523
4524 ret = i915_gem_object_pin(obj, 4096);
4525 if (ret)
4526 goto err_unref;
4527
4528 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4529 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4530 if (dev_priv->seqno_page == NULL)
4531 goto err_unpin;
4532
4533 dev_priv->seqno_obj = obj;
4534 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4535
4536 return 0;
4537
4538err_unpin:
4539 i915_gem_object_unpin(obj);
4540err_unref:
4541 drm_gem_object_unreference(obj);
4542err:
4543 return ret;
4544}
4545
8187a2b7
ZN
4546
4547static void
e552eb70
JB
4548i915_gem_cleanup_pipe_control(struct drm_device *dev)
4549{
4550 drm_i915_private_t *dev_priv = dev->dev_private;
4551 struct drm_gem_object *obj;
4552 struct drm_i915_gem_object *obj_priv;
4553
4554 obj = dev_priv->seqno_obj;
4555 obj_priv = to_intel_bo(obj);
4556 kunmap(obj_priv->pages[0]);
4557 i915_gem_object_unpin(obj);
4558 drm_gem_object_unreference(obj);
4559 dev_priv->seqno_obj = NULL;
4560
4561 dev_priv->seqno_page = NULL;
673a394b
EA
4562}
4563
8187a2b7
ZN
4564int
4565i915_gem_init_ringbuffer(struct drm_device *dev)
4566{
4567 drm_i915_private_t *dev_priv = dev->dev_private;
4568 int ret;
68f95ba9 4569
8187a2b7
ZN
4570 if (HAS_PIPE_CONTROL(dev)) {
4571 ret = i915_gem_init_pipe_control(dev);
4572 if (ret)
4573 return ret;
4574 }
68f95ba9 4575
5c1143bb 4576 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4577 if (ret)
4578 goto cleanup_pipe_control;
4579
4580 if (HAS_BSD(dev)) {
5c1143bb 4581 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4582 if (ret)
4583 goto cleanup_render_ring;
d1b851fc 4584 }
68f95ba9 4585
6f392d54
CW
4586 dev_priv->next_seqno = 1;
4587
68f95ba9
CW
4588 return 0;
4589
4590cleanup_render_ring:
4591 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4592cleanup_pipe_control:
4593 if (HAS_PIPE_CONTROL(dev))
4594 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4595 return ret;
4596}
4597
4598void
4599i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4600{
4601 drm_i915_private_t *dev_priv = dev->dev_private;
4602
4603 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4604 if (HAS_BSD(dev))
4605 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4606 if (HAS_PIPE_CONTROL(dev))
4607 i915_gem_cleanup_pipe_control(dev);
4608}
4609
673a394b
EA
4610int
4611i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4612 struct drm_file *file_priv)
4613{
4614 drm_i915_private_t *dev_priv = dev->dev_private;
4615 int ret;
4616
79e53945
JB
4617 if (drm_core_check_feature(dev, DRIVER_MODESET))
4618 return 0;
4619
ba1234d1 4620 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4621 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4622 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4623 }
4624
673a394b 4625 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4626 dev_priv->mm.suspended = 0;
4627
4628 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4629 if (ret != 0) {
4630 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4631 return ret;
d816f6ac 4632 }
9bb2d6f9 4633
852835f3 4634 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4635 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
673a394b
EA
4636 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4637 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4638 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4639 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4640 mutex_unlock(&dev->struct_mutex);
dbb19d30 4641
5f35308b
CW
4642 ret = drm_irq_install(dev);
4643 if (ret)
4644 goto cleanup_ringbuffer;
dbb19d30 4645
673a394b 4646 return 0;
5f35308b
CW
4647
4648cleanup_ringbuffer:
4649 mutex_lock(&dev->struct_mutex);
4650 i915_gem_cleanup_ringbuffer(dev);
4651 dev_priv->mm.suspended = 1;
4652 mutex_unlock(&dev->struct_mutex);
4653
4654 return ret;
673a394b
EA
4655}
4656
4657int
4658i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4659 struct drm_file *file_priv)
4660{
79e53945
JB
4661 if (drm_core_check_feature(dev, DRIVER_MODESET))
4662 return 0;
4663
dbb19d30 4664 drm_irq_uninstall(dev);
e6890f6f 4665 return i915_gem_idle(dev);
673a394b
EA
4666}
4667
4668void
4669i915_gem_lastclose(struct drm_device *dev)
4670{
4671 int ret;
673a394b 4672
e806b495
EA
4673 if (drm_core_check_feature(dev, DRIVER_MODESET))
4674 return;
4675
6dbe2772
KP
4676 ret = i915_gem_idle(dev);
4677 if (ret)
4678 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4679}
4680
4681void
4682i915_gem_load(struct drm_device *dev)
4683{
b5aa8a0f 4684 int i;
673a394b
EA
4685 drm_i915_private_t *dev_priv = dev->dev_private;
4686
673a394b 4687 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4688 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4689 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4690 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4691 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4692 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4693 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4694 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4695 if (HAS_BSD(dev)) {
4696 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4697 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4698 }
007cc8ac
DV
4699 for (i = 0; i < 16; i++)
4700 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4701 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4702 i915_gem_retire_work_handler);
30dbf0c0 4703 init_completion(&dev_priv->error_completion);
31169714
CW
4704 spin_lock(&shrink_list_lock);
4705 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4706 spin_unlock(&shrink_list_lock);
4707
94400120
DA
4708 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4709 if (IS_GEN3(dev)) {
4710 u32 tmp = I915_READ(MI_ARB_STATE);
4711 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4712 /* arb state is a masked write, so set bit + bit in mask */
4713 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4714 I915_WRITE(MI_ARB_STATE, tmp);
4715 }
4716 }
4717
de151cf6 4718 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4719 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4720 dev_priv->fence_reg_start = 3;
de151cf6 4721
a6c45cf0 4722 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4723 dev_priv->num_fence_regs = 16;
4724 else
4725 dev_priv->num_fence_regs = 8;
4726
b5aa8a0f 4727 /* Initialize fence registers to zero */
a6c45cf0
CW
4728 switch (INTEL_INFO(dev)->gen) {
4729 case 6:
4730 for (i = 0; i < 16; i++)
4731 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4732 break;
4733 case 5:
4734 case 4:
b5aa8a0f
GH
4735 for (i = 0; i < 16; i++)
4736 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4737 break;
4738 case 3:
b5aa8a0f
GH
4739 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4740 for (i = 0; i < 8; i++)
4741 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4742 case 2:
4743 for (i = 0; i < 8; i++)
4744 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4745 break;
b5aa8a0f 4746 }
673a394b 4747 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4748 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4749}
71acb5eb
DA
4750
4751/*
4752 * Create a physically contiguous memory object for this object
4753 * e.g. for cursor + overlay regs
4754 */
995b6762
CW
4755static int i915_gem_init_phys_object(struct drm_device *dev,
4756 int id, int size, int align)
71acb5eb
DA
4757{
4758 drm_i915_private_t *dev_priv = dev->dev_private;
4759 struct drm_i915_gem_phys_object *phys_obj;
4760 int ret;
4761
4762 if (dev_priv->mm.phys_objs[id - 1] || !size)
4763 return 0;
4764
9a298b2a 4765 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4766 if (!phys_obj)
4767 return -ENOMEM;
4768
4769 phys_obj->id = id;
4770
6eeefaf3 4771 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4772 if (!phys_obj->handle) {
4773 ret = -ENOMEM;
4774 goto kfree_obj;
4775 }
4776#ifdef CONFIG_X86
4777 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4778#endif
4779
4780 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4781
4782 return 0;
4783kfree_obj:
9a298b2a 4784 kfree(phys_obj);
71acb5eb
DA
4785 return ret;
4786}
4787
995b6762 4788static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4789{
4790 drm_i915_private_t *dev_priv = dev->dev_private;
4791 struct drm_i915_gem_phys_object *phys_obj;
4792
4793 if (!dev_priv->mm.phys_objs[id - 1])
4794 return;
4795
4796 phys_obj = dev_priv->mm.phys_objs[id - 1];
4797 if (phys_obj->cur_obj) {
4798 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4799 }
4800
4801#ifdef CONFIG_X86
4802 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4803#endif
4804 drm_pci_free(dev, phys_obj->handle);
4805 kfree(phys_obj);
4806 dev_priv->mm.phys_objs[id - 1] = NULL;
4807}
4808
4809void i915_gem_free_all_phys_object(struct drm_device *dev)
4810{
4811 int i;
4812
260883c8 4813 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4814 i915_gem_free_phys_object(dev, i);
4815}
4816
4817void i915_gem_detach_phys_object(struct drm_device *dev,
4818 struct drm_gem_object *obj)
4819{
4820 struct drm_i915_gem_object *obj_priv;
4821 int i;
4822 int ret;
4823 int page_count;
4824
23010e43 4825 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4826 if (!obj_priv->phys_obj)
4827 return;
4828
4bdadb97 4829 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4830 if (ret)
4831 goto out;
4832
4833 page_count = obj->size / PAGE_SIZE;
4834
4835 for (i = 0; i < page_count; i++) {
856fa198 4836 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4837 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4838
4839 memcpy(dst, src, PAGE_SIZE);
4840 kunmap_atomic(dst, KM_USER0);
4841 }
856fa198 4842 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4843 drm_agp_chipset_flush(dev);
d78b47b9
CW
4844
4845 i915_gem_object_put_pages(obj);
71acb5eb
DA
4846out:
4847 obj_priv->phys_obj->cur_obj = NULL;
4848 obj_priv->phys_obj = NULL;
4849}
4850
4851int
4852i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4853 struct drm_gem_object *obj,
4854 int id,
4855 int align)
71acb5eb
DA
4856{
4857 drm_i915_private_t *dev_priv = dev->dev_private;
4858 struct drm_i915_gem_object *obj_priv;
4859 int ret = 0;
4860 int page_count;
4861 int i;
4862
4863 if (id > I915_MAX_PHYS_OBJECT)
4864 return -EINVAL;
4865
23010e43 4866 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4867
4868 if (obj_priv->phys_obj) {
4869 if (obj_priv->phys_obj->id == id)
4870 return 0;
4871 i915_gem_detach_phys_object(dev, obj);
4872 }
4873
71acb5eb
DA
4874 /* create a new object */
4875 if (!dev_priv->mm.phys_objs[id - 1]) {
4876 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4877 obj->size, align);
71acb5eb 4878 if (ret) {
aeb565df 4879 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4880 goto out;
4881 }
4882 }
4883
4884 /* bind to the object */
4885 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4886 obj_priv->phys_obj->cur_obj = obj;
4887
4bdadb97 4888 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4889 if (ret) {
4890 DRM_ERROR("failed to get page list\n");
4891 goto out;
4892 }
4893
4894 page_count = obj->size / PAGE_SIZE;
4895
4896 for (i = 0; i < page_count; i++) {
856fa198 4897 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4898 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4899
4900 memcpy(dst, src, PAGE_SIZE);
4901 kunmap_atomic(src, KM_USER0);
4902 }
4903
d78b47b9
CW
4904 i915_gem_object_put_pages(obj);
4905
71acb5eb
DA
4906 return 0;
4907out:
4908 return ret;
4909}
4910
4911static int
4912i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4913 struct drm_i915_gem_pwrite *args,
4914 struct drm_file *file_priv)
4915{
23010e43 4916 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4917 void *obj_addr;
4918 int ret;
4919 char __user *user_data;
4920
4921 user_data = (char __user *) (uintptr_t) args->data_ptr;
4922 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4923
44d98a61 4924 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4925 ret = copy_from_user(obj_addr, user_data, args->size);
4926 if (ret)
4927 return -EFAULT;
4928
4929 drm_agp_chipset_flush(dev);
4930 return 0;
4931}
b962442e 4932
f787a5f5 4933void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4934{
f787a5f5 4935 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4936
4937 /* Clean up our request list when the client is going away, so that
4938 * later retire_requests won't dereference our soon-to-be-gone
4939 * file_priv.
4940 */
1c25595f 4941 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4942 while (!list_empty(&file_priv->mm.request_list)) {
4943 struct drm_i915_gem_request *request;
4944
4945 request = list_first_entry(&file_priv->mm.request_list,
4946 struct drm_i915_gem_request,
4947 client_list);
4948 list_del(&request->client_list);
4949 request->file_priv = NULL;
4950 }
1c25595f 4951 spin_unlock(&file_priv->mm.lock);
b962442e 4952}
31169714 4953
1637ef41
CW
4954static int
4955i915_gpu_is_active(struct drm_device *dev)
4956{
4957 drm_i915_private_t *dev_priv = dev->dev_private;
4958 int lists_empty;
4959
1637ef41 4960 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4961 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4962 if (HAS_BSD(dev))
4963 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4964
4965 return !lists_empty;
4966}
4967
31169714 4968static int
7f8275d0 4969i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4970{
4971 drm_i915_private_t *dev_priv, *next_dev;
4972 struct drm_i915_gem_object *obj_priv, *next_obj;
4973 int cnt = 0;
4974 int would_deadlock = 1;
4975
4976 /* "fast-path" to count number of available objects */
4977 if (nr_to_scan == 0) {
4978 spin_lock(&shrink_list_lock);
4979 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4980 struct drm_device *dev = dev_priv->dev;
4981
4982 if (mutex_trylock(&dev->struct_mutex)) {
4983 list_for_each_entry(obj_priv,
4984 &dev_priv->mm.inactive_list,
4985 list)
4986 cnt++;
4987 mutex_unlock(&dev->struct_mutex);
4988 }
4989 }
4990 spin_unlock(&shrink_list_lock);
4991
4992 return (cnt / 100) * sysctl_vfs_cache_pressure;
4993 }
4994
4995 spin_lock(&shrink_list_lock);
4996
1637ef41 4997rescan:
31169714
CW
4998 /* first scan for clean buffers */
4999 list_for_each_entry_safe(dev_priv, next_dev,
5000 &shrink_list, mm.shrink_list) {
5001 struct drm_device *dev = dev_priv->dev;
5002
5003 if (! mutex_trylock(&dev->struct_mutex))
5004 continue;
5005
5006 spin_unlock(&shrink_list_lock);
b09a1fec 5007 i915_gem_retire_requests(dev);
31169714
CW
5008
5009 list_for_each_entry_safe(obj_priv, next_obj,
5010 &dev_priv->mm.inactive_list,
5011 list) {
5012 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 5013 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
5014 if (--nr_to_scan <= 0)
5015 break;
5016 }
5017 }
5018
5019 spin_lock(&shrink_list_lock);
5020 mutex_unlock(&dev->struct_mutex);
5021
963b4836
CW
5022 would_deadlock = 0;
5023
31169714
CW
5024 if (nr_to_scan <= 0)
5025 break;
5026 }
5027
5028 /* second pass, evict/count anything still on the inactive list */
5029 list_for_each_entry_safe(dev_priv, next_dev,
5030 &shrink_list, mm.shrink_list) {
5031 struct drm_device *dev = dev_priv->dev;
5032
5033 if (! mutex_trylock(&dev->struct_mutex))
5034 continue;
5035
5036 spin_unlock(&shrink_list_lock);
5037
5038 list_for_each_entry_safe(obj_priv, next_obj,
5039 &dev_priv->mm.inactive_list,
5040 list) {
5041 if (nr_to_scan > 0) {
a8089e84 5042 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
5043 nr_to_scan--;
5044 } else
5045 cnt++;
5046 }
5047
5048 spin_lock(&shrink_list_lock);
5049 mutex_unlock(&dev->struct_mutex);
5050
5051 would_deadlock = 0;
5052 }
5053
1637ef41
CW
5054 if (nr_to_scan) {
5055 int active = 0;
5056
5057 /*
5058 * We are desperate for pages, so as a last resort, wait
5059 * for the GPU to finish and discard whatever we can.
5060 * This has a dramatic impact to reduce the number of
5061 * OOM-killer events whilst running the GPU aggressively.
5062 */
5063 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5064 struct drm_device *dev = dev_priv->dev;
5065
5066 if (!mutex_trylock(&dev->struct_mutex))
5067 continue;
5068
5069 spin_unlock(&shrink_list_lock);
5070
5071 if (i915_gpu_is_active(dev)) {
5072 i915_gpu_idle(dev);
5073 active++;
5074 }
5075
5076 spin_lock(&shrink_list_lock);
5077 mutex_unlock(&dev->struct_mutex);
5078 }
5079
5080 if (active)
5081 goto rescan;
5082 }
5083
31169714
CW
5084 spin_unlock(&shrink_list_lock);
5085
5086 if (would_deadlock)
5087 return -1;
5088 else if (cnt > 0)
5089 return (cnt / 100) * sysctl_vfs_cache_pressure;
5090 else
5091 return 0;
5092}
5093
5094static struct shrinker shrinker = {
5095 .shrink = i915_gem_shrink,
5096 .seeks = DEFAULT_SEEKS,
5097};
5098
5099__init void
5100i915_gem_shrinker_init(void)
5101{
5102 register_shrinker(&shrinker);
5103}
5104
5105__exit void
5106i915_gem_shrinker_exit(void)
5107{
5108 unregister_shrinker(&shrinker);
5109}