]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: simplify swapin/out swizzle checking a bit
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
43 bool write);
44static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
05394f39 47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
88241785
CW
48static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
49 unsigned alignment,
50 bool map_and_fenceable);
d9e86c0e
CW
51static void i915_gem_clear_fence_reg(struct drm_device *dev,
52 struct drm_i915_fence_reg *reg);
05394f39
CW
53static int i915_gem_phys_pwrite(struct drm_device *dev,
54 struct drm_i915_gem_object *obj,
71acb5eb 55 struct drm_i915_gem_pwrite *args,
05394f39
CW
56 struct drm_file *file);
57static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 58
17250b71 59static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 60 struct shrink_control *sc);
31169714 61
73aa808f
CW
62/* some bookkeeping */
63static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
64 size_t size)
65{
66 dev_priv->mm.object_count++;
67 dev_priv->mm.object_memory += size;
68}
69
70static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
71 size_t size)
72{
73 dev_priv->mm.object_count--;
74 dev_priv->mm.object_memory -= size;
75}
76
21dd3734
CW
77static int
78i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
79{
80 struct drm_i915_private *dev_priv = dev->dev_private;
81 struct completion *x = &dev_priv->error_completion;
82 unsigned long flags;
83 int ret;
84
85 if (!atomic_read(&dev_priv->mm.wedged))
86 return 0;
87
88 ret = wait_for_completion_interruptible(x);
89 if (ret)
90 return ret;
91
21dd3734
CW
92 if (atomic_read(&dev_priv->mm.wedged)) {
93 /* GPU is hung, bump the completion count to account for
94 * the token we just consumed so that we never hit zero and
95 * end up waiting upon a subsequent completion event that
96 * will never happen.
97 */
98 spin_lock_irqsave(&x->wait.lock, flags);
99 x->done++;
100 spin_unlock_irqrestore(&x->wait.lock, flags);
101 }
102 return 0;
30dbf0c0
CW
103}
104
54cf91dc 105int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 106{
76c1dec1
CW
107 int ret;
108
21dd3734 109 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
110 if (ret)
111 return ret;
112
113 ret = mutex_lock_interruptible(&dev->struct_mutex);
114 if (ret)
115 return ret;
116
23bc5982 117 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
118 return 0;
119}
30dbf0c0 120
7d1c4804 121static inline bool
05394f39 122i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 123{
05394f39 124 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
125}
126
2021746e
CW
127void i915_gem_do_init(struct drm_device *dev,
128 unsigned long start,
129 unsigned long mappable_end,
130 unsigned long end)
673a394b
EA
131{
132 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 133
bee4a186 134 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
673a394b 135
bee4a186
CW
136 dev_priv->mm.gtt_start = start;
137 dev_priv->mm.gtt_mappable_end = mappable_end;
138 dev_priv->mm.gtt_end = end;
73aa808f 139 dev_priv->mm.gtt_total = end - start;
fb7d516a 140 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
bee4a186
CW
141
142 /* Take over this portion of the GTT */
143 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
79e53945 144}
673a394b 145
79e53945
JB
146int
147i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
79e53945
JB
149{
150 struct drm_i915_gem_init *args = data;
2021746e
CW
151
152 if (args->gtt_start >= args->gtt_end ||
153 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
154 return -EINVAL;
79e53945
JB
155
156 mutex_lock(&dev->struct_mutex);
2021746e 157 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
158 mutex_unlock(&dev->struct_mutex);
159
2021746e 160 return 0;
673a394b
EA
161}
162
5a125c3c
EA
163int
164i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 165 struct drm_file *file)
5a125c3c 166{
73aa808f 167 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 168 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
169 struct drm_i915_gem_object *obj;
170 size_t pinned;
5a125c3c
EA
171
172 if (!(dev->driver->driver_features & DRIVER_GEM))
173 return -ENODEV;
174
6299f992 175 pinned = 0;
73aa808f 176 mutex_lock(&dev->struct_mutex);
6299f992
CW
177 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
178 pinned += obj->gtt_space->size;
73aa808f 179 mutex_unlock(&dev->struct_mutex);
5a125c3c 180
6299f992 181 args->aper_size = dev_priv->mm.gtt_total;
0206e353 182 args->aper_available_size = args->aper_size - pinned;
6299f992 183
5a125c3c
EA
184 return 0;
185}
186
ff72145b
DA
187static int
188i915_gem_create(struct drm_file *file,
189 struct drm_device *dev,
190 uint64_t size,
191 uint32_t *handle_p)
673a394b 192{
05394f39 193 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
194 int ret;
195 u32 handle;
673a394b 196
ff72145b 197 size = roundup(size, PAGE_SIZE);
673a394b
EA
198
199 /* Allocate the new object */
ff72145b 200 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
201 if (obj == NULL)
202 return -ENOMEM;
203
05394f39 204 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 205 if (ret) {
05394f39
CW
206 drm_gem_object_release(&obj->base);
207 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 208 kfree(obj);
673a394b 209 return ret;
1dfd9754 210 }
673a394b 211
202f2fef 212 /* drop reference from allocate - handle holds it now */
05394f39 213 drm_gem_object_unreference(&obj->base);
202f2fef
CW
214 trace_i915_gem_object_create(obj);
215
ff72145b 216 *handle_p = handle;
673a394b
EA
217 return 0;
218}
219
ff72145b
DA
220int
221i915_gem_dumb_create(struct drm_file *file,
222 struct drm_device *dev,
223 struct drm_mode_create_dumb *args)
224{
225 /* have to work out size/pitch and return them */
ed0291fd 226 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
227 args->size = args->pitch * args->height;
228 return i915_gem_create(file, dev,
229 args->size, &args->handle);
230}
231
232int i915_gem_dumb_destroy(struct drm_file *file,
233 struct drm_device *dev,
234 uint32_t handle)
235{
236 return drm_gem_handle_delete(file, handle);
237}
238
239/**
240 * Creates a new mm object and returns a handle to it.
241 */
242int
243i915_gem_create_ioctl(struct drm_device *dev, void *data,
244 struct drm_file *file)
245{
246 struct drm_i915_gem_create *args = data;
247 return i915_gem_create(file, dev,
248 args->size, &args->handle);
249}
250
05394f39 251static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 252{
05394f39 253 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
254
255 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 256 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
257}
258
99a03df5 259static inline void
40123c1f
EA
260slow_shmem_copy(struct page *dst_page,
261 int dst_offset,
262 struct page *src_page,
263 int src_offset,
264 int length)
265{
266 char *dst_vaddr, *src_vaddr;
267
99a03df5
CW
268 dst_vaddr = kmap(dst_page);
269 src_vaddr = kmap(src_page);
40123c1f
EA
270
271 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
272
99a03df5
CW
273 kunmap(src_page);
274 kunmap(dst_page);
40123c1f
EA
275}
276
99a03df5 277static inline void
280b713b
EA
278slow_shmem_bit17_copy(struct page *gpu_page,
279 int gpu_offset,
280 struct page *cpu_page,
281 int cpu_offset,
282 int length,
283 int is_read)
284{
285 char *gpu_vaddr, *cpu_vaddr;
286
287 /* Use the unswizzled path if this page isn't affected. */
288 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
289 if (is_read)
290 return slow_shmem_copy(cpu_page, cpu_offset,
291 gpu_page, gpu_offset, length);
292 else
293 return slow_shmem_copy(gpu_page, gpu_offset,
294 cpu_page, cpu_offset, length);
295 }
296
99a03df5
CW
297 gpu_vaddr = kmap(gpu_page);
298 cpu_vaddr = kmap(cpu_page);
280b713b
EA
299
300 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
301 * XORing with the other bits (A9 for Y, A9 and A10 for X)
302 */
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308 if (is_read) {
309 memcpy(cpu_vaddr + cpu_offset,
310 gpu_vaddr + swizzled_gpu_offset,
311 this_length);
312 } else {
313 memcpy(gpu_vaddr + swizzled_gpu_offset,
314 cpu_vaddr + cpu_offset,
315 this_length);
316 }
317 cpu_offset += this_length;
318 gpu_offset += this_length;
319 length -= this_length;
320 }
321
99a03df5
CW
322 kunmap(cpu_page);
323 kunmap(gpu_page);
280b713b
EA
324}
325
eb01459f
EA
326/**
327 * This is the fast shmem pread path, which attempts to copy_from_user directly
328 * from the backing pages of the object to the user's address space. On a
329 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
330 */
331static int
05394f39
CW
332i915_gem_shmem_pread_fast(struct drm_device *dev,
333 struct drm_i915_gem_object *obj,
eb01459f 334 struct drm_i915_gem_pread *args,
05394f39 335 struct drm_file *file)
eb01459f 336{
05394f39 337 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 338 ssize_t remain;
e5281ccd 339 loff_t offset;
eb01459f
EA
340 char __user *user_data;
341 int page_offset, page_length;
eb01459f
EA
342
343 user_data = (char __user *) (uintptr_t) args->data_ptr;
344 remain = args->size;
345
eb01459f
EA
346 offset = args->offset;
347
348 while (remain > 0) {
e5281ccd
CW
349 struct page *page;
350 char *vaddr;
351 int ret;
352
eb01459f
EA
353 /* Operation in this page
354 *
eb01459f
EA
355 * page_offset = offset within page
356 * page_length = bytes to copy for this page
357 */
c8cbbb8b 358 page_offset = offset_in_page(offset);
eb01459f
EA
359 page_length = remain;
360 if ((page_offset + remain) > PAGE_SIZE)
361 page_length = PAGE_SIZE - page_offset;
362
5949eac4 363 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
364 if (IS_ERR(page))
365 return PTR_ERR(page);
366
367 vaddr = kmap_atomic(page);
368 ret = __copy_to_user_inatomic(user_data,
369 vaddr + page_offset,
370 page_length);
371 kunmap_atomic(vaddr);
372
373 mark_page_accessed(page);
374 page_cache_release(page);
375 if (ret)
4f27b75d 376 return -EFAULT;
eb01459f
EA
377
378 remain -= page_length;
379 user_data += page_length;
380 offset += page_length;
381 }
382
4f27b75d 383 return 0;
eb01459f
EA
384}
385
386/**
387 * This is the fallback shmem pread path, which allocates temporary storage
388 * in kernel space to copy_to_user into outside of the struct_mutex, so we
389 * can copy out of the object's backing pages while holding the struct mutex
390 * and not take page faults.
391 */
392static int
05394f39
CW
393i915_gem_shmem_pread_slow(struct drm_device *dev,
394 struct drm_i915_gem_object *obj,
eb01459f 395 struct drm_i915_gem_pread *args,
05394f39 396 struct drm_file *file)
eb01459f 397{
05394f39 398 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f
EA
399 struct mm_struct *mm = current->mm;
400 struct page **user_pages;
401 ssize_t remain;
402 loff_t offset, pinned_pages, i;
403 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
404 int shmem_page_offset;
405 int data_page_index, data_page_offset;
eb01459f
EA
406 int page_length;
407 int ret;
408 uint64_t data_ptr = args->data_ptr;
280b713b 409 int do_bit17_swizzling;
eb01459f
EA
410
411 remain = args->size;
412
413 /* Pin the user pages containing the data. We can't fault while
414 * holding the struct mutex, yet we want to hold it while
415 * dereferencing the user data.
416 */
417 first_data_page = data_ptr / PAGE_SIZE;
418 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
419 num_pages = last_data_page - first_data_page + 1;
420
4f27b75d 421 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
422 if (user_pages == NULL)
423 return -ENOMEM;
424
4f27b75d 425 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
426 down_read(&mm->mmap_sem);
427 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 428 num_pages, 1, 0, user_pages, NULL);
eb01459f 429 up_read(&mm->mmap_sem);
4f27b75d 430 mutex_lock(&dev->struct_mutex);
eb01459f
EA
431 if (pinned_pages < num_pages) {
432 ret = -EFAULT;
4f27b75d 433 goto out;
eb01459f
EA
434 }
435
4f27b75d
CW
436 ret = i915_gem_object_set_cpu_read_domain_range(obj,
437 args->offset,
438 args->size);
07f73f69 439 if (ret)
4f27b75d 440 goto out;
eb01459f 441
4f27b75d 442 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 443
eb01459f
EA
444 offset = args->offset;
445
446 while (remain > 0) {
e5281ccd
CW
447 struct page *page;
448
eb01459f
EA
449 /* Operation in this page
450 *
eb01459f
EA
451 * shmem_page_offset = offset within page in shmem file
452 * data_page_index = page number in get_user_pages return
453 * data_page_offset = offset with data_page_index page.
454 * page_length = bytes to copy for this page
455 */
c8cbbb8b 456 shmem_page_offset = offset_in_page(offset);
eb01459f 457 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 458 data_page_offset = offset_in_page(data_ptr);
eb01459f
EA
459
460 page_length = remain;
461 if ((shmem_page_offset + page_length) > PAGE_SIZE)
462 page_length = PAGE_SIZE - shmem_page_offset;
463 if ((data_page_offset + page_length) > PAGE_SIZE)
464 page_length = PAGE_SIZE - data_page_offset;
465
5949eac4 466 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
b65552f0
JJ
467 if (IS_ERR(page)) {
468 ret = PTR_ERR(page);
469 goto out;
470 }
e5281ccd 471
280b713b 472 if (do_bit17_swizzling) {
e5281ccd 473 slow_shmem_bit17_copy(page,
280b713b 474 shmem_page_offset,
99a03df5
CW
475 user_pages[data_page_index],
476 data_page_offset,
477 page_length,
478 1);
479 } else {
480 slow_shmem_copy(user_pages[data_page_index],
481 data_page_offset,
e5281ccd 482 page,
99a03df5
CW
483 shmem_page_offset,
484 page_length);
280b713b 485 }
eb01459f 486
e5281ccd
CW
487 mark_page_accessed(page);
488 page_cache_release(page);
489
eb01459f
EA
490 remain -= page_length;
491 data_ptr += page_length;
492 offset += page_length;
493 }
494
4f27b75d 495out:
eb01459f
EA
496 for (i = 0; i < pinned_pages; i++) {
497 SetPageDirty(user_pages[i]);
e5281ccd 498 mark_page_accessed(user_pages[i]);
eb01459f
EA
499 page_cache_release(user_pages[i]);
500 }
8e7d2b2c 501 drm_free_large(user_pages);
eb01459f
EA
502
503 return ret;
504}
505
673a394b
EA
506/**
507 * Reads data from the object referenced by handle.
508 *
509 * On error, the contents of *data are undefined.
510 */
511int
512i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 513 struct drm_file *file)
673a394b
EA
514{
515 struct drm_i915_gem_pread *args = data;
05394f39 516 struct drm_i915_gem_object *obj;
35b62a89 517 int ret = 0;
673a394b 518
51311d0a
CW
519 if (args->size == 0)
520 return 0;
521
522 if (!access_ok(VERIFY_WRITE,
523 (char __user *)(uintptr_t)args->data_ptr,
524 args->size))
525 return -EFAULT;
526
527 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
528 args->size);
529 if (ret)
530 return -EFAULT;
531
4f27b75d 532 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 533 if (ret)
4f27b75d 534 return ret;
673a394b 535
05394f39 536 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 537 if (&obj->base == NULL) {
1d7cfea1
CW
538 ret = -ENOENT;
539 goto unlock;
4f27b75d 540 }
673a394b 541
7dcd2499 542 /* Bounds check source. */
05394f39
CW
543 if (args->offset > obj->base.size ||
544 args->size > obj->base.size - args->offset) {
ce9d419d 545 ret = -EINVAL;
35b62a89 546 goto out;
ce9d419d
CW
547 }
548
db53a302
CW
549 trace_i915_gem_object_pread(obj, args->offset, args->size);
550
4f27b75d
CW
551 ret = i915_gem_object_set_cpu_read_domain_range(obj,
552 args->offset,
553 args->size);
554 if (ret)
e5281ccd 555 goto out;
4f27b75d
CW
556
557 ret = -EFAULT;
558 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 559 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 560 if (ret == -EFAULT)
05394f39 561 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 562
35b62a89 563out:
05394f39 564 drm_gem_object_unreference(&obj->base);
1d7cfea1 565unlock:
4f27b75d 566 mutex_unlock(&dev->struct_mutex);
eb01459f 567 return ret;
673a394b
EA
568}
569
0839ccb8
KP
570/* This is the fast write path which cannot handle
571 * page faults in the source data
9b7530cc 572 */
0839ccb8
KP
573
574static inline int
575fast_user_write(struct io_mapping *mapping,
576 loff_t page_base, int page_offset,
577 char __user *user_data,
578 int length)
9b7530cc 579{
9b7530cc 580 char *vaddr_atomic;
0839ccb8 581 unsigned long unwritten;
9b7530cc 582
3e4d3af5 583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
584 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
585 user_data, length);
3e4d3af5 586 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 587 return unwritten;
0839ccb8
KP
588}
589
590/* Here's the write path which can sleep for
591 * page faults
592 */
593
ab34c226 594static inline void
3de09aa3
EA
595slow_kernel_write(struct io_mapping *mapping,
596 loff_t gtt_base, int gtt_offset,
597 struct page *user_page, int user_offset,
598 int length)
0839ccb8 599{
ab34c226
CW
600 char __iomem *dst_vaddr;
601 char *src_vaddr;
0839ccb8 602
ab34c226
CW
603 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
604 src_vaddr = kmap(user_page);
605
606 memcpy_toio(dst_vaddr + gtt_offset,
607 src_vaddr + user_offset,
608 length);
609
610 kunmap(user_page);
611 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
612}
613
3de09aa3
EA
614/**
615 * This is the fast pwrite path, where we copy the data directly from the
616 * user into the GTT, uncached.
617 */
673a394b 618static int
05394f39
CW
619i915_gem_gtt_pwrite_fast(struct drm_device *dev,
620 struct drm_i915_gem_object *obj,
3de09aa3 621 struct drm_i915_gem_pwrite *args,
05394f39 622 struct drm_file *file)
673a394b 623{
0839ccb8 624 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 625 ssize_t remain;
0839ccb8 626 loff_t offset, page_base;
673a394b 627 char __user *user_data;
0839ccb8 628 int page_offset, page_length;
673a394b
EA
629
630 user_data = (char __user *) (uintptr_t) args->data_ptr;
631 remain = args->size;
673a394b 632
05394f39 633 offset = obj->gtt_offset + args->offset;
673a394b
EA
634
635 while (remain > 0) {
636 /* Operation in this page
637 *
0839ccb8
KP
638 * page_base = page offset within aperture
639 * page_offset = offset within page
640 * page_length = bytes to copy for this page
673a394b 641 */
c8cbbb8b
CW
642 page_base = offset & PAGE_MASK;
643 page_offset = offset_in_page(offset);
0839ccb8
KP
644 page_length = remain;
645 if ((page_offset + remain) > PAGE_SIZE)
646 page_length = PAGE_SIZE - page_offset;
647
0839ccb8 648 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
649 * source page isn't available. Return the error and we'll
650 * retry in the slow path.
0839ccb8 651 */
fbd5a26d
CW
652 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
653 page_offset, user_data, page_length))
fbd5a26d 654 return -EFAULT;
673a394b 655
0839ccb8
KP
656 remain -= page_length;
657 user_data += page_length;
658 offset += page_length;
673a394b 659 }
673a394b 660
fbd5a26d 661 return 0;
673a394b
EA
662}
663
3de09aa3
EA
664/**
665 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
666 * the memory and maps it using kmap_atomic for copying.
667 *
668 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
669 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
670 */
3043c60c 671static int
05394f39
CW
672i915_gem_gtt_pwrite_slow(struct drm_device *dev,
673 struct drm_i915_gem_object *obj,
3de09aa3 674 struct drm_i915_gem_pwrite *args,
05394f39 675 struct drm_file *file)
673a394b 676{
3de09aa3
EA
677 drm_i915_private_t *dev_priv = dev->dev_private;
678 ssize_t remain;
679 loff_t gtt_page_base, offset;
680 loff_t first_data_page, last_data_page, num_pages;
681 loff_t pinned_pages, i;
682 struct page **user_pages;
683 struct mm_struct *mm = current->mm;
684 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 685 int ret;
3de09aa3
EA
686 uint64_t data_ptr = args->data_ptr;
687
688 remain = args->size;
689
690 /* Pin the user pages containing the data. We can't fault while
691 * holding the struct mutex, and all of the pwrite implementations
692 * want to hold it while dereferencing the user data.
693 */
694 first_data_page = data_ptr / PAGE_SIZE;
695 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
696 num_pages = last_data_page - first_data_page + 1;
697
fbd5a26d 698 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
699 if (user_pages == NULL)
700 return -ENOMEM;
701
fbd5a26d 702 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
703 down_read(&mm->mmap_sem);
704 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
705 num_pages, 0, 0, user_pages, NULL);
706 up_read(&mm->mmap_sem);
fbd5a26d 707 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
708 if (pinned_pages < num_pages) {
709 ret = -EFAULT;
710 goto out_unpin_pages;
711 }
673a394b 712
d9e86c0e
CW
713 ret = i915_gem_object_set_to_gtt_domain(obj, true);
714 if (ret)
715 goto out_unpin_pages;
716
717 ret = i915_gem_object_put_fence(obj);
3de09aa3 718 if (ret)
fbd5a26d 719 goto out_unpin_pages;
3de09aa3 720
05394f39 721 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
722
723 while (remain > 0) {
724 /* Operation in this page
725 *
726 * gtt_page_base = page offset within aperture
727 * gtt_page_offset = offset within page in aperture
728 * data_page_index = page number in get_user_pages return
729 * data_page_offset = offset with data_page_index page.
730 * page_length = bytes to copy for this page
731 */
732 gtt_page_base = offset & PAGE_MASK;
c8cbbb8b 733 gtt_page_offset = offset_in_page(offset);
3de09aa3 734 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 735 data_page_offset = offset_in_page(data_ptr);
3de09aa3
EA
736
737 page_length = remain;
738 if ((gtt_page_offset + page_length) > PAGE_SIZE)
739 page_length = PAGE_SIZE - gtt_page_offset;
740 if ((data_page_offset + page_length) > PAGE_SIZE)
741 page_length = PAGE_SIZE - data_page_offset;
742
ab34c226
CW
743 slow_kernel_write(dev_priv->mm.gtt_mapping,
744 gtt_page_base, gtt_page_offset,
745 user_pages[data_page_index],
746 data_page_offset,
747 page_length);
3de09aa3
EA
748
749 remain -= page_length;
750 offset += page_length;
751 data_ptr += page_length;
752 }
753
3de09aa3
EA
754out_unpin_pages:
755 for (i = 0; i < pinned_pages; i++)
756 page_cache_release(user_pages[i]);
8e7d2b2c 757 drm_free_large(user_pages);
3de09aa3
EA
758
759 return ret;
760}
761
40123c1f
EA
762/**
763 * This is the fast shmem pwrite path, which attempts to directly
764 * copy_from_user into the kmapped pages backing the object.
765 */
3043c60c 766static int
05394f39
CW
767i915_gem_shmem_pwrite_fast(struct drm_device *dev,
768 struct drm_i915_gem_object *obj,
40123c1f 769 struct drm_i915_gem_pwrite *args,
05394f39 770 struct drm_file *file)
673a394b 771{
05394f39 772 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 773 ssize_t remain;
e5281ccd 774 loff_t offset;
40123c1f
EA
775 char __user *user_data;
776 int page_offset, page_length;
40123c1f
EA
777
778 user_data = (char __user *) (uintptr_t) args->data_ptr;
779 remain = args->size;
673a394b 780
40123c1f 781 offset = args->offset;
05394f39 782 obj->dirty = 1;
40123c1f
EA
783
784 while (remain > 0) {
e5281ccd
CW
785 struct page *page;
786 char *vaddr;
787 int ret;
788
40123c1f
EA
789 /* Operation in this page
790 *
40123c1f
EA
791 * page_offset = offset within page
792 * page_length = bytes to copy for this page
793 */
c8cbbb8b 794 page_offset = offset_in_page(offset);
40123c1f
EA
795 page_length = remain;
796 if ((page_offset + remain) > PAGE_SIZE)
797 page_length = PAGE_SIZE - page_offset;
798
5949eac4 799 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
800 if (IS_ERR(page))
801 return PTR_ERR(page);
802
803 vaddr = kmap_atomic(page, KM_USER0);
804 ret = __copy_from_user_inatomic(vaddr + page_offset,
805 user_data,
806 page_length);
807 kunmap_atomic(vaddr, KM_USER0);
808
809 set_page_dirty(page);
810 mark_page_accessed(page);
811 page_cache_release(page);
812
813 /* If we get a fault while copying data, then (presumably) our
814 * source page isn't available. Return the error and we'll
815 * retry in the slow path.
816 */
817 if (ret)
fbd5a26d 818 return -EFAULT;
40123c1f
EA
819
820 remain -= page_length;
821 user_data += page_length;
822 offset += page_length;
823 }
824
fbd5a26d 825 return 0;
40123c1f
EA
826}
827
828/**
829 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
830 * the memory and maps it using kmap_atomic for copying.
831 *
832 * This avoids taking mmap_sem for faulting on the user's address while the
833 * struct_mutex is held.
834 */
835static int
05394f39
CW
836i915_gem_shmem_pwrite_slow(struct drm_device *dev,
837 struct drm_i915_gem_object *obj,
40123c1f 838 struct drm_i915_gem_pwrite *args,
05394f39 839 struct drm_file *file)
40123c1f 840{
05394f39 841 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f
EA
842 struct mm_struct *mm = current->mm;
843 struct page **user_pages;
844 ssize_t remain;
845 loff_t offset, pinned_pages, i;
846 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 847 int shmem_page_offset;
40123c1f
EA
848 int data_page_index, data_page_offset;
849 int page_length;
850 int ret;
851 uint64_t data_ptr = args->data_ptr;
280b713b 852 int do_bit17_swizzling;
40123c1f
EA
853
854 remain = args->size;
855
856 /* Pin the user pages containing the data. We can't fault while
857 * holding the struct mutex, and all of the pwrite implementations
858 * want to hold it while dereferencing the user data.
859 */
860 first_data_page = data_ptr / PAGE_SIZE;
861 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
862 num_pages = last_data_page - first_data_page + 1;
863
4f27b75d 864 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
865 if (user_pages == NULL)
866 return -ENOMEM;
867
fbd5a26d 868 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
869 down_read(&mm->mmap_sem);
870 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
871 num_pages, 0, 0, user_pages, NULL);
872 up_read(&mm->mmap_sem);
fbd5a26d 873 mutex_lock(&dev->struct_mutex);
40123c1f
EA
874 if (pinned_pages < num_pages) {
875 ret = -EFAULT;
fbd5a26d 876 goto out;
673a394b
EA
877 }
878
fbd5a26d 879 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 880 if (ret)
fbd5a26d 881 goto out;
40123c1f 882
fbd5a26d 883 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 884
673a394b 885 offset = args->offset;
05394f39 886 obj->dirty = 1;
673a394b 887
40123c1f 888 while (remain > 0) {
e5281ccd
CW
889 struct page *page;
890
40123c1f
EA
891 /* Operation in this page
892 *
40123c1f
EA
893 * shmem_page_offset = offset within page in shmem file
894 * data_page_index = page number in get_user_pages return
895 * data_page_offset = offset with data_page_index page.
896 * page_length = bytes to copy for this page
897 */
c8cbbb8b 898 shmem_page_offset = offset_in_page(offset);
40123c1f 899 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 900 data_page_offset = offset_in_page(data_ptr);
40123c1f
EA
901
902 page_length = remain;
903 if ((shmem_page_offset + page_length) > PAGE_SIZE)
904 page_length = PAGE_SIZE - shmem_page_offset;
905 if ((data_page_offset + page_length) > PAGE_SIZE)
906 page_length = PAGE_SIZE - data_page_offset;
907
5949eac4 908 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
909 if (IS_ERR(page)) {
910 ret = PTR_ERR(page);
911 goto out;
912 }
913
280b713b 914 if (do_bit17_swizzling) {
e5281ccd 915 slow_shmem_bit17_copy(page,
280b713b
EA
916 shmem_page_offset,
917 user_pages[data_page_index],
918 data_page_offset,
99a03df5
CW
919 page_length,
920 0);
921 } else {
e5281ccd 922 slow_shmem_copy(page,
99a03df5
CW
923 shmem_page_offset,
924 user_pages[data_page_index],
925 data_page_offset,
926 page_length);
280b713b 927 }
40123c1f 928
e5281ccd
CW
929 set_page_dirty(page);
930 mark_page_accessed(page);
931 page_cache_release(page);
932
40123c1f
EA
933 remain -= page_length;
934 data_ptr += page_length;
935 offset += page_length;
673a394b
EA
936 }
937
fbd5a26d 938out:
40123c1f
EA
939 for (i = 0; i < pinned_pages; i++)
940 page_cache_release(user_pages[i]);
8e7d2b2c 941 drm_free_large(user_pages);
673a394b 942
40123c1f 943 return ret;
673a394b
EA
944}
945
946/**
947 * Writes data to the object referenced by handle.
948 *
949 * On error, the contents of the buffer that were to be modified are undefined.
950 */
951int
952i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 953 struct drm_file *file)
673a394b
EA
954{
955 struct drm_i915_gem_pwrite *args = data;
05394f39 956 struct drm_i915_gem_object *obj;
51311d0a
CW
957 int ret;
958
959 if (args->size == 0)
960 return 0;
961
962 if (!access_ok(VERIFY_READ,
963 (char __user *)(uintptr_t)args->data_ptr,
964 args->size))
965 return -EFAULT;
966
967 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
968 args->size);
969 if (ret)
970 return -EFAULT;
673a394b 971
fbd5a26d 972 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 973 if (ret)
fbd5a26d 974 return ret;
1d7cfea1 975
05394f39 976 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 977 if (&obj->base == NULL) {
1d7cfea1
CW
978 ret = -ENOENT;
979 goto unlock;
fbd5a26d 980 }
673a394b 981
7dcd2499 982 /* Bounds check destination. */
05394f39
CW
983 if (args->offset > obj->base.size ||
984 args->size > obj->base.size - args->offset) {
ce9d419d 985 ret = -EINVAL;
35b62a89 986 goto out;
ce9d419d
CW
987 }
988
db53a302
CW
989 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
990
673a394b
EA
991 /* We can only do the GTT pwrite on untiled buffers, as otherwise
992 * it would end up going through the fenced access, and we'll get
993 * different detiling behavior between reading and writing.
994 * pread/pwrite currently are reading and writing from the CPU
995 * perspective, requiring manual detiling by the client.
996 */
05394f39 997 if (obj->phys_obj)
fbd5a26d 998 ret = i915_gem_phys_pwrite(dev, obj, args, file);
d9e86c0e 999 else if (obj->gtt_space &&
05394f39 1000 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 1001 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1002 if (ret)
1003 goto out;
1004
d9e86c0e
CW
1005 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1006 if (ret)
1007 goto out_unpin;
1008
1009 ret = i915_gem_object_put_fence(obj);
fbd5a26d
CW
1010 if (ret)
1011 goto out_unpin;
1012
1013 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1014 if (ret == -EFAULT)
1015 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1016
1017out_unpin:
1018 i915_gem_object_unpin(obj);
40123c1f 1019 } else {
fbd5a26d
CW
1020 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1021 if (ret)
e5281ccd 1022 goto out;
673a394b 1023
fbd5a26d
CW
1024 ret = -EFAULT;
1025 if (!i915_gem_object_needs_bit17_swizzle(obj))
1026 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1027 if (ret == -EFAULT)
1028 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1029 }
673a394b 1030
35b62a89 1031out:
05394f39 1032 drm_gem_object_unreference(&obj->base);
1d7cfea1 1033unlock:
fbd5a26d 1034 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1035 return ret;
1036}
1037
1038/**
2ef7eeaa
EA
1039 * Called when user space prepares to use an object with the CPU, either
1040 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1041 */
1042int
1043i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1044 struct drm_file *file)
673a394b
EA
1045{
1046 struct drm_i915_gem_set_domain *args = data;
05394f39 1047 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1048 uint32_t read_domains = args->read_domains;
1049 uint32_t write_domain = args->write_domain;
673a394b
EA
1050 int ret;
1051
1052 if (!(dev->driver->driver_features & DRIVER_GEM))
1053 return -ENODEV;
1054
2ef7eeaa 1055 /* Only handle setting domains to types used by the CPU. */
21d509e3 1056 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1057 return -EINVAL;
1058
21d509e3 1059 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1060 return -EINVAL;
1061
1062 /* Having something in the write domain implies it's in the read
1063 * domain, and only that read domain. Enforce that in the request.
1064 */
1065 if (write_domain != 0 && read_domains != write_domain)
1066 return -EINVAL;
1067
76c1dec1 1068 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1069 if (ret)
76c1dec1 1070 return ret;
1d7cfea1 1071
05394f39 1072 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1073 if (&obj->base == NULL) {
1d7cfea1
CW
1074 ret = -ENOENT;
1075 goto unlock;
76c1dec1 1076 }
673a394b 1077
2ef7eeaa
EA
1078 if (read_domains & I915_GEM_DOMAIN_GTT) {
1079 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1080
1081 /* Silently promote "you're not bound, there was nothing to do"
1082 * to success, since the client was just asking us to
1083 * make sure everything was done.
1084 */
1085 if (ret == -EINVAL)
1086 ret = 0;
2ef7eeaa 1087 } else {
e47c68e9 1088 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1089 }
1090
05394f39 1091 drm_gem_object_unreference(&obj->base);
1d7cfea1 1092unlock:
673a394b
EA
1093 mutex_unlock(&dev->struct_mutex);
1094 return ret;
1095}
1096
1097/**
1098 * Called when user space has done writes to this buffer
1099 */
1100int
1101i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1102 struct drm_file *file)
673a394b
EA
1103{
1104 struct drm_i915_gem_sw_finish *args = data;
05394f39 1105 struct drm_i915_gem_object *obj;
673a394b
EA
1106 int ret = 0;
1107
1108 if (!(dev->driver->driver_features & DRIVER_GEM))
1109 return -ENODEV;
1110
76c1dec1 1111 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1112 if (ret)
76c1dec1 1113 return ret;
1d7cfea1 1114
05394f39 1115 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1116 if (&obj->base == NULL) {
1d7cfea1
CW
1117 ret = -ENOENT;
1118 goto unlock;
673a394b
EA
1119 }
1120
673a394b 1121 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1122 if (obj->pin_count)
e47c68e9
EA
1123 i915_gem_object_flush_cpu_write_domain(obj);
1124
05394f39 1125 drm_gem_object_unreference(&obj->base);
1d7cfea1 1126unlock:
673a394b
EA
1127 mutex_unlock(&dev->struct_mutex);
1128 return ret;
1129}
1130
1131/**
1132 * Maps the contents of an object, returning the address it is mapped
1133 * into.
1134 *
1135 * While the mapping holds a reference on the contents of the object, it doesn't
1136 * imply a ref on the object itself.
1137 */
1138int
1139i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1140 struct drm_file *file)
673a394b 1141{
da761a6e 1142 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1143 struct drm_i915_gem_mmap *args = data;
1144 struct drm_gem_object *obj;
673a394b
EA
1145 unsigned long addr;
1146
1147 if (!(dev->driver->driver_features & DRIVER_GEM))
1148 return -ENODEV;
1149
05394f39 1150 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1151 if (obj == NULL)
bf79cb91 1152 return -ENOENT;
673a394b 1153
da761a6e
CW
1154 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1155 drm_gem_object_unreference_unlocked(obj);
1156 return -E2BIG;
1157 }
1158
673a394b
EA
1159 down_write(&current->mm->mmap_sem);
1160 addr = do_mmap(obj->filp, 0, args->size,
1161 PROT_READ | PROT_WRITE, MAP_SHARED,
1162 args->offset);
1163 up_write(&current->mm->mmap_sem);
bc9025bd 1164 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1165 if (IS_ERR((void *)addr))
1166 return addr;
1167
1168 args->addr_ptr = (uint64_t) addr;
1169
1170 return 0;
1171}
1172
de151cf6
JB
1173/**
1174 * i915_gem_fault - fault a page into the GTT
1175 * vma: VMA in question
1176 * vmf: fault info
1177 *
1178 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1179 * from userspace. The fault handler takes care of binding the object to
1180 * the GTT (if needed), allocating and programming a fence register (again,
1181 * only if needed based on whether the old reg is still valid or the object
1182 * is tiled) and inserting a new PTE into the faulting process.
1183 *
1184 * Note that the faulting process may involve evicting existing objects
1185 * from the GTT and/or fence registers to make room. So performance may
1186 * suffer if the GTT working set is large or there are few fence registers
1187 * left.
1188 */
1189int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1190{
05394f39
CW
1191 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1192 struct drm_device *dev = obj->base.dev;
7d1c4804 1193 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1194 pgoff_t page_offset;
1195 unsigned long pfn;
1196 int ret = 0;
0f973f27 1197 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1198
1199 /* We don't use vmf->pgoff since that has the fake offset */
1200 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1201 PAGE_SHIFT;
1202
d9bc7e9f
CW
1203 ret = i915_mutex_lock_interruptible(dev);
1204 if (ret)
1205 goto out;
a00b10c3 1206
db53a302
CW
1207 trace_i915_gem_object_fault(obj, page_offset, true, write);
1208
d9bc7e9f 1209 /* Now bind it into the GTT if needed */
919926ae
CW
1210 if (!obj->map_and_fenceable) {
1211 ret = i915_gem_object_unbind(obj);
1212 if (ret)
1213 goto unlock;
a00b10c3 1214 }
05394f39 1215 if (!obj->gtt_space) {
75e9e915 1216 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1217 if (ret)
1218 goto unlock;
de151cf6 1219
e92d03bf
EA
1220 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1221 if (ret)
1222 goto unlock;
1223 }
4a684a41 1224
d9e86c0e
CW
1225 if (obj->tiling_mode == I915_TILING_NONE)
1226 ret = i915_gem_object_put_fence(obj);
1227 else
ce453d81 1228 ret = i915_gem_object_get_fence(obj, NULL);
d9e86c0e
CW
1229 if (ret)
1230 goto unlock;
de151cf6 1231
05394f39
CW
1232 if (i915_gem_object_is_inactive(obj))
1233 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1234
6299f992
CW
1235 obj->fault_mappable = true;
1236
05394f39 1237 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1238 page_offset;
1239
1240 /* Finally, remap it using the new GTT offset */
1241 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1242unlock:
de151cf6 1243 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1244out:
de151cf6 1245 switch (ret) {
d9bc7e9f 1246 case -EIO:
045e769a 1247 case -EAGAIN:
d9bc7e9f
CW
1248 /* Give the error handler a chance to run and move the
1249 * objects off the GPU active list. Next time we service the
1250 * fault, we should be able to transition the page into the
1251 * GTT without touching the GPU (and so avoid further
1252 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1253 * with coherency, just lost writes.
1254 */
045e769a 1255 set_need_resched();
c715089f
CW
1256 case 0:
1257 case -ERESTARTSYS:
bed636ab 1258 case -EINTR:
c715089f 1259 return VM_FAULT_NOPAGE;
de151cf6 1260 case -ENOMEM:
de151cf6 1261 return VM_FAULT_OOM;
de151cf6 1262 default:
c715089f 1263 return VM_FAULT_SIGBUS;
de151cf6
JB
1264 }
1265}
1266
901782b2
CW
1267/**
1268 * i915_gem_release_mmap - remove physical page mappings
1269 * @obj: obj in question
1270 *
af901ca1 1271 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1272 * relinquish ownership of the pages back to the system.
1273 *
1274 * It is vital that we remove the page mapping if we have mapped a tiled
1275 * object through the GTT and then lose the fence register due to
1276 * resource pressure. Similarly if the object has been moved out of the
1277 * aperture, than pages mapped into userspace must be revoked. Removing the
1278 * mapping will then trigger a page fault on the next user access, allowing
1279 * fixup by i915_gem_fault().
1280 */
d05ca301 1281void
05394f39 1282i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1283{
6299f992
CW
1284 if (!obj->fault_mappable)
1285 return;
901782b2 1286
f6e47884
CW
1287 if (obj->base.dev->dev_mapping)
1288 unmap_mapping_range(obj->base.dev->dev_mapping,
1289 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1290 obj->base.size, 1);
fb7d516a 1291
6299f992 1292 obj->fault_mappable = false;
901782b2
CW
1293}
1294
92b88aeb 1295static uint32_t
e28f8711 1296i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1297{
e28f8711 1298 uint32_t gtt_size;
92b88aeb
CW
1299
1300 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1301 tiling_mode == I915_TILING_NONE)
1302 return size;
92b88aeb
CW
1303
1304 /* Previous chips need a power-of-two fence region when tiling */
1305 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1306 gtt_size = 1024*1024;
92b88aeb 1307 else
e28f8711 1308 gtt_size = 512*1024;
92b88aeb 1309
e28f8711
CW
1310 while (gtt_size < size)
1311 gtt_size <<= 1;
92b88aeb 1312
e28f8711 1313 return gtt_size;
92b88aeb
CW
1314}
1315
de151cf6
JB
1316/**
1317 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1318 * @obj: object to check
1319 *
1320 * Return the required GTT alignment for an object, taking into account
5e783301 1321 * potential fence register mapping.
de151cf6
JB
1322 */
1323static uint32_t
e28f8711
CW
1324i915_gem_get_gtt_alignment(struct drm_device *dev,
1325 uint32_t size,
1326 int tiling_mode)
de151cf6 1327{
de151cf6
JB
1328 /*
1329 * Minimum alignment is 4k (GTT page size), but might be greater
1330 * if a fence register is needed for the object.
1331 */
a00b10c3 1332 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1333 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1334 return 4096;
1335
a00b10c3
CW
1336 /*
1337 * Previous chips need to be aligned to the size of the smallest
1338 * fence register that can contain the object.
1339 */
e28f8711 1340 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1341}
1342
5e783301
DV
1343/**
1344 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1345 * unfenced object
e28f8711
CW
1346 * @dev: the device
1347 * @size: size of the object
1348 * @tiling_mode: tiling mode of the object
5e783301
DV
1349 *
1350 * Return the required GTT alignment for an object, only taking into account
1351 * unfenced tiled surface requirements.
1352 */
467cffba 1353uint32_t
e28f8711
CW
1354i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1355 uint32_t size,
1356 int tiling_mode)
5e783301 1357{
5e783301
DV
1358 /*
1359 * Minimum alignment is 4k (GTT page size) for sane hw.
1360 */
1361 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1362 tiling_mode == I915_TILING_NONE)
5e783301
DV
1363 return 4096;
1364
e28f8711
CW
1365 /* Previous hardware however needs to be aligned to a power-of-two
1366 * tile height. The simplest method for determining this is to reuse
1367 * the power-of-tile object size.
5e783301 1368 */
e28f8711 1369 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1370}
1371
de151cf6 1372int
ff72145b
DA
1373i915_gem_mmap_gtt(struct drm_file *file,
1374 struct drm_device *dev,
1375 uint32_t handle,
1376 uint64_t *offset)
de151cf6 1377{
da761a6e 1378 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1379 struct drm_i915_gem_object *obj;
de151cf6
JB
1380 int ret;
1381
1382 if (!(dev->driver->driver_features & DRIVER_GEM))
1383 return -ENODEV;
1384
76c1dec1 1385 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1386 if (ret)
76c1dec1 1387 return ret;
de151cf6 1388
ff72145b 1389 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1390 if (&obj->base == NULL) {
1d7cfea1
CW
1391 ret = -ENOENT;
1392 goto unlock;
1393 }
de151cf6 1394
05394f39 1395 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e
CW
1396 ret = -E2BIG;
1397 goto unlock;
1398 }
1399
05394f39 1400 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1401 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1402 ret = -EINVAL;
1403 goto out;
ab18282d
CW
1404 }
1405
05394f39 1406 if (!obj->base.map_list.map) {
b464e9a2 1407 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1408 if (ret)
1409 goto out;
de151cf6
JB
1410 }
1411
ff72145b 1412 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1413
1d7cfea1 1414out:
05394f39 1415 drm_gem_object_unreference(&obj->base);
1d7cfea1 1416unlock:
de151cf6 1417 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1418 return ret;
de151cf6
JB
1419}
1420
ff72145b
DA
1421/**
1422 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1423 * @dev: DRM device
1424 * @data: GTT mapping ioctl data
1425 * @file: GEM object info
1426 *
1427 * Simply returns the fake offset to userspace so it can mmap it.
1428 * The mmap call will end up in drm_gem_mmap(), which will set things
1429 * up so we can get faults in the handler above.
1430 *
1431 * The fault handler will take care of binding the object into the GTT
1432 * (since it may have been evicted to make room for something), allocating
1433 * a fence register, and mapping the appropriate aperture address into
1434 * userspace.
1435 */
1436int
1437i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1438 struct drm_file *file)
1439{
1440 struct drm_i915_gem_mmap_gtt *args = data;
1441
1442 if (!(dev->driver->driver_features & DRIVER_GEM))
1443 return -ENODEV;
1444
1445 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1446}
1447
1448
e5281ccd 1449static int
05394f39 1450i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1451 gfp_t gfpmask)
1452{
e5281ccd
CW
1453 int page_count, i;
1454 struct address_space *mapping;
1455 struct inode *inode;
1456 struct page *page;
1457
1458 /* Get the list of pages out of our struct file. They'll be pinned
1459 * at this point until we release them.
1460 */
05394f39
CW
1461 page_count = obj->base.size / PAGE_SIZE;
1462 BUG_ON(obj->pages != NULL);
1463 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1464 if (obj->pages == NULL)
e5281ccd
CW
1465 return -ENOMEM;
1466
05394f39 1467 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1468 mapping = inode->i_mapping;
5949eac4
HD
1469 gfpmask |= mapping_gfp_mask(mapping);
1470
e5281ccd 1471 for (i = 0; i < page_count; i++) {
5949eac4 1472 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1473 if (IS_ERR(page))
1474 goto err_pages;
1475
05394f39 1476 obj->pages[i] = page;
e5281ccd
CW
1477 }
1478
6dacfd2f 1479 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1480 i915_gem_object_do_bit_17_swizzle(obj);
1481
1482 return 0;
1483
1484err_pages:
1485 while (i--)
05394f39 1486 page_cache_release(obj->pages[i]);
e5281ccd 1487
05394f39
CW
1488 drm_free_large(obj->pages);
1489 obj->pages = NULL;
e5281ccd
CW
1490 return PTR_ERR(page);
1491}
1492
5cdf5881 1493static void
05394f39 1494i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1495{
05394f39 1496 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1497 int i;
1498
05394f39 1499 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1500
6dacfd2f 1501 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1502 i915_gem_object_save_bit_17_swizzle(obj);
1503
05394f39
CW
1504 if (obj->madv == I915_MADV_DONTNEED)
1505 obj->dirty = 0;
3ef94daa
CW
1506
1507 for (i = 0; i < page_count; i++) {
05394f39
CW
1508 if (obj->dirty)
1509 set_page_dirty(obj->pages[i]);
3ef94daa 1510
05394f39
CW
1511 if (obj->madv == I915_MADV_WILLNEED)
1512 mark_page_accessed(obj->pages[i]);
3ef94daa 1513
05394f39 1514 page_cache_release(obj->pages[i]);
3ef94daa 1515 }
05394f39 1516 obj->dirty = 0;
673a394b 1517
05394f39
CW
1518 drm_free_large(obj->pages);
1519 obj->pages = NULL;
673a394b
EA
1520}
1521
54cf91dc 1522void
05394f39 1523i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1524 struct intel_ring_buffer *ring,
1525 u32 seqno)
673a394b 1526{
05394f39 1527 struct drm_device *dev = obj->base.dev;
69dc4987 1528 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1529
852835f3 1530 BUG_ON(ring == NULL);
05394f39 1531 obj->ring = ring;
673a394b
EA
1532
1533 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1534 if (!obj->active) {
1535 drm_gem_object_reference(&obj->base);
1536 obj->active = 1;
673a394b 1537 }
e35a41de 1538
673a394b 1539 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1540 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1541 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1542
05394f39 1543 obj->last_rendering_seqno = seqno;
caea7476
CW
1544 if (obj->fenced_gpu_access) {
1545 struct drm_i915_fence_reg *reg;
1546
1547 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1548
1549 obj->last_fenced_seqno = seqno;
1550 obj->last_fenced_ring = ring;
1551
1552 reg = &dev_priv->fence_regs[obj->fence_reg];
1553 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1554 }
1555}
1556
1557static void
1558i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1559{
1560 list_del_init(&obj->ring_list);
1561 obj->last_rendering_seqno = 0;
673a394b
EA
1562}
1563
ce44b0ea 1564static void
05394f39 1565i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1566{
05394f39 1567 struct drm_device *dev = obj->base.dev;
ce44b0ea 1568 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1569
05394f39
CW
1570 BUG_ON(!obj->active);
1571 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1572
1573 i915_gem_object_move_off_active(obj);
1574}
1575
1576static void
1577i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1578{
1579 struct drm_device *dev = obj->base.dev;
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582 if (obj->pin_count != 0)
1583 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1584 else
1585 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1586
1587 BUG_ON(!list_empty(&obj->gpu_write_list));
1588 BUG_ON(!obj->active);
1589 obj->ring = NULL;
1590
1591 i915_gem_object_move_off_active(obj);
1592 obj->fenced_gpu_access = false;
caea7476
CW
1593
1594 obj->active = 0;
87ca9c8a 1595 obj->pending_gpu_write = false;
caea7476
CW
1596 drm_gem_object_unreference(&obj->base);
1597
1598 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1599}
673a394b 1600
963b4836
CW
1601/* Immediately discard the backing storage */
1602static void
05394f39 1603i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1604{
bb6baf76 1605 struct inode *inode;
963b4836 1606
ae9fed6b
CW
1607 /* Our goal here is to return as much of the memory as
1608 * is possible back to the system as we are called from OOM.
1609 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1610 * backing pages, *now*.
ae9fed6b 1611 */
05394f39 1612 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1613 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1614
05394f39 1615 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1616}
1617
1618static inline int
05394f39 1619i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1620{
05394f39 1621 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1622}
1623
63560396 1624static void
db53a302
CW
1625i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1626 uint32_t flush_domains)
63560396 1627{
05394f39 1628 struct drm_i915_gem_object *obj, *next;
63560396 1629
05394f39 1630 list_for_each_entry_safe(obj, next,
64193406 1631 &ring->gpu_write_list,
63560396 1632 gpu_write_list) {
05394f39
CW
1633 if (obj->base.write_domain & flush_domains) {
1634 uint32_t old_write_domain = obj->base.write_domain;
63560396 1635
05394f39
CW
1636 obj->base.write_domain = 0;
1637 list_del_init(&obj->gpu_write_list);
1ec14ad3 1638 i915_gem_object_move_to_active(obj, ring,
db53a302 1639 i915_gem_next_request_seqno(ring));
63560396 1640
63560396 1641 trace_i915_gem_object_change_domain(obj,
05394f39 1642 obj->base.read_domains,
63560396
DV
1643 old_write_domain);
1644 }
1645 }
1646}
8187a2b7 1647
3cce469c 1648int
db53a302 1649i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1650 struct drm_file *file,
db53a302 1651 struct drm_i915_gem_request *request)
673a394b 1652{
db53a302 1653 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
1654 uint32_t seqno;
1655 int was_empty;
3cce469c
CW
1656 int ret;
1657
1658 BUG_ON(request == NULL);
673a394b 1659
3cce469c
CW
1660 ret = ring->add_request(ring, &seqno);
1661 if (ret)
1662 return ret;
673a394b 1663
db53a302 1664 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1665
1666 request->seqno = seqno;
852835f3 1667 request->ring = ring;
673a394b 1668 request->emitted_jiffies = jiffies;
852835f3
ZN
1669 was_empty = list_empty(&ring->request_list);
1670 list_add_tail(&request->list, &ring->request_list);
1671
db53a302
CW
1672 if (file) {
1673 struct drm_i915_file_private *file_priv = file->driver_priv;
1674
1c25595f 1675 spin_lock(&file_priv->mm.lock);
f787a5f5 1676 request->file_priv = file_priv;
b962442e 1677 list_add_tail(&request->client_list,
f787a5f5 1678 &file_priv->mm.request_list);
1c25595f 1679 spin_unlock(&file_priv->mm.lock);
b962442e 1680 }
673a394b 1681
db53a302
CW
1682 ring->outstanding_lazy_request = false;
1683
f65d9421 1684 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1685 if (i915_enable_hangcheck) {
1686 mod_timer(&dev_priv->hangcheck_timer,
1687 jiffies +
1688 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1689 }
f65d9421 1690 if (was_empty)
b3b079db
CW
1691 queue_delayed_work(dev_priv->wq,
1692 &dev_priv->mm.retire_work, HZ);
f65d9421 1693 }
3cce469c 1694 return 0;
673a394b
EA
1695}
1696
f787a5f5
CW
1697static inline void
1698i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1699{
1c25595f 1700 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1701
1c25595f
CW
1702 if (!file_priv)
1703 return;
1c5d22f7 1704
1c25595f 1705 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1706 if (request->file_priv) {
1707 list_del(&request->client_list);
1708 request->file_priv = NULL;
1709 }
1c25595f 1710 spin_unlock(&file_priv->mm.lock);
673a394b 1711}
673a394b 1712
dfaae392
CW
1713static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1714 struct intel_ring_buffer *ring)
9375e446 1715{
dfaae392
CW
1716 while (!list_empty(&ring->request_list)) {
1717 struct drm_i915_gem_request *request;
673a394b 1718
dfaae392
CW
1719 request = list_first_entry(&ring->request_list,
1720 struct drm_i915_gem_request,
1721 list);
de151cf6 1722
dfaae392 1723 list_del(&request->list);
f787a5f5 1724 i915_gem_request_remove_from_client(request);
dfaae392
CW
1725 kfree(request);
1726 }
673a394b 1727
dfaae392 1728 while (!list_empty(&ring->active_list)) {
05394f39 1729 struct drm_i915_gem_object *obj;
9375e446 1730
05394f39
CW
1731 obj = list_first_entry(&ring->active_list,
1732 struct drm_i915_gem_object,
1733 ring_list);
9375e446 1734
05394f39
CW
1735 obj->base.write_domain = 0;
1736 list_del_init(&obj->gpu_write_list);
1737 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1738 }
1739}
1740
312817a3
CW
1741static void i915_gem_reset_fences(struct drm_device *dev)
1742{
1743 struct drm_i915_private *dev_priv = dev->dev_private;
1744 int i;
1745
1746 for (i = 0; i < 16; i++) {
1747 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1748 struct drm_i915_gem_object *obj = reg->obj;
1749
1750 if (!obj)
1751 continue;
1752
1753 if (obj->tiling_mode)
1754 i915_gem_release_mmap(obj);
1755
d9e86c0e
CW
1756 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1757 reg->obj->fenced_gpu_access = false;
1758 reg->obj->last_fenced_seqno = 0;
1759 reg->obj->last_fenced_ring = NULL;
1760 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1761 }
1762}
1763
069efc1d 1764void i915_gem_reset(struct drm_device *dev)
673a394b 1765{
77f01230 1766 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1767 struct drm_i915_gem_object *obj;
1ec14ad3 1768 int i;
673a394b 1769
1ec14ad3
CW
1770 for (i = 0; i < I915_NUM_RINGS; i++)
1771 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1772
1773 /* Remove anything from the flushing lists. The GPU cache is likely
1774 * to be lost on reset along with the data, so simply move the
1775 * lost bo to the inactive list.
1776 */
1777 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1778 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1779 struct drm_i915_gem_object,
1780 mm_list);
dfaae392 1781
05394f39
CW
1782 obj->base.write_domain = 0;
1783 list_del_init(&obj->gpu_write_list);
1784 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1785 }
1786
1787 /* Move everything out of the GPU domains to ensure we do any
1788 * necessary invalidation upon reuse.
1789 */
05394f39 1790 list_for_each_entry(obj,
77f01230 1791 &dev_priv->mm.inactive_list,
69dc4987 1792 mm_list)
77f01230 1793 {
05394f39 1794 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1795 }
069efc1d
CW
1796
1797 /* The fence registers are invalidated so clear them out */
312817a3 1798 i915_gem_reset_fences(dev);
673a394b
EA
1799}
1800
1801/**
1802 * This function clears the request list as sequence numbers are passed.
1803 */
b09a1fec 1804static void
db53a302 1805i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1806{
673a394b 1807 uint32_t seqno;
1ec14ad3 1808 int i;
673a394b 1809
db53a302 1810 if (list_empty(&ring->request_list))
6c0594a3
KW
1811 return;
1812
db53a302 1813 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1814
78501eac 1815 seqno = ring->get_seqno(ring);
1ec14ad3 1816
076e2c0e 1817 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1818 if (seqno >= ring->sync_seqno[i])
1819 ring->sync_seqno[i] = 0;
1820
852835f3 1821 while (!list_empty(&ring->request_list)) {
673a394b 1822 struct drm_i915_gem_request *request;
673a394b 1823
852835f3 1824 request = list_first_entry(&ring->request_list,
673a394b
EA
1825 struct drm_i915_gem_request,
1826 list);
673a394b 1827
dfaae392 1828 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1829 break;
1830
db53a302 1831 trace_i915_gem_request_retire(ring, request->seqno);
b84d5f0c
CW
1832
1833 list_del(&request->list);
f787a5f5 1834 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1835 kfree(request);
1836 }
673a394b 1837
b84d5f0c
CW
1838 /* Move any buffers on the active list that are no longer referenced
1839 * by the ringbuffer to the flushing/inactive lists as appropriate.
1840 */
1841 while (!list_empty(&ring->active_list)) {
05394f39 1842 struct drm_i915_gem_object *obj;
b84d5f0c 1843
0206e353 1844 obj = list_first_entry(&ring->active_list,
05394f39
CW
1845 struct drm_i915_gem_object,
1846 ring_list);
673a394b 1847
05394f39 1848 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1849 break;
b84d5f0c 1850
05394f39 1851 if (obj->base.write_domain != 0)
b84d5f0c
CW
1852 i915_gem_object_move_to_flushing(obj);
1853 else
1854 i915_gem_object_move_to_inactive(obj);
673a394b 1855 }
9d34e5db 1856
db53a302
CW
1857 if (unlikely(ring->trace_irq_seqno &&
1858 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1859 ring->irq_put(ring);
db53a302 1860 ring->trace_irq_seqno = 0;
9d34e5db 1861 }
23bc5982 1862
db53a302 1863 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1864}
1865
b09a1fec
CW
1866void
1867i915_gem_retire_requests(struct drm_device *dev)
1868{
1869 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1870 int i;
b09a1fec 1871
be72615b 1872 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1873 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1874
1875 /* We must be careful that during unbind() we do not
1876 * accidentally infinitely recurse into retire requests.
1877 * Currently:
1878 * retire -> free -> unbind -> wait -> retire_ring
1879 */
05394f39 1880 list_for_each_entry_safe(obj, next,
be72615b 1881 &dev_priv->mm.deferred_free_list,
69dc4987 1882 mm_list)
05394f39 1883 i915_gem_free_object_tail(obj);
be72615b
CW
1884 }
1885
1ec14ad3 1886 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1887 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1888}
1889
75ef9da2 1890static void
673a394b
EA
1891i915_gem_retire_work_handler(struct work_struct *work)
1892{
1893 drm_i915_private_t *dev_priv;
1894 struct drm_device *dev;
0a58705b
CW
1895 bool idle;
1896 int i;
673a394b
EA
1897
1898 dev_priv = container_of(work, drm_i915_private_t,
1899 mm.retire_work.work);
1900 dev = dev_priv->dev;
1901
891b48cf
CW
1902 /* Come back later if the device is busy... */
1903 if (!mutex_trylock(&dev->struct_mutex)) {
1904 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1905 return;
1906 }
1907
b09a1fec 1908 i915_gem_retire_requests(dev);
d1b851fc 1909
0a58705b
CW
1910 /* Send a periodic flush down the ring so we don't hold onto GEM
1911 * objects indefinitely.
1912 */
1913 idle = true;
1914 for (i = 0; i < I915_NUM_RINGS; i++) {
1915 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1916
1917 if (!list_empty(&ring->gpu_write_list)) {
1918 struct drm_i915_gem_request *request;
1919 int ret;
1920
db53a302
CW
1921 ret = i915_gem_flush_ring(ring,
1922 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1923 request = kzalloc(sizeof(*request), GFP_KERNEL);
1924 if (ret || request == NULL ||
db53a302 1925 i915_add_request(ring, NULL, request))
0a58705b
CW
1926 kfree(request);
1927 }
1928
1929 idle &= list_empty(&ring->request_list);
1930 }
1931
1932 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1933 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1934
673a394b
EA
1935 mutex_unlock(&dev->struct_mutex);
1936}
1937
db53a302
CW
1938/**
1939 * Waits for a sequence number to be signaled, and cleans up the
1940 * request and object lists appropriately for that event.
1941 */
5a5a0c64 1942int
db53a302 1943i915_wait_request(struct intel_ring_buffer *ring,
ce453d81 1944 uint32_t seqno)
673a394b 1945{
db53a302 1946 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1947 u32 ier;
673a394b
EA
1948 int ret = 0;
1949
1950 BUG_ON(seqno == 0);
1951
d9bc7e9f
CW
1952 if (atomic_read(&dev_priv->mm.wedged)) {
1953 struct completion *x = &dev_priv->error_completion;
1954 bool recovery_complete;
1955 unsigned long flags;
1956
1957 /* Give the error handler a chance to run. */
1958 spin_lock_irqsave(&x->wait.lock, flags);
1959 recovery_complete = x->done > 0;
1960 spin_unlock_irqrestore(&x->wait.lock, flags);
1961
1962 return recovery_complete ? -EIO : -EAGAIN;
1963 }
30dbf0c0 1964
5d97eb69 1965 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1966 struct drm_i915_gem_request *request;
1967
1968 request = kzalloc(sizeof(*request), GFP_KERNEL);
1969 if (request == NULL)
e35a41de 1970 return -ENOMEM;
3cce469c 1971
db53a302 1972 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
1973 if (ret) {
1974 kfree(request);
1975 return ret;
1976 }
1977
1978 seqno = request->seqno;
e35a41de 1979 }
ffed1d09 1980
78501eac 1981 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 1982 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d
ZW
1983 ier = I915_READ(DEIER) | I915_READ(GTIER);
1984 else
1985 ier = I915_READ(IER);
802c7eb6
JB
1986 if (!ier) {
1987 DRM_ERROR("something (likely vbetool) disabled "
1988 "interrupts, re-enabling\n");
f01c22fd
CW
1989 ring->dev->driver->irq_preinstall(ring->dev);
1990 ring->dev->driver->irq_postinstall(ring->dev);
802c7eb6
JB
1991 }
1992
db53a302 1993 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 1994
b2223497 1995 ring->waiting_seqno = seqno;
b13c2b96 1996 if (ring->irq_get(ring)) {
ce453d81 1997 if (dev_priv->mm.interruptible)
b13c2b96
CW
1998 ret = wait_event_interruptible(ring->irq_queue,
1999 i915_seqno_passed(ring->get_seqno(ring), seqno)
2000 || atomic_read(&dev_priv->mm.wedged));
2001 else
2002 wait_event(ring->irq_queue,
2003 i915_seqno_passed(ring->get_seqno(ring), seqno)
2004 || atomic_read(&dev_priv->mm.wedged));
2005
2006 ring->irq_put(ring);
b5ba177d
CW
2007 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2008 seqno) ||
2009 atomic_read(&dev_priv->mm.wedged), 3000))
2010 ret = -EBUSY;
b2223497 2011 ring->waiting_seqno = 0;
1c5d22f7 2012
db53a302 2013 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 2014 }
ba1234d1 2015 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2016 ret = -EAGAIN;
673a394b
EA
2017
2018 if (ret && ret != -ERESTARTSYS)
8bff917c 2019 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2020 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2021 dev_priv->next_seqno);
673a394b
EA
2022
2023 /* Directly dispatch request retiring. While we have the work queue
2024 * to handle this, the waiter on a request often wants an associated
2025 * buffer to have made it to the inactive list, and we would need
2026 * a separate wait queue to handle that.
2027 */
2028 if (ret == 0)
db53a302 2029 i915_gem_retire_requests_ring(ring);
673a394b
EA
2030
2031 return ret;
2032}
2033
673a394b
EA
2034/**
2035 * Ensures that all rendering to the object has completed and the object is
2036 * safe to unbind from the GTT or access from the CPU.
2037 */
54cf91dc 2038int
ce453d81 2039i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 2040{
673a394b
EA
2041 int ret;
2042
e47c68e9
EA
2043 /* This function only exists to support waiting for existing rendering,
2044 * not for emitting required flushes.
673a394b 2045 */
05394f39 2046 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2047
2048 /* If there is rendering queued on the buffer being evicted, wait for
2049 * it.
2050 */
05394f39 2051 if (obj->active) {
ce453d81 2052 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2cf34d7b 2053 if (ret)
673a394b
EA
2054 return ret;
2055 }
2056
2057 return 0;
2058}
2059
b5ffc9bc
CW
2060static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2061{
2062 u32 old_write_domain, old_read_domains;
2063
b5ffc9bc
CW
2064 /* Act a barrier for all accesses through the GTT */
2065 mb();
2066
2067 /* Force a pagefault for domain tracking on next user access */
2068 i915_gem_release_mmap(obj);
2069
b97c3d9c
KP
2070 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2071 return;
2072
b5ffc9bc
CW
2073 old_read_domains = obj->base.read_domains;
2074 old_write_domain = obj->base.write_domain;
2075
2076 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2077 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2078
2079 trace_i915_gem_object_change_domain(obj,
2080 old_read_domains,
2081 old_write_domain);
2082}
2083
673a394b
EA
2084/**
2085 * Unbinds an object from the GTT aperture.
2086 */
0f973f27 2087int
05394f39 2088i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2089{
673a394b
EA
2090 int ret = 0;
2091
05394f39 2092 if (obj->gtt_space == NULL)
673a394b
EA
2093 return 0;
2094
05394f39 2095 if (obj->pin_count != 0) {
673a394b
EA
2096 DRM_ERROR("Attempting to unbind pinned buffer\n");
2097 return -EINVAL;
2098 }
2099
a8198eea
CW
2100 ret = i915_gem_object_finish_gpu(obj);
2101 if (ret == -ERESTARTSYS)
2102 return ret;
2103 /* Continue on if we fail due to EIO, the GPU is hung so we
2104 * should be safe and we need to cleanup or else we might
2105 * cause memory corruption through use-after-free.
2106 */
2107
b5ffc9bc 2108 i915_gem_object_finish_gtt(obj);
5323fd04 2109
673a394b
EA
2110 /* Move the object to the CPU domain to ensure that
2111 * any possible CPU writes while it's not in the GTT
a8198eea 2112 * are flushed when we go to remap it.
673a394b 2113 */
a8198eea
CW
2114 if (ret == 0)
2115 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2116 if (ret == -ERESTARTSYS)
673a394b 2117 return ret;
812ed492 2118 if (ret) {
a8198eea
CW
2119 /* In the event of a disaster, abandon all caches and
2120 * hope for the best.
2121 */
812ed492 2122 i915_gem_clflush_object(obj);
05394f39 2123 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2124 }
673a394b 2125
96b47b65 2126 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2127 ret = i915_gem_object_put_fence(obj);
2128 if (ret == -ERESTARTSYS)
2129 return ret;
96b47b65 2130
db53a302
CW
2131 trace_i915_gem_object_unbind(obj);
2132
7c2e6fdf 2133 i915_gem_gtt_unbind_object(obj);
e5281ccd 2134 i915_gem_object_put_pages_gtt(obj);
673a394b 2135
6299f992 2136 list_del_init(&obj->gtt_list);
05394f39 2137 list_del_init(&obj->mm_list);
75e9e915 2138 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2139 obj->map_and_fenceable = true;
673a394b 2140
05394f39
CW
2141 drm_mm_put_block(obj->gtt_space);
2142 obj->gtt_space = NULL;
2143 obj->gtt_offset = 0;
673a394b 2144
05394f39 2145 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2146 i915_gem_object_truncate(obj);
2147
8dc1775d 2148 return ret;
673a394b
EA
2149}
2150
88241785 2151int
db53a302 2152i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2153 uint32_t invalidate_domains,
2154 uint32_t flush_domains)
2155{
88241785
CW
2156 int ret;
2157
36d527de
CW
2158 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2159 return 0;
2160
db53a302
CW
2161 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2162
88241785
CW
2163 ret = ring->flush(ring, invalidate_domains, flush_domains);
2164 if (ret)
2165 return ret;
2166
36d527de
CW
2167 if (flush_domains & I915_GEM_GPU_DOMAINS)
2168 i915_gem_process_flushing_list(ring, flush_domains);
2169
88241785 2170 return 0;
54cf91dc
CW
2171}
2172
db53a302 2173static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2174{
88241785
CW
2175 int ret;
2176
395b70be 2177 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2178 return 0;
2179
88241785 2180 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2181 ret = i915_gem_flush_ring(ring,
0ac74c6b 2182 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2183 if (ret)
2184 return ret;
2185 }
2186
ce453d81 2187 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2188}
2189
b47eb4a2 2190int
4df2faf4
DV
2191i915_gpu_idle(struct drm_device *dev)
2192{
2193 drm_i915_private_t *dev_priv = dev->dev_private;
2194 bool lists_empty;
1ec14ad3 2195 int ret, i;
4df2faf4 2196
d1b851fc 2197 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2198 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2199 if (lists_empty)
2200 return 0;
2201
2202 /* Flush everything onto the inactive list. */
1ec14ad3 2203 for (i = 0; i < I915_NUM_RINGS; i++) {
db53a302 2204 ret = i915_ring_idle(&dev_priv->ring[i]);
1ec14ad3
CW
2205 if (ret)
2206 return ret;
2207 }
4df2faf4 2208
8a1a49f9 2209 return 0;
4df2faf4
DV
2210}
2211
c6642782
DV
2212static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2213 struct intel_ring_buffer *pipelined)
4e901fdc 2214{
05394f39 2215 struct drm_device *dev = obj->base.dev;
4e901fdc 2216 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2217 u32 size = obj->gtt_space->size;
2218 int regnum = obj->fence_reg;
4e901fdc
EA
2219 uint64_t val;
2220
05394f39 2221 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2222 0xfffff000) << 32;
05394f39
CW
2223 val |= obj->gtt_offset & 0xfffff000;
2224 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2225 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2226
05394f39 2227 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2228 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2229 val |= I965_FENCE_REG_VALID;
2230
c6642782
DV
2231 if (pipelined) {
2232 int ret = intel_ring_begin(pipelined, 6);
2233 if (ret)
2234 return ret;
2235
2236 intel_ring_emit(pipelined, MI_NOOP);
2237 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2238 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2239 intel_ring_emit(pipelined, (u32)val);
2240 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2241 intel_ring_emit(pipelined, (u32)(val >> 32));
2242 intel_ring_advance(pipelined);
2243 } else
2244 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2245
2246 return 0;
4e901fdc
EA
2247}
2248
c6642782
DV
2249static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2250 struct intel_ring_buffer *pipelined)
de151cf6 2251{
05394f39 2252 struct drm_device *dev = obj->base.dev;
de151cf6 2253 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2254 u32 size = obj->gtt_space->size;
2255 int regnum = obj->fence_reg;
de151cf6
JB
2256 uint64_t val;
2257
05394f39 2258 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2259 0xfffff000) << 32;
05394f39
CW
2260 val |= obj->gtt_offset & 0xfffff000;
2261 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2262 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2263 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2264 val |= I965_FENCE_REG_VALID;
2265
c6642782
DV
2266 if (pipelined) {
2267 int ret = intel_ring_begin(pipelined, 6);
2268 if (ret)
2269 return ret;
2270
2271 intel_ring_emit(pipelined, MI_NOOP);
2272 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2273 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2274 intel_ring_emit(pipelined, (u32)val);
2275 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2276 intel_ring_emit(pipelined, (u32)(val >> 32));
2277 intel_ring_advance(pipelined);
2278 } else
2279 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2280
2281 return 0;
de151cf6
JB
2282}
2283
c6642782
DV
2284static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2285 struct intel_ring_buffer *pipelined)
de151cf6 2286{
05394f39 2287 struct drm_device *dev = obj->base.dev;
de151cf6 2288 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2289 u32 size = obj->gtt_space->size;
c6642782 2290 u32 fence_reg, val, pitch_val;
0f973f27 2291 int tile_width;
de151cf6 2292
c6642782
DV
2293 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2294 (size & -size) != size ||
2295 (obj->gtt_offset & (size - 1)),
2296 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2297 obj->gtt_offset, obj->map_and_fenceable, size))
2298 return -EINVAL;
de151cf6 2299
c6642782 2300 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2301 tile_width = 128;
de151cf6 2302 else
0f973f27
JB
2303 tile_width = 512;
2304
2305 /* Note: pitch better be a power of two tile widths */
05394f39 2306 pitch_val = obj->stride / tile_width;
0f973f27 2307 pitch_val = ffs(pitch_val) - 1;
de151cf6 2308
05394f39
CW
2309 val = obj->gtt_offset;
2310 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2311 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2312 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2313 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2314 val |= I830_FENCE_REG_VALID;
2315
05394f39 2316 fence_reg = obj->fence_reg;
a00b10c3
CW
2317 if (fence_reg < 8)
2318 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2319 else
a00b10c3 2320 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2321
2322 if (pipelined) {
2323 int ret = intel_ring_begin(pipelined, 4);
2324 if (ret)
2325 return ret;
2326
2327 intel_ring_emit(pipelined, MI_NOOP);
2328 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2329 intel_ring_emit(pipelined, fence_reg);
2330 intel_ring_emit(pipelined, val);
2331 intel_ring_advance(pipelined);
2332 } else
2333 I915_WRITE(fence_reg, val);
2334
2335 return 0;
de151cf6
JB
2336}
2337
c6642782
DV
2338static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2339 struct intel_ring_buffer *pipelined)
de151cf6 2340{
05394f39 2341 struct drm_device *dev = obj->base.dev;
de151cf6 2342 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2343 u32 size = obj->gtt_space->size;
2344 int regnum = obj->fence_reg;
de151cf6
JB
2345 uint32_t val;
2346 uint32_t pitch_val;
2347
c6642782
DV
2348 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2349 (size & -size) != size ||
2350 (obj->gtt_offset & (size - 1)),
2351 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2352 obj->gtt_offset, size))
2353 return -EINVAL;
de151cf6 2354
05394f39 2355 pitch_val = obj->stride / 128;
e76a16de 2356 pitch_val = ffs(pitch_val) - 1;
e76a16de 2357
05394f39
CW
2358 val = obj->gtt_offset;
2359 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2360 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2361 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2362 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2363 val |= I830_FENCE_REG_VALID;
2364
c6642782
DV
2365 if (pipelined) {
2366 int ret = intel_ring_begin(pipelined, 4);
2367 if (ret)
2368 return ret;
2369
2370 intel_ring_emit(pipelined, MI_NOOP);
2371 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2372 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2373 intel_ring_emit(pipelined, val);
2374 intel_ring_advance(pipelined);
2375 } else
2376 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2377
2378 return 0;
de151cf6
JB
2379}
2380
d9e86c0e
CW
2381static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2382{
2383 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2384}
2385
2386static int
2387i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
ce453d81 2388 struct intel_ring_buffer *pipelined)
d9e86c0e
CW
2389{
2390 int ret;
2391
2392 if (obj->fenced_gpu_access) {
88241785 2393 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2394 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2395 0, obj->base.write_domain);
2396 if (ret)
2397 return ret;
2398 }
d9e86c0e
CW
2399
2400 obj->fenced_gpu_access = false;
2401 }
2402
2403 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2404 if (!ring_passed_seqno(obj->last_fenced_ring,
2405 obj->last_fenced_seqno)) {
db53a302 2406 ret = i915_wait_request(obj->last_fenced_ring,
ce453d81 2407 obj->last_fenced_seqno);
d9e86c0e
CW
2408 if (ret)
2409 return ret;
2410 }
2411
2412 obj->last_fenced_seqno = 0;
2413 obj->last_fenced_ring = NULL;
2414 }
2415
63256ec5
CW
2416 /* Ensure that all CPU reads are completed before installing a fence
2417 * and all writes before removing the fence.
2418 */
2419 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2420 mb();
2421
d9e86c0e
CW
2422 return 0;
2423}
2424
2425int
2426i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2427{
2428 int ret;
2429
2430 if (obj->tiling_mode)
2431 i915_gem_release_mmap(obj);
2432
ce453d81 2433 ret = i915_gem_object_flush_fence(obj, NULL);
d9e86c0e
CW
2434 if (ret)
2435 return ret;
2436
2437 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2438 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2439 i915_gem_clear_fence_reg(obj->base.dev,
2440 &dev_priv->fence_regs[obj->fence_reg]);
2441
2442 obj->fence_reg = I915_FENCE_REG_NONE;
2443 }
2444
2445 return 0;
2446}
2447
2448static struct drm_i915_fence_reg *
2449i915_find_fence_reg(struct drm_device *dev,
2450 struct intel_ring_buffer *pipelined)
ae3db24a 2451{
ae3db24a 2452 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2453 struct drm_i915_fence_reg *reg, *first, *avail;
2454 int i;
ae3db24a
DV
2455
2456 /* First try to find a free reg */
d9e86c0e 2457 avail = NULL;
ae3db24a
DV
2458 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2459 reg = &dev_priv->fence_regs[i];
2460 if (!reg->obj)
d9e86c0e 2461 return reg;
ae3db24a 2462
05394f39 2463 if (!reg->obj->pin_count)
d9e86c0e 2464 avail = reg;
ae3db24a
DV
2465 }
2466
d9e86c0e
CW
2467 if (avail == NULL)
2468 return NULL;
ae3db24a
DV
2469
2470 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2471 avail = first = NULL;
2472 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2473 if (reg->obj->pin_count)
ae3db24a
DV
2474 continue;
2475
d9e86c0e
CW
2476 if (first == NULL)
2477 first = reg;
2478
2479 if (!pipelined ||
2480 !reg->obj->last_fenced_ring ||
2481 reg->obj->last_fenced_ring == pipelined) {
2482 avail = reg;
2483 break;
2484 }
ae3db24a
DV
2485 }
2486
d9e86c0e
CW
2487 if (avail == NULL)
2488 avail = first;
ae3db24a 2489
a00b10c3 2490 return avail;
ae3db24a
DV
2491}
2492
de151cf6 2493/**
d9e86c0e 2494 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2495 * @obj: object to map through a fence reg
d9e86c0e
CW
2496 * @pipelined: ring on which to queue the change, or NULL for CPU access
2497 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2498 *
2499 * When mapping objects through the GTT, userspace wants to be able to write
2500 * to them without having to worry about swizzling if the object is tiled.
2501 *
2502 * This function walks the fence regs looking for a free one for @obj,
2503 * stealing one if it can't find any.
2504 *
2505 * It then sets up the reg based on the object's properties: address, pitch
2506 * and tiling format.
2507 */
8c4b8c3f 2508int
d9e86c0e 2509i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
ce453d81 2510 struct intel_ring_buffer *pipelined)
de151cf6 2511{
05394f39 2512 struct drm_device *dev = obj->base.dev;
79e53945 2513 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2514 struct drm_i915_fence_reg *reg;
ae3db24a 2515 int ret;
de151cf6 2516
6bda10d1
CW
2517 /* XXX disable pipelining. There are bugs. Shocking. */
2518 pipelined = NULL;
2519
d9e86c0e 2520 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2521 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2522 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2523 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2524
29c5a587
CW
2525 if (obj->tiling_changed) {
2526 ret = i915_gem_object_flush_fence(obj, pipelined);
2527 if (ret)
2528 return ret;
2529
2530 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2531 pipelined = NULL;
2532
2533 if (pipelined) {
2534 reg->setup_seqno =
2535 i915_gem_next_request_seqno(pipelined);
2536 obj->last_fenced_seqno = reg->setup_seqno;
2537 obj->last_fenced_ring = pipelined;
2538 }
2539
2540 goto update;
2541 }
d9e86c0e
CW
2542
2543 if (!pipelined) {
2544 if (reg->setup_seqno) {
2545 if (!ring_passed_seqno(obj->last_fenced_ring,
2546 reg->setup_seqno)) {
db53a302 2547 ret = i915_wait_request(obj->last_fenced_ring,
ce453d81 2548 reg->setup_seqno);
d9e86c0e
CW
2549 if (ret)
2550 return ret;
2551 }
2552
2553 reg->setup_seqno = 0;
2554 }
2555 } else if (obj->last_fenced_ring &&
2556 obj->last_fenced_ring != pipelined) {
ce453d81 2557 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e
CW
2558 if (ret)
2559 return ret;
d9e86c0e
CW
2560 }
2561
a09ba7fa
EA
2562 return 0;
2563 }
2564
d9e86c0e
CW
2565 reg = i915_find_fence_reg(dev, pipelined);
2566 if (reg == NULL)
2567 return -ENOSPC;
de151cf6 2568
ce453d81 2569 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e 2570 if (ret)
ae3db24a 2571 return ret;
de151cf6 2572
d9e86c0e
CW
2573 if (reg->obj) {
2574 struct drm_i915_gem_object *old = reg->obj;
2575
2576 drm_gem_object_reference(&old->base);
2577
2578 if (old->tiling_mode)
2579 i915_gem_release_mmap(old);
2580
ce453d81 2581 ret = i915_gem_object_flush_fence(old, pipelined);
d9e86c0e
CW
2582 if (ret) {
2583 drm_gem_object_unreference(&old->base);
2584 return ret;
2585 }
2586
2587 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2588 pipelined = NULL;
2589
2590 old->fence_reg = I915_FENCE_REG_NONE;
2591 old->last_fenced_ring = pipelined;
2592 old->last_fenced_seqno =
db53a302 2593 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2594
2595 drm_gem_object_unreference(&old->base);
2596 } else if (obj->last_fenced_seqno == 0)
2597 pipelined = NULL;
a09ba7fa 2598
de151cf6 2599 reg->obj = obj;
d9e86c0e
CW
2600 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2601 obj->fence_reg = reg - dev_priv->fence_regs;
2602 obj->last_fenced_ring = pipelined;
de151cf6 2603
d9e86c0e 2604 reg->setup_seqno =
db53a302 2605 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2606 obj->last_fenced_seqno = reg->setup_seqno;
2607
2608update:
2609 obj->tiling_changed = false;
e259befd 2610 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2611 case 7:
e259befd 2612 case 6:
c6642782 2613 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2614 break;
2615 case 5:
2616 case 4:
c6642782 2617 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2618 break;
2619 case 3:
c6642782 2620 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2621 break;
2622 case 2:
c6642782 2623 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2624 break;
2625 }
d9ddcb96 2626
c6642782 2627 return ret;
de151cf6
JB
2628}
2629
2630/**
2631 * i915_gem_clear_fence_reg - clear out fence register info
2632 * @obj: object to clear
2633 *
2634 * Zeroes out the fence register itself and clears out the associated
05394f39 2635 * data structures in dev_priv and obj.
de151cf6
JB
2636 */
2637static void
d9e86c0e
CW
2638i915_gem_clear_fence_reg(struct drm_device *dev,
2639 struct drm_i915_fence_reg *reg)
de151cf6 2640{
79e53945 2641 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2642 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2643
e259befd 2644 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2645 case 7:
e259befd 2646 case 6:
d9e86c0e 2647 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2648 break;
2649 case 5:
2650 case 4:
d9e86c0e 2651 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2652 break;
2653 case 3:
d9e86c0e
CW
2654 if (fence_reg >= 8)
2655 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2656 else
e259befd 2657 case 2:
d9e86c0e 2658 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2659
2660 I915_WRITE(fence_reg, 0);
e259befd 2661 break;
dc529a4f 2662 }
de151cf6 2663
007cc8ac 2664 list_del_init(&reg->lru_list);
d9e86c0e
CW
2665 reg->obj = NULL;
2666 reg->setup_seqno = 0;
52dc7d32
CW
2667}
2668
673a394b
EA
2669/**
2670 * Finds free space in the GTT aperture and binds the object there.
2671 */
2672static int
05394f39 2673i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2674 unsigned alignment,
75e9e915 2675 bool map_and_fenceable)
673a394b 2676{
05394f39 2677 struct drm_device *dev = obj->base.dev;
673a394b 2678 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2679 struct drm_mm_node *free_space;
a00b10c3 2680 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2681 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2682 bool mappable, fenceable;
07f73f69 2683 int ret;
673a394b 2684
05394f39 2685 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2686 DRM_ERROR("Attempting to bind a purgeable object\n");
2687 return -EINVAL;
2688 }
2689
e28f8711
CW
2690 fence_size = i915_gem_get_gtt_size(dev,
2691 obj->base.size,
2692 obj->tiling_mode);
2693 fence_alignment = i915_gem_get_gtt_alignment(dev,
2694 obj->base.size,
2695 obj->tiling_mode);
2696 unfenced_alignment =
2697 i915_gem_get_unfenced_gtt_alignment(dev,
2698 obj->base.size,
2699 obj->tiling_mode);
a00b10c3 2700
673a394b 2701 if (alignment == 0)
5e783301
DV
2702 alignment = map_and_fenceable ? fence_alignment :
2703 unfenced_alignment;
75e9e915 2704 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2705 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2706 return -EINVAL;
2707 }
2708
05394f39 2709 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2710
654fc607
CW
2711 /* If the object is bigger than the entire aperture, reject it early
2712 * before evicting everything in a vain attempt to find space.
2713 */
05394f39 2714 if (obj->base.size >
75e9e915 2715 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2716 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2717 return -E2BIG;
2718 }
2719
673a394b 2720 search_free:
75e9e915 2721 if (map_and_fenceable)
920afa77
DV
2722 free_space =
2723 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2724 size, alignment, 0,
920afa77
DV
2725 dev_priv->mm.gtt_mappable_end,
2726 0);
2727 else
2728 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2729 size, alignment, 0);
920afa77
DV
2730
2731 if (free_space != NULL) {
75e9e915 2732 if (map_and_fenceable)
05394f39 2733 obj->gtt_space =
920afa77 2734 drm_mm_get_block_range_generic(free_space,
a00b10c3 2735 size, alignment, 0,
920afa77
DV
2736 dev_priv->mm.gtt_mappable_end,
2737 0);
2738 else
05394f39 2739 obj->gtt_space =
a00b10c3 2740 drm_mm_get_block(free_space, size, alignment);
920afa77 2741 }
05394f39 2742 if (obj->gtt_space == NULL) {
673a394b
EA
2743 /* If the gtt is empty and we're still having trouble
2744 * fitting our object in, we're out of memory.
2745 */
75e9e915
DV
2746 ret = i915_gem_evict_something(dev, size, alignment,
2747 map_and_fenceable);
9731129c 2748 if (ret)
673a394b 2749 return ret;
9731129c 2750
673a394b
EA
2751 goto search_free;
2752 }
2753
e5281ccd 2754 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2755 if (ret) {
05394f39
CW
2756 drm_mm_put_block(obj->gtt_space);
2757 obj->gtt_space = NULL;
07f73f69
CW
2758
2759 if (ret == -ENOMEM) {
809b6334
CW
2760 /* first try to reclaim some memory by clearing the GTT */
2761 ret = i915_gem_evict_everything(dev, false);
07f73f69 2762 if (ret) {
07f73f69 2763 /* now try to shrink everyone else */
4bdadb97
CW
2764 if (gfpmask) {
2765 gfpmask = 0;
2766 goto search_free;
07f73f69
CW
2767 }
2768
809b6334 2769 return -ENOMEM;
07f73f69
CW
2770 }
2771
2772 goto search_free;
2773 }
2774
673a394b
EA
2775 return ret;
2776 }
2777
7c2e6fdf
DV
2778 ret = i915_gem_gtt_bind_object(obj);
2779 if (ret) {
e5281ccd 2780 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2781 drm_mm_put_block(obj->gtt_space);
2782 obj->gtt_space = NULL;
07f73f69 2783
809b6334 2784 if (i915_gem_evict_everything(dev, false))
07f73f69 2785 return ret;
07f73f69
CW
2786
2787 goto search_free;
673a394b 2788 }
673a394b 2789
6299f992 2790 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2791 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2792
673a394b
EA
2793 /* Assert that the object is not currently in any GPU domain. As it
2794 * wasn't in the GTT, there shouldn't be any way it could have been in
2795 * a GPU cache
2796 */
05394f39
CW
2797 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2798 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2799
6299f992 2800 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2801
75e9e915 2802 fenceable =
05394f39 2803 obj->gtt_space->size == fence_size &&
0206e353 2804 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2805
75e9e915 2806 mappable =
05394f39 2807 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2808
05394f39 2809 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2810
db53a302 2811 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2812 return 0;
2813}
2814
2815void
05394f39 2816i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2817{
673a394b
EA
2818 /* If we don't have a page list set up, then we're not pinned
2819 * to GPU, and we can ignore the cache flush because it'll happen
2820 * again at bind time.
2821 */
05394f39 2822 if (obj->pages == NULL)
673a394b
EA
2823 return;
2824
9c23f7fc
CW
2825 /* If the GPU is snooping the contents of the CPU cache,
2826 * we do not need to manually clear the CPU cache lines. However,
2827 * the caches are only snooped when the render cache is
2828 * flushed/invalidated. As we always have to emit invalidations
2829 * and flushes when moving into and out of the RENDER domain, correct
2830 * snooping behaviour occurs naturally as the result of our domain
2831 * tracking.
2832 */
2833 if (obj->cache_level != I915_CACHE_NONE)
2834 return;
2835
1c5d22f7 2836 trace_i915_gem_object_clflush(obj);
cfa16a0d 2837
05394f39 2838 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2839}
2840
e47c68e9 2841/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2842static int
3619df03 2843i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2844{
05394f39 2845 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2846 return 0;
e47c68e9
EA
2847
2848 /* Queue the GPU write cache flushing we need. */
db53a302 2849 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2850}
2851
2852/** Flushes the GTT write domain for the object if it's dirty. */
2853static void
05394f39 2854i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2855{
1c5d22f7
CW
2856 uint32_t old_write_domain;
2857
05394f39 2858 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2859 return;
2860
63256ec5 2861 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2862 * to it immediately go to main memory as far as we know, so there's
2863 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2864 *
2865 * However, we do have to enforce the order so that all writes through
2866 * the GTT land before any writes to the device, such as updates to
2867 * the GATT itself.
e47c68e9 2868 */
63256ec5
CW
2869 wmb();
2870
05394f39
CW
2871 old_write_domain = obj->base.write_domain;
2872 obj->base.write_domain = 0;
1c5d22f7
CW
2873
2874 trace_i915_gem_object_change_domain(obj,
05394f39 2875 obj->base.read_domains,
1c5d22f7 2876 old_write_domain);
e47c68e9
EA
2877}
2878
2879/** Flushes the CPU write domain for the object if it's dirty. */
2880static void
05394f39 2881i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2882{
1c5d22f7 2883 uint32_t old_write_domain;
e47c68e9 2884
05394f39 2885 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2886 return;
2887
2888 i915_gem_clflush_object(obj);
40ce6575 2889 intel_gtt_chipset_flush();
05394f39
CW
2890 old_write_domain = obj->base.write_domain;
2891 obj->base.write_domain = 0;
1c5d22f7
CW
2892
2893 trace_i915_gem_object_change_domain(obj,
05394f39 2894 obj->base.read_domains,
1c5d22f7 2895 old_write_domain);
e47c68e9
EA
2896}
2897
2ef7eeaa
EA
2898/**
2899 * Moves a single object to the GTT read, and possibly write domain.
2900 *
2901 * This function returns when the move is complete, including waiting on
2902 * flushes to occur.
2903 */
79e53945 2904int
2021746e 2905i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2906{
1c5d22f7 2907 uint32_t old_write_domain, old_read_domains;
e47c68e9 2908 int ret;
2ef7eeaa 2909
02354392 2910 /* Not valid to be called on unbound objects. */
05394f39 2911 if (obj->gtt_space == NULL)
02354392
EA
2912 return -EINVAL;
2913
8d7e3de1
CW
2914 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2915 return 0;
2916
88241785
CW
2917 ret = i915_gem_object_flush_gpu_write_domain(obj);
2918 if (ret)
2919 return ret;
2920
87ca9c8a 2921 if (obj->pending_gpu_write || write) {
ce453d81 2922 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2923 if (ret)
2924 return ret;
2925 }
2dafb1e0 2926
7213342d 2927 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2928
05394f39
CW
2929 old_write_domain = obj->base.write_domain;
2930 old_read_domains = obj->base.read_domains;
1c5d22f7 2931
e47c68e9
EA
2932 /* It should now be out of any other write domains, and we can update
2933 * the domain values for our changes.
2934 */
05394f39
CW
2935 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2936 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2937 if (write) {
05394f39
CW
2938 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2939 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2940 obj->dirty = 1;
2ef7eeaa
EA
2941 }
2942
1c5d22f7
CW
2943 trace_i915_gem_object_change_domain(obj,
2944 old_read_domains,
2945 old_write_domain);
2946
e47c68e9
EA
2947 return 0;
2948}
2949
e4ffd173
CW
2950int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2951 enum i915_cache_level cache_level)
2952{
2953 int ret;
2954
2955 if (obj->cache_level == cache_level)
2956 return 0;
2957
2958 if (obj->pin_count) {
2959 DRM_DEBUG("can not change the cache level of pinned objects\n");
2960 return -EBUSY;
2961 }
2962
2963 if (obj->gtt_space) {
2964 ret = i915_gem_object_finish_gpu(obj);
2965 if (ret)
2966 return ret;
2967
2968 i915_gem_object_finish_gtt(obj);
2969
2970 /* Before SandyBridge, you could not use tiling or fence
2971 * registers with snooped memory, so relinquish any fences
2972 * currently pointing to our region in the aperture.
2973 */
2974 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2975 ret = i915_gem_object_put_fence(obj);
2976 if (ret)
2977 return ret;
2978 }
2979
2980 i915_gem_gtt_rebind_object(obj, cache_level);
2981 }
2982
2983 if (cache_level == I915_CACHE_NONE) {
2984 u32 old_read_domains, old_write_domain;
2985
2986 /* If we're coming from LLC cached, then we haven't
2987 * actually been tracking whether the data is in the
2988 * CPU cache or not, since we only allow one bit set
2989 * in obj->write_domain and have been skipping the clflushes.
2990 * Just set it to the CPU cache for now.
2991 */
2992 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2993 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2994
2995 old_read_domains = obj->base.read_domains;
2996 old_write_domain = obj->base.write_domain;
2997
2998 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2999 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3000
3001 trace_i915_gem_object_change_domain(obj,
3002 old_read_domains,
3003 old_write_domain);
3004 }
3005
3006 obj->cache_level = cache_level;
3007 return 0;
3008}
3009
b9241ea3 3010/*
2da3b9b9
CW
3011 * Prepare buffer for display plane (scanout, cursors, etc).
3012 * Can be called from an uninterruptible phase (modesetting) and allows
3013 * any flushes to be pipelined (for pageflips).
3014 *
3015 * For the display plane, we want to be in the GTT but out of any write
3016 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
3017 * ability to pipeline the waits, pinning and any additional subtleties
3018 * that may differentiate the display plane from ordinary buffers.
b9241ea3
ZW
3019 */
3020int
2da3b9b9
CW
3021i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3022 u32 alignment,
919926ae 3023 struct intel_ring_buffer *pipelined)
b9241ea3 3024{
2da3b9b9 3025 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3026 int ret;
3027
88241785
CW
3028 ret = i915_gem_object_flush_gpu_write_domain(obj);
3029 if (ret)
3030 return ret;
3031
0be73284 3032 if (pipelined != obj->ring) {
ce453d81 3033 ret = i915_gem_object_wait_rendering(obj);
f0b69efc 3034 if (ret == -ERESTARTSYS)
b9241ea3
ZW
3035 return ret;
3036 }
3037
a7ef0640
EA
3038 /* The display engine is not coherent with the LLC cache on gen6. As
3039 * a result, we make sure that the pinning that is about to occur is
3040 * done with uncached PTEs. This is lowest common denominator for all
3041 * chipsets.
3042 *
3043 * However for gen6+, we could do better by using the GFDT bit instead
3044 * of uncaching, which would allow us to flush all the LLC-cached data
3045 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3046 */
3047 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3048 if (ret)
3049 return ret;
3050
2da3b9b9
CW
3051 /* As the user may map the buffer once pinned in the display plane
3052 * (e.g. libkms for the bootup splash), we have to ensure that we
3053 * always use map_and_fenceable for all scanout buffers.
3054 */
3055 ret = i915_gem_object_pin(obj, alignment, true);
3056 if (ret)
3057 return ret;
3058
b118c1e3
CW
3059 i915_gem_object_flush_cpu_write_domain(obj);
3060
2da3b9b9 3061 old_write_domain = obj->base.write_domain;
05394f39 3062 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3063
3064 /* It should now be out of any other write domains, and we can update
3065 * the domain values for our changes.
3066 */
3067 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3068 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3069
3070 trace_i915_gem_object_change_domain(obj,
3071 old_read_domains,
2da3b9b9 3072 old_write_domain);
b9241ea3
ZW
3073
3074 return 0;
3075}
3076
85345517 3077int
a8198eea 3078i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3079{
88241785
CW
3080 int ret;
3081
a8198eea 3082 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3083 return 0;
3084
88241785 3085 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3086 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3087 if (ret)
3088 return ret;
3089 }
85345517 3090
a8198eea
CW
3091 /* Ensure that we invalidate the GPU's caches and TLBs. */
3092 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3093
ce453d81 3094 return i915_gem_object_wait_rendering(obj);
85345517
CW
3095}
3096
e47c68e9
EA
3097/**
3098 * Moves a single object to the CPU read, and possibly write domain.
3099 *
3100 * This function returns when the move is complete, including waiting on
3101 * flushes to occur.
3102 */
3103static int
919926ae 3104i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3105{
1c5d22f7 3106 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3107 int ret;
3108
8d7e3de1
CW
3109 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3110 return 0;
3111
88241785
CW
3112 ret = i915_gem_object_flush_gpu_write_domain(obj);
3113 if (ret)
3114 return ret;
3115
ce453d81 3116 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3117 if (ret)
e47c68e9 3118 return ret;
2ef7eeaa 3119
e47c68e9 3120 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3121
e47c68e9
EA
3122 /* If we have a partially-valid cache of the object in the CPU,
3123 * finish invalidating it and free the per-page flags.
2ef7eeaa 3124 */
e47c68e9 3125 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3126
05394f39
CW
3127 old_write_domain = obj->base.write_domain;
3128 old_read_domains = obj->base.read_domains;
1c5d22f7 3129
e47c68e9 3130 /* Flush the CPU cache if it's still invalid. */
05394f39 3131 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3132 i915_gem_clflush_object(obj);
2ef7eeaa 3133
05394f39 3134 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3135 }
3136
3137 /* It should now be out of any other write domains, and we can update
3138 * the domain values for our changes.
3139 */
05394f39 3140 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3141
3142 /* If we're writing through the CPU, then the GPU read domains will
3143 * need to be invalidated at next use.
3144 */
3145 if (write) {
05394f39
CW
3146 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3147 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3148 }
2ef7eeaa 3149
1c5d22f7
CW
3150 trace_i915_gem_object_change_domain(obj,
3151 old_read_domains,
3152 old_write_domain);
3153
2ef7eeaa
EA
3154 return 0;
3155}
3156
673a394b 3157/**
e47c68e9 3158 * Moves the object from a partially CPU read to a full one.
673a394b 3159 *
e47c68e9
EA
3160 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3161 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3162 */
e47c68e9 3163static void
05394f39 3164i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3165{
05394f39 3166 if (!obj->page_cpu_valid)
e47c68e9
EA
3167 return;
3168
3169 /* If we're partially in the CPU read domain, finish moving it in.
3170 */
05394f39 3171 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3172 int i;
3173
05394f39
CW
3174 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3175 if (obj->page_cpu_valid[i])
e47c68e9 3176 continue;
05394f39 3177 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3178 }
e47c68e9
EA
3179 }
3180
3181 /* Free the page_cpu_valid mappings which are now stale, whether
3182 * or not we've got I915_GEM_DOMAIN_CPU.
3183 */
05394f39
CW
3184 kfree(obj->page_cpu_valid);
3185 obj->page_cpu_valid = NULL;
e47c68e9
EA
3186}
3187
3188/**
3189 * Set the CPU read domain on a range of the object.
3190 *
3191 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3192 * not entirely valid. The page_cpu_valid member of the object flags which
3193 * pages have been flushed, and will be respected by
3194 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3195 * of the whole object.
3196 *
3197 * This function returns when the move is complete, including waiting on
3198 * flushes to occur.
3199 */
3200static int
05394f39 3201i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3202 uint64_t offset, uint64_t size)
3203{
1c5d22f7 3204 uint32_t old_read_domains;
e47c68e9 3205 int i, ret;
673a394b 3206
05394f39 3207 if (offset == 0 && size == obj->base.size)
e47c68e9 3208 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3209
88241785
CW
3210 ret = i915_gem_object_flush_gpu_write_domain(obj);
3211 if (ret)
3212 return ret;
3213
ce453d81 3214 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3215 if (ret)
6a47baa6 3216 return ret;
de18a29e 3217
e47c68e9
EA
3218 i915_gem_object_flush_gtt_write_domain(obj);
3219
3220 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3221 if (obj->page_cpu_valid == NULL &&
3222 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3223 return 0;
673a394b 3224
e47c68e9
EA
3225 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3226 * newly adding I915_GEM_DOMAIN_CPU
3227 */
05394f39
CW
3228 if (obj->page_cpu_valid == NULL) {
3229 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3230 GFP_KERNEL);
3231 if (obj->page_cpu_valid == NULL)
e47c68e9 3232 return -ENOMEM;
05394f39
CW
3233 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3234 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3235
3236 /* Flush the cache on any pages that are still invalid from the CPU's
3237 * perspective.
3238 */
e47c68e9
EA
3239 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3240 i++) {
05394f39 3241 if (obj->page_cpu_valid[i])
673a394b
EA
3242 continue;
3243
05394f39 3244 drm_clflush_pages(obj->pages + i, 1);
673a394b 3245
05394f39 3246 obj->page_cpu_valid[i] = 1;
673a394b
EA
3247 }
3248
e47c68e9
EA
3249 /* It should now be out of any other write domains, and we can update
3250 * the domain values for our changes.
3251 */
05394f39 3252 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3253
05394f39
CW
3254 old_read_domains = obj->base.read_domains;
3255 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3256
1c5d22f7
CW
3257 trace_i915_gem_object_change_domain(obj,
3258 old_read_domains,
05394f39 3259 obj->base.write_domain);
1c5d22f7 3260
673a394b
EA
3261 return 0;
3262}
3263
673a394b
EA
3264/* Throttle our rendering by waiting until the ring has completed our requests
3265 * emitted over 20 msec ago.
3266 *
b962442e
EA
3267 * Note that if we were to use the current jiffies each time around the loop,
3268 * we wouldn't escape the function with any frames outstanding if the time to
3269 * render a frame was over 20ms.
3270 *
673a394b
EA
3271 * This should get us reasonable parallelism between CPU and GPU but also
3272 * relatively low latency when blocking on a particular request to finish.
3273 */
40a5f0de 3274static int
f787a5f5 3275i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3276{
f787a5f5
CW
3277 struct drm_i915_private *dev_priv = dev->dev_private;
3278 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3279 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3280 struct drm_i915_gem_request *request;
3281 struct intel_ring_buffer *ring = NULL;
3282 u32 seqno = 0;
3283 int ret;
93533c29 3284
e110e8d6
CW
3285 if (atomic_read(&dev_priv->mm.wedged))
3286 return -EIO;
3287
1c25595f 3288 spin_lock(&file_priv->mm.lock);
f787a5f5 3289 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3290 if (time_after_eq(request->emitted_jiffies, recent_enough))
3291 break;
40a5f0de 3292
f787a5f5
CW
3293 ring = request->ring;
3294 seqno = request->seqno;
b962442e 3295 }
1c25595f 3296 spin_unlock(&file_priv->mm.lock);
40a5f0de 3297
f787a5f5
CW
3298 if (seqno == 0)
3299 return 0;
2bc43b5c 3300
f787a5f5 3301 ret = 0;
78501eac 3302 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3303 /* And wait for the seqno passing without holding any locks and
3304 * causing extra latency for others. This is safe as the irq
3305 * generation is designed to be run atomically and so is
3306 * lockless.
3307 */
b13c2b96
CW
3308 if (ring->irq_get(ring)) {
3309 ret = wait_event_interruptible(ring->irq_queue,
3310 i915_seqno_passed(ring->get_seqno(ring), seqno)
3311 || atomic_read(&dev_priv->mm.wedged));
3312 ring->irq_put(ring);
40a5f0de 3313
b13c2b96
CW
3314 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3315 ret = -EIO;
3316 }
40a5f0de
EA
3317 }
3318
f787a5f5
CW
3319 if (ret == 0)
3320 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3321
3322 return ret;
3323}
3324
673a394b 3325int
05394f39
CW
3326i915_gem_object_pin(struct drm_i915_gem_object *obj,
3327 uint32_t alignment,
75e9e915 3328 bool map_and_fenceable)
673a394b 3329{
05394f39 3330 struct drm_device *dev = obj->base.dev;
f13d3f73 3331 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3332 int ret;
3333
05394f39 3334 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3335 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3336
05394f39
CW
3337 if (obj->gtt_space != NULL) {
3338 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3339 (map_and_fenceable && !obj->map_and_fenceable)) {
3340 WARN(obj->pin_count,
ae7d49d8 3341 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3342 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3343 " obj->map_and_fenceable=%d\n",
05394f39 3344 obj->gtt_offset, alignment,
75e9e915 3345 map_and_fenceable,
05394f39 3346 obj->map_and_fenceable);
ac0c6b5a
CW
3347 ret = i915_gem_object_unbind(obj);
3348 if (ret)
3349 return ret;
3350 }
3351 }
3352
05394f39 3353 if (obj->gtt_space == NULL) {
a00b10c3 3354 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3355 map_and_fenceable);
9731129c 3356 if (ret)
673a394b 3357 return ret;
22c344e9 3358 }
76446cac 3359
05394f39 3360 if (obj->pin_count++ == 0) {
05394f39
CW
3361 if (!obj->active)
3362 list_move_tail(&obj->mm_list,
f13d3f73 3363 &dev_priv->mm.pinned_list);
673a394b 3364 }
6299f992 3365 obj->pin_mappable |= map_and_fenceable;
673a394b 3366
23bc5982 3367 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3368 return 0;
3369}
3370
3371void
05394f39 3372i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3373{
05394f39 3374 struct drm_device *dev = obj->base.dev;
673a394b 3375 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3376
23bc5982 3377 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3378 BUG_ON(obj->pin_count == 0);
3379 BUG_ON(obj->gtt_space == NULL);
673a394b 3380
05394f39
CW
3381 if (--obj->pin_count == 0) {
3382 if (!obj->active)
3383 list_move_tail(&obj->mm_list,
673a394b 3384 &dev_priv->mm.inactive_list);
6299f992 3385 obj->pin_mappable = false;
673a394b 3386 }
23bc5982 3387 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3388}
3389
3390int
3391i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3392 struct drm_file *file)
673a394b
EA
3393{
3394 struct drm_i915_gem_pin *args = data;
05394f39 3395 struct drm_i915_gem_object *obj;
673a394b
EA
3396 int ret;
3397
1d7cfea1
CW
3398 ret = i915_mutex_lock_interruptible(dev);
3399 if (ret)
3400 return ret;
673a394b 3401
05394f39 3402 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3403 if (&obj->base == NULL) {
1d7cfea1
CW
3404 ret = -ENOENT;
3405 goto unlock;
673a394b 3406 }
673a394b 3407
05394f39 3408 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3409 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3410 ret = -EINVAL;
3411 goto out;
3ef94daa
CW
3412 }
3413
05394f39 3414 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3415 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3416 args->handle);
1d7cfea1
CW
3417 ret = -EINVAL;
3418 goto out;
79e53945
JB
3419 }
3420
05394f39
CW
3421 obj->user_pin_count++;
3422 obj->pin_filp = file;
3423 if (obj->user_pin_count == 1) {
75e9e915 3424 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3425 if (ret)
3426 goto out;
673a394b
EA
3427 }
3428
3429 /* XXX - flush the CPU caches for pinned objects
3430 * as the X server doesn't manage domains yet
3431 */
e47c68e9 3432 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3433 args->offset = obj->gtt_offset;
1d7cfea1 3434out:
05394f39 3435 drm_gem_object_unreference(&obj->base);
1d7cfea1 3436unlock:
673a394b 3437 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3438 return ret;
673a394b
EA
3439}
3440
3441int
3442i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3443 struct drm_file *file)
673a394b
EA
3444{
3445 struct drm_i915_gem_pin *args = data;
05394f39 3446 struct drm_i915_gem_object *obj;
76c1dec1 3447 int ret;
673a394b 3448
1d7cfea1
CW
3449 ret = i915_mutex_lock_interruptible(dev);
3450 if (ret)
3451 return ret;
673a394b 3452
05394f39 3453 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3454 if (&obj->base == NULL) {
1d7cfea1
CW
3455 ret = -ENOENT;
3456 goto unlock;
673a394b 3457 }
76c1dec1 3458
05394f39 3459 if (obj->pin_filp != file) {
79e53945
JB
3460 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3461 args->handle);
1d7cfea1
CW
3462 ret = -EINVAL;
3463 goto out;
79e53945 3464 }
05394f39
CW
3465 obj->user_pin_count--;
3466 if (obj->user_pin_count == 0) {
3467 obj->pin_filp = NULL;
79e53945
JB
3468 i915_gem_object_unpin(obj);
3469 }
673a394b 3470
1d7cfea1 3471out:
05394f39 3472 drm_gem_object_unreference(&obj->base);
1d7cfea1 3473unlock:
673a394b 3474 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3475 return ret;
673a394b
EA
3476}
3477
3478int
3479i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3480 struct drm_file *file)
673a394b
EA
3481{
3482 struct drm_i915_gem_busy *args = data;
05394f39 3483 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3484 int ret;
3485
76c1dec1 3486 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3487 if (ret)
76c1dec1 3488 return ret;
673a394b 3489
05394f39 3490 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3491 if (&obj->base == NULL) {
1d7cfea1
CW
3492 ret = -ENOENT;
3493 goto unlock;
673a394b 3494 }
d1b851fc 3495
0be555b6
CW
3496 /* Count all active objects as busy, even if they are currently not used
3497 * by the gpu. Users of this interface expect objects to eventually
3498 * become non-busy without any further actions, therefore emit any
3499 * necessary flushes here.
c4de0a5d 3500 */
05394f39 3501 args->busy = obj->active;
0be555b6
CW
3502 if (args->busy) {
3503 /* Unconditionally flush objects, even when the gpu still uses this
3504 * object. Userspace calling this function indicates that it wants to
3505 * use this buffer rather sooner than later, so issuing the required
3506 * flush earlier is beneficial.
3507 */
1a1c6976 3508 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3509 ret = i915_gem_flush_ring(obj->ring,
88241785 3510 0, obj->base.write_domain);
1a1c6976
CW
3511 } else if (obj->ring->outstanding_lazy_request ==
3512 obj->last_rendering_seqno) {
3513 struct drm_i915_gem_request *request;
3514
7a194876
CW
3515 /* This ring is not being cleared by active usage,
3516 * so emit a request to do so.
3517 */
1a1c6976
CW
3518 request = kzalloc(sizeof(*request), GFP_KERNEL);
3519 if (request)
0206e353 3520 ret = i915_add_request(obj->ring, NULL, request);
1a1c6976 3521 else
7a194876
CW
3522 ret = -ENOMEM;
3523 }
0be555b6
CW
3524
3525 /* Update the active list for the hardware's current position.
3526 * Otherwise this only updates on a delayed timer or when irqs
3527 * are actually unmasked, and our working set ends up being
3528 * larger than required.
3529 */
db53a302 3530 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3531
05394f39 3532 args->busy = obj->active;
0be555b6 3533 }
673a394b 3534
05394f39 3535 drm_gem_object_unreference(&obj->base);
1d7cfea1 3536unlock:
673a394b 3537 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3538 return ret;
673a394b
EA
3539}
3540
3541int
3542i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3543 struct drm_file *file_priv)
3544{
0206e353 3545 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3546}
3547
3ef94daa
CW
3548int
3549i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3550 struct drm_file *file_priv)
3551{
3552 struct drm_i915_gem_madvise *args = data;
05394f39 3553 struct drm_i915_gem_object *obj;
76c1dec1 3554 int ret;
3ef94daa
CW
3555
3556 switch (args->madv) {
3557 case I915_MADV_DONTNEED:
3558 case I915_MADV_WILLNEED:
3559 break;
3560 default:
3561 return -EINVAL;
3562 }
3563
1d7cfea1
CW
3564 ret = i915_mutex_lock_interruptible(dev);
3565 if (ret)
3566 return ret;
3567
05394f39 3568 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3569 if (&obj->base == NULL) {
1d7cfea1
CW
3570 ret = -ENOENT;
3571 goto unlock;
3ef94daa 3572 }
3ef94daa 3573
05394f39 3574 if (obj->pin_count) {
1d7cfea1
CW
3575 ret = -EINVAL;
3576 goto out;
3ef94daa
CW
3577 }
3578
05394f39
CW
3579 if (obj->madv != __I915_MADV_PURGED)
3580 obj->madv = args->madv;
3ef94daa 3581
2d7ef395 3582 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3583 if (i915_gem_object_is_purgeable(obj) &&
3584 obj->gtt_space == NULL)
2d7ef395
CW
3585 i915_gem_object_truncate(obj);
3586
05394f39 3587 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3588
1d7cfea1 3589out:
05394f39 3590 drm_gem_object_unreference(&obj->base);
1d7cfea1 3591unlock:
3ef94daa 3592 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3593 return ret;
3ef94daa
CW
3594}
3595
05394f39
CW
3596struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3597 size_t size)
ac52bc56 3598{
73aa808f 3599 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3600 struct drm_i915_gem_object *obj;
5949eac4 3601 struct address_space *mapping;
ac52bc56 3602
c397b908
DV
3603 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3604 if (obj == NULL)
3605 return NULL;
673a394b 3606
c397b908
DV
3607 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3608 kfree(obj);
3609 return NULL;
3610 }
673a394b 3611
5949eac4
HD
3612 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3613 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3614
73aa808f
CW
3615 i915_gem_info_add_obj(dev_priv, size);
3616
c397b908
DV
3617 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3618 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3619
a1871112
EA
3620 if (IS_GEN6(dev)) {
3621 /* On Gen6, we can have the GPU use the LLC (the CPU
3622 * cache) for about a 10% performance improvement
3623 * compared to uncached. Graphics requests other than
3624 * display scanout are coherent with the CPU in
3625 * accessing this cache. This means in this mode we
3626 * don't need to clflush on the CPU side, and on the
3627 * GPU side we only need to flush internal caches to
3628 * get data visible to the CPU.
3629 *
3630 * However, we maintain the display planes as UC, and so
3631 * need to rebind when first used as such.
3632 */
3633 obj->cache_level = I915_CACHE_LLC;
3634 } else
3635 obj->cache_level = I915_CACHE_NONE;
3636
62b8b215 3637 obj->base.driver_private = NULL;
c397b908 3638 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3639 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3640 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3641 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3642 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3643 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3644 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3645 /* Avoid an unnecessary call to unbind on the first bind. */
3646 obj->map_and_fenceable = true;
de151cf6 3647
05394f39 3648 return obj;
c397b908
DV
3649}
3650
3651int i915_gem_init_object(struct drm_gem_object *obj)
3652{
3653 BUG();
de151cf6 3654
673a394b
EA
3655 return 0;
3656}
3657
05394f39 3658static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3659{
05394f39 3660 struct drm_device *dev = obj->base.dev;
be72615b 3661 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3662 int ret;
673a394b 3663
be72615b
CW
3664 ret = i915_gem_object_unbind(obj);
3665 if (ret == -ERESTARTSYS) {
05394f39 3666 list_move(&obj->mm_list,
be72615b
CW
3667 &dev_priv->mm.deferred_free_list);
3668 return;
3669 }
673a394b 3670
26e12f89
CW
3671 trace_i915_gem_object_destroy(obj);
3672
05394f39 3673 if (obj->base.map_list.map)
b464e9a2 3674 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3675
05394f39
CW
3676 drm_gem_object_release(&obj->base);
3677 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3678
05394f39
CW
3679 kfree(obj->page_cpu_valid);
3680 kfree(obj->bit_17);
3681 kfree(obj);
673a394b
EA
3682}
3683
05394f39 3684void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3685{
05394f39
CW
3686 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3687 struct drm_device *dev = obj->base.dev;
be72615b 3688
05394f39 3689 while (obj->pin_count > 0)
be72615b
CW
3690 i915_gem_object_unpin(obj);
3691
05394f39 3692 if (obj->phys_obj)
be72615b
CW
3693 i915_gem_detach_phys_object(dev, obj);
3694
3695 i915_gem_free_object_tail(obj);
3696}
3697
29105ccc
CW
3698int
3699i915_gem_idle(struct drm_device *dev)
3700{
3701 drm_i915_private_t *dev_priv = dev->dev_private;
3702 int ret;
28dfe52a 3703
29105ccc 3704 mutex_lock(&dev->struct_mutex);
1c5d22f7 3705
87acb0a5 3706 if (dev_priv->mm.suspended) {
29105ccc
CW
3707 mutex_unlock(&dev->struct_mutex);
3708 return 0;
28dfe52a
EA
3709 }
3710
29105ccc 3711 ret = i915_gpu_idle(dev);
6dbe2772
KP
3712 if (ret) {
3713 mutex_unlock(&dev->struct_mutex);
673a394b 3714 return ret;
6dbe2772 3715 }
673a394b 3716
29105ccc
CW
3717 /* Under UMS, be paranoid and evict. */
3718 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3719 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3720 if (ret) {
3721 mutex_unlock(&dev->struct_mutex);
3722 return ret;
3723 }
3724 }
3725
312817a3
CW
3726 i915_gem_reset_fences(dev);
3727
29105ccc
CW
3728 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3729 * We need to replace this with a semaphore, or something.
3730 * And not confound mm.suspended!
3731 */
3732 dev_priv->mm.suspended = 1;
bc0c7f14 3733 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3734
3735 i915_kernel_lost_context(dev);
6dbe2772 3736 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3737
6dbe2772
KP
3738 mutex_unlock(&dev->struct_mutex);
3739
29105ccc
CW
3740 /* Cancel the retire work handler, which should be idle now. */
3741 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3742
673a394b
EA
3743 return 0;
3744}
3745
8187a2b7
ZN
3746int
3747i915_gem_init_ringbuffer(struct drm_device *dev)
3748{
3749 drm_i915_private_t *dev_priv = dev->dev_private;
3750 int ret;
68f95ba9 3751
5c1143bb 3752 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3753 if (ret)
b6913e4b 3754 return ret;
68f95ba9
CW
3755
3756 if (HAS_BSD(dev)) {
5c1143bb 3757 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3758 if (ret)
3759 goto cleanup_render_ring;
d1b851fc 3760 }
68f95ba9 3761
549f7365
CW
3762 if (HAS_BLT(dev)) {
3763 ret = intel_init_blt_ring_buffer(dev);
3764 if (ret)
3765 goto cleanup_bsd_ring;
3766 }
3767
6f392d54
CW
3768 dev_priv->next_seqno = 1;
3769
68f95ba9
CW
3770 return 0;
3771
549f7365 3772cleanup_bsd_ring:
1ec14ad3 3773 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3774cleanup_render_ring:
1ec14ad3 3775 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3776 return ret;
3777}
3778
3779void
3780i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3781{
3782 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3783 int i;
8187a2b7 3784
1ec14ad3
CW
3785 for (i = 0; i < I915_NUM_RINGS; i++)
3786 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3787}
3788
673a394b
EA
3789int
3790i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3791 struct drm_file *file_priv)
3792{
3793 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3794 int ret, i;
673a394b 3795
79e53945
JB
3796 if (drm_core_check_feature(dev, DRIVER_MODESET))
3797 return 0;
3798
ba1234d1 3799 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3800 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3801 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3802 }
3803
673a394b 3804 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3805 dev_priv->mm.suspended = 0;
3806
3807 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
3808 if (ret != 0) {
3809 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3810 return ret;
d816f6ac 3811 }
9bb2d6f9 3812
69dc4987 3813 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3814 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3815 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3816 for (i = 0; i < I915_NUM_RINGS; i++) {
3817 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3818 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3819 }
673a394b 3820 mutex_unlock(&dev->struct_mutex);
dbb19d30 3821
5f35308b
CW
3822 ret = drm_irq_install(dev);
3823 if (ret)
3824 goto cleanup_ringbuffer;
dbb19d30 3825
673a394b 3826 return 0;
5f35308b
CW
3827
3828cleanup_ringbuffer:
3829 mutex_lock(&dev->struct_mutex);
3830 i915_gem_cleanup_ringbuffer(dev);
3831 dev_priv->mm.suspended = 1;
3832 mutex_unlock(&dev->struct_mutex);
3833
3834 return ret;
673a394b
EA
3835}
3836
3837int
3838i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3839 struct drm_file *file_priv)
3840{
79e53945
JB
3841 if (drm_core_check_feature(dev, DRIVER_MODESET))
3842 return 0;
3843
dbb19d30 3844 drm_irq_uninstall(dev);
e6890f6f 3845 return i915_gem_idle(dev);
673a394b
EA
3846}
3847
3848void
3849i915_gem_lastclose(struct drm_device *dev)
3850{
3851 int ret;
673a394b 3852
e806b495
EA
3853 if (drm_core_check_feature(dev, DRIVER_MODESET))
3854 return;
3855
6dbe2772
KP
3856 ret = i915_gem_idle(dev);
3857 if (ret)
3858 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3859}
3860
64193406
CW
3861static void
3862init_ring_lists(struct intel_ring_buffer *ring)
3863{
3864 INIT_LIST_HEAD(&ring->active_list);
3865 INIT_LIST_HEAD(&ring->request_list);
3866 INIT_LIST_HEAD(&ring->gpu_write_list);
3867}
3868
673a394b
EA
3869void
3870i915_gem_load(struct drm_device *dev)
3871{
b5aa8a0f 3872 int i;
673a394b
EA
3873 drm_i915_private_t *dev_priv = dev->dev_private;
3874
69dc4987 3875 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3876 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3877 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3878 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3879 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3880 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3881 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3882 for (i = 0; i < I915_NUM_RINGS; i++)
3883 init_ring_lists(&dev_priv->ring[i]);
007cc8ac
DV
3884 for (i = 0; i < 16; i++)
3885 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3886 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3887 i915_gem_retire_work_handler);
30dbf0c0 3888 init_completion(&dev_priv->error_completion);
31169714 3889
94400120
DA
3890 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3891 if (IS_GEN3(dev)) {
3892 u32 tmp = I915_READ(MI_ARB_STATE);
3893 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3894 /* arb state is a masked write, so set bit + bit in mask */
3895 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3896 I915_WRITE(MI_ARB_STATE, tmp);
3897 }
3898 }
3899
72bfa19c
CW
3900 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3901
de151cf6 3902 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3903 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3904 dev_priv->fence_reg_start = 3;
de151cf6 3905
a6c45cf0 3906 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3907 dev_priv->num_fence_regs = 16;
3908 else
3909 dev_priv->num_fence_regs = 8;
3910
b5aa8a0f 3911 /* Initialize fence registers to zero */
10ed13e4
EA
3912 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3913 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
b5aa8a0f 3914 }
10ed13e4 3915
673a394b 3916 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3917 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3918
ce453d81
CW
3919 dev_priv->mm.interruptible = true;
3920
17250b71
CW
3921 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3922 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3923 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3924}
71acb5eb
DA
3925
3926/*
3927 * Create a physically contiguous memory object for this object
3928 * e.g. for cursor + overlay regs
3929 */
995b6762
CW
3930static int i915_gem_init_phys_object(struct drm_device *dev,
3931 int id, int size, int align)
71acb5eb
DA
3932{
3933 drm_i915_private_t *dev_priv = dev->dev_private;
3934 struct drm_i915_gem_phys_object *phys_obj;
3935 int ret;
3936
3937 if (dev_priv->mm.phys_objs[id - 1] || !size)
3938 return 0;
3939
9a298b2a 3940 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3941 if (!phys_obj)
3942 return -ENOMEM;
3943
3944 phys_obj->id = id;
3945
6eeefaf3 3946 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3947 if (!phys_obj->handle) {
3948 ret = -ENOMEM;
3949 goto kfree_obj;
3950 }
3951#ifdef CONFIG_X86
3952 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3953#endif
3954
3955 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3956
3957 return 0;
3958kfree_obj:
9a298b2a 3959 kfree(phys_obj);
71acb5eb
DA
3960 return ret;
3961}
3962
995b6762 3963static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3964{
3965 drm_i915_private_t *dev_priv = dev->dev_private;
3966 struct drm_i915_gem_phys_object *phys_obj;
3967
3968 if (!dev_priv->mm.phys_objs[id - 1])
3969 return;
3970
3971 phys_obj = dev_priv->mm.phys_objs[id - 1];
3972 if (phys_obj->cur_obj) {
3973 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3974 }
3975
3976#ifdef CONFIG_X86
3977 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3978#endif
3979 drm_pci_free(dev, phys_obj->handle);
3980 kfree(phys_obj);
3981 dev_priv->mm.phys_objs[id - 1] = NULL;
3982}
3983
3984void i915_gem_free_all_phys_object(struct drm_device *dev)
3985{
3986 int i;
3987
260883c8 3988 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3989 i915_gem_free_phys_object(dev, i);
3990}
3991
3992void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3993 struct drm_i915_gem_object *obj)
71acb5eb 3994{
05394f39 3995 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3996 char *vaddr;
71acb5eb 3997 int i;
71acb5eb
DA
3998 int page_count;
3999
05394f39 4000 if (!obj->phys_obj)
71acb5eb 4001 return;
05394f39 4002 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4003
05394f39 4004 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4005 for (i = 0; i < page_count; i++) {
5949eac4 4006 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4007 if (!IS_ERR(page)) {
4008 char *dst = kmap_atomic(page);
4009 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4010 kunmap_atomic(dst);
4011
4012 drm_clflush_pages(&page, 1);
4013
4014 set_page_dirty(page);
4015 mark_page_accessed(page);
4016 page_cache_release(page);
4017 }
71acb5eb 4018 }
40ce6575 4019 intel_gtt_chipset_flush();
d78b47b9 4020
05394f39
CW
4021 obj->phys_obj->cur_obj = NULL;
4022 obj->phys_obj = NULL;
71acb5eb
DA
4023}
4024
4025int
4026i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4027 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4028 int id,
4029 int align)
71acb5eb 4030{
05394f39 4031 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4032 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4033 int ret = 0;
4034 int page_count;
4035 int i;
4036
4037 if (id > I915_MAX_PHYS_OBJECT)
4038 return -EINVAL;
4039
05394f39
CW
4040 if (obj->phys_obj) {
4041 if (obj->phys_obj->id == id)
71acb5eb
DA
4042 return 0;
4043 i915_gem_detach_phys_object(dev, obj);
4044 }
4045
71acb5eb
DA
4046 /* create a new object */
4047 if (!dev_priv->mm.phys_objs[id - 1]) {
4048 ret = i915_gem_init_phys_object(dev, id,
05394f39 4049 obj->base.size, align);
71acb5eb 4050 if (ret) {
05394f39
CW
4051 DRM_ERROR("failed to init phys object %d size: %zu\n",
4052 id, obj->base.size);
e5281ccd 4053 return ret;
71acb5eb
DA
4054 }
4055 }
4056
4057 /* bind to the object */
05394f39
CW
4058 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4059 obj->phys_obj->cur_obj = obj;
71acb5eb 4060
05394f39 4061 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4062
4063 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4064 struct page *page;
4065 char *dst, *src;
4066
5949eac4 4067 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4068 if (IS_ERR(page))
4069 return PTR_ERR(page);
71acb5eb 4070
ff75b9bc 4071 src = kmap_atomic(page);
05394f39 4072 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4073 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4074 kunmap_atomic(src);
71acb5eb 4075
e5281ccd
CW
4076 mark_page_accessed(page);
4077 page_cache_release(page);
4078 }
d78b47b9 4079
71acb5eb 4080 return 0;
71acb5eb
DA
4081}
4082
4083static int
05394f39
CW
4084i915_gem_phys_pwrite(struct drm_device *dev,
4085 struct drm_i915_gem_object *obj,
71acb5eb
DA
4086 struct drm_i915_gem_pwrite *args,
4087 struct drm_file *file_priv)
4088{
05394f39 4089 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4090 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4091
b47b30cc
CW
4092 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4093 unsigned long unwritten;
4094
4095 /* The physical object once assigned is fixed for the lifetime
4096 * of the obj, so we can safely drop the lock and continue
4097 * to access vaddr.
4098 */
4099 mutex_unlock(&dev->struct_mutex);
4100 unwritten = copy_from_user(vaddr, user_data, args->size);
4101 mutex_lock(&dev->struct_mutex);
4102 if (unwritten)
4103 return -EFAULT;
4104 }
71acb5eb 4105
40ce6575 4106 intel_gtt_chipset_flush();
71acb5eb
DA
4107 return 0;
4108}
b962442e 4109
f787a5f5 4110void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4111{
f787a5f5 4112 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4113
4114 /* Clean up our request list when the client is going away, so that
4115 * later retire_requests won't dereference our soon-to-be-gone
4116 * file_priv.
4117 */
1c25595f 4118 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4119 while (!list_empty(&file_priv->mm.request_list)) {
4120 struct drm_i915_gem_request *request;
4121
4122 request = list_first_entry(&file_priv->mm.request_list,
4123 struct drm_i915_gem_request,
4124 client_list);
4125 list_del(&request->client_list);
4126 request->file_priv = NULL;
4127 }
1c25595f 4128 spin_unlock(&file_priv->mm.lock);
b962442e 4129}
31169714 4130
1637ef41
CW
4131static int
4132i915_gpu_is_active(struct drm_device *dev)
4133{
4134 drm_i915_private_t *dev_priv = dev->dev_private;
4135 int lists_empty;
4136
1637ef41 4137 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4138 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4139
4140 return !lists_empty;
4141}
4142
31169714 4143static int
1495f230 4144i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4145{
17250b71
CW
4146 struct drm_i915_private *dev_priv =
4147 container_of(shrinker,
4148 struct drm_i915_private,
4149 mm.inactive_shrinker);
4150 struct drm_device *dev = dev_priv->dev;
4151 struct drm_i915_gem_object *obj, *next;
1495f230 4152 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4153 int cnt;
4154
4155 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4156 return 0;
31169714
CW
4157
4158 /* "fast-path" to count number of available objects */
4159 if (nr_to_scan == 0) {
17250b71
CW
4160 cnt = 0;
4161 list_for_each_entry(obj,
4162 &dev_priv->mm.inactive_list,
4163 mm_list)
4164 cnt++;
4165 mutex_unlock(&dev->struct_mutex);
4166 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4167 }
4168
1637ef41 4169rescan:
31169714 4170 /* first scan for clean buffers */
17250b71 4171 i915_gem_retire_requests(dev);
31169714 4172
17250b71
CW
4173 list_for_each_entry_safe(obj, next,
4174 &dev_priv->mm.inactive_list,
4175 mm_list) {
4176 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4177 if (i915_gem_object_unbind(obj) == 0 &&
4178 --nr_to_scan == 0)
17250b71 4179 break;
31169714 4180 }
31169714
CW
4181 }
4182
4183 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4184 cnt = 0;
4185 list_for_each_entry_safe(obj, next,
4186 &dev_priv->mm.inactive_list,
4187 mm_list) {
2021746e
CW
4188 if (nr_to_scan &&
4189 i915_gem_object_unbind(obj) == 0)
17250b71 4190 nr_to_scan--;
2021746e 4191 else
17250b71
CW
4192 cnt++;
4193 }
4194
4195 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4196 /*
4197 * We are desperate for pages, so as a last resort, wait
4198 * for the GPU to finish and discard whatever we can.
4199 * This has a dramatic impact to reduce the number of
4200 * OOM-killer events whilst running the GPU aggressively.
4201 */
17250b71 4202 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4203 goto rescan;
4204 }
17250b71
CW
4205 mutex_unlock(&dev->struct_mutex);
4206 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4207}