]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: kill mappable/fenceable disdinction
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0f8c6d7c
CW
39struct change_domains {
40 uint32_t invalidate_domains;
41 uint32_t flush_domains;
42 uint32_t flush_rings;
43};
44
a00b10c3
CW
45static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
46static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
ba3d8d74
DV
47
48static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
49 bool pipelined);
e47c68e9
EA
50static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
51static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
52static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
53 int write);
54static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
55 uint64_t offset,
56 uint64_t size);
57static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
58static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
59 bool interruptible);
de151cf6 60static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
a00b10c3 61 unsigned alignment,
75e9e915 62 bool map_and_fenceable);
de151cf6 63static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
64static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
65 struct drm_i915_gem_pwrite *args,
66 struct drm_file *file_priv);
be72615b 67static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 68
17250b71
CW
69static int i915_gem_inactive_shrink(struct shrinker *shrinker,
70 int nr_to_scan,
71 gfp_t gfp_mask);
72
31169714 73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
89static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
a00b10c3 90 struct drm_i915_gem_object *obj)
73aa808f
CW
91{
92 dev_priv->mm.gtt_count++;
a00b10c3
CW
93 dev_priv->mm.gtt_memory += obj->gtt_space->size;
94 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
fb7d516a 95 dev_priv->mm.mappable_gtt_used +=
a00b10c3
CW
96 min_t(size_t, obj->gtt_space->size,
97 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
fb7d516a 98 }
73aa808f
CW
99}
100
101static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
a00b10c3 102 struct drm_i915_gem_object *obj)
73aa808f
CW
103{
104 dev_priv->mm.gtt_count--;
a00b10c3
CW
105 dev_priv->mm.gtt_memory -= obj->gtt_space->size;
106 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
fb7d516a 107 dev_priv->mm.mappable_gtt_used -=
a00b10c3
CW
108 min_t(size_t, obj->gtt_space->size,
109 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
fb7d516a
DV
110 }
111}
112
113/**
114 * Update the mappable working set counters. Call _only_ when there is a change
115 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
116 * @mappable: new state the changed mappable flag (either pin_ or fault_).
117 */
118static void
119i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
a00b10c3 120 struct drm_i915_gem_object *obj,
fb7d516a
DV
121 bool mappable)
122{
fb7d516a 123 if (mappable) {
a00b10c3 124 if (obj->pin_mappable && obj->fault_mappable)
fb7d516a
DV
125 /* Combined state was already mappable. */
126 return;
127 dev_priv->mm.gtt_mappable_count++;
a00b10c3 128 dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
fb7d516a 129 } else {
a00b10c3 130 if (obj->pin_mappable || obj->fault_mappable)
fb7d516a
DV
131 /* Combined state still mappable. */
132 return;
133 dev_priv->mm.gtt_mappable_count--;
a00b10c3 134 dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
fb7d516a 135 }
73aa808f
CW
136}
137
138static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
a00b10c3 139 struct drm_i915_gem_object *obj,
fb7d516a 140 bool mappable)
73aa808f
CW
141{
142 dev_priv->mm.pin_count++;
a00b10c3 143 dev_priv->mm.pin_memory += obj->gtt_space->size;
fb7d516a 144 if (mappable) {
a00b10c3 145 obj->pin_mappable = true;
fb7d516a
DV
146 i915_gem_info_update_mappable(dev_priv, obj, true);
147 }
73aa808f
CW
148}
149
150static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
a00b10c3 151 struct drm_i915_gem_object *obj)
73aa808f
CW
152{
153 dev_priv->mm.pin_count--;
a00b10c3
CW
154 dev_priv->mm.pin_memory -= obj->gtt_space->size;
155 if (obj->pin_mappable) {
156 obj->pin_mappable = false;
fb7d516a
DV
157 i915_gem_info_update_mappable(dev_priv, obj, false);
158 }
73aa808f
CW
159}
160
30dbf0c0
CW
161int
162i915_gem_check_is_wedged(struct drm_device *dev)
163{
164 struct drm_i915_private *dev_priv = dev->dev_private;
165 struct completion *x = &dev_priv->error_completion;
166 unsigned long flags;
167 int ret;
168
169 if (!atomic_read(&dev_priv->mm.wedged))
170 return 0;
171
172 ret = wait_for_completion_interruptible(x);
173 if (ret)
174 return ret;
175
176 /* Success, we reset the GPU! */
177 if (!atomic_read(&dev_priv->mm.wedged))
178 return 0;
179
180 /* GPU is hung, bump the completion count to account for
181 * the token we just consumed so that we never hit zero and
182 * end up waiting upon a subsequent completion event that
183 * will never happen.
184 */
185 spin_lock_irqsave(&x->wait.lock, flags);
186 x->done++;
187 spin_unlock_irqrestore(&x->wait.lock, flags);
188 return -EIO;
189}
190
76c1dec1
CW
191static int i915_mutex_lock_interruptible(struct drm_device *dev)
192{
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 int ret;
195
196 ret = i915_gem_check_is_wedged(dev);
197 if (ret)
198 return ret;
199
200 ret = mutex_lock_interruptible(&dev->struct_mutex);
201 if (ret)
202 return ret;
203
204 if (atomic_read(&dev_priv->mm.wedged)) {
205 mutex_unlock(&dev->struct_mutex);
206 return -EAGAIN;
207 }
208
23bc5982 209 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
210 return 0;
211}
30dbf0c0 212
7d1c4804
CW
213static inline bool
214i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
215{
216 return obj_priv->gtt_space &&
217 !obj_priv->active &&
218 obj_priv->pin_count == 0;
219}
220
73aa808f
CW
221int i915_gem_do_init(struct drm_device *dev,
222 unsigned long start,
53984635 223 unsigned long mappable_end,
79e53945 224 unsigned long end)
673a394b
EA
225{
226 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 227
79e53945
JB
228 if (start >= end ||
229 (start & (PAGE_SIZE - 1)) != 0 ||
230 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
231 return -EINVAL;
232 }
233
79e53945
JB
234 drm_mm_init(&dev_priv->mm.gtt_space, start,
235 end - start);
673a394b 236
73aa808f 237 dev_priv->mm.gtt_total = end - start;
fb7d516a 238 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
53984635 239 dev_priv->mm.gtt_mappable_end = mappable_end;
79e53945
JB
240
241 return 0;
242}
673a394b 243
79e53945
JB
244int
245i915_gem_init_ioctl(struct drm_device *dev, void *data,
246 struct drm_file *file_priv)
247{
248 struct drm_i915_gem_init *args = data;
249 int ret;
250
251 mutex_lock(&dev->struct_mutex);
53984635 252 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
253 mutex_unlock(&dev->struct_mutex);
254
79e53945 255 return ret;
673a394b
EA
256}
257
5a125c3c
EA
258int
259i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
260 struct drm_file *file_priv)
261{
73aa808f 262 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 263 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
264
265 if (!(dev->driver->driver_features & DRIVER_GEM))
266 return -ENODEV;
267
73aa808f
CW
268 mutex_lock(&dev->struct_mutex);
269 args->aper_size = dev_priv->mm.gtt_total;
270 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
271 mutex_unlock(&dev->struct_mutex);
5a125c3c
EA
272
273 return 0;
274}
275
673a394b
EA
276
277/**
278 * Creates a new mm object and returns a handle to it.
279 */
280int
281i915_gem_create_ioctl(struct drm_device *dev, void *data,
282 struct drm_file *file_priv)
283{
284 struct drm_i915_gem_create *args = data;
285 struct drm_gem_object *obj;
a1a2d1d3
PP
286 int ret;
287 u32 handle;
673a394b
EA
288
289 args->size = roundup(args->size, PAGE_SIZE);
290
291 /* Allocate the new object */
ac52bc56 292 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
293 if (obj == NULL)
294 return -ENOMEM;
295
296 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754 297 if (ret) {
202f2fef
CW
298 drm_gem_object_release(obj);
299 i915_gem_info_remove_obj(dev->dev_private, obj->size);
300 kfree(obj);
673a394b 301 return ret;
1dfd9754 302 }
673a394b 303
202f2fef
CW
304 /* drop reference from allocate - handle holds it now */
305 drm_gem_object_unreference(obj);
306 trace_i915_gem_object_create(obj);
307
1dfd9754 308 args->handle = handle;
673a394b
EA
309 return 0;
310}
311
280b713b
EA
312static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
313{
314 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 315 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
316
317 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
318 obj_priv->tiling_mode != I915_TILING_NONE;
319}
320
99a03df5 321static inline void
40123c1f
EA
322slow_shmem_copy(struct page *dst_page,
323 int dst_offset,
324 struct page *src_page,
325 int src_offset,
326 int length)
327{
328 char *dst_vaddr, *src_vaddr;
329
99a03df5
CW
330 dst_vaddr = kmap(dst_page);
331 src_vaddr = kmap(src_page);
40123c1f
EA
332
333 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
334
99a03df5
CW
335 kunmap(src_page);
336 kunmap(dst_page);
40123c1f
EA
337}
338
99a03df5 339static inline void
280b713b
EA
340slow_shmem_bit17_copy(struct page *gpu_page,
341 int gpu_offset,
342 struct page *cpu_page,
343 int cpu_offset,
344 int length,
345 int is_read)
346{
347 char *gpu_vaddr, *cpu_vaddr;
348
349 /* Use the unswizzled path if this page isn't affected. */
350 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
351 if (is_read)
352 return slow_shmem_copy(cpu_page, cpu_offset,
353 gpu_page, gpu_offset, length);
354 else
355 return slow_shmem_copy(gpu_page, gpu_offset,
356 cpu_page, cpu_offset, length);
357 }
358
99a03df5
CW
359 gpu_vaddr = kmap(gpu_page);
360 cpu_vaddr = kmap(cpu_page);
280b713b
EA
361
362 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
363 * XORing with the other bits (A9 for Y, A9 and A10 for X)
364 */
365 while (length > 0) {
366 int cacheline_end = ALIGN(gpu_offset + 1, 64);
367 int this_length = min(cacheline_end - gpu_offset, length);
368 int swizzled_gpu_offset = gpu_offset ^ 64;
369
370 if (is_read) {
371 memcpy(cpu_vaddr + cpu_offset,
372 gpu_vaddr + swizzled_gpu_offset,
373 this_length);
374 } else {
375 memcpy(gpu_vaddr + swizzled_gpu_offset,
376 cpu_vaddr + cpu_offset,
377 this_length);
378 }
379 cpu_offset += this_length;
380 gpu_offset += this_length;
381 length -= this_length;
382 }
383
99a03df5
CW
384 kunmap(cpu_page);
385 kunmap(gpu_page);
280b713b
EA
386}
387
eb01459f
EA
388/**
389 * This is the fast shmem pread path, which attempts to copy_from_user directly
390 * from the backing pages of the object to the user's address space. On a
391 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
392 */
393static int
394i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
395 struct drm_i915_gem_pread *args,
396 struct drm_file *file_priv)
397{
23010e43 398 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
e5281ccd 399 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
eb01459f 400 ssize_t remain;
e5281ccd 401 loff_t offset;
eb01459f
EA
402 char __user *user_data;
403 int page_offset, page_length;
eb01459f
EA
404
405 user_data = (char __user *) (uintptr_t) args->data_ptr;
406 remain = args->size;
407
23010e43 408 obj_priv = to_intel_bo(obj);
eb01459f
EA
409 offset = args->offset;
410
411 while (remain > 0) {
e5281ccd
CW
412 struct page *page;
413 char *vaddr;
414 int ret;
415
eb01459f
EA
416 /* Operation in this page
417 *
eb01459f
EA
418 * page_offset = offset within page
419 * page_length = bytes to copy for this page
420 */
eb01459f
EA
421 page_offset = offset & (PAGE_SIZE-1);
422 page_length = remain;
423 if ((page_offset + remain) > PAGE_SIZE)
424 page_length = PAGE_SIZE - page_offset;
425
e5281ccd
CW
426 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
427 GFP_HIGHUSER | __GFP_RECLAIMABLE);
428 if (IS_ERR(page))
429 return PTR_ERR(page);
430
431 vaddr = kmap_atomic(page);
432 ret = __copy_to_user_inatomic(user_data,
433 vaddr + page_offset,
434 page_length);
435 kunmap_atomic(vaddr);
436
437 mark_page_accessed(page);
438 page_cache_release(page);
439 if (ret)
4f27b75d 440 return -EFAULT;
eb01459f
EA
441
442 remain -= page_length;
443 user_data += page_length;
444 offset += page_length;
445 }
446
4f27b75d 447 return 0;
eb01459f
EA
448}
449
450/**
451 * This is the fallback shmem pread path, which allocates temporary storage
452 * in kernel space to copy_to_user into outside of the struct_mutex, so we
453 * can copy out of the object's backing pages while holding the struct mutex
454 * and not take page faults.
455 */
456static int
457i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
458 struct drm_i915_gem_pread *args,
459 struct drm_file *file_priv)
460{
e5281ccd 461 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
23010e43 462 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
463 struct mm_struct *mm = current->mm;
464 struct page **user_pages;
465 ssize_t remain;
466 loff_t offset, pinned_pages, i;
467 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
468 int shmem_page_offset;
469 int data_page_index, data_page_offset;
eb01459f
EA
470 int page_length;
471 int ret;
472 uint64_t data_ptr = args->data_ptr;
280b713b 473 int do_bit17_swizzling;
eb01459f
EA
474
475 remain = args->size;
476
477 /* Pin the user pages containing the data. We can't fault while
478 * holding the struct mutex, yet we want to hold it while
479 * dereferencing the user data.
480 */
481 first_data_page = data_ptr / PAGE_SIZE;
482 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
483 num_pages = last_data_page - first_data_page + 1;
484
4f27b75d 485 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
486 if (user_pages == NULL)
487 return -ENOMEM;
488
4f27b75d 489 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
490 down_read(&mm->mmap_sem);
491 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 492 num_pages, 1, 0, user_pages, NULL);
eb01459f 493 up_read(&mm->mmap_sem);
4f27b75d 494 mutex_lock(&dev->struct_mutex);
eb01459f
EA
495 if (pinned_pages < num_pages) {
496 ret = -EFAULT;
4f27b75d 497 goto out;
eb01459f
EA
498 }
499
4f27b75d
CW
500 ret = i915_gem_object_set_cpu_read_domain_range(obj,
501 args->offset,
502 args->size);
07f73f69 503 if (ret)
4f27b75d 504 goto out;
eb01459f 505
4f27b75d 506 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 507
23010e43 508 obj_priv = to_intel_bo(obj);
eb01459f
EA
509 offset = args->offset;
510
511 while (remain > 0) {
e5281ccd
CW
512 struct page *page;
513
eb01459f
EA
514 /* Operation in this page
515 *
eb01459f
EA
516 * shmem_page_offset = offset within page in shmem file
517 * data_page_index = page number in get_user_pages return
518 * data_page_offset = offset with data_page_index page.
519 * page_length = bytes to copy for this page
520 */
eb01459f
EA
521 shmem_page_offset = offset & ~PAGE_MASK;
522 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
523 data_page_offset = data_ptr & ~PAGE_MASK;
524
525 page_length = remain;
526 if ((shmem_page_offset + page_length) > PAGE_SIZE)
527 page_length = PAGE_SIZE - shmem_page_offset;
528 if ((data_page_offset + page_length) > PAGE_SIZE)
529 page_length = PAGE_SIZE - data_page_offset;
530
e5281ccd
CW
531 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
532 GFP_HIGHUSER | __GFP_RECLAIMABLE);
533 if (IS_ERR(page))
534 return PTR_ERR(page);
535
280b713b 536 if (do_bit17_swizzling) {
e5281ccd 537 slow_shmem_bit17_copy(page,
280b713b 538 shmem_page_offset,
99a03df5
CW
539 user_pages[data_page_index],
540 data_page_offset,
541 page_length,
542 1);
543 } else {
544 slow_shmem_copy(user_pages[data_page_index],
545 data_page_offset,
e5281ccd 546 page,
99a03df5
CW
547 shmem_page_offset,
548 page_length);
280b713b 549 }
eb01459f 550
e5281ccd
CW
551 mark_page_accessed(page);
552 page_cache_release(page);
553
eb01459f
EA
554 remain -= page_length;
555 data_ptr += page_length;
556 offset += page_length;
557 }
558
4f27b75d 559out:
eb01459f
EA
560 for (i = 0; i < pinned_pages; i++) {
561 SetPageDirty(user_pages[i]);
e5281ccd 562 mark_page_accessed(user_pages[i]);
eb01459f
EA
563 page_cache_release(user_pages[i]);
564 }
8e7d2b2c 565 drm_free_large(user_pages);
eb01459f
EA
566
567 return ret;
568}
569
673a394b
EA
570/**
571 * Reads data from the object referenced by handle.
572 *
573 * On error, the contents of *data are undefined.
574 */
575int
576i915_gem_pread_ioctl(struct drm_device *dev, void *data,
577 struct drm_file *file_priv)
578{
579 struct drm_i915_gem_pread *args = data;
580 struct drm_gem_object *obj;
581 struct drm_i915_gem_object *obj_priv;
35b62a89 582 int ret = 0;
673a394b 583
4f27b75d 584 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 585 if (ret)
4f27b75d 586 return ret;
673a394b
EA
587
588 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
589 if (obj == NULL) {
590 ret = -ENOENT;
591 goto unlock;
4f27b75d 592 }
23010e43 593 obj_priv = to_intel_bo(obj);
673a394b 594
7dcd2499
CW
595 /* Bounds check source. */
596 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 597 ret = -EINVAL;
35b62a89 598 goto out;
ce9d419d
CW
599 }
600
35b62a89
CW
601 if (args->size == 0)
602 goto out;
603
ce9d419d
CW
604 if (!access_ok(VERIFY_WRITE,
605 (char __user *)(uintptr_t)args->data_ptr,
606 args->size)) {
607 ret = -EFAULT;
35b62a89 608 goto out;
673a394b
EA
609 }
610
b5e4feb6
CW
611 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
612 args->size);
613 if (ret) {
614 ret = -EFAULT;
615 goto out;
280b713b 616 }
673a394b 617
4f27b75d
CW
618 ret = i915_gem_object_set_cpu_read_domain_range(obj,
619 args->offset,
620 args->size);
621 if (ret)
e5281ccd 622 goto out;
4f27b75d
CW
623
624 ret = -EFAULT;
625 if (!i915_gem_object_needs_bit17_swizzle(obj))
280b713b 626 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
4f27b75d
CW
627 if (ret == -EFAULT)
628 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
673a394b 629
35b62a89 630out:
4f27b75d 631 drm_gem_object_unreference(obj);
1d7cfea1 632unlock:
4f27b75d 633 mutex_unlock(&dev->struct_mutex);
eb01459f 634 return ret;
673a394b
EA
635}
636
0839ccb8
KP
637/* This is the fast write path which cannot handle
638 * page faults in the source data
9b7530cc 639 */
0839ccb8
KP
640
641static inline int
642fast_user_write(struct io_mapping *mapping,
643 loff_t page_base, int page_offset,
644 char __user *user_data,
645 int length)
9b7530cc 646{
9b7530cc 647 char *vaddr_atomic;
0839ccb8 648 unsigned long unwritten;
9b7530cc 649
3e4d3af5 650 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
651 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
652 user_data, length);
3e4d3af5 653 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 654 return unwritten;
0839ccb8
KP
655}
656
657/* Here's the write path which can sleep for
658 * page faults
659 */
660
ab34c226 661static inline void
3de09aa3
EA
662slow_kernel_write(struct io_mapping *mapping,
663 loff_t gtt_base, int gtt_offset,
664 struct page *user_page, int user_offset,
665 int length)
0839ccb8 666{
ab34c226
CW
667 char __iomem *dst_vaddr;
668 char *src_vaddr;
0839ccb8 669
ab34c226
CW
670 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
671 src_vaddr = kmap(user_page);
672
673 memcpy_toio(dst_vaddr + gtt_offset,
674 src_vaddr + user_offset,
675 length);
676
677 kunmap(user_page);
678 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
679}
680
3de09aa3
EA
681/**
682 * This is the fast pwrite path, where we copy the data directly from the
683 * user into the GTT, uncached.
684 */
673a394b 685static int
3de09aa3
EA
686i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
687 struct drm_i915_gem_pwrite *args,
688 struct drm_file *file_priv)
673a394b 689{
23010e43 690 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 691 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 692 ssize_t remain;
0839ccb8 693 loff_t offset, page_base;
673a394b 694 char __user *user_data;
0839ccb8 695 int page_offset, page_length;
673a394b
EA
696
697 user_data = (char __user *) (uintptr_t) args->data_ptr;
698 remain = args->size;
673a394b 699
23010e43 700 obj_priv = to_intel_bo(obj);
673a394b 701 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
702
703 while (remain > 0) {
704 /* Operation in this page
705 *
0839ccb8
KP
706 * page_base = page offset within aperture
707 * page_offset = offset within page
708 * page_length = bytes to copy for this page
673a394b 709 */
0839ccb8
KP
710 page_base = (offset & ~(PAGE_SIZE-1));
711 page_offset = offset & (PAGE_SIZE-1);
712 page_length = remain;
713 if ((page_offset + remain) > PAGE_SIZE)
714 page_length = PAGE_SIZE - page_offset;
715
0839ccb8 716 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
717 * source page isn't available. Return the error and we'll
718 * retry in the slow path.
0839ccb8 719 */
fbd5a26d
CW
720 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
721 page_offset, user_data, page_length))
722
723 return -EFAULT;
673a394b 724
0839ccb8
KP
725 remain -= page_length;
726 user_data += page_length;
727 offset += page_length;
673a394b 728 }
673a394b 729
fbd5a26d 730 return 0;
673a394b
EA
731}
732
3de09aa3
EA
733/**
734 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
735 * the memory and maps it using kmap_atomic for copying.
736 *
737 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
738 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
739 */
3043c60c 740static int
3de09aa3
EA
741i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
742 struct drm_i915_gem_pwrite *args,
743 struct drm_file *file_priv)
673a394b 744{
23010e43 745 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
746 drm_i915_private_t *dev_priv = dev->dev_private;
747 ssize_t remain;
748 loff_t gtt_page_base, offset;
749 loff_t first_data_page, last_data_page, num_pages;
750 loff_t pinned_pages, i;
751 struct page **user_pages;
752 struct mm_struct *mm = current->mm;
753 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 754 int ret;
3de09aa3
EA
755 uint64_t data_ptr = args->data_ptr;
756
757 remain = args->size;
758
759 /* Pin the user pages containing the data. We can't fault while
760 * holding the struct mutex, and all of the pwrite implementations
761 * want to hold it while dereferencing the user data.
762 */
763 first_data_page = data_ptr / PAGE_SIZE;
764 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
765 num_pages = last_data_page - first_data_page + 1;
766
fbd5a26d 767 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
768 if (user_pages == NULL)
769 return -ENOMEM;
770
fbd5a26d 771 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
772 down_read(&mm->mmap_sem);
773 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
774 num_pages, 0, 0, user_pages, NULL);
775 up_read(&mm->mmap_sem);
fbd5a26d 776 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
777 if (pinned_pages < num_pages) {
778 ret = -EFAULT;
779 goto out_unpin_pages;
780 }
673a394b 781
3de09aa3
EA
782 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
783 if (ret)
fbd5a26d 784 goto out_unpin_pages;
3de09aa3 785
23010e43 786 obj_priv = to_intel_bo(obj);
3de09aa3
EA
787 offset = obj_priv->gtt_offset + args->offset;
788
789 while (remain > 0) {
790 /* Operation in this page
791 *
792 * gtt_page_base = page offset within aperture
793 * gtt_page_offset = offset within page in aperture
794 * data_page_index = page number in get_user_pages return
795 * data_page_offset = offset with data_page_index page.
796 * page_length = bytes to copy for this page
797 */
798 gtt_page_base = offset & PAGE_MASK;
799 gtt_page_offset = offset & ~PAGE_MASK;
800 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
801 data_page_offset = data_ptr & ~PAGE_MASK;
802
803 page_length = remain;
804 if ((gtt_page_offset + page_length) > PAGE_SIZE)
805 page_length = PAGE_SIZE - gtt_page_offset;
806 if ((data_page_offset + page_length) > PAGE_SIZE)
807 page_length = PAGE_SIZE - data_page_offset;
808
ab34c226
CW
809 slow_kernel_write(dev_priv->mm.gtt_mapping,
810 gtt_page_base, gtt_page_offset,
811 user_pages[data_page_index],
812 data_page_offset,
813 page_length);
3de09aa3
EA
814
815 remain -= page_length;
816 offset += page_length;
817 data_ptr += page_length;
818 }
819
3de09aa3
EA
820out_unpin_pages:
821 for (i = 0; i < pinned_pages; i++)
822 page_cache_release(user_pages[i]);
8e7d2b2c 823 drm_free_large(user_pages);
3de09aa3
EA
824
825 return ret;
826}
827
40123c1f
EA
828/**
829 * This is the fast shmem pwrite path, which attempts to directly
830 * copy_from_user into the kmapped pages backing the object.
831 */
3043c60c 832static int
40123c1f
EA
833i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
834 struct drm_i915_gem_pwrite *args,
835 struct drm_file *file_priv)
673a394b 836{
e5281ccd 837 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
23010e43 838 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f 839 ssize_t remain;
e5281ccd 840 loff_t offset;
40123c1f
EA
841 char __user *user_data;
842 int page_offset, page_length;
40123c1f
EA
843
844 user_data = (char __user *) (uintptr_t) args->data_ptr;
845 remain = args->size;
673a394b 846
23010e43 847 obj_priv = to_intel_bo(obj);
40123c1f
EA
848 offset = args->offset;
849 obj_priv->dirty = 1;
850
851 while (remain > 0) {
e5281ccd
CW
852 struct page *page;
853 char *vaddr;
854 int ret;
855
40123c1f
EA
856 /* Operation in this page
857 *
40123c1f
EA
858 * page_offset = offset within page
859 * page_length = bytes to copy for this page
860 */
40123c1f
EA
861 page_offset = offset & (PAGE_SIZE-1);
862 page_length = remain;
863 if ((page_offset + remain) > PAGE_SIZE)
864 page_length = PAGE_SIZE - page_offset;
865
e5281ccd
CW
866 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
867 GFP_HIGHUSER | __GFP_RECLAIMABLE);
868 if (IS_ERR(page))
869 return PTR_ERR(page);
870
871 vaddr = kmap_atomic(page, KM_USER0);
872 ret = __copy_from_user_inatomic(vaddr + page_offset,
873 user_data,
874 page_length);
875 kunmap_atomic(vaddr, KM_USER0);
876
877 set_page_dirty(page);
878 mark_page_accessed(page);
879 page_cache_release(page);
880
881 /* If we get a fault while copying data, then (presumably) our
882 * source page isn't available. Return the error and we'll
883 * retry in the slow path.
884 */
885 if (ret)
fbd5a26d 886 return -EFAULT;
40123c1f
EA
887
888 remain -= page_length;
889 user_data += page_length;
890 offset += page_length;
891 }
892
fbd5a26d 893 return 0;
40123c1f
EA
894}
895
896/**
897 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
898 * the memory and maps it using kmap_atomic for copying.
899 *
900 * This avoids taking mmap_sem for faulting on the user's address while the
901 * struct_mutex is held.
902 */
903static int
904i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
905 struct drm_i915_gem_pwrite *args,
906 struct drm_file *file_priv)
907{
e5281ccd 908 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
23010e43 909 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
910 struct mm_struct *mm = current->mm;
911 struct page **user_pages;
912 ssize_t remain;
913 loff_t offset, pinned_pages, i;
914 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 915 int shmem_page_offset;
40123c1f
EA
916 int data_page_index, data_page_offset;
917 int page_length;
918 int ret;
919 uint64_t data_ptr = args->data_ptr;
280b713b 920 int do_bit17_swizzling;
40123c1f
EA
921
922 remain = args->size;
923
924 /* Pin the user pages containing the data. We can't fault while
925 * holding the struct mutex, and all of the pwrite implementations
926 * want to hold it while dereferencing the user data.
927 */
928 first_data_page = data_ptr / PAGE_SIZE;
929 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
930 num_pages = last_data_page - first_data_page + 1;
931
4f27b75d 932 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
933 if (user_pages == NULL)
934 return -ENOMEM;
935
fbd5a26d 936 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
937 down_read(&mm->mmap_sem);
938 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
939 num_pages, 0, 0, user_pages, NULL);
940 up_read(&mm->mmap_sem);
fbd5a26d 941 mutex_lock(&dev->struct_mutex);
40123c1f
EA
942 if (pinned_pages < num_pages) {
943 ret = -EFAULT;
fbd5a26d 944 goto out;
673a394b
EA
945 }
946
fbd5a26d 947 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 948 if (ret)
fbd5a26d 949 goto out;
40123c1f 950
fbd5a26d 951 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 952
23010e43 953 obj_priv = to_intel_bo(obj);
673a394b 954 offset = args->offset;
40123c1f 955 obj_priv->dirty = 1;
673a394b 956
40123c1f 957 while (remain > 0) {
e5281ccd
CW
958 struct page *page;
959
40123c1f
EA
960 /* Operation in this page
961 *
40123c1f
EA
962 * shmem_page_offset = offset within page in shmem file
963 * data_page_index = page number in get_user_pages return
964 * data_page_offset = offset with data_page_index page.
965 * page_length = bytes to copy for this page
966 */
40123c1f
EA
967 shmem_page_offset = offset & ~PAGE_MASK;
968 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
969 data_page_offset = data_ptr & ~PAGE_MASK;
970
971 page_length = remain;
972 if ((shmem_page_offset + page_length) > PAGE_SIZE)
973 page_length = PAGE_SIZE - shmem_page_offset;
974 if ((data_page_offset + page_length) > PAGE_SIZE)
975 page_length = PAGE_SIZE - data_page_offset;
976
e5281ccd
CW
977 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
978 GFP_HIGHUSER | __GFP_RECLAIMABLE);
979 if (IS_ERR(page)) {
980 ret = PTR_ERR(page);
981 goto out;
982 }
983
280b713b 984 if (do_bit17_swizzling) {
e5281ccd 985 slow_shmem_bit17_copy(page,
280b713b
EA
986 shmem_page_offset,
987 user_pages[data_page_index],
988 data_page_offset,
99a03df5
CW
989 page_length,
990 0);
991 } else {
e5281ccd 992 slow_shmem_copy(page,
99a03df5
CW
993 shmem_page_offset,
994 user_pages[data_page_index],
995 data_page_offset,
996 page_length);
280b713b 997 }
40123c1f 998
e5281ccd
CW
999 set_page_dirty(page);
1000 mark_page_accessed(page);
1001 page_cache_release(page);
1002
40123c1f
EA
1003 remain -= page_length;
1004 data_ptr += page_length;
1005 offset += page_length;
673a394b
EA
1006 }
1007
fbd5a26d 1008out:
40123c1f
EA
1009 for (i = 0; i < pinned_pages; i++)
1010 page_cache_release(user_pages[i]);
8e7d2b2c 1011 drm_free_large(user_pages);
673a394b 1012
40123c1f 1013 return ret;
673a394b
EA
1014}
1015
1016/**
1017 * Writes data to the object referenced by handle.
1018 *
1019 * On error, the contents of the buffer that were to be modified are undefined.
1020 */
1021int
1022i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1023 struct drm_file *file)
673a394b
EA
1024{
1025 struct drm_i915_gem_pwrite *args = data;
1026 struct drm_gem_object *obj;
1027 struct drm_i915_gem_object *obj_priv;
1028 int ret = 0;
1029
fbd5a26d 1030 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1031 if (ret)
fbd5a26d 1032 return ret;
1d7cfea1
CW
1033
1034 obj = drm_gem_object_lookup(dev, file, args->handle);
1035 if (obj == NULL) {
1036 ret = -ENOENT;
1037 goto unlock;
fbd5a26d 1038 }
23010e43 1039 obj_priv = to_intel_bo(obj);
673a394b 1040
fbd5a26d 1041
7dcd2499
CW
1042 /* Bounds check destination. */
1043 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 1044 ret = -EINVAL;
35b62a89 1045 goto out;
ce9d419d
CW
1046 }
1047
35b62a89
CW
1048 if (args->size == 0)
1049 goto out;
1050
ce9d419d
CW
1051 if (!access_ok(VERIFY_READ,
1052 (char __user *)(uintptr_t)args->data_ptr,
1053 args->size)) {
1054 ret = -EFAULT;
35b62a89 1055 goto out;
673a394b
EA
1056 }
1057
b5e4feb6
CW
1058 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1059 args->size);
1060 if (ret) {
1061 ret = -EFAULT;
1062 goto out;
673a394b
EA
1063 }
1064
1065 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1066 * it would end up going through the fenced access, and we'll get
1067 * different detiling behavior between reading and writing.
1068 * pread/pwrite currently are reading and writing from the CPU
1069 * perspective, requiring manual detiling by the client.
1070 */
71acb5eb 1071 if (obj_priv->phys_obj)
fbd5a26d 1072 ret = i915_gem_phys_pwrite(dev, obj, args, file);
71acb5eb 1073 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
5cdf5881 1074 obj_priv->gtt_space &&
9b8c4a0b 1075 obj->write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 1076 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1077 if (ret)
1078 goto out;
1079
1080 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1081 if (ret)
1082 goto out_unpin;
1083
1084 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1085 if (ret == -EFAULT)
1086 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1087
1088out_unpin:
1089 i915_gem_object_unpin(obj);
40123c1f 1090 } else {
fbd5a26d
CW
1091 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1092 if (ret)
e5281ccd 1093 goto out;
673a394b 1094
fbd5a26d
CW
1095 ret = -EFAULT;
1096 if (!i915_gem_object_needs_bit17_swizzle(obj))
1097 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1098 if (ret == -EFAULT)
1099 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1100 }
673a394b 1101
35b62a89 1102out:
fbd5a26d 1103 drm_gem_object_unreference(obj);
1d7cfea1 1104unlock:
fbd5a26d 1105 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1106 return ret;
1107}
1108
1109/**
2ef7eeaa
EA
1110 * Called when user space prepares to use an object with the CPU, either
1111 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1112 */
1113int
1114i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1115 struct drm_file *file_priv)
1116{
a09ba7fa 1117 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1118 struct drm_i915_gem_set_domain *args = data;
1119 struct drm_gem_object *obj;
652c393a 1120 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1121 uint32_t read_domains = args->read_domains;
1122 uint32_t write_domain = args->write_domain;
673a394b
EA
1123 int ret;
1124
1125 if (!(dev->driver->driver_features & DRIVER_GEM))
1126 return -ENODEV;
1127
2ef7eeaa 1128 /* Only handle setting domains to types used by the CPU. */
21d509e3 1129 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1130 return -EINVAL;
1131
21d509e3 1132 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1133 return -EINVAL;
1134
1135 /* Having something in the write domain implies it's in the read
1136 * domain, and only that read domain. Enforce that in the request.
1137 */
1138 if (write_domain != 0 && read_domains != write_domain)
1139 return -EINVAL;
1140
76c1dec1 1141 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1142 if (ret)
76c1dec1 1143 return ret;
1d7cfea1 1144
673a394b 1145 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
1146 if (obj == NULL) {
1147 ret = -ENOENT;
1148 goto unlock;
76c1dec1 1149 }
23010e43 1150 obj_priv = to_intel_bo(obj);
673a394b 1151
652c393a
JB
1152 intel_mark_busy(dev, obj);
1153
2ef7eeaa
EA
1154 if (read_domains & I915_GEM_DOMAIN_GTT) {
1155 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1156
a09ba7fa
EA
1157 /* Update the LRU on the fence for the CPU access that's
1158 * about to occur.
1159 */
1160 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1161 struct drm_i915_fence_reg *reg =
1162 &dev_priv->fence_regs[obj_priv->fence_reg];
1163 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1164 &dev_priv->mm.fence_list);
1165 }
1166
02354392
EA
1167 /* Silently promote "you're not bound, there was nothing to do"
1168 * to success, since the client was just asking us to
1169 * make sure everything was done.
1170 */
1171 if (ret == -EINVAL)
1172 ret = 0;
2ef7eeaa 1173 } else {
e47c68e9 1174 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1175 }
1176
7d1c4804
CW
1177 /* Maintain LRU order of "inactive" objects */
1178 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
69dc4987 1179 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1180
673a394b 1181 drm_gem_object_unreference(obj);
1d7cfea1 1182unlock:
673a394b
EA
1183 mutex_unlock(&dev->struct_mutex);
1184 return ret;
1185}
1186
1187/**
1188 * Called when user space has done writes to this buffer
1189 */
1190int
1191i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1192 struct drm_file *file_priv)
1193{
1194 struct drm_i915_gem_sw_finish *args = data;
1195 struct drm_gem_object *obj;
673a394b
EA
1196 int ret = 0;
1197
1198 if (!(dev->driver->driver_features & DRIVER_GEM))
1199 return -ENODEV;
1200
76c1dec1 1201 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1202 if (ret)
76c1dec1 1203 return ret;
1d7cfea1 1204
673a394b
EA
1205 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1206 if (obj == NULL) {
1d7cfea1
CW
1207 ret = -ENOENT;
1208 goto unlock;
673a394b
EA
1209 }
1210
673a394b 1211 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1212 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1213 i915_gem_object_flush_cpu_write_domain(obj);
1214
673a394b 1215 drm_gem_object_unreference(obj);
1d7cfea1 1216unlock:
673a394b
EA
1217 mutex_unlock(&dev->struct_mutex);
1218 return ret;
1219}
1220
1221/**
1222 * Maps the contents of an object, returning the address it is mapped
1223 * into.
1224 *
1225 * While the mapping holds a reference on the contents of the object, it doesn't
1226 * imply a ref on the object itself.
1227 */
1228int
1229i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1230 struct drm_file *file_priv)
1231{
da761a6e 1232 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1233 struct drm_i915_gem_mmap *args = data;
1234 struct drm_gem_object *obj;
1235 loff_t offset;
1236 unsigned long addr;
1237
1238 if (!(dev->driver->driver_features & DRIVER_GEM))
1239 return -ENODEV;
1240
1241 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1242 if (obj == NULL)
bf79cb91 1243 return -ENOENT;
673a394b 1244
da761a6e
CW
1245 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1246 drm_gem_object_unreference_unlocked(obj);
1247 return -E2BIG;
1248 }
1249
673a394b
EA
1250 offset = args->offset;
1251
1252 down_write(&current->mm->mmap_sem);
1253 addr = do_mmap(obj->filp, 0, args->size,
1254 PROT_READ | PROT_WRITE, MAP_SHARED,
1255 args->offset);
1256 up_write(&current->mm->mmap_sem);
bc9025bd 1257 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1258 if (IS_ERR((void *)addr))
1259 return addr;
1260
1261 args->addr_ptr = (uint64_t) addr;
1262
1263 return 0;
1264}
1265
de151cf6
JB
1266/**
1267 * i915_gem_fault - fault a page into the GTT
1268 * vma: VMA in question
1269 * vmf: fault info
1270 *
1271 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1272 * from userspace. The fault handler takes care of binding the object to
1273 * the GTT (if needed), allocating and programming a fence register (again,
1274 * only if needed based on whether the old reg is still valid or the object
1275 * is tiled) and inserting a new PTE into the faulting process.
1276 *
1277 * Note that the faulting process may involve evicting existing objects
1278 * from the GTT and/or fence registers to make room. So performance may
1279 * suffer if the GTT working set is large or there are few fence registers
1280 * left.
1281 */
1282int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1283{
1284 struct drm_gem_object *obj = vma->vm_private_data;
1285 struct drm_device *dev = obj->dev;
7d1c4804 1286 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1287 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1288 pgoff_t page_offset;
1289 unsigned long pfn;
1290 int ret = 0;
0f973f27 1291 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1292
1293 /* We don't use vmf->pgoff since that has the fake offset */
1294 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1295 PAGE_SHIFT;
1296
1297 /* Now bind it into the GTT if needed */
1298 mutex_lock(&dev->struct_mutex);
fb7d516a 1299 BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
a00b10c3
CW
1300
1301 if (obj_priv->gtt_space) {
75e9e915 1302 if (!obj_priv->map_and_fenceable) {
a00b10c3
CW
1303 ret = i915_gem_object_unbind(obj);
1304 if (ret)
1305 goto unlock;
1306 }
1307 }
16e809ac 1308
de151cf6 1309 if (!obj_priv->gtt_space) {
75e9e915 1310 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1311 if (ret)
1312 goto unlock;
de151cf6
JB
1313 }
1314
4a684a41
CW
1315 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1316 if (ret)
1317 goto unlock;
1318
fb7d516a
DV
1319 if (!obj_priv->fault_mappable) {
1320 obj_priv->fault_mappable = true;
a00b10c3 1321 i915_gem_info_update_mappable(dev_priv, obj_priv, true);
fb7d516a
DV
1322 }
1323
de151cf6 1324 /* Need a new fence register? */
a09ba7fa 1325 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1326 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1327 if (ret)
1328 goto unlock;
d9ddcb96 1329 }
de151cf6 1330
7d1c4804 1331 if (i915_gem_object_is_inactive(obj_priv))
69dc4987 1332 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1333
de151cf6
JB
1334 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1335 page_offset;
1336
1337 /* Finally, remap it using the new GTT offset */
1338 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1339unlock:
de151cf6
JB
1340 mutex_unlock(&dev->struct_mutex);
1341
1342 switch (ret) {
c715089f
CW
1343 case 0:
1344 case -ERESTARTSYS:
1345 return VM_FAULT_NOPAGE;
de151cf6
JB
1346 case -ENOMEM:
1347 case -EAGAIN:
1348 return VM_FAULT_OOM;
de151cf6 1349 default:
c715089f 1350 return VM_FAULT_SIGBUS;
de151cf6
JB
1351 }
1352}
1353
1354/**
1355 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1356 * @obj: obj in question
1357 *
1358 * GEM memory mapping works by handing back to userspace a fake mmap offset
1359 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1360 * up the object based on the offset and sets up the various memory mapping
1361 * structures.
1362 *
1363 * This routine allocates and attaches a fake offset for @obj.
1364 */
1365static int
1366i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1367{
1368 struct drm_device *dev = obj->dev;
1369 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1370 struct drm_map_list *list;
f77d390c 1371 struct drm_local_map *map;
de151cf6
JB
1372 int ret = 0;
1373
1374 /* Set the object up for mmap'ing */
1375 list = &obj->map_list;
9a298b2a 1376 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1377 if (!list->map)
1378 return -ENOMEM;
1379
1380 map = list->map;
1381 map->type = _DRM_GEM;
1382 map->size = obj->size;
1383 map->handle = obj;
1384
1385 /* Get a DRM GEM mmap offset allocated... */
1386 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1387 obj->size / PAGE_SIZE, 0, 0);
1388 if (!list->file_offset_node) {
1389 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1390 ret = -ENOSPC;
de151cf6
JB
1391 goto out_free_list;
1392 }
1393
1394 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1395 obj->size / PAGE_SIZE, 0);
1396 if (!list->file_offset_node) {
1397 ret = -ENOMEM;
1398 goto out_free_list;
1399 }
1400
1401 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1402 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1403 if (ret) {
de151cf6
JB
1404 DRM_ERROR("failed to add to map hash\n");
1405 goto out_free_mm;
1406 }
1407
de151cf6
JB
1408 return 0;
1409
1410out_free_mm:
1411 drm_mm_put_block(list->file_offset_node);
1412out_free_list:
9a298b2a 1413 kfree(list->map);
39a01d1f 1414 list->map = NULL;
de151cf6
JB
1415
1416 return ret;
1417}
1418
901782b2
CW
1419/**
1420 * i915_gem_release_mmap - remove physical page mappings
1421 * @obj: obj in question
1422 *
af901ca1 1423 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1424 * relinquish ownership of the pages back to the system.
1425 *
1426 * It is vital that we remove the page mapping if we have mapped a tiled
1427 * object through the GTT and then lose the fence register due to
1428 * resource pressure. Similarly if the object has been moved out of the
1429 * aperture, than pages mapped into userspace must be revoked. Removing the
1430 * mapping will then trigger a page fault on the next user access, allowing
1431 * fixup by i915_gem_fault().
1432 */
d05ca301 1433void
901782b2
CW
1434i915_gem_release_mmap(struct drm_gem_object *obj)
1435{
1436 struct drm_device *dev = obj->dev;
fb7d516a 1437 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1438 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2 1439
39a01d1f 1440 if (unlikely(obj->map_list.map && dev->dev_mapping))
901782b2 1441 unmap_mapping_range(dev->dev_mapping,
39a01d1f
CW
1442 (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
1443 obj->size, 1);
fb7d516a
DV
1444
1445 if (obj_priv->fault_mappable) {
1446 obj_priv->fault_mappable = false;
a00b10c3 1447 i915_gem_info_update_mappable(dev_priv, obj_priv, false);
fb7d516a 1448 }
901782b2
CW
1449}
1450
ab00b3e5
JB
1451static void
1452i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1453{
1454 struct drm_device *dev = obj->dev;
ab00b3e5 1455 struct drm_gem_mm *mm = dev->mm_private;
39a01d1f 1456 struct drm_map_list *list = &obj->map_list;
ab00b3e5 1457
ab00b3e5 1458 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1459 drm_mm_put_block(list->file_offset_node);
1460 kfree(list->map);
1461 list->map = NULL;
ab00b3e5
JB
1462}
1463
de151cf6
JB
1464/**
1465 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1466 * @obj: object to check
1467 *
1468 * Return the required GTT alignment for an object, taking into account
1469 * potential fence register mapping if needed.
1470 */
1471static uint32_t
a00b10c3 1472i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
de151cf6 1473{
a00b10c3 1474 struct drm_device *dev = obj_priv->base.dev;
de151cf6
JB
1475
1476 /*
1477 * Minimum alignment is 4k (GTT page size), but might be greater
1478 * if a fence register is needed for the object.
1479 */
a00b10c3
CW
1480 if (INTEL_INFO(dev)->gen >= 4 ||
1481 obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1482 return 4096;
1483
a00b10c3
CW
1484 /*
1485 * Previous chips need to be aligned to the size of the smallest
1486 * fence register that can contain the object.
1487 */
1488 return i915_gem_get_gtt_size(obj_priv);
1489}
1490
1491static uint32_t
1492i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
1493{
1494 struct drm_device *dev = obj_priv->base.dev;
1495 uint32_t size;
1496
1497 /*
1498 * Minimum alignment is 4k (GTT page size), but might be greater
1499 * if a fence register is needed for the object.
1500 */
1501 if (INTEL_INFO(dev)->gen >= 4)
1502 return obj_priv->base.size;
1503
de151cf6
JB
1504 /*
1505 * Previous chips need to be aligned to the size of the smallest
1506 * fence register that can contain the object.
1507 */
a6c45cf0 1508 if (INTEL_INFO(dev)->gen == 3)
a00b10c3 1509 size = 1024*1024;
de151cf6 1510 else
a00b10c3 1511 size = 512*1024;
de151cf6 1512
a00b10c3
CW
1513 while (size < obj_priv->base.size)
1514 size <<= 1;
de151cf6 1515
a00b10c3 1516 return size;
de151cf6
JB
1517}
1518
1519/**
1520 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1521 * @dev: DRM device
1522 * @data: GTT mapping ioctl data
1523 * @file_priv: GEM object info
1524 *
1525 * Simply returns the fake offset to userspace so it can mmap it.
1526 * The mmap call will end up in drm_gem_mmap(), which will set things
1527 * up so we can get faults in the handler above.
1528 *
1529 * The fault handler will take care of binding the object into the GTT
1530 * (since it may have been evicted to make room for something), allocating
1531 * a fence register, and mapping the appropriate aperture address into
1532 * userspace.
1533 */
1534int
1535i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1536 struct drm_file *file_priv)
1537{
da761a6e 1538 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 1539 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1540 struct drm_gem_object *obj;
1541 struct drm_i915_gem_object *obj_priv;
1542 int ret;
1543
1544 if (!(dev->driver->driver_features & DRIVER_GEM))
1545 return -ENODEV;
1546
76c1dec1 1547 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1548 if (ret)
76c1dec1 1549 return ret;
de151cf6 1550
1d7cfea1
CW
1551 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1552 if (obj == NULL) {
1553 ret = -ENOENT;
1554 goto unlock;
1555 }
23010e43 1556 obj_priv = to_intel_bo(obj);
de151cf6 1557
da761a6e
CW
1558 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1559 ret = -E2BIG;
1560 goto unlock;
1561 }
1562
ab18282d
CW
1563 if (obj_priv->madv != I915_MADV_WILLNEED) {
1564 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1565 ret = -EINVAL;
1566 goto out;
ab18282d
CW
1567 }
1568
39a01d1f 1569 if (!obj->map_list.map) {
de151cf6 1570 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1571 if (ret)
1572 goto out;
de151cf6
JB
1573 }
1574
39a01d1f 1575 args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
de151cf6 1576
1d7cfea1 1577out:
de151cf6 1578 drm_gem_object_unreference(obj);
1d7cfea1 1579unlock:
de151cf6 1580 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1581 return ret;
de151cf6
JB
1582}
1583
e5281ccd
CW
1584static int
1585i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
1586 gfp_t gfpmask)
1587{
1588 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1589 int page_count, i;
1590 struct address_space *mapping;
1591 struct inode *inode;
1592 struct page *page;
1593
1594 /* Get the list of pages out of our struct file. They'll be pinned
1595 * at this point until we release them.
1596 */
1597 page_count = obj->size / PAGE_SIZE;
1598 BUG_ON(obj_priv->pages != NULL);
1599 obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1600 if (obj_priv->pages == NULL)
1601 return -ENOMEM;
1602
1603 inode = obj->filp->f_path.dentry->d_inode;
1604 mapping = inode->i_mapping;
1605 for (i = 0; i < page_count; i++) {
1606 page = read_cache_page_gfp(mapping, i,
1607 GFP_HIGHUSER |
1608 __GFP_COLD |
1609 __GFP_RECLAIMABLE |
1610 gfpmask);
1611 if (IS_ERR(page))
1612 goto err_pages;
1613
1614 obj_priv->pages[i] = page;
1615 }
1616
1617 if (obj_priv->tiling_mode != I915_TILING_NONE)
1618 i915_gem_object_do_bit_17_swizzle(obj);
1619
1620 return 0;
1621
1622err_pages:
1623 while (i--)
1624 page_cache_release(obj_priv->pages[i]);
1625
1626 drm_free_large(obj_priv->pages);
1627 obj_priv->pages = NULL;
1628 return PTR_ERR(page);
1629}
1630
5cdf5881 1631static void
e5281ccd 1632i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
673a394b 1633{
23010e43 1634 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1635 int page_count = obj->size / PAGE_SIZE;
1636 int i;
1637
bb6baf76 1638 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1639
280b713b
EA
1640 if (obj_priv->tiling_mode != I915_TILING_NONE)
1641 i915_gem_object_save_bit_17_swizzle(obj);
1642
3ef94daa 1643 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1644 obj_priv->dirty = 0;
3ef94daa
CW
1645
1646 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1647 if (obj_priv->dirty)
1648 set_page_dirty(obj_priv->pages[i]);
1649
1650 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1651 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1652
1653 page_cache_release(obj_priv->pages[i]);
1654 }
673a394b
EA
1655 obj_priv->dirty = 0;
1656
8e7d2b2c 1657 drm_free_large(obj_priv->pages);
856fa198 1658 obj_priv->pages = NULL;
673a394b
EA
1659}
1660
a56ba56c
CW
1661static uint32_t
1662i915_gem_next_request_seqno(struct drm_device *dev,
1663 struct intel_ring_buffer *ring)
1664{
1665 drm_i915_private_t *dev_priv = dev->dev_private;
1666
1667 ring->outstanding_lazy_request = true;
1668 return dev_priv->next_seqno;
1669}
1670
673a394b 1671static void
617dbe27 1672i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1673 struct intel_ring_buffer *ring)
673a394b
EA
1674{
1675 struct drm_device *dev = obj->dev;
69dc4987 1676 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1677 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1678 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1679
852835f3
ZN
1680 BUG_ON(ring == NULL);
1681 obj_priv->ring = ring;
673a394b
EA
1682
1683 /* Add a reference if we're newly entering the active list. */
1684 if (!obj_priv->active) {
1685 drm_gem_object_reference(obj);
1686 obj_priv->active = 1;
1687 }
e35a41de 1688
673a394b 1689 /* Move from whatever list we were on to the tail of execution. */
69dc4987
CW
1690 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1691 list_move_tail(&obj_priv->ring_list, &ring->active_list);
ce44b0ea 1692 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1693}
1694
ce44b0ea
EA
1695static void
1696i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1697{
1698 struct drm_device *dev = obj->dev;
1699 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1700 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1701
1702 BUG_ON(!obj_priv->active);
69dc4987
CW
1703 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1704 list_del_init(&obj_priv->ring_list);
ce44b0ea
EA
1705 obj_priv->last_rendering_seqno = 0;
1706}
673a394b 1707
963b4836
CW
1708/* Immediately discard the backing storage */
1709static void
1710i915_gem_object_truncate(struct drm_gem_object *obj)
1711{
23010e43 1712 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1713 struct inode *inode;
963b4836 1714
ae9fed6b
CW
1715 /* Our goal here is to return as much of the memory as
1716 * is possible back to the system as we are called from OOM.
1717 * To do this we must instruct the shmfs to drop all of its
1718 * backing pages, *now*. Here we mirror the actions taken
1719 * when by shmem_delete_inode() to release the backing store.
1720 */
bb6baf76 1721 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1722 truncate_inode_pages(inode->i_mapping, 0);
1723 if (inode->i_op->truncate_range)
1724 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1725
1726 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1727}
1728
1729static inline int
1730i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1731{
1732 return obj_priv->madv == I915_MADV_DONTNEED;
1733}
1734
673a394b
EA
1735static void
1736i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1737{
1738 struct drm_device *dev = obj->dev;
1739 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1740 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 1741
673a394b 1742 if (obj_priv->pin_count != 0)
69dc4987 1743 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
673a394b 1744 else
69dc4987
CW
1745 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1746 list_del_init(&obj_priv->ring_list);
673a394b 1747
99fcb766
DV
1748 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1749
ce44b0ea 1750 obj_priv->last_rendering_seqno = 0;
852835f3 1751 obj_priv->ring = NULL;
673a394b
EA
1752 if (obj_priv->active) {
1753 obj_priv->active = 0;
1754 drm_gem_object_unreference(obj);
1755 }
23bc5982 1756 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1757}
1758
63560396
DV
1759static void
1760i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1761 uint32_t flush_domains,
852835f3 1762 struct intel_ring_buffer *ring)
63560396
DV
1763{
1764 drm_i915_private_t *dev_priv = dev->dev_private;
1765 struct drm_i915_gem_object *obj_priv, *next;
1766
1767 list_for_each_entry_safe(obj_priv, next,
64193406 1768 &ring->gpu_write_list,
63560396 1769 gpu_write_list) {
a8089e84 1770 struct drm_gem_object *obj = &obj_priv->base;
63560396 1771
64193406 1772 if (obj->write_domain & flush_domains) {
63560396
DV
1773 uint32_t old_write_domain = obj->write_domain;
1774
1775 obj->write_domain = 0;
1776 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1777 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1778
1779 /* update the fence lru list */
007cc8ac
DV
1780 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1781 struct drm_i915_fence_reg *reg =
1782 &dev_priv->fence_regs[obj_priv->fence_reg];
1783 list_move_tail(&reg->lru_list,
63560396 1784 &dev_priv->mm.fence_list);
007cc8ac 1785 }
63560396
DV
1786
1787 trace_i915_gem_object_change_domain(obj,
1788 obj->read_domains,
1789 old_write_domain);
1790 }
1791 }
1792}
8187a2b7 1793
3cce469c 1794int
8a1a49f9 1795i915_add_request(struct drm_device *dev,
f787a5f5 1796 struct drm_file *file,
8dc5d147 1797 struct drm_i915_gem_request *request,
8a1a49f9 1798 struct intel_ring_buffer *ring)
673a394b
EA
1799{
1800 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1801 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1802 uint32_t seqno;
1803 int was_empty;
3cce469c
CW
1804 int ret;
1805
1806 BUG_ON(request == NULL);
673a394b 1807
f787a5f5
CW
1808 if (file != NULL)
1809 file_priv = file->driver_priv;
b962442e 1810
3cce469c
CW
1811 ret = ring->add_request(ring, &seqno);
1812 if (ret)
1813 return ret;
673a394b 1814
a56ba56c 1815 ring->outstanding_lazy_request = false;
673a394b
EA
1816
1817 request->seqno = seqno;
852835f3 1818 request->ring = ring;
673a394b 1819 request->emitted_jiffies = jiffies;
852835f3
ZN
1820 was_empty = list_empty(&ring->request_list);
1821 list_add_tail(&request->list, &ring->request_list);
1822
f787a5f5 1823 if (file_priv) {
1c25595f 1824 spin_lock(&file_priv->mm.lock);
f787a5f5 1825 request->file_priv = file_priv;
b962442e 1826 list_add_tail(&request->client_list,
f787a5f5 1827 &file_priv->mm.request_list);
1c25595f 1828 spin_unlock(&file_priv->mm.lock);
b962442e 1829 }
673a394b 1830
f65d9421 1831 if (!dev_priv->mm.suspended) {
b3b079db
CW
1832 mod_timer(&dev_priv->hangcheck_timer,
1833 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1834 if (was_empty)
b3b079db
CW
1835 queue_delayed_work(dev_priv->wq,
1836 &dev_priv->mm.retire_work, HZ);
f65d9421 1837 }
3cce469c 1838 return 0;
673a394b
EA
1839}
1840
1841/**
1842 * Command execution barrier
1843 *
1844 * Ensures that all commands in the ring are finished
1845 * before signalling the CPU
1846 */
8a1a49f9 1847static void
852835f3 1848i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1849{
673a394b 1850 uint32_t flush_domains = 0;
673a394b
EA
1851
1852 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1853 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1854 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3 1855
78501eac 1856 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1857}
1858
f787a5f5
CW
1859static inline void
1860i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1861{
1c25595f 1862 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1863
1c25595f
CW
1864 if (!file_priv)
1865 return;
1c5d22f7 1866
1c25595f
CW
1867 spin_lock(&file_priv->mm.lock);
1868 list_del(&request->client_list);
1869 request->file_priv = NULL;
1870 spin_unlock(&file_priv->mm.lock);
673a394b 1871}
673a394b 1872
dfaae392
CW
1873static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1874 struct intel_ring_buffer *ring)
9375e446 1875{
dfaae392
CW
1876 while (!list_empty(&ring->request_list)) {
1877 struct drm_i915_gem_request *request;
673a394b 1878
dfaae392
CW
1879 request = list_first_entry(&ring->request_list,
1880 struct drm_i915_gem_request,
1881 list);
de151cf6 1882
dfaae392 1883 list_del(&request->list);
f787a5f5 1884 i915_gem_request_remove_from_client(request);
dfaae392
CW
1885 kfree(request);
1886 }
673a394b 1887
dfaae392 1888 while (!list_empty(&ring->active_list)) {
9375e446
CW
1889 struct drm_i915_gem_object *obj_priv;
1890
dfaae392 1891 obj_priv = list_first_entry(&ring->active_list,
9375e446 1892 struct drm_i915_gem_object,
69dc4987 1893 ring_list);
9375e446
CW
1894
1895 obj_priv->base.write_domain = 0;
dfaae392 1896 list_del_init(&obj_priv->gpu_write_list);
9375e446 1897 i915_gem_object_move_to_inactive(&obj_priv->base);
673a394b
EA
1898 }
1899}
1900
069efc1d 1901void i915_gem_reset(struct drm_device *dev)
673a394b 1902{
77f01230
CW
1903 struct drm_i915_private *dev_priv = dev->dev_private;
1904 struct drm_i915_gem_object *obj_priv;
069efc1d 1905 int i;
673a394b 1906
dfaae392 1907 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1908 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
549f7365 1909 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
dfaae392
CW
1910
1911 /* Remove anything from the flushing lists. The GPU cache is likely
1912 * to be lost on reset along with the data, so simply move the
1913 * lost bo to the inactive list.
1914 */
1915 while (!list_empty(&dev_priv->mm.flushing_list)) {
1916 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1917 struct drm_i915_gem_object,
69dc4987 1918 mm_list);
dfaae392
CW
1919
1920 obj_priv->base.write_domain = 0;
1921 list_del_init(&obj_priv->gpu_write_list);
1922 i915_gem_object_move_to_inactive(&obj_priv->base);
1923 }
1924
1925 /* Move everything out of the GPU domains to ensure we do any
1926 * necessary invalidation upon reuse.
1927 */
77f01230
CW
1928 list_for_each_entry(obj_priv,
1929 &dev_priv->mm.inactive_list,
69dc4987 1930 mm_list)
77f01230
CW
1931 {
1932 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1933 }
069efc1d
CW
1934
1935 /* The fence registers are invalidated so clear them out */
1936 for (i = 0; i < 16; i++) {
1937 struct drm_i915_fence_reg *reg;
1938
1939 reg = &dev_priv->fence_regs[i];
1940 if (!reg->obj)
1941 continue;
1942
1943 i915_gem_clear_fence_reg(reg->obj);
1944 }
673a394b
EA
1945}
1946
1947/**
1948 * This function clears the request list as sequence numbers are passed.
1949 */
b09a1fec
CW
1950static void
1951i915_gem_retire_requests_ring(struct drm_device *dev,
1952 struct intel_ring_buffer *ring)
673a394b
EA
1953{
1954 drm_i915_private_t *dev_priv = dev->dev_private;
1955 uint32_t seqno;
1956
b84d5f0c
CW
1957 if (!ring->status_page.page_addr ||
1958 list_empty(&ring->request_list))
6c0594a3
KW
1959 return;
1960
23bc5982 1961 WARN_ON(i915_verify_lists(dev));
673a394b 1962
78501eac 1963 seqno = ring->get_seqno(ring);
852835f3 1964 while (!list_empty(&ring->request_list)) {
673a394b 1965 struct drm_i915_gem_request *request;
673a394b 1966
852835f3 1967 request = list_first_entry(&ring->request_list,
673a394b
EA
1968 struct drm_i915_gem_request,
1969 list);
673a394b 1970
dfaae392 1971 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1972 break;
1973
1974 trace_i915_gem_request_retire(dev, request->seqno);
1975
1976 list_del(&request->list);
f787a5f5 1977 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1978 kfree(request);
1979 }
673a394b 1980
b84d5f0c
CW
1981 /* Move any buffers on the active list that are no longer referenced
1982 * by the ringbuffer to the flushing/inactive lists as appropriate.
1983 */
1984 while (!list_empty(&ring->active_list)) {
1985 struct drm_gem_object *obj;
1986 struct drm_i915_gem_object *obj_priv;
1987
1988 obj_priv = list_first_entry(&ring->active_list,
1989 struct drm_i915_gem_object,
69dc4987 1990 ring_list);
673a394b 1991
dfaae392 1992 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1993 break;
b84d5f0c
CW
1994
1995 obj = &obj_priv->base;
b84d5f0c
CW
1996 if (obj->write_domain != 0)
1997 i915_gem_object_move_to_flushing(obj);
1998 else
1999 i915_gem_object_move_to_inactive(obj);
673a394b 2000 }
9d34e5db
CW
2001
2002 if (unlikely (dev_priv->trace_irq_seqno &&
2003 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
78501eac 2004 ring->user_irq_put(ring);
9d34e5db
CW
2005 dev_priv->trace_irq_seqno = 0;
2006 }
23bc5982
CW
2007
2008 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2009}
2010
b09a1fec
CW
2011void
2012i915_gem_retire_requests(struct drm_device *dev)
2013{
2014 drm_i915_private_t *dev_priv = dev->dev_private;
2015
be72615b
CW
2016 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
2017 struct drm_i915_gem_object *obj_priv, *tmp;
2018
2019 /* We must be careful that during unbind() we do not
2020 * accidentally infinitely recurse into retire requests.
2021 * Currently:
2022 * retire -> free -> unbind -> wait -> retire_ring
2023 */
2024 list_for_each_entry_safe(obj_priv, tmp,
2025 &dev_priv->mm.deferred_free_list,
69dc4987 2026 mm_list)
be72615b
CW
2027 i915_gem_free_object_tail(&obj_priv->base);
2028 }
2029
b09a1fec 2030 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 2031 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
549f7365 2032 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
b09a1fec
CW
2033}
2034
75ef9da2 2035static void
673a394b
EA
2036i915_gem_retire_work_handler(struct work_struct *work)
2037{
2038 drm_i915_private_t *dev_priv;
2039 struct drm_device *dev;
2040
2041 dev_priv = container_of(work, drm_i915_private_t,
2042 mm.retire_work.work);
2043 dev = dev_priv->dev;
2044
891b48cf
CW
2045 /* Come back later if the device is busy... */
2046 if (!mutex_trylock(&dev->struct_mutex)) {
2047 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2048 return;
2049 }
2050
b09a1fec 2051 i915_gem_retire_requests(dev);
d1b851fc 2052
6dbe2772 2053 if (!dev_priv->mm.suspended &&
d1b851fc 2054 (!list_empty(&dev_priv->render_ring.request_list) ||
549f7365
CW
2055 !list_empty(&dev_priv->bsd_ring.request_list) ||
2056 !list_empty(&dev_priv->blt_ring.request_list)))
9c9fe1f8 2057 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
2058 mutex_unlock(&dev->struct_mutex);
2059}
2060
5a5a0c64 2061int
852835f3 2062i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 2063 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
2064{
2065 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 2066 u32 ier;
673a394b
EA
2067 int ret = 0;
2068
2069 BUG_ON(seqno == 0);
2070
ba1234d1 2071 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
2072 return -EAGAIN;
2073
a56ba56c 2074 if (ring->outstanding_lazy_request) {
3cce469c
CW
2075 struct drm_i915_gem_request *request;
2076
2077 request = kzalloc(sizeof(*request), GFP_KERNEL);
2078 if (request == NULL)
e35a41de 2079 return -ENOMEM;
3cce469c
CW
2080
2081 ret = i915_add_request(dev, NULL, request, ring);
2082 if (ret) {
2083 kfree(request);
2084 return ret;
2085 }
2086
2087 seqno = request->seqno;
e35a41de 2088 }
a56ba56c 2089 BUG_ON(seqno == dev_priv->next_seqno);
ffed1d09 2090
78501eac 2091 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
bad720ff 2092 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
2093 ier = I915_READ(DEIER) | I915_READ(GTIER);
2094 else
2095 ier = I915_READ(IER);
802c7eb6
JB
2096 if (!ier) {
2097 DRM_ERROR("something (likely vbetool) disabled "
2098 "interrupts, re-enabling\n");
2099 i915_driver_irq_preinstall(dev);
2100 i915_driver_irq_postinstall(dev);
2101 }
2102
1c5d22f7
CW
2103 trace_i915_gem_request_wait_begin(dev, seqno);
2104
b2223497 2105 ring->waiting_seqno = seqno;
78501eac 2106 ring->user_irq_get(ring);
48764bf4 2107 if (interruptible)
852835f3 2108 ret = wait_event_interruptible(ring->irq_queue,
78501eac 2109 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2110 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2111 else
852835f3 2112 wait_event(ring->irq_queue,
78501eac 2113 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2114 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2115
78501eac 2116 ring->user_irq_put(ring);
b2223497 2117 ring->waiting_seqno = 0;
1c5d22f7
CW
2118
2119 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2120 }
ba1234d1 2121 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2122 ret = -EAGAIN;
673a394b
EA
2123
2124 if (ret && ret != -ERESTARTSYS)
8bff917c 2125 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2126 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2127 dev_priv->next_seqno);
673a394b
EA
2128
2129 /* Directly dispatch request retiring. While we have the work queue
2130 * to handle this, the waiter on a request often wants an associated
2131 * buffer to have made it to the inactive list, and we would need
2132 * a separate wait queue to handle that.
2133 */
2134 if (ret == 0)
b09a1fec 2135 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2136
2137 return ret;
2138}
2139
48764bf4
DV
2140/**
2141 * Waits for a sequence number to be signaled, and cleans up the
2142 * request and object lists appropriately for that event.
2143 */
2144static int
852835f3 2145i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2146 struct intel_ring_buffer *ring)
48764bf4 2147{
852835f3 2148 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2149}
2150
20f0cd55 2151static void
9220434a 2152i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2153 struct drm_file *file_priv,
9220434a
CW
2154 struct intel_ring_buffer *ring,
2155 uint32_t invalidate_domains,
2156 uint32_t flush_domains)
2157{
78501eac 2158 ring->flush(ring, invalidate_domains, flush_domains);
9220434a
CW
2159 i915_gem_process_flushing_list(dev, flush_domains, ring);
2160}
2161
8187a2b7
ZN
2162static void
2163i915_gem_flush(struct drm_device *dev,
c78ec30b 2164 struct drm_file *file_priv,
8187a2b7 2165 uint32_t invalidate_domains,
9220434a
CW
2166 uint32_t flush_domains,
2167 uint32_t flush_rings)
8187a2b7
ZN
2168{
2169 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2170
8187a2b7
ZN
2171 if (flush_domains & I915_GEM_DOMAIN_CPU)
2172 drm_agp_chipset_flush(dev);
8bff917c 2173
9220434a
CW
2174 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2175 if (flush_rings & RING_RENDER)
c78ec30b 2176 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2177 &dev_priv->render_ring,
2178 invalidate_domains, flush_domains);
2179 if (flush_rings & RING_BSD)
c78ec30b 2180 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2181 &dev_priv->bsd_ring,
2182 invalidate_domains, flush_domains);
549f7365
CW
2183 if (flush_rings & RING_BLT)
2184 i915_gem_flush_ring(dev, file_priv,
2185 &dev_priv->blt_ring,
2186 invalidate_domains, flush_domains);
9220434a 2187 }
8187a2b7
ZN
2188}
2189
673a394b
EA
2190/**
2191 * Ensures that all rendering to the object has completed and the object is
2192 * safe to unbind from the GTT or access from the CPU.
2193 */
2194static int
2cf34d7b
CW
2195i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2196 bool interruptible)
673a394b
EA
2197{
2198 struct drm_device *dev = obj->dev;
23010e43 2199 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2200 int ret;
2201
e47c68e9
EA
2202 /* This function only exists to support waiting for existing rendering,
2203 * not for emitting required flushes.
673a394b 2204 */
e47c68e9 2205 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2206
2207 /* If there is rendering queued on the buffer being evicted, wait for
2208 * it.
2209 */
2210 if (obj_priv->active) {
2cf34d7b
CW
2211 ret = i915_do_wait_request(dev,
2212 obj_priv->last_rendering_seqno,
2213 interruptible,
2214 obj_priv->ring);
2215 if (ret)
673a394b
EA
2216 return ret;
2217 }
2218
2219 return 0;
2220}
2221
2222/**
2223 * Unbinds an object from the GTT aperture.
2224 */
0f973f27 2225int
673a394b
EA
2226i915_gem_object_unbind(struct drm_gem_object *obj)
2227{
2228 struct drm_device *dev = obj->dev;
73aa808f 2229 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2230 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2231 int ret = 0;
2232
673a394b
EA
2233 if (obj_priv->gtt_space == NULL)
2234 return 0;
2235
2236 if (obj_priv->pin_count != 0) {
2237 DRM_ERROR("Attempting to unbind pinned buffer\n");
2238 return -EINVAL;
2239 }
2240
5323fd04
EA
2241 /* blow away mappings if mapped through GTT */
2242 i915_gem_release_mmap(obj);
2243
673a394b
EA
2244 /* Move the object to the CPU domain to ensure that
2245 * any possible CPU writes while it's not in the GTT
2246 * are flushed when we go to remap it. This will
2247 * also ensure that all pending GPU writes are finished
2248 * before we unbind.
2249 */
e47c68e9 2250 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2251 if (ret == -ERESTARTSYS)
673a394b 2252 return ret;
8dc1775d
CW
2253 /* Continue on if we fail due to EIO, the GPU is hung so we
2254 * should be safe and we need to cleanup or else we might
2255 * cause memory corruption through use-after-free.
2256 */
812ed492
CW
2257 if (ret) {
2258 i915_gem_clflush_object(obj);
2259 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2260 }
673a394b 2261
96b47b65
DV
2262 /* release the fence reg _after_ flushing */
2263 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2264 i915_gem_clear_fence_reg(obj);
2265
73aa808f
CW
2266 drm_unbind_agp(obj_priv->agp_mem);
2267 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
673a394b 2268
e5281ccd 2269 i915_gem_object_put_pages_gtt(obj);
673a394b 2270
a00b10c3 2271 i915_gem_info_remove_gtt(dev_priv, obj_priv);
69dc4987 2272 list_del_init(&obj_priv->mm_list);
75e9e915
DV
2273 /* Avoid an unnecessary call to unbind on rebind. */
2274 obj_priv->map_and_fenceable = true;
673a394b 2275
73aa808f
CW
2276 drm_mm_put_block(obj_priv->gtt_space);
2277 obj_priv->gtt_space = NULL;
9af90d19 2278 obj_priv->gtt_offset = 0;
673a394b 2279
963b4836
CW
2280 if (i915_gem_object_is_purgeable(obj_priv))
2281 i915_gem_object_truncate(obj);
2282
1c5d22f7
CW
2283 trace_i915_gem_object_unbind(obj);
2284
8dc1775d 2285 return ret;
673a394b
EA
2286}
2287
a56ba56c
CW
2288static int i915_ring_idle(struct drm_device *dev,
2289 struct intel_ring_buffer *ring)
2290{
395b70be 2291 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2292 return 0;
2293
a56ba56c
CW
2294 i915_gem_flush_ring(dev, NULL, ring,
2295 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2296 return i915_wait_request(dev,
2297 i915_gem_next_request_seqno(dev, ring),
2298 ring);
2299}
2300
b47eb4a2 2301int
4df2faf4
DV
2302i915_gpu_idle(struct drm_device *dev)
2303{
2304 drm_i915_private_t *dev_priv = dev->dev_private;
2305 bool lists_empty;
852835f3 2306 int ret;
4df2faf4 2307
d1b851fc 2308 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2309 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2310 if (lists_empty)
2311 return 0;
2312
2313 /* Flush everything onto the inactive list. */
a56ba56c 2314 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2315 if (ret)
2316 return ret;
d1b851fc 2317
87acb0a5
CW
2318 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2319 if (ret)
2320 return ret;
d1b851fc 2321
549f7365
CW
2322 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2323 if (ret)
2324 return ret;
4df2faf4 2325
8a1a49f9 2326 return 0;
4df2faf4
DV
2327}
2328
a00b10c3 2329static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
4e901fdc 2330{
4e901fdc
EA
2331 struct drm_device *dev = obj->dev;
2332 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2333 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3 2334 u32 size = i915_gem_get_gtt_size(obj_priv);
4e901fdc
EA
2335 int regnum = obj_priv->fence_reg;
2336 uint64_t val;
2337
a00b10c3 2338 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
4e901fdc
EA
2339 0xfffff000) << 32;
2340 val |= obj_priv->gtt_offset & 0xfffff000;
2341 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2342 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2343
2344 if (obj_priv->tiling_mode == I915_TILING_Y)
2345 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2346 val |= I965_FENCE_REG_VALID;
2347
2348 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2349}
2350
a00b10c3 2351static void i965_write_fence_reg(struct drm_gem_object *obj)
de151cf6 2352{
de151cf6
JB
2353 struct drm_device *dev = obj->dev;
2354 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2355 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3 2356 u32 size = i915_gem_get_gtt_size(obj_priv);
de151cf6
JB
2357 int regnum = obj_priv->fence_reg;
2358 uint64_t val;
2359
a00b10c3 2360 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
de151cf6
JB
2361 0xfffff000) << 32;
2362 val |= obj_priv->gtt_offset & 0xfffff000;
2363 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2364 if (obj_priv->tiling_mode == I915_TILING_Y)
2365 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2366 val |= I965_FENCE_REG_VALID;
2367
2368 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2369}
2370
a00b10c3 2371static void i915_write_fence_reg(struct drm_gem_object *obj)
de151cf6 2372{
de151cf6
JB
2373 struct drm_device *dev = obj->dev;
2374 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2375 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3
CW
2376 u32 size = i915_gem_get_gtt_size(obj_priv);
2377 uint32_t fence_reg, val, pitch_val;
0f973f27 2378 int tile_width;
de151cf6
JB
2379
2380 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
a00b10c3
CW
2381 (obj_priv->gtt_offset & (size - 1))) {
2382 WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
75e9e915 2383 __func__, obj_priv->gtt_offset, obj_priv->map_and_fenceable, size,
a00b10c3 2384 obj_priv->gtt_space->start, obj_priv->gtt_space->size);
de151cf6
JB
2385 return;
2386 }
2387
0f973f27
JB
2388 if (obj_priv->tiling_mode == I915_TILING_Y &&
2389 HAS_128_BYTE_Y_TILING(dev))
2390 tile_width = 128;
de151cf6 2391 else
0f973f27
JB
2392 tile_width = 512;
2393
2394 /* Note: pitch better be a power of two tile widths */
2395 pitch_val = obj_priv->stride / tile_width;
2396 pitch_val = ffs(pitch_val) - 1;
de151cf6 2397
c36a2a6d
DV
2398 if (obj_priv->tiling_mode == I915_TILING_Y &&
2399 HAS_128_BYTE_Y_TILING(dev))
2400 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2401 else
2402 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2403
de151cf6
JB
2404 val = obj_priv->gtt_offset;
2405 if (obj_priv->tiling_mode == I915_TILING_Y)
2406 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2407 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2408 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2409 val |= I830_FENCE_REG_VALID;
2410
a00b10c3
CW
2411 fence_reg = obj_priv->fence_reg;
2412 if (fence_reg < 8)
2413 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2414 else
a00b10c3 2415 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2416 I915_WRITE(fence_reg, val);
de151cf6
JB
2417}
2418
a00b10c3 2419static void i830_write_fence_reg(struct drm_gem_object *obj)
de151cf6 2420{
de151cf6
JB
2421 struct drm_device *dev = obj->dev;
2422 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2423 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3 2424 u32 size = i915_gem_get_gtt_size(obj_priv);
de151cf6
JB
2425 int regnum = obj_priv->fence_reg;
2426 uint32_t val;
2427 uint32_t pitch_val;
8d7773a3 2428 uint32_t fence_size_bits;
de151cf6 2429
8d7773a3 2430 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2431 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2432 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2433 __func__, obj_priv->gtt_offset);
de151cf6
JB
2434 return;
2435 }
2436
e76a16de
EA
2437 pitch_val = obj_priv->stride / 128;
2438 pitch_val = ffs(pitch_val) - 1;
2439 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2440
de151cf6
JB
2441 val = obj_priv->gtt_offset;
2442 if (obj_priv->tiling_mode == I915_TILING_Y)
2443 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2444 fence_size_bits = I830_FENCE_SIZE_BITS(size);
8d7773a3
DV
2445 WARN_ON(fence_size_bits & ~0x00000f00);
2446 val |= fence_size_bits;
de151cf6
JB
2447 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2448 val |= I830_FENCE_REG_VALID;
2449
2450 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2451}
2452
2cf34d7b
CW
2453static int i915_find_fence_reg(struct drm_device *dev,
2454 bool interruptible)
ae3db24a 2455{
ae3db24a 2456 struct drm_i915_private *dev_priv = dev->dev_private;
a00b10c3
CW
2457 struct drm_i915_fence_reg *reg;
2458 struct drm_i915_gem_object *obj_priv = NULL;
ae3db24a
DV
2459 int i, avail, ret;
2460
2461 /* First try to find a free reg */
2462 avail = 0;
2463 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2464 reg = &dev_priv->fence_regs[i];
2465 if (!reg->obj)
2466 return i;
2467
23010e43 2468 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2469 if (!obj_priv->pin_count)
2470 avail++;
2471 }
2472
2473 if (avail == 0)
2474 return -ENOSPC;
2475
2476 /* None available, try to steal one or wait for a user to finish */
a00b10c3 2477 avail = I915_FENCE_REG_NONE;
007cc8ac
DV
2478 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2479 lru_list) {
a00b10c3 2480 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2481 if (obj_priv->pin_count)
2482 continue;
2483
2484 /* found one! */
a00b10c3 2485 avail = obj_priv->fence_reg;
ae3db24a
DV
2486 break;
2487 }
2488
a00b10c3 2489 BUG_ON(avail == I915_FENCE_REG_NONE);
ae3db24a
DV
2490
2491 /* We only have a reference on obj from the active list. put_fence_reg
2492 * might drop that one, causing a use-after-free in it. So hold a
2493 * private reference to obj like the other callers of put_fence_reg
2494 * (set_tiling ioctl) do. */
a00b10c3
CW
2495 drm_gem_object_reference(&obj_priv->base);
2496 ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
2497 drm_gem_object_unreference(&obj_priv->base);
ae3db24a
DV
2498 if (ret != 0)
2499 return ret;
2500
a00b10c3 2501 return avail;
ae3db24a
DV
2502}
2503
de151cf6
JB
2504/**
2505 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2506 * @obj: object to map through a fence reg
2507 *
2508 * When mapping objects through the GTT, userspace wants to be able to write
2509 * to them without having to worry about swizzling if the object is tiled.
2510 *
2511 * This function walks the fence regs looking for a free one for @obj,
2512 * stealing one if it can't find any.
2513 *
2514 * It then sets up the reg based on the object's properties: address, pitch
2515 * and tiling format.
2516 */
8c4b8c3f 2517int
2cf34d7b
CW
2518i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2519 bool interruptible)
de151cf6
JB
2520{
2521 struct drm_device *dev = obj->dev;
79e53945 2522 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2523 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2524 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2525 int ret;
de151cf6 2526
a09ba7fa
EA
2527 /* Just update our place in the LRU if our fence is getting used. */
2528 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2529 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2530 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2531 return 0;
2532 }
2533
de151cf6
JB
2534 switch (obj_priv->tiling_mode) {
2535 case I915_TILING_NONE:
2536 WARN(1, "allocating a fence for non-tiled object?\n");
2537 break;
2538 case I915_TILING_X:
0f973f27
JB
2539 if (!obj_priv->stride)
2540 return -EINVAL;
2541 WARN((obj_priv->stride & (512 - 1)),
2542 "object 0x%08x is X tiled but has non-512B pitch\n",
2543 obj_priv->gtt_offset);
de151cf6
JB
2544 break;
2545 case I915_TILING_Y:
0f973f27
JB
2546 if (!obj_priv->stride)
2547 return -EINVAL;
2548 WARN((obj_priv->stride & (128 - 1)),
2549 "object 0x%08x is Y tiled but has non-128B pitch\n",
2550 obj_priv->gtt_offset);
de151cf6
JB
2551 break;
2552 }
2553
2cf34d7b 2554 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2555 if (ret < 0)
2556 return ret;
de151cf6 2557
ae3db24a
DV
2558 obj_priv->fence_reg = ret;
2559 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2560 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2561
de151cf6
JB
2562 reg->obj = obj;
2563
e259befd
CW
2564 switch (INTEL_INFO(dev)->gen) {
2565 case 6:
a00b10c3 2566 sandybridge_write_fence_reg(obj);
e259befd
CW
2567 break;
2568 case 5:
2569 case 4:
a00b10c3 2570 i965_write_fence_reg(obj);
e259befd
CW
2571 break;
2572 case 3:
a00b10c3 2573 i915_write_fence_reg(obj);
e259befd
CW
2574 break;
2575 case 2:
a00b10c3 2576 i830_write_fence_reg(obj);
e259befd
CW
2577 break;
2578 }
d9ddcb96 2579
a00b10c3
CW
2580 trace_i915_gem_object_get_fence(obj,
2581 obj_priv->fence_reg,
2582 obj_priv->tiling_mode);
1c5d22f7 2583
d9ddcb96 2584 return 0;
de151cf6
JB
2585}
2586
2587/**
2588 * i915_gem_clear_fence_reg - clear out fence register info
2589 * @obj: object to clear
2590 *
2591 * Zeroes out the fence register itself and clears out the associated
2592 * data structures in dev_priv and obj_priv.
2593 */
2594static void
2595i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2596{
2597 struct drm_device *dev = obj->dev;
79e53945 2598 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2599 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2600 struct drm_i915_fence_reg *reg =
2601 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2602 uint32_t fence_reg;
de151cf6 2603
e259befd
CW
2604 switch (INTEL_INFO(dev)->gen) {
2605 case 6:
4e901fdc
EA
2606 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2607 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2608 break;
2609 case 5:
2610 case 4:
de151cf6 2611 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2612 break;
2613 case 3:
9b74f734 2614 if (obj_priv->fence_reg >= 8)
e259befd 2615 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2616 else
e259befd
CW
2617 case 2:
2618 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2619
2620 I915_WRITE(fence_reg, 0);
e259befd 2621 break;
dc529a4f 2622 }
de151cf6 2623
007cc8ac 2624 reg->obj = NULL;
de151cf6 2625 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2626 list_del_init(&reg->lru_list);
de151cf6
JB
2627}
2628
52dc7d32
CW
2629/**
2630 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2631 * to the buffer to finish, and then resets the fence register.
2632 * @obj: tiled object holding a fence register.
2cf34d7b 2633 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2634 *
2635 * Zeroes out the fence register itself and clears out the associated
2636 * data structures in dev_priv and obj_priv.
2637 */
2638int
2cf34d7b
CW
2639i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2640 bool interruptible)
52dc7d32
CW
2641{
2642 struct drm_device *dev = obj->dev;
53640e1d 2643 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2644 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2645 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2646
2647 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2648 return 0;
2649
10ae9bd2
DV
2650 /* If we've changed tiling, GTT-mappings of the object
2651 * need to re-fault to ensure that the correct fence register
2652 * setup is in place.
2653 */
2654 i915_gem_release_mmap(obj);
2655
52dc7d32
CW
2656 /* On the i915, GPU access to tiled buffers is via a fence,
2657 * therefore we must wait for any outstanding access to complete
2658 * before clearing the fence.
2659 */
53640e1d
CW
2660 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2661 if (reg->gpu) {
52dc7d32
CW
2662 int ret;
2663
2cf34d7b 2664 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad 2665 if (ret)
2dafb1e0
CW
2666 return ret;
2667
2cf34d7b 2668 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2669 if (ret)
52dc7d32 2670 return ret;
53640e1d
CW
2671
2672 reg->gpu = false;
52dc7d32
CW
2673 }
2674
4a726612 2675 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2676 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2677
2678 return 0;
2679}
2680
673a394b
EA
2681/**
2682 * Finds free space in the GTT aperture and binds the object there.
2683 */
2684static int
920afa77
DV
2685i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2686 unsigned alignment,
75e9e915 2687 bool map_and_fenceable)
673a394b
EA
2688{
2689 struct drm_device *dev = obj->dev;
2690 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2691 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2692 struct drm_mm_node *free_space;
a00b10c3
CW
2693 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2694 u32 size, fence_size, fence_alignment;
75e9e915 2695 bool mappable, fenceable;
07f73f69 2696 int ret;
673a394b 2697
bb6baf76 2698 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2699 DRM_ERROR("Attempting to bind a purgeable object\n");
2700 return -EINVAL;
2701 }
2702
a00b10c3
CW
2703 fence_size = i915_gem_get_gtt_size(obj_priv);
2704 fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
2705
673a394b 2706 if (alignment == 0)
75e9e915
DV
2707 alignment = map_and_fenceable ? fence_alignment : 4096;
2708 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2709 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2710 return -EINVAL;
2711 }
2712
75e9e915 2713 size = map_and_fenceable ? fence_size : obj->size;
a00b10c3 2714
654fc607
CW
2715 /* If the object is bigger than the entire aperture, reject it early
2716 * before evicting everything in a vain attempt to find space.
2717 */
920afa77 2718 if (obj->size >
75e9e915 2719 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2720 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2721 return -E2BIG;
2722 }
2723
673a394b 2724 search_free:
75e9e915 2725 if (map_and_fenceable)
920afa77
DV
2726 free_space =
2727 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2728 size, alignment, 0,
920afa77
DV
2729 dev_priv->mm.gtt_mappable_end,
2730 0);
2731 else
2732 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2733 size, alignment, 0);
920afa77
DV
2734
2735 if (free_space != NULL) {
75e9e915 2736 if (map_and_fenceable)
920afa77
DV
2737 obj_priv->gtt_space =
2738 drm_mm_get_block_range_generic(free_space,
a00b10c3 2739 size, alignment, 0,
920afa77
DV
2740 dev_priv->mm.gtt_mappable_end,
2741 0);
2742 else
2743 obj_priv->gtt_space =
a00b10c3 2744 drm_mm_get_block(free_space, size, alignment);
920afa77 2745 }
673a394b
EA
2746 if (obj_priv->gtt_space == NULL) {
2747 /* If the gtt is empty and we're still having trouble
2748 * fitting our object in, we're out of memory.
2749 */
75e9e915
DV
2750 ret = i915_gem_evict_something(dev, size, alignment,
2751 map_and_fenceable);
9731129c 2752 if (ret)
673a394b 2753 return ret;
9731129c 2754
673a394b
EA
2755 goto search_free;
2756 }
2757
e5281ccd 2758 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b
EA
2759 if (ret) {
2760 drm_mm_put_block(obj_priv->gtt_space);
2761 obj_priv->gtt_space = NULL;
07f73f69
CW
2762
2763 if (ret == -ENOMEM) {
2764 /* first try to clear up some space from the GTT */
a00b10c3 2765 ret = i915_gem_evict_something(dev, size,
75e9e915
DV
2766 alignment,
2767 map_and_fenceable);
07f73f69 2768 if (ret) {
07f73f69 2769 /* now try to shrink everyone else */
4bdadb97
CW
2770 if (gfpmask) {
2771 gfpmask = 0;
2772 goto search_free;
07f73f69
CW
2773 }
2774
2775 return ret;
2776 }
2777
2778 goto search_free;
2779 }
2780
673a394b
EA
2781 return ret;
2782 }
2783
673a394b
EA
2784 /* Create an AGP memory structure pointing at our pages, and bind it
2785 * into the GTT.
2786 */
2787 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2788 obj_priv->pages,
07f73f69 2789 obj->size >> PAGE_SHIFT,
9af90d19 2790 obj_priv->gtt_space->start,
ba1eb1d8 2791 obj_priv->agp_type);
673a394b 2792 if (obj_priv->agp_mem == NULL) {
e5281ccd 2793 i915_gem_object_put_pages_gtt(obj);
673a394b
EA
2794 drm_mm_put_block(obj_priv->gtt_space);
2795 obj_priv->gtt_space = NULL;
07f73f69 2796
a00b10c3 2797 ret = i915_gem_evict_something(dev, size,
75e9e915 2798 alignment, map_and_fenceable);
9731129c 2799 if (ret)
07f73f69 2800 return ret;
07f73f69
CW
2801
2802 goto search_free;
673a394b 2803 }
673a394b 2804
fb7d516a
DV
2805 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2806
bf1a1092 2807 /* keep track of bounds object by adding it to the inactive list */
69dc4987 2808 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
a00b10c3 2809 i915_gem_info_add_gtt(dev_priv, obj_priv);
bf1a1092 2810
673a394b
EA
2811 /* Assert that the object is not currently in any GPU domain. As it
2812 * wasn't in the GTT, there shouldn't be any way it could have been in
2813 * a GPU cache
2814 */
21d509e3
CW
2815 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2816 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2817
75e9e915 2818 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, map_and_fenceable);
1c5d22f7 2819
75e9e915 2820 fenceable =
a00b10c3
CW
2821 obj_priv->gtt_space->size == fence_size &&
2822 (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
2823
75e9e915 2824 mappable =
a00b10c3
CW
2825 obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
2826
75e9e915
DV
2827 obj_priv->map_and_fenceable = mappable && fenceable;
2828
673a394b
EA
2829 return 0;
2830}
2831
2832void
2833i915_gem_clflush_object(struct drm_gem_object *obj)
2834{
23010e43 2835 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2836
2837 /* If we don't have a page list set up, then we're not pinned
2838 * to GPU, and we can ignore the cache flush because it'll happen
2839 * again at bind time.
2840 */
856fa198 2841 if (obj_priv->pages == NULL)
673a394b
EA
2842 return;
2843
1c5d22f7 2844 trace_i915_gem_object_clflush(obj);
cfa16a0d 2845
856fa198 2846 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2847}
2848
e47c68e9 2849/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2850static int
ba3d8d74
DV
2851i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2852 bool pipelined)
e47c68e9
EA
2853{
2854 struct drm_device *dev = obj->dev;
e47c68e9
EA
2855
2856 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2857 return 0;
e47c68e9
EA
2858
2859 /* Queue the GPU write cache flushing we need. */
c78ec30b 2860 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2861 to_intel_bo(obj)->ring,
2862 0, obj->write_domain);
48b956c5 2863 BUG_ON(obj->write_domain);
1c5d22f7 2864
ba3d8d74
DV
2865 if (pipelined)
2866 return 0;
2867
2cf34d7b 2868 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2869}
2870
2871/** Flushes the GTT write domain for the object if it's dirty. */
2872static void
2873i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2874{
1c5d22f7
CW
2875 uint32_t old_write_domain;
2876
e47c68e9
EA
2877 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2878 return;
2879
2880 /* No actual flushing is required for the GTT write domain. Writes
2881 * to it immediately go to main memory as far as we know, so there's
2882 * no chipset flush. It also doesn't land in render cache.
2883 */
4a684a41
CW
2884 i915_gem_release_mmap(obj);
2885
1c5d22f7 2886 old_write_domain = obj->write_domain;
e47c68e9 2887 obj->write_domain = 0;
1c5d22f7
CW
2888
2889 trace_i915_gem_object_change_domain(obj,
2890 obj->read_domains,
2891 old_write_domain);
e47c68e9
EA
2892}
2893
2894/** Flushes the CPU write domain for the object if it's dirty. */
2895static void
2896i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2897{
2898 struct drm_device *dev = obj->dev;
1c5d22f7 2899 uint32_t old_write_domain;
e47c68e9
EA
2900
2901 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2902 return;
2903
2904 i915_gem_clflush_object(obj);
2905 drm_agp_chipset_flush(dev);
1c5d22f7 2906 old_write_domain = obj->write_domain;
e47c68e9 2907 obj->write_domain = 0;
1c5d22f7
CW
2908
2909 trace_i915_gem_object_change_domain(obj,
2910 obj->read_domains,
2911 old_write_domain);
e47c68e9
EA
2912}
2913
2ef7eeaa
EA
2914/**
2915 * Moves a single object to the GTT read, and possibly write domain.
2916 *
2917 * This function returns when the move is complete, including waiting on
2918 * flushes to occur.
2919 */
79e53945 2920int
2ef7eeaa
EA
2921i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2922{
23010e43 2923 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2924 uint32_t old_write_domain, old_read_domains;
e47c68e9 2925 int ret;
2ef7eeaa 2926
02354392
EA
2927 /* Not valid to be called on unbound objects. */
2928 if (obj_priv->gtt_space == NULL)
2929 return -EINVAL;
2930
ba3d8d74 2931 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2dafb1e0
CW
2932 if (ret != 0)
2933 return ret;
2934
7213342d 2935 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2936
ba3d8d74 2937 if (write) {
2cf34d7b 2938 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2939 if (ret)
2940 return ret;
ba3d8d74 2941 }
e47c68e9 2942
1c5d22f7
CW
2943 old_write_domain = obj->write_domain;
2944 old_read_domains = obj->read_domains;
2945
e47c68e9
EA
2946 /* It should now be out of any other write domains, and we can update
2947 * the domain values for our changes.
2948 */
2949 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2950 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2951 if (write) {
7213342d 2952 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2953 obj->write_domain = I915_GEM_DOMAIN_GTT;
2954 obj_priv->dirty = 1;
2ef7eeaa
EA
2955 }
2956
1c5d22f7
CW
2957 trace_i915_gem_object_change_domain(obj,
2958 old_read_domains,
2959 old_write_domain);
2960
e47c68e9
EA
2961 return 0;
2962}
2963
b9241ea3
ZW
2964/*
2965 * Prepare buffer for display plane. Use uninterruptible for possible flush
2966 * wait, as in modesetting process we're not supposed to be interrupted.
2967 */
2968int
48b956c5
CW
2969i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2970 bool pipelined)
b9241ea3 2971{
23010e43 2972 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2973 uint32_t old_read_domains;
b9241ea3
ZW
2974 int ret;
2975
2976 /* Not valid to be called on unbound objects. */
2977 if (obj_priv->gtt_space == NULL)
2978 return -EINVAL;
2979
ced270fa 2980 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2dafb1e0
CW
2981 if (ret)
2982 return ret;
b9241ea3 2983
ced270fa
CW
2984 /* Currently, we are always called from an non-interruptible context. */
2985 if (!pipelined) {
2986 ret = i915_gem_object_wait_rendering(obj, false);
2987 if (ret)
b9241ea3
ZW
2988 return ret;
2989 }
2990
b118c1e3
CW
2991 i915_gem_object_flush_cpu_write_domain(obj);
2992
b9241ea3 2993 old_read_domains = obj->read_domains;
c78ec30b 2994 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2995
2996 trace_i915_gem_object_change_domain(obj,
2997 old_read_domains,
ba3d8d74 2998 obj->write_domain);
b9241ea3
ZW
2999
3000 return 0;
3001}
3002
e47c68e9
EA
3003/**
3004 * Moves a single object to the CPU read, and possibly write domain.
3005 *
3006 * This function returns when the move is complete, including waiting on
3007 * flushes to occur.
3008 */
3009static int
3010i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
3011{
1c5d22f7 3012 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3013 int ret;
3014
ba3d8d74 3015 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
3016 if (ret != 0)
3017 return ret;
2ef7eeaa 3018
e47c68e9 3019 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3020
e47c68e9
EA
3021 /* If we have a partially-valid cache of the object in the CPU,
3022 * finish invalidating it and free the per-page flags.
2ef7eeaa 3023 */
e47c68e9 3024 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3025
7213342d 3026 if (write) {
2cf34d7b 3027 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
3028 if (ret)
3029 return ret;
3030 }
3031
1c5d22f7
CW
3032 old_write_domain = obj->write_domain;
3033 old_read_domains = obj->read_domains;
3034
e47c68e9
EA
3035 /* Flush the CPU cache if it's still invalid. */
3036 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3037 i915_gem_clflush_object(obj);
2ef7eeaa 3038
e47c68e9 3039 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3040 }
3041
3042 /* It should now be out of any other write domains, and we can update
3043 * the domain values for our changes.
3044 */
e47c68e9
EA
3045 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3046
3047 /* If we're writing through the CPU, then the GPU read domains will
3048 * need to be invalidated at next use.
3049 */
3050 if (write) {
c78ec30b 3051 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
3052 obj->write_domain = I915_GEM_DOMAIN_CPU;
3053 }
2ef7eeaa 3054
1c5d22f7
CW
3055 trace_i915_gem_object_change_domain(obj,
3056 old_read_domains,
3057 old_write_domain);
3058
2ef7eeaa
EA
3059 return 0;
3060}
3061
673a394b
EA
3062/*
3063 * Set the next domain for the specified object. This
3064 * may not actually perform the necessary flushing/invaliding though,
3065 * as that may want to be batched with other set_domain operations
3066 *
3067 * This is (we hope) the only really tricky part of gem. The goal
3068 * is fairly simple -- track which caches hold bits of the object
3069 * and make sure they remain coherent. A few concrete examples may
3070 * help to explain how it works. For shorthand, we use the notation
3071 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3072 * a pair of read and write domain masks.
3073 *
3074 * Case 1: the batch buffer
3075 *
3076 * 1. Allocated
3077 * 2. Written by CPU
3078 * 3. Mapped to GTT
3079 * 4. Read by GPU
3080 * 5. Unmapped from GTT
3081 * 6. Freed
3082 *
3083 * Let's take these a step at a time
3084 *
3085 * 1. Allocated
3086 * Pages allocated from the kernel may still have
3087 * cache contents, so we set them to (CPU, CPU) always.
3088 * 2. Written by CPU (using pwrite)
3089 * The pwrite function calls set_domain (CPU, CPU) and
3090 * this function does nothing (as nothing changes)
3091 * 3. Mapped by GTT
3092 * This function asserts that the object is not
3093 * currently in any GPU-based read or write domains
3094 * 4. Read by GPU
3095 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3096 * As write_domain is zero, this function adds in the
3097 * current read domains (CPU+COMMAND, 0).
3098 * flush_domains is set to CPU.
3099 * invalidate_domains is set to COMMAND
3100 * clflush is run to get data out of the CPU caches
3101 * then i915_dev_set_domain calls i915_gem_flush to
3102 * emit an MI_FLUSH and drm_agp_chipset_flush
3103 * 5. Unmapped from GTT
3104 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3105 * flush_domains and invalidate_domains end up both zero
3106 * so no flushing/invalidating happens
3107 * 6. Freed
3108 * yay, done
3109 *
3110 * Case 2: The shared render buffer
3111 *
3112 * 1. Allocated
3113 * 2. Mapped to GTT
3114 * 3. Read/written by GPU
3115 * 4. set_domain to (CPU,CPU)
3116 * 5. Read/written by CPU
3117 * 6. Read/written by GPU
3118 *
3119 * 1. Allocated
3120 * Same as last example, (CPU, CPU)
3121 * 2. Mapped to GTT
3122 * Nothing changes (assertions find that it is not in the GPU)
3123 * 3. Read/written by GPU
3124 * execbuffer calls set_domain (RENDER, RENDER)
3125 * flush_domains gets CPU
3126 * invalidate_domains gets GPU
3127 * clflush (obj)
3128 * MI_FLUSH and drm_agp_chipset_flush
3129 * 4. set_domain (CPU, CPU)
3130 * flush_domains gets GPU
3131 * invalidate_domains gets CPU
3132 * wait_rendering (obj) to make sure all drawing is complete.
3133 * This will include an MI_FLUSH to get the data from GPU
3134 * to memory
3135 * clflush (obj) to invalidate the CPU cache
3136 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3137 * 5. Read/written by CPU
3138 * cache lines are loaded and dirtied
3139 * 6. Read written by GPU
3140 * Same as last GPU access
3141 *
3142 * Case 3: The constant buffer
3143 *
3144 * 1. Allocated
3145 * 2. Written by CPU
3146 * 3. Read by GPU
3147 * 4. Updated (written) by CPU again
3148 * 5. Read by GPU
3149 *
3150 * 1. Allocated
3151 * (CPU, CPU)
3152 * 2. Written by CPU
3153 * (CPU, CPU)
3154 * 3. Read by GPU
3155 * (CPU+RENDER, 0)
3156 * flush_domains = CPU
3157 * invalidate_domains = RENDER
3158 * clflush (obj)
3159 * MI_FLUSH
3160 * drm_agp_chipset_flush
3161 * 4. Updated (written) by CPU again
3162 * (CPU, CPU)
3163 * flush_domains = 0 (no previous write domain)
3164 * invalidate_domains = 0 (no new read domains)
3165 * 5. Read by GPU
3166 * (CPU+RENDER, 0)
3167 * flush_domains = CPU
3168 * invalidate_domains = RENDER
3169 * clflush (obj)
3170 * MI_FLUSH
3171 * drm_agp_chipset_flush
3172 */
c0d90829 3173static void
b6651458 3174i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
0f8c6d7c
CW
3175 struct intel_ring_buffer *ring,
3176 struct change_domains *cd)
673a394b 3177{
23010e43 3178 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3179 uint32_t invalidate_domains = 0;
3180 uint32_t flush_domains = 0;
652c393a 3181
673a394b
EA
3182 /*
3183 * If the object isn't moving to a new write domain,
3184 * let the object stay in multiple read domains
3185 */
8b0e378a
EA
3186 if (obj->pending_write_domain == 0)
3187 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3188
3189 /*
3190 * Flush the current write domain if
3191 * the new read domains don't match. Invalidate
3192 * any read domains which differ from the old
3193 * write domain
3194 */
8b0e378a 3195 if (obj->write_domain &&
13b29289
CW
3196 (obj->write_domain != obj->pending_read_domains ||
3197 obj_priv->ring != ring)) {
673a394b 3198 flush_domains |= obj->write_domain;
8b0e378a
EA
3199 invalidate_domains |=
3200 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3201 }
3202 /*
3203 * Invalidate any read caches which may have
3204 * stale data. That is, any new read domains.
3205 */
8b0e378a 3206 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3207 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3208 i915_gem_clflush_object(obj);
673a394b 3209
4a684a41
CW
3210 /* blow away mappings if mapped through GTT */
3211 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
3212 i915_gem_release_mmap(obj);
3213
efbeed96
EA
3214 /* The actual obj->write_domain will be updated with
3215 * pending_write_domain after we emit the accumulated flush for all
3216 * of our domain changes in execbuffers (which clears objects'
3217 * write_domains). So if we have a current write domain that we
3218 * aren't changing, set pending_write_domain to that.
3219 */
3220 if (flush_domains == 0 && obj->pending_write_domain == 0)
3221 obj->pending_write_domain = obj->write_domain;
673a394b 3222
0f8c6d7c
CW
3223 cd->invalidate_domains |= invalidate_domains;
3224 cd->flush_domains |= flush_domains;
b6651458 3225 if (flush_domains & I915_GEM_GPU_DOMAINS)
0f8c6d7c 3226 cd->flush_rings |= obj_priv->ring->id;
b6651458 3227 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
0f8c6d7c 3228 cd->flush_rings |= ring->id;
673a394b
EA
3229}
3230
3231/**
e47c68e9 3232 * Moves the object from a partially CPU read to a full one.
673a394b 3233 *
e47c68e9
EA
3234 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3235 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3236 */
e47c68e9
EA
3237static void
3238i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3239{
23010e43 3240 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3241
e47c68e9
EA
3242 if (!obj_priv->page_cpu_valid)
3243 return;
3244
3245 /* If we're partially in the CPU read domain, finish moving it in.
3246 */
3247 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3248 int i;
3249
3250 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3251 if (obj_priv->page_cpu_valid[i])
3252 continue;
856fa198 3253 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3254 }
e47c68e9
EA
3255 }
3256
3257 /* Free the page_cpu_valid mappings which are now stale, whether
3258 * or not we've got I915_GEM_DOMAIN_CPU.
3259 */
9a298b2a 3260 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3261 obj_priv->page_cpu_valid = NULL;
3262}
3263
3264/**
3265 * Set the CPU read domain on a range of the object.
3266 *
3267 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3268 * not entirely valid. The page_cpu_valid member of the object flags which
3269 * pages have been flushed, and will be respected by
3270 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3271 * of the whole object.
3272 *
3273 * This function returns when the move is complete, including waiting on
3274 * flushes to occur.
3275 */
3276static int
3277i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3278 uint64_t offset, uint64_t size)
3279{
23010e43 3280 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3281 uint32_t old_read_domains;
e47c68e9 3282 int i, ret;
673a394b 3283
e47c68e9
EA
3284 if (offset == 0 && size == obj->size)
3285 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3286
ba3d8d74 3287 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3288 if (ret != 0)
6a47baa6 3289 return ret;
e47c68e9
EA
3290 i915_gem_object_flush_gtt_write_domain(obj);
3291
3292 /* If we're already fully in the CPU read domain, we're done. */
3293 if (obj_priv->page_cpu_valid == NULL &&
3294 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3295 return 0;
673a394b 3296
e47c68e9
EA
3297 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3298 * newly adding I915_GEM_DOMAIN_CPU
3299 */
673a394b 3300 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3301 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3302 GFP_KERNEL);
e47c68e9
EA
3303 if (obj_priv->page_cpu_valid == NULL)
3304 return -ENOMEM;
3305 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3306 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3307
3308 /* Flush the cache on any pages that are still invalid from the CPU's
3309 * perspective.
3310 */
e47c68e9
EA
3311 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3312 i++) {
673a394b
EA
3313 if (obj_priv->page_cpu_valid[i])
3314 continue;
3315
856fa198 3316 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3317
3318 obj_priv->page_cpu_valid[i] = 1;
3319 }
3320
e47c68e9
EA
3321 /* It should now be out of any other write domains, and we can update
3322 * the domain values for our changes.
3323 */
3324 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3325
1c5d22f7 3326 old_read_domains = obj->read_domains;
e47c68e9
EA
3327 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3328
1c5d22f7
CW
3329 trace_i915_gem_object_change_domain(obj,
3330 old_read_domains,
3331 obj->write_domain);
3332
673a394b
EA
3333 return 0;
3334}
3335
673a394b
EA
3336/**
3337 * Pin an object to the GTT and evaluate the relocations landing in it.
3338 */
3339static int
9af90d19
CW
3340i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3341 struct drm_file *file_priv,
3342 struct drm_i915_gem_exec_object2 *entry)
673a394b 3343{
9af90d19 3344 struct drm_device *dev = obj->base.dev;
0839ccb8 3345 drm_i915_private_t *dev_priv = dev->dev_private;
2549d6c2 3346 struct drm_i915_gem_relocation_entry __user *user_relocs;
9af90d19
CW
3347 struct drm_gem_object *target_obj = NULL;
3348 uint32_t target_handle = 0;
3349 int i, ret = 0;
673a394b 3350
2549d6c2 3351 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
673a394b 3352 for (i = 0; i < entry->relocation_count; i++) {
2549d6c2 3353 struct drm_i915_gem_relocation_entry reloc;
9af90d19 3354 uint32_t target_offset;
673a394b 3355
9af90d19
CW
3356 if (__copy_from_user_inatomic(&reloc,
3357 user_relocs+i,
3358 sizeof(reloc))) {
3359 ret = -EFAULT;
3360 break;
76446cac 3361 }
76446cac 3362
9af90d19
CW
3363 if (reloc.target_handle != target_handle) {
3364 drm_gem_object_unreference(target_obj);
673a394b 3365
9af90d19
CW
3366 target_obj = drm_gem_object_lookup(dev, file_priv,
3367 reloc.target_handle);
3368 if (target_obj == NULL) {
3369 ret = -ENOENT;
3370 break;
3371 }
3372
3373 target_handle = reloc.target_handle;
673a394b 3374 }
9af90d19 3375 target_offset = to_intel_bo(target_obj)->gtt_offset;
673a394b 3376
8542a0bb
CW
3377#if WATCH_RELOC
3378 DRM_INFO("%s: obj %p offset %08x target %d "
3379 "read %08x write %08x gtt %08x "
3380 "presumed %08x delta %08x\n",
3381 __func__,
3382 obj,
2549d6c2
CW
3383 (int) reloc.offset,
3384 (int) reloc.target_handle,
3385 (int) reloc.read_domains,
3386 (int) reloc.write_domain,
9af90d19 3387 (int) target_offset,
2549d6c2
CW
3388 (int) reloc.presumed_offset,
3389 reloc.delta);
8542a0bb
CW
3390#endif
3391
673a394b
EA
3392 /* The target buffer should have appeared before us in the
3393 * exec_object list, so it should have a GTT space bound by now.
3394 */
9af90d19 3395 if (target_offset == 0) {
673a394b 3396 DRM_ERROR("No GTT space found for object %d\n",
2549d6c2 3397 reloc.target_handle);
9af90d19
CW
3398 ret = -EINVAL;
3399 break;
673a394b
EA
3400 }
3401
8542a0bb 3402 /* Validate that the target is in a valid r/w GPU domain */
2549d6c2 3403 if (reloc.write_domain & (reloc.write_domain - 1)) {
16edd550
DV
3404 DRM_ERROR("reloc with multiple write domains: "
3405 "obj %p target %d offset %d "
3406 "read %08x write %08x",
2549d6c2
CW
3407 obj, reloc.target_handle,
3408 (int) reloc.offset,
3409 reloc.read_domains,
3410 reloc.write_domain);
9af90d19
CW
3411 ret = -EINVAL;
3412 break;
16edd550 3413 }
2549d6c2
CW
3414 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3415 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3416 DRM_ERROR("reloc with read/write CPU domains: "
3417 "obj %p target %d offset %d "
3418 "read %08x write %08x",
2549d6c2
CW
3419 obj, reloc.target_handle,
3420 (int) reloc.offset,
3421 reloc.read_domains,
3422 reloc.write_domain);
9af90d19
CW
3423 ret = -EINVAL;
3424 break;
e47c68e9 3425 }
2549d6c2
CW
3426 if (reloc.write_domain && target_obj->pending_write_domain &&
3427 reloc.write_domain != target_obj->pending_write_domain) {
673a394b
EA
3428 DRM_ERROR("Write domain conflict: "
3429 "obj %p target %d offset %d "
3430 "new %08x old %08x\n",
2549d6c2
CW
3431 obj, reloc.target_handle,
3432 (int) reloc.offset,
3433 reloc.write_domain,
673a394b 3434 target_obj->pending_write_domain);
9af90d19
CW
3435 ret = -EINVAL;
3436 break;
673a394b
EA
3437 }
3438
2549d6c2 3439 target_obj->pending_read_domains |= reloc.read_domains;
878a3c37 3440 target_obj->pending_write_domain |= reloc.write_domain;
673a394b
EA
3441
3442 /* If the relocation already has the right value in it, no
3443 * more work needs to be done.
3444 */
9af90d19 3445 if (target_offset == reloc.presumed_offset)
673a394b 3446 continue;
673a394b 3447
8542a0bb 3448 /* Check that the relocation address is valid... */
9af90d19 3449 if (reloc.offset > obj->base.size - 4) {
8542a0bb
CW
3450 DRM_ERROR("Relocation beyond object bounds: "
3451 "obj %p target %d offset %d size %d.\n",
2549d6c2 3452 obj, reloc.target_handle,
9af90d19
CW
3453 (int) reloc.offset, (int) obj->base.size);
3454 ret = -EINVAL;
3455 break;
8542a0bb 3456 }
2549d6c2 3457 if (reloc.offset & 3) {
8542a0bb
CW
3458 DRM_ERROR("Relocation not 4-byte aligned: "
3459 "obj %p target %d offset %d.\n",
2549d6c2
CW
3460 obj, reloc.target_handle,
3461 (int) reloc.offset);
9af90d19
CW
3462 ret = -EINVAL;
3463 break;
8542a0bb
CW
3464 }
3465
3466 /* and points to somewhere within the target object. */
2549d6c2 3467 if (reloc.delta >= target_obj->size) {
8542a0bb
CW
3468 DRM_ERROR("Relocation beyond target object bounds: "
3469 "obj %p target %d delta %d size %d.\n",
2549d6c2
CW
3470 obj, reloc.target_handle,
3471 (int) reloc.delta, (int) target_obj->size);
9af90d19
CW
3472 ret = -EINVAL;
3473 break;
673a394b
EA
3474 }
3475
9af90d19
CW
3476 reloc.delta += target_offset;
3477 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
f0c43d9b
CW
3478 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3479 char *vaddr;
673a394b 3480
c48c43e4 3481 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
f0c43d9b 3482 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
c48c43e4 3483 kunmap_atomic(vaddr);
f0c43d9b
CW
3484 } else {
3485 uint32_t __iomem *reloc_entry;
3486 void __iomem *reloc_page;
b962442e 3487
9af90d19
CW
3488 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3489 if (ret)
3490 break;
b962442e 3491
f0c43d9b 3492 /* Map the page containing the relocation we're going to perform. */
9af90d19 3493 reloc.offset += obj->gtt_offset;
f0c43d9b 3494 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
c48c43e4 3495 reloc.offset & PAGE_MASK);
f0c43d9b
CW
3496 reloc_entry = (uint32_t __iomem *)
3497 (reloc_page + (reloc.offset & ~PAGE_MASK));
3498 iowrite32(reloc.delta, reloc_entry);
c48c43e4 3499 io_mapping_unmap_atomic(reloc_page);
f0c43d9b 3500 }
b962442e 3501
b5dc608c
CW
3502 /* and update the user's relocation entry */
3503 reloc.presumed_offset = target_offset;
3504 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3505 &reloc.presumed_offset,
3506 sizeof(reloc.presumed_offset))) {
3507 ret = -EFAULT;
3508 break;
3509 }
b962442e 3510 }
b962442e 3511
9af90d19 3512 drm_gem_object_unreference(target_obj);
673a394b
EA
3513 return ret;
3514}
3515
40a5f0de 3516static int
9af90d19
CW
3517i915_gem_execbuffer_pin(struct drm_device *dev,
3518 struct drm_file *file,
3519 struct drm_gem_object **object_list,
3520 struct drm_i915_gem_exec_object2 *exec_list,
3521 int count)
40a5f0de 3522{
9af90d19
CW
3523 struct drm_i915_private *dev_priv = dev->dev_private;
3524 int ret, i, retry;
40a5f0de 3525
9af90d19 3526 /* attempt to pin all of the buffers into the GTT */
5eac3ab4
CW
3527 retry = 0;
3528 do {
9af90d19
CW
3529 ret = 0;
3530 for (i = 0; i < count; i++) {
3531 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
16e809ac 3532 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
9af90d19
CW
3533 bool need_fence =
3534 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3535 obj->tiling_mode != I915_TILING_NONE;
3536
16e809ac
DV
3537 /* g33/pnv can't fence buffers in the unmappable part */
3538 bool need_mappable =
3539 entry->relocation_count ? true : need_fence;
3540
9af90d19 3541 /* Check fence reg constraints and rebind if necessary */
75e9e915 3542 if (need_mappable && !obj->map_and_fenceable) {
9af90d19
CW
3543 ret = i915_gem_object_unbind(&obj->base);
3544 if (ret)
3545 break;
3546 }
40a5f0de 3547
920afa77 3548 ret = i915_gem_object_pin(&obj->base,
16e809ac 3549 entry->alignment,
75e9e915 3550 need_mappable);
9af90d19
CW
3551 if (ret)
3552 break;
40a5f0de 3553
9af90d19
CW
3554 /*
3555 * Pre-965 chips need a fence register set up in order
3556 * to properly handle blits to/from tiled surfaces.
3557 */
3558 if (need_fence) {
3559 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3560 if (ret) {
3561 i915_gem_object_unpin(&obj->base);
3562 break;
3563 }
40a5f0de 3564
9af90d19
CW
3565 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3566 }
40a5f0de 3567
9af90d19 3568 entry->offset = obj->gtt_offset;
40a5f0de
EA
3569 }
3570
9af90d19
CW
3571 while (i--)
3572 i915_gem_object_unpin(object_list[i]);
3573
5eac3ab4 3574 if (ret != -ENOSPC || retry > 1)
9af90d19
CW
3575 return ret;
3576
5eac3ab4
CW
3577 /* First attempt, just clear anything that is purgeable.
3578 * Second attempt, clear the entire GTT.
3579 */
3580 ret = i915_gem_evict_everything(dev, retry == 0);
9af90d19
CW
3581 if (ret)
3582 return ret;
40a5f0de 3583
5eac3ab4
CW
3584 retry++;
3585 } while (1);
40a5f0de
EA
3586}
3587
13b29289
CW
3588static int
3589i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3590 struct drm_file *file,
3591 struct intel_ring_buffer *ring,
3592 struct drm_gem_object **objects,
3593 int count)
3594{
0f8c6d7c 3595 struct change_domains cd;
13b29289
CW
3596 int ret, i;
3597
0f8c6d7c
CW
3598 cd.invalidate_domains = 0;
3599 cd.flush_domains = 0;
3600 cd.flush_rings = 0;
13b29289 3601 for (i = 0; i < count; i++)
0f8c6d7c 3602 i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
13b29289 3603
0f8c6d7c 3604 if (cd.invalidate_domains | cd.flush_domains) {
13b29289
CW
3605#if WATCH_EXEC
3606 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3607 __func__,
0f8c6d7c
CW
3608 cd.invalidate_domains,
3609 cd.flush_domains);
13b29289
CW
3610#endif
3611 i915_gem_flush(dev, file,
0f8c6d7c
CW
3612 cd.invalidate_domains,
3613 cd.flush_domains,
3614 cd.flush_rings);
13b29289
CW
3615 }
3616
3617 for (i = 0; i < count; i++) {
3618 struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
3619 /* XXX replace with semaphores */
3620 if (obj->ring && ring != obj->ring) {
3621 ret = i915_gem_object_wait_rendering(&obj->base, true);
3622 if (ret)
3623 return ret;
3624 }
3625 }
3626
3627 return 0;
3628}
3629
673a394b
EA
3630/* Throttle our rendering by waiting until the ring has completed our requests
3631 * emitted over 20 msec ago.
3632 *
b962442e
EA
3633 * Note that if we were to use the current jiffies each time around the loop,
3634 * we wouldn't escape the function with any frames outstanding if the time to
3635 * render a frame was over 20ms.
3636 *
673a394b
EA
3637 * This should get us reasonable parallelism between CPU and GPU but also
3638 * relatively low latency when blocking on a particular request to finish.
3639 */
40a5f0de 3640static int
f787a5f5 3641i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3642{
f787a5f5
CW
3643 struct drm_i915_private *dev_priv = dev->dev_private;
3644 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3645 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3646 struct drm_i915_gem_request *request;
3647 struct intel_ring_buffer *ring = NULL;
3648 u32 seqno = 0;
3649 int ret;
93533c29 3650
1c25595f 3651 spin_lock(&file_priv->mm.lock);
f787a5f5 3652 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3653 if (time_after_eq(request->emitted_jiffies, recent_enough))
3654 break;
40a5f0de 3655
f787a5f5
CW
3656 ring = request->ring;
3657 seqno = request->seqno;
b962442e 3658 }
1c25595f 3659 spin_unlock(&file_priv->mm.lock);
40a5f0de 3660
f787a5f5
CW
3661 if (seqno == 0)
3662 return 0;
2bc43b5c 3663
f787a5f5 3664 ret = 0;
78501eac 3665 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3666 /* And wait for the seqno passing without holding any locks and
3667 * causing extra latency for others. This is safe as the irq
3668 * generation is designed to be run atomically and so is
3669 * lockless.
3670 */
78501eac 3671 ring->user_irq_get(ring);
f787a5f5 3672 ret = wait_event_interruptible(ring->irq_queue,
78501eac 3673 i915_seqno_passed(ring->get_seqno(ring), seqno)
f787a5f5 3674 || atomic_read(&dev_priv->mm.wedged));
78501eac 3675 ring->user_irq_put(ring);
40a5f0de 3676
f787a5f5
CW
3677 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3678 ret = -EIO;
40a5f0de
EA
3679 }
3680
f787a5f5
CW
3681 if (ret == 0)
3682 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3683
3684 return ret;
3685}
3686
83d60795 3687static int
2549d6c2
CW
3688i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3689 uint64_t exec_offset)
83d60795
CW
3690{
3691 uint32_t exec_start, exec_len;
3692
3693 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3694 exec_len = (uint32_t) exec->batch_len;
3695
3696 if ((exec_start | exec_len) & 0x7)
3697 return -EINVAL;
3698
3699 if (!exec_start)
3700 return -EINVAL;
3701
3702 return 0;
3703}
3704
6b95a207 3705static int
2549d6c2
CW
3706validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3707 int count)
6b95a207 3708{
2549d6c2 3709 int i;
6b95a207 3710
2549d6c2
CW
3711 for (i = 0; i < count; i++) {
3712 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3713 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
6b95a207 3714
2549d6c2
CW
3715 if (!access_ok(VERIFY_READ, ptr, length))
3716 return -EFAULT;
40a5f0de 3717
b5dc608c
CW
3718 /* we may also need to update the presumed offsets */
3719 if (!access_ok(VERIFY_WRITE, ptr, length))
3720 return -EFAULT;
3721
2549d6c2
CW
3722 if (fault_in_pages_readable(ptr, length))
3723 return -EFAULT;
6b95a207 3724 }
6b95a207 3725
83d60795 3726 return 0;
6b95a207
KH
3727}
3728
8dc5d147 3729static int
76446cac 3730i915_gem_do_execbuffer(struct drm_device *dev, void *data,
9af90d19 3731 struct drm_file *file,
76446cac
JB
3732 struct drm_i915_gem_execbuffer2 *args,
3733 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3734{
3735 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3736 struct drm_gem_object **object_list = NULL;
3737 struct drm_gem_object *batch_obj;
201361a5 3738 struct drm_clip_rect *cliprects = NULL;
8dc5d147 3739 struct drm_i915_gem_request *request = NULL;
9af90d19 3740 int ret, i, flips;
673a394b 3741 uint64_t exec_offset;
673a394b 3742
852835f3
ZN
3743 struct intel_ring_buffer *ring = NULL;
3744
30dbf0c0
CW
3745 ret = i915_gem_check_is_wedged(dev);
3746 if (ret)
3747 return ret;
3748
2549d6c2
CW
3749 ret = validate_exec_list(exec_list, args->buffer_count);
3750 if (ret)
3751 return ret;
3752
673a394b
EA
3753#if WATCH_EXEC
3754 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3755 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3756#endif
549f7365
CW
3757 switch (args->flags & I915_EXEC_RING_MASK) {
3758 case I915_EXEC_DEFAULT:
3759 case I915_EXEC_RENDER:
3760 ring = &dev_priv->render_ring;
3761 break;
3762 case I915_EXEC_BSD:
d1b851fc 3763 if (!HAS_BSD(dev)) {
549f7365 3764 DRM_ERROR("execbuf with invalid ring (BSD)\n");
d1b851fc
ZN
3765 return -EINVAL;
3766 }
3767 ring = &dev_priv->bsd_ring;
549f7365
CW
3768 break;
3769 case I915_EXEC_BLT:
3770 if (!HAS_BLT(dev)) {
3771 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3772 return -EINVAL;
3773 }
3774 ring = &dev_priv->blt_ring;
3775 break;
3776 default:
3777 DRM_ERROR("execbuf with unknown ring: %d\n",
3778 (int)(args->flags & I915_EXEC_RING_MASK));
3779 return -EINVAL;
d1b851fc
ZN
3780 }
3781
4f481ed2
EA
3782 if (args->buffer_count < 1) {
3783 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3784 return -EINVAL;
3785 }
c8e0f93a 3786 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3787 if (object_list == NULL) {
3788 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3789 args->buffer_count);
3790 ret = -ENOMEM;
3791 goto pre_mutex_err;
3792 }
673a394b 3793
201361a5 3794 if (args->num_cliprects != 0) {
9a298b2a
EA
3795 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3796 GFP_KERNEL);
a40e8d31
OA
3797 if (cliprects == NULL) {
3798 ret = -ENOMEM;
201361a5 3799 goto pre_mutex_err;
a40e8d31 3800 }
201361a5
EA
3801
3802 ret = copy_from_user(cliprects,
3803 (struct drm_clip_rect __user *)
3804 (uintptr_t) args->cliprects_ptr,
3805 sizeof(*cliprects) * args->num_cliprects);
3806 if (ret != 0) {
3807 DRM_ERROR("copy %d cliprects failed: %d\n",
3808 args->num_cliprects, ret);
c877cdce 3809 ret = -EFAULT;
201361a5
EA
3810 goto pre_mutex_err;
3811 }
3812 }
3813
8dc5d147
CW
3814 request = kzalloc(sizeof(*request), GFP_KERNEL);
3815 if (request == NULL) {
3816 ret = -ENOMEM;
40a5f0de 3817 goto pre_mutex_err;
8dc5d147 3818 }
40a5f0de 3819
76c1dec1
CW
3820 ret = i915_mutex_lock_interruptible(dev);
3821 if (ret)
a198bc80 3822 goto pre_mutex_err;
673a394b
EA
3823
3824 if (dev_priv->mm.suspended) {
673a394b 3825 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3826 ret = -EBUSY;
3827 goto pre_mutex_err;
673a394b
EA
3828 }
3829
ac94a962 3830 /* Look up object handles */
673a394b 3831 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3832 struct drm_i915_gem_object *obj_priv;
3833
9af90d19 3834 object_list[i] = drm_gem_object_lookup(dev, file,
673a394b
EA
3835 exec_list[i].handle);
3836 if (object_list[i] == NULL) {
3837 DRM_ERROR("Invalid object handle %d at index %d\n",
3838 exec_list[i].handle, i);
0ce907f8
CW
3839 /* prevent error path from reading uninitialized data */
3840 args->buffer_count = i + 1;
bf79cb91 3841 ret = -ENOENT;
673a394b
EA
3842 goto err;
3843 }
b70d11da 3844
23010e43 3845 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3846 if (obj_priv->in_execbuffer) {
3847 DRM_ERROR("Object %p appears more than once in object list\n",
3848 object_list[i]);
0ce907f8
CW
3849 /* prevent error path from reading uninitialized data */
3850 args->buffer_count = i + 1;
bf79cb91 3851 ret = -EINVAL;
b70d11da
KH
3852 goto err;
3853 }
3854 obj_priv->in_execbuffer = true;
ac94a962 3855 }
673a394b 3856
9af90d19
CW
3857 /* Move the objects en-masse into the GTT, evicting if necessary. */
3858 ret = i915_gem_execbuffer_pin(dev, file,
3859 object_list, exec_list,
3860 args->buffer_count);
3861 if (ret)
3862 goto err;
ac94a962 3863
9af90d19
CW
3864 /* The objects are in their final locations, apply the relocations. */
3865 for (i = 0; i < args->buffer_count; i++) {
3866 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3867 obj->base.pending_read_domains = 0;
3868 obj->base.pending_write_domain = 0;
3869 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3870 if (ret)
ac94a962 3871 goto err;
673a394b
EA
3872 }
3873
3874 /* Set the pending read domains for the batch buffer to COMMAND */
3875 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3876 if (batch_obj->pending_write_domain) {
3877 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3878 ret = -EINVAL;
3879 goto err;
3880 }
3881 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3882
9af90d19
CW
3883 /* Sanity check the batch buffer */
3884 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3885 ret = i915_gem_check_execbuffer(args, exec_offset);
83d60795
CW
3886 if (ret != 0) {
3887 DRM_ERROR("execbuf with invalid offset/length\n");
3888 goto err;
3889 }
3890
13b29289
CW
3891 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
3892 object_list, args->buffer_count);
3893 if (ret)
3894 goto err;
673a394b 3895
673a394b
EA
3896#if WATCH_COHERENCY
3897 for (i = 0; i < args->buffer_count; i++) {
3898 i915_gem_object_check_coherency(object_list[i],
3899 exec_list[i].handle);
3900 }
3901#endif
3902
673a394b 3903#if WATCH_EXEC
6911a9b8 3904 i915_gem_dump_object(batch_obj,
673a394b
EA
3905 args->batch_len,
3906 __func__,
3907 ~0);
3908#endif
3909
e59f2bac
CW
3910 /* Check for any pending flips. As we only maintain a flip queue depth
3911 * of 1, we can simply insert a WAIT for the next display flip prior
3912 * to executing the batch and avoid stalling the CPU.
3913 */
3914 flips = 0;
3915 for (i = 0; i < args->buffer_count; i++) {
3916 if (object_list[i]->write_domain)
3917 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3918 }
3919 if (flips) {
3920 int plane, flip_mask;
3921
3922 for (plane = 0; flips >> plane; plane++) {
3923 if (((flips >> plane) & 1) == 0)
3924 continue;
3925
3926 if (plane)
3927 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3928 else
3929 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3930
e1f99ce6
CW
3931 ret = intel_ring_begin(ring, 2);
3932 if (ret)
3933 goto err;
3934
78501eac
CW
3935 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3936 intel_ring_emit(ring, MI_NOOP);
3937 intel_ring_advance(ring);
e59f2bac
CW
3938 }
3939 }
3940
673a394b 3941 /* Exec the batchbuffer */
78501eac 3942 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
673a394b
EA
3943 if (ret) {
3944 DRM_ERROR("dispatch failed %d\n", ret);
3945 goto err;
3946 }
3947
673a394b
EA
3948 for (i = 0; i < args->buffer_count; i++) {
3949 struct drm_gem_object *obj = object_list[i];
673a394b 3950
7e318e18
CW
3951 obj->read_domains = obj->pending_read_domains;
3952 obj->write_domain = obj->pending_write_domain;
3953
617dbe27 3954 i915_gem_object_move_to_active(obj, ring);
7e318e18
CW
3955 if (obj->write_domain) {
3956 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3957 obj_priv->dirty = 1;
3958 list_move_tail(&obj_priv->gpu_write_list,
64193406 3959 &ring->gpu_write_list);
7e318e18
CW
3960 intel_mark_busy(dev, obj);
3961 }
3962
3963 trace_i915_gem_object_change_domain(obj,
3964 obj->read_domains,
3965 obj->write_domain);
673a394b 3966 }
673a394b 3967
7e318e18
CW
3968 /*
3969 * Ensure that the commands in the batch buffer are
3970 * finished before the interrupt fires
3971 */
3972 i915_retire_commands(dev, ring);
3973
3cce469c
CW
3974 if (i915_add_request(dev, file, request, ring))
3975 ring->outstanding_lazy_request = true;
3976 else
3977 request = NULL;
673a394b 3978
673a394b 3979err:
b70d11da 3980 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3981 if (object_list[i] == NULL)
3982 break;
3983
3984 to_intel_bo(object_list[i])->in_execbuffer = false;
aad87dff 3985 drm_gem_object_unreference(object_list[i]);
b70d11da 3986 }
673a394b 3987
673a394b
EA
3988 mutex_unlock(&dev->struct_mutex);
3989
93533c29 3990pre_mutex_err:
8e7d2b2c 3991 drm_free_large(object_list);
9a298b2a 3992 kfree(cliprects);
8dc5d147 3993 kfree(request);
673a394b
EA
3994
3995 return ret;
3996}
3997
76446cac
JB
3998/*
3999 * Legacy execbuffer just creates an exec2 list from the original exec object
4000 * list array and passes it to the real function.
4001 */
4002int
4003i915_gem_execbuffer(struct drm_device *dev, void *data,
4004 struct drm_file *file_priv)
4005{
4006 struct drm_i915_gem_execbuffer *args = data;
4007 struct drm_i915_gem_execbuffer2 exec2;
4008 struct drm_i915_gem_exec_object *exec_list = NULL;
4009 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4010 int ret, i;
4011
4012#if WATCH_EXEC
4013 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4014 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4015#endif
4016
4017 if (args->buffer_count < 1) {
4018 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4019 return -EINVAL;
4020 }
4021
4022 /* Copy in the exec list from userland */
4023 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4024 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4025 if (exec_list == NULL || exec2_list == NULL) {
4026 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4027 args->buffer_count);
4028 drm_free_large(exec_list);
4029 drm_free_large(exec2_list);
4030 return -ENOMEM;
4031 }
4032 ret = copy_from_user(exec_list,
4033 (struct drm_i915_relocation_entry __user *)
4034 (uintptr_t) args->buffers_ptr,
4035 sizeof(*exec_list) * args->buffer_count);
4036 if (ret != 0) {
4037 DRM_ERROR("copy %d exec entries failed %d\n",
4038 args->buffer_count, ret);
4039 drm_free_large(exec_list);
4040 drm_free_large(exec2_list);
4041 return -EFAULT;
4042 }
4043
4044 for (i = 0; i < args->buffer_count; i++) {
4045 exec2_list[i].handle = exec_list[i].handle;
4046 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4047 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4048 exec2_list[i].alignment = exec_list[i].alignment;
4049 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 4050 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
4051 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4052 else
4053 exec2_list[i].flags = 0;
4054 }
4055
4056 exec2.buffers_ptr = args->buffers_ptr;
4057 exec2.buffer_count = args->buffer_count;
4058 exec2.batch_start_offset = args->batch_start_offset;
4059 exec2.batch_len = args->batch_len;
4060 exec2.DR1 = args->DR1;
4061 exec2.DR4 = args->DR4;
4062 exec2.num_cliprects = args->num_cliprects;
4063 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 4064 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
4065
4066 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4067 if (!ret) {
4068 /* Copy the new buffer offsets back to the user's exec list. */
4069 for (i = 0; i < args->buffer_count; i++)
4070 exec_list[i].offset = exec2_list[i].offset;
4071 /* ... and back out to userspace */
4072 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4073 (uintptr_t) args->buffers_ptr,
4074 exec_list,
4075 sizeof(*exec_list) * args->buffer_count);
4076 if (ret) {
4077 ret = -EFAULT;
4078 DRM_ERROR("failed to copy %d exec entries "
4079 "back to user (%d)\n",
4080 args->buffer_count, ret);
4081 }
76446cac
JB
4082 }
4083
4084 drm_free_large(exec_list);
4085 drm_free_large(exec2_list);
4086 return ret;
4087}
4088
4089int
4090i915_gem_execbuffer2(struct drm_device *dev, void *data,
4091 struct drm_file *file_priv)
4092{
4093 struct drm_i915_gem_execbuffer2 *args = data;
4094 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4095 int ret;
4096
4097#if WATCH_EXEC
4098 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4099 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4100#endif
4101
4102 if (args->buffer_count < 1) {
4103 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4104 return -EINVAL;
4105 }
4106
4107 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4108 if (exec2_list == NULL) {
4109 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4110 args->buffer_count);
4111 return -ENOMEM;
4112 }
4113 ret = copy_from_user(exec2_list,
4114 (struct drm_i915_relocation_entry __user *)
4115 (uintptr_t) args->buffers_ptr,
4116 sizeof(*exec2_list) * args->buffer_count);
4117 if (ret != 0) {
4118 DRM_ERROR("copy %d exec entries failed %d\n",
4119 args->buffer_count, ret);
4120 drm_free_large(exec2_list);
4121 return -EFAULT;
4122 }
4123
4124 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4125 if (!ret) {
4126 /* Copy the new buffer offsets back to the user's exec list. */
4127 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4128 (uintptr_t) args->buffers_ptr,
4129 exec2_list,
4130 sizeof(*exec2_list) * args->buffer_count);
4131 if (ret) {
4132 ret = -EFAULT;
4133 DRM_ERROR("failed to copy %d exec entries "
4134 "back to user (%d)\n",
4135 args->buffer_count, ret);
4136 }
4137 }
4138
4139 drm_free_large(exec2_list);
4140 return ret;
4141}
4142
673a394b 4143int
920afa77 4144i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
75e9e915 4145 bool map_and_fenceable)
673a394b
EA
4146{
4147 struct drm_device *dev = obj->dev;
f13d3f73 4148 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4149 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4150 int ret;
4151
778c3544 4152 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
75e9e915 4153 BUG_ON(map_and_fenceable && !map_and_fenceable);
23bc5982 4154 WARN_ON(i915_verify_lists(dev));
ac0c6b5a
CW
4155
4156 if (obj_priv->gtt_space != NULL) {
a00b10c3 4157 if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
75e9e915 4158 (map_and_fenceable && !obj_priv->map_and_fenceable)) {
ae7d49d8
CW
4159 WARN(obj_priv->pin_count,
4160 "bo is already pinned with incorrect alignment:"
75e9e915
DV
4161 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
4162 " obj->map_and_fenceable=%d\n",
a00b10c3 4163 obj_priv->gtt_offset, alignment,
75e9e915
DV
4164 map_and_fenceable,
4165 obj_priv->map_and_fenceable);
ac0c6b5a
CW
4166 ret = i915_gem_object_unbind(obj);
4167 if (ret)
4168 return ret;
4169 }
4170 }
4171
673a394b 4172 if (obj_priv->gtt_space == NULL) {
a00b10c3 4173 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 4174 map_and_fenceable);
9731129c 4175 if (ret)
673a394b 4176 return ret;
22c344e9 4177 }
76446cac 4178
7465378f 4179 if (obj_priv->pin_count++ == 0) {
75e9e915 4180 i915_gem_info_add_pin(dev_priv, obj_priv, map_and_fenceable);
f13d3f73 4181 if (!obj_priv->active)
69dc4987 4182 list_move_tail(&obj_priv->mm_list,
f13d3f73 4183 &dev_priv->mm.pinned_list);
673a394b 4184 }
75e9e915 4185 BUG_ON(!obj_priv->pin_mappable && map_and_fenceable);
673a394b 4186
23bc5982 4187 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4188 return 0;
4189}
4190
4191void
4192i915_gem_object_unpin(struct drm_gem_object *obj)
4193{
4194 struct drm_device *dev = obj->dev;
4195 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4196 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4197
23bc5982 4198 WARN_ON(i915_verify_lists(dev));
7465378f 4199 BUG_ON(obj_priv->pin_count == 0);
673a394b
EA
4200 BUG_ON(obj_priv->gtt_space == NULL);
4201
7465378f 4202 if (--obj_priv->pin_count == 0) {
f13d3f73 4203 if (!obj_priv->active)
69dc4987 4204 list_move_tail(&obj_priv->mm_list,
673a394b 4205 &dev_priv->mm.inactive_list);
a00b10c3 4206 i915_gem_info_remove_pin(dev_priv, obj_priv);
673a394b 4207 }
23bc5982 4208 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4209}
4210
4211int
4212i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4213 struct drm_file *file_priv)
4214{
4215 struct drm_i915_gem_pin *args = data;
4216 struct drm_gem_object *obj;
4217 struct drm_i915_gem_object *obj_priv;
4218 int ret;
4219
1d7cfea1
CW
4220 ret = i915_mutex_lock_interruptible(dev);
4221 if (ret)
4222 return ret;
673a394b
EA
4223
4224 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4225 if (obj == NULL) {
1d7cfea1
CW
4226 ret = -ENOENT;
4227 goto unlock;
673a394b 4228 }
23010e43 4229 obj_priv = to_intel_bo(obj);
673a394b 4230
bb6baf76
CW
4231 if (obj_priv->madv != I915_MADV_WILLNEED) {
4232 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
4233 ret = -EINVAL;
4234 goto out;
3ef94daa
CW
4235 }
4236
79e53945
JB
4237 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4238 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4239 args->handle);
1d7cfea1
CW
4240 ret = -EINVAL;
4241 goto out;
79e53945
JB
4242 }
4243
4244 obj_priv->user_pin_count++;
4245 obj_priv->pin_filp = file_priv;
4246 if (obj_priv->user_pin_count == 1) {
75e9e915 4247 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
4248 if (ret)
4249 goto out;
673a394b
EA
4250 }
4251
4252 /* XXX - flush the CPU caches for pinned objects
4253 * as the X server doesn't manage domains yet
4254 */
e47c68e9 4255 i915_gem_object_flush_cpu_write_domain(obj);
673a394b 4256 args->offset = obj_priv->gtt_offset;
1d7cfea1 4257out:
673a394b 4258 drm_gem_object_unreference(obj);
1d7cfea1 4259unlock:
673a394b 4260 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4261 return ret;
673a394b
EA
4262}
4263
4264int
4265i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4266 struct drm_file *file_priv)
4267{
4268 struct drm_i915_gem_pin *args = data;
4269 struct drm_gem_object *obj;
79e53945 4270 struct drm_i915_gem_object *obj_priv;
76c1dec1 4271 int ret;
673a394b 4272
1d7cfea1
CW
4273 ret = i915_mutex_lock_interruptible(dev);
4274 if (ret)
4275 return ret;
673a394b
EA
4276
4277 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4278 if (obj == NULL) {
1d7cfea1
CW
4279 ret = -ENOENT;
4280 goto unlock;
673a394b 4281 }
23010e43 4282 obj_priv = to_intel_bo(obj);
76c1dec1 4283
79e53945
JB
4284 if (obj_priv->pin_filp != file_priv) {
4285 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4286 args->handle);
1d7cfea1
CW
4287 ret = -EINVAL;
4288 goto out;
79e53945
JB
4289 }
4290 obj_priv->user_pin_count--;
4291 if (obj_priv->user_pin_count == 0) {
4292 obj_priv->pin_filp = NULL;
4293 i915_gem_object_unpin(obj);
4294 }
673a394b 4295
1d7cfea1 4296out:
673a394b 4297 drm_gem_object_unreference(obj);
1d7cfea1 4298unlock:
673a394b 4299 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4300 return ret;
673a394b
EA
4301}
4302
4303int
4304i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4305 struct drm_file *file_priv)
4306{
4307 struct drm_i915_gem_busy *args = data;
4308 struct drm_gem_object *obj;
4309 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4310 int ret;
4311
76c1dec1 4312 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4313 if (ret)
76c1dec1 4314 return ret;
673a394b 4315
673a394b
EA
4316 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4317 if (obj == NULL) {
1d7cfea1
CW
4318 ret = -ENOENT;
4319 goto unlock;
673a394b 4320 }
1d7cfea1 4321 obj_priv = to_intel_bo(obj);
d1b851fc 4322
0be555b6
CW
4323 /* Count all active objects as busy, even if they are currently not used
4324 * by the gpu. Users of this interface expect objects to eventually
4325 * become non-busy without any further actions, therefore emit any
4326 * necessary flushes here.
c4de0a5d 4327 */
0be555b6
CW
4328 args->busy = obj_priv->active;
4329 if (args->busy) {
4330 /* Unconditionally flush objects, even when the gpu still uses this
4331 * object. Userspace calling this function indicates that it wants to
4332 * use this buffer rather sooner than later, so issuing the required
4333 * flush earlier is beneficial.
4334 */
c78ec30b
CW
4335 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4336 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4337 obj_priv->ring,
4338 0, obj->write_domain);
0be555b6
CW
4339
4340 /* Update the active list for the hardware's current position.
4341 * Otherwise this only updates on a delayed timer or when irqs
4342 * are actually unmasked, and our working set ends up being
4343 * larger than required.
4344 */
4345 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4346
4347 args->busy = obj_priv->active;
4348 }
673a394b
EA
4349
4350 drm_gem_object_unreference(obj);
1d7cfea1 4351unlock:
673a394b 4352 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4353 return ret;
673a394b
EA
4354}
4355
4356int
4357i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4358 struct drm_file *file_priv)
4359{
4360 return i915_gem_ring_throttle(dev, file_priv);
4361}
4362
3ef94daa
CW
4363int
4364i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4365 struct drm_file *file_priv)
4366{
4367 struct drm_i915_gem_madvise *args = data;
4368 struct drm_gem_object *obj;
4369 struct drm_i915_gem_object *obj_priv;
76c1dec1 4370 int ret;
3ef94daa
CW
4371
4372 switch (args->madv) {
4373 case I915_MADV_DONTNEED:
4374 case I915_MADV_WILLNEED:
4375 break;
4376 default:
4377 return -EINVAL;
4378 }
4379
1d7cfea1
CW
4380 ret = i915_mutex_lock_interruptible(dev);
4381 if (ret)
4382 return ret;
4383
3ef94daa
CW
4384 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4385 if (obj == NULL) {
1d7cfea1
CW
4386 ret = -ENOENT;
4387 goto unlock;
3ef94daa 4388 }
23010e43 4389 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4390
4391 if (obj_priv->pin_count) {
1d7cfea1
CW
4392 ret = -EINVAL;
4393 goto out;
3ef94daa
CW
4394 }
4395
bb6baf76
CW
4396 if (obj_priv->madv != __I915_MADV_PURGED)
4397 obj_priv->madv = args->madv;
3ef94daa 4398
2d7ef395
CW
4399 /* if the object is no longer bound, discard its backing storage */
4400 if (i915_gem_object_is_purgeable(obj_priv) &&
4401 obj_priv->gtt_space == NULL)
4402 i915_gem_object_truncate(obj);
4403
bb6baf76
CW
4404 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4405
1d7cfea1 4406out:
3ef94daa 4407 drm_gem_object_unreference(obj);
1d7cfea1 4408unlock:
3ef94daa 4409 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4410 return ret;
3ef94daa
CW
4411}
4412
ac52bc56
DV
4413struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4414 size_t size)
4415{
73aa808f 4416 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 4417 struct drm_i915_gem_object *obj;
ac52bc56 4418
c397b908
DV
4419 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4420 if (obj == NULL)
4421 return NULL;
673a394b 4422
c397b908
DV
4423 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4424 kfree(obj);
4425 return NULL;
4426 }
673a394b 4427
73aa808f
CW
4428 i915_gem_info_add_obj(dev_priv, size);
4429
c397b908
DV
4430 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4431 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4432
c397b908 4433 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4434 obj->base.driver_private = NULL;
c397b908 4435 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987
CW
4436 INIT_LIST_HEAD(&obj->mm_list);
4437 INIT_LIST_HEAD(&obj->ring_list);
c397b908 4438 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4439 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
4440 /* Avoid an unnecessary call to unbind on the first bind. */
4441 obj->map_and_fenceable = true;
de151cf6 4442
c397b908
DV
4443 return &obj->base;
4444}
4445
4446int i915_gem_init_object(struct drm_gem_object *obj)
4447{
4448 BUG();
de151cf6 4449
673a394b
EA
4450 return 0;
4451}
4452
be72615b 4453static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4454{
de151cf6 4455 struct drm_device *dev = obj->dev;
be72615b 4456 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4457 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4458 int ret;
673a394b 4459
be72615b
CW
4460 ret = i915_gem_object_unbind(obj);
4461 if (ret == -ERESTARTSYS) {
69dc4987 4462 list_move(&obj_priv->mm_list,
be72615b
CW
4463 &dev_priv->mm.deferred_free_list);
4464 return;
4465 }
673a394b 4466
39a01d1f 4467 if (obj->map_list.map)
7e616158 4468 i915_gem_free_mmap_offset(obj);
de151cf6 4469
c397b908 4470 drm_gem_object_release(obj);
73aa808f 4471 i915_gem_info_remove_obj(dev_priv, obj->size);
c397b908 4472
9a298b2a 4473 kfree(obj_priv->page_cpu_valid);
280b713b 4474 kfree(obj_priv->bit_17);
c397b908 4475 kfree(obj_priv);
673a394b
EA
4476}
4477
be72615b
CW
4478void i915_gem_free_object(struct drm_gem_object *obj)
4479{
4480 struct drm_device *dev = obj->dev;
4481 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4482
4483 trace_i915_gem_object_destroy(obj);
4484
4485 while (obj_priv->pin_count > 0)
4486 i915_gem_object_unpin(obj);
4487
4488 if (obj_priv->phys_obj)
4489 i915_gem_detach_phys_object(dev, obj);
4490
4491 i915_gem_free_object_tail(obj);
4492}
4493
29105ccc
CW
4494int
4495i915_gem_idle(struct drm_device *dev)
4496{
4497 drm_i915_private_t *dev_priv = dev->dev_private;
4498 int ret;
28dfe52a 4499
29105ccc 4500 mutex_lock(&dev->struct_mutex);
1c5d22f7 4501
87acb0a5 4502 if (dev_priv->mm.suspended) {
29105ccc
CW
4503 mutex_unlock(&dev->struct_mutex);
4504 return 0;
28dfe52a
EA
4505 }
4506
29105ccc 4507 ret = i915_gpu_idle(dev);
6dbe2772
KP
4508 if (ret) {
4509 mutex_unlock(&dev->struct_mutex);
673a394b 4510 return ret;
6dbe2772 4511 }
673a394b 4512
29105ccc
CW
4513 /* Under UMS, be paranoid and evict. */
4514 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 4515 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
4516 if (ret) {
4517 mutex_unlock(&dev->struct_mutex);
4518 return ret;
4519 }
4520 }
4521
4522 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4523 * We need to replace this with a semaphore, or something.
4524 * And not confound mm.suspended!
4525 */
4526 dev_priv->mm.suspended = 1;
bc0c7f14 4527 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4528
4529 i915_kernel_lost_context(dev);
6dbe2772 4530 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4531
6dbe2772
KP
4532 mutex_unlock(&dev->struct_mutex);
4533
29105ccc
CW
4534 /* Cancel the retire work handler, which should be idle now. */
4535 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4536
673a394b
EA
4537 return 0;
4538}
4539
e552eb70
JB
4540/*
4541 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4542 * over cache flushing.
4543 */
8187a2b7 4544static int
e552eb70
JB
4545i915_gem_init_pipe_control(struct drm_device *dev)
4546{
4547 drm_i915_private_t *dev_priv = dev->dev_private;
4548 struct drm_gem_object *obj;
4549 struct drm_i915_gem_object *obj_priv;
4550 int ret;
4551
34dc4d44 4552 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4553 if (obj == NULL) {
4554 DRM_ERROR("Failed to allocate seqno page\n");
4555 ret = -ENOMEM;
4556 goto err;
4557 }
4558 obj_priv = to_intel_bo(obj);
4559 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4560
75e9e915 4561 ret = i915_gem_object_pin(obj, 4096, true);
e552eb70
JB
4562 if (ret)
4563 goto err_unref;
4564
4565 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4566 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4567 if (dev_priv->seqno_page == NULL)
4568 goto err_unpin;
4569
4570 dev_priv->seqno_obj = obj;
4571 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4572
4573 return 0;
4574
4575err_unpin:
4576 i915_gem_object_unpin(obj);
4577err_unref:
4578 drm_gem_object_unreference(obj);
4579err:
4580 return ret;
4581}
4582
8187a2b7
ZN
4583
4584static void
e552eb70
JB
4585i915_gem_cleanup_pipe_control(struct drm_device *dev)
4586{
4587 drm_i915_private_t *dev_priv = dev->dev_private;
4588 struct drm_gem_object *obj;
4589 struct drm_i915_gem_object *obj_priv;
4590
4591 obj = dev_priv->seqno_obj;
4592 obj_priv = to_intel_bo(obj);
4593 kunmap(obj_priv->pages[0]);
4594 i915_gem_object_unpin(obj);
4595 drm_gem_object_unreference(obj);
4596 dev_priv->seqno_obj = NULL;
4597
4598 dev_priv->seqno_page = NULL;
673a394b
EA
4599}
4600
8187a2b7
ZN
4601int
4602i915_gem_init_ringbuffer(struct drm_device *dev)
4603{
4604 drm_i915_private_t *dev_priv = dev->dev_private;
4605 int ret;
68f95ba9 4606
8187a2b7
ZN
4607 if (HAS_PIPE_CONTROL(dev)) {
4608 ret = i915_gem_init_pipe_control(dev);
4609 if (ret)
4610 return ret;
4611 }
68f95ba9 4612
5c1143bb 4613 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4614 if (ret)
4615 goto cleanup_pipe_control;
4616
4617 if (HAS_BSD(dev)) {
5c1143bb 4618 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4619 if (ret)
4620 goto cleanup_render_ring;
d1b851fc 4621 }
68f95ba9 4622
549f7365
CW
4623 if (HAS_BLT(dev)) {
4624 ret = intel_init_blt_ring_buffer(dev);
4625 if (ret)
4626 goto cleanup_bsd_ring;
4627 }
4628
6f392d54
CW
4629 dev_priv->next_seqno = 1;
4630
68f95ba9
CW
4631 return 0;
4632
549f7365 4633cleanup_bsd_ring:
78501eac 4634 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
68f95ba9 4635cleanup_render_ring:
78501eac 4636 intel_cleanup_ring_buffer(&dev_priv->render_ring);
68f95ba9
CW
4637cleanup_pipe_control:
4638 if (HAS_PIPE_CONTROL(dev))
4639 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4640 return ret;
4641}
4642
4643void
4644i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4645{
4646 drm_i915_private_t *dev_priv = dev->dev_private;
4647
78501eac
CW
4648 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4649 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4650 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
8187a2b7
ZN
4651 if (HAS_PIPE_CONTROL(dev))
4652 i915_gem_cleanup_pipe_control(dev);
4653}
4654
673a394b
EA
4655int
4656i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4657 struct drm_file *file_priv)
4658{
4659 drm_i915_private_t *dev_priv = dev->dev_private;
4660 int ret;
4661
79e53945
JB
4662 if (drm_core_check_feature(dev, DRIVER_MODESET))
4663 return 0;
4664
ba1234d1 4665 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4666 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4667 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4668 }
4669
673a394b 4670 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4671 dev_priv->mm.suspended = 0;
4672
4673 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4674 if (ret != 0) {
4675 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4676 return ret;
d816f6ac 4677 }
9bb2d6f9 4678
69dc4987 4679 BUG_ON(!list_empty(&dev_priv->mm.active_list));
852835f3 4680 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 4681 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
549f7365 4682 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
673a394b
EA
4683 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4684 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4685 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 4686 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
549f7365 4687 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
673a394b 4688 mutex_unlock(&dev->struct_mutex);
dbb19d30 4689
5f35308b
CW
4690 ret = drm_irq_install(dev);
4691 if (ret)
4692 goto cleanup_ringbuffer;
dbb19d30 4693
673a394b 4694 return 0;
5f35308b
CW
4695
4696cleanup_ringbuffer:
4697 mutex_lock(&dev->struct_mutex);
4698 i915_gem_cleanup_ringbuffer(dev);
4699 dev_priv->mm.suspended = 1;
4700 mutex_unlock(&dev->struct_mutex);
4701
4702 return ret;
673a394b
EA
4703}
4704
4705int
4706i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4707 struct drm_file *file_priv)
4708{
79e53945
JB
4709 if (drm_core_check_feature(dev, DRIVER_MODESET))
4710 return 0;
4711
dbb19d30 4712 drm_irq_uninstall(dev);
e6890f6f 4713 return i915_gem_idle(dev);
673a394b
EA
4714}
4715
4716void
4717i915_gem_lastclose(struct drm_device *dev)
4718{
4719 int ret;
673a394b 4720
e806b495
EA
4721 if (drm_core_check_feature(dev, DRIVER_MODESET))
4722 return;
4723
6dbe2772
KP
4724 ret = i915_gem_idle(dev);
4725 if (ret)
4726 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4727}
4728
64193406
CW
4729static void
4730init_ring_lists(struct intel_ring_buffer *ring)
4731{
4732 INIT_LIST_HEAD(&ring->active_list);
4733 INIT_LIST_HEAD(&ring->request_list);
4734 INIT_LIST_HEAD(&ring->gpu_write_list);
4735}
4736
673a394b
EA
4737void
4738i915_gem_load(struct drm_device *dev)
4739{
b5aa8a0f 4740 int i;
673a394b
EA
4741 drm_i915_private_t *dev_priv = dev->dev_private;
4742
69dc4987 4743 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
4744 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4745 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4746 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4747 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4748 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
64193406
CW
4749 init_ring_lists(&dev_priv->render_ring);
4750 init_ring_lists(&dev_priv->bsd_ring);
4751 init_ring_lists(&dev_priv->blt_ring);
007cc8ac
DV
4752 for (i = 0; i < 16; i++)
4753 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4754 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4755 i915_gem_retire_work_handler);
30dbf0c0 4756 init_completion(&dev_priv->error_completion);
31169714 4757
94400120
DA
4758 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4759 if (IS_GEN3(dev)) {
4760 u32 tmp = I915_READ(MI_ARB_STATE);
4761 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4762 /* arb state is a masked write, so set bit + bit in mask */
4763 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4764 I915_WRITE(MI_ARB_STATE, tmp);
4765 }
4766 }
4767
de151cf6 4768 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4769 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4770 dev_priv->fence_reg_start = 3;
de151cf6 4771
a6c45cf0 4772 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4773 dev_priv->num_fence_regs = 16;
4774 else
4775 dev_priv->num_fence_regs = 8;
4776
b5aa8a0f 4777 /* Initialize fence registers to zero */
a6c45cf0
CW
4778 switch (INTEL_INFO(dev)->gen) {
4779 case 6:
4780 for (i = 0; i < 16; i++)
4781 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4782 break;
4783 case 5:
4784 case 4:
b5aa8a0f
GH
4785 for (i = 0; i < 16; i++)
4786 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4787 break;
4788 case 3:
b5aa8a0f
GH
4789 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4790 for (i = 0; i < 8; i++)
4791 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4792 case 2:
4793 for (i = 0; i < 8; i++)
4794 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4795 break;
b5aa8a0f 4796 }
673a394b 4797 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4798 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71
CW
4799
4800 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4801 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4802 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4803}
71acb5eb
DA
4804
4805/*
4806 * Create a physically contiguous memory object for this object
4807 * e.g. for cursor + overlay regs
4808 */
995b6762
CW
4809static int i915_gem_init_phys_object(struct drm_device *dev,
4810 int id, int size, int align)
71acb5eb
DA
4811{
4812 drm_i915_private_t *dev_priv = dev->dev_private;
4813 struct drm_i915_gem_phys_object *phys_obj;
4814 int ret;
4815
4816 if (dev_priv->mm.phys_objs[id - 1] || !size)
4817 return 0;
4818
9a298b2a 4819 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4820 if (!phys_obj)
4821 return -ENOMEM;
4822
4823 phys_obj->id = id;
4824
6eeefaf3 4825 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4826 if (!phys_obj->handle) {
4827 ret = -ENOMEM;
4828 goto kfree_obj;
4829 }
4830#ifdef CONFIG_X86
4831 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4832#endif
4833
4834 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4835
4836 return 0;
4837kfree_obj:
9a298b2a 4838 kfree(phys_obj);
71acb5eb
DA
4839 return ret;
4840}
4841
995b6762 4842static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4843{
4844 drm_i915_private_t *dev_priv = dev->dev_private;
4845 struct drm_i915_gem_phys_object *phys_obj;
4846
4847 if (!dev_priv->mm.phys_objs[id - 1])
4848 return;
4849
4850 phys_obj = dev_priv->mm.phys_objs[id - 1];
4851 if (phys_obj->cur_obj) {
4852 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4853 }
4854
4855#ifdef CONFIG_X86
4856 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4857#endif
4858 drm_pci_free(dev, phys_obj->handle);
4859 kfree(phys_obj);
4860 dev_priv->mm.phys_objs[id - 1] = NULL;
4861}
4862
4863void i915_gem_free_all_phys_object(struct drm_device *dev)
4864{
4865 int i;
4866
260883c8 4867 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4868 i915_gem_free_phys_object(dev, i);
4869}
4870
4871void i915_gem_detach_phys_object(struct drm_device *dev,
4872 struct drm_gem_object *obj)
4873{
e5281ccd
CW
4874 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
4875 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4876 char *vaddr;
71acb5eb 4877 int i;
71acb5eb
DA
4878 int page_count;
4879
71acb5eb
DA
4880 if (!obj_priv->phys_obj)
4881 return;
e5281ccd 4882 vaddr = obj_priv->phys_obj->handle->vaddr;
71acb5eb
DA
4883
4884 page_count = obj->size / PAGE_SIZE;
4885
4886 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4887 struct page *page = read_cache_page_gfp(mapping, i,
4888 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4889 if (!IS_ERR(page)) {
4890 char *dst = kmap_atomic(page);
4891 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4892 kunmap_atomic(dst);
4893
4894 drm_clflush_pages(&page, 1);
4895
4896 set_page_dirty(page);
4897 mark_page_accessed(page);
4898 page_cache_release(page);
4899 }
71acb5eb 4900 }
71acb5eb 4901 drm_agp_chipset_flush(dev);
d78b47b9 4902
71acb5eb
DA
4903 obj_priv->phys_obj->cur_obj = NULL;
4904 obj_priv->phys_obj = NULL;
4905}
4906
4907int
4908i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4909 struct drm_gem_object *obj,
4910 int id,
4911 int align)
71acb5eb 4912{
e5281ccd 4913 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
71acb5eb
DA
4914 drm_i915_private_t *dev_priv = dev->dev_private;
4915 struct drm_i915_gem_object *obj_priv;
4916 int ret = 0;
4917 int page_count;
4918 int i;
4919
4920 if (id > I915_MAX_PHYS_OBJECT)
4921 return -EINVAL;
4922
23010e43 4923 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4924
4925 if (obj_priv->phys_obj) {
4926 if (obj_priv->phys_obj->id == id)
4927 return 0;
4928 i915_gem_detach_phys_object(dev, obj);
4929 }
4930
71acb5eb
DA
4931 /* create a new object */
4932 if (!dev_priv->mm.phys_objs[id - 1]) {
4933 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4934 obj->size, align);
71acb5eb 4935 if (ret) {
aeb565df 4936 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
e5281ccd 4937 return ret;
71acb5eb
DA
4938 }
4939 }
4940
4941 /* bind to the object */
4942 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4943 obj_priv->phys_obj->cur_obj = obj;
4944
71acb5eb
DA
4945 page_count = obj->size / PAGE_SIZE;
4946
4947 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4948 struct page *page;
4949 char *dst, *src;
4950
4951 page = read_cache_page_gfp(mapping, i,
4952 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4953 if (IS_ERR(page))
4954 return PTR_ERR(page);
71acb5eb 4955
ff75b9bc 4956 src = kmap_atomic(page);
e5281ccd 4957 dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4958 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4959 kunmap_atomic(src);
71acb5eb 4960
e5281ccd
CW
4961 mark_page_accessed(page);
4962 page_cache_release(page);
4963 }
d78b47b9 4964
71acb5eb 4965 return 0;
71acb5eb
DA
4966}
4967
4968static int
4969i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4970 struct drm_i915_gem_pwrite *args,
4971 struct drm_file *file_priv)
4972{
23010e43 4973 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4974 void *obj_addr;
4975 int ret;
4976 char __user *user_data;
4977
4978 user_data = (char __user *) (uintptr_t) args->data_ptr;
4979 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4980
44d98a61 4981 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4982 ret = copy_from_user(obj_addr, user_data, args->size);
4983 if (ret)
4984 return -EFAULT;
4985
4986 drm_agp_chipset_flush(dev);
4987 return 0;
4988}
b962442e 4989
f787a5f5 4990void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4991{
f787a5f5 4992 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4993
4994 /* Clean up our request list when the client is going away, so that
4995 * later retire_requests won't dereference our soon-to-be-gone
4996 * file_priv.
4997 */
1c25595f 4998 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4999 while (!list_empty(&file_priv->mm.request_list)) {
5000 struct drm_i915_gem_request *request;
5001
5002 request = list_first_entry(&file_priv->mm.request_list,
5003 struct drm_i915_gem_request,
5004 client_list);
5005 list_del(&request->client_list);
5006 request->file_priv = NULL;
5007 }
1c25595f 5008 spin_unlock(&file_priv->mm.lock);
b962442e 5009}
31169714 5010
1637ef41
CW
5011static int
5012i915_gpu_is_active(struct drm_device *dev)
5013{
5014 drm_i915_private_t *dev_priv = dev->dev_private;
5015 int lists_empty;
5016
1637ef41 5017 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 5018 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
5019
5020 return !lists_empty;
5021}
5022
31169714 5023static int
17250b71
CW
5024i915_gem_inactive_shrink(struct shrinker *shrinker,
5025 int nr_to_scan,
5026 gfp_t gfp_mask)
31169714 5027{
17250b71
CW
5028 struct drm_i915_private *dev_priv =
5029 container_of(shrinker,
5030 struct drm_i915_private,
5031 mm.inactive_shrinker);
5032 struct drm_device *dev = dev_priv->dev;
5033 struct drm_i915_gem_object *obj, *next;
5034 int cnt;
5035
5036 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 5037 return 0;
31169714
CW
5038
5039 /* "fast-path" to count number of available objects */
5040 if (nr_to_scan == 0) {
17250b71
CW
5041 cnt = 0;
5042 list_for_each_entry(obj,
5043 &dev_priv->mm.inactive_list,
5044 mm_list)
5045 cnt++;
5046 mutex_unlock(&dev->struct_mutex);
5047 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
5048 }
5049
1637ef41 5050rescan:
31169714 5051 /* first scan for clean buffers */
17250b71 5052 i915_gem_retire_requests(dev);
31169714 5053
17250b71
CW
5054 list_for_each_entry_safe(obj, next,
5055 &dev_priv->mm.inactive_list,
5056 mm_list) {
5057 if (i915_gem_object_is_purgeable(obj)) {
5058 i915_gem_object_unbind(&obj->base);
5059 if (--nr_to_scan == 0)
5060 break;
31169714 5061 }
31169714
CW
5062 }
5063
5064 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
5065 cnt = 0;
5066 list_for_each_entry_safe(obj, next,
5067 &dev_priv->mm.inactive_list,
5068 mm_list) {
5069 if (nr_to_scan) {
5070 i915_gem_object_unbind(&obj->base);
5071 nr_to_scan--;
5072 } else
5073 cnt++;
5074 }
5075
5076 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
5077 /*
5078 * We are desperate for pages, so as a last resort, wait
5079 * for the GPU to finish and discard whatever we can.
5080 * This has a dramatic impact to reduce the number of
5081 * OOM-killer events whilst running the GPU aggressively.
5082 */
17250b71 5083 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
5084 goto rescan;
5085 }
17250b71
CW
5086 mutex_unlock(&dev->struct_mutex);
5087 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 5088}