]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Skip HW reinitialisation on resume if still wedged
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
57822dc6 32#include "i915_gem_clflush.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
465c403c 38#include "i915_gemfs.h"
6b5e90f5 39#include <linux/dma-fence-array.h>
fe3288b5 40#include <linux/kthread.h>
c13d87ea 41#include <linux/reservation.h>
5949eac4 42#include <linux/shmem_fs.h>
5a0e3ad6 43#include <linux/slab.h>
20e4933c 44#include <linux/stop_machine.h>
673a394b 45#include <linux/swap.h>
79e53945 46#include <linux/pci.h>
1286ff73 47#include <linux/dma-buf.h>
673a394b 48
fbbd37b3 49static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
61050808 50
2c22569b
CW
51static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
52{
e27ab73d 53 if (obj->cache_dirty)
b50a5371
AS
54 return false;
55
b8f55be6 56 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
2c22569b
CW
57 return true;
58
bd3d2252 59 return obj->pin_global; /* currently in use by HW, keep flushed */
2c22569b
CW
60}
61
4f1959ee 62static int
bb6dc8d9 63insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
64 struct drm_mm_node *node, u32 size)
65{
66 memset(node, 0, sizeof(*node));
4e64e553
CW
67 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
68 size, 0, I915_COLOR_UNEVICTABLE,
69 0, ggtt->mappable_end,
70 DRM_MM_INSERT_LOW);
4f1959ee
AS
71}
72
73static void
74remove_mappable_node(struct drm_mm_node *node)
75{
76 drm_mm_remove_node(node);
77}
78
73aa808f
CW
79/* some bookkeeping */
80static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 81 u64 size)
73aa808f 82{
c20e8355 83 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
84 dev_priv->mm.object_count++;
85 dev_priv->mm.object_memory += size;
c20e8355 86 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
87}
88
89static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 90 u64 size)
73aa808f 91{
c20e8355 92 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
93 dev_priv->mm.object_count--;
94 dev_priv->mm.object_memory -= size;
c20e8355 95 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96}
97
21dd3734 98static int
33196ded 99i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 100{
30dbf0c0
CW
101 int ret;
102
4c7d62c6
CW
103 might_sleep();
104
0a6759c6
DV
105 /*
106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 * userspace. If it takes that long something really bad is going on and
108 * we should simply try to bail out and fail as gracefully as possible.
109 */
1f83fee0 110 ret = wait_event_interruptible_timeout(error->reset_queue,
8c185eca 111 !i915_reset_backoff(error),
b52992c0 112 I915_RESET_TIMEOUT);
0a6759c6
DV
113 if (ret == 0) {
114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115 return -EIO;
116 } else if (ret < 0) {
30dbf0c0 117 return ret;
d98c52cf
CW
118 } else {
119 return 0;
0a6759c6 120 }
30dbf0c0
CW
121}
122
54cf91dc 123int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 124{
fac5e23e 125 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
126 int ret;
127
33196ded 128 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
129 if (ret)
130 return ret;
131
132 ret = mutex_lock_interruptible(&dev->struct_mutex);
133 if (ret)
134 return ret;
135
76c1dec1
CW
136 return 0;
137}
30dbf0c0 138
5a125c3c
EA
139int
140i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 141 struct drm_file *file)
5a125c3c 142{
72e96d64 143 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 144 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 145 struct drm_i915_gem_get_aperture *args = data;
ca1543be 146 struct i915_vma *vma;
ff8f7975 147 u64 pinned;
5a125c3c 148
ff8f7975 149 pinned = ggtt->base.reserved;
73aa808f 150 mutex_lock(&dev->struct_mutex);
1c7f4bca 151 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 152 if (i915_vma_is_pinned(vma))
ca1543be 153 pinned += vma->node.size;
1c7f4bca 154 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 155 if (i915_vma_is_pinned(vma))
ca1543be 156 pinned += vma->node.size;
73aa808f 157 mutex_unlock(&dev->struct_mutex);
5a125c3c 158
72e96d64 159 args->aper_size = ggtt->base.total;
0206e353 160 args->aper_available_size = args->aper_size - pinned;
6299f992 161
5a125c3c
EA
162 return 0;
163}
164
b91b09ee 165static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 166{
93c76a3d 167 struct address_space *mapping = obj->base.filp->f_mapping;
dbb4351b 168 drm_dma_handle_t *phys;
6a2c4232
CW
169 struct sg_table *st;
170 struct scatterlist *sg;
dbb4351b 171 char *vaddr;
6a2c4232 172 int i;
b91b09ee 173 int err;
00731155 174
6a2c4232 175 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
b91b09ee 176 return -EINVAL;
6a2c4232 177
dbb4351b
CW
178 /* Always aligning to the object size, allows a single allocation
179 * to handle all possible callers, and given typical object sizes,
180 * the alignment of the buddy allocation will naturally match.
181 */
182 phys = drm_pci_alloc(obj->base.dev,
750fae23 183 roundup_pow_of_two(obj->base.size),
dbb4351b
CW
184 roundup_pow_of_two(obj->base.size));
185 if (!phys)
b91b09ee 186 return -ENOMEM;
dbb4351b
CW
187
188 vaddr = phys->vaddr;
6a2c4232
CW
189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190 struct page *page;
191 char *src;
192
193 page = shmem_read_mapping_page(mapping, i);
dbb4351b 194 if (IS_ERR(page)) {
b91b09ee 195 err = PTR_ERR(page);
dbb4351b
CW
196 goto err_phys;
197 }
6a2c4232
CW
198
199 src = kmap_atomic(page);
200 memcpy(vaddr, src, PAGE_SIZE);
201 drm_clflush_virt_range(vaddr, PAGE_SIZE);
202 kunmap_atomic(src);
203
09cbfeaf 204 put_page(page);
6a2c4232
CW
205 vaddr += PAGE_SIZE;
206 }
207
c033666a 208 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
209
210 st = kmalloc(sizeof(*st), GFP_KERNEL);
dbb4351b 211 if (!st) {
b91b09ee 212 err = -ENOMEM;
dbb4351b
CW
213 goto err_phys;
214 }
6a2c4232
CW
215
216 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
217 kfree(st);
b91b09ee 218 err = -ENOMEM;
dbb4351b 219 goto err_phys;
6a2c4232
CW
220 }
221
222 sg = st->sgl;
223 sg->offset = 0;
224 sg->length = obj->base.size;
00731155 225
dbb4351b 226 sg_dma_address(sg) = phys->busaddr;
6a2c4232
CW
227 sg_dma_len(sg) = obj->base.size;
228
dbb4351b 229 obj->phys_handle = phys;
b91b09ee 230
a5c08166 231 __i915_gem_object_set_pages(obj, st, sg->length);
b91b09ee
MA
232
233 return 0;
dbb4351b
CW
234
235err_phys:
236 drm_pci_free(obj->base.dev, phys);
b91b09ee
MA
237
238 return err;
6a2c4232
CW
239}
240
e27ab73d
CW
241static void __start_cpu_write(struct drm_i915_gem_object *obj)
242{
243 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
244 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
245 if (cpu_write_needs_clflush(obj))
246 obj->cache_dirty = true;
247}
248
6a2c4232 249static void
2b3c8317 250__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
e5facdf9
CW
251 struct sg_table *pages,
252 bool needs_clflush)
6a2c4232 253{
a4f5ea64 254 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 255
a4f5ea64
CW
256 if (obj->mm.madv == I915_MADV_DONTNEED)
257 obj->mm.dirty = false;
6a2c4232 258
e5facdf9
CW
259 if (needs_clflush &&
260 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
b8f55be6 261 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
2b3c8317 262 drm_clflush_sg(pages);
03ac84f1 263
e27ab73d 264 __start_cpu_write(obj);
03ac84f1
CW
265}
266
267static void
268i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
269 struct sg_table *pages)
270{
e5facdf9 271 __i915_gem_object_release_shmem(obj, pages, false);
03ac84f1 272
a4f5ea64 273 if (obj->mm.dirty) {
93c76a3d 274 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 275 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
276 int i;
277
278 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
279 struct page *page;
280 char *dst;
281
282 page = shmem_read_mapping_page(mapping, i);
283 if (IS_ERR(page))
284 continue;
285
286 dst = kmap_atomic(page);
287 drm_clflush_virt_range(vaddr, PAGE_SIZE);
288 memcpy(dst, vaddr, PAGE_SIZE);
289 kunmap_atomic(dst);
290
291 set_page_dirty(page);
a4f5ea64 292 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 293 mark_page_accessed(page);
09cbfeaf 294 put_page(page);
00731155
CW
295 vaddr += PAGE_SIZE;
296 }
a4f5ea64 297 obj->mm.dirty = false;
00731155
CW
298 }
299
03ac84f1
CW
300 sg_free_table(pages);
301 kfree(pages);
dbb4351b
CW
302
303 drm_pci_free(obj->base.dev, obj->phys_handle);
6a2c4232
CW
304}
305
306static void
307i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
308{
a4f5ea64 309 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
310}
311
312static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
313 .get_pages = i915_gem_object_get_pages_phys,
314 .put_pages = i915_gem_object_put_pages_phys,
315 .release = i915_gem_object_release_phys,
316};
317
581ab1fe
CW
318static const struct drm_i915_gem_object_ops i915_gem_object_ops;
319
35a9611c 320int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
321{
322 struct i915_vma *vma;
323 LIST_HEAD(still_in_list);
02bef8f9
CW
324 int ret;
325
326 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 327
02bef8f9
CW
328 /* Closed vma are removed from the obj->vma_list - but they may
329 * still have an active binding on the object. To remove those we
330 * must wait for all rendering to complete to the object (as unbinding
331 * must anyway), and retire the requests.
aa653a68 332 */
e95433c7
CW
333 ret = i915_gem_object_wait(obj,
334 I915_WAIT_INTERRUPTIBLE |
335 I915_WAIT_LOCKED |
336 I915_WAIT_ALL,
337 MAX_SCHEDULE_TIMEOUT,
338 NULL);
02bef8f9
CW
339 if (ret)
340 return ret;
341
342 i915_gem_retire_requests(to_i915(obj->base.dev));
343
aa653a68
CW
344 while ((vma = list_first_entry_or_null(&obj->vma_list,
345 struct i915_vma,
346 obj_link))) {
347 list_move_tail(&vma->obj_link, &still_in_list);
348 ret = i915_vma_unbind(vma);
349 if (ret)
350 break;
351 }
352 list_splice(&still_in_list, &obj->vma_list);
353
354 return ret;
355}
356
e95433c7
CW
357static long
358i915_gem_object_wait_fence(struct dma_fence *fence,
359 unsigned int flags,
360 long timeout,
562d9bae 361 struct intel_rps_client *rps_client)
00e60f26 362{
e95433c7 363 struct drm_i915_gem_request *rq;
00e60f26 364
e95433c7 365 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 366
e95433c7
CW
367 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
368 return timeout;
369
370 if (!dma_fence_is_i915(fence))
371 return dma_fence_wait_timeout(fence,
372 flags & I915_WAIT_INTERRUPTIBLE,
373 timeout);
374
375 rq = to_request(fence);
376 if (i915_gem_request_completed(rq))
377 goto out;
378
379 /* This client is about to stall waiting for the GPU. In many cases
380 * this is undesirable and limits the throughput of the system, as
381 * many clients cannot continue processing user input/output whilst
382 * blocked. RPS autotuning may take tens of milliseconds to respond
383 * to the GPU load and thus incurs additional latency for the client.
384 * We can circumvent that by promoting the GPU frequency to maximum
385 * before we wait. This makes the GPU throttle up much more quickly
386 * (good for benchmarks and user experience, e.g. window animations),
387 * but at a cost of spending more power processing the workload
388 * (bad for battery). Not all clients even want their results
389 * immediately and for them we should just let the GPU select its own
390 * frequency to maximise efficiency. To prevent a single client from
391 * forcing the clocks too high for the whole system, we only allow
392 * each client to waitboost once in a busy period.
393 */
562d9bae 394 if (rps_client) {
e95433c7 395 if (INTEL_GEN(rq->i915) >= 6)
562d9bae 396 gen6_rps_boost(rq, rps_client);
e95433c7 397 else
562d9bae 398 rps_client = NULL;
00e60f26
CW
399 }
400
e95433c7
CW
401 timeout = i915_wait_request(rq, flags, timeout);
402
403out:
404 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
405 i915_gem_request_retire_upto(rq);
406
e95433c7
CW
407 return timeout;
408}
409
410static long
411i915_gem_object_wait_reservation(struct reservation_object *resv,
412 unsigned int flags,
413 long timeout,
562d9bae 414 struct intel_rps_client *rps_client)
e95433c7 415{
e54ca977 416 unsigned int seq = __read_seqcount_begin(&resv->seq);
e95433c7 417 struct dma_fence *excl;
e54ca977 418 bool prune_fences = false;
e95433c7
CW
419
420 if (flags & I915_WAIT_ALL) {
421 struct dma_fence **shared;
422 unsigned int count, i;
00e60f26
CW
423 int ret;
424
e95433c7
CW
425 ret = reservation_object_get_fences_rcu(resv,
426 &excl, &count, &shared);
00e60f26
CW
427 if (ret)
428 return ret;
00e60f26 429
e95433c7
CW
430 for (i = 0; i < count; i++) {
431 timeout = i915_gem_object_wait_fence(shared[i],
432 flags, timeout,
562d9bae 433 rps_client);
d892e939 434 if (timeout < 0)
e95433c7 435 break;
00e60f26 436
e95433c7
CW
437 dma_fence_put(shared[i]);
438 }
439
440 for (; i < count; i++)
441 dma_fence_put(shared[i]);
442 kfree(shared);
e54ca977
CW
443
444 prune_fences = count && timeout >= 0;
e95433c7
CW
445 } else {
446 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
447 }
448
e54ca977 449 if (excl && timeout >= 0) {
562d9bae
SAK
450 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
451 rps_client);
e54ca977
CW
452 prune_fences = timeout >= 0;
453 }
e95433c7
CW
454
455 dma_fence_put(excl);
456
03d1cac6
CW
457 /* Oportunistically prune the fences iff we know they have *all* been
458 * signaled and that the reservation object has not been changed (i.e.
459 * no new fences have been added).
460 */
e54ca977 461 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
03d1cac6
CW
462 if (reservation_object_trylock(resv)) {
463 if (!__read_seqcount_retry(&resv->seq, seq))
464 reservation_object_add_excl_fence(resv, NULL);
465 reservation_object_unlock(resv);
466 }
e54ca977
CW
467 }
468
e95433c7 469 return timeout;
00e60f26
CW
470}
471
6b5e90f5
CW
472static void __fence_set_priority(struct dma_fence *fence, int prio)
473{
474 struct drm_i915_gem_request *rq;
475 struct intel_engine_cs *engine;
476
477 if (!dma_fence_is_i915(fence))
478 return;
479
480 rq = to_request(fence);
481 engine = rq->engine;
482 if (!engine->schedule)
483 return;
484
485 engine->schedule(rq, prio);
486}
487
488static void fence_set_priority(struct dma_fence *fence, int prio)
489{
490 /* Recurse once into a fence-array */
491 if (dma_fence_is_array(fence)) {
492 struct dma_fence_array *array = to_dma_fence_array(fence);
493 int i;
494
495 for (i = 0; i < array->num_fences; i++)
496 __fence_set_priority(array->fences[i], prio);
497 } else {
498 __fence_set_priority(fence, prio);
499 }
500}
501
502int
503i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
504 unsigned int flags,
505 int prio)
506{
507 struct dma_fence *excl;
508
509 if (flags & I915_WAIT_ALL) {
510 struct dma_fence **shared;
511 unsigned int count, i;
512 int ret;
513
514 ret = reservation_object_get_fences_rcu(obj->resv,
515 &excl, &count, &shared);
516 if (ret)
517 return ret;
518
519 for (i = 0; i < count; i++) {
520 fence_set_priority(shared[i], prio);
521 dma_fence_put(shared[i]);
522 }
523
524 kfree(shared);
525 } else {
526 excl = reservation_object_get_excl_rcu(obj->resv);
527 }
528
529 if (excl) {
530 fence_set_priority(excl, prio);
531 dma_fence_put(excl);
532 }
533 return 0;
534}
535
e95433c7
CW
536/**
537 * Waits for rendering to the object to be completed
538 * @obj: i915 gem object
539 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
540 * @timeout: how long to wait
541 * @rps: client (user process) to charge for any waitboosting
00e60f26 542 */
e95433c7
CW
543int
544i915_gem_object_wait(struct drm_i915_gem_object *obj,
545 unsigned int flags,
546 long timeout,
562d9bae 547 struct intel_rps_client *rps_client)
00e60f26 548{
e95433c7
CW
549 might_sleep();
550#if IS_ENABLED(CONFIG_LOCKDEP)
551 GEM_BUG_ON(debug_locks &&
552 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
553 !!(flags & I915_WAIT_LOCKED));
554#endif
555 GEM_BUG_ON(timeout < 0);
00e60f26 556
d07f0e59
CW
557 timeout = i915_gem_object_wait_reservation(obj->resv,
558 flags, timeout,
562d9bae 559 rps_client);
e95433c7 560 return timeout < 0 ? timeout : 0;
00e60f26
CW
561}
562
563static struct intel_rps_client *to_rps_client(struct drm_file *file)
564{
565 struct drm_i915_file_private *fpriv = file->driver_priv;
566
562d9bae 567 return &fpriv->rps_client;
00e60f26
CW
568}
569
00731155
CW
570static int
571i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
572 struct drm_i915_gem_pwrite *args,
03ac84f1 573 struct drm_file *file)
00731155 574{
00731155 575 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 576 char __user *user_data = u64_to_user_ptr(args->data_ptr);
6a2c4232
CW
577
578 /* We manually control the domain here and pretend that it
579 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
580 */
77a0d1ca 581 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
10466d2a
CW
582 if (copy_from_user(vaddr, user_data, args->size))
583 return -EFAULT;
00731155 584
6a2c4232 585 drm_clflush_virt_range(vaddr, args->size);
10466d2a 586 i915_gem_chipset_flush(to_i915(obj->base.dev));
063e4e6b 587
d59b21ec 588 intel_fb_obj_flush(obj, ORIGIN_CPU);
10466d2a 589 return 0;
00731155
CW
590}
591
187685cb 592void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
42dcedd4 593{
efab6d8d 594 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
595}
596
597void i915_gem_object_free(struct drm_i915_gem_object *obj)
598{
fac5e23e 599 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 600 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
601}
602
ff72145b
DA
603static int
604i915_gem_create(struct drm_file *file,
12d79d78 605 struct drm_i915_private *dev_priv,
ff72145b
DA
606 uint64_t size,
607 uint32_t *handle_p)
673a394b 608{
05394f39 609 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
610 int ret;
611 u32 handle;
673a394b 612
ff72145b 613 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
614 if (size == 0)
615 return -EINVAL;
673a394b
EA
616
617 /* Allocate the new object */
12d79d78 618 obj = i915_gem_object_create(dev_priv, size);
fe3db79b
CW
619 if (IS_ERR(obj))
620 return PTR_ERR(obj);
673a394b 621
05394f39 622 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 623 /* drop reference from allocate - handle holds it now */
f0cd5182 624 i915_gem_object_put(obj);
d861e338
DV
625 if (ret)
626 return ret;
202f2fef 627
ff72145b 628 *handle_p = handle;
673a394b
EA
629 return 0;
630}
631
ff72145b
DA
632int
633i915_gem_dumb_create(struct drm_file *file,
634 struct drm_device *dev,
635 struct drm_mode_create_dumb *args)
636{
637 /* have to work out size/pitch and return them */
de45eaf7 638 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b 639 args->size = args->pitch * args->height;
12d79d78 640 return i915_gem_create(file, to_i915(dev),
da6b51d0 641 args->size, &args->handle);
ff72145b
DA
642}
643
e27ab73d
CW
644static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
645{
646 return !(obj->cache_level == I915_CACHE_NONE ||
647 obj->cache_level == I915_CACHE_WT);
648}
649
ff72145b
DA
650/**
651 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
652 * @dev: drm device pointer
653 * @data: ioctl data blob
654 * @file: drm file pointer
ff72145b
DA
655 */
656int
657i915_gem_create_ioctl(struct drm_device *dev, void *data,
658 struct drm_file *file)
659{
12d79d78 660 struct drm_i915_private *dev_priv = to_i915(dev);
ff72145b 661 struct drm_i915_gem_create *args = data;
63ed2cb2 662
12d79d78 663 i915_gem_flush_free_objects(dev_priv);
fbbd37b3 664
12d79d78 665 return i915_gem_create(file, dev_priv,
da6b51d0 666 args->size, &args->handle);
ff72145b
DA
667}
668
ef74921b
CW
669static inline enum fb_op_origin
670fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
671{
672 return (domain == I915_GEM_DOMAIN_GTT ?
673 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
674}
675
676static void
677flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
678{
679 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
680
681 if (!(obj->base.write_domain & flush_domains))
682 return;
683
684 /* No actual flushing is required for the GTT write domain. Writes
685 * to it "immediately" go to main memory as far as we know, so there's
686 * no chipset flush. It also doesn't land in render cache.
687 *
688 * However, we do have to enforce the order so that all writes through
689 * the GTT land before any writes to the device, such as updates to
690 * the GATT itself.
691 *
692 * We also have to wait a bit for the writes to land from the GTT.
693 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
694 * timing. This issue has only been observed when switching quickly
695 * between GTT writes and CPU reads from inside the kernel on recent hw,
696 * and it appears to only affect discrete GTT blocks (i.e. on LLC
697 * system agents we cannot reproduce this behaviour).
698 */
699 wmb();
700
701 switch (obj->base.write_domain) {
702 case I915_GEM_DOMAIN_GTT:
c5ba5b24 703 if (!HAS_LLC(dev_priv)) {
b69a784f
CW
704 intel_runtime_pm_get(dev_priv);
705 spin_lock_irq(&dev_priv->uncore.lock);
c5ba5b24 706 POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base));
b69a784f
CW
707 spin_unlock_irq(&dev_priv->uncore.lock);
708 intel_runtime_pm_put(dev_priv);
ef74921b
CW
709 }
710
711 intel_fb_obj_flush(obj,
712 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
713 break;
714
715 case I915_GEM_DOMAIN_CPU:
716 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
717 break;
e27ab73d
CW
718
719 case I915_GEM_DOMAIN_RENDER:
720 if (gpu_write_needs_clflush(obj))
721 obj->cache_dirty = true;
722 break;
ef74921b
CW
723 }
724
725 obj->base.write_domain = 0;
726}
727
8461d226
DV
728static inline int
729__copy_to_user_swizzled(char __user *cpu_vaddr,
730 const char *gpu_vaddr, int gpu_offset,
731 int length)
732{
733 int ret, cpu_offset = 0;
734
735 while (length > 0) {
736 int cacheline_end = ALIGN(gpu_offset + 1, 64);
737 int this_length = min(cacheline_end - gpu_offset, length);
738 int swizzled_gpu_offset = gpu_offset ^ 64;
739
740 ret = __copy_to_user(cpu_vaddr + cpu_offset,
741 gpu_vaddr + swizzled_gpu_offset,
742 this_length);
743 if (ret)
744 return ret + length;
745
746 cpu_offset += this_length;
747 gpu_offset += this_length;
748 length -= this_length;
749 }
750
751 return 0;
752}
753
8c59967c 754static inline int
4f0c7cfb
BW
755__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
756 const char __user *cpu_vaddr,
8c59967c
DV
757 int length)
758{
759 int ret, cpu_offset = 0;
760
761 while (length > 0) {
762 int cacheline_end = ALIGN(gpu_offset + 1, 64);
763 int this_length = min(cacheline_end - gpu_offset, length);
764 int swizzled_gpu_offset = gpu_offset ^ 64;
765
766 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
767 cpu_vaddr + cpu_offset,
768 this_length);
769 if (ret)
770 return ret + length;
771
772 cpu_offset += this_length;
773 gpu_offset += this_length;
774 length -= this_length;
775 }
776
777 return 0;
778}
779
4c914c0c
BV
780/*
781 * Pins the specified object's pages and synchronizes the object with
782 * GPU accesses. Sets needs_clflush to non-zero if the caller should
783 * flush the object from the CPU cache.
784 */
785int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 786 unsigned int *needs_clflush)
4c914c0c
BV
787{
788 int ret;
789
e95433c7 790 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 791
e95433c7 792 *needs_clflush = 0;
43394c7d
CW
793 if (!i915_gem_object_has_struct_page(obj))
794 return -ENODEV;
4c914c0c 795
e95433c7
CW
796 ret = i915_gem_object_wait(obj,
797 I915_WAIT_INTERRUPTIBLE |
798 I915_WAIT_LOCKED,
799 MAX_SCHEDULE_TIMEOUT,
800 NULL);
c13d87ea
CW
801 if (ret)
802 return ret;
803
a4f5ea64 804 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
805 if (ret)
806 return ret;
807
b8f55be6
CW
808 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
809 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
810 ret = i915_gem_object_set_to_cpu_domain(obj, false);
811 if (ret)
812 goto err_unpin;
813 else
814 goto out;
815 }
816
ef74921b 817 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 818
43394c7d
CW
819 /* If we're not in the cpu read domain, set ourself into the gtt
820 * read domain and manually flush cachelines (if required). This
821 * optimizes for the case when the gpu will dirty the data
822 * anyway again before the next pread happens.
823 */
e27ab73d
CW
824 if (!obj->cache_dirty &&
825 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
7f5f95d8 826 *needs_clflush = CLFLUSH_BEFORE;
4c914c0c 827
7f5f95d8 828out:
9764951e 829 /* return with the pages pinned */
43394c7d 830 return 0;
9764951e
CW
831
832err_unpin:
833 i915_gem_object_unpin_pages(obj);
834 return ret;
43394c7d
CW
835}
836
837int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
838 unsigned int *needs_clflush)
839{
840 int ret;
841
e95433c7
CW
842 lockdep_assert_held(&obj->base.dev->struct_mutex);
843
43394c7d
CW
844 *needs_clflush = 0;
845 if (!i915_gem_object_has_struct_page(obj))
846 return -ENODEV;
847
e95433c7
CW
848 ret = i915_gem_object_wait(obj,
849 I915_WAIT_INTERRUPTIBLE |
850 I915_WAIT_LOCKED |
851 I915_WAIT_ALL,
852 MAX_SCHEDULE_TIMEOUT,
853 NULL);
43394c7d
CW
854 if (ret)
855 return ret;
856
a4f5ea64 857 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
858 if (ret)
859 return ret;
860
b8f55be6
CW
861 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
862 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
863 ret = i915_gem_object_set_to_cpu_domain(obj, true);
864 if (ret)
865 goto err_unpin;
866 else
867 goto out;
868 }
869
ef74921b 870 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 871
43394c7d
CW
872 /* If we're not in the cpu write domain, set ourself into the
873 * gtt write domain and manually flush cachelines (as required).
874 * This optimizes for the case when the gpu will use the data
875 * right away and we therefore have to clflush anyway.
876 */
e27ab73d 877 if (!obj->cache_dirty) {
7f5f95d8 878 *needs_clflush |= CLFLUSH_AFTER;
43394c7d 879
e27ab73d
CW
880 /*
881 * Same trick applies to invalidate partially written
882 * cachelines read before writing.
883 */
884 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
885 *needs_clflush |= CLFLUSH_BEFORE;
886 }
43394c7d 887
7f5f95d8 888out:
43394c7d 889 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 890 obj->mm.dirty = true;
9764951e 891 /* return with the pages pinned */
43394c7d 892 return 0;
9764951e
CW
893
894err_unpin:
895 i915_gem_object_unpin_pages(obj);
896 return ret;
4c914c0c
BV
897}
898
23c18c71
DV
899static void
900shmem_clflush_swizzled_range(char *addr, unsigned long length,
901 bool swizzled)
902{
e7e58eb5 903 if (unlikely(swizzled)) {
23c18c71
DV
904 unsigned long start = (unsigned long) addr;
905 unsigned long end = (unsigned long) addr + length;
906
907 /* For swizzling simply ensure that we always flush both
908 * channels. Lame, but simple and it works. Swizzled
909 * pwrite/pread is far from a hotpath - current userspace
910 * doesn't use it at all. */
911 start = round_down(start, 128);
912 end = round_up(end, 128);
913
914 drm_clflush_virt_range((void *)start, end - start);
915 } else {
916 drm_clflush_virt_range(addr, length);
917 }
918
919}
920
d174bd64
DV
921/* Only difference to the fast-path function is that this can handle bit17
922 * and uses non-atomic copy and kmap functions. */
923static int
bb6dc8d9 924shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
925 char __user *user_data,
926 bool page_do_bit17_swizzling, bool needs_clflush)
927{
928 char *vaddr;
929 int ret;
930
931 vaddr = kmap(page);
932 if (needs_clflush)
bb6dc8d9 933 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 934 page_do_bit17_swizzling);
d174bd64
DV
935
936 if (page_do_bit17_swizzling)
bb6dc8d9 937 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 938 else
bb6dc8d9 939 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
940 kunmap(page);
941
f60d7f0c 942 return ret ? - EFAULT : 0;
d174bd64
DV
943}
944
bb6dc8d9
CW
945static int
946shmem_pread(struct page *page, int offset, int length, char __user *user_data,
947 bool page_do_bit17_swizzling, bool needs_clflush)
948{
949 int ret;
950
951 ret = -ENODEV;
952 if (!page_do_bit17_swizzling) {
953 char *vaddr = kmap_atomic(page);
954
955 if (needs_clflush)
956 drm_clflush_virt_range(vaddr + offset, length);
957 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
958 kunmap_atomic(vaddr);
959 }
960 if (ret == 0)
961 return 0;
962
963 return shmem_pread_slow(page, offset, length, user_data,
964 page_do_bit17_swizzling, needs_clflush);
965}
966
967static int
968i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
969 struct drm_i915_gem_pread *args)
970{
971 char __user *user_data;
972 u64 remain;
973 unsigned int obj_do_bit17_swizzling;
974 unsigned int needs_clflush;
975 unsigned int idx, offset;
976 int ret;
977
978 obj_do_bit17_swizzling = 0;
979 if (i915_gem_object_needs_bit17_swizzle(obj))
980 obj_do_bit17_swizzling = BIT(17);
981
982 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
983 if (ret)
984 return ret;
985
986 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
987 mutex_unlock(&obj->base.dev->struct_mutex);
988 if (ret)
989 return ret;
990
991 remain = args->size;
992 user_data = u64_to_user_ptr(args->data_ptr);
993 offset = offset_in_page(args->offset);
994 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
995 struct page *page = i915_gem_object_get_page(obj, idx);
996 int length;
997
998 length = remain;
999 if (offset + length > PAGE_SIZE)
1000 length = PAGE_SIZE - offset;
1001
1002 ret = shmem_pread(page, offset, length, user_data,
1003 page_to_phys(page) & obj_do_bit17_swizzling,
1004 needs_clflush);
1005 if (ret)
1006 break;
1007
1008 remain -= length;
1009 user_data += length;
1010 offset = 0;
1011 }
1012
1013 i915_gem_obj_finish_shmem_access(obj);
1014 return ret;
1015}
1016
1017static inline bool
1018gtt_user_read(struct io_mapping *mapping,
1019 loff_t base, int offset,
1020 char __user *user_data, int length)
b50a5371 1021{
afe722be 1022 void __iomem *vaddr;
bb6dc8d9 1023 unsigned long unwritten;
b50a5371 1024
b50a5371 1025 /* We can use the cpu mem copy function because this is X86. */
afe722be
VS
1026 vaddr = io_mapping_map_atomic_wc(mapping, base);
1027 unwritten = __copy_to_user_inatomic(user_data,
1028 (void __force *)vaddr + offset,
1029 length);
bb6dc8d9
CW
1030 io_mapping_unmap_atomic(vaddr);
1031 if (unwritten) {
afe722be
VS
1032 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1033 unwritten = copy_to_user(user_data,
1034 (void __force *)vaddr + offset,
1035 length);
bb6dc8d9
CW
1036 io_mapping_unmap(vaddr);
1037 }
b50a5371
AS
1038 return unwritten;
1039}
1040
1041static int
bb6dc8d9
CW
1042i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1043 const struct drm_i915_gem_pread *args)
b50a5371 1044{
bb6dc8d9
CW
1045 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1046 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1047 struct drm_mm_node node;
bb6dc8d9
CW
1048 struct i915_vma *vma;
1049 void __user *user_data;
1050 u64 remain, offset;
b50a5371
AS
1051 int ret;
1052
bb6dc8d9
CW
1053 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1054 if (ret)
1055 return ret;
1056
1057 intel_runtime_pm_get(i915);
1058 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
a3259ca9
CW
1059 PIN_MAPPABLE |
1060 PIN_NONFAULT |
1061 PIN_NONBLOCK);
18034584
CW
1062 if (!IS_ERR(vma)) {
1063 node.start = i915_ggtt_offset(vma);
1064 node.allocated = false;
49ef5294 1065 ret = i915_vma_put_fence(vma);
18034584
CW
1066 if (ret) {
1067 i915_vma_unpin(vma);
1068 vma = ERR_PTR(ret);
1069 }
1070 }
058d88c4 1071 if (IS_ERR(vma)) {
bb6dc8d9 1072 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1073 if (ret)
bb6dc8d9
CW
1074 goto out_unlock;
1075 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1076 }
1077
1078 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1079 if (ret)
1080 goto out_unpin;
1081
bb6dc8d9 1082 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1083
bb6dc8d9
CW
1084 user_data = u64_to_user_ptr(args->data_ptr);
1085 remain = args->size;
1086 offset = args->offset;
b50a5371
AS
1087
1088 while (remain > 0) {
1089 /* Operation in this page
1090 *
1091 * page_base = page offset within aperture
1092 * page_offset = offset within page
1093 * page_length = bytes to copy for this page
1094 */
1095 u32 page_base = node.start;
1096 unsigned page_offset = offset_in_page(offset);
1097 unsigned page_length = PAGE_SIZE - page_offset;
1098 page_length = remain < page_length ? remain : page_length;
1099 if (node.allocated) {
1100 wmb();
1101 ggtt->base.insert_page(&ggtt->base,
1102 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 1103 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1104 wmb();
1105 } else {
1106 page_base += offset & PAGE_MASK;
1107 }
bb6dc8d9
CW
1108
1109 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1110 user_data, page_length)) {
b50a5371
AS
1111 ret = -EFAULT;
1112 break;
1113 }
1114
1115 remain -= page_length;
1116 user_data += page_length;
1117 offset += page_length;
1118 }
1119
bb6dc8d9 1120 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1121out_unpin:
1122 if (node.allocated) {
1123 wmb();
1124 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1125 node.start, node.size);
b50a5371
AS
1126 remove_mappable_node(&node);
1127 } else {
058d88c4 1128 i915_vma_unpin(vma);
b50a5371 1129 }
bb6dc8d9
CW
1130out_unlock:
1131 intel_runtime_pm_put(i915);
1132 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1133
eb01459f
EA
1134 return ret;
1135}
1136
673a394b
EA
1137/**
1138 * Reads data from the object referenced by handle.
14bb2c11
TU
1139 * @dev: drm device pointer
1140 * @data: ioctl data blob
1141 * @file: drm file pointer
673a394b
EA
1142 *
1143 * On error, the contents of *data are undefined.
1144 */
1145int
1146i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1147 struct drm_file *file)
673a394b
EA
1148{
1149 struct drm_i915_gem_pread *args = data;
05394f39 1150 struct drm_i915_gem_object *obj;
bb6dc8d9 1151 int ret;
673a394b 1152
51311d0a
CW
1153 if (args->size == 0)
1154 return 0;
1155
1156 if (!access_ok(VERIFY_WRITE,
3ed605bc 1157 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1158 args->size))
1159 return -EFAULT;
1160
03ac0642 1161 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1162 if (!obj)
1163 return -ENOENT;
673a394b 1164
7dcd2499 1165 /* Bounds check source. */
966d5bf5 1166 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1167 ret = -EINVAL;
bb6dc8d9 1168 goto out;
ce9d419d
CW
1169 }
1170
db53a302
CW
1171 trace_i915_gem_object_pread(obj, args->offset, args->size);
1172
e95433c7
CW
1173 ret = i915_gem_object_wait(obj,
1174 I915_WAIT_INTERRUPTIBLE,
1175 MAX_SCHEDULE_TIMEOUT,
1176 to_rps_client(file));
258a5ede 1177 if (ret)
bb6dc8d9 1178 goto out;
258a5ede 1179
bb6dc8d9 1180 ret = i915_gem_object_pin_pages(obj);
258a5ede 1181 if (ret)
bb6dc8d9 1182 goto out;
673a394b 1183
bb6dc8d9 1184 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1185 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1186 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1187
bb6dc8d9
CW
1188 i915_gem_object_unpin_pages(obj);
1189out:
f0cd5182 1190 i915_gem_object_put(obj);
eb01459f 1191 return ret;
673a394b
EA
1192}
1193
0839ccb8
KP
1194/* This is the fast write path which cannot handle
1195 * page faults in the source data
9b7530cc 1196 */
0839ccb8 1197
fe115628
CW
1198static inline bool
1199ggtt_write(struct io_mapping *mapping,
1200 loff_t base, int offset,
1201 char __user *user_data, int length)
9b7530cc 1202{
afe722be 1203 void __iomem *vaddr;
0839ccb8 1204 unsigned long unwritten;
9b7530cc 1205
4f0c7cfb 1206 /* We can use the cpu mem copy function because this is X86. */
afe722be
VS
1207 vaddr = io_mapping_map_atomic_wc(mapping, base);
1208 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
0839ccb8 1209 user_data, length);
fe115628
CW
1210 io_mapping_unmap_atomic(vaddr);
1211 if (unwritten) {
afe722be
VS
1212 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1213 unwritten = copy_from_user((void __force *)vaddr + offset,
1214 user_data, length);
fe115628
CW
1215 io_mapping_unmap(vaddr);
1216 }
bb6dc8d9 1217
bb6dc8d9
CW
1218 return unwritten;
1219}
1220
3de09aa3
EA
1221/**
1222 * This is the fast pwrite path, where we copy the data directly from the
1223 * user into the GTT, uncached.
fe115628 1224 * @obj: i915 GEM object
14bb2c11 1225 * @args: pwrite arguments structure
3de09aa3 1226 */
673a394b 1227static int
fe115628
CW
1228i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1229 const struct drm_i915_gem_pwrite *args)
673a394b 1230{
fe115628 1231 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1232 struct i915_ggtt *ggtt = &i915->ggtt;
1233 struct drm_mm_node node;
fe115628
CW
1234 struct i915_vma *vma;
1235 u64 remain, offset;
1236 void __user *user_data;
4f1959ee 1237 int ret;
b50a5371 1238
fe115628
CW
1239 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1240 if (ret)
1241 return ret;
935aaa69 1242
9c870d03 1243 intel_runtime_pm_get(i915);
058d88c4 1244 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
a3259ca9
CW
1245 PIN_MAPPABLE |
1246 PIN_NONFAULT |
1247 PIN_NONBLOCK);
18034584
CW
1248 if (!IS_ERR(vma)) {
1249 node.start = i915_ggtt_offset(vma);
1250 node.allocated = false;
49ef5294 1251 ret = i915_vma_put_fence(vma);
18034584
CW
1252 if (ret) {
1253 i915_vma_unpin(vma);
1254 vma = ERR_PTR(ret);
1255 }
1256 }
058d88c4 1257 if (IS_ERR(vma)) {
bb6dc8d9 1258 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1259 if (ret)
fe115628
CW
1260 goto out_unlock;
1261 GEM_BUG_ON(!node.allocated);
4f1959ee 1262 }
935aaa69
DV
1263
1264 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1265 if (ret)
1266 goto out_unpin;
1267
fe115628
CW
1268 mutex_unlock(&i915->drm.struct_mutex);
1269
b19482d7 1270 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1271
4f1959ee
AS
1272 user_data = u64_to_user_ptr(args->data_ptr);
1273 offset = args->offset;
1274 remain = args->size;
1275 while (remain) {
673a394b
EA
1276 /* Operation in this page
1277 *
0839ccb8
KP
1278 * page_base = page offset within aperture
1279 * page_offset = offset within page
1280 * page_length = bytes to copy for this page
673a394b 1281 */
4f1959ee 1282 u32 page_base = node.start;
bb6dc8d9
CW
1283 unsigned int page_offset = offset_in_page(offset);
1284 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1285 page_length = remain < page_length ? remain : page_length;
1286 if (node.allocated) {
1287 wmb(); /* flush the write before we modify the GGTT */
1288 ggtt->base.insert_page(&ggtt->base,
1289 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1290 node.start, I915_CACHE_NONE, 0);
1291 wmb(); /* flush modifications to the GGTT (insert_page) */
1292 } else {
1293 page_base += offset & PAGE_MASK;
1294 }
0839ccb8 1295 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1296 * source page isn't available. Return the error and we'll
1297 * retry in the slow path.
b50a5371
AS
1298 * If the object is non-shmem backed, we retry again with the
1299 * path that handles page fault.
0839ccb8 1300 */
fe115628
CW
1301 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1302 user_data, page_length)) {
1303 ret = -EFAULT;
1304 break;
935aaa69 1305 }
673a394b 1306
0839ccb8
KP
1307 remain -= page_length;
1308 user_data += page_length;
1309 offset += page_length;
673a394b 1310 }
d59b21ec 1311 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628
CW
1312
1313 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1314out_unpin:
4f1959ee
AS
1315 if (node.allocated) {
1316 wmb();
1317 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1318 node.start, node.size);
4f1959ee
AS
1319 remove_mappable_node(&node);
1320 } else {
058d88c4 1321 i915_vma_unpin(vma);
4f1959ee 1322 }
fe115628 1323out_unlock:
9c870d03 1324 intel_runtime_pm_put(i915);
fe115628 1325 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1326 return ret;
673a394b
EA
1327}
1328
3043c60c 1329static int
fe115628 1330shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1331 char __user *user_data,
1332 bool page_do_bit17_swizzling,
1333 bool needs_clflush_before,
1334 bool needs_clflush_after)
673a394b 1335{
d174bd64
DV
1336 char *vaddr;
1337 int ret;
e5281ccd 1338
d174bd64 1339 vaddr = kmap(page);
e7e58eb5 1340 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1341 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1342 page_do_bit17_swizzling);
d174bd64 1343 if (page_do_bit17_swizzling)
fe115628
CW
1344 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1345 length);
d174bd64 1346 else
fe115628 1347 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1348 if (needs_clflush_after)
fe115628 1349 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1350 page_do_bit17_swizzling);
d174bd64 1351 kunmap(page);
40123c1f 1352
755d2218 1353 return ret ? -EFAULT : 0;
40123c1f
EA
1354}
1355
fe115628
CW
1356/* Per-page copy function for the shmem pwrite fastpath.
1357 * Flushes invalid cachelines before writing to the target if
1358 * needs_clflush_before is set and flushes out any written cachelines after
1359 * writing if needs_clflush is set.
1360 */
40123c1f 1361static int
fe115628
CW
1362shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1363 bool page_do_bit17_swizzling,
1364 bool needs_clflush_before,
1365 bool needs_clflush_after)
40123c1f 1366{
fe115628
CW
1367 int ret;
1368
1369 ret = -ENODEV;
1370 if (!page_do_bit17_swizzling) {
1371 char *vaddr = kmap_atomic(page);
1372
1373 if (needs_clflush_before)
1374 drm_clflush_virt_range(vaddr + offset, len);
1375 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1376 if (needs_clflush_after)
1377 drm_clflush_virt_range(vaddr + offset, len);
1378
1379 kunmap_atomic(vaddr);
1380 }
1381 if (ret == 0)
1382 return ret;
1383
1384 return shmem_pwrite_slow(page, offset, len, user_data,
1385 page_do_bit17_swizzling,
1386 needs_clflush_before,
1387 needs_clflush_after);
1388}
1389
1390static int
1391i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1392 const struct drm_i915_gem_pwrite *args)
1393{
1394 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1395 void __user *user_data;
1396 u64 remain;
1397 unsigned int obj_do_bit17_swizzling;
1398 unsigned int partial_cacheline_write;
43394c7d 1399 unsigned int needs_clflush;
fe115628
CW
1400 unsigned int offset, idx;
1401 int ret;
40123c1f 1402
fe115628 1403 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1404 if (ret)
1405 return ret;
1406
fe115628
CW
1407 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1408 mutex_unlock(&i915->drm.struct_mutex);
1409 if (ret)
1410 return ret;
673a394b 1411
fe115628
CW
1412 obj_do_bit17_swizzling = 0;
1413 if (i915_gem_object_needs_bit17_swizzle(obj))
1414 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1415
fe115628
CW
1416 /* If we don't overwrite a cacheline completely we need to be
1417 * careful to have up-to-date data by first clflushing. Don't
1418 * overcomplicate things and flush the entire patch.
1419 */
1420 partial_cacheline_write = 0;
1421 if (needs_clflush & CLFLUSH_BEFORE)
1422 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1423
fe115628
CW
1424 user_data = u64_to_user_ptr(args->data_ptr);
1425 remain = args->size;
1426 offset = offset_in_page(args->offset);
1427 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1428 struct page *page = i915_gem_object_get_page(obj, idx);
1429 int length;
40123c1f 1430
fe115628
CW
1431 length = remain;
1432 if (offset + length > PAGE_SIZE)
1433 length = PAGE_SIZE - offset;
755d2218 1434
fe115628
CW
1435 ret = shmem_pwrite(page, offset, length, user_data,
1436 page_to_phys(page) & obj_do_bit17_swizzling,
1437 (offset | length) & partial_cacheline_write,
1438 needs_clflush & CLFLUSH_AFTER);
755d2218 1439 if (ret)
fe115628 1440 break;
755d2218 1441
fe115628
CW
1442 remain -= length;
1443 user_data += length;
1444 offset = 0;
8c59967c 1445 }
673a394b 1446
d59b21ec 1447 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628 1448 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1449 return ret;
673a394b
EA
1450}
1451
1452/**
1453 * Writes data to the object referenced by handle.
14bb2c11
TU
1454 * @dev: drm device
1455 * @data: ioctl data blob
1456 * @file: drm file
673a394b
EA
1457 *
1458 * On error, the contents of the buffer that were to be modified are undefined.
1459 */
1460int
1461i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1462 struct drm_file *file)
673a394b
EA
1463{
1464 struct drm_i915_gem_pwrite *args = data;
05394f39 1465 struct drm_i915_gem_object *obj;
51311d0a
CW
1466 int ret;
1467
1468 if (args->size == 0)
1469 return 0;
1470
1471 if (!access_ok(VERIFY_READ,
3ed605bc 1472 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1473 args->size))
1474 return -EFAULT;
1475
03ac0642 1476 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1477 if (!obj)
1478 return -ENOENT;
673a394b 1479
7dcd2499 1480 /* Bounds check destination. */
966d5bf5 1481 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1482 ret = -EINVAL;
258a5ede 1483 goto err;
ce9d419d
CW
1484 }
1485
db53a302
CW
1486 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1487
7c55e2c5
CW
1488 ret = -ENODEV;
1489 if (obj->ops->pwrite)
1490 ret = obj->ops->pwrite(obj, args);
1491 if (ret != -ENODEV)
1492 goto err;
1493
e95433c7
CW
1494 ret = i915_gem_object_wait(obj,
1495 I915_WAIT_INTERRUPTIBLE |
1496 I915_WAIT_ALL,
1497 MAX_SCHEDULE_TIMEOUT,
1498 to_rps_client(file));
258a5ede
CW
1499 if (ret)
1500 goto err;
1501
fe115628 1502 ret = i915_gem_object_pin_pages(obj);
258a5ede 1503 if (ret)
fe115628 1504 goto err;
258a5ede 1505
935aaa69 1506 ret = -EFAULT;
673a394b
EA
1507 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1508 * it would end up going through the fenced access, and we'll get
1509 * different detiling behavior between reading and writing.
1510 * pread/pwrite currently are reading and writing from the CPU
1511 * perspective, requiring manual detiling by the client.
1512 */
6eae0059 1513 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1514 cpu_write_needs_clflush(obj))
935aaa69
DV
1515 /* Note that the gtt paths might fail with non-page-backed user
1516 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1517 * textures). Fallback to the shmem path in that case.
1518 */
fe115628 1519 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1520
d1054ee4 1521 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1522 if (obj->phys_handle)
1523 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1524 else
fe115628 1525 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1526 }
5c0480f2 1527
fe115628 1528 i915_gem_object_unpin_pages(obj);
258a5ede 1529err:
f0cd5182 1530 i915_gem_object_put(obj);
258a5ede 1531 return ret;
673a394b
EA
1532}
1533
40e62d5d
CW
1534static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1535{
1536 struct drm_i915_private *i915;
1537 struct list_head *list;
1538 struct i915_vma *vma;
1539
f2123818
CW
1540 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1541
40e62d5d
CW
1542 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1543 if (!i915_vma_is_ggtt(vma))
28f412e0 1544 break;
40e62d5d
CW
1545
1546 if (i915_vma_is_active(vma))
1547 continue;
1548
1549 if (!drm_mm_node_allocated(&vma->node))
1550 continue;
1551
1552 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1553 }
1554
1555 i915 = to_i915(obj->base.dev);
f2123818 1556 spin_lock(&i915->mm.obj_lock);
40e62d5d 1557 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
f2123818
CW
1558 list_move_tail(&obj->mm.link, list);
1559 spin_unlock(&i915->mm.obj_lock);
40e62d5d
CW
1560}
1561
673a394b 1562/**
2ef7eeaa
EA
1563 * Called when user space prepares to use an object with the CPU, either
1564 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1565 * @dev: drm device
1566 * @data: ioctl data blob
1567 * @file: drm file
673a394b
EA
1568 */
1569int
1570i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1571 struct drm_file *file)
673a394b
EA
1572{
1573 struct drm_i915_gem_set_domain *args = data;
05394f39 1574 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1575 uint32_t read_domains = args->read_domains;
1576 uint32_t write_domain = args->write_domain;
40e62d5d 1577 int err;
673a394b 1578
2ef7eeaa 1579 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1580 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1581 return -EINVAL;
1582
1583 /* Having something in the write domain implies it's in the read
1584 * domain, and only that read domain. Enforce that in the request.
1585 */
1586 if (write_domain != 0 && read_domains != write_domain)
1587 return -EINVAL;
1588
03ac0642 1589 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1590 if (!obj)
1591 return -ENOENT;
673a394b 1592
3236f57a
CW
1593 /* Try to flush the object off the GPU without holding the lock.
1594 * We will repeat the flush holding the lock in the normal manner
1595 * to catch cases where we are gazumped.
1596 */
40e62d5d 1597 err = i915_gem_object_wait(obj,
e95433c7
CW
1598 I915_WAIT_INTERRUPTIBLE |
1599 (write_domain ? I915_WAIT_ALL : 0),
1600 MAX_SCHEDULE_TIMEOUT,
1601 to_rps_client(file));
40e62d5d 1602 if (err)
f0cd5182 1603 goto out;
b8f9096d 1604
40e62d5d
CW
1605 /* Flush and acquire obj->pages so that we are coherent through
1606 * direct access in memory with previous cached writes through
1607 * shmemfs and that our cache domain tracking remains valid.
1608 * For example, if the obj->filp was moved to swap without us
1609 * being notified and releasing the pages, we would mistakenly
1610 * continue to assume that the obj remained out of the CPU cached
1611 * domain.
1612 */
1613 err = i915_gem_object_pin_pages(obj);
1614 if (err)
f0cd5182 1615 goto out;
40e62d5d
CW
1616
1617 err = i915_mutex_lock_interruptible(dev);
1618 if (err)
f0cd5182 1619 goto out_unpin;
3236f57a 1620
e22d8e3c
CW
1621 if (read_domains & I915_GEM_DOMAIN_WC)
1622 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1623 else if (read_domains & I915_GEM_DOMAIN_GTT)
1624 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
43566ded 1625 else
e22d8e3c 1626 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
2ef7eeaa 1627
40e62d5d
CW
1628 /* And bump the LRU for this access */
1629 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1630
673a394b 1631 mutex_unlock(&dev->struct_mutex);
b8f9096d 1632
40e62d5d 1633 if (write_domain != 0)
ef74921b
CW
1634 intel_fb_obj_invalidate(obj,
1635 fb_write_origin(obj, write_domain));
40e62d5d 1636
f0cd5182 1637out_unpin:
40e62d5d 1638 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1639out:
1640 i915_gem_object_put(obj);
40e62d5d 1641 return err;
673a394b
EA
1642}
1643
1644/**
1645 * Called when user space has done writes to this buffer
14bb2c11
TU
1646 * @dev: drm device
1647 * @data: ioctl data blob
1648 * @file: drm file
673a394b
EA
1649 */
1650int
1651i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1652 struct drm_file *file)
673a394b
EA
1653{
1654 struct drm_i915_gem_sw_finish *args = data;
05394f39 1655 struct drm_i915_gem_object *obj;
1d7cfea1 1656
03ac0642 1657 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1658 if (!obj)
1659 return -ENOENT;
673a394b 1660
673a394b 1661 /* Pinned buffers may be scanout, so flush the cache */
5a97bcc6 1662 i915_gem_object_flush_if_display(obj);
f0cd5182 1663 i915_gem_object_put(obj);
5a97bcc6
CW
1664
1665 return 0;
673a394b
EA
1666}
1667
1668/**
14bb2c11
TU
1669 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1670 * it is mapped to.
1671 * @dev: drm device
1672 * @data: ioctl data blob
1673 * @file: drm file
673a394b
EA
1674 *
1675 * While the mapping holds a reference on the contents of the object, it doesn't
1676 * imply a ref on the object itself.
34367381
DV
1677 *
1678 * IMPORTANT:
1679 *
1680 * DRM driver writers who look a this function as an example for how to do GEM
1681 * mmap support, please don't implement mmap support like here. The modern way
1682 * to implement DRM mmap support is with an mmap offset ioctl (like
1683 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1684 * That way debug tooling like valgrind will understand what's going on, hiding
1685 * the mmap call in a driver private ioctl will break that. The i915 driver only
1686 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1687 */
1688int
1689i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1690 struct drm_file *file)
673a394b
EA
1691{
1692 struct drm_i915_gem_mmap *args = data;
03ac0642 1693 struct drm_i915_gem_object *obj;
673a394b
EA
1694 unsigned long addr;
1695
1816f923
AG
1696 if (args->flags & ~(I915_MMAP_WC))
1697 return -EINVAL;
1698
568a58e5 1699 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1700 return -ENODEV;
1701
03ac0642
CW
1702 obj = i915_gem_object_lookup(file, args->handle);
1703 if (!obj)
bf79cb91 1704 return -ENOENT;
673a394b 1705
1286ff73
DV
1706 /* prime objects have no backing filp to GEM mmap
1707 * pages from.
1708 */
03ac0642 1709 if (!obj->base.filp) {
f0cd5182 1710 i915_gem_object_put(obj);
1286ff73
DV
1711 return -EINVAL;
1712 }
1713
03ac0642 1714 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1715 PROT_READ | PROT_WRITE, MAP_SHARED,
1716 args->offset);
1816f923
AG
1717 if (args->flags & I915_MMAP_WC) {
1718 struct mm_struct *mm = current->mm;
1719 struct vm_area_struct *vma;
1720
80a89a5e 1721 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1722 i915_gem_object_put(obj);
80a89a5e
MH
1723 return -EINTR;
1724 }
1816f923
AG
1725 vma = find_vma(mm, addr);
1726 if (vma)
1727 vma->vm_page_prot =
1728 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1729 else
1730 addr = -ENOMEM;
1731 up_write(&mm->mmap_sem);
aeecc969
CW
1732
1733 /* This may race, but that's ok, it only gets set */
50349247 1734 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1735 }
f0cd5182 1736 i915_gem_object_put(obj);
673a394b
EA
1737 if (IS_ERR((void *)addr))
1738 return addr;
1739
1740 args->addr_ptr = (uint64_t) addr;
1741
1742 return 0;
1743}
1744
03af84fe
CW
1745static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1746{
6649a0b6 1747 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
03af84fe
CW
1748}
1749
4cc69075
CW
1750/**
1751 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1752 *
1753 * A history of the GTT mmap interface:
1754 *
1755 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1756 * aligned and suitable for fencing, and still fit into the available
1757 * mappable space left by the pinned display objects. A classic problem
1758 * we called the page-fault-of-doom where we would ping-pong between
1759 * two objects that could not fit inside the GTT and so the memcpy
1760 * would page one object in at the expense of the other between every
1761 * single byte.
1762 *
1763 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1764 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1765 * object is too large for the available space (or simply too large
1766 * for the mappable aperture!), a view is created instead and faulted
1767 * into userspace. (This view is aligned and sized appropriately for
1768 * fenced access.)
1769 *
e22d8e3c
CW
1770 * 2 - Recognise WC as a separate cache domain so that we can flush the
1771 * delayed writes via GTT before performing direct access via WC.
1772 *
4cc69075
CW
1773 * Restrictions:
1774 *
1775 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1776 * hangs on some architectures, corruption on others. An attempt to service
1777 * a GTT page fault from a snoopable object will generate a SIGBUS.
1778 *
1779 * * the object must be able to fit into RAM (physical memory, though no
1780 * limited to the mappable aperture).
1781 *
1782 *
1783 * Caveats:
1784 *
1785 * * a new GTT page fault will synchronize rendering from the GPU and flush
1786 * all data to system memory. Subsequent access will not be synchronized.
1787 *
1788 * * all mappings are revoked on runtime device suspend.
1789 *
1790 * * there are only 8, 16 or 32 fence registers to share between all users
1791 * (older machines require fence register for display and blitter access
1792 * as well). Contention of the fence registers will cause the previous users
1793 * to be unmapped and any new access will generate new page faults.
1794 *
1795 * * running out of memory while servicing a fault may generate a SIGBUS,
1796 * rather than the expected SIGSEGV.
1797 */
1798int i915_gem_mmap_gtt_version(void)
1799{
e22d8e3c 1800 return 2;
4cc69075
CW
1801}
1802
2d4281bb
CW
1803static inline struct i915_ggtt_view
1804compute_partial_view(struct drm_i915_gem_object *obj,
2d4281bb
CW
1805 pgoff_t page_offset,
1806 unsigned int chunk)
1807{
1808 struct i915_ggtt_view view;
1809
1810 if (i915_gem_object_is_tiled(obj))
1811 chunk = roundup(chunk, tile_row_pages(obj));
1812
2d4281bb 1813 view.type = I915_GGTT_VIEW_PARTIAL;
8bab1193
CW
1814 view.partial.offset = rounddown(page_offset, chunk);
1815 view.partial.size =
2d4281bb 1816 min_t(unsigned int, chunk,
8bab1193 1817 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
2d4281bb
CW
1818
1819 /* If the partial covers the entire object, just create a normal VMA. */
1820 if (chunk >= obj->base.size >> PAGE_SHIFT)
1821 view.type = I915_GGTT_VIEW_NORMAL;
1822
1823 return view;
1824}
1825
de151cf6
JB
1826/**
1827 * i915_gem_fault - fault a page into the GTT
d9072a3e 1828 * @vmf: fault info
de151cf6
JB
1829 *
1830 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1831 * from userspace. The fault handler takes care of binding the object to
1832 * the GTT (if needed), allocating and programming a fence register (again,
1833 * only if needed based on whether the old reg is still valid or the object
1834 * is tiled) and inserting a new PTE into the faulting process.
1835 *
1836 * Note that the faulting process may involve evicting existing objects
1837 * from the GTT and/or fence registers to make room. So performance may
1838 * suffer if the GTT working set is large or there are few fence registers
1839 * left.
4cc69075
CW
1840 *
1841 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1842 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1843 */
11bac800 1844int i915_gem_fault(struct vm_fault *vmf)
de151cf6 1845{
03af84fe 1846#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
11bac800 1847 struct vm_area_struct *area = vmf->vma;
058d88c4 1848 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1849 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1850 struct drm_i915_private *dev_priv = to_i915(dev);
1851 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1852 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1853 struct i915_vma *vma;
de151cf6 1854 pgoff_t page_offset;
82118877 1855 unsigned int flags;
b8f9096d 1856 int ret;
f65c9168 1857
de151cf6 1858 /* We don't use vmf->pgoff since that has the fake offset */
1a29d85e 1859 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
de151cf6 1860
db53a302
CW
1861 trace_i915_gem_object_fault(obj, page_offset, true, write);
1862
6e4930f6 1863 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1864 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1865 * repeat the flush holding the lock in the normal manner to catch cases
1866 * where we are gazumped.
1867 */
e95433c7
CW
1868 ret = i915_gem_object_wait(obj,
1869 I915_WAIT_INTERRUPTIBLE,
1870 MAX_SCHEDULE_TIMEOUT,
1871 NULL);
6e4930f6 1872 if (ret)
b8f9096d
CW
1873 goto err;
1874
40e62d5d
CW
1875 ret = i915_gem_object_pin_pages(obj);
1876 if (ret)
1877 goto err;
1878
b8f9096d
CW
1879 intel_runtime_pm_get(dev_priv);
1880
1881 ret = i915_mutex_lock_interruptible(dev);
1882 if (ret)
1883 goto err_rpm;
6e4930f6 1884
eb119bd6 1885 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 1886 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 1887 ret = -EFAULT;
b8f9096d 1888 goto err_unlock;
eb119bd6
CW
1889 }
1890
82118877
CW
1891 /* If the object is smaller than a couple of partial vma, it is
1892 * not worth only creating a single partial vma - we may as well
1893 * clear enough space for the full object.
1894 */
1895 flags = PIN_MAPPABLE;
1896 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1897 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1898
a61007a8 1899 /* Now pin it into the GTT as needed */
82118877 1900 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8 1901 if (IS_ERR(vma)) {
a61007a8 1902 /* Use a partial view if it is bigger than available space */
2d4281bb 1903 struct i915_ggtt_view view =
8201c1fa 1904 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
aa136d9d 1905
50349247
CW
1906 /* Userspace is now writing through an untracked VMA, abandon
1907 * all hope that the hardware is able to track future writes.
1908 */
1909 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1910
a61007a8
CW
1911 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1912 }
058d88c4
CW
1913 if (IS_ERR(vma)) {
1914 ret = PTR_ERR(vma);
b8f9096d 1915 goto err_unlock;
058d88c4 1916 }
4a684a41 1917
c9839303
CW
1918 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1919 if (ret)
b8f9096d 1920 goto err_unpin;
74898d7e 1921
3bd40735 1922 ret = i915_vma_pin_fence(vma);
d9e86c0e 1923 if (ret)
b8f9096d 1924 goto err_unpin;
7d1c4804 1925
b90b91d8 1926 /* Finally, remap it using the new GTT offset */
c58305af 1927 ret = remap_io_mapping(area,
8bab1193 1928 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
c58305af
CW
1929 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1930 min_t(u64, vma->size, area->vm_end - area->vm_start),
1931 &ggtt->mappable);
a65adaf8
CW
1932 if (ret)
1933 goto err_fence;
a61007a8 1934
a65adaf8
CW
1935 /* Mark as being mmapped into userspace for later revocation */
1936 assert_rpm_wakelock_held(dev_priv);
1937 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1938 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1939 GEM_BUG_ON(!obj->userfault_count);
1940
1941err_fence:
3bd40735 1942 i915_vma_unpin_fence(vma);
b8f9096d 1943err_unpin:
058d88c4 1944 __i915_vma_unpin(vma);
b8f9096d 1945err_unlock:
de151cf6 1946 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1947err_rpm:
1948 intel_runtime_pm_put(dev_priv);
40e62d5d 1949 i915_gem_object_unpin_pages(obj);
b8f9096d 1950err:
de151cf6 1951 switch (ret) {
d9bc7e9f 1952 case -EIO:
2232f031
DV
1953 /*
1954 * We eat errors when the gpu is terminally wedged to avoid
1955 * userspace unduly crashing (gl has no provisions for mmaps to
1956 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1957 * and so needs to be reported.
1958 */
1959 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1960 ret = VM_FAULT_SIGBUS;
1961 break;
1962 }
045e769a 1963 case -EAGAIN:
571c608d
DV
1964 /*
1965 * EAGAIN means the gpu is hung and we'll wait for the error
1966 * handler to reset everything when re-faulting in
1967 * i915_mutex_lock_interruptible.
d9bc7e9f 1968 */
c715089f
CW
1969 case 0:
1970 case -ERESTARTSYS:
bed636ab 1971 case -EINTR:
e79e0fe3
DR
1972 case -EBUSY:
1973 /*
1974 * EBUSY is ok: this just means that another thread
1975 * already did the job.
1976 */
f65c9168
PZ
1977 ret = VM_FAULT_NOPAGE;
1978 break;
de151cf6 1979 case -ENOMEM:
f65c9168
PZ
1980 ret = VM_FAULT_OOM;
1981 break;
a7c2e1aa 1982 case -ENOSPC:
45d67817 1983 case -EFAULT:
f65c9168
PZ
1984 ret = VM_FAULT_SIGBUS;
1985 break;
de151cf6 1986 default:
a7c2e1aa 1987 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1988 ret = VM_FAULT_SIGBUS;
1989 break;
de151cf6 1990 }
f65c9168 1991 return ret;
de151cf6
JB
1992}
1993
a65adaf8
CW
1994static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
1995{
1996 struct i915_vma *vma;
1997
1998 GEM_BUG_ON(!obj->userfault_count);
1999
2000 obj->userfault_count = 0;
2001 list_del(&obj->userfault_link);
2002 drm_vma_node_unmap(&obj->base.vma_node,
2003 obj->base.dev->anon_inode->i_mapping);
2004
2005 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2006 if (!i915_vma_is_ggtt(vma))
2007 break;
2008
2009 i915_vma_unset_userfault(vma);
2010 }
2011}
2012
901782b2
CW
2013/**
2014 * i915_gem_release_mmap - remove physical page mappings
2015 * @obj: obj in question
2016 *
af901ca1 2017 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
2018 * relinquish ownership of the pages back to the system.
2019 *
2020 * It is vital that we remove the page mapping if we have mapped a tiled
2021 * object through the GTT and then lose the fence register due to
2022 * resource pressure. Similarly if the object has been moved out of the
2023 * aperture, than pages mapped into userspace must be revoked. Removing the
2024 * mapping will then trigger a page fault on the next user access, allowing
2025 * fixup by i915_gem_fault().
2026 */
d05ca301 2027void
05394f39 2028i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 2029{
275f039d 2030 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 2031
349f2ccf
CW
2032 /* Serialisation between user GTT access and our code depends upon
2033 * revoking the CPU's PTE whilst the mutex is held. The next user
2034 * pagefault then has to wait until we release the mutex.
9c870d03
CW
2035 *
2036 * Note that RPM complicates somewhat by adding an additional
2037 * requirement that operations to the GGTT be made holding the RPM
2038 * wakeref.
349f2ccf 2039 */
275f039d 2040 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 2041 intel_runtime_pm_get(i915);
349f2ccf 2042
a65adaf8 2043 if (!obj->userfault_count)
9c870d03 2044 goto out;
901782b2 2045
a65adaf8 2046 __i915_gem_object_release_mmap(obj);
349f2ccf
CW
2047
2048 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2049 * memory transactions from userspace before we return. The TLB
2050 * flushing implied above by changing the PTE above *should* be
2051 * sufficient, an extra barrier here just provides us with a bit
2052 * of paranoid documentation about our requirement to serialise
2053 * memory writes before touching registers / GSM.
2054 */
2055 wmb();
9c870d03
CW
2056
2057out:
2058 intel_runtime_pm_put(i915);
901782b2
CW
2059}
2060
7c108fd8 2061void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 2062{
3594a3e2 2063 struct drm_i915_gem_object *obj, *on;
7c108fd8 2064 int i;
eedd10f4 2065
3594a3e2
CW
2066 /*
2067 * Only called during RPM suspend. All users of the userfault_list
2068 * must be holding an RPM wakeref to ensure that this can not
2069 * run concurrently with themselves (and use the struct_mutex for
2070 * protection between themselves).
2071 */
275f039d 2072
3594a3e2 2073 list_for_each_entry_safe(obj, on,
a65adaf8
CW
2074 &dev_priv->mm.userfault_list, userfault_link)
2075 __i915_gem_object_release_mmap(obj);
7c108fd8
CW
2076
2077 /* The fence will be lost when the device powers down. If any were
2078 * in use by hardware (i.e. they are pinned), we should not be powering
2079 * down! All other fences will be reacquired by the user upon waking.
2080 */
2081 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2082 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2083
e0ec3ec6
CW
2084 /* Ideally we want to assert that the fence register is not
2085 * live at this point (i.e. that no piece of code will be
2086 * trying to write through fence + GTT, as that both violates
2087 * our tracking of activity and associated locking/barriers,
2088 * but also is illegal given that the hw is powered down).
2089 *
2090 * Previously we used reg->pin_count as a "liveness" indicator.
2091 * That is not sufficient, and we need a more fine-grained
2092 * tool if we want to have a sanity check here.
2093 */
7c108fd8
CW
2094
2095 if (!reg->vma)
2096 continue;
2097
a65adaf8 2098 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
7c108fd8
CW
2099 reg->dirty = true;
2100 }
eedd10f4
CW
2101}
2102
d8cb5086
CW
2103static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2104{
fac5e23e 2105 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2106 int err;
da494d7c 2107
f3f6184c 2108 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9 2109 if (likely(!err))
f3f6184c 2110 return 0;
d8cb5086 2111
b42a13d9
CW
2112 /* Attempt to reap some mmap space from dead objects */
2113 do {
2114 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2115 if (err)
2116 break;
f3f6184c 2117
b42a13d9 2118 i915_gem_drain_freed_objects(dev_priv);
f3f6184c 2119 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9
CW
2120 if (!err)
2121 break;
2122
2123 } while (flush_delayed_work(&dev_priv->gt.retire_work));
da494d7c 2124
f3f6184c 2125 return err;
d8cb5086
CW
2126}
2127
2128static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2129{
d8cb5086
CW
2130 drm_gem_free_mmap_offset(&obj->base);
2131}
2132
da6b51d0 2133int
ff72145b
DA
2134i915_gem_mmap_gtt(struct drm_file *file,
2135 struct drm_device *dev,
da6b51d0 2136 uint32_t handle,
ff72145b 2137 uint64_t *offset)
de151cf6 2138{
05394f39 2139 struct drm_i915_gem_object *obj;
de151cf6
JB
2140 int ret;
2141
03ac0642 2142 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2143 if (!obj)
2144 return -ENOENT;
ab18282d 2145
d8cb5086 2146 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2147 if (ret == 0)
2148 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2149
f0cd5182 2150 i915_gem_object_put(obj);
1d7cfea1 2151 return ret;
de151cf6
JB
2152}
2153
ff72145b
DA
2154/**
2155 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2156 * @dev: DRM device
2157 * @data: GTT mapping ioctl data
2158 * @file: GEM object info
2159 *
2160 * Simply returns the fake offset to userspace so it can mmap it.
2161 * The mmap call will end up in drm_gem_mmap(), which will set things
2162 * up so we can get faults in the handler above.
2163 *
2164 * The fault handler will take care of binding the object into the GTT
2165 * (since it may have been evicted to make room for something), allocating
2166 * a fence register, and mapping the appropriate aperture address into
2167 * userspace.
2168 */
2169int
2170i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2171 struct drm_file *file)
2172{
2173 struct drm_i915_gem_mmap_gtt *args = data;
2174
da6b51d0 2175 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2176}
2177
225067ee
DV
2178/* Immediately discard the backing storage */
2179static void
2180i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2181{
4d6294bf 2182 i915_gem_object_free_mmap_offset(obj);
1286ff73 2183
4d6294bf
CW
2184 if (obj->base.filp == NULL)
2185 return;
e5281ccd 2186
225067ee
DV
2187 /* Our goal here is to return as much of the memory as
2188 * is possible back to the system as we are called from OOM.
2189 * To do this we must instruct the shmfs to drop all of its
2190 * backing pages, *now*.
2191 */
5537252b 2192 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2193 obj->mm.madv = __I915_MADV_PURGED;
4e5462ee 2194 obj->mm.pages = ERR_PTR(-EFAULT);
225067ee 2195}
e5281ccd 2196
5537252b 2197/* Try to discard unwanted pages */
03ac84f1 2198void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2199{
5537252b
CW
2200 struct address_space *mapping;
2201
1233e2db 2202 lockdep_assert_held(&obj->mm.lock);
f1fa4f44 2203 GEM_BUG_ON(i915_gem_object_has_pages(obj));
1233e2db 2204
a4f5ea64 2205 switch (obj->mm.madv) {
5537252b
CW
2206 case I915_MADV_DONTNEED:
2207 i915_gem_object_truncate(obj);
2208 case __I915_MADV_PURGED:
2209 return;
2210 }
2211
2212 if (obj->base.filp == NULL)
2213 return;
2214
93c76a3d 2215 mapping = obj->base.filp->f_mapping,
5537252b 2216 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2217}
2218
5cdf5881 2219static void
03ac84f1
CW
2220i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2221 struct sg_table *pages)
673a394b 2222{
85d1225e
DG
2223 struct sgt_iter sgt_iter;
2224 struct page *page;
1286ff73 2225
e5facdf9 2226 __i915_gem_object_release_shmem(obj, pages, true);
673a394b 2227
03ac84f1 2228 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2229
6dacfd2f 2230 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2231 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2232
03ac84f1 2233 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2234 if (obj->mm.dirty)
9da3da66 2235 set_page_dirty(page);
3ef94daa 2236
a4f5ea64 2237 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2238 mark_page_accessed(page);
3ef94daa 2239
09cbfeaf 2240 put_page(page);
3ef94daa 2241 }
a4f5ea64 2242 obj->mm.dirty = false;
673a394b 2243
03ac84f1
CW
2244 sg_free_table(pages);
2245 kfree(pages);
37e680a1 2246}
6c085a72 2247
96d77634
CW
2248static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2249{
2250 struct radix_tree_iter iter;
c23aa71b 2251 void __rcu **slot;
96d77634 2252
a4f5ea64
CW
2253 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2254 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2255}
2256
548625ee
CW
2257void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2258 enum i915_mm_subclass subclass)
37e680a1 2259{
f2123818 2260 struct drm_i915_private *i915 = to_i915(obj->base.dev);
03ac84f1 2261 struct sg_table *pages;
37e680a1 2262
a4f5ea64 2263 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2264 return;
a5570178 2265
15717de2 2266 GEM_BUG_ON(obj->bind_count);
f1fa4f44 2267 if (!i915_gem_object_has_pages(obj))
1233e2db
CW
2268 return;
2269
2270 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2271 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2272 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2273 goto unlock;
3e123027 2274
a2165e31
CW
2275 /* ->put_pages might need to allocate memory for the bit17 swizzle
2276 * array, hence protect them from being reaped by removing them from gtt
2277 * lists early. */
03ac84f1
CW
2278 pages = fetch_and_zero(&obj->mm.pages);
2279 GEM_BUG_ON(!pages);
a2165e31 2280
f2123818
CW
2281 spin_lock(&i915->mm.obj_lock);
2282 list_del(&obj->mm.link);
2283 spin_unlock(&i915->mm.obj_lock);
2284
a4f5ea64 2285 if (obj->mm.mapping) {
4b30cb23
CW
2286 void *ptr;
2287
0ce81788 2288 ptr = page_mask_bits(obj->mm.mapping);
4b30cb23
CW
2289 if (is_vmalloc_addr(ptr))
2290 vunmap(ptr);
fb8621d3 2291 else
4b30cb23
CW
2292 kunmap(kmap_to_page(ptr));
2293
a4f5ea64 2294 obj->mm.mapping = NULL;
0a798eb9
CW
2295 }
2296
96d77634
CW
2297 __i915_gem_object_reset_page_iter(obj);
2298
4e5462ee
CW
2299 if (!IS_ERR(pages))
2300 obj->ops->put_pages(obj, pages);
2301
a5c08166
MA
2302 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2303
1233e2db
CW
2304unlock:
2305 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2306}
2307
935a2f77 2308static bool i915_sg_trim(struct sg_table *orig_st)
0c40ce13
TU
2309{
2310 struct sg_table new_st;
2311 struct scatterlist *sg, *new_sg;
2312 unsigned int i;
2313
2314 if (orig_st->nents == orig_st->orig_nents)
935a2f77 2315 return false;
0c40ce13 2316
8bfc478f 2317 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
935a2f77 2318 return false;
0c40ce13
TU
2319
2320 new_sg = new_st.sgl;
2321 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2322 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2323 /* called before being DMA mapped, no need to copy sg->dma_* */
2324 new_sg = sg_next(new_sg);
2325 }
c2dc6cc9 2326 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
0c40ce13
TU
2327
2328 sg_free_table(orig_st);
2329
2330 *orig_st = new_st;
935a2f77 2331 return true;
0c40ce13
TU
2332}
2333
b91b09ee 2334static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2335{
fac5e23e 2336 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d766ef53
CW
2337 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2338 unsigned long i;
e5281ccd 2339 struct address_space *mapping;
9da3da66
CW
2340 struct sg_table *st;
2341 struct scatterlist *sg;
85d1225e 2342 struct sgt_iter sgt_iter;
e5281ccd 2343 struct page *page;
90797e6d 2344 unsigned long last_pfn = 0; /* suppress gcc warning */
5602452e 2345 unsigned int max_segment = i915_sg_segment_size();
84e8978e 2346 unsigned int sg_page_sizes;
4846bf0c 2347 gfp_t noreclaim;
e2273302 2348 int ret;
e5281ccd 2349
6c085a72
CW
2350 /* Assert that the object is not currently in any GPU domain. As it
2351 * wasn't in the GTT, there shouldn't be any way it could have been in
2352 * a GPU cache
2353 */
03ac84f1
CW
2354 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2355 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2356
9da3da66
CW
2357 st = kmalloc(sizeof(*st), GFP_KERNEL);
2358 if (st == NULL)
b91b09ee 2359 return -ENOMEM;
9da3da66 2360
d766ef53 2361rebuild_st:
9da3da66 2362 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2363 kfree(st);
b91b09ee 2364 return -ENOMEM;
9da3da66 2365 }
e5281ccd 2366
9da3da66
CW
2367 /* Get the list of pages out of our struct file. They'll be pinned
2368 * at this point until we release them.
2369 *
2370 * Fail silently without starting the shrinker
2371 */
93c76a3d 2372 mapping = obj->base.filp->f_mapping;
0f6ab55d 2373 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
4846bf0c
CW
2374 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2375
90797e6d
ID
2376 sg = st->sgl;
2377 st->nents = 0;
84e8978e 2378 sg_page_sizes = 0;
90797e6d 2379 for (i = 0; i < page_count; i++) {
4846bf0c
CW
2380 const unsigned int shrink[] = {
2381 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2382 0,
2383 }, *s = shrink;
2384 gfp_t gfp = noreclaim;
2385
2386 do {
6c085a72 2387 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
4846bf0c
CW
2388 if (likely(!IS_ERR(page)))
2389 break;
2390
2391 if (!*s) {
2392 ret = PTR_ERR(page);
2393 goto err_sg;
2394 }
2395
912d572d 2396 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
4846bf0c 2397 cond_resched();
24f8e00a 2398
6c085a72
CW
2399 /* We've tried hard to allocate the memory by reaping
2400 * our own buffer, now let the real VM do its job and
2401 * go down in flames if truly OOM.
24f8e00a
CW
2402 *
2403 * However, since graphics tend to be disposable,
2404 * defer the oom here by reporting the ENOMEM back
2405 * to userspace.
6c085a72 2406 */
4846bf0c
CW
2407 if (!*s) {
2408 /* reclaim and warn, but no oom */
2409 gfp = mapping_gfp_mask(mapping);
eaf41801
CW
2410
2411 /* Our bo are always dirty and so we require
2412 * kswapd to reclaim our pages (direct reclaim
2413 * does not effectively begin pageout of our
2414 * buffers on its own). However, direct reclaim
2415 * only waits for kswapd when under allocation
2416 * congestion. So as a result __GFP_RECLAIM is
2417 * unreliable and fails to actually reclaim our
2418 * dirty pages -- unless you try over and over
2419 * again with !__GFP_NORETRY. However, we still
2420 * want to fail this allocation rather than
2421 * trigger the out-of-memory killer and for
dbb32956 2422 * this we want __GFP_RETRY_MAYFAIL.
eaf41801 2423 */
dbb32956 2424 gfp |= __GFP_RETRY_MAYFAIL;
e2273302 2425 }
4846bf0c
CW
2426 } while (1);
2427
871dfbd6
CW
2428 if (!i ||
2429 sg->length >= max_segment ||
2430 page_to_pfn(page) != last_pfn + 1) {
a5c08166 2431 if (i) {
84e8978e 2432 sg_page_sizes |= sg->length;
90797e6d 2433 sg = sg_next(sg);
a5c08166 2434 }
90797e6d
ID
2435 st->nents++;
2436 sg_set_page(sg, page, PAGE_SIZE, 0);
2437 } else {
2438 sg->length += PAGE_SIZE;
2439 }
2440 last_pfn = page_to_pfn(page);
3bbbe706
DV
2441
2442 /* Check that the i965g/gm workaround works. */
2443 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2444 }
a5c08166 2445 if (sg) { /* loop terminated early; short sg table */
84e8978e 2446 sg_page_sizes |= sg->length;
426729dc 2447 sg_mark_end(sg);
a5c08166 2448 }
74ce6b6c 2449
0c40ce13
TU
2450 /* Trim unused sg entries to avoid wasting memory. */
2451 i915_sg_trim(st);
2452
03ac84f1 2453 ret = i915_gem_gtt_prepare_pages(obj, st);
d766ef53
CW
2454 if (ret) {
2455 /* DMA remapping failed? One possible cause is that
2456 * it could not reserve enough large entries, asking
2457 * for PAGE_SIZE chunks instead may be helpful.
2458 */
2459 if (max_segment > PAGE_SIZE) {
2460 for_each_sgt_page(page, sgt_iter, st)
2461 put_page(page);
2462 sg_free_table(st);
2463
2464 max_segment = PAGE_SIZE;
2465 goto rebuild_st;
2466 } else {
2467 dev_warn(&dev_priv->drm.pdev->dev,
2468 "Failed to DMA remap %lu pages\n",
2469 page_count);
2470 goto err_pages;
2471 }
2472 }
e2273302 2473
6dacfd2f 2474 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2475 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2476
84e8978e 2477 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
b91b09ee
MA
2478
2479 return 0;
e5281ccd 2480
b17993b7 2481err_sg:
90797e6d 2482 sg_mark_end(sg);
b17993b7 2483err_pages:
85d1225e
DG
2484 for_each_sgt_page(page, sgt_iter, st)
2485 put_page(page);
9da3da66
CW
2486 sg_free_table(st);
2487 kfree(st);
0820baf3
CW
2488
2489 /* shmemfs first checks if there is enough memory to allocate the page
2490 * and reports ENOSPC should there be insufficient, along with the usual
2491 * ENOMEM for a genuine allocation failure.
2492 *
2493 * We use ENOSPC in our driver to mean that we have run out of aperture
2494 * space and so want to translate the error from shmemfs back to our
2495 * usual understanding of ENOMEM.
2496 */
e2273302
ID
2497 if (ret == -ENOSPC)
2498 ret = -ENOMEM;
2499
b91b09ee 2500 return ret;
03ac84f1
CW
2501}
2502
2503void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
a5c08166 2504 struct sg_table *pages,
84e8978e 2505 unsigned int sg_page_sizes)
03ac84f1 2506{
a5c08166
MA
2507 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2508 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2509 int i;
2510
1233e2db 2511 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2512
2513 obj->mm.get_page.sg_pos = pages->sgl;
2514 obj->mm.get_page.sg_idx = 0;
2515
2516 obj->mm.pages = pages;
2c3a3f44
CW
2517
2518 if (i915_gem_object_is_tiled(obj) &&
f2123818 2519 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2c3a3f44
CW
2520 GEM_BUG_ON(obj->mm.quirked);
2521 __i915_gem_object_pin_pages(obj);
2522 obj->mm.quirked = true;
2523 }
a5c08166 2524
84e8978e
MA
2525 GEM_BUG_ON(!sg_page_sizes);
2526 obj->mm.page_sizes.phys = sg_page_sizes;
a5c08166
MA
2527
2528 /*
84e8978e
MA
2529 * Calculate the supported page-sizes which fit into the given
2530 * sg_page_sizes. This will give us the page-sizes which we may be able
2531 * to use opportunistically when later inserting into the GTT. For
2532 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2533 * 64K or 4K pages, although in practice this will depend on a number of
2534 * other factors.
a5c08166
MA
2535 */
2536 obj->mm.page_sizes.sg = 0;
2537 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2538 if (obj->mm.page_sizes.phys & ~0u << i)
2539 obj->mm.page_sizes.sg |= BIT(i);
2540 }
a5c08166 2541 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
f2123818
CW
2542
2543 spin_lock(&i915->mm.obj_lock);
2544 list_add(&obj->mm.link, &i915->mm.unbound_list);
2545 spin_unlock(&i915->mm.obj_lock);
03ac84f1
CW
2546}
2547
2548static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2549{
b91b09ee 2550 int err;
03ac84f1
CW
2551
2552 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2553 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2554 return -EFAULT;
2555 }
2556
b91b09ee
MA
2557 err = obj->ops->get_pages(obj);
2558 GEM_BUG_ON(!err && IS_ERR_OR_NULL(obj->mm.pages));
03ac84f1 2559
b91b09ee 2560 return err;
673a394b
EA
2561}
2562
37e680a1 2563/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2564 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2565 * multiple times before they are released by a single call to
1233e2db 2566 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2567 * either as a result of memory pressure (reaping pages under the shrinker)
2568 * or as the object is itself released.
2569 */
a4f5ea64 2570int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2571{
03ac84f1 2572 int err;
37e680a1 2573
1233e2db
CW
2574 err = mutex_lock_interruptible(&obj->mm.lock);
2575 if (err)
2576 return err;
4c7d62c6 2577
f1fa4f44 2578 if (unlikely(!i915_gem_object_has_pages(obj))) {
88c880bb
CW
2579 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2580
2c3a3f44
CW
2581 err = ____i915_gem_object_get_pages(obj);
2582 if (err)
2583 goto unlock;
37e680a1 2584
2c3a3f44
CW
2585 smp_mb__before_atomic();
2586 }
2587 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2588
1233e2db
CW
2589unlock:
2590 mutex_unlock(&obj->mm.lock);
03ac84f1 2591 return err;
673a394b
EA
2592}
2593
dd6034c6 2594/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2595static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2596 enum i915_map_type type)
dd6034c6
DG
2597{
2598 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2599 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2600 struct sgt_iter sgt_iter;
2601 struct page *page;
b338fa47
DG
2602 struct page *stack_pages[32];
2603 struct page **pages = stack_pages;
dd6034c6 2604 unsigned long i = 0;
d31d7cb1 2605 pgprot_t pgprot;
dd6034c6
DG
2606 void *addr;
2607
2608 /* A single page can always be kmapped */
d31d7cb1 2609 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2610 return kmap(sg_page(sgt->sgl));
2611
b338fa47
DG
2612 if (n_pages > ARRAY_SIZE(stack_pages)) {
2613 /* Too big for stack -- allocate temporary array instead */
0ee931c4 2614 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
b338fa47
DG
2615 if (!pages)
2616 return NULL;
2617 }
dd6034c6 2618
85d1225e
DG
2619 for_each_sgt_page(page, sgt_iter, sgt)
2620 pages[i++] = page;
dd6034c6
DG
2621
2622 /* Check that we have the expected number of pages */
2623 GEM_BUG_ON(i != n_pages);
2624
d31d7cb1 2625 switch (type) {
a575c676
CW
2626 default:
2627 MISSING_CASE(type);
2628 /* fallthrough to use PAGE_KERNEL anyway */
d31d7cb1
CW
2629 case I915_MAP_WB:
2630 pgprot = PAGE_KERNEL;
2631 break;
2632 case I915_MAP_WC:
2633 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2634 break;
2635 }
2636 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2637
b338fa47 2638 if (pages != stack_pages)
2098105e 2639 kvfree(pages);
dd6034c6
DG
2640
2641 return addr;
2642}
2643
2644/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2645void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2646 enum i915_map_type type)
0a798eb9 2647{
d31d7cb1
CW
2648 enum i915_map_type has_type;
2649 bool pinned;
2650 void *ptr;
0a798eb9
CW
2651 int ret;
2652
d31d7cb1 2653 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2654
1233e2db 2655 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2656 if (ret)
2657 return ERR_PTR(ret);
2658
a575c676
CW
2659 pinned = !(type & I915_MAP_OVERRIDE);
2660 type &= ~I915_MAP_OVERRIDE;
2661
1233e2db 2662 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
f1fa4f44 2663 if (unlikely(!i915_gem_object_has_pages(obj))) {
88c880bb
CW
2664 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2665
2c3a3f44
CW
2666 ret = ____i915_gem_object_get_pages(obj);
2667 if (ret)
2668 goto err_unlock;
1233e2db 2669
2c3a3f44
CW
2670 smp_mb__before_atomic();
2671 }
2672 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2673 pinned = false;
2674 }
f1fa4f44 2675 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
0a798eb9 2676
0ce81788 2677 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
d31d7cb1
CW
2678 if (ptr && has_type != type) {
2679 if (pinned) {
2680 ret = -EBUSY;
1233e2db 2681 goto err_unpin;
0a798eb9 2682 }
d31d7cb1
CW
2683
2684 if (is_vmalloc_addr(ptr))
2685 vunmap(ptr);
2686 else
2687 kunmap(kmap_to_page(ptr));
2688
a4f5ea64 2689 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2690 }
2691
d31d7cb1
CW
2692 if (!ptr) {
2693 ptr = i915_gem_object_map(obj, type);
2694 if (!ptr) {
2695 ret = -ENOMEM;
1233e2db 2696 goto err_unpin;
d31d7cb1
CW
2697 }
2698
0ce81788 2699 obj->mm.mapping = page_pack_bits(ptr, type);
d31d7cb1
CW
2700 }
2701
1233e2db
CW
2702out_unlock:
2703 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2704 return ptr;
2705
1233e2db
CW
2706err_unpin:
2707 atomic_dec(&obj->mm.pages_pin_count);
2708err_unlock:
2709 ptr = ERR_PTR(ret);
2710 goto out_unlock;
0a798eb9
CW
2711}
2712
7c55e2c5
CW
2713static int
2714i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2715 const struct drm_i915_gem_pwrite *arg)
2716{
2717 struct address_space *mapping = obj->base.filp->f_mapping;
2718 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2719 u64 remain, offset;
2720 unsigned int pg;
2721
2722 /* Before we instantiate/pin the backing store for our use, we
2723 * can prepopulate the shmemfs filp efficiently using a write into
2724 * the pagecache. We avoid the penalty of instantiating all the
2725 * pages, important if the user is just writing to a few and never
2726 * uses the object on the GPU, and using a direct write into shmemfs
2727 * allows it to avoid the cost of retrieving a page (either swapin
2728 * or clearing-before-use) before it is overwritten.
2729 */
f1fa4f44 2730 if (i915_gem_object_has_pages(obj))
7c55e2c5
CW
2731 return -ENODEV;
2732
2733 /* Before the pages are instantiated the object is treated as being
2734 * in the CPU domain. The pages will be clflushed as required before
2735 * use, and we can freely write into the pages directly. If userspace
2736 * races pwrite with any other operation; corruption will ensue -
2737 * that is userspace's prerogative!
2738 */
2739
2740 remain = arg->size;
2741 offset = arg->offset;
2742 pg = offset_in_page(offset);
2743
2744 do {
2745 unsigned int len, unwritten;
2746 struct page *page;
2747 void *data, *vaddr;
2748 int err;
2749
2750 len = PAGE_SIZE - pg;
2751 if (len > remain)
2752 len = remain;
2753
2754 err = pagecache_write_begin(obj->base.filp, mapping,
2755 offset, len, 0,
2756 &page, &data);
2757 if (err < 0)
2758 return err;
2759
2760 vaddr = kmap(page);
2761 unwritten = copy_from_user(vaddr + pg, user_data, len);
2762 kunmap(page);
2763
2764 err = pagecache_write_end(obj->base.filp, mapping,
2765 offset, len, len - unwritten,
2766 page, data);
2767 if (err < 0)
2768 return err;
2769
2770 if (unwritten)
2771 return -EFAULT;
2772
2773 remain -= len;
2774 user_data += len;
2775 offset += len;
2776 pg = 0;
2777 } while (remain);
2778
2779 return 0;
2780}
2781
77b25a97
CW
2782static bool ban_context(const struct i915_gem_context *ctx,
2783 unsigned int score)
be62acb4 2784{
6095868a 2785 return (i915_gem_context_is_bannable(ctx) &&
77b25a97 2786 score >= CONTEXT_SCORE_BAN_THRESHOLD);
be62acb4
MK
2787}
2788
e5e1fc47 2789static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
aa60c664 2790{
77b25a97
CW
2791 unsigned int score;
2792 bool banned;
b083a087 2793
77b25a97 2794 atomic_inc(&ctx->guilty_count);
b083a087 2795
77b25a97
CW
2796 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2797 banned = ban_context(ctx, score);
2798 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2799 ctx->name, score, yesno(banned));
2800 if (!banned)
b083a087
MK
2801 return;
2802
77b25a97
CW
2803 i915_gem_context_set_banned(ctx);
2804 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2805 atomic_inc(&ctx->file_priv->context_bans);
2806 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2807 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2808 }
e5e1fc47
MK
2809}
2810
2811static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2812{
77b25a97 2813 atomic_inc(&ctx->active_count);
aa60c664
MK
2814}
2815
8d9fc7fd 2816struct drm_i915_gem_request *
0bc40be8 2817i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2818{
754c9fd5
CW
2819 struct drm_i915_gem_request *request, *active = NULL;
2820 unsigned long flags;
4db080f9 2821
f69a02c9
CW
2822 /* We are called by the error capture and reset at a random
2823 * point in time. In particular, note that neither is crucially
2824 * ordered with an interrupt. After a hang, the GPU is dead and we
2825 * assume that no more writes can happen (we waited long enough for
2826 * all writes that were in transaction to be flushed) - adding an
2827 * extra delay for a recent interrupt is pointless. Hence, we do
2828 * not need an engine->irq_seqno_barrier() before the seqno reads.
2829 */
754c9fd5 2830 spin_lock_irqsave(&engine->timeline->lock, flags);
73cb9701 2831 list_for_each_entry(request, &engine->timeline->requests, link) {
754c9fd5
CW
2832 if (__i915_gem_request_completed(request,
2833 request->global_seqno))
4db080f9 2834 continue;
aa60c664 2835
36193acd 2836 GEM_BUG_ON(request->engine != engine);
c00122f3
CW
2837 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2838 &request->fence.flags));
754c9fd5
CW
2839
2840 active = request;
2841 break;
4db080f9 2842 }
754c9fd5 2843 spin_unlock_irqrestore(&engine->timeline->lock, flags);
b6b0fac0 2844
754c9fd5 2845 return active;
b6b0fac0
MK
2846}
2847
bf2f0436
MK
2848static bool engine_stalled(struct intel_engine_cs *engine)
2849{
2850 if (!engine->hangcheck.stalled)
2851 return false;
2852
2853 /* Check for possible seqno movement after hang declaration */
2854 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2855 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2856 return false;
2857 }
2858
2859 return true;
2860}
2861
a1ef70e1
MT
2862/*
2863 * Ensure irq handler finishes, and not run again.
2864 * Also return the active request so that we only search for it once.
2865 */
2866struct drm_i915_gem_request *
2867i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2868{
2869 struct drm_i915_gem_request *request = NULL;
2870
1749d90f
CW
2871 /*
2872 * During the reset sequence, we must prevent the engine from
2873 * entering RC6. As the context state is undefined until we restart
2874 * the engine, if it does enter RC6 during the reset, the state
2875 * written to the powercontext is undefined and so we may lose
2876 * GPU state upon resume, i.e. fail to restart after a reset.
2877 */
2878 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2879
2880 /*
2881 * Prevent the signaler thread from updating the request
a1ef70e1
MT
2882 * state (by calling dma_fence_signal) as we are processing
2883 * the reset. The write from the GPU of the seqno is
2884 * asynchronous and the signaler thread may see a different
2885 * value to us and declare the request complete, even though
2886 * the reset routine have picked that request as the active
2887 * (incomplete) request. This conflict is not handled
2888 * gracefully!
2889 */
2890 kthread_park(engine->breadcrumbs.signaler);
2891
1749d90f
CW
2892 /*
2893 * Prevent request submission to the hardware until we have
a1ef70e1
MT
2894 * completed the reset in i915_gem_reset_finish(). If a request
2895 * is completed by one engine, it may then queue a request
2896 * to a second via its engine->irq_tasklet *just* as we are
2897 * calling engine->init_hw() and also writing the ELSP.
2898 * Turning off the engine->irq_tasklet until the reset is over
2899 * prevents the race.
2900 */
b620e870
MK
2901 tasklet_kill(&engine->execlists.irq_tasklet);
2902 tasklet_disable(&engine->execlists.irq_tasklet);
a1ef70e1
MT
2903
2904 if (engine->irq_seqno_barrier)
2905 engine->irq_seqno_barrier(engine);
2906
d1d1ebf4
CW
2907 request = i915_gem_find_active_request(engine);
2908 if (request && request->fence.error == -EIO)
2909 request = ERR_PTR(-EIO); /* Previous reset failed! */
a1ef70e1
MT
2910
2911 return request;
2912}
2913
0e178aef 2914int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
4c965543
CW
2915{
2916 struct intel_engine_cs *engine;
a1ef70e1 2917 struct drm_i915_gem_request *request;
4c965543 2918 enum intel_engine_id id;
0e178aef 2919 int err = 0;
4c965543 2920
0e178aef 2921 for_each_engine(engine, dev_priv, id) {
a1ef70e1
MT
2922 request = i915_gem_reset_prepare_engine(engine);
2923 if (IS_ERR(request)) {
2924 err = PTR_ERR(request);
2925 continue;
0e178aef 2926 }
c64992e0
MT
2927
2928 engine->hangcheck.active_request = request;
0e178aef
CW
2929 }
2930
4c965543 2931 i915_gem_revoke_fences(dev_priv);
0e178aef
CW
2932
2933 return err;
4c965543
CW
2934}
2935
36193acd 2936static void skip_request(struct drm_i915_gem_request *request)
821ed7df
CW
2937{
2938 void *vaddr = request->ring->vaddr;
2939 u32 head;
2940
2941 /* As this request likely depends on state from the lost
2942 * context, clear out all the user operations leaving the
2943 * breadcrumb at the end (so we get the fence notifications).
2944 */
2945 head = request->head;
2946 if (request->postfix < head) {
2947 memset(vaddr + head, 0, request->ring->size - head);
2948 head = 0;
2949 }
2950 memset(vaddr + head, 0, request->postfix - head);
c0d5f32c
CW
2951
2952 dma_fence_set_error(&request->fence, -EIO);
821ed7df
CW
2953}
2954
36193acd
MK
2955static void engine_skip_context(struct drm_i915_gem_request *request)
2956{
2957 struct intel_engine_cs *engine = request->engine;
2958 struct i915_gem_context *hung_ctx = request->ctx;
2959 struct intel_timeline *timeline;
2960 unsigned long flags;
2961
2962 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2963
2964 spin_lock_irqsave(&engine->timeline->lock, flags);
2965 spin_lock(&timeline->lock);
2966
2967 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2968 if (request->ctx == hung_ctx)
2969 skip_request(request);
2970
2971 list_for_each_entry(request, &timeline->requests, link)
2972 skip_request(request);
2973
2974 spin_unlock(&timeline->lock);
2975 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2976}
2977
d1d1ebf4
CW
2978/* Returns the request if it was guilty of the hang */
2979static struct drm_i915_gem_request *
2980i915_gem_reset_request(struct intel_engine_cs *engine,
2981 struct drm_i915_gem_request *request)
61da5362 2982{
71895a08
MK
2983 /* The guilty request will get skipped on a hung engine.
2984 *
2985 * Users of client default contexts do not rely on logical
2986 * state preserved between batches so it is safe to execute
2987 * queued requests following the hang. Non default contexts
2988 * rely on preserved state, so skipping a batch loses the
2989 * evolution of the state and it needs to be considered corrupted.
2990 * Executing more queued batches on top of corrupted state is
2991 * risky. But we take the risk by trying to advance through
2992 * the queued requests in order to make the client behaviour
2993 * more predictable around resets, by not throwing away random
2994 * amount of batches it has prepared for execution. Sophisticated
2995 * clients can use gem_reset_stats_ioctl and dma fence status
2996 * (exported via sync_file info ioctl on explicit fences) to observe
2997 * when it loses the context state and should rebuild accordingly.
2998 *
2999 * The context ban, and ultimately the client ban, mechanism are safety
3000 * valves if client submission ends up resulting in nothing more than
3001 * subsequent hangs.
3002 */
3003
d1d1ebf4 3004 if (engine_stalled(engine)) {
61da5362
MK
3005 i915_gem_context_mark_guilty(request->ctx);
3006 skip_request(request);
d1d1ebf4
CW
3007
3008 /* If this context is now banned, skip all pending requests. */
3009 if (i915_gem_context_is_banned(request->ctx))
3010 engine_skip_context(request);
61da5362 3011 } else {
d1d1ebf4
CW
3012 /*
3013 * Since this is not the hung engine, it may have advanced
3014 * since the hang declaration. Double check by refinding
3015 * the active request at the time of the reset.
3016 */
3017 request = i915_gem_find_active_request(engine);
3018 if (request) {
3019 i915_gem_context_mark_innocent(request->ctx);
3020 dma_fence_set_error(&request->fence, -EAGAIN);
3021
3022 /* Rewind the engine to replay the incomplete rq */
3023 spin_lock_irq(&engine->timeline->lock);
3024 request = list_prev_entry(request, link);
3025 if (&request->link == &engine->timeline->requests)
3026 request = NULL;
3027 spin_unlock_irq(&engine->timeline->lock);
3028 }
61da5362
MK
3029 }
3030
d1d1ebf4 3031 return request;
61da5362
MK
3032}
3033
a1ef70e1
MT
3034void i915_gem_reset_engine(struct intel_engine_cs *engine,
3035 struct drm_i915_gem_request *request)
b6b0fac0 3036{
ed454f2c
CW
3037 engine->irq_posted = 0;
3038
d1d1ebf4
CW
3039 if (request)
3040 request = i915_gem_reset_request(engine, request);
3041
3042 if (request) {
c0dcb203
CW
3043 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3044 engine->name, request->global_seqno);
c0dcb203 3045 }
821ed7df
CW
3046
3047 /* Setup the CS to resume from the breadcrumb of the hung request */
3048 engine->reset_hw(engine, request);
4db080f9 3049}
aa60c664 3050
d8027093 3051void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 3052{
821ed7df 3053 struct intel_engine_cs *engine;
3b3f1650 3054 enum intel_engine_id id;
608c1a52 3055
4c7d62c6
CW
3056 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3057
821ed7df
CW
3058 i915_gem_retire_requests(dev_priv);
3059
2ae55738
CW
3060 for_each_engine(engine, dev_priv, id) {
3061 struct i915_gem_context *ctx;
3062
c64992e0 3063 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2ae55738
CW
3064 ctx = fetch_and_zero(&engine->last_retired_context);
3065 if (ctx)
3066 engine->context_unpin(engine, ctx);
3067 }
821ed7df 3068
4362f4f6 3069 i915_gem_restore_fences(dev_priv);
f2a91d1a
CW
3070
3071 if (dev_priv->gt.awake) {
3072 intel_sanitize_gt_powersave(dev_priv);
3073 intel_enable_gt_powersave(dev_priv);
3074 if (INTEL_GEN(dev_priv) >= 6)
3075 gen6_rps_busy(dev_priv);
3076 }
821ed7df
CW
3077}
3078
a1ef70e1
MT
3079void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3080{
b620e870 3081 tasklet_enable(&engine->execlists.irq_tasklet);
a1ef70e1 3082 kthread_unpark(engine->breadcrumbs.signaler);
1749d90f
CW
3083
3084 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
a1ef70e1
MT
3085}
3086
d8027093
CW
3087void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3088{
1f7b847d
CW
3089 struct intel_engine_cs *engine;
3090 enum intel_engine_id id;
3091
d8027093 3092 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1f7b847d 3093
fe3288b5 3094 for_each_engine(engine, dev_priv, id) {
c64992e0 3095 engine->hangcheck.active_request = NULL;
a1ef70e1 3096 i915_gem_reset_finish_engine(engine);
fe3288b5 3097 }
d8027093
CW
3098}
3099
821ed7df 3100static void nop_submit_request(struct drm_i915_gem_request *request)
af7a8ffa 3101{
af7a8ffa
DV
3102 dma_fence_set_error(&request->fence, -EIO);
3103
3104 i915_gem_request_submit(request);
3105}
3106
3107static void nop_complete_submit_request(struct drm_i915_gem_request *request)
821ed7df 3108{
8d550824
CW
3109 unsigned long flags;
3110
3cd9442f 3111 dma_fence_set_error(&request->fence, -EIO);
8d550824
CW
3112
3113 spin_lock_irqsave(&request->engine->timeline->lock, flags);
3114 __i915_gem_request_submit(request);
3dcf93f7 3115 intel_engine_init_global_seqno(request->engine, request->global_seqno);
8d550824 3116 spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
821ed7df
CW
3117}
3118
af7a8ffa 3119void i915_gem_set_wedged(struct drm_i915_private *i915)
821ed7df 3120{
af7a8ffa
DV
3121 struct intel_engine_cs *engine;
3122 enum intel_engine_id id;
3123
3124 /*
3125 * First, stop submission to hw, but do not yet complete requests by
3126 * rolling the global seqno forward (since this would complete requests
3127 * for which we haven't set the fence error to EIO yet).
3128 */
3129 for_each_engine(engine, i915, id)
3130 engine->submit_request = nop_submit_request;
3131
3132 /*
3133 * Make sure no one is running the old callback before we proceed with
3134 * cancelling requests and resetting the completion tracking. Otherwise
3135 * we might submit a request to the hardware which never completes.
20e4933c 3136 */
af7a8ffa 3137 synchronize_rcu();
70c2a24d 3138
af7a8ffa
DV
3139 for_each_engine(engine, i915, id) {
3140 /* Mark all executing requests as skipped */
3141 engine->cancel_requests(engine);
5e32d748 3142
af7a8ffa
DV
3143 /*
3144 * Only once we've force-cancelled all in-flight requests can we
3145 * start to complete all requests.
3146 */
3147 engine->submit_request = nop_complete_submit_request;
3148 }
3149
3150 /*
3151 * Make sure no request can slip through without getting completed by
3152 * either this call here to intel_engine_init_global_seqno, or the one
3153 * in nop_complete_submit_request.
5e32d748 3154 */
af7a8ffa 3155 synchronize_rcu();
673a394b 3156
af7a8ffa
DV
3157 for_each_engine(engine, i915, id) {
3158 unsigned long flags;
673a394b 3159
af7a8ffa
DV
3160 /* Mark all pending requests as complete so that any concurrent
3161 * (lockless) lookup doesn't try and wait upon the request as we
3162 * reset it.
3163 */
3164 spin_lock_irqsave(&engine->timeline->lock, flags);
3165 intel_engine_init_global_seqno(engine,
3166 intel_engine_last_submit(engine));
3167 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3168 }
20e4933c 3169
3d7adbbf
CW
3170 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3171 wake_up_all(&i915->gpu_error.reset_queue);
673a394b
EA
3172}
3173
2e8f9d32
CW
3174bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3175{
3176 struct i915_gem_timeline *tl;
3177 int i;
3178
3179 lockdep_assert_held(&i915->drm.struct_mutex);
3180 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3181 return true;
3182
3183 /* Before unwedging, make sure that all pending operations
3184 * are flushed and errored out - we may have requests waiting upon
3185 * third party fences. We marked all inflight requests as EIO, and
3186 * every execbuf since returned EIO, for consistency we want all
3187 * the currently pending requests to also be marked as EIO, which
3188 * is done inside our nop_submit_request - and so we must wait.
3189 *
3190 * No more can be submitted until we reset the wedged bit.
3191 */
3192 list_for_each_entry(tl, &i915->gt.timelines, link) {
3193 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3194 struct drm_i915_gem_request *rq;
3195
3196 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3197 &i915->drm.struct_mutex);
3198 if (!rq)
3199 continue;
3200
3201 /* We can't use our normal waiter as we want to
3202 * avoid recursively trying to handle the current
3203 * reset. The basic dma_fence_default_wait() installs
3204 * a callback for dma_fence_signal(), which is
3205 * triggered by our nop handler (indirectly, the
3206 * callback enables the signaler thread which is
3207 * woken by the nop_submit_request() advancing the seqno
3208 * and when the seqno passes the fence, the signaler
3209 * then signals the fence waking us up).
3210 */
3211 if (dma_fence_default_wait(&rq->fence, true,
3212 MAX_SCHEDULE_TIMEOUT) < 0)
3213 return false;
3214 }
3215 }
3216
3217 /* Undo nop_submit_request. We prevent all new i915 requests from
3218 * being queued (by disallowing execbuf whilst wedged) so having
3219 * waited for all active requests above, we know the system is idle
3220 * and do not have to worry about a thread being inside
3221 * engine->submit_request() as we swap over. So unlike installing
3222 * the nop_submit_request on reset, we can do this from normal
3223 * context and do not require stop_machine().
3224 */
3225 intel_engines_reset_default_submission(i915);
36703e79 3226 i915_gem_contexts_lost(i915);
2e8f9d32
CW
3227
3228 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3229 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3230
3231 return true;
3232}
3233
75ef9da2 3234static void
673a394b
EA
3235i915_gem_retire_work_handler(struct work_struct *work)
3236{
b29c19b6 3237 struct drm_i915_private *dev_priv =
67d97da3 3238 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 3239 struct drm_device *dev = &dev_priv->drm;
673a394b 3240
891b48cf 3241 /* Come back later if the device is busy... */
b29c19b6 3242 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 3243 i915_gem_retire_requests(dev_priv);
b29c19b6 3244 mutex_unlock(&dev->struct_mutex);
673a394b 3245 }
67d97da3
CW
3246
3247 /* Keep the retire handler running until we are finally idle.
3248 * We do not need to do this test under locking as in the worst-case
3249 * we queue the retire worker once too often.
3250 */
c9615613
CW
3251 if (READ_ONCE(dev_priv->gt.awake)) {
3252 i915_queue_hangcheck(dev_priv);
67d97da3
CW
3253 queue_delayed_work(dev_priv->wq,
3254 &dev_priv->gt.retire_work,
bcb45086 3255 round_jiffies_up_relative(HZ));
c9615613 3256 }
b29c19b6 3257}
0a58705b 3258
b29c19b6
CW
3259static void
3260i915_gem_idle_work_handler(struct work_struct *work)
3261{
3262 struct drm_i915_private *dev_priv =
67d97da3 3263 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 3264 struct drm_device *dev = &dev_priv->drm;
67d97da3
CW
3265 bool rearm_hangcheck;
3266
3267 if (!READ_ONCE(dev_priv->gt.awake))
3268 return;
3269
0cb5670b
ID
3270 /*
3271 * Wait for last execlists context complete, but bail out in case a
3272 * new request is submitted.
3273 */
8490ae20 3274 wait_for(intel_engines_are_idle(dev_priv), 10);
28176ef4 3275 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
3276 return;
3277
3278 rearm_hangcheck =
3279 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3280
3281 if (!mutex_trylock(&dev->struct_mutex)) {
3282 /* Currently busy, come back later */
3283 mod_delayed_work(dev_priv->wq,
3284 &dev_priv->gt.idle_work,
3285 msecs_to_jiffies(50));
3286 goto out_rearm;
3287 }
3288
93c97dc1
ID
3289 /*
3290 * New request retired after this work handler started, extend active
3291 * period until next instance of the work.
3292 */
3293 if (work_pending(work))
3294 goto out_unlock;
3295
28176ef4 3296 if (dev_priv->gt.active_requests)
67d97da3 3297 goto out_unlock;
b29c19b6 3298
05425249 3299 if (wait_for(intel_engines_are_idle(dev_priv), 10))
0cb5670b
ID
3300 DRM_ERROR("Timeout waiting for engines to idle\n");
3301
6c067579 3302 intel_engines_mark_idle(dev_priv);
47979480 3303 i915_gem_timelines_mark_idle(dev_priv);
35c94185 3304
67d97da3
CW
3305 GEM_BUG_ON(!dev_priv->gt.awake);
3306 dev_priv->gt.awake = false;
3307 rearm_hangcheck = false;
30ecad77 3308
67d97da3
CW
3309 if (INTEL_GEN(dev_priv) >= 6)
3310 gen6_rps_idle(dev_priv);
3311 intel_runtime_pm_put(dev_priv);
3312out_unlock:
3313 mutex_unlock(&dev->struct_mutex);
b29c19b6 3314
67d97da3
CW
3315out_rearm:
3316 if (rearm_hangcheck) {
3317 GEM_BUG_ON(!dev_priv->gt.awake);
3318 i915_queue_hangcheck(dev_priv);
35c94185 3319 }
673a394b
EA
3320}
3321
b1f788c6
CW
3322void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3323{
d1b48c1e 3324 struct drm_i915_private *i915 = to_i915(gem->dev);
b1f788c6
CW
3325 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3326 struct drm_i915_file_private *fpriv = file->driver_priv;
d1b48c1e 3327 struct i915_lut_handle *lut, *ln;
b1f788c6 3328
d1b48c1e
CW
3329 mutex_lock(&i915->drm.struct_mutex);
3330
3331 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3332 struct i915_gem_context *ctx = lut->ctx;
3333 struct i915_vma *vma;
3334
432295d7 3335 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
d1b48c1e
CW
3336 if (ctx->file_priv != fpriv)
3337 continue;
3338
3339 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3ffff017
CW
3340 GEM_BUG_ON(vma->obj != obj);
3341
3342 /* We allow the process to have multiple handles to the same
3343 * vma, in the same fd namespace, by virtue of flink/open.
3344 */
3345 GEM_BUG_ON(!vma->open_count);
3346 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
b1f788c6 3347 i915_vma_close(vma);
f8a7fde4 3348
d1b48c1e
CW
3349 list_del(&lut->obj_link);
3350 list_del(&lut->ctx_link);
4ff4b44c 3351
d1b48c1e
CW
3352 kmem_cache_free(i915->luts, lut);
3353 __i915_gem_object_release_unless_active(obj);
f8a7fde4 3354 }
d1b48c1e
CW
3355
3356 mutex_unlock(&i915->drm.struct_mutex);
b1f788c6
CW
3357}
3358
e95433c7
CW
3359static unsigned long to_wait_timeout(s64 timeout_ns)
3360{
3361 if (timeout_ns < 0)
3362 return MAX_SCHEDULE_TIMEOUT;
3363
3364 if (timeout_ns == 0)
3365 return 0;
3366
3367 return nsecs_to_jiffies_timeout(timeout_ns);
3368}
3369
23ba4fd0
BW
3370/**
3371 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3372 * @dev: drm device pointer
3373 * @data: ioctl data blob
3374 * @file: drm file pointer
23ba4fd0
BW
3375 *
3376 * Returns 0 if successful, else an error is returned with the remaining time in
3377 * the timeout parameter.
3378 * -ETIME: object is still busy after timeout
3379 * -ERESTARTSYS: signal interrupted the wait
3380 * -ENONENT: object doesn't exist
3381 * Also possible, but rare:
b8050148 3382 * -EAGAIN: incomplete, restart syscall
23ba4fd0
BW
3383 * -ENOMEM: damn
3384 * -ENODEV: Internal IRQ fail
3385 * -E?: The add request failed
3386 *
3387 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3388 * non-zero timeout parameter the wait ioctl will wait for the given number of
3389 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3390 * without holding struct_mutex the object may become re-busied before this
3391 * function completes. A similar but shorter * race condition exists in the busy
3392 * ioctl
3393 */
3394int
3395i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3396{
3397 struct drm_i915_gem_wait *args = data;
3398 struct drm_i915_gem_object *obj;
e95433c7
CW
3399 ktime_t start;
3400 long ret;
23ba4fd0 3401
11b5d511
DV
3402 if (args->flags != 0)
3403 return -EINVAL;
3404
03ac0642 3405 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 3406 if (!obj)
23ba4fd0 3407 return -ENOENT;
23ba4fd0 3408
e95433c7
CW
3409 start = ktime_get();
3410
3411 ret = i915_gem_object_wait(obj,
3412 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3413 to_wait_timeout(args->timeout_ns),
3414 to_rps_client(file));
3415
3416 if (args->timeout_ns > 0) {
3417 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3418 if (args->timeout_ns < 0)
3419 args->timeout_ns = 0;
c1d2061b
CW
3420
3421 /*
3422 * Apparently ktime isn't accurate enough and occasionally has a
3423 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3424 * things up to make the test happy. We allow up to 1 jiffy.
3425 *
3426 * This is a regression from the timespec->ktime conversion.
3427 */
3428 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3429 args->timeout_ns = 0;
b8050148
CW
3430
3431 /* Asked to wait beyond the jiffie/scheduler precision? */
3432 if (ret == -ETIME && args->timeout_ns)
3433 ret = -EAGAIN;
b4716185
CW
3434 }
3435
f0cd5182 3436 i915_gem_object_put(obj);
ff865885 3437 return ret;
23ba4fd0
BW
3438}
3439
73cb9701 3440static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 3441{
73cb9701 3442 int ret, i;
4df2faf4 3443
73cb9701
CW
3444 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3445 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3446 if (ret)
3447 return ret;
3448 }
62e63007 3449
73cb9701
CW
3450 return 0;
3451}
3452
25112b64
CW
3453static int wait_for_engines(struct drm_i915_private *i915)
3454{
cad9946c
CW
3455 if (wait_for(intel_engines_are_idle(i915), 50)) {
3456 DRM_ERROR("Failed to idle engines, declaring wedged!\n");
3457 i915_gem_set_wedged(i915);
3458 return -EIO;
25112b64
CW
3459 }
3460
3461 return 0;
3462}
3463
73cb9701
CW
3464int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3465{
73cb9701
CW
3466 int ret;
3467
863e9fde
CW
3468 /* If the device is asleep, we have no requests outstanding */
3469 if (!READ_ONCE(i915->gt.awake))
3470 return 0;
3471
9caa34aa
CW
3472 if (flags & I915_WAIT_LOCKED) {
3473 struct i915_gem_timeline *tl;
3474
3475 lockdep_assert_held(&i915->drm.struct_mutex);
3476
3477 list_for_each_entry(tl, &i915->gt.timelines, link) {
3478 ret = wait_for_timeline(tl, flags);
3479 if (ret)
3480 return ret;
3481 }
72022a70
CW
3482
3483 i915_gem_retire_requests(i915);
3484 GEM_BUG_ON(i915->gt.active_requests);
25112b64
CW
3485
3486 ret = wait_for_engines(i915);
9caa34aa
CW
3487 } else {
3488 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
1ec14ad3 3489 }
4df2faf4 3490
25112b64 3491 return ret;
4df2faf4
DV
3492}
3493
5a97bcc6
CW
3494static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3495{
e27ab73d
CW
3496 /*
3497 * We manually flush the CPU domain so that we can override and
3498 * force the flush for the display, and perform it asyncrhonously.
3499 */
3500 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3501 if (obj->cache_dirty)
3502 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
5a97bcc6
CW
3503 obj->base.write_domain = 0;
3504}
3505
3506void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3507{
bd3d2252 3508 if (!READ_ONCE(obj->pin_global))
5a97bcc6
CW
3509 return;
3510
3511 mutex_lock(&obj->base.dev->struct_mutex);
3512 __i915_gem_object_flush_for_display(obj);
3513 mutex_unlock(&obj->base.dev->struct_mutex);
3514}
3515
e22d8e3c
CW
3516/**
3517 * Moves a single object to the WC read, and possibly write domain.
3518 * @obj: object to act on
3519 * @write: ask for write access or read only
3520 *
3521 * This function returns when the move is complete, including waiting on
3522 * flushes to occur.
3523 */
3524int
3525i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3526{
3527 int ret;
3528
3529 lockdep_assert_held(&obj->base.dev->struct_mutex);
3530
3531 ret = i915_gem_object_wait(obj,
3532 I915_WAIT_INTERRUPTIBLE |
3533 I915_WAIT_LOCKED |
3534 (write ? I915_WAIT_ALL : 0),
3535 MAX_SCHEDULE_TIMEOUT,
3536 NULL);
3537 if (ret)
3538 return ret;
3539
3540 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3541 return 0;
3542
3543 /* Flush and acquire obj->pages so that we are coherent through
3544 * direct access in memory with previous cached writes through
3545 * shmemfs and that our cache domain tracking remains valid.
3546 * For example, if the obj->filp was moved to swap without us
3547 * being notified and releasing the pages, we would mistakenly
3548 * continue to assume that the obj remained out of the CPU cached
3549 * domain.
3550 */
3551 ret = i915_gem_object_pin_pages(obj);
3552 if (ret)
3553 return ret;
3554
3555 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3556
3557 /* Serialise direct access to this object with the barriers for
3558 * coherent writes from the GPU, by effectively invalidating the
3559 * WC domain upon first access.
3560 */
3561 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3562 mb();
3563
3564 /* It should now be out of any other write domains, and we can update
3565 * the domain values for our changes.
3566 */
3567 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3568 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3569 if (write) {
3570 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3571 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3572 obj->mm.dirty = true;
3573 }
3574
3575 i915_gem_object_unpin_pages(obj);
3576 return 0;
3577}
3578
2ef7eeaa
EA
3579/**
3580 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3581 * @obj: object to act on
3582 * @write: ask for write access or read only
2ef7eeaa
EA
3583 *
3584 * This function returns when the move is complete, including waiting on
3585 * flushes to occur.
3586 */
79e53945 3587int
2021746e 3588i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3589{
e47c68e9 3590 int ret;
2ef7eeaa 3591
e95433c7 3592 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3593
e95433c7
CW
3594 ret = i915_gem_object_wait(obj,
3595 I915_WAIT_INTERRUPTIBLE |
3596 I915_WAIT_LOCKED |
3597 (write ? I915_WAIT_ALL : 0),
3598 MAX_SCHEDULE_TIMEOUT,
3599 NULL);
88241785
CW
3600 if (ret)
3601 return ret;
3602
c13d87ea
CW
3603 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3604 return 0;
3605
43566ded
CW
3606 /* Flush and acquire obj->pages so that we are coherent through
3607 * direct access in memory with previous cached writes through
3608 * shmemfs and that our cache domain tracking remains valid.
3609 * For example, if the obj->filp was moved to swap without us
3610 * being notified and releasing the pages, we would mistakenly
3611 * continue to assume that the obj remained out of the CPU cached
3612 * domain.
3613 */
a4f5ea64 3614 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3615 if (ret)
3616 return ret;
3617
ef74921b 3618 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
1c5d22f7 3619
d0a57789
CW
3620 /* Serialise direct access to this object with the barriers for
3621 * coherent writes from the GPU, by effectively invalidating the
3622 * GTT domain upon first access.
3623 */
3624 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3625 mb();
3626
e47c68e9
EA
3627 /* It should now be out of any other write domains, and we can update
3628 * the domain values for our changes.
3629 */
40e62d5d 3630 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3631 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3632 if (write) {
05394f39
CW
3633 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3634 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3635 obj->mm.dirty = true;
2ef7eeaa
EA
3636 }
3637
a4f5ea64 3638 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3639 return 0;
3640}
3641
ef55f92a
CW
3642/**
3643 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3644 * @obj: object to act on
3645 * @cache_level: new cache level to set for the object
ef55f92a
CW
3646 *
3647 * After this function returns, the object will be in the new cache-level
3648 * across all GTT and the contents of the backing storage will be coherent,
3649 * with respect to the new cache-level. In order to keep the backing storage
3650 * coherent for all users, we only allow a single cache level to be set
3651 * globally on the object and prevent it from being changed whilst the
3652 * hardware is reading from the object. That is if the object is currently
3653 * on the scanout it will be set to uncached (or equivalent display
3654 * cache coherency) and all non-MOCS GPU access will also be uncached so
3655 * that all direct access to the scanout remains coherent.
3656 */
e4ffd173
CW
3657int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3658 enum i915_cache_level cache_level)
3659{
aa653a68 3660 struct i915_vma *vma;
a6a7cc4b 3661 int ret;
e4ffd173 3662
4c7d62c6
CW
3663 lockdep_assert_held(&obj->base.dev->struct_mutex);
3664
e4ffd173 3665 if (obj->cache_level == cache_level)
a6a7cc4b 3666 return 0;
e4ffd173 3667
ef55f92a
CW
3668 /* Inspect the list of currently bound VMA and unbind any that would
3669 * be invalid given the new cache-level. This is principally to
3670 * catch the issue of the CS prefetch crossing page boundaries and
3671 * reading an invalid PTE on older architectures.
3672 */
aa653a68
CW
3673restart:
3674 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3675 if (!drm_mm_node_allocated(&vma->node))
3676 continue;
3677
20dfbde4 3678 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3679 DRM_DEBUG("can not change the cache level of pinned objects\n");
3680 return -EBUSY;
3681 }
3682
aa653a68
CW
3683 if (i915_gem_valid_gtt_space(vma, cache_level))
3684 continue;
3685
3686 ret = i915_vma_unbind(vma);
3687 if (ret)
3688 return ret;
3689
3690 /* As unbinding may affect other elements in the
3691 * obj->vma_list (due to side-effects from retiring
3692 * an active vma), play safe and restart the iterator.
3693 */
3694 goto restart;
42d6ab48
CW
3695 }
3696
ef55f92a
CW
3697 /* We can reuse the existing drm_mm nodes but need to change the
3698 * cache-level on the PTE. We could simply unbind them all and
3699 * rebind with the correct cache-level on next use. However since
3700 * we already have a valid slot, dma mapping, pages etc, we may as
3701 * rewrite the PTE in the belief that doing so tramples upon less
3702 * state and so involves less work.
3703 */
15717de2 3704 if (obj->bind_count) {
ef55f92a
CW
3705 /* Before we change the PTE, the GPU must not be accessing it.
3706 * If we wait upon the object, we know that all the bound
3707 * VMA are no longer active.
3708 */
e95433c7
CW
3709 ret = i915_gem_object_wait(obj,
3710 I915_WAIT_INTERRUPTIBLE |
3711 I915_WAIT_LOCKED |
3712 I915_WAIT_ALL,
3713 MAX_SCHEDULE_TIMEOUT,
3714 NULL);
e4ffd173
CW
3715 if (ret)
3716 return ret;
3717
0031fb96
TU
3718 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3719 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3720 /* Access to snoopable pages through the GTT is
3721 * incoherent and on some machines causes a hard
3722 * lockup. Relinquish the CPU mmaping to force
3723 * userspace to refault in the pages and we can
3724 * then double check if the GTT mapping is still
3725 * valid for that pointer access.
3726 */
3727 i915_gem_release_mmap(obj);
3728
3729 /* As we no longer need a fence for GTT access,
3730 * we can relinquish it now (and so prevent having
3731 * to steal a fence from someone else on the next
3732 * fence request). Note GPU activity would have
3733 * dropped the fence as all snoopable access is
3734 * supposed to be linear.
3735 */
49ef5294
CW
3736 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3737 ret = i915_vma_put_fence(vma);
3738 if (ret)
3739 return ret;
3740 }
ef55f92a
CW
3741 } else {
3742 /* We either have incoherent backing store and
3743 * so no GTT access or the architecture is fully
3744 * coherent. In such cases, existing GTT mmaps
3745 * ignore the cache bit in the PTE and we can
3746 * rewrite it without confusing the GPU or having
3747 * to force userspace to fault back in its mmaps.
3748 */
e4ffd173
CW
3749 }
3750
1c7f4bca 3751 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3752 if (!drm_mm_node_allocated(&vma->node))
3753 continue;
3754
3755 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3756 if (ret)
3757 return ret;
3758 }
e4ffd173
CW
3759 }
3760
1c7f4bca 3761 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b 3762 vma->node.color = cache_level;
b8f55be6 3763 i915_gem_object_set_cache_coherency(obj, cache_level);
e27ab73d 3764 obj->cache_dirty = true; /* Always invalidate stale cachelines */
2c22569b 3765
e4ffd173
CW
3766 return 0;
3767}
3768
199adf40
BW
3769int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3770 struct drm_file *file)
e6994aee 3771{
199adf40 3772 struct drm_i915_gem_caching *args = data;
e6994aee 3773 struct drm_i915_gem_object *obj;
fbbd37b3 3774 int err = 0;
e6994aee 3775
fbbd37b3
CW
3776 rcu_read_lock();
3777 obj = i915_gem_object_lookup_rcu(file, args->handle);
3778 if (!obj) {
3779 err = -ENOENT;
3780 goto out;
3781 }
e6994aee 3782
651d794f
CW
3783 switch (obj->cache_level) {
3784 case I915_CACHE_LLC:
3785 case I915_CACHE_L3_LLC:
3786 args->caching = I915_CACHING_CACHED;
3787 break;
3788
4257d3ba
CW
3789 case I915_CACHE_WT:
3790 args->caching = I915_CACHING_DISPLAY;
3791 break;
3792
651d794f
CW
3793 default:
3794 args->caching = I915_CACHING_NONE;
3795 break;
3796 }
fbbd37b3
CW
3797out:
3798 rcu_read_unlock();
3799 return err;
e6994aee
CW
3800}
3801
199adf40
BW
3802int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3803 struct drm_file *file)
e6994aee 3804{
9c870d03 3805 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3806 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3807 struct drm_i915_gem_object *obj;
3808 enum i915_cache_level level;
d65415df 3809 int ret = 0;
e6994aee 3810
199adf40
BW
3811 switch (args->caching) {
3812 case I915_CACHING_NONE:
e6994aee
CW
3813 level = I915_CACHE_NONE;
3814 break;
199adf40 3815 case I915_CACHING_CACHED:
e5756c10
ID
3816 /*
3817 * Due to a HW issue on BXT A stepping, GPU stores via a
3818 * snooped mapping may leave stale data in a corresponding CPU
3819 * cacheline, whereas normally such cachelines would get
3820 * invalidated.
3821 */
9c870d03 3822 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3823 return -ENODEV;
3824
e6994aee
CW
3825 level = I915_CACHE_LLC;
3826 break;
4257d3ba 3827 case I915_CACHING_DISPLAY:
9c870d03 3828 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3829 break;
e6994aee
CW
3830 default:
3831 return -EINVAL;
3832 }
3833
d65415df
CW
3834 obj = i915_gem_object_lookup(file, args->handle);
3835 if (!obj)
3836 return -ENOENT;
3837
3838 if (obj->cache_level == level)
3839 goto out;
3840
3841 ret = i915_gem_object_wait(obj,
3842 I915_WAIT_INTERRUPTIBLE,
3843 MAX_SCHEDULE_TIMEOUT,
3844 to_rps_client(file));
3bc2913e 3845 if (ret)
d65415df 3846 goto out;
3bc2913e 3847
d65415df
CW
3848 ret = i915_mutex_lock_interruptible(dev);
3849 if (ret)
3850 goto out;
e6994aee
CW
3851
3852 ret = i915_gem_object_set_cache_level(obj, level);
e6994aee 3853 mutex_unlock(&dev->struct_mutex);
d65415df
CW
3854
3855out:
3856 i915_gem_object_put(obj);
e6994aee
CW
3857 return ret;
3858}
3859
b9241ea3 3860/*
2da3b9b9
CW
3861 * Prepare buffer for display plane (scanout, cursors, etc).
3862 * Can be called from an uninterruptible phase (modesetting) and allows
3863 * any flushes to be pipelined (for pageflips).
b9241ea3 3864 */
058d88c4 3865struct i915_vma *
2da3b9b9
CW
3866i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3867 u32 alignment,
e6617330 3868 const struct i915_ggtt_view *view)
b9241ea3 3869{
058d88c4 3870 struct i915_vma *vma;
b9241ea3
ZW
3871 int ret;
3872
4c7d62c6
CW
3873 lockdep_assert_held(&obj->base.dev->struct_mutex);
3874
bd3d2252 3875 /* Mark the global pin early so that we account for the
cc98b413
CW
3876 * display coherency whilst setting up the cache domains.
3877 */
bd3d2252 3878 obj->pin_global++;
cc98b413 3879
a7ef0640
EA
3880 /* The display engine is not coherent with the LLC cache on gen6. As
3881 * a result, we make sure that the pinning that is about to occur is
3882 * done with uncached PTEs. This is lowest common denominator for all
3883 * chipsets.
3884 *
3885 * However for gen6+, we could do better by using the GFDT bit instead
3886 * of uncaching, which would allow us to flush all the LLC-cached data
3887 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3888 */
651d794f 3889 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3890 HAS_WT(to_i915(obj->base.dev)) ?
3891 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3892 if (ret) {
3893 vma = ERR_PTR(ret);
bd3d2252 3894 goto err_unpin_global;
058d88c4 3895 }
a7ef0640 3896
2da3b9b9
CW
3897 /* As the user may map the buffer once pinned in the display plane
3898 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3899 * always use map_and_fenceable for all scanout buffers. However,
3900 * it may simply be too big to fit into mappable, in which case
3901 * put it anyway and hope that userspace can cope (but always first
3902 * try to preserve the existing ABI).
2da3b9b9 3903 */
2efb813d 3904 vma = ERR_PTR(-ENOSPC);
47a8e3f6 3905 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
2efb813d
CW
3906 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3907 PIN_MAPPABLE | PIN_NONBLOCK);
767a222e
CW
3908 if (IS_ERR(vma)) {
3909 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3910 unsigned int flags;
3911
3912 /* Valleyview is definitely limited to scanning out the first
3913 * 512MiB. Lets presume this behaviour was inherited from the
3914 * g4x display engine and that all earlier gen are similarly
3915 * limited. Testing suggests that it is a little more
3916 * complicated than this. For example, Cherryview appears quite
3917 * happy to scanout from anywhere within its global aperture.
3918 */
3919 flags = 0;
3920 if (HAS_GMCH_DISPLAY(i915))
3921 flags = PIN_MAPPABLE;
3922 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3923 }
058d88c4 3924 if (IS_ERR(vma))
bd3d2252 3925 goto err_unpin_global;
2da3b9b9 3926
d8923dcf
CW
3927 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3928
a6a7cc4b 3929 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
5a97bcc6 3930 __i915_gem_object_flush_for_display(obj);
d59b21ec 3931 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
b118c1e3 3932
2da3b9b9
CW
3933 /* It should now be out of any other write domains, and we can update
3934 * the domain values for our changes.
3935 */
05394f39 3936 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3 3937
058d88c4 3938 return vma;
cc98b413 3939
bd3d2252
CW
3940err_unpin_global:
3941 obj->pin_global--;
058d88c4 3942 return vma;
cc98b413
CW
3943}
3944
3945void
058d88c4 3946i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3947{
49d73912 3948 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4c7d62c6 3949
bd3d2252 3950 if (WARN_ON(vma->obj->pin_global == 0))
8a0c39b1
TU
3951 return;
3952
bd3d2252 3953 if (--vma->obj->pin_global == 0)
f51455d4 3954 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
e6617330 3955
383d5823 3956 /* Bump the LRU to try and avoid premature eviction whilst flipping */
befedbb7 3957 i915_gem_object_bump_inactive_ggtt(vma->obj);
383d5823 3958
058d88c4 3959 i915_vma_unpin(vma);
b9241ea3
ZW
3960}
3961
e47c68e9
EA
3962/**
3963 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3964 * @obj: object to act on
3965 * @write: requesting write or read-only access
e47c68e9
EA
3966 *
3967 * This function returns when the move is complete, including waiting on
3968 * flushes to occur.
3969 */
dabdfe02 3970int
919926ae 3971i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3972{
e47c68e9
EA
3973 int ret;
3974
e95433c7 3975 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3976
e95433c7
CW
3977 ret = i915_gem_object_wait(obj,
3978 I915_WAIT_INTERRUPTIBLE |
3979 I915_WAIT_LOCKED |
3980 (write ? I915_WAIT_ALL : 0),
3981 MAX_SCHEDULE_TIMEOUT,
3982 NULL);
88241785
CW
3983 if (ret)
3984 return ret;
3985
ef74921b 3986 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
2ef7eeaa 3987
e47c68e9 3988 /* Flush the CPU cache if it's still invalid. */
05394f39 3989 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
57822dc6 3990 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
05394f39 3991 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3992 }
3993
3994 /* It should now be out of any other write domains, and we can update
3995 * the domain values for our changes.
3996 */
e27ab73d 3997 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3998
3999 /* If we're writing through the CPU, then the GPU read domains will
4000 * need to be invalidated at next use.
4001 */
e27ab73d
CW
4002 if (write)
4003 __start_cpu_write(obj);
2ef7eeaa
EA
4004
4005 return 0;
4006}
4007
673a394b
EA
4008/* Throttle our rendering by waiting until the ring has completed our requests
4009 * emitted over 20 msec ago.
4010 *
b962442e
EA
4011 * Note that if we were to use the current jiffies each time around the loop,
4012 * we wouldn't escape the function with any frames outstanding if the time to
4013 * render a frame was over 20ms.
4014 *
673a394b
EA
4015 * This should get us reasonable parallelism between CPU and GPU but also
4016 * relatively low latency when blocking on a particular request to finish.
4017 */
40a5f0de 4018static int
f787a5f5 4019i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4020{
fac5e23e 4021 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 4022 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4023 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4024 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 4025 long ret;
93533c29 4026
f4457ae7
CW
4027 /* ABI: return -EIO if already wedged */
4028 if (i915_terminally_wedged(&dev_priv->gpu_error))
4029 return -EIO;
e110e8d6 4030
1c25595f 4031 spin_lock(&file_priv->mm.lock);
c8659efa 4032 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
b962442e
EA
4033 if (time_after_eq(request->emitted_jiffies, recent_enough))
4034 break;
40a5f0de 4035
c8659efa
CW
4036 if (target) {
4037 list_del(&target->client_link);
4038 target->file_priv = NULL;
4039 }
fcfa423c 4040
54fb2411 4041 target = request;
b962442e 4042 }
ff865885 4043 if (target)
e8a261ea 4044 i915_gem_request_get(target);
1c25595f 4045 spin_unlock(&file_priv->mm.lock);
40a5f0de 4046
54fb2411 4047 if (target == NULL)
f787a5f5 4048 return 0;
2bc43b5c 4049
e95433c7
CW
4050 ret = i915_wait_request(target,
4051 I915_WAIT_INTERRUPTIBLE,
4052 MAX_SCHEDULE_TIMEOUT);
e8a261ea 4053 i915_gem_request_put(target);
ff865885 4054
e95433c7 4055 return ret < 0 ? ret : 0;
40a5f0de
EA
4056}
4057
058d88c4 4058struct i915_vma *
ec7adb6e
JL
4059i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4060 const struct i915_ggtt_view *view,
91b2db6f 4061 u64 size,
2ffffd0f
CW
4062 u64 alignment,
4063 u64 flags)
ec7adb6e 4064{
ad16d2ed
CW
4065 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4066 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
4067 struct i915_vma *vma;
4068 int ret;
72e96d64 4069
4c7d62c6
CW
4070 lockdep_assert_held(&obj->base.dev->struct_mutex);
4071
43ae70d9
CW
4072 if (!view && flags & PIN_MAPPABLE) {
4073 /* If the required space is larger than the available
4074 * aperture, we will not able to find a slot for the
4075 * object and unbinding the object now will be in
4076 * vain. Worse, doing so may cause us to ping-pong
4077 * the object in and out of the Global GTT and
4078 * waste a lot of cycles under the mutex.
4079 */
4080 if (obj->base.size > dev_priv->ggtt.mappable_end)
4081 return ERR_PTR(-E2BIG);
4082
4083 /* If NONBLOCK is set the caller is optimistically
4084 * trying to cache the full object within the mappable
4085 * aperture, and *must* have a fallback in place for
4086 * situations where we cannot bind the object. We
4087 * can be a little more lax here and use the fallback
4088 * more often to avoid costly migrations of ourselves
4089 * and other objects within the aperture.
4090 *
4091 * Half-the-aperture is used as a simple heuristic.
4092 * More interesting would to do search for a free
4093 * block prior to making the commitment to unbind.
4094 * That caters for the self-harm case, and with a
4095 * little more heuristics (e.g. NOFAULT, NOEVICT)
4096 * we could try to minimise harm to others.
4097 */
4098 if (flags & PIN_NONBLOCK &&
4099 obj->base.size > dev_priv->ggtt.mappable_end / 2)
4100 return ERR_PTR(-ENOSPC);
4101 }
4102
718659a6 4103 vma = i915_vma_instance(obj, vm, view);
e0216b76 4104 if (unlikely(IS_ERR(vma)))
058d88c4 4105 return vma;
59bfa124
CW
4106
4107 if (i915_vma_misplaced(vma, size, alignment, flags)) {
43ae70d9
CW
4108 if (flags & PIN_NONBLOCK) {
4109 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4110 return ERR_PTR(-ENOSPC);
59bfa124 4111
43ae70d9 4112 if (flags & PIN_MAPPABLE &&
944397f0 4113 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
ad16d2ed
CW
4114 return ERR_PTR(-ENOSPC);
4115 }
4116
59bfa124
CW
4117 WARN(i915_vma_is_pinned(vma),
4118 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
4119 " offset=%08x, req.alignment=%llx,"
4120 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4121 i915_ggtt_offset(vma), alignment,
59bfa124 4122 !!(flags & PIN_MAPPABLE),
05a20d09 4123 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
4124 ret = i915_vma_unbind(vma);
4125 if (ret)
058d88c4 4126 return ERR_PTR(ret);
59bfa124
CW
4127 }
4128
058d88c4
CW
4129 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4130 if (ret)
4131 return ERR_PTR(ret);
ec7adb6e 4132
058d88c4 4133 return vma;
673a394b
EA
4134}
4135
edf6b76f 4136static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
4137{
4138 /* Note that we could alias engines in the execbuf API, but
4139 * that would be very unwise as it prevents userspace from
4140 * fine control over engine selection. Ahem.
4141 *
4142 * This should be something like EXEC_MAX_ENGINE instead of
4143 * I915_NUM_ENGINES.
4144 */
4145 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4146 return 0x10000 << id;
4147}
4148
4149static __always_inline unsigned int __busy_write_id(unsigned int id)
4150{
70cb472c
CW
4151 /* The uABI guarantees an active writer is also amongst the read
4152 * engines. This would be true if we accessed the activity tracking
4153 * under the lock, but as we perform the lookup of the object and
4154 * its activity locklessly we can not guarantee that the last_write
4155 * being active implies that we have set the same engine flag from
4156 * last_read - hence we always set both read and write busy for
4157 * last_write.
4158 */
4159 return id | __busy_read_flag(id);
3fdc13c7
CW
4160}
4161
edf6b76f 4162static __always_inline unsigned int
d07f0e59 4163__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
4164 unsigned int (*flag)(unsigned int id))
4165{
d07f0e59 4166 struct drm_i915_gem_request *rq;
3fdc13c7 4167
d07f0e59
CW
4168 /* We have to check the current hw status of the fence as the uABI
4169 * guarantees forward progress. We could rely on the idle worker
4170 * to eventually flush us, but to minimise latency just ask the
4171 * hardware.
1255501d 4172 *
d07f0e59 4173 * Note we only report on the status of native fences.
1255501d 4174 */
d07f0e59
CW
4175 if (!dma_fence_is_i915(fence))
4176 return 0;
4177
4178 /* opencode to_request() in order to avoid const warnings */
4179 rq = container_of(fence, struct drm_i915_gem_request, fence);
4180 if (i915_gem_request_completed(rq))
4181 return 0;
4182
1d39f281 4183 return flag(rq->engine->uabi_id);
3fdc13c7
CW
4184}
4185
edf6b76f 4186static __always_inline unsigned int
d07f0e59 4187busy_check_reader(const struct dma_fence *fence)
3fdc13c7 4188{
d07f0e59 4189 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
4190}
4191
edf6b76f 4192static __always_inline unsigned int
d07f0e59 4193busy_check_writer(const struct dma_fence *fence)
3fdc13c7 4194{
d07f0e59
CW
4195 if (!fence)
4196 return 0;
4197
4198 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
4199}
4200
673a394b
EA
4201int
4202i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4203 struct drm_file *file)
673a394b
EA
4204{
4205 struct drm_i915_gem_busy *args = data;
05394f39 4206 struct drm_i915_gem_object *obj;
d07f0e59
CW
4207 struct reservation_object_list *list;
4208 unsigned int seq;
fbbd37b3 4209 int err;
673a394b 4210
d07f0e59 4211 err = -ENOENT;
fbbd37b3
CW
4212 rcu_read_lock();
4213 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 4214 if (!obj)
fbbd37b3 4215 goto out;
d1b851fc 4216
d07f0e59
CW
4217 /* A discrepancy here is that we do not report the status of
4218 * non-i915 fences, i.e. even though we may report the object as idle,
4219 * a call to set-domain may still stall waiting for foreign rendering.
4220 * This also means that wait-ioctl may report an object as busy,
4221 * where busy-ioctl considers it idle.
4222 *
4223 * We trade the ability to warn of foreign fences to report on which
4224 * i915 engines are active for the object.
4225 *
4226 * Alternatively, we can trade that extra information on read/write
4227 * activity with
4228 * args->busy =
4229 * !reservation_object_test_signaled_rcu(obj->resv, true);
4230 * to report the overall busyness. This is what the wait-ioctl does.
4231 *
4232 */
4233retry:
4234 seq = raw_read_seqcount(&obj->resv->seq);
426960be 4235
d07f0e59
CW
4236 /* Translate the exclusive fence to the READ *and* WRITE engine */
4237 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 4238
d07f0e59
CW
4239 /* Translate shared fences to READ set of engines */
4240 list = rcu_dereference(obj->resv->fence);
4241 if (list) {
4242 unsigned int shared_count = list->shared_count, i;
3fdc13c7 4243
d07f0e59
CW
4244 for (i = 0; i < shared_count; ++i) {
4245 struct dma_fence *fence =
4246 rcu_dereference(list->shared[i]);
4247
4248 args->busy |= busy_check_reader(fence);
4249 }
426960be 4250 }
673a394b 4251
d07f0e59
CW
4252 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4253 goto retry;
4254
4255 err = 0;
fbbd37b3
CW
4256out:
4257 rcu_read_unlock();
4258 return err;
673a394b
EA
4259}
4260
4261int
4262i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4263 struct drm_file *file_priv)
4264{
0206e353 4265 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4266}
4267
3ef94daa
CW
4268int
4269i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4270 struct drm_file *file_priv)
4271{
fac5e23e 4272 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4273 struct drm_i915_gem_madvise *args = data;
05394f39 4274 struct drm_i915_gem_object *obj;
1233e2db 4275 int err;
3ef94daa
CW
4276
4277 switch (args->madv) {
4278 case I915_MADV_DONTNEED:
4279 case I915_MADV_WILLNEED:
4280 break;
4281 default:
4282 return -EINVAL;
4283 }
4284
03ac0642 4285 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
4286 if (!obj)
4287 return -ENOENT;
4288
4289 err = mutex_lock_interruptible(&obj->mm.lock);
4290 if (err)
4291 goto out;
3ef94daa 4292
f1fa4f44 4293 if (i915_gem_object_has_pages(obj) &&
3e510a8e 4294 i915_gem_object_is_tiled(obj) &&
656bfa3a 4295 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
4296 if (obj->mm.madv == I915_MADV_WILLNEED) {
4297 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 4298 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
4299 obj->mm.quirked = false;
4300 }
4301 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 4302 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 4303 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
4304 obj->mm.quirked = true;
4305 }
656bfa3a
DV
4306 }
4307
a4f5ea64
CW
4308 if (obj->mm.madv != __I915_MADV_PURGED)
4309 obj->mm.madv = args->madv;
3ef94daa 4310
6c085a72 4311 /* if the object is no longer attached, discard its backing storage */
f1fa4f44
CW
4312 if (obj->mm.madv == I915_MADV_DONTNEED &&
4313 !i915_gem_object_has_pages(obj))
2d7ef395
CW
4314 i915_gem_object_truncate(obj);
4315
a4f5ea64 4316 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 4317 mutex_unlock(&obj->mm.lock);
bb6baf76 4318
1233e2db 4319out:
f8c417cd 4320 i915_gem_object_put(obj);
1233e2db 4321 return err;
3ef94daa
CW
4322}
4323
5b8c8aec
CW
4324static void
4325frontbuffer_retire(struct i915_gem_active *active,
4326 struct drm_i915_gem_request *request)
4327{
4328 struct drm_i915_gem_object *obj =
4329 container_of(active, typeof(*obj), frontbuffer_write);
4330
d59b21ec 4331 intel_fb_obj_flush(obj, ORIGIN_CS);
5b8c8aec
CW
4332}
4333
37e680a1
CW
4334void i915_gem_object_init(struct drm_i915_gem_object *obj,
4335 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4336{
1233e2db
CW
4337 mutex_init(&obj->mm.lock);
4338
2f633156 4339 INIT_LIST_HEAD(&obj->vma_list);
d1b48c1e 4340 INIT_LIST_HEAD(&obj->lut_list);
8d9d5744 4341 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4342
37e680a1
CW
4343 obj->ops = ops;
4344
d07f0e59
CW
4345 reservation_object_init(&obj->__builtin_resv);
4346 obj->resv = &obj->__builtin_resv;
4347
50349247 4348 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 4349 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
4350
4351 obj->mm.madv = I915_MADV_WILLNEED;
4352 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4353 mutex_init(&obj->mm.get_page.lock);
0327d6ba 4354
f19ec8cb 4355 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4356}
4357
37e680a1 4358static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
4359 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4360 I915_GEM_OBJECT_IS_SHRINKABLE,
7c55e2c5 4361
37e680a1
CW
4362 .get_pages = i915_gem_object_get_pages_gtt,
4363 .put_pages = i915_gem_object_put_pages_gtt,
7c55e2c5
CW
4364
4365 .pwrite = i915_gem_object_pwrite_gtt,
37e680a1
CW
4366};
4367
465c403c
MA
4368static int i915_gem_object_create_shmem(struct drm_device *dev,
4369 struct drm_gem_object *obj,
4370 size_t size)
4371{
4372 struct drm_i915_private *i915 = to_i915(dev);
4373 unsigned long flags = VM_NORESERVE;
4374 struct file *filp;
4375
4376 drm_gem_private_object_init(dev, obj, size);
4377
4378 if (i915->mm.gemfs)
4379 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4380 flags);
4381 else
4382 filp = shmem_file_setup("i915", size, flags);
4383
4384 if (IS_ERR(filp))
4385 return PTR_ERR(filp);
4386
4387 obj->filp = filp;
4388
4389 return 0;
4390}
4391
b4bcbe2a 4392struct drm_i915_gem_object *
12d79d78 4393i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
ac52bc56 4394{
c397b908 4395 struct drm_i915_gem_object *obj;
5949eac4 4396 struct address_space *mapping;
b8f55be6 4397 unsigned int cache_level;
1a240d4d 4398 gfp_t mask;
fe3db79b 4399 int ret;
ac52bc56 4400
b4bcbe2a
CW
4401 /* There is a prevalence of the assumption that we fit the object's
4402 * page count inside a 32bit _signed_ variable. Let's document this and
4403 * catch if we ever need to fix it. In the meantime, if you do spot
4404 * such a local variable, please consider fixing!
4405 */
7a3ee5de 4406 if (size >> PAGE_SHIFT > INT_MAX)
b4bcbe2a
CW
4407 return ERR_PTR(-E2BIG);
4408
4409 if (overflows_type(size, obj->base.size))
4410 return ERR_PTR(-E2BIG);
4411
187685cb 4412 obj = i915_gem_object_alloc(dev_priv);
c397b908 4413 if (obj == NULL)
fe3db79b 4414 return ERR_PTR(-ENOMEM);
673a394b 4415
465c403c 4416 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
fe3db79b
CW
4417 if (ret)
4418 goto fail;
673a394b 4419
bed1ea95 4420 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
c0f86832 4421 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
bed1ea95
CW
4422 /* 965gm cannot relocate objects above 4GiB. */
4423 mask &= ~__GFP_HIGHMEM;
4424 mask |= __GFP_DMA32;
4425 }
4426
93c76a3d 4427 mapping = obj->base.filp->f_mapping;
bed1ea95 4428 mapping_set_gfp_mask(mapping, mask);
4846bf0c 4429 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
5949eac4 4430
37e680a1 4431 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4432
c397b908
DV
4433 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4434 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4435
b8f55be6 4436 if (HAS_LLC(dev_priv))
3d29b842 4437 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4438 * cache) for about a 10% performance improvement
4439 * compared to uncached. Graphics requests other than
4440 * display scanout are coherent with the CPU in
4441 * accessing this cache. This means in this mode we
4442 * don't need to clflush on the CPU side, and on the
4443 * GPU side we only need to flush internal caches to
4444 * get data visible to the CPU.
4445 *
4446 * However, we maintain the display planes as UC, and so
4447 * need to rebind when first used as such.
4448 */
b8f55be6
CW
4449 cache_level = I915_CACHE_LLC;
4450 else
4451 cache_level = I915_CACHE_NONE;
a1871112 4452
b8f55be6 4453 i915_gem_object_set_cache_coherency(obj, cache_level);
e27ab73d 4454
d861e338
DV
4455 trace_i915_gem_object_create(obj);
4456
05394f39 4457 return obj;
fe3db79b
CW
4458
4459fail:
4460 i915_gem_object_free(obj);
fe3db79b 4461 return ERR_PTR(ret);
c397b908
DV
4462}
4463
340fbd8c
CW
4464static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4465{
4466 /* If we are the last user of the backing storage (be it shmemfs
4467 * pages or stolen etc), we know that the pages are going to be
4468 * immediately released. In this case, we can then skip copying
4469 * back the contents from the GPU.
4470 */
4471
a4f5ea64 4472 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4473 return false;
4474
4475 if (obj->base.filp == NULL)
4476 return true;
4477
4478 /* At first glance, this looks racy, but then again so would be
4479 * userspace racing mmap against close. However, the first external
4480 * reference to the filp can only be obtained through the
4481 * i915_gem_mmap_ioctl() which safeguards us against the user
4482 * acquiring such a reference whilst we are in the middle of
4483 * freeing the object.
4484 */
4485 return atomic_long_read(&obj->base.filp->f_count) == 1;
4486}
4487
fbbd37b3
CW
4488static void __i915_gem_free_objects(struct drm_i915_private *i915,
4489 struct llist_node *freed)
673a394b 4490{
fbbd37b3 4491 struct drm_i915_gem_object *obj, *on;
673a394b 4492
fbbd37b3 4493 intel_runtime_pm_get(i915);
cc731f5a 4494 llist_for_each_entry_safe(obj, on, freed, freed) {
fbbd37b3
CW
4495 struct i915_vma *vma, *vn;
4496
4497 trace_i915_gem_object_destroy(obj);
4498
cc731f5a
CW
4499 mutex_lock(&i915->drm.struct_mutex);
4500
fbbd37b3
CW
4501 GEM_BUG_ON(i915_gem_object_is_active(obj));
4502 list_for_each_entry_safe(vma, vn,
4503 &obj->vma_list, obj_link) {
fbbd37b3
CW
4504 GEM_BUG_ON(i915_vma_is_active(vma));
4505 vma->flags &= ~I915_VMA_PIN_MASK;
4506 i915_vma_close(vma);
4507 }
db6c2b41
CW
4508 GEM_BUG_ON(!list_empty(&obj->vma_list));
4509 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4510
f2123818
CW
4511 /* This serializes freeing with the shrinker. Since the free
4512 * is delayed, first by RCU then by the workqueue, we want the
4513 * shrinker to be able to free pages of unreferenced objects,
4514 * or else we may oom whilst there are plenty of deferred
4515 * freed objects.
4516 */
4517 if (i915_gem_object_has_pages(obj)) {
4518 spin_lock(&i915->mm.obj_lock);
4519 list_del_init(&obj->mm.link);
4520 spin_unlock(&i915->mm.obj_lock);
4521 }
4522
cc731f5a 4523 mutex_unlock(&i915->drm.struct_mutex);
fbbd37b3 4524
fbbd37b3 4525 GEM_BUG_ON(obj->bind_count);
a65adaf8 4526 GEM_BUG_ON(obj->userfault_count);
fbbd37b3 4527 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
67b48040 4528 GEM_BUG_ON(!list_empty(&obj->lut_list));
fbbd37b3
CW
4529
4530 if (obj->ops->release)
4531 obj->ops->release(obj);
f65c9168 4532
fbbd37b3
CW
4533 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4534 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4535 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
f1fa4f44 4536 GEM_BUG_ON(i915_gem_object_has_pages(obj));
fbbd37b3
CW
4537
4538 if (obj->base.import_attach)
4539 drm_prime_gem_destroy(&obj->base, NULL);
4540
d07f0e59 4541 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4542 drm_gem_object_release(&obj->base);
4543 i915_gem_info_remove_obj(i915, obj->base.size);
4544
4545 kfree(obj->bit_17);
4546 i915_gem_object_free(obj);
cc731f5a
CW
4547
4548 if (on)
4549 cond_resched();
fbbd37b3 4550 }
cc731f5a 4551 intel_runtime_pm_put(i915);
fbbd37b3
CW
4552}
4553
4554static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4555{
4556 struct llist_node *freed;
4557
87701b4b
CW
4558 /* Free the oldest, most stale object to keep the free_list short */
4559 freed = NULL;
4560 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4561 /* Only one consumer of llist_del_first() allowed */
4562 spin_lock(&i915->mm.free_lock);
4563 freed = llist_del_first(&i915->mm.free_list);
4564 spin_unlock(&i915->mm.free_lock);
4565 }
4566 if (unlikely(freed)) {
4567 freed->next = NULL;
fbbd37b3 4568 __i915_gem_free_objects(i915, freed);
87701b4b 4569 }
fbbd37b3
CW
4570}
4571
4572static void __i915_gem_free_work(struct work_struct *work)
4573{
4574 struct drm_i915_private *i915 =
4575 container_of(work, struct drm_i915_private, mm.free_work);
4576 struct llist_node *freed;
26e12f89 4577
b1f788c6
CW
4578 /* All file-owned VMA should have been released by this point through
4579 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4580 * However, the object may also be bound into the global GTT (e.g.
4581 * older GPUs without per-process support, or for direct access through
4582 * the GTT either for the user or for scanout). Those VMA still need to
4583 * unbound now.
4584 */
1488fc08 4585
5ad08be7 4586 while ((freed = llist_del_all(&i915->mm.free_list))) {
fbbd37b3 4587 __i915_gem_free_objects(i915, freed);
5ad08be7
CW
4588 if (need_resched())
4589 break;
4590 }
fbbd37b3 4591}
a071fa00 4592
fbbd37b3
CW
4593static void __i915_gem_free_object_rcu(struct rcu_head *head)
4594{
4595 struct drm_i915_gem_object *obj =
4596 container_of(head, typeof(*obj), rcu);
4597 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4598
4599 /* We can't simply use call_rcu() from i915_gem_free_object()
4600 * as we need to block whilst unbinding, and the call_rcu
4601 * task may be called from softirq context. So we take a
4602 * detour through a worker.
4603 */
4604 if (llist_add(&obj->freed, &i915->mm.free_list))
4605 schedule_work(&i915->mm.free_work);
4606}
656bfa3a 4607
fbbd37b3
CW
4608void i915_gem_free_object(struct drm_gem_object *gem_obj)
4609{
4610 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4611
bc0629a7
CW
4612 if (obj->mm.quirked)
4613 __i915_gem_object_unpin_pages(obj);
4614
340fbd8c 4615 if (discard_backing_storage(obj))
a4f5ea64 4616 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4617
fbbd37b3
CW
4618 /* Before we free the object, make sure any pure RCU-only
4619 * read-side critical sections are complete, e.g.
4620 * i915_gem_busy_ioctl(). For the corresponding synchronized
4621 * lookup see i915_gem_object_lookup_rcu().
4622 */
4623 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4624}
4625
f8a7fde4
CW
4626void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4627{
4628 lockdep_assert_held(&obj->base.dev->struct_mutex);
4629
d1b48c1e
CW
4630 if (!i915_gem_object_has_active_reference(obj) &&
4631 i915_gem_object_is_active(obj))
f8a7fde4
CW
4632 i915_gem_object_set_active_reference(obj);
4633 else
4634 i915_gem_object_put(obj);
4635}
4636
3033acab
CW
4637static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4638{
4639 struct intel_engine_cs *engine;
4640 enum intel_engine_id id;
4641
4642 for_each_engine(engine, dev_priv, id)
f131e356
CW
4643 GEM_BUG_ON(engine->last_retired_context &&
4644 !i915_gem_context_is_kernel(engine->last_retired_context));
3033acab
CW
4645}
4646
24145517
CW
4647void i915_gem_sanitize(struct drm_i915_private *i915)
4648{
f36325f3
CW
4649 if (i915_terminally_wedged(&i915->gpu_error)) {
4650 mutex_lock(&i915->drm.struct_mutex);
4651 i915_gem_unset_wedged(i915);
4652 mutex_unlock(&i915->drm.struct_mutex);
4653 }
4654
24145517
CW
4655 /*
4656 * If we inherit context state from the BIOS or earlier occupants
4657 * of the GPU, the GPU may be in an inconsistent state when we
4658 * try to take over. The only way to remove the earlier state
4659 * is by resetting. However, resetting on earlier gen is tricky as
4660 * it may impact the display and we are uncertain about the stability
ea117b8d 4661 * of the reset, so this could be applied to even earlier gen.
24145517 4662 */
ea117b8d 4663 if (INTEL_GEN(i915) >= 5) {
24145517
CW
4664 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4665 WARN_ON(reset && reset != -ENODEV);
4666 }
4667}
4668
bf9e8429 4669int i915_gem_suspend(struct drm_i915_private *dev_priv)
29105ccc 4670{
bf9e8429 4671 struct drm_device *dev = &dev_priv->drm;
dcff85c8 4672 int ret;
28dfe52a 4673
c998e8a0 4674 intel_runtime_pm_get(dev_priv);
54b4f68f
CW
4675 intel_suspend_gt_powersave(dev_priv);
4676
45c5f202 4677 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4678
4679 /* We have to flush all the executing contexts to main memory so
4680 * that they can saved in the hibernation image. To ensure the last
4681 * context image is coherent, we have to switch away from it. That
4682 * leaves the dev_priv->kernel_context still active when
4683 * we actually suspend, and its image in memory may not match the GPU
4684 * state. Fortunately, the kernel_context is disposable and we do
4685 * not rely on its state.
4686 */
4687 ret = i915_gem_switch_to_kernel_context(dev_priv);
4688 if (ret)
c998e8a0 4689 goto err_unlock;
5ab57c70 4690
22dd3bb9
CW
4691 ret = i915_gem_wait_for_idle(dev_priv,
4692 I915_WAIT_INTERRUPTIBLE |
4693 I915_WAIT_LOCKED);
cad9946c 4694 if (ret && ret != -EIO)
c998e8a0 4695 goto err_unlock;
f7403347 4696
3033acab 4697 assert_kernel_context_is_current(dev_priv);
829a0af2 4698 i915_gem_contexts_lost(dev_priv);
45c5f202
CW
4699 mutex_unlock(&dev->struct_mutex);
4700
63987bfe
SAK
4701 intel_guc_suspend(dev_priv);
4702
737b1506 4703 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3 4704 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
bdeb9785
CW
4705
4706 /* As the idle_work is rearming if it detects a race, play safe and
4707 * repeat the flush until it is definitely idle.
4708 */
7c26240e 4709 drain_delayed_work(&dev_priv->gt.idle_work);
bdeb9785 4710
bdcf120b
CW
4711 /* Assert that we sucessfully flushed all the work and
4712 * reset the GPU back to its idle, low power state.
4713 */
67d97da3 4714 WARN_ON(dev_priv->gt.awake);
fc692bd3
CW
4715 if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4716 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
bdcf120b 4717
1c777c5d
ID
4718 /*
4719 * Neither the BIOS, ourselves or any other kernel
4720 * expects the system to be in execlists mode on startup,
4721 * so we need to reset the GPU back to legacy mode. And the only
4722 * known way to disable logical contexts is through a GPU reset.
4723 *
4724 * So in order to leave the system in a known default configuration,
4725 * always reset the GPU upon unload and suspend. Afterwards we then
4726 * clean up the GEM state tracking, flushing off the requests and
4727 * leaving the system in a known idle state.
4728 *
4729 * Note that is of the upmost importance that the GPU is idle and
4730 * all stray writes are flushed *before* we dismantle the backing
4731 * storage for the pinned objects.
4732 *
4733 * However, since we are uncertain that resetting the GPU on older
4734 * machines is a good idea, we don't - just in case it leaves the
4735 * machine in an unusable condition.
4736 */
24145517 4737 i915_gem_sanitize(dev_priv);
cad9946c
CW
4738
4739 intel_runtime_pm_put(dev_priv);
4740 return 0;
1c777c5d 4741
c998e8a0 4742err_unlock:
45c5f202 4743 mutex_unlock(&dev->struct_mutex);
c998e8a0 4744 intel_runtime_pm_put(dev_priv);
45c5f202 4745 return ret;
673a394b
EA
4746}
4747
bf9e8429 4748void i915_gem_resume(struct drm_i915_private *dev_priv)
5ab57c70 4749{
bf9e8429 4750 struct drm_device *dev = &dev_priv->drm;
5ab57c70 4751
31ab49ab
ID
4752 WARN_ON(dev_priv->gt.awake);
4753
5ab57c70 4754 mutex_lock(&dev->struct_mutex);
275a991c 4755 i915_gem_restore_gtt_mappings(dev_priv);
269e6ea9 4756 i915_gem_restore_fences(dev_priv);
5ab57c70
CW
4757
4758 /* As we didn't flush the kernel context before suspend, we cannot
4759 * guarantee that the context image is complete. So let's just reset
4760 * it and start again.
4761 */
821ed7df 4762 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4763
4764 mutex_unlock(&dev->struct_mutex);
4765}
4766
c6be607a 4767void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 4768{
c6be607a 4769 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
4770 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4771 return;
4772
4773 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4774 DISP_TILE_SURFACE_SWIZZLING);
4775
5db94019 4776 if (IS_GEN5(dev_priv))
11782b02
DV
4777 return;
4778
f691e2f4 4779 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4780 if (IS_GEN6(dev_priv))
6b26c86d 4781 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4782 else if (IS_GEN7(dev_priv))
6b26c86d 4783 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4784 else if (IS_GEN8(dev_priv))
31a5336e 4785 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4786 else
4787 BUG();
f691e2f4 4788}
e21af88d 4789
50a0bc90 4790static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4791{
81e7f200
VS
4792 I915_WRITE(RING_CTL(base), 0);
4793 I915_WRITE(RING_HEAD(base), 0);
4794 I915_WRITE(RING_TAIL(base), 0);
4795 I915_WRITE(RING_START(base), 0);
4796}
4797
50a0bc90 4798static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4799{
50a0bc90
TU
4800 if (IS_I830(dev_priv)) {
4801 init_unused_ring(dev_priv, PRB1_BASE);
4802 init_unused_ring(dev_priv, SRB0_BASE);
4803 init_unused_ring(dev_priv, SRB1_BASE);
4804 init_unused_ring(dev_priv, SRB2_BASE);
4805 init_unused_ring(dev_priv, SRB3_BASE);
4806 } else if (IS_GEN2(dev_priv)) {
4807 init_unused_ring(dev_priv, SRB0_BASE);
4808 init_unused_ring(dev_priv, SRB1_BASE);
4809 } else if (IS_GEN3(dev_priv)) {
4810 init_unused_ring(dev_priv, PRB1_BASE);
4811 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4812 }
4813}
4814
20a8a74a 4815static int __i915_gem_restart_engines(void *data)
4fc7c971 4816{
20a8a74a 4817 struct drm_i915_private *i915 = data;
e2f80391 4818 struct intel_engine_cs *engine;
3b3f1650 4819 enum intel_engine_id id;
20a8a74a
CW
4820 int err;
4821
4822 for_each_engine(engine, i915, id) {
4823 err = engine->init_hw(engine);
4824 if (err)
4825 return err;
4826 }
4827
4828 return 0;
4829}
4830
4831int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4832{
d200cda6 4833 int ret;
4fc7c971 4834
de867c20
CW
4835 dev_priv->gt.last_init_time = ktime_get();
4836
5e4f5189
CW
4837 /* Double layer security blanket, see i915_gem_init() */
4838 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4839
0031fb96 4840 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4841 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4842
772c2a51 4843 if (IS_HASWELL(dev_priv))
50a0bc90 4844 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4845 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4846
6e266956 4847 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4848 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4849 u32 temp = I915_READ(GEN7_MSG_CTL);
4850 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4851 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 4852 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
4853 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4854 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4855 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4856 }
88a2b2a3
BW
4857 }
4858
c6be607a 4859 i915_gem_init_swizzling(dev_priv);
4fc7c971 4860
d5abdfda
DV
4861 /*
4862 * At least 830 can leave some of the unused rings
4863 * "active" (ie. head != tail) after resume which
4864 * will prevent c3 entry. Makes sure all unused rings
4865 * are totally idle.
4866 */
50a0bc90 4867 init_unused_rings(dev_priv);
d5abdfda 4868
ed54c1a1 4869 BUG_ON(!dev_priv->kernel_context);
6f74b36b
CW
4870 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
4871 ret = -EIO;
4872 goto out;
4873 }
90638cc1 4874
c6be607a 4875 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88
JH
4876 if (ret) {
4877 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4878 goto out;
4879 }
4880
4881 /* Need to do basic initialisation of all rings first: */
20a8a74a
CW
4882 ret = __i915_gem_restart_engines(dev_priv);
4883 if (ret)
4884 goto out;
99433931 4885
bf9e8429 4886 intel_mocs_init_l3cc_table(dev_priv);
0ccdacf6 4887
b8991403
OM
4888 /* We can't enable contexts until all firmware is loaded */
4889 ret = intel_uc_init_hw(dev_priv);
4890 if (ret)
4891 goto out;
33a732f4 4892
5e4f5189
CW
4893out:
4894 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4895 return ret;
8187a2b7
ZN
4896}
4897
39df9190
CW
4898bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4899{
4900 if (INTEL_INFO(dev_priv)->gen < 6)
4901 return false;
4902
4903 /* TODO: make semaphores and Execlists play nicely together */
4f044a88 4904 if (i915_modparams.enable_execlists)
39df9190
CW
4905 return false;
4906
4907 if (value >= 0)
4908 return value;
4909
39df9190 4910 /* Enable semaphores on SNB when IO remapping is off */
80debff8 4911 if (IS_GEN6(dev_priv) && intel_vtd_active())
39df9190 4912 return false;
39df9190
CW
4913
4914 return true;
4915}
4916
bf9e8429 4917int i915_gem_init(struct drm_i915_private *dev_priv)
1070a42b 4918{
1070a42b
CW
4919 int ret;
4920
bf9e8429 4921 mutex_lock(&dev_priv->drm.struct_mutex);
d62b4892 4922
da9fe3f3
MA
4923 /*
4924 * We need to fallback to 4K pages since gvt gtt handling doesn't
4925 * support huge page entries - we will need to check either hypervisor
4926 * mm can support huge guest page or just do emulation in gvt.
4927 */
4928 if (intel_vgpu_active(dev_priv))
4929 mkwrite_device_info(dev_priv)->page_sizes =
4930 I915_GTT_PAGE_SIZE_4K;
4931
94312828 4932 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
57822dc6 4933
4f044a88 4934 if (!i915_modparams.enable_execlists) {
821ed7df 4935 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4936 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4937 } else {
821ed7df 4938 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4939 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4940 }
4941
5e4f5189
CW
4942 /* This is just a security blanket to placate dragons.
4943 * On some systems, we very sporadically observe that the first TLBs
4944 * used by the CS may be stale, despite us poking the TLB reset. If
4945 * we hold the forcewake during initialisation these problems
4946 * just magically go away.
4947 */
4948 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4949
8a2421bd
CW
4950 ret = i915_gem_init_userptr(dev_priv);
4951 if (ret)
4952 goto out_unlock;
f6b9d5ca
CW
4953
4954 ret = i915_gem_init_ggtt(dev_priv);
4955 if (ret)
4956 goto out_unlock;
d62b4892 4957
829a0af2 4958 ret = i915_gem_contexts_init(dev_priv);
7bcc3777
JN
4959 if (ret)
4960 goto out_unlock;
2fa48d8d 4961
bf9e8429 4962 ret = intel_engines_init(dev_priv);
35a57ffb 4963 if (ret)
7bcc3777 4964 goto out_unlock;
2fa48d8d 4965
bf9e8429 4966 ret = i915_gem_init_hw(dev_priv);
60990320 4967 if (ret == -EIO) {
7e21d648 4968 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4969 * wedged. But we only want to do this where the GPU is angry,
4970 * for all other failure, such as an allocation failure, bail.
4971 */
6f74b36b
CW
4972 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4973 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4974 i915_gem_set_wedged(dev_priv);
4975 }
60990320 4976 ret = 0;
1070a42b 4977 }
7bcc3777
JN
4978
4979out_unlock:
5e4f5189 4980 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
bf9e8429 4981 mutex_unlock(&dev_priv->drm.struct_mutex);
1070a42b 4982
60990320 4983 return ret;
1070a42b
CW
4984}
4985
24145517
CW
4986void i915_gem_init_mmio(struct drm_i915_private *i915)
4987{
4988 i915_gem_sanitize(i915);
4989}
4990
8187a2b7 4991void
cb15d9f8 4992i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
8187a2b7 4993{
e2f80391 4994 struct intel_engine_cs *engine;
3b3f1650 4995 enum intel_engine_id id;
8187a2b7 4996
3b3f1650 4997 for_each_engine(engine, dev_priv, id)
117897f4 4998 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4999}
5000
40ae4e16
ID
5001void
5002i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5003{
49ef5294 5004 int i;
40ae4e16
ID
5005
5006 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5007 !IS_CHERRYVIEW(dev_priv))
5008 dev_priv->num_fence_regs = 32;
73f67aa8
JN
5009 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
5010 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5011 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
40ae4e16
ID
5012 dev_priv->num_fence_regs = 16;
5013 else
5014 dev_priv->num_fence_regs = 8;
5015
c033666a 5016 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
5017 dev_priv->num_fence_regs =
5018 I915_READ(vgtif_reg(avail_rs.fence_num));
5019
5020 /* Initialize fence registers to zero */
49ef5294
CW
5021 for (i = 0; i < dev_priv->num_fence_regs; i++) {
5022 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5023
5024 fence->i915 = dev_priv;
5025 fence->id = i;
5026 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5027 }
4362f4f6 5028 i915_gem_restore_fences(dev_priv);
40ae4e16 5029
4362f4f6 5030 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
5031}
5032
73cb9701 5033int
cb15d9f8 5034i915_gem_load_init(struct drm_i915_private *dev_priv)
673a394b 5035{
a933568e 5036 int err = -ENOMEM;
42dcedd4 5037
a933568e
TU
5038 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5039 if (!dev_priv->objects)
73cb9701 5040 goto err_out;
73cb9701 5041
a933568e
TU
5042 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5043 if (!dev_priv->vmas)
73cb9701 5044 goto err_objects;
73cb9701 5045
d1b48c1e
CW
5046 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5047 if (!dev_priv->luts)
5048 goto err_vmas;
5049
a933568e
TU
5050 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
5051 SLAB_HWCACHE_ALIGN |
5052 SLAB_RECLAIM_ACCOUNT |
5f0d5a3a 5053 SLAB_TYPESAFE_BY_RCU);
a933568e 5054 if (!dev_priv->requests)
d1b48c1e 5055 goto err_luts;
73cb9701 5056
52e54209
CW
5057 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5058 SLAB_HWCACHE_ALIGN |
5059 SLAB_RECLAIM_ACCOUNT);
5060 if (!dev_priv->dependencies)
5061 goto err_requests;
5062
c5cf9a91
CW
5063 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5064 if (!dev_priv->priorities)
5065 goto err_dependencies;
5066
73cb9701
CW
5067 mutex_lock(&dev_priv->drm.struct_mutex);
5068 INIT_LIST_HEAD(&dev_priv->gt.timelines);
bb89485e 5069 err = i915_gem_timeline_init__global(dev_priv);
73cb9701
CW
5070 mutex_unlock(&dev_priv->drm.struct_mutex);
5071 if (err)
c5cf9a91 5072 goto err_priorities;
673a394b 5073
fbbd37b3 5074 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
f2123818
CW
5075
5076 spin_lock_init(&dev_priv->mm.obj_lock);
87701b4b 5077 spin_lock_init(&dev_priv->mm.free_lock);
fbbd37b3 5078 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
5079 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5080 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5081 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 5082 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
f2123818 5083
67d97da3 5084 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 5085 i915_gem_retire_work_handler);
67d97da3 5086 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 5087 i915_gem_idle_work_handler);
1f15b76f 5088 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 5089 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5090
6f633402
JL
5091 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5092
b5add959 5093 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701 5094
465c403c
MA
5095 err = i915_gemfs_init(dev_priv);
5096 if (err)
5097 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5098
73cb9701
CW
5099 return 0;
5100
c5cf9a91
CW
5101err_priorities:
5102 kmem_cache_destroy(dev_priv->priorities);
52e54209
CW
5103err_dependencies:
5104 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
5105err_requests:
5106 kmem_cache_destroy(dev_priv->requests);
d1b48c1e
CW
5107err_luts:
5108 kmem_cache_destroy(dev_priv->luts);
73cb9701
CW
5109err_vmas:
5110 kmem_cache_destroy(dev_priv->vmas);
5111err_objects:
5112 kmem_cache_destroy(dev_priv->objects);
5113err_out:
5114 return err;
673a394b 5115}
71acb5eb 5116
cb15d9f8 5117void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
d64aa096 5118{
c4d4c1c6 5119 i915_gem_drain_freed_objects(dev_priv);
7d5d59e5 5120 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
c4d4c1c6 5121 WARN_ON(dev_priv->mm.object_count);
7d5d59e5 5122
ea84aa77
MA
5123 mutex_lock(&dev_priv->drm.struct_mutex);
5124 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5125 WARN_ON(!list_empty(&dev_priv->gt.timelines));
5126 mutex_unlock(&dev_priv->drm.struct_mutex);
5127
c5cf9a91 5128 kmem_cache_destroy(dev_priv->priorities);
52e54209 5129 kmem_cache_destroy(dev_priv->dependencies);
d64aa096 5130 kmem_cache_destroy(dev_priv->requests);
d1b48c1e 5131 kmem_cache_destroy(dev_priv->luts);
d64aa096
ID
5132 kmem_cache_destroy(dev_priv->vmas);
5133 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
5134
5135 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5136 rcu_barrier();
465c403c
MA
5137
5138 i915_gemfs_fini(dev_priv);
d64aa096
ID
5139}
5140
6a800eab
CW
5141int i915_gem_freeze(struct drm_i915_private *dev_priv)
5142{
d0aa301a
CW
5143 /* Discard all purgeable objects, let userspace recover those as
5144 * required after resuming.
5145 */
6a800eab 5146 i915_gem_shrink_all(dev_priv);
6a800eab 5147
6a800eab
CW
5148 return 0;
5149}
5150
461fb99c
CW
5151int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5152{
5153 struct drm_i915_gem_object *obj;
7aab2d53
CW
5154 struct list_head *phases[] = {
5155 &dev_priv->mm.unbound_list,
5156 &dev_priv->mm.bound_list,
5157 NULL
5158 }, **p;
461fb99c
CW
5159
5160 /* Called just before we write the hibernation image.
5161 *
5162 * We need to update the domain tracking to reflect that the CPU
5163 * will be accessing all the pages to create and restore from the
5164 * hibernation, and so upon restoration those pages will be in the
5165 * CPU domain.
5166 *
5167 * To make sure the hibernation image contains the latest state,
5168 * we update that state just before writing out the image.
7aab2d53
CW
5169 *
5170 * To try and reduce the hibernation image, we manually shrink
d0aa301a 5171 * the objects as well, see i915_gem_freeze()
461fb99c
CW
5172 */
5173
912d572d 5174 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
17b93c40 5175 i915_gem_drain_freed_objects(dev_priv);
461fb99c 5176
f2123818 5177 spin_lock(&dev_priv->mm.obj_lock);
7aab2d53 5178 for (p = phases; *p; p++) {
f2123818 5179 list_for_each_entry(obj, *p, mm.link)
e27ab73d 5180 __start_cpu_write(obj);
461fb99c 5181 }
f2123818 5182 spin_unlock(&dev_priv->mm.obj_lock);
461fb99c
CW
5183
5184 return 0;
5185}
5186
f787a5f5 5187void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5188{
f787a5f5 5189 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 5190 struct drm_i915_gem_request *request;
b962442e
EA
5191
5192 /* Clean up our request list when the client is going away, so that
5193 * later retire_requests won't dereference our soon-to-be-gone
5194 * file_priv.
5195 */
1c25595f 5196 spin_lock(&file_priv->mm.lock);
c8659efa 5197 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
f787a5f5 5198 request->file_priv = NULL;
1c25595f 5199 spin_unlock(&file_priv->mm.lock);
b29c19b6
CW
5200}
5201
829a0af2 5202int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
b29c19b6
CW
5203{
5204 struct drm_i915_file_private *file_priv;
e422b888 5205 int ret;
b29c19b6 5206
c4c29d7b 5207 DRM_DEBUG("\n");
b29c19b6
CW
5208
5209 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5210 if (!file_priv)
5211 return -ENOMEM;
5212
5213 file->driver_priv = file_priv;
829a0af2 5214 file_priv->dev_priv = i915;
ab0e7ff9 5215 file_priv->file = file;
b29c19b6
CW
5216
5217 spin_lock_init(&file_priv->mm.lock);
5218 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5219
c80ff16e 5220 file_priv->bsd_engine = -1;
de1add36 5221
829a0af2 5222 ret = i915_gem_context_open(i915, file);
e422b888
BW
5223 if (ret)
5224 kfree(file_priv);
b29c19b6 5225
e422b888 5226 return ret;
b29c19b6
CW
5227}
5228
b680c37a
DV
5229/**
5230 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5231 * @old: current GEM buffer for the frontbuffer slots
5232 * @new: new GEM buffer for the frontbuffer slots
5233 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5234 *
5235 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5236 * from @old and setting them in @new. Both @old and @new can be NULL.
5237 */
a071fa00
DV
5238void i915_gem_track_fb(struct drm_i915_gem_object *old,
5239 struct drm_i915_gem_object *new,
5240 unsigned frontbuffer_bits)
5241{
faf5bf0a
CW
5242 /* Control of individual bits within the mask are guarded by
5243 * the owning plane->mutex, i.e. we can never see concurrent
5244 * manipulation of individual bits. But since the bitfield as a whole
5245 * is updated using RMW, we need to use atomics in order to update
5246 * the bits.
5247 */
5248 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5249 sizeof(atomic_t) * BITS_PER_BYTE);
5250
a071fa00 5251 if (old) {
faf5bf0a
CW
5252 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5253 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
5254 }
5255
5256 if (new) {
faf5bf0a
CW
5257 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5258 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
5259 }
5260}
5261
ea70299d
DG
5262/* Allocate a new GEM object and fill it with the supplied data */
5263struct drm_i915_gem_object *
12d79d78 5264i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
ea70299d
DG
5265 const void *data, size_t size)
5266{
5267 struct drm_i915_gem_object *obj;
be062fa4
CW
5268 struct file *file;
5269 size_t offset;
5270 int err;
ea70299d 5271
12d79d78 5272 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
fe3db79b 5273 if (IS_ERR(obj))
ea70299d
DG
5274 return obj;
5275
ce8ff099 5276 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
ea70299d 5277
be062fa4
CW
5278 file = obj->base.filp;
5279 offset = 0;
5280 do {
5281 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5282 struct page *page;
5283 void *pgdata, *vaddr;
ea70299d 5284
be062fa4
CW
5285 err = pagecache_write_begin(file, file->f_mapping,
5286 offset, len, 0,
5287 &page, &pgdata);
5288 if (err < 0)
5289 goto fail;
ea70299d 5290
be062fa4
CW
5291 vaddr = kmap(page);
5292 memcpy(vaddr, data, len);
5293 kunmap(page);
5294
5295 err = pagecache_write_end(file, file->f_mapping,
5296 offset, len, len,
5297 page, pgdata);
5298 if (err < 0)
5299 goto fail;
5300
5301 size -= len;
5302 data += len;
5303 offset += len;
5304 } while (size);
ea70299d
DG
5305
5306 return obj;
5307
5308fail:
f8c417cd 5309 i915_gem_object_put(obj);
be062fa4 5310 return ERR_PTR(err);
ea70299d 5311}
96d77634
CW
5312
5313struct scatterlist *
5314i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5315 unsigned int n,
5316 unsigned int *offset)
5317{
a4f5ea64 5318 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
5319 struct scatterlist *sg;
5320 unsigned int idx, count;
5321
5322 might_sleep();
5323 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 5324 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
5325
5326 /* As we iterate forward through the sg, we record each entry in a
5327 * radixtree for quick repeated (backwards) lookups. If we have seen
5328 * this index previously, we will have an entry for it.
5329 *
5330 * Initial lookup is O(N), but this is amortized to O(1) for
5331 * sequential page access (where each new request is consecutive
5332 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5333 * i.e. O(1) with a large constant!
5334 */
5335 if (n < READ_ONCE(iter->sg_idx))
5336 goto lookup;
5337
5338 mutex_lock(&iter->lock);
5339
5340 /* We prefer to reuse the last sg so that repeated lookup of this
5341 * (or the subsequent) sg are fast - comparing against the last
5342 * sg is faster than going through the radixtree.
5343 */
5344
5345 sg = iter->sg_pos;
5346 idx = iter->sg_idx;
5347 count = __sg_page_count(sg);
5348
5349 while (idx + count <= n) {
5350 unsigned long exception, i;
5351 int ret;
5352
5353 /* If we cannot allocate and insert this entry, or the
5354 * individual pages from this range, cancel updating the
5355 * sg_idx so that on this lookup we are forced to linearly
5356 * scan onwards, but on future lookups we will try the
5357 * insertion again (in which case we need to be careful of
5358 * the error return reporting that we have already inserted
5359 * this index).
5360 */
5361 ret = radix_tree_insert(&iter->radix, idx, sg);
5362 if (ret && ret != -EEXIST)
5363 goto scan;
5364
5365 exception =
5366 RADIX_TREE_EXCEPTIONAL_ENTRY |
5367 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5368 for (i = 1; i < count; i++) {
5369 ret = radix_tree_insert(&iter->radix, idx + i,
5370 (void *)exception);
5371 if (ret && ret != -EEXIST)
5372 goto scan;
5373 }
5374
5375 idx += count;
5376 sg = ____sg_next(sg);
5377 count = __sg_page_count(sg);
5378 }
5379
5380scan:
5381 iter->sg_pos = sg;
5382 iter->sg_idx = idx;
5383
5384 mutex_unlock(&iter->lock);
5385
5386 if (unlikely(n < idx)) /* insertion completed by another thread */
5387 goto lookup;
5388
5389 /* In case we failed to insert the entry into the radixtree, we need
5390 * to look beyond the current sg.
5391 */
5392 while (idx + count <= n) {
5393 idx += count;
5394 sg = ____sg_next(sg);
5395 count = __sg_page_count(sg);
5396 }
5397
5398 *offset = n - idx;
5399 return sg;
5400
5401lookup:
5402 rcu_read_lock();
5403
5404 sg = radix_tree_lookup(&iter->radix, n);
5405 GEM_BUG_ON(!sg);
5406
5407 /* If this index is in the middle of multi-page sg entry,
5408 * the radixtree will contain an exceptional entry that points
5409 * to the start of that range. We will return the pointer to
5410 * the base page and the offset of this page within the
5411 * sg entry's range.
5412 */
5413 *offset = 0;
5414 if (unlikely(radix_tree_exception(sg))) {
5415 unsigned long base =
5416 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5417
5418 sg = radix_tree_lookup(&iter->radix, base);
5419 GEM_BUG_ON(!sg);
5420
5421 *offset = n - base;
5422 }
5423
5424 rcu_read_unlock();
5425
5426 return sg;
5427}
5428
5429struct page *
5430i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5431{
5432 struct scatterlist *sg;
5433 unsigned int offset;
5434
5435 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5436
5437 sg = i915_gem_object_get_sg(obj, n, &offset);
5438 return nth_page(sg_page(sg), offset);
5439}
5440
5441/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5442struct page *
5443i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5444 unsigned int n)
5445{
5446 struct page *page;
5447
5448 page = i915_gem_object_get_page(obj, n);
a4f5ea64 5449 if (!obj->mm.dirty)
96d77634
CW
5450 set_page_dirty(page);
5451
5452 return page;
5453}
5454
5455dma_addr_t
5456i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5457 unsigned long n)
5458{
5459 struct scatterlist *sg;
5460 unsigned int offset;
5461
5462 sg = i915_gem_object_get_sg(obj, n, &offset);
5463 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5464}
935a2f77 5465
8eeb7906
CW
5466int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5467{
5468 struct sg_table *pages;
5469 int err;
5470
5471 if (align > obj->base.size)
5472 return -EINVAL;
5473
5474 if (obj->ops == &i915_gem_phys_ops)
5475 return 0;
5476
5477 if (obj->ops != &i915_gem_object_ops)
5478 return -EINVAL;
5479
5480 err = i915_gem_object_unbind(obj);
5481 if (err)
5482 return err;
5483
5484 mutex_lock(&obj->mm.lock);
5485
5486 if (obj->mm.madv != I915_MADV_WILLNEED) {
5487 err = -EFAULT;
5488 goto err_unlock;
5489 }
5490
5491 if (obj->mm.quirked) {
5492 err = -EFAULT;
5493 goto err_unlock;
5494 }
5495
5496 if (obj->mm.mapping) {
5497 err = -EBUSY;
5498 goto err_unlock;
5499 }
5500
f2123818
CW
5501 pages = fetch_and_zero(&obj->mm.pages);
5502 if (pages) {
5503 struct drm_i915_private *i915 = to_i915(obj->base.dev);
5504
5505 __i915_gem_object_reset_page_iter(obj);
5506
5507 spin_lock(&i915->mm.obj_lock);
5508 list_del(&obj->mm.link);
5509 spin_unlock(&i915->mm.obj_lock);
5510 }
5511
8eeb7906
CW
5512 obj->ops = &i915_gem_phys_ops;
5513
8fb6a5df 5514 err = ____i915_gem_object_get_pages(obj);
8eeb7906
CW
5515 if (err)
5516 goto err_xfer;
5517
5518 /* Perma-pin (until release) the physical set of pages */
5519 __i915_gem_object_pin_pages(obj);
5520
5521 if (!IS_ERR_OR_NULL(pages))
5522 i915_gem_object_ops.put_pages(obj, pages);
5523 mutex_unlock(&obj->mm.lock);
5524 return 0;
5525
5526err_xfer:
5527 obj->ops = &i915_gem_object_ops;
5528 obj->mm.pages = pages;
5529err_unlock:
5530 mutex_unlock(&obj->mm.lock);
5531 return err;
5532}
5533
935a2f77
CW
5534#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5535#include "selftests/scatterlist.c"
66d9cb5d 5536#include "selftests/mock_gem_device.c"
44653988 5537#include "selftests/huge_gem_object.c"
4049866f 5538#include "selftests/huge_pages.c"
8335fd65 5539#include "selftests/i915_gem_object.c"
17059450 5540#include "selftests/i915_gem_coherency.c"
935a2f77 5541#endif