]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
UAPI: (Scripted) Convert #include "..." to #include <path/...> in drivers/gpu/
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
8c59967c 58static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 59
61050808
CW
60static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
61{
62 if (obj->tiling_mode)
63 i915_gem_release_mmap(obj);
64
65 /* As we do not have an associated fence register, we will force
66 * a tiling change if we ever need to acquire one.
67 */
5d82e3e6 68 obj->fence_dirty = false;
61050808
CW
69 obj->fence_reg = I915_FENCE_REG_NONE;
70}
71
73aa808f
CW
72/* some bookkeeping */
73static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75{
76 dev_priv->mm.object_count++;
77 dev_priv->mm.object_memory += size;
78}
79
80static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
81 size_t size)
82{
83 dev_priv->mm.object_count--;
84 dev_priv->mm.object_memory -= size;
85}
86
21dd3734
CW
87static int
88i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
89{
90 struct drm_i915_private *dev_priv = dev->dev_private;
91 struct completion *x = &dev_priv->error_completion;
92 unsigned long flags;
93 int ret;
94
95 if (!atomic_read(&dev_priv->mm.wedged))
96 return 0;
97
0a6759c6
DV
98 /*
99 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
100 * userspace. If it takes that long something really bad is going on and
101 * we should simply try to bail out and fail as gracefully as possible.
102 */
103 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
104 if (ret == 0) {
105 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
106 return -EIO;
107 } else if (ret < 0) {
30dbf0c0 108 return ret;
0a6759c6 109 }
30dbf0c0 110
21dd3734
CW
111 if (atomic_read(&dev_priv->mm.wedged)) {
112 /* GPU is hung, bump the completion count to account for
113 * the token we just consumed so that we never hit zero and
114 * end up waiting upon a subsequent completion event that
115 * will never happen.
116 */
117 spin_lock_irqsave(&x->wait.lock, flags);
118 x->done++;
119 spin_unlock_irqrestore(&x->wait.lock, flags);
120 }
121 return 0;
30dbf0c0
CW
122}
123
54cf91dc 124int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 125{
76c1dec1
CW
126 int ret;
127
21dd3734 128 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
129 if (ret)
130 return ret;
131
132 ret = mutex_lock_interruptible(&dev->struct_mutex);
133 if (ret)
134 return ret;
135
23bc5982 136 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
137 return 0;
138}
30dbf0c0 139
7d1c4804 140static inline bool
05394f39 141i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 142{
1b50247a 143 return !obj->active;
7d1c4804
CW
144}
145
79e53945
JB
146int
147i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
79e53945
JB
149{
150 struct drm_i915_gem_init *args = data;
2021746e 151
7bb6fb8d
DV
152 if (drm_core_check_feature(dev, DRIVER_MODESET))
153 return -ENODEV;
154
2021746e
CW
155 if (args->gtt_start >= args->gtt_end ||
156 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
157 return -EINVAL;
79e53945 158
f534bc0b
DV
159 /* GEM with user mode setting was never supported on ilk and later. */
160 if (INTEL_INFO(dev)->gen >= 5)
161 return -ENODEV;
162
79e53945 163 mutex_lock(&dev->struct_mutex);
644ec02b
DV
164 i915_gem_init_global_gtt(dev, args->gtt_start,
165 args->gtt_end, args->gtt_end);
673a394b
EA
166 mutex_unlock(&dev->struct_mutex);
167
2021746e 168 return 0;
673a394b
EA
169}
170
5a125c3c
EA
171int
172i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 173 struct drm_file *file)
5a125c3c 174{
73aa808f 175 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 176 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
177 struct drm_i915_gem_object *obj;
178 size_t pinned;
5a125c3c 179
6299f992 180 pinned = 0;
73aa808f 181 mutex_lock(&dev->struct_mutex);
1b50247a
CW
182 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
183 if (obj->pin_count)
184 pinned += obj->gtt_space->size;
73aa808f 185 mutex_unlock(&dev->struct_mutex);
5a125c3c 186
6299f992 187 args->aper_size = dev_priv->mm.gtt_total;
0206e353 188 args->aper_available_size = args->aper_size - pinned;
6299f992 189
5a125c3c
EA
190 return 0;
191}
192
ff72145b
DA
193static int
194i915_gem_create(struct drm_file *file,
195 struct drm_device *dev,
196 uint64_t size,
197 uint32_t *handle_p)
673a394b 198{
05394f39 199 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
200 int ret;
201 u32 handle;
673a394b 202
ff72145b 203 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
204 if (size == 0)
205 return -EINVAL;
673a394b
EA
206
207 /* Allocate the new object */
ff72145b 208 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
209 if (obj == NULL)
210 return -ENOMEM;
211
05394f39 212 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 213 if (ret) {
05394f39
CW
214 drm_gem_object_release(&obj->base);
215 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 216 kfree(obj);
673a394b 217 return ret;
1dfd9754 218 }
673a394b 219
202f2fef 220 /* drop reference from allocate - handle holds it now */
05394f39 221 drm_gem_object_unreference(&obj->base);
202f2fef
CW
222 trace_i915_gem_object_create(obj);
223
ff72145b 224 *handle_p = handle;
673a394b
EA
225 return 0;
226}
227
ff72145b
DA
228int
229i915_gem_dumb_create(struct drm_file *file,
230 struct drm_device *dev,
231 struct drm_mode_create_dumb *args)
232{
233 /* have to work out size/pitch and return them */
ed0291fd 234 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
235 args->size = args->pitch * args->height;
236 return i915_gem_create(file, dev,
237 args->size, &args->handle);
238}
239
240int i915_gem_dumb_destroy(struct drm_file *file,
241 struct drm_device *dev,
242 uint32_t handle)
243{
244 return drm_gem_handle_delete(file, handle);
245}
246
247/**
248 * Creates a new mm object and returns a handle to it.
249 */
250int
251i915_gem_create_ioctl(struct drm_device *dev, void *data,
252 struct drm_file *file)
253{
254 struct drm_i915_gem_create *args = data;
63ed2cb2 255
ff72145b
DA
256 return i915_gem_create(file, dev,
257 args->size, &args->handle);
258}
259
05394f39 260static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 261{
05394f39 262 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
263
264 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 265 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
266}
267
8461d226
DV
268static inline int
269__copy_to_user_swizzled(char __user *cpu_vaddr,
270 const char *gpu_vaddr, int gpu_offset,
271 int length)
272{
273 int ret, cpu_offset = 0;
274
275 while (length > 0) {
276 int cacheline_end = ALIGN(gpu_offset + 1, 64);
277 int this_length = min(cacheline_end - gpu_offset, length);
278 int swizzled_gpu_offset = gpu_offset ^ 64;
279
280 ret = __copy_to_user(cpu_vaddr + cpu_offset,
281 gpu_vaddr + swizzled_gpu_offset,
282 this_length);
283 if (ret)
284 return ret + length;
285
286 cpu_offset += this_length;
287 gpu_offset += this_length;
288 length -= this_length;
289 }
290
291 return 0;
292}
293
8c59967c 294static inline int
4f0c7cfb
BW
295__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
296 const char __user *cpu_vaddr,
8c59967c
DV
297 int length)
298{
299 int ret, cpu_offset = 0;
300
301 while (length > 0) {
302 int cacheline_end = ALIGN(gpu_offset + 1, 64);
303 int this_length = min(cacheline_end - gpu_offset, length);
304 int swizzled_gpu_offset = gpu_offset ^ 64;
305
306 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
307 cpu_vaddr + cpu_offset,
308 this_length);
309 if (ret)
310 return ret + length;
311
312 cpu_offset += this_length;
313 gpu_offset += this_length;
314 length -= this_length;
315 }
316
317 return 0;
318}
319
d174bd64
DV
320/* Per-page copy function for the shmem pread fastpath.
321 * Flushes invalid cachelines before reading the target if
322 * needs_clflush is set. */
eb01459f 323static int
d174bd64
DV
324shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
325 char __user *user_data,
326 bool page_do_bit17_swizzling, bool needs_clflush)
327{
328 char *vaddr;
329 int ret;
330
e7e58eb5 331 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
332 return -EINVAL;
333
334 vaddr = kmap_atomic(page);
335 if (needs_clflush)
336 drm_clflush_virt_range(vaddr + shmem_page_offset,
337 page_length);
338 ret = __copy_to_user_inatomic(user_data,
339 vaddr + shmem_page_offset,
340 page_length);
341 kunmap_atomic(vaddr);
342
343 return ret;
344}
345
23c18c71
DV
346static void
347shmem_clflush_swizzled_range(char *addr, unsigned long length,
348 bool swizzled)
349{
e7e58eb5 350 if (unlikely(swizzled)) {
23c18c71
DV
351 unsigned long start = (unsigned long) addr;
352 unsigned long end = (unsigned long) addr + length;
353
354 /* For swizzling simply ensure that we always flush both
355 * channels. Lame, but simple and it works. Swizzled
356 * pwrite/pread is far from a hotpath - current userspace
357 * doesn't use it at all. */
358 start = round_down(start, 128);
359 end = round_up(end, 128);
360
361 drm_clflush_virt_range((void *)start, end - start);
362 } else {
363 drm_clflush_virt_range(addr, length);
364 }
365
366}
367
d174bd64
DV
368/* Only difference to the fast-path function is that this can handle bit17
369 * and uses non-atomic copy and kmap functions. */
370static int
371shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
372 char __user *user_data,
373 bool page_do_bit17_swizzling, bool needs_clflush)
374{
375 char *vaddr;
376 int ret;
377
378 vaddr = kmap(page);
379 if (needs_clflush)
23c18c71
DV
380 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
381 page_length,
382 page_do_bit17_swizzling);
d174bd64
DV
383
384 if (page_do_bit17_swizzling)
385 ret = __copy_to_user_swizzled(user_data,
386 vaddr, shmem_page_offset,
387 page_length);
388 else
389 ret = __copy_to_user(user_data,
390 vaddr + shmem_page_offset,
391 page_length);
392 kunmap(page);
393
394 return ret;
395}
396
eb01459f 397static int
dbf7bff0
DV
398i915_gem_shmem_pread(struct drm_device *dev,
399 struct drm_i915_gem_object *obj,
400 struct drm_i915_gem_pread *args,
401 struct drm_file *file)
eb01459f 402{
05394f39 403 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 404 char __user *user_data;
eb01459f 405 ssize_t remain;
8461d226 406 loff_t offset;
eb2c0c81 407 int shmem_page_offset, page_length, ret = 0;
8461d226 408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 409 int hit_slowpath = 0;
96d79b52 410 int prefaulted = 0;
8489731c 411 int needs_clflush = 0;
692a576b 412 int release_page;
eb01459f 413
8461d226 414 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
415 remain = args->size;
416
8461d226 417 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 418
8489731c
DV
419 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
420 /* If we're not in the cpu read domain, set ourself into the gtt
421 * read domain and manually flush cachelines (if required). This
422 * optimizes for the case when the gpu will dirty the data
423 * anyway again before the next pread happens. */
424 if (obj->cache_level == I915_CACHE_NONE)
425 needs_clflush = 1;
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
eb01459f 430
8461d226 431 offset = args->offset;
eb01459f
EA
432
433 while (remain > 0) {
e5281ccd
CW
434 struct page *page;
435
eb01459f
EA
436 /* Operation in this page
437 *
eb01459f 438 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
439 * page_length = bytes to copy for this page
440 */
c8cbbb8b 441 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
442 page_length = remain;
443 if ((shmem_page_offset + page_length) > PAGE_SIZE)
444 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 445
692a576b
DV
446 if (obj->pages) {
447 page = obj->pages[offset >> PAGE_SHIFT];
448 release_page = 0;
449 } else {
450 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
451 if (IS_ERR(page)) {
452 ret = PTR_ERR(page);
453 goto out;
454 }
455 release_page = 1;
b65552f0 456 }
e5281ccd 457
8461d226
DV
458 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
459 (page_to_phys(page) & (1 << 17)) != 0;
460
d174bd64
DV
461 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
462 user_data, page_do_bit17_swizzling,
463 needs_clflush);
464 if (ret == 0)
465 goto next_page;
dbf7bff0
DV
466
467 hit_slowpath = 1;
692a576b 468 page_cache_get(page);
dbf7bff0
DV
469 mutex_unlock(&dev->struct_mutex);
470
96d79b52 471 if (!prefaulted) {
f56f821f 472 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
473 /* Userspace is tricking us, but we've already clobbered
474 * its pages with the prefault and promised to write the
475 * data up to the first fault. Hence ignore any errors
476 * and just continue. */
477 (void)ret;
478 prefaulted = 1;
479 }
eb01459f 480
d174bd64
DV
481 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
482 user_data, page_do_bit17_swizzling,
483 needs_clflush);
eb01459f 484
dbf7bff0 485 mutex_lock(&dev->struct_mutex);
e5281ccd 486 page_cache_release(page);
dbf7bff0 487next_page:
e5281ccd 488 mark_page_accessed(page);
692a576b
DV
489 if (release_page)
490 page_cache_release(page);
e5281ccd 491
8461d226
DV
492 if (ret) {
493 ret = -EFAULT;
494 goto out;
495 }
496
eb01459f 497 remain -= page_length;
8461d226 498 user_data += page_length;
eb01459f
EA
499 offset += page_length;
500 }
501
4f27b75d 502out:
dbf7bff0
DV
503 if (hit_slowpath) {
504 /* Fixup: Kill any reinstated backing storage pages */
505 if (obj->madv == __I915_MADV_PURGED)
506 i915_gem_object_truncate(obj);
507 }
eb01459f
EA
508
509 return ret;
510}
511
673a394b
EA
512/**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517int
518i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 519 struct drm_file *file)
673a394b
EA
520{
521 struct drm_i915_gem_pread *args = data;
05394f39 522 struct drm_i915_gem_object *obj;
35b62a89 523 int ret = 0;
673a394b 524
51311d0a
CW
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
529 (char __user *)(uintptr_t)args->data_ptr,
530 args->size))
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
1286ff73
DV
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
db53a302
CW
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
dbf7bff0 560 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 561
35b62a89 562out:
05394f39 563 drm_gem_object_unreference(&obj->base);
1d7cfea1 564unlock:
4f27b75d 565 mutex_unlock(&dev->struct_mutex);
eb01459f 566 return ret;
673a394b
EA
567}
568
0839ccb8
KP
569/* This is the fast write path which cannot handle
570 * page faults in the source data
9b7530cc 571 */
0839ccb8
KP
572
573static inline int
574fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
9b7530cc 578{
4f0c7cfb
BW
579 void __iomem *vaddr_atomic;
580 void *vaddr;
0839ccb8 581 unsigned long unwritten;
9b7530cc 582
3e4d3af5 583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 587 user_data, length);
3e4d3af5 588 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 589 return unwritten;
0839ccb8
KP
590}
591
3de09aa3
EA
592/**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
673a394b 596static int
05394f39
CW
597i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
3de09aa3 599 struct drm_i915_gem_pwrite *args,
05394f39 600 struct drm_file *file)
673a394b 601{
0839ccb8 602 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 603 ssize_t remain;
0839ccb8 604 loff_t offset, page_base;
673a394b 605 char __user *user_data;
935aaa69
DV
606 int page_offset, page_length, ret;
607
608 ret = i915_gem_object_pin(obj, 0, true);
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
673a394b
EA
619
620 user_data = (char __user *) (uintptr_t) args->data_ptr;
621 remain = args->size;
673a394b 622
05394f39 623 offset = obj->gtt_offset + args->offset;
673a394b
EA
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
0839ccb8
KP
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
673a394b 631 */
c8cbbb8b
CW
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
0839ccb8
KP
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
0839ccb8 638 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
0839ccb8 641 */
fbd5a26d 642 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
673a394b 647
0839ccb8
KP
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
673a394b 651 }
673a394b 652
935aaa69
DV
653out_unpin:
654 i915_gem_object_unpin(obj);
655out:
3de09aa3 656 return ret;
673a394b
EA
657}
658
d174bd64
DV
659/* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
3043c60c 663static int
d174bd64
DV
664shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
673a394b 669{
d174bd64 670 char *vaddr;
673a394b 671 int ret;
3de09aa3 672
e7e58eb5 673 if (unlikely(page_do_bit17_swizzling))
d174bd64 674 return -EINVAL;
3de09aa3 675
d174bd64
DV
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
3de09aa3
EA
687
688 return ret;
689}
690
d174bd64
DV
691/* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
3043c60c 693static int
d174bd64
DV
694shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
673a394b 699{
d174bd64
DV
700 char *vaddr;
701 int ret;
e5281ccd 702
d174bd64 703 vaddr = kmap(page);
e7e58eb5 704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
d174bd64
DV
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
710 user_data,
711 page_length);
d174bd64
DV
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
23c18c71
DV
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
d174bd64 720 kunmap(page);
40123c1f 721
d174bd64 722 return ret;
40123c1f
EA
723}
724
40123c1f 725static int
e244a443
DV
726i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
40123c1f 730{
05394f39 731 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 732 ssize_t remain;
8c59967c
DV
733 loff_t offset;
734 char __user *user_data;
eb2c0c81 735 int shmem_page_offset, page_length, ret = 0;
8c59967c 736 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 737 int hit_slowpath = 0;
58642885
DV
738 int needs_clflush_after = 0;
739 int needs_clflush_before = 0;
692a576b 740 int release_page;
40123c1f 741
8c59967c 742 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
743 remain = args->size;
744
8c59967c 745 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 746
58642885
DV
747 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
748 /* If we're not in the cpu write domain, set ourself into the gtt
749 * write domain and manually flush cachelines (if required). This
750 * optimizes for the case when the gpu will use the data
751 * right away and we therefore have to clflush anyway. */
752 if (obj->cache_level == I915_CACHE_NONE)
753 needs_clflush_after = 1;
754 ret = i915_gem_object_set_to_gtt_domain(obj, true);
755 if (ret)
756 return ret;
757 }
758 /* Same trick applies for invalidate partially written cachelines before
759 * writing. */
760 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
761 && obj->cache_level == I915_CACHE_NONE)
762 needs_clflush_before = 1;
763
673a394b 764 offset = args->offset;
05394f39 765 obj->dirty = 1;
673a394b 766
40123c1f 767 while (remain > 0) {
e5281ccd 768 struct page *page;
58642885 769 int partial_cacheline_write;
e5281ccd 770
40123c1f
EA
771 /* Operation in this page
772 *
40123c1f 773 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
774 * page_length = bytes to copy for this page
775 */
c8cbbb8b 776 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 781
58642885
DV
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
692a576b
DV
789 if (obj->pages) {
790 page = obj->pages[offset >> PAGE_SHIFT];
791 release_page = 0;
792 } else {
793 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
794 if (IS_ERR(page)) {
795 ret = PTR_ERR(page);
796 goto out;
797 }
798 release_page = 1;
e5281ccd
CW
799 }
800
8c59967c
DV
801 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
802 (page_to_phys(page) & (1 << 17)) != 0;
803
d174bd64
DV
804 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
805 user_data, page_do_bit17_swizzling,
806 partial_cacheline_write,
807 needs_clflush_after);
808 if (ret == 0)
809 goto next_page;
e244a443
DV
810
811 hit_slowpath = 1;
692a576b 812 page_cache_get(page);
e244a443
DV
813 mutex_unlock(&dev->struct_mutex);
814
d174bd64
DV
815 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 partial_cacheline_write,
818 needs_clflush_after);
40123c1f 819
e244a443 820 mutex_lock(&dev->struct_mutex);
692a576b 821 page_cache_release(page);
e244a443 822next_page:
e5281ccd
CW
823 set_page_dirty(page);
824 mark_page_accessed(page);
692a576b
DV
825 if (release_page)
826 page_cache_release(page);
e5281ccd 827
8c59967c
DV
828 if (ret) {
829 ret = -EFAULT;
830 goto out;
831 }
832
40123c1f 833 remain -= page_length;
8c59967c 834 user_data += page_length;
40123c1f 835 offset += page_length;
673a394b
EA
836 }
837
fbd5a26d 838out:
e244a443
DV
839 if (hit_slowpath) {
840 /* Fixup: Kill any reinstated backing storage pages */
841 if (obj->madv == __I915_MADV_PURGED)
842 i915_gem_object_truncate(obj);
843 /* and flush dirty cachelines in case the object isn't in the cpu write
844 * domain anymore. */
845 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
846 i915_gem_clflush_object(obj);
847 intel_gtt_chipset_flush();
848 }
8c59967c 849 }
673a394b 850
58642885
DV
851 if (needs_clflush_after)
852 intel_gtt_chipset_flush();
853
40123c1f 854 return ret;
673a394b
EA
855}
856
857/**
858 * Writes data to the object referenced by handle.
859 *
860 * On error, the contents of the buffer that were to be modified are undefined.
861 */
862int
863i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 864 struct drm_file *file)
673a394b
EA
865{
866 struct drm_i915_gem_pwrite *args = data;
05394f39 867 struct drm_i915_gem_object *obj;
51311d0a
CW
868 int ret;
869
870 if (args->size == 0)
871 return 0;
872
873 if (!access_ok(VERIFY_READ,
874 (char __user *)(uintptr_t)args->data_ptr,
875 args->size))
876 return -EFAULT;
877
f56f821f
DV
878 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
879 args->size);
51311d0a
CW
880 if (ret)
881 return -EFAULT;
673a394b 882
fbd5a26d 883 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 884 if (ret)
fbd5a26d 885 return ret;
1d7cfea1 886
05394f39 887 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 888 if (&obj->base == NULL) {
1d7cfea1
CW
889 ret = -ENOENT;
890 goto unlock;
fbd5a26d 891 }
673a394b 892
7dcd2499 893 /* Bounds check destination. */
05394f39
CW
894 if (args->offset > obj->base.size ||
895 args->size > obj->base.size - args->offset) {
ce9d419d 896 ret = -EINVAL;
35b62a89 897 goto out;
ce9d419d
CW
898 }
899
1286ff73
DV
900 /* prime objects have no backing filp to GEM pread/pwrite
901 * pages from.
902 */
903 if (!obj->base.filp) {
904 ret = -EINVAL;
905 goto out;
906 }
907
db53a302
CW
908 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
909
935aaa69 910 ret = -EFAULT;
673a394b
EA
911 /* We can only do the GTT pwrite on untiled buffers, as otherwise
912 * it would end up going through the fenced access, and we'll get
913 * different detiling behavior between reading and writing.
914 * pread/pwrite currently are reading and writing from the CPU
915 * perspective, requiring manual detiling by the client.
916 */
5c0480f2 917 if (obj->phys_obj) {
fbd5a26d 918 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
919 goto out;
920 }
921
922 if (obj->gtt_space &&
3ae53783 923 obj->cache_level == I915_CACHE_NONE &&
c07496fa 924 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 925 obj->map_and_fenceable &&
5c0480f2 926 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 927 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
928 /* Note that the gtt paths might fail with non-page-backed user
929 * pointers (e.g. gtt mappings when moving data between
930 * textures). Fallback to the shmem path in that case. */
fbd5a26d 931 }
673a394b 932
5c0480f2 933 if (ret == -EFAULT)
935aaa69 934 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 935
35b62a89 936out:
05394f39 937 drm_gem_object_unreference(&obj->base);
1d7cfea1 938unlock:
fbd5a26d 939 mutex_unlock(&dev->struct_mutex);
673a394b
EA
940 return ret;
941}
942
943/**
2ef7eeaa
EA
944 * Called when user space prepares to use an object with the CPU, either
945 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
946 */
947int
948i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 949 struct drm_file *file)
673a394b
EA
950{
951 struct drm_i915_gem_set_domain *args = data;
05394f39 952 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
953 uint32_t read_domains = args->read_domains;
954 uint32_t write_domain = args->write_domain;
673a394b
EA
955 int ret;
956
2ef7eeaa 957 /* Only handle setting domains to types used by the CPU. */
21d509e3 958 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
959 return -EINVAL;
960
21d509e3 961 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
962 return -EINVAL;
963
964 /* Having something in the write domain implies it's in the read
965 * domain, and only that read domain. Enforce that in the request.
966 */
967 if (write_domain != 0 && read_domains != write_domain)
968 return -EINVAL;
969
76c1dec1 970 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 971 if (ret)
76c1dec1 972 return ret;
1d7cfea1 973
05394f39 974 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 975 if (&obj->base == NULL) {
1d7cfea1
CW
976 ret = -ENOENT;
977 goto unlock;
76c1dec1 978 }
673a394b 979
2ef7eeaa
EA
980 if (read_domains & I915_GEM_DOMAIN_GTT) {
981 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
982
983 /* Silently promote "you're not bound, there was nothing to do"
984 * to success, since the client was just asking us to
985 * make sure everything was done.
986 */
987 if (ret == -EINVAL)
988 ret = 0;
2ef7eeaa 989 } else {
e47c68e9 990 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
991 }
992
05394f39 993 drm_gem_object_unreference(&obj->base);
1d7cfea1 994unlock:
673a394b
EA
995 mutex_unlock(&dev->struct_mutex);
996 return ret;
997}
998
999/**
1000 * Called when user space has done writes to this buffer
1001 */
1002int
1003i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1004 struct drm_file *file)
673a394b
EA
1005{
1006 struct drm_i915_gem_sw_finish *args = data;
05394f39 1007 struct drm_i915_gem_object *obj;
673a394b
EA
1008 int ret = 0;
1009
76c1dec1 1010 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1011 if (ret)
76c1dec1 1012 return ret;
1d7cfea1 1013
05394f39 1014 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1015 if (&obj->base == NULL) {
1d7cfea1
CW
1016 ret = -ENOENT;
1017 goto unlock;
673a394b
EA
1018 }
1019
673a394b 1020 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1021 if (obj->pin_count)
e47c68e9
EA
1022 i915_gem_object_flush_cpu_write_domain(obj);
1023
05394f39 1024 drm_gem_object_unreference(&obj->base);
1d7cfea1 1025unlock:
673a394b
EA
1026 mutex_unlock(&dev->struct_mutex);
1027 return ret;
1028}
1029
1030/**
1031 * Maps the contents of an object, returning the address it is mapped
1032 * into.
1033 *
1034 * While the mapping holds a reference on the contents of the object, it doesn't
1035 * imply a ref on the object itself.
1036 */
1037int
1038i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1039 struct drm_file *file)
673a394b
EA
1040{
1041 struct drm_i915_gem_mmap *args = data;
1042 struct drm_gem_object *obj;
673a394b
EA
1043 unsigned long addr;
1044
05394f39 1045 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1046 if (obj == NULL)
bf79cb91 1047 return -ENOENT;
673a394b 1048
1286ff73
DV
1049 /* prime objects have no backing filp to GEM mmap
1050 * pages from.
1051 */
1052 if (!obj->filp) {
1053 drm_gem_object_unreference_unlocked(obj);
1054 return -EINVAL;
1055 }
1056
6be5ceb0 1057 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1058 PROT_READ | PROT_WRITE, MAP_SHARED,
1059 args->offset);
bc9025bd 1060 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1061 if (IS_ERR((void *)addr))
1062 return addr;
1063
1064 args->addr_ptr = (uint64_t) addr;
1065
1066 return 0;
1067}
1068
de151cf6
JB
1069/**
1070 * i915_gem_fault - fault a page into the GTT
1071 * vma: VMA in question
1072 * vmf: fault info
1073 *
1074 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1075 * from userspace. The fault handler takes care of binding the object to
1076 * the GTT (if needed), allocating and programming a fence register (again,
1077 * only if needed based on whether the old reg is still valid or the object
1078 * is tiled) and inserting a new PTE into the faulting process.
1079 *
1080 * Note that the faulting process may involve evicting existing objects
1081 * from the GTT and/or fence registers to make room. So performance may
1082 * suffer if the GTT working set is large or there are few fence registers
1083 * left.
1084 */
1085int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1086{
05394f39
CW
1087 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1088 struct drm_device *dev = obj->base.dev;
7d1c4804 1089 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1090 pgoff_t page_offset;
1091 unsigned long pfn;
1092 int ret = 0;
0f973f27 1093 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1094
1095 /* We don't use vmf->pgoff since that has the fake offset */
1096 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1097 PAGE_SHIFT;
1098
d9bc7e9f
CW
1099 ret = i915_mutex_lock_interruptible(dev);
1100 if (ret)
1101 goto out;
a00b10c3 1102
db53a302
CW
1103 trace_i915_gem_object_fault(obj, page_offset, true, write);
1104
d9bc7e9f 1105 /* Now bind it into the GTT if needed */
919926ae
CW
1106 if (!obj->map_and_fenceable) {
1107 ret = i915_gem_object_unbind(obj);
1108 if (ret)
1109 goto unlock;
a00b10c3 1110 }
05394f39 1111 if (!obj->gtt_space) {
75e9e915 1112 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1113 if (ret)
1114 goto unlock;
de151cf6 1115
e92d03bf
EA
1116 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1117 if (ret)
1118 goto unlock;
1119 }
4a684a41 1120
74898d7e
DV
1121 if (!obj->has_global_gtt_mapping)
1122 i915_gem_gtt_bind_object(obj, obj->cache_level);
1123
06d98131 1124 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1125 if (ret)
1126 goto unlock;
de151cf6 1127
05394f39
CW
1128 if (i915_gem_object_is_inactive(obj))
1129 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1130
6299f992
CW
1131 obj->fault_mappable = true;
1132
dd2757f8 1133 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1134 page_offset;
1135
1136 /* Finally, remap it using the new GTT offset */
1137 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1138unlock:
de151cf6 1139 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1140out:
de151cf6 1141 switch (ret) {
d9bc7e9f 1142 case -EIO:
a9340cca
DV
1143 /* If this -EIO is due to a gpu hang, give the reset code a
1144 * chance to clean up the mess. Otherwise return the proper
1145 * SIGBUS. */
1146 if (!atomic_read(&dev_priv->mm.wedged))
1147 return VM_FAULT_SIGBUS;
045e769a 1148 case -EAGAIN:
d9bc7e9f
CW
1149 /* Give the error handler a chance to run and move the
1150 * objects off the GPU active list. Next time we service the
1151 * fault, we should be able to transition the page into the
1152 * GTT without touching the GPU (and so avoid further
1153 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1154 * with coherency, just lost writes.
1155 */
045e769a 1156 set_need_resched();
c715089f
CW
1157 case 0:
1158 case -ERESTARTSYS:
bed636ab 1159 case -EINTR:
c715089f 1160 return VM_FAULT_NOPAGE;
de151cf6 1161 case -ENOMEM:
de151cf6 1162 return VM_FAULT_OOM;
de151cf6 1163 default:
c715089f 1164 return VM_FAULT_SIGBUS;
de151cf6
JB
1165 }
1166}
1167
901782b2
CW
1168/**
1169 * i915_gem_release_mmap - remove physical page mappings
1170 * @obj: obj in question
1171 *
af901ca1 1172 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1173 * relinquish ownership of the pages back to the system.
1174 *
1175 * It is vital that we remove the page mapping if we have mapped a tiled
1176 * object through the GTT and then lose the fence register due to
1177 * resource pressure. Similarly if the object has been moved out of the
1178 * aperture, than pages mapped into userspace must be revoked. Removing the
1179 * mapping will then trigger a page fault on the next user access, allowing
1180 * fixup by i915_gem_fault().
1181 */
d05ca301 1182void
05394f39 1183i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1184{
6299f992
CW
1185 if (!obj->fault_mappable)
1186 return;
901782b2 1187
f6e47884
CW
1188 if (obj->base.dev->dev_mapping)
1189 unmap_mapping_range(obj->base.dev->dev_mapping,
1190 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1191 obj->base.size, 1);
fb7d516a 1192
6299f992 1193 obj->fault_mappable = false;
901782b2
CW
1194}
1195
92b88aeb 1196static uint32_t
e28f8711 1197i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1198{
e28f8711 1199 uint32_t gtt_size;
92b88aeb
CW
1200
1201 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1202 tiling_mode == I915_TILING_NONE)
1203 return size;
92b88aeb
CW
1204
1205 /* Previous chips need a power-of-two fence region when tiling */
1206 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1207 gtt_size = 1024*1024;
92b88aeb 1208 else
e28f8711 1209 gtt_size = 512*1024;
92b88aeb 1210
e28f8711
CW
1211 while (gtt_size < size)
1212 gtt_size <<= 1;
92b88aeb 1213
e28f8711 1214 return gtt_size;
92b88aeb
CW
1215}
1216
de151cf6
JB
1217/**
1218 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1219 * @obj: object to check
1220 *
1221 * Return the required GTT alignment for an object, taking into account
5e783301 1222 * potential fence register mapping.
de151cf6
JB
1223 */
1224static uint32_t
e28f8711
CW
1225i915_gem_get_gtt_alignment(struct drm_device *dev,
1226 uint32_t size,
1227 int tiling_mode)
de151cf6 1228{
de151cf6
JB
1229 /*
1230 * Minimum alignment is 4k (GTT page size), but might be greater
1231 * if a fence register is needed for the object.
1232 */
a00b10c3 1233 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1234 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1235 return 4096;
1236
a00b10c3
CW
1237 /*
1238 * Previous chips need to be aligned to the size of the smallest
1239 * fence register that can contain the object.
1240 */
e28f8711 1241 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1242}
1243
5e783301
DV
1244/**
1245 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1246 * unfenced object
e28f8711
CW
1247 * @dev: the device
1248 * @size: size of the object
1249 * @tiling_mode: tiling mode of the object
5e783301
DV
1250 *
1251 * Return the required GTT alignment for an object, only taking into account
1252 * unfenced tiled surface requirements.
1253 */
467cffba 1254uint32_t
e28f8711
CW
1255i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1256 uint32_t size,
1257 int tiling_mode)
5e783301 1258{
5e783301
DV
1259 /*
1260 * Minimum alignment is 4k (GTT page size) for sane hw.
1261 */
1262 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1263 tiling_mode == I915_TILING_NONE)
5e783301
DV
1264 return 4096;
1265
e28f8711
CW
1266 /* Previous hardware however needs to be aligned to a power-of-two
1267 * tile height. The simplest method for determining this is to reuse
1268 * the power-of-tile object size.
5e783301 1269 */
e28f8711 1270 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1271}
1272
de151cf6 1273int
ff72145b
DA
1274i915_gem_mmap_gtt(struct drm_file *file,
1275 struct drm_device *dev,
1276 uint32_t handle,
1277 uint64_t *offset)
de151cf6 1278{
da761a6e 1279 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1280 struct drm_i915_gem_object *obj;
de151cf6
JB
1281 int ret;
1282
76c1dec1 1283 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1284 if (ret)
76c1dec1 1285 return ret;
de151cf6 1286
ff72145b 1287 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1288 if (&obj->base == NULL) {
1d7cfea1
CW
1289 ret = -ENOENT;
1290 goto unlock;
1291 }
de151cf6 1292
05394f39 1293 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1294 ret = -E2BIG;
ff56b0bc 1295 goto out;
da761a6e
CW
1296 }
1297
05394f39 1298 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1299 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1300 ret = -EINVAL;
1301 goto out;
ab18282d
CW
1302 }
1303
05394f39 1304 if (!obj->base.map_list.map) {
b464e9a2 1305 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1306 if (ret)
1307 goto out;
de151cf6
JB
1308 }
1309
ff72145b 1310 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1311
1d7cfea1 1312out:
05394f39 1313 drm_gem_object_unreference(&obj->base);
1d7cfea1 1314unlock:
de151cf6 1315 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1316 return ret;
de151cf6
JB
1317}
1318
ff72145b
DA
1319/**
1320 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1321 * @dev: DRM device
1322 * @data: GTT mapping ioctl data
1323 * @file: GEM object info
1324 *
1325 * Simply returns the fake offset to userspace so it can mmap it.
1326 * The mmap call will end up in drm_gem_mmap(), which will set things
1327 * up so we can get faults in the handler above.
1328 *
1329 * The fault handler will take care of binding the object into the GTT
1330 * (since it may have been evicted to make room for something), allocating
1331 * a fence register, and mapping the appropriate aperture address into
1332 * userspace.
1333 */
1334int
1335i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1336 struct drm_file *file)
1337{
1338 struct drm_i915_gem_mmap_gtt *args = data;
1339
ff72145b
DA
1340 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1341}
1342
1286ff73 1343int
05394f39 1344i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1345 gfp_t gfpmask)
1346{
e5281ccd
CW
1347 int page_count, i;
1348 struct address_space *mapping;
1349 struct inode *inode;
1350 struct page *page;
1351
1286ff73
DV
1352 if (obj->pages || obj->sg_table)
1353 return 0;
1354
e5281ccd
CW
1355 /* Get the list of pages out of our struct file. They'll be pinned
1356 * at this point until we release them.
1357 */
05394f39
CW
1358 page_count = obj->base.size / PAGE_SIZE;
1359 BUG_ON(obj->pages != NULL);
1360 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1361 if (obj->pages == NULL)
e5281ccd
CW
1362 return -ENOMEM;
1363
05394f39 1364 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1365 mapping = inode->i_mapping;
5949eac4
HD
1366 gfpmask |= mapping_gfp_mask(mapping);
1367
e5281ccd 1368 for (i = 0; i < page_count; i++) {
5949eac4 1369 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1370 if (IS_ERR(page))
1371 goto err_pages;
1372
05394f39 1373 obj->pages[i] = page;
e5281ccd
CW
1374 }
1375
6dacfd2f 1376 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1377 i915_gem_object_do_bit_17_swizzle(obj);
1378
1379 return 0;
1380
1381err_pages:
1382 while (i--)
05394f39 1383 page_cache_release(obj->pages[i]);
e5281ccd 1384
05394f39
CW
1385 drm_free_large(obj->pages);
1386 obj->pages = NULL;
e5281ccd
CW
1387 return PTR_ERR(page);
1388}
1389
5cdf5881 1390static void
05394f39 1391i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1392{
05394f39 1393 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1394 int i;
1395
1286ff73
DV
1396 if (!obj->pages)
1397 return;
1398
05394f39 1399 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1400
6dacfd2f 1401 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1402 i915_gem_object_save_bit_17_swizzle(obj);
1403
05394f39
CW
1404 if (obj->madv == I915_MADV_DONTNEED)
1405 obj->dirty = 0;
3ef94daa
CW
1406
1407 for (i = 0; i < page_count; i++) {
05394f39
CW
1408 if (obj->dirty)
1409 set_page_dirty(obj->pages[i]);
3ef94daa 1410
05394f39
CW
1411 if (obj->madv == I915_MADV_WILLNEED)
1412 mark_page_accessed(obj->pages[i]);
3ef94daa 1413
05394f39 1414 page_cache_release(obj->pages[i]);
3ef94daa 1415 }
05394f39 1416 obj->dirty = 0;
673a394b 1417
05394f39
CW
1418 drm_free_large(obj->pages);
1419 obj->pages = NULL;
673a394b
EA
1420}
1421
54cf91dc 1422void
05394f39 1423i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1424 struct intel_ring_buffer *ring,
1425 u32 seqno)
673a394b 1426{
05394f39 1427 struct drm_device *dev = obj->base.dev;
69dc4987 1428 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1429
852835f3 1430 BUG_ON(ring == NULL);
05394f39 1431 obj->ring = ring;
673a394b
EA
1432
1433 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1434 if (!obj->active) {
1435 drm_gem_object_reference(&obj->base);
1436 obj->active = 1;
673a394b 1437 }
e35a41de 1438
673a394b 1439 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1440 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1441 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1442
05394f39 1443 obj->last_rendering_seqno = seqno;
caea7476 1444
7dd49065 1445 if (obj->fenced_gpu_access) {
caea7476 1446 obj->last_fenced_seqno = seqno;
caea7476 1447
7dd49065
CW
1448 /* Bump MRU to take account of the delayed flush */
1449 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1450 struct drm_i915_fence_reg *reg;
1451
1452 reg = &dev_priv->fence_regs[obj->fence_reg];
1453 list_move_tail(&reg->lru_list,
1454 &dev_priv->mm.fence_list);
1455 }
caea7476
CW
1456 }
1457}
1458
1459static void
1460i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1461{
1462 list_del_init(&obj->ring_list);
1463 obj->last_rendering_seqno = 0;
15a13bbd 1464 obj->last_fenced_seqno = 0;
673a394b
EA
1465}
1466
ce44b0ea 1467static void
05394f39 1468i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1469{
05394f39 1470 struct drm_device *dev = obj->base.dev;
ce44b0ea 1471 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1472
05394f39
CW
1473 BUG_ON(!obj->active);
1474 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1475
1476 i915_gem_object_move_off_active(obj);
1477}
1478
1479static void
1480i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1481{
1482 struct drm_device *dev = obj->base.dev;
1483 struct drm_i915_private *dev_priv = dev->dev_private;
1484
1b50247a 1485 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476
CW
1486
1487 BUG_ON(!list_empty(&obj->gpu_write_list));
1488 BUG_ON(!obj->active);
1489 obj->ring = NULL;
1490
1491 i915_gem_object_move_off_active(obj);
1492 obj->fenced_gpu_access = false;
caea7476
CW
1493
1494 obj->active = 0;
87ca9c8a 1495 obj->pending_gpu_write = false;
caea7476
CW
1496 drm_gem_object_unreference(&obj->base);
1497
1498 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1499}
673a394b 1500
963b4836
CW
1501/* Immediately discard the backing storage */
1502static void
05394f39 1503i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1504{
bb6baf76 1505 struct inode *inode;
963b4836 1506
ae9fed6b
CW
1507 /* Our goal here is to return as much of the memory as
1508 * is possible back to the system as we are called from OOM.
1509 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1510 * backing pages, *now*.
ae9fed6b 1511 */
05394f39 1512 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1513 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1514
a14917ee
CW
1515 if (obj->base.map_list.map)
1516 drm_gem_free_mmap_offset(&obj->base);
1517
05394f39 1518 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1519}
1520
1521static inline int
05394f39 1522i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1523{
05394f39 1524 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1525}
1526
63560396 1527static void
db53a302
CW
1528i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1529 uint32_t flush_domains)
63560396 1530{
05394f39 1531 struct drm_i915_gem_object *obj, *next;
63560396 1532
05394f39 1533 list_for_each_entry_safe(obj, next,
64193406 1534 &ring->gpu_write_list,
63560396 1535 gpu_write_list) {
05394f39
CW
1536 if (obj->base.write_domain & flush_domains) {
1537 uint32_t old_write_domain = obj->base.write_domain;
63560396 1538
05394f39
CW
1539 obj->base.write_domain = 0;
1540 list_del_init(&obj->gpu_write_list);
1ec14ad3 1541 i915_gem_object_move_to_active(obj, ring,
db53a302 1542 i915_gem_next_request_seqno(ring));
63560396 1543
63560396 1544 trace_i915_gem_object_change_domain(obj,
05394f39 1545 obj->base.read_domains,
63560396
DV
1546 old_write_domain);
1547 }
1548 }
1549}
8187a2b7 1550
53d227f2
DV
1551static u32
1552i915_gem_get_seqno(struct drm_device *dev)
1553{
1554 drm_i915_private_t *dev_priv = dev->dev_private;
1555 u32 seqno = dev_priv->next_seqno;
1556
1557 /* reserve 0 for non-seqno */
1558 if (++dev_priv->next_seqno == 0)
1559 dev_priv->next_seqno = 1;
1560
1561 return seqno;
1562}
1563
1564u32
1565i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1566{
1567 if (ring->outstanding_lazy_request == 0)
1568 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1569
1570 return ring->outstanding_lazy_request;
1571}
1572
3cce469c 1573int
db53a302 1574i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1575 struct drm_file *file,
db53a302 1576 struct drm_i915_gem_request *request)
673a394b 1577{
db53a302 1578 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1579 uint32_t seqno;
a71d8d94 1580 u32 request_ring_position;
673a394b 1581 int was_empty;
3cce469c
CW
1582 int ret;
1583
cc889e0f
DV
1584 /*
1585 * Emit any outstanding flushes - execbuf can fail to emit the flush
1586 * after having emitted the batchbuffer command. Hence we need to fix
1587 * things up similar to emitting the lazy request. The difference here
1588 * is that the flush _must_ happen before the next request, no matter
1589 * what.
1590 */
1591 if (ring->gpu_caches_dirty) {
1592 ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
1593 if (ret)
1594 return ret;
1595
1596 ring->gpu_caches_dirty = false;
1597 }
1598
3cce469c 1599 BUG_ON(request == NULL);
53d227f2 1600 seqno = i915_gem_next_request_seqno(ring);
673a394b 1601
a71d8d94
CW
1602 /* Record the position of the start of the request so that
1603 * should we detect the updated seqno part-way through the
1604 * GPU processing the request, we never over-estimate the
1605 * position of the head.
1606 */
1607 request_ring_position = intel_ring_get_tail(ring);
1608
3cce469c
CW
1609 ret = ring->add_request(ring, &seqno);
1610 if (ret)
1611 return ret;
673a394b 1612
db53a302 1613 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1614
1615 request->seqno = seqno;
852835f3 1616 request->ring = ring;
a71d8d94 1617 request->tail = request_ring_position;
673a394b 1618 request->emitted_jiffies = jiffies;
852835f3
ZN
1619 was_empty = list_empty(&ring->request_list);
1620 list_add_tail(&request->list, &ring->request_list);
1621
db53a302
CW
1622 if (file) {
1623 struct drm_i915_file_private *file_priv = file->driver_priv;
1624
1c25595f 1625 spin_lock(&file_priv->mm.lock);
f787a5f5 1626 request->file_priv = file_priv;
b962442e 1627 list_add_tail(&request->client_list,
f787a5f5 1628 &file_priv->mm.request_list);
1c25595f 1629 spin_unlock(&file_priv->mm.lock);
b962442e 1630 }
673a394b 1631
5391d0cf 1632 ring->outstanding_lazy_request = 0;
db53a302 1633
f65d9421 1634 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1635 if (i915_enable_hangcheck) {
1636 mod_timer(&dev_priv->hangcheck_timer,
1637 jiffies +
1638 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1639 }
f65d9421 1640 if (was_empty)
b3b079db
CW
1641 queue_delayed_work(dev_priv->wq,
1642 &dev_priv->mm.retire_work, HZ);
f65d9421 1643 }
cc889e0f
DV
1644
1645 WARN_ON(!list_empty(&ring->gpu_write_list));
1646
3cce469c 1647 return 0;
673a394b
EA
1648}
1649
f787a5f5
CW
1650static inline void
1651i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1652{
1c25595f 1653 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1654
1c25595f
CW
1655 if (!file_priv)
1656 return;
1c5d22f7 1657
1c25595f 1658 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1659 if (request->file_priv) {
1660 list_del(&request->client_list);
1661 request->file_priv = NULL;
1662 }
1c25595f 1663 spin_unlock(&file_priv->mm.lock);
673a394b 1664}
673a394b 1665
dfaae392
CW
1666static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1667 struct intel_ring_buffer *ring)
9375e446 1668{
dfaae392
CW
1669 while (!list_empty(&ring->request_list)) {
1670 struct drm_i915_gem_request *request;
673a394b 1671
dfaae392
CW
1672 request = list_first_entry(&ring->request_list,
1673 struct drm_i915_gem_request,
1674 list);
de151cf6 1675
dfaae392 1676 list_del(&request->list);
f787a5f5 1677 i915_gem_request_remove_from_client(request);
dfaae392
CW
1678 kfree(request);
1679 }
673a394b 1680
dfaae392 1681 while (!list_empty(&ring->active_list)) {
05394f39 1682 struct drm_i915_gem_object *obj;
9375e446 1683
05394f39
CW
1684 obj = list_first_entry(&ring->active_list,
1685 struct drm_i915_gem_object,
1686 ring_list);
9375e446 1687
05394f39
CW
1688 obj->base.write_domain = 0;
1689 list_del_init(&obj->gpu_write_list);
1690 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1691 }
1692}
1693
312817a3
CW
1694static void i915_gem_reset_fences(struct drm_device *dev)
1695{
1696 struct drm_i915_private *dev_priv = dev->dev_private;
1697 int i;
1698
4b9de737 1699 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1700 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 1701
ada726c7 1702 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 1703
ada726c7
CW
1704 if (reg->obj)
1705 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 1706
ada726c7
CW
1707 reg->pin_count = 0;
1708 reg->obj = NULL;
1709 INIT_LIST_HEAD(&reg->lru_list);
312817a3 1710 }
ada726c7
CW
1711
1712 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
1713}
1714
069efc1d 1715void i915_gem_reset(struct drm_device *dev)
673a394b 1716{
77f01230 1717 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1718 struct drm_i915_gem_object *obj;
b4519513 1719 struct intel_ring_buffer *ring;
1ec14ad3 1720 int i;
673a394b 1721
b4519513
CW
1722 for_each_ring(ring, dev_priv, i)
1723 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392
CW
1724
1725 /* Remove anything from the flushing lists. The GPU cache is likely
1726 * to be lost on reset along with the data, so simply move the
1727 * lost bo to the inactive list.
1728 */
1729 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1730 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1731 struct drm_i915_gem_object,
1732 mm_list);
dfaae392 1733
05394f39
CW
1734 obj->base.write_domain = 0;
1735 list_del_init(&obj->gpu_write_list);
1736 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1737 }
1738
1739 /* Move everything out of the GPU domains to ensure we do any
1740 * necessary invalidation upon reuse.
1741 */
05394f39 1742 list_for_each_entry(obj,
77f01230 1743 &dev_priv->mm.inactive_list,
69dc4987 1744 mm_list)
77f01230 1745 {
05394f39 1746 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1747 }
069efc1d
CW
1748
1749 /* The fence registers are invalidated so clear them out */
312817a3 1750 i915_gem_reset_fences(dev);
673a394b
EA
1751}
1752
1753/**
1754 * This function clears the request list as sequence numbers are passed.
1755 */
a71d8d94 1756void
db53a302 1757i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1758{
673a394b 1759 uint32_t seqno;
1ec14ad3 1760 int i;
673a394b 1761
db53a302 1762 if (list_empty(&ring->request_list))
6c0594a3
KW
1763 return;
1764
db53a302 1765 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1766
78501eac 1767 seqno = ring->get_seqno(ring);
1ec14ad3 1768
076e2c0e 1769 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1770 if (seqno >= ring->sync_seqno[i])
1771 ring->sync_seqno[i] = 0;
1772
852835f3 1773 while (!list_empty(&ring->request_list)) {
673a394b 1774 struct drm_i915_gem_request *request;
673a394b 1775
852835f3 1776 request = list_first_entry(&ring->request_list,
673a394b
EA
1777 struct drm_i915_gem_request,
1778 list);
673a394b 1779
dfaae392 1780 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1781 break;
1782
db53a302 1783 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1784 /* We know the GPU must have read the request to have
1785 * sent us the seqno + interrupt, so use the position
1786 * of tail of the request to update the last known position
1787 * of the GPU head.
1788 */
1789 ring->last_retired_head = request->tail;
b84d5f0c
CW
1790
1791 list_del(&request->list);
f787a5f5 1792 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1793 kfree(request);
1794 }
673a394b 1795
b84d5f0c
CW
1796 /* Move any buffers on the active list that are no longer referenced
1797 * by the ringbuffer to the flushing/inactive lists as appropriate.
1798 */
1799 while (!list_empty(&ring->active_list)) {
05394f39 1800 struct drm_i915_gem_object *obj;
b84d5f0c 1801
0206e353 1802 obj = list_first_entry(&ring->active_list,
05394f39
CW
1803 struct drm_i915_gem_object,
1804 ring_list);
673a394b 1805
05394f39 1806 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1807 break;
b84d5f0c 1808
05394f39 1809 if (obj->base.write_domain != 0)
b84d5f0c
CW
1810 i915_gem_object_move_to_flushing(obj);
1811 else
1812 i915_gem_object_move_to_inactive(obj);
673a394b 1813 }
9d34e5db 1814
db53a302
CW
1815 if (unlikely(ring->trace_irq_seqno &&
1816 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1817 ring->irq_put(ring);
db53a302 1818 ring->trace_irq_seqno = 0;
9d34e5db 1819 }
23bc5982 1820
db53a302 1821 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1822}
1823
b09a1fec
CW
1824void
1825i915_gem_retire_requests(struct drm_device *dev)
1826{
1827 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 1828 struct intel_ring_buffer *ring;
1ec14ad3 1829 int i;
b09a1fec 1830
b4519513
CW
1831 for_each_ring(ring, dev_priv, i)
1832 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
1833}
1834
75ef9da2 1835static void
673a394b
EA
1836i915_gem_retire_work_handler(struct work_struct *work)
1837{
1838 drm_i915_private_t *dev_priv;
1839 struct drm_device *dev;
b4519513 1840 struct intel_ring_buffer *ring;
0a58705b
CW
1841 bool idle;
1842 int i;
673a394b
EA
1843
1844 dev_priv = container_of(work, drm_i915_private_t,
1845 mm.retire_work.work);
1846 dev = dev_priv->dev;
1847
891b48cf
CW
1848 /* Come back later if the device is busy... */
1849 if (!mutex_trylock(&dev->struct_mutex)) {
1850 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1851 return;
1852 }
1853
b09a1fec 1854 i915_gem_retire_requests(dev);
d1b851fc 1855
0a58705b
CW
1856 /* Send a periodic flush down the ring so we don't hold onto GEM
1857 * objects indefinitely.
1858 */
1859 idle = true;
b4519513 1860 for_each_ring(ring, dev_priv, i) {
cc889e0f 1861 if (ring->gpu_caches_dirty) {
0a58705b 1862 struct drm_i915_gem_request *request;
0a58705b 1863
0a58705b 1864 request = kzalloc(sizeof(*request), GFP_KERNEL);
cc889e0f 1865 if (request == NULL ||
db53a302 1866 i915_add_request(ring, NULL, request))
0a58705b
CW
1867 kfree(request);
1868 }
1869
1870 idle &= list_empty(&ring->request_list);
1871 }
1872
1873 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1874 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1875
673a394b
EA
1876 mutex_unlock(&dev->struct_mutex);
1877}
1878
d6b2c790
DV
1879int
1880i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1881 bool interruptible)
b4aca010 1882{
b4aca010
BW
1883 if (atomic_read(&dev_priv->mm.wedged)) {
1884 struct completion *x = &dev_priv->error_completion;
1885 bool recovery_complete;
1886 unsigned long flags;
1887
1888 /* Give the error handler a chance to run. */
1889 spin_lock_irqsave(&x->wait.lock, flags);
1890 recovery_complete = x->done > 0;
1891 spin_unlock_irqrestore(&x->wait.lock, flags);
1892
d6b2c790
DV
1893 /* Non-interruptible callers can't handle -EAGAIN, hence return
1894 * -EIO unconditionally for these. */
1895 if (!interruptible)
1896 return -EIO;
1897
1898 /* Recovery complete, but still wedged means reset failure. */
1899 if (recovery_complete)
1900 return -EIO;
1901
1902 return -EAGAIN;
b4aca010
BW
1903 }
1904
1905 return 0;
1906}
1907
1908/*
1909 * Compare seqno against outstanding lazy request. Emit a request if they are
1910 * equal.
1911 */
1912static int
1913i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1914{
1915 int ret = 0;
1916
1917 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1918
1919 if (seqno == ring->outstanding_lazy_request) {
1920 struct drm_i915_gem_request *request;
1921
1922 request = kzalloc(sizeof(*request), GFP_KERNEL);
1923 if (request == NULL)
1924 return -ENOMEM;
1925
1926 ret = i915_add_request(ring, NULL, request);
1927 if (ret) {
1928 kfree(request);
1929 return ret;
1930 }
1931
1932 BUG_ON(seqno != request->seqno);
1933 }
1934
1935 return ret;
1936}
1937
5c81fe85
BW
1938/**
1939 * __wait_seqno - wait until execution of seqno has finished
1940 * @ring: the ring expected to report seqno
1941 * @seqno: duh!
1942 * @interruptible: do an interruptible wait (normally yes)
1943 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1944 *
1945 * Returns 0 if the seqno was found within the alloted time. Else returns the
1946 * errno with remaining time filled in timeout argument.
1947 */
604dd3ec 1948static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
5c81fe85 1949 bool interruptible, struct timespec *timeout)
604dd3ec
BW
1950{
1951 drm_i915_private_t *dev_priv = ring->dev->dev_private;
5c81fe85
BW
1952 struct timespec before, now, wait_time={1,0};
1953 unsigned long timeout_jiffies;
1954 long end;
1955 bool wait_forever = true;
d6b2c790 1956 int ret;
604dd3ec
BW
1957
1958 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1959 return 0;
1960
1961 trace_i915_gem_request_wait_begin(ring, seqno);
5c81fe85
BW
1962
1963 if (timeout != NULL) {
1964 wait_time = *timeout;
1965 wait_forever = false;
1966 }
1967
1968 timeout_jiffies = timespec_to_jiffies(&wait_time);
1969
604dd3ec
BW
1970 if (WARN_ON(!ring->irq_get(ring)))
1971 return -ENODEV;
1972
5c81fe85
BW
1973 /* Record current time in case interrupted by signal, or wedged * */
1974 getrawmonotonic(&before);
1975
604dd3ec
BW
1976#define EXIT_COND \
1977 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1978 atomic_read(&dev_priv->mm.wedged))
5c81fe85
BW
1979 do {
1980 if (interruptible)
1981 end = wait_event_interruptible_timeout(ring->irq_queue,
1982 EXIT_COND,
1983 timeout_jiffies);
1984 else
1985 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1986 timeout_jiffies);
604dd3ec 1987
d6b2c790
DV
1988 ret = i915_gem_check_wedge(dev_priv, interruptible);
1989 if (ret)
1990 end = ret;
5c81fe85
BW
1991 } while (end == 0 && wait_forever);
1992
1993 getrawmonotonic(&now);
604dd3ec
BW
1994
1995 ring->irq_put(ring);
1996 trace_i915_gem_request_wait_end(ring, seqno);
1997#undef EXIT_COND
1998
5c81fe85
BW
1999 if (timeout) {
2000 struct timespec sleep_time = timespec_sub(now, before);
2001 *timeout = timespec_sub(*timeout, sleep_time);
2002 }
2003
2004 switch (end) {
eeef9b38 2005 case -EIO:
5c81fe85
BW
2006 case -EAGAIN: /* Wedged */
2007 case -ERESTARTSYS: /* Signal */
2008 return (int)end;
2009 case 0: /* Timeout */
2010 if (timeout)
2011 set_normalized_timespec(timeout, 0, 0);
2012 return -ETIME;
2013 default: /* Completed */
2014 WARN_ON(end < 0); /* We're not aware of other errors */
2015 return 0;
2016 }
604dd3ec
BW
2017}
2018
db53a302
CW
2019/**
2020 * Waits for a sequence number to be signaled, and cleans up the
2021 * request and object lists appropriately for that event.
2022 */
5a5a0c64 2023int
199b2bc2 2024i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
673a394b 2025{
db53a302 2026 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
2027 int ret = 0;
2028
2029 BUG_ON(seqno == 0);
2030
d6b2c790 2031 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
b4aca010
BW
2032 if (ret)
2033 return ret;
3cce469c 2034
b4aca010
BW
2035 ret = i915_gem_check_olr(ring, seqno);
2036 if (ret)
2037 return ret;
ffed1d09 2038
5c81fe85 2039 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
673a394b 2040
673a394b
EA
2041 return ret;
2042}
2043
673a394b
EA
2044/**
2045 * Ensures that all rendering to the object has completed and the object is
2046 * safe to unbind from the GTT or access from the CPU.
2047 */
54cf91dc 2048int
ce453d81 2049i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 2050{
673a394b
EA
2051 int ret;
2052
e47c68e9
EA
2053 /* This function only exists to support waiting for existing rendering,
2054 * not for emitting required flushes.
673a394b 2055 */
05394f39 2056 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2057
2058 /* If there is rendering queued on the buffer being evicted, wait for
2059 * it.
2060 */
05394f39 2061 if (obj->active) {
199b2bc2 2062 ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
2cf34d7b 2063 if (ret)
673a394b 2064 return ret;
b2da9fe5 2065 i915_gem_retire_requests_ring(obj->ring);
673a394b
EA
2066 }
2067
2068 return 0;
2069}
2070
30dfebf3
DV
2071/**
2072 * Ensures that an object will eventually get non-busy by flushing any required
2073 * write domains, emitting any outstanding lazy request and retiring and
2074 * completed requests.
2075 */
2076static int
2077i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2078{
2079 int ret;
2080
2081 if (obj->active) {
2082 ret = i915_gem_object_flush_gpu_write_domain(obj);
2083 if (ret)
2084 return ret;
2085
2086 ret = i915_gem_check_olr(obj->ring,
2087 obj->last_rendering_seqno);
2088 if (ret)
2089 return ret;
2090 i915_gem_retire_requests_ring(obj->ring);
2091 }
2092
2093 return 0;
2094}
2095
23ba4fd0
BW
2096/**
2097 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2098 * @DRM_IOCTL_ARGS: standard ioctl arguments
2099 *
2100 * Returns 0 if successful, else an error is returned with the remaining time in
2101 * the timeout parameter.
2102 * -ETIME: object is still busy after timeout
2103 * -ERESTARTSYS: signal interrupted the wait
2104 * -ENONENT: object doesn't exist
2105 * Also possible, but rare:
2106 * -EAGAIN: GPU wedged
2107 * -ENOMEM: damn
2108 * -ENODEV: Internal IRQ fail
2109 * -E?: The add request failed
2110 *
2111 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2112 * non-zero timeout parameter the wait ioctl will wait for the given number of
2113 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2114 * without holding struct_mutex the object may become re-busied before this
2115 * function completes. A similar but shorter * race condition exists in the busy
2116 * ioctl
2117 */
2118int
2119i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2120{
2121 struct drm_i915_gem_wait *args = data;
2122 struct drm_i915_gem_object *obj;
2123 struct intel_ring_buffer *ring = NULL;
eac1f14f 2124 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2125 u32 seqno = 0;
2126 int ret = 0;
2127
eac1f14f
BW
2128 if (args->timeout_ns >= 0) {
2129 timeout_stack = ns_to_timespec(args->timeout_ns);
2130 timeout = &timeout_stack;
2131 }
23ba4fd0
BW
2132
2133 ret = i915_mutex_lock_interruptible(dev);
2134 if (ret)
2135 return ret;
2136
2137 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2138 if (&obj->base == NULL) {
2139 mutex_unlock(&dev->struct_mutex);
2140 return -ENOENT;
2141 }
2142
30dfebf3
DV
2143 /* Need to make sure the object gets inactive eventually. */
2144 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2145 if (ret)
2146 goto out;
2147
2148 if (obj->active) {
2149 seqno = obj->last_rendering_seqno;
2150 ring = obj->ring;
2151 }
2152
2153 if (seqno == 0)
2154 goto out;
2155
23ba4fd0
BW
2156 /* Do this after OLR check to make sure we make forward progress polling
2157 * on this IOCTL with a 0 timeout (like busy ioctl)
2158 */
2159 if (!args->timeout_ns) {
2160 ret = -ETIME;
2161 goto out;
2162 }
2163
2164 drm_gem_object_unreference(&obj->base);
2165 mutex_unlock(&dev->struct_mutex);
2166
eac1f14f
BW
2167 ret = __wait_seqno(ring, seqno, true, timeout);
2168 if (timeout) {
2169 WARN_ON(!timespec_valid(timeout));
2170 args->timeout_ns = timespec_to_ns(timeout);
2171 }
23ba4fd0
BW
2172 return ret;
2173
2174out:
2175 drm_gem_object_unreference(&obj->base);
2176 mutex_unlock(&dev->struct_mutex);
2177 return ret;
2178}
2179
5816d648
BW
2180/**
2181 * i915_gem_object_sync - sync an object to a ring.
2182 *
2183 * @obj: object which may be in use on another ring.
2184 * @to: ring we wish to use the object on. May be NULL.
2185 *
2186 * This code is meant to abstract object synchronization with the GPU.
2187 * Calling with NULL implies synchronizing the object with the CPU
2188 * rather than a particular GPU ring.
2189 *
2190 * Returns 0 if successful, else propagates up the lower layer error.
2191 */
2911a35b
BW
2192int
2193i915_gem_object_sync(struct drm_i915_gem_object *obj,
2194 struct intel_ring_buffer *to)
2195{
2196 struct intel_ring_buffer *from = obj->ring;
2197 u32 seqno;
2198 int ret, idx;
2199
2200 if (from == NULL || to == from)
2201 return 0;
2202
5816d648 2203 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2911a35b
BW
2204 return i915_gem_object_wait_rendering(obj);
2205
2206 idx = intel_ring_sync_index(from, to);
2207
2208 seqno = obj->last_rendering_seqno;
2209 if (seqno <= from->sync_seqno[idx])
2210 return 0;
2211
b4aca010
BW
2212 ret = i915_gem_check_olr(obj->ring, seqno);
2213 if (ret)
2214 return ret;
2911a35b 2215
1500f7ea 2216 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2217 if (!ret)
2218 from->sync_seqno[idx] = seqno;
2911a35b 2219
e3a5a225 2220 return ret;
2911a35b
BW
2221}
2222
b5ffc9bc
CW
2223static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2224{
2225 u32 old_write_domain, old_read_domains;
2226
b5ffc9bc
CW
2227 /* Act a barrier for all accesses through the GTT */
2228 mb();
2229
2230 /* Force a pagefault for domain tracking on next user access */
2231 i915_gem_release_mmap(obj);
2232
b97c3d9c
KP
2233 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2234 return;
2235
b5ffc9bc
CW
2236 old_read_domains = obj->base.read_domains;
2237 old_write_domain = obj->base.write_domain;
2238
2239 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2240 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2241
2242 trace_i915_gem_object_change_domain(obj,
2243 old_read_domains,
2244 old_write_domain);
2245}
2246
673a394b
EA
2247/**
2248 * Unbinds an object from the GTT aperture.
2249 */
0f973f27 2250int
05394f39 2251i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2252{
7bddb01f 2253 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2254 int ret = 0;
2255
05394f39 2256 if (obj->gtt_space == NULL)
673a394b
EA
2257 return 0;
2258
31d8d651
CW
2259 if (obj->pin_count)
2260 return -EBUSY;
673a394b 2261
a8198eea 2262 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2263 if (ret)
a8198eea
CW
2264 return ret;
2265 /* Continue on if we fail due to EIO, the GPU is hung so we
2266 * should be safe and we need to cleanup or else we might
2267 * cause memory corruption through use-after-free.
2268 */
2269
b5ffc9bc 2270 i915_gem_object_finish_gtt(obj);
5323fd04 2271
673a394b
EA
2272 /* Move the object to the CPU domain to ensure that
2273 * any possible CPU writes while it's not in the GTT
a8198eea 2274 * are flushed when we go to remap it.
673a394b 2275 */
a8198eea
CW
2276 if (ret == 0)
2277 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2278 if (ret == -ERESTARTSYS)
673a394b 2279 return ret;
812ed492 2280 if (ret) {
a8198eea
CW
2281 /* In the event of a disaster, abandon all caches and
2282 * hope for the best.
2283 */
812ed492 2284 i915_gem_clflush_object(obj);
05394f39 2285 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2286 }
673a394b 2287
96b47b65 2288 /* release the fence reg _after_ flushing */
d9e86c0e 2289 ret = i915_gem_object_put_fence(obj);
1488fc08 2290 if (ret)
d9e86c0e 2291 return ret;
96b47b65 2292
db53a302
CW
2293 trace_i915_gem_object_unbind(obj);
2294
74898d7e
DV
2295 if (obj->has_global_gtt_mapping)
2296 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2297 if (obj->has_aliasing_ppgtt_mapping) {
2298 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2299 obj->has_aliasing_ppgtt_mapping = 0;
2300 }
74163907 2301 i915_gem_gtt_finish_object(obj);
7bddb01f 2302
e5281ccd 2303 i915_gem_object_put_pages_gtt(obj);
673a394b 2304
6299f992 2305 list_del_init(&obj->gtt_list);
05394f39 2306 list_del_init(&obj->mm_list);
75e9e915 2307 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2308 obj->map_and_fenceable = true;
673a394b 2309
05394f39
CW
2310 drm_mm_put_block(obj->gtt_space);
2311 obj->gtt_space = NULL;
2312 obj->gtt_offset = 0;
673a394b 2313
05394f39 2314 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2315 i915_gem_object_truncate(obj);
2316
8dc1775d 2317 return ret;
673a394b
EA
2318}
2319
88241785 2320int
db53a302 2321i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2322 uint32_t invalidate_domains,
2323 uint32_t flush_domains)
2324{
88241785
CW
2325 int ret;
2326
36d527de
CW
2327 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2328 return 0;
2329
db53a302
CW
2330 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2331
88241785
CW
2332 ret = ring->flush(ring, invalidate_domains, flush_domains);
2333 if (ret)
2334 return ret;
2335
36d527de
CW
2336 if (flush_domains & I915_GEM_GPU_DOMAINS)
2337 i915_gem_process_flushing_list(ring, flush_domains);
2338
88241785 2339 return 0;
54cf91dc
CW
2340}
2341
b2da9fe5 2342static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2343{
88241785
CW
2344 int ret;
2345
395b70be 2346 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2347 return 0;
2348
88241785 2349 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2350 ret = i915_gem_flush_ring(ring,
0ac74c6b 2351 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2352 if (ret)
2353 return ret;
2354 }
2355
199b2bc2 2356 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2357}
2358
b2da9fe5 2359int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2360{
2361 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2362 struct intel_ring_buffer *ring;
1ec14ad3 2363 int ret, i;
4df2faf4 2364
4df2faf4 2365 /* Flush everything onto the inactive list. */
b4519513 2366 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2367 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2368 if (ret)
2369 return ret;
2370
b4519513 2371 ret = i915_ring_idle(ring);
1ec14ad3
CW
2372 if (ret)
2373 return ret;
b4519513
CW
2374
2375 /* Is the device fubar? */
2376 if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2377 return -EBUSY;
1ec14ad3 2378 }
4df2faf4 2379
8a1a49f9 2380 return 0;
4df2faf4
DV
2381}
2382
9ce079e4
CW
2383static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2384 struct drm_i915_gem_object *obj)
4e901fdc 2385{
4e901fdc 2386 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2387 uint64_t val;
2388
9ce079e4
CW
2389 if (obj) {
2390 u32 size = obj->gtt_space->size;
4e901fdc 2391
9ce079e4
CW
2392 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2393 0xfffff000) << 32;
2394 val |= obj->gtt_offset & 0xfffff000;
2395 val |= (uint64_t)((obj->stride / 128) - 1) <<
2396 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2397
9ce079e4
CW
2398 if (obj->tiling_mode == I915_TILING_Y)
2399 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2400 val |= I965_FENCE_REG_VALID;
2401 } else
2402 val = 0;
c6642782 2403
9ce079e4
CW
2404 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2405 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2406}
2407
9ce079e4
CW
2408static void i965_write_fence_reg(struct drm_device *dev, int reg,
2409 struct drm_i915_gem_object *obj)
de151cf6 2410{
de151cf6 2411 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2412 uint64_t val;
2413
9ce079e4
CW
2414 if (obj) {
2415 u32 size = obj->gtt_space->size;
de151cf6 2416
9ce079e4
CW
2417 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2418 0xfffff000) << 32;
2419 val |= obj->gtt_offset & 0xfffff000;
2420 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2421 if (obj->tiling_mode == I915_TILING_Y)
2422 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2423 val |= I965_FENCE_REG_VALID;
2424 } else
2425 val = 0;
c6642782 2426
9ce079e4
CW
2427 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2428 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2429}
2430
9ce079e4
CW
2431static void i915_write_fence_reg(struct drm_device *dev, int reg,
2432 struct drm_i915_gem_object *obj)
de151cf6 2433{
de151cf6 2434 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2435 u32 val;
de151cf6 2436
9ce079e4
CW
2437 if (obj) {
2438 u32 size = obj->gtt_space->size;
2439 int pitch_val;
2440 int tile_width;
c6642782 2441
9ce079e4
CW
2442 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2443 (size & -size) != size ||
2444 (obj->gtt_offset & (size - 1)),
2445 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2446 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2447
9ce079e4
CW
2448 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2449 tile_width = 128;
2450 else
2451 tile_width = 512;
2452
2453 /* Note: pitch better be a power of two tile widths */
2454 pitch_val = obj->stride / tile_width;
2455 pitch_val = ffs(pitch_val) - 1;
2456
2457 val = obj->gtt_offset;
2458 if (obj->tiling_mode == I915_TILING_Y)
2459 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2460 val |= I915_FENCE_SIZE_BITS(size);
2461 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2462 val |= I830_FENCE_REG_VALID;
2463 } else
2464 val = 0;
2465
2466 if (reg < 8)
2467 reg = FENCE_REG_830_0 + reg * 4;
2468 else
2469 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2470
2471 I915_WRITE(reg, val);
2472 POSTING_READ(reg);
de151cf6
JB
2473}
2474
9ce079e4
CW
2475static void i830_write_fence_reg(struct drm_device *dev, int reg,
2476 struct drm_i915_gem_object *obj)
de151cf6 2477{
de151cf6 2478 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2479 uint32_t val;
de151cf6 2480
9ce079e4
CW
2481 if (obj) {
2482 u32 size = obj->gtt_space->size;
2483 uint32_t pitch_val;
de151cf6 2484
9ce079e4
CW
2485 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2486 (size & -size) != size ||
2487 (obj->gtt_offset & (size - 1)),
2488 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2489 obj->gtt_offset, size);
e76a16de 2490
9ce079e4
CW
2491 pitch_val = obj->stride / 128;
2492 pitch_val = ffs(pitch_val) - 1;
de151cf6 2493
9ce079e4
CW
2494 val = obj->gtt_offset;
2495 if (obj->tiling_mode == I915_TILING_Y)
2496 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2497 val |= I830_FENCE_SIZE_BITS(size);
2498 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2499 val |= I830_FENCE_REG_VALID;
2500 } else
2501 val = 0;
c6642782 2502
9ce079e4
CW
2503 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2504 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2505}
2506
2507static void i915_gem_write_fence(struct drm_device *dev, int reg,
2508 struct drm_i915_gem_object *obj)
2509{
2510 switch (INTEL_INFO(dev)->gen) {
2511 case 7:
2512 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2513 case 5:
2514 case 4: i965_write_fence_reg(dev, reg, obj); break;
2515 case 3: i915_write_fence_reg(dev, reg, obj); break;
2516 case 2: i830_write_fence_reg(dev, reg, obj); break;
2517 default: break;
2518 }
de151cf6
JB
2519}
2520
61050808
CW
2521static inline int fence_number(struct drm_i915_private *dev_priv,
2522 struct drm_i915_fence_reg *fence)
2523{
2524 return fence - dev_priv->fence_regs;
2525}
2526
2527static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2528 struct drm_i915_fence_reg *fence,
2529 bool enable)
2530{
2531 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2532 int reg = fence_number(dev_priv, fence);
2533
2534 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2535
2536 if (enable) {
2537 obj->fence_reg = reg;
2538 fence->obj = obj;
2539 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2540 } else {
2541 obj->fence_reg = I915_FENCE_REG_NONE;
2542 fence->obj = NULL;
2543 list_del_init(&fence->lru_list);
2544 }
2545}
2546
d9e86c0e 2547static int
a360bb1a 2548i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e
CW
2549{
2550 int ret;
2551
2552 if (obj->fenced_gpu_access) {
88241785 2553 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
1c293ea3 2554 ret = i915_gem_flush_ring(obj->ring,
88241785
CW
2555 0, obj->base.write_domain);
2556 if (ret)
2557 return ret;
2558 }
d9e86c0e
CW
2559
2560 obj->fenced_gpu_access = false;
2561 }
2562
1c293ea3 2563 if (obj->last_fenced_seqno) {
199b2bc2 2564 ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2565 if (ret)
2566 return ret;
d9e86c0e
CW
2567
2568 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2569 }
2570
63256ec5
CW
2571 /* Ensure that all CPU reads are completed before installing a fence
2572 * and all writes before removing the fence.
2573 */
2574 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2575 mb();
2576
d9e86c0e
CW
2577 return 0;
2578}
2579
2580int
2581i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2582{
61050808 2583 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2584 int ret;
2585
a360bb1a 2586 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2587 if (ret)
2588 return ret;
2589
61050808
CW
2590 if (obj->fence_reg == I915_FENCE_REG_NONE)
2591 return 0;
d9e86c0e 2592
61050808
CW
2593 i915_gem_object_update_fence(obj,
2594 &dev_priv->fence_regs[obj->fence_reg],
2595 false);
2596 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2597
2598 return 0;
2599}
2600
2601static struct drm_i915_fence_reg *
a360bb1a 2602i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2603{
ae3db24a 2604 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2605 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2606 int i;
ae3db24a
DV
2607
2608 /* First try to find a free reg */
d9e86c0e 2609 avail = NULL;
ae3db24a
DV
2610 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2611 reg = &dev_priv->fence_regs[i];
2612 if (!reg->obj)
d9e86c0e 2613 return reg;
ae3db24a 2614
1690e1eb 2615 if (!reg->pin_count)
d9e86c0e 2616 avail = reg;
ae3db24a
DV
2617 }
2618
d9e86c0e
CW
2619 if (avail == NULL)
2620 return NULL;
ae3db24a
DV
2621
2622 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2623 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2624 if (reg->pin_count)
ae3db24a
DV
2625 continue;
2626
8fe301ad 2627 return reg;
ae3db24a
DV
2628 }
2629
8fe301ad 2630 return NULL;
ae3db24a
DV
2631}
2632
de151cf6 2633/**
9a5a53b3 2634 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2635 * @obj: object to map through a fence reg
2636 *
2637 * When mapping objects through the GTT, userspace wants to be able to write
2638 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2639 * This function walks the fence regs looking for a free one for @obj,
2640 * stealing one if it can't find any.
2641 *
2642 * It then sets up the reg based on the object's properties: address, pitch
2643 * and tiling format.
9a5a53b3
CW
2644 *
2645 * For an untiled surface, this removes any existing fence.
de151cf6 2646 */
8c4b8c3f 2647int
06d98131 2648i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2649{
05394f39 2650 struct drm_device *dev = obj->base.dev;
79e53945 2651 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2652 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2653 struct drm_i915_fence_reg *reg;
ae3db24a 2654 int ret;
de151cf6 2655
14415745
CW
2656 /* Have we updated the tiling parameters upon the object and so
2657 * will need to serialise the write to the associated fence register?
2658 */
5d82e3e6 2659 if (obj->fence_dirty) {
14415745
CW
2660 ret = i915_gem_object_flush_fence(obj);
2661 if (ret)
2662 return ret;
2663 }
9a5a53b3 2664
d9e86c0e 2665 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2666 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2667 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2668 if (!obj->fence_dirty) {
14415745
CW
2669 list_move_tail(&reg->lru_list,
2670 &dev_priv->mm.fence_list);
2671 return 0;
2672 }
2673 } else if (enable) {
2674 reg = i915_find_fence_reg(dev);
2675 if (reg == NULL)
2676 return -EDEADLK;
d9e86c0e 2677
14415745
CW
2678 if (reg->obj) {
2679 struct drm_i915_gem_object *old = reg->obj;
2680
2681 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2682 if (ret)
2683 return ret;
2684
14415745 2685 i915_gem_object_fence_lost(old);
29c5a587 2686 }
14415745 2687 } else
a09ba7fa 2688 return 0;
a09ba7fa 2689
14415745 2690 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2691 obj->fence_dirty = false;
14415745 2692
9ce079e4 2693 return 0;
de151cf6
JB
2694}
2695
673a394b
EA
2696/**
2697 * Finds free space in the GTT aperture and binds the object there.
2698 */
2699static int
05394f39 2700i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2701 unsigned alignment,
75e9e915 2702 bool map_and_fenceable)
673a394b 2703{
05394f39 2704 struct drm_device *dev = obj->base.dev;
673a394b 2705 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2706 struct drm_mm_node *free_space;
a00b10c3 2707 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2708 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2709 bool mappable, fenceable;
07f73f69 2710 int ret;
673a394b 2711
05394f39 2712 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2713 DRM_ERROR("Attempting to bind a purgeable object\n");
2714 return -EINVAL;
2715 }
2716
e28f8711
CW
2717 fence_size = i915_gem_get_gtt_size(dev,
2718 obj->base.size,
2719 obj->tiling_mode);
2720 fence_alignment = i915_gem_get_gtt_alignment(dev,
2721 obj->base.size,
2722 obj->tiling_mode);
2723 unfenced_alignment =
2724 i915_gem_get_unfenced_gtt_alignment(dev,
2725 obj->base.size,
2726 obj->tiling_mode);
a00b10c3 2727
673a394b 2728 if (alignment == 0)
5e783301
DV
2729 alignment = map_and_fenceable ? fence_alignment :
2730 unfenced_alignment;
75e9e915 2731 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2732 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2733 return -EINVAL;
2734 }
2735
05394f39 2736 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2737
654fc607
CW
2738 /* If the object is bigger than the entire aperture, reject it early
2739 * before evicting everything in a vain attempt to find space.
2740 */
05394f39 2741 if (obj->base.size >
75e9e915 2742 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2743 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2744 return -E2BIG;
2745 }
2746
673a394b 2747 search_free:
75e9e915 2748 if (map_and_fenceable)
920afa77
DV
2749 free_space =
2750 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
6b9d89b4
CW
2751 size, alignment,
2752 0, dev_priv->mm.gtt_mappable_end,
920afa77
DV
2753 0);
2754 else
2755 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2756 size, alignment, 0);
920afa77
DV
2757
2758 if (free_space != NULL) {
75e9e915 2759 if (map_and_fenceable)
05394f39 2760 obj->gtt_space =
920afa77 2761 drm_mm_get_block_range_generic(free_space,
a00b10c3 2762 size, alignment, 0,
6b9d89b4 2763 0, dev_priv->mm.gtt_mappable_end,
920afa77
DV
2764 0);
2765 else
05394f39 2766 obj->gtt_space =
a00b10c3 2767 drm_mm_get_block(free_space, size, alignment);
920afa77 2768 }
05394f39 2769 if (obj->gtt_space == NULL) {
673a394b
EA
2770 /* If the gtt is empty and we're still having trouble
2771 * fitting our object in, we're out of memory.
2772 */
75e9e915
DV
2773 ret = i915_gem_evict_something(dev, size, alignment,
2774 map_and_fenceable);
9731129c 2775 if (ret)
673a394b 2776 return ret;
9731129c 2777
673a394b
EA
2778 goto search_free;
2779 }
2780
e5281ccd 2781 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2782 if (ret) {
05394f39
CW
2783 drm_mm_put_block(obj->gtt_space);
2784 obj->gtt_space = NULL;
07f73f69
CW
2785
2786 if (ret == -ENOMEM) {
809b6334
CW
2787 /* first try to reclaim some memory by clearing the GTT */
2788 ret = i915_gem_evict_everything(dev, false);
07f73f69 2789 if (ret) {
07f73f69 2790 /* now try to shrink everyone else */
4bdadb97
CW
2791 if (gfpmask) {
2792 gfpmask = 0;
2793 goto search_free;
07f73f69
CW
2794 }
2795
809b6334 2796 return -ENOMEM;
07f73f69
CW
2797 }
2798
2799 goto search_free;
2800 }
2801
673a394b
EA
2802 return ret;
2803 }
2804
74163907 2805 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2806 if (ret) {
e5281ccd 2807 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2808 drm_mm_put_block(obj->gtt_space);
2809 obj->gtt_space = NULL;
07f73f69 2810
809b6334 2811 if (i915_gem_evict_everything(dev, false))
07f73f69 2812 return ret;
07f73f69
CW
2813
2814 goto search_free;
673a394b 2815 }
673a394b 2816
0ebb9829
DV
2817 if (!dev_priv->mm.aliasing_ppgtt)
2818 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2819
6299f992 2820 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2821 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2822
673a394b
EA
2823 /* Assert that the object is not currently in any GPU domain. As it
2824 * wasn't in the GTT, there shouldn't be any way it could have been in
2825 * a GPU cache
2826 */
05394f39
CW
2827 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2828 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2829
6299f992 2830 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2831
75e9e915 2832 fenceable =
05394f39 2833 obj->gtt_space->size == fence_size &&
0206e353 2834 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2835
75e9e915 2836 mappable =
05394f39 2837 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2838
05394f39 2839 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2840
db53a302 2841 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2842 return 0;
2843}
2844
2845void
05394f39 2846i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2847{
673a394b
EA
2848 /* If we don't have a page list set up, then we're not pinned
2849 * to GPU, and we can ignore the cache flush because it'll happen
2850 * again at bind time.
2851 */
05394f39 2852 if (obj->pages == NULL)
673a394b
EA
2853 return;
2854
9c23f7fc
CW
2855 /* If the GPU is snooping the contents of the CPU cache,
2856 * we do not need to manually clear the CPU cache lines. However,
2857 * the caches are only snooped when the render cache is
2858 * flushed/invalidated. As we always have to emit invalidations
2859 * and flushes when moving into and out of the RENDER domain, correct
2860 * snooping behaviour occurs naturally as the result of our domain
2861 * tracking.
2862 */
2863 if (obj->cache_level != I915_CACHE_NONE)
2864 return;
2865
1c5d22f7 2866 trace_i915_gem_object_clflush(obj);
cfa16a0d 2867
05394f39 2868 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2869}
2870
e47c68e9 2871/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2872static int
3619df03 2873i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2874{
05394f39 2875 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2876 return 0;
e47c68e9
EA
2877
2878 /* Queue the GPU write cache flushing we need. */
db53a302 2879 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2880}
2881
2882/** Flushes the GTT write domain for the object if it's dirty. */
2883static void
05394f39 2884i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2885{
1c5d22f7
CW
2886 uint32_t old_write_domain;
2887
05394f39 2888 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2889 return;
2890
63256ec5 2891 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2892 * to it immediately go to main memory as far as we know, so there's
2893 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2894 *
2895 * However, we do have to enforce the order so that all writes through
2896 * the GTT land before any writes to the device, such as updates to
2897 * the GATT itself.
e47c68e9 2898 */
63256ec5
CW
2899 wmb();
2900
05394f39
CW
2901 old_write_domain = obj->base.write_domain;
2902 obj->base.write_domain = 0;
1c5d22f7
CW
2903
2904 trace_i915_gem_object_change_domain(obj,
05394f39 2905 obj->base.read_domains,
1c5d22f7 2906 old_write_domain);
e47c68e9
EA
2907}
2908
2909/** Flushes the CPU write domain for the object if it's dirty. */
2910static void
05394f39 2911i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2912{
1c5d22f7 2913 uint32_t old_write_domain;
e47c68e9 2914
05394f39 2915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2916 return;
2917
2918 i915_gem_clflush_object(obj);
40ce6575 2919 intel_gtt_chipset_flush();
05394f39
CW
2920 old_write_domain = obj->base.write_domain;
2921 obj->base.write_domain = 0;
1c5d22f7
CW
2922
2923 trace_i915_gem_object_change_domain(obj,
05394f39 2924 obj->base.read_domains,
1c5d22f7 2925 old_write_domain);
e47c68e9
EA
2926}
2927
2ef7eeaa
EA
2928/**
2929 * Moves a single object to the GTT read, and possibly write domain.
2930 *
2931 * This function returns when the move is complete, including waiting on
2932 * flushes to occur.
2933 */
79e53945 2934int
2021746e 2935i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2936{
8325a09d 2937 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 2938 uint32_t old_write_domain, old_read_domains;
e47c68e9 2939 int ret;
2ef7eeaa 2940
02354392 2941 /* Not valid to be called on unbound objects. */
05394f39 2942 if (obj->gtt_space == NULL)
02354392
EA
2943 return -EINVAL;
2944
8d7e3de1
CW
2945 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2946 return 0;
2947
88241785
CW
2948 ret = i915_gem_object_flush_gpu_write_domain(obj);
2949 if (ret)
2950 return ret;
2951
87ca9c8a 2952 if (obj->pending_gpu_write || write) {
ce453d81 2953 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2954 if (ret)
2955 return ret;
2956 }
2dafb1e0 2957
7213342d 2958 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2959
05394f39
CW
2960 old_write_domain = obj->base.write_domain;
2961 old_read_domains = obj->base.read_domains;
1c5d22f7 2962
e47c68e9
EA
2963 /* It should now be out of any other write domains, and we can update
2964 * the domain values for our changes.
2965 */
05394f39
CW
2966 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2967 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2968 if (write) {
05394f39
CW
2969 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2970 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2971 obj->dirty = 1;
2ef7eeaa
EA
2972 }
2973
1c5d22f7
CW
2974 trace_i915_gem_object_change_domain(obj,
2975 old_read_domains,
2976 old_write_domain);
2977
8325a09d
CW
2978 /* And bump the LRU for this access */
2979 if (i915_gem_object_is_inactive(obj))
2980 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2981
e47c68e9
EA
2982 return 0;
2983}
2984
e4ffd173
CW
2985int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2986 enum i915_cache_level cache_level)
2987{
7bddb01f
DV
2988 struct drm_device *dev = obj->base.dev;
2989 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2990 int ret;
2991
2992 if (obj->cache_level == cache_level)
2993 return 0;
2994
2995 if (obj->pin_count) {
2996 DRM_DEBUG("can not change the cache level of pinned objects\n");
2997 return -EBUSY;
2998 }
2999
3000 if (obj->gtt_space) {
3001 ret = i915_gem_object_finish_gpu(obj);
3002 if (ret)
3003 return ret;
3004
3005 i915_gem_object_finish_gtt(obj);
3006
3007 /* Before SandyBridge, you could not use tiling or fence
3008 * registers with snooped memory, so relinquish any fences
3009 * currently pointing to our region in the aperture.
3010 */
3011 if (INTEL_INFO(obj->base.dev)->gen < 6) {
3012 ret = i915_gem_object_put_fence(obj);
3013 if (ret)
3014 return ret;
3015 }
3016
74898d7e
DV
3017 if (obj->has_global_gtt_mapping)
3018 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3019 if (obj->has_aliasing_ppgtt_mapping)
3020 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3021 obj, cache_level);
e4ffd173
CW
3022 }
3023
3024 if (cache_level == I915_CACHE_NONE) {
3025 u32 old_read_domains, old_write_domain;
3026
3027 /* If we're coming from LLC cached, then we haven't
3028 * actually been tracking whether the data is in the
3029 * CPU cache or not, since we only allow one bit set
3030 * in obj->write_domain and have been skipping the clflushes.
3031 * Just set it to the CPU cache for now.
3032 */
3033 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3034 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3035
3036 old_read_domains = obj->base.read_domains;
3037 old_write_domain = obj->base.write_domain;
3038
3039 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3040 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3041
3042 trace_i915_gem_object_change_domain(obj,
3043 old_read_domains,
3044 old_write_domain);
3045 }
3046
3047 obj->cache_level = cache_level;
3048 return 0;
3049}
3050
b9241ea3 3051/*
2da3b9b9
CW
3052 * Prepare buffer for display plane (scanout, cursors, etc).
3053 * Can be called from an uninterruptible phase (modesetting) and allows
3054 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3055 */
3056int
2da3b9b9
CW
3057i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3058 u32 alignment,
919926ae 3059 struct intel_ring_buffer *pipelined)
b9241ea3 3060{
2da3b9b9 3061 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3062 int ret;
3063
88241785
CW
3064 ret = i915_gem_object_flush_gpu_write_domain(obj);
3065 if (ret)
3066 return ret;
3067
0be73284 3068 if (pipelined != obj->ring) {
2911a35b
BW
3069 ret = i915_gem_object_sync(obj, pipelined);
3070 if (ret)
b9241ea3
ZW
3071 return ret;
3072 }
3073
a7ef0640
EA
3074 /* The display engine is not coherent with the LLC cache on gen6. As
3075 * a result, we make sure that the pinning that is about to occur is
3076 * done with uncached PTEs. This is lowest common denominator for all
3077 * chipsets.
3078 *
3079 * However for gen6+, we could do better by using the GFDT bit instead
3080 * of uncaching, which would allow us to flush all the LLC-cached data
3081 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3082 */
3083 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3084 if (ret)
3085 return ret;
3086
2da3b9b9
CW
3087 /* As the user may map the buffer once pinned in the display plane
3088 * (e.g. libkms for the bootup splash), we have to ensure that we
3089 * always use map_and_fenceable for all scanout buffers.
3090 */
3091 ret = i915_gem_object_pin(obj, alignment, true);
3092 if (ret)
3093 return ret;
3094
b118c1e3
CW
3095 i915_gem_object_flush_cpu_write_domain(obj);
3096
2da3b9b9 3097 old_write_domain = obj->base.write_domain;
05394f39 3098 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3099
3100 /* It should now be out of any other write domains, and we can update
3101 * the domain values for our changes.
3102 */
3103 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3104 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3105
3106 trace_i915_gem_object_change_domain(obj,
3107 old_read_domains,
2da3b9b9 3108 old_write_domain);
b9241ea3
ZW
3109
3110 return 0;
3111}
3112
85345517 3113int
a8198eea 3114i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3115{
88241785
CW
3116 int ret;
3117
a8198eea 3118 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3119 return 0;
3120
88241785 3121 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3122 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3123 if (ret)
3124 return ret;
3125 }
85345517 3126
c501ae7f
CW
3127 ret = i915_gem_object_wait_rendering(obj);
3128 if (ret)
3129 return ret;
3130
a8198eea
CW
3131 /* Ensure that we invalidate the GPU's caches and TLBs. */
3132 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3133 return 0;
85345517
CW
3134}
3135
e47c68e9
EA
3136/**
3137 * Moves a single object to the CPU read, and possibly write domain.
3138 *
3139 * This function returns when the move is complete, including waiting on
3140 * flushes to occur.
3141 */
dabdfe02 3142int
919926ae 3143i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3144{
1c5d22f7 3145 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3146 int ret;
3147
8d7e3de1
CW
3148 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3149 return 0;
3150
88241785
CW
3151 ret = i915_gem_object_flush_gpu_write_domain(obj);
3152 if (ret)
3153 return ret;
3154
f8413190
CW
3155 if (write || obj->pending_gpu_write) {
3156 ret = i915_gem_object_wait_rendering(obj);
3157 if (ret)
3158 return ret;
3159 }
2ef7eeaa 3160
e47c68e9 3161 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3162
05394f39
CW
3163 old_write_domain = obj->base.write_domain;
3164 old_read_domains = obj->base.read_domains;
1c5d22f7 3165
e47c68e9 3166 /* Flush the CPU cache if it's still invalid. */
05394f39 3167 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3168 i915_gem_clflush_object(obj);
2ef7eeaa 3169
05394f39 3170 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3171 }
3172
3173 /* It should now be out of any other write domains, and we can update
3174 * the domain values for our changes.
3175 */
05394f39 3176 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3177
3178 /* If we're writing through the CPU, then the GPU read domains will
3179 * need to be invalidated at next use.
3180 */
3181 if (write) {
05394f39
CW
3182 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3183 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3184 }
2ef7eeaa 3185
1c5d22f7
CW
3186 trace_i915_gem_object_change_domain(obj,
3187 old_read_domains,
3188 old_write_domain);
3189
2ef7eeaa
EA
3190 return 0;
3191}
3192
673a394b
EA
3193/* Throttle our rendering by waiting until the ring has completed our requests
3194 * emitted over 20 msec ago.
3195 *
b962442e
EA
3196 * Note that if we were to use the current jiffies each time around the loop,
3197 * we wouldn't escape the function with any frames outstanding if the time to
3198 * render a frame was over 20ms.
3199 *
673a394b
EA
3200 * This should get us reasonable parallelism between CPU and GPU but also
3201 * relatively low latency when blocking on a particular request to finish.
3202 */
40a5f0de 3203static int
f787a5f5 3204i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3205{
f787a5f5
CW
3206 struct drm_i915_private *dev_priv = dev->dev_private;
3207 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3208 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3209 struct drm_i915_gem_request *request;
3210 struct intel_ring_buffer *ring = NULL;
3211 u32 seqno = 0;
3212 int ret;
93533c29 3213
e110e8d6
CW
3214 if (atomic_read(&dev_priv->mm.wedged))
3215 return -EIO;
3216
1c25595f 3217 spin_lock(&file_priv->mm.lock);
f787a5f5 3218 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3219 if (time_after_eq(request->emitted_jiffies, recent_enough))
3220 break;
40a5f0de 3221
f787a5f5
CW
3222 ring = request->ring;
3223 seqno = request->seqno;
b962442e 3224 }
1c25595f 3225 spin_unlock(&file_priv->mm.lock);
40a5f0de 3226
f787a5f5
CW
3227 if (seqno == 0)
3228 return 0;
2bc43b5c 3229
5c81fe85 3230 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3231 if (ret == 0)
3232 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3233
3234 return ret;
3235}
3236
673a394b 3237int
05394f39
CW
3238i915_gem_object_pin(struct drm_i915_gem_object *obj,
3239 uint32_t alignment,
75e9e915 3240 bool map_and_fenceable)
673a394b 3241{
673a394b
EA
3242 int ret;
3243
7e81a42e
CW
3244 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3245 return -EBUSY;
ac0c6b5a 3246
05394f39
CW
3247 if (obj->gtt_space != NULL) {
3248 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3249 (map_and_fenceable && !obj->map_and_fenceable)) {
3250 WARN(obj->pin_count,
ae7d49d8 3251 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3252 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3253 " obj->map_and_fenceable=%d\n",
05394f39 3254 obj->gtt_offset, alignment,
75e9e915 3255 map_and_fenceable,
05394f39 3256 obj->map_and_fenceable);
ac0c6b5a
CW
3257 ret = i915_gem_object_unbind(obj);
3258 if (ret)
3259 return ret;
3260 }
3261 }
3262
05394f39 3263 if (obj->gtt_space == NULL) {
a00b10c3 3264 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3265 map_and_fenceable);
9731129c 3266 if (ret)
673a394b 3267 return ret;
22c344e9 3268 }
76446cac 3269
74898d7e
DV
3270 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3271 i915_gem_gtt_bind_object(obj, obj->cache_level);
3272
1b50247a 3273 obj->pin_count++;
6299f992 3274 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3275
3276 return 0;
3277}
3278
3279void
05394f39 3280i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3281{
05394f39
CW
3282 BUG_ON(obj->pin_count == 0);
3283 BUG_ON(obj->gtt_space == NULL);
673a394b 3284
1b50247a 3285 if (--obj->pin_count == 0)
6299f992 3286 obj->pin_mappable = false;
673a394b
EA
3287}
3288
3289int
3290i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3291 struct drm_file *file)
673a394b
EA
3292{
3293 struct drm_i915_gem_pin *args = data;
05394f39 3294 struct drm_i915_gem_object *obj;
673a394b
EA
3295 int ret;
3296
1d7cfea1
CW
3297 ret = i915_mutex_lock_interruptible(dev);
3298 if (ret)
3299 return ret;
673a394b 3300
05394f39 3301 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3302 if (&obj->base == NULL) {
1d7cfea1
CW
3303 ret = -ENOENT;
3304 goto unlock;
673a394b 3305 }
673a394b 3306
05394f39 3307 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3308 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3309 ret = -EINVAL;
3310 goto out;
3ef94daa
CW
3311 }
3312
05394f39 3313 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3314 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3315 args->handle);
1d7cfea1
CW
3316 ret = -EINVAL;
3317 goto out;
79e53945
JB
3318 }
3319
05394f39
CW
3320 obj->user_pin_count++;
3321 obj->pin_filp = file;
3322 if (obj->user_pin_count == 1) {
75e9e915 3323 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3324 if (ret)
3325 goto out;
673a394b
EA
3326 }
3327
3328 /* XXX - flush the CPU caches for pinned objects
3329 * as the X server doesn't manage domains yet
3330 */
e47c68e9 3331 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3332 args->offset = obj->gtt_offset;
1d7cfea1 3333out:
05394f39 3334 drm_gem_object_unreference(&obj->base);
1d7cfea1 3335unlock:
673a394b 3336 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3337 return ret;
673a394b
EA
3338}
3339
3340int
3341i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3342 struct drm_file *file)
673a394b
EA
3343{
3344 struct drm_i915_gem_pin *args = data;
05394f39 3345 struct drm_i915_gem_object *obj;
76c1dec1 3346 int ret;
673a394b 3347
1d7cfea1
CW
3348 ret = i915_mutex_lock_interruptible(dev);
3349 if (ret)
3350 return ret;
673a394b 3351
05394f39 3352 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3353 if (&obj->base == NULL) {
1d7cfea1
CW
3354 ret = -ENOENT;
3355 goto unlock;
673a394b 3356 }
76c1dec1 3357
05394f39 3358 if (obj->pin_filp != file) {
79e53945
JB
3359 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3360 args->handle);
1d7cfea1
CW
3361 ret = -EINVAL;
3362 goto out;
79e53945 3363 }
05394f39
CW
3364 obj->user_pin_count--;
3365 if (obj->user_pin_count == 0) {
3366 obj->pin_filp = NULL;
79e53945
JB
3367 i915_gem_object_unpin(obj);
3368 }
673a394b 3369
1d7cfea1 3370out:
05394f39 3371 drm_gem_object_unreference(&obj->base);
1d7cfea1 3372unlock:
673a394b 3373 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3374 return ret;
673a394b
EA
3375}
3376
3377int
3378i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3379 struct drm_file *file)
673a394b
EA
3380{
3381 struct drm_i915_gem_busy *args = data;
05394f39 3382 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3383 int ret;
3384
76c1dec1 3385 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3386 if (ret)
76c1dec1 3387 return ret;
673a394b 3388
05394f39 3389 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3390 if (&obj->base == NULL) {
1d7cfea1
CW
3391 ret = -ENOENT;
3392 goto unlock;
673a394b 3393 }
d1b851fc 3394
0be555b6
CW
3395 /* Count all active objects as busy, even if they are currently not used
3396 * by the gpu. Users of this interface expect objects to eventually
3397 * become non-busy without any further actions, therefore emit any
3398 * necessary flushes here.
c4de0a5d 3399 */
30dfebf3 3400 ret = i915_gem_object_flush_active(obj);
0be555b6 3401
30dfebf3 3402 args->busy = obj->active;
673a394b 3403
05394f39 3404 drm_gem_object_unreference(&obj->base);
1d7cfea1 3405unlock:
673a394b 3406 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3407 return ret;
673a394b
EA
3408}
3409
3410int
3411i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3412 struct drm_file *file_priv)
3413{
0206e353 3414 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3415}
3416
3ef94daa
CW
3417int
3418i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3419 struct drm_file *file_priv)
3420{
3421 struct drm_i915_gem_madvise *args = data;
05394f39 3422 struct drm_i915_gem_object *obj;
76c1dec1 3423 int ret;
3ef94daa
CW
3424
3425 switch (args->madv) {
3426 case I915_MADV_DONTNEED:
3427 case I915_MADV_WILLNEED:
3428 break;
3429 default:
3430 return -EINVAL;
3431 }
3432
1d7cfea1
CW
3433 ret = i915_mutex_lock_interruptible(dev);
3434 if (ret)
3435 return ret;
3436
05394f39 3437 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3438 if (&obj->base == NULL) {
1d7cfea1
CW
3439 ret = -ENOENT;
3440 goto unlock;
3ef94daa 3441 }
3ef94daa 3442
05394f39 3443 if (obj->pin_count) {
1d7cfea1
CW
3444 ret = -EINVAL;
3445 goto out;
3ef94daa
CW
3446 }
3447
05394f39
CW
3448 if (obj->madv != __I915_MADV_PURGED)
3449 obj->madv = args->madv;
3ef94daa 3450
2d7ef395 3451 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3452 if (i915_gem_object_is_purgeable(obj) &&
3453 obj->gtt_space == NULL)
2d7ef395
CW
3454 i915_gem_object_truncate(obj);
3455
05394f39 3456 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3457
1d7cfea1 3458out:
05394f39 3459 drm_gem_object_unreference(&obj->base);
1d7cfea1 3460unlock:
3ef94daa 3461 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3462 return ret;
3ef94daa
CW
3463}
3464
05394f39
CW
3465struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3466 size_t size)
ac52bc56 3467{
73aa808f 3468 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3469 struct drm_i915_gem_object *obj;
5949eac4 3470 struct address_space *mapping;
bed1ea95 3471 u32 mask;
ac52bc56 3472
c397b908
DV
3473 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3474 if (obj == NULL)
3475 return NULL;
673a394b 3476
c397b908
DV
3477 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3478 kfree(obj);
3479 return NULL;
3480 }
673a394b 3481
bed1ea95
CW
3482 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3483 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3484 /* 965gm cannot relocate objects above 4GiB. */
3485 mask &= ~__GFP_HIGHMEM;
3486 mask |= __GFP_DMA32;
3487 }
3488
5949eac4 3489 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3490 mapping_set_gfp_mask(mapping, mask);
5949eac4 3491
73aa808f
CW
3492 i915_gem_info_add_obj(dev_priv, size);
3493
c397b908
DV
3494 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3495 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3496
3d29b842
ED
3497 if (HAS_LLC(dev)) {
3498 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3499 * cache) for about a 10% performance improvement
3500 * compared to uncached. Graphics requests other than
3501 * display scanout are coherent with the CPU in
3502 * accessing this cache. This means in this mode we
3503 * don't need to clflush on the CPU side, and on the
3504 * GPU side we only need to flush internal caches to
3505 * get data visible to the CPU.
3506 *
3507 * However, we maintain the display planes as UC, and so
3508 * need to rebind when first used as such.
3509 */
3510 obj->cache_level = I915_CACHE_LLC;
3511 } else
3512 obj->cache_level = I915_CACHE_NONE;
3513
62b8b215 3514 obj->base.driver_private = NULL;
c397b908 3515 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3516 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3517 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3518 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3519 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3520 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3521 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3522 /* Avoid an unnecessary call to unbind on the first bind. */
3523 obj->map_and_fenceable = true;
de151cf6 3524
05394f39 3525 return obj;
c397b908
DV
3526}
3527
3528int i915_gem_init_object(struct drm_gem_object *obj)
3529{
3530 BUG();
de151cf6 3531
673a394b
EA
3532 return 0;
3533}
3534
1488fc08 3535void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3536{
1488fc08 3537 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3538 struct drm_device *dev = obj->base.dev;
be72615b 3539 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3540
26e12f89
CW
3541 trace_i915_gem_object_destroy(obj);
3542
1286ff73
DV
3543 if (gem_obj->import_attach)
3544 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3545
1488fc08
CW
3546 if (obj->phys_obj)
3547 i915_gem_detach_phys_object(dev, obj);
3548
3549 obj->pin_count = 0;
3550 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3551 bool was_interruptible;
3552
3553 was_interruptible = dev_priv->mm.interruptible;
3554 dev_priv->mm.interruptible = false;
3555
3556 WARN_ON(i915_gem_object_unbind(obj));
3557
3558 dev_priv->mm.interruptible = was_interruptible;
3559 }
3560
05394f39 3561 if (obj->base.map_list.map)
b464e9a2 3562 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3563
05394f39
CW
3564 drm_gem_object_release(&obj->base);
3565 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3566
05394f39
CW
3567 kfree(obj->bit_17);
3568 kfree(obj);
673a394b
EA
3569}
3570
29105ccc
CW
3571int
3572i915_gem_idle(struct drm_device *dev)
3573{
3574 drm_i915_private_t *dev_priv = dev->dev_private;
3575 int ret;
28dfe52a 3576
29105ccc 3577 mutex_lock(&dev->struct_mutex);
1c5d22f7 3578
87acb0a5 3579 if (dev_priv->mm.suspended) {
29105ccc
CW
3580 mutex_unlock(&dev->struct_mutex);
3581 return 0;
28dfe52a
EA
3582 }
3583
b2da9fe5 3584 ret = i915_gpu_idle(dev);
6dbe2772
KP
3585 if (ret) {
3586 mutex_unlock(&dev->struct_mutex);
673a394b 3587 return ret;
6dbe2772 3588 }
b2da9fe5 3589 i915_gem_retire_requests(dev);
673a394b 3590
29105ccc 3591 /* Under UMS, be paranoid and evict. */
a39d7efc
CW
3592 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3593 i915_gem_evict_everything(dev, false);
29105ccc 3594
312817a3
CW
3595 i915_gem_reset_fences(dev);
3596
29105ccc
CW
3597 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3598 * We need to replace this with a semaphore, or something.
3599 * And not confound mm.suspended!
3600 */
3601 dev_priv->mm.suspended = 1;
bc0c7f14 3602 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3603
3604 i915_kernel_lost_context(dev);
6dbe2772 3605 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3606
6dbe2772
KP
3607 mutex_unlock(&dev->struct_mutex);
3608
29105ccc
CW
3609 /* Cancel the retire work handler, which should be idle now. */
3610 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3611
673a394b
EA
3612 return 0;
3613}
3614
b9524a1e
BW
3615void i915_gem_l3_remap(struct drm_device *dev)
3616{
3617 drm_i915_private_t *dev_priv = dev->dev_private;
3618 u32 misccpctl;
3619 int i;
3620
3621 if (!IS_IVYBRIDGE(dev))
3622 return;
3623
3624 if (!dev_priv->mm.l3_remap_info)
3625 return;
3626
3627 misccpctl = I915_READ(GEN7_MISCCPCTL);
3628 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3629 POSTING_READ(GEN7_MISCCPCTL);
3630
3631 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3632 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3633 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3634 DRM_DEBUG("0x%x was already programmed to %x\n",
3635 GEN7_L3LOG_BASE + i, remap);
3636 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3637 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3638 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3639 }
3640
3641 /* Make sure all the writes land before disabling dop clock gating */
3642 POSTING_READ(GEN7_L3LOG_BASE);
3643
3644 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3645}
3646
f691e2f4
DV
3647void i915_gem_init_swizzling(struct drm_device *dev)
3648{
3649 drm_i915_private_t *dev_priv = dev->dev_private;
3650
11782b02 3651 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3652 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3653 return;
3654
3655 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3656 DISP_TILE_SURFACE_SWIZZLING);
3657
11782b02
DV
3658 if (IS_GEN5(dev))
3659 return;
3660
f691e2f4
DV
3661 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3662 if (IS_GEN6(dev))
6b26c86d 3663 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3664 else
6b26c86d 3665 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3666}
e21af88d
DV
3667
3668void i915_gem_init_ppgtt(struct drm_device *dev)
3669{
3670 drm_i915_private_t *dev_priv = dev->dev_private;
3671 uint32_t pd_offset;
3672 struct intel_ring_buffer *ring;
55a254ac
DV
3673 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3674 uint32_t __iomem *pd_addr;
3675 uint32_t pd_entry;
e21af88d
DV
3676 int i;
3677
3678 if (!dev_priv->mm.aliasing_ppgtt)
3679 return;
3680
55a254ac
DV
3681
3682 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3683 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3684 dma_addr_t pt_addr;
3685
3686 if (dev_priv->mm.gtt->needs_dmar)
3687 pt_addr = ppgtt->pt_dma_addr[i];
3688 else
3689 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3690
3691 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3692 pd_entry |= GEN6_PDE_VALID;
3693
3694 writel(pd_entry, pd_addr + i);
3695 }
3696 readl(pd_addr);
3697
3698 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3699 pd_offset /= 64; /* in cachelines, */
3700 pd_offset <<= 16;
3701
3702 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3703 uint32_t ecochk, gab_ctl, ecobits;
3704
3705 ecobits = I915_READ(GAC_ECO_BITS);
3706 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3707
3708 gab_ctl = I915_READ(GAB_CTL);
3709 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3710
3711 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3712 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3713 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3714 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3715 } else if (INTEL_INFO(dev)->gen >= 7) {
3716 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3717 /* GFX_MODE is per-ring on gen7+ */
3718 }
3719
b4519513 3720 for_each_ring(ring, dev_priv, i) {
e21af88d
DV
3721 if (INTEL_INFO(dev)->gen >= 7)
3722 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3723 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3724
3725 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3726 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3727 }
3728}
3729
67b1b571
CW
3730static bool
3731intel_enable_blt(struct drm_device *dev)
3732{
3733 if (!HAS_BLT(dev))
3734 return false;
3735
3736 /* The blitter was dysfunctional on early prototypes */
3737 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3738 DRM_INFO("BLT not supported on this pre-production hardware;"
3739 " graphics performance will be degraded.\n");
3740 return false;
3741 }
3742
3743 return true;
3744}
3745
8187a2b7 3746int
f691e2f4 3747i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3748{
3749 drm_i915_private_t *dev_priv = dev->dev_private;
3750 int ret;
68f95ba9 3751
8ecd1a66
DV
3752 if (!intel_enable_gtt())
3753 return -EIO;
3754
b9524a1e
BW
3755 i915_gem_l3_remap(dev);
3756
f691e2f4
DV
3757 i915_gem_init_swizzling(dev);
3758
5c1143bb 3759 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3760 if (ret)
b6913e4b 3761 return ret;
68f95ba9
CW
3762
3763 if (HAS_BSD(dev)) {
5c1143bb 3764 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3765 if (ret)
3766 goto cleanup_render_ring;
d1b851fc 3767 }
68f95ba9 3768
67b1b571 3769 if (intel_enable_blt(dev)) {
549f7365
CW
3770 ret = intel_init_blt_ring_buffer(dev);
3771 if (ret)
3772 goto cleanup_bsd_ring;
3773 }
3774
6f392d54
CW
3775 dev_priv->next_seqno = 1;
3776
254f965c
BW
3777 /*
3778 * XXX: There was some w/a described somewhere suggesting loading
3779 * contexts before PPGTT.
3780 */
3781 i915_gem_context_init(dev);
e21af88d
DV
3782 i915_gem_init_ppgtt(dev);
3783
68f95ba9
CW
3784 return 0;
3785
549f7365 3786cleanup_bsd_ring:
1ec14ad3 3787 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3788cleanup_render_ring:
1ec14ad3 3789 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3790 return ret;
3791}
3792
1070a42b
CW
3793static bool
3794intel_enable_ppgtt(struct drm_device *dev)
3795{
3796 if (i915_enable_ppgtt >= 0)
3797 return i915_enable_ppgtt;
3798
3799#ifdef CONFIG_INTEL_IOMMU
3800 /* Disable ppgtt on SNB if VT-d is on. */
3801 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3802 return false;
3803#endif
3804
3805 return true;
3806}
3807
3808int i915_gem_init(struct drm_device *dev)
3809{
3810 struct drm_i915_private *dev_priv = dev->dev_private;
3811 unsigned long gtt_size, mappable_size;
3812 int ret;
3813
3814 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3815 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3816
3817 mutex_lock(&dev->struct_mutex);
3818 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3819 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3820 * aperture accordingly when using aliasing ppgtt. */
3821 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3822
3823 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3824
3825 ret = i915_gem_init_aliasing_ppgtt(dev);
3826 if (ret) {
3827 mutex_unlock(&dev->struct_mutex);
3828 return ret;
3829 }
3830 } else {
3831 /* Let GEM Manage all of the aperture.
3832 *
3833 * However, leave one page at the end still bound to the scratch
3834 * page. There are a number of places where the hardware
3835 * apparently prefetches past the end of the object, and we've
3836 * seen multiple hangs with the GPU head pointer stuck in a
3837 * batchbuffer bound at the last page of the aperture. One page
3838 * should be enough to keep any prefetching inside of the
3839 * aperture.
3840 */
3841 i915_gem_init_global_gtt(dev, 0, mappable_size,
3842 gtt_size);
3843 }
3844
3845 ret = i915_gem_init_hw(dev);
3846 mutex_unlock(&dev->struct_mutex);
3847 if (ret) {
3848 i915_gem_cleanup_aliasing_ppgtt(dev);
3849 return ret;
3850 }
3851
53ca26ca
DV
3852 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3853 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3854 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
3855 return 0;
3856}
3857
8187a2b7
ZN
3858void
3859i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3860{
3861 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3862 struct intel_ring_buffer *ring;
1ec14ad3 3863 int i;
8187a2b7 3864
b4519513
CW
3865 for_each_ring(ring, dev_priv, i)
3866 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
3867}
3868
673a394b
EA
3869int
3870i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3871 struct drm_file *file_priv)
3872{
3873 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3874 int ret;
673a394b 3875
79e53945
JB
3876 if (drm_core_check_feature(dev, DRIVER_MODESET))
3877 return 0;
3878
ba1234d1 3879 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3880 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3881 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3882 }
3883
673a394b 3884 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3885 dev_priv->mm.suspended = 0;
3886
f691e2f4 3887 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3888 if (ret != 0) {
3889 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3890 return ret;
d816f6ac 3891 }
9bb2d6f9 3892
69dc4987 3893 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3894 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3895 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
673a394b 3896 mutex_unlock(&dev->struct_mutex);
dbb19d30 3897
5f35308b
CW
3898 ret = drm_irq_install(dev);
3899 if (ret)
3900 goto cleanup_ringbuffer;
dbb19d30 3901
673a394b 3902 return 0;
5f35308b
CW
3903
3904cleanup_ringbuffer:
3905 mutex_lock(&dev->struct_mutex);
3906 i915_gem_cleanup_ringbuffer(dev);
3907 dev_priv->mm.suspended = 1;
3908 mutex_unlock(&dev->struct_mutex);
3909
3910 return ret;
673a394b
EA
3911}
3912
3913int
3914i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3915 struct drm_file *file_priv)
3916{
79e53945
JB
3917 if (drm_core_check_feature(dev, DRIVER_MODESET))
3918 return 0;
3919
dbb19d30 3920 drm_irq_uninstall(dev);
e6890f6f 3921 return i915_gem_idle(dev);
673a394b
EA
3922}
3923
3924void
3925i915_gem_lastclose(struct drm_device *dev)
3926{
3927 int ret;
673a394b 3928
e806b495
EA
3929 if (drm_core_check_feature(dev, DRIVER_MODESET))
3930 return;
3931
6dbe2772
KP
3932 ret = i915_gem_idle(dev);
3933 if (ret)
3934 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3935}
3936
64193406
CW
3937static void
3938init_ring_lists(struct intel_ring_buffer *ring)
3939{
3940 INIT_LIST_HEAD(&ring->active_list);
3941 INIT_LIST_HEAD(&ring->request_list);
3942 INIT_LIST_HEAD(&ring->gpu_write_list);
3943}
3944
673a394b
EA
3945void
3946i915_gem_load(struct drm_device *dev)
3947{
b5aa8a0f 3948 int i;
673a394b
EA
3949 drm_i915_private_t *dev_priv = dev->dev_private;
3950
69dc4987 3951 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3952 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3953 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 3954 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
93a37f20 3955 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3956 for (i = 0; i < I915_NUM_RINGS; i++)
3957 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3958 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3959 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3960 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3961 i915_gem_retire_work_handler);
30dbf0c0 3962 init_completion(&dev_priv->error_completion);
31169714 3963
94400120
DA
3964 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3965 if (IS_GEN3(dev)) {
50743298
DV
3966 I915_WRITE(MI_ARB_STATE,
3967 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
3968 }
3969
72bfa19c
CW
3970 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3971
de151cf6 3972 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3973 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3974 dev_priv->fence_reg_start = 3;
de151cf6 3975
a6c45cf0 3976 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3977 dev_priv->num_fence_regs = 16;
3978 else
3979 dev_priv->num_fence_regs = 8;
3980
b5aa8a0f 3981 /* Initialize fence registers to zero */
ada726c7 3982 i915_gem_reset_fences(dev);
10ed13e4 3983
673a394b 3984 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3985 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3986
ce453d81
CW
3987 dev_priv->mm.interruptible = true;
3988
17250b71
CW
3989 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3990 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3991 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3992}
71acb5eb
DA
3993
3994/*
3995 * Create a physically contiguous memory object for this object
3996 * e.g. for cursor + overlay regs
3997 */
995b6762
CW
3998static int i915_gem_init_phys_object(struct drm_device *dev,
3999 int id, int size, int align)
71acb5eb
DA
4000{
4001 drm_i915_private_t *dev_priv = dev->dev_private;
4002 struct drm_i915_gem_phys_object *phys_obj;
4003 int ret;
4004
4005 if (dev_priv->mm.phys_objs[id - 1] || !size)
4006 return 0;
4007
9a298b2a 4008 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4009 if (!phys_obj)
4010 return -ENOMEM;
4011
4012 phys_obj->id = id;
4013
6eeefaf3 4014 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4015 if (!phys_obj->handle) {
4016 ret = -ENOMEM;
4017 goto kfree_obj;
4018 }
4019#ifdef CONFIG_X86
4020 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4021#endif
4022
4023 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4024
4025 return 0;
4026kfree_obj:
9a298b2a 4027 kfree(phys_obj);
71acb5eb
DA
4028 return ret;
4029}
4030
995b6762 4031static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4032{
4033 drm_i915_private_t *dev_priv = dev->dev_private;
4034 struct drm_i915_gem_phys_object *phys_obj;
4035
4036 if (!dev_priv->mm.phys_objs[id - 1])
4037 return;
4038
4039 phys_obj = dev_priv->mm.phys_objs[id - 1];
4040 if (phys_obj->cur_obj) {
4041 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4042 }
4043
4044#ifdef CONFIG_X86
4045 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4046#endif
4047 drm_pci_free(dev, phys_obj->handle);
4048 kfree(phys_obj);
4049 dev_priv->mm.phys_objs[id - 1] = NULL;
4050}
4051
4052void i915_gem_free_all_phys_object(struct drm_device *dev)
4053{
4054 int i;
4055
260883c8 4056 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4057 i915_gem_free_phys_object(dev, i);
4058}
4059
4060void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4061 struct drm_i915_gem_object *obj)
71acb5eb 4062{
05394f39 4063 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4064 char *vaddr;
71acb5eb 4065 int i;
71acb5eb
DA
4066 int page_count;
4067
05394f39 4068 if (!obj->phys_obj)
71acb5eb 4069 return;
05394f39 4070 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4071
05394f39 4072 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4073 for (i = 0; i < page_count; i++) {
5949eac4 4074 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4075 if (!IS_ERR(page)) {
4076 char *dst = kmap_atomic(page);
4077 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4078 kunmap_atomic(dst);
4079
4080 drm_clflush_pages(&page, 1);
4081
4082 set_page_dirty(page);
4083 mark_page_accessed(page);
4084 page_cache_release(page);
4085 }
71acb5eb 4086 }
40ce6575 4087 intel_gtt_chipset_flush();
d78b47b9 4088
05394f39
CW
4089 obj->phys_obj->cur_obj = NULL;
4090 obj->phys_obj = NULL;
71acb5eb
DA
4091}
4092
4093int
4094i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4095 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4096 int id,
4097 int align)
71acb5eb 4098{
05394f39 4099 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4100 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4101 int ret = 0;
4102 int page_count;
4103 int i;
4104
4105 if (id > I915_MAX_PHYS_OBJECT)
4106 return -EINVAL;
4107
05394f39
CW
4108 if (obj->phys_obj) {
4109 if (obj->phys_obj->id == id)
71acb5eb
DA
4110 return 0;
4111 i915_gem_detach_phys_object(dev, obj);
4112 }
4113
71acb5eb
DA
4114 /* create a new object */
4115 if (!dev_priv->mm.phys_objs[id - 1]) {
4116 ret = i915_gem_init_phys_object(dev, id,
05394f39 4117 obj->base.size, align);
71acb5eb 4118 if (ret) {
05394f39
CW
4119 DRM_ERROR("failed to init phys object %d size: %zu\n",
4120 id, obj->base.size);
e5281ccd 4121 return ret;
71acb5eb
DA
4122 }
4123 }
4124
4125 /* bind to the object */
05394f39
CW
4126 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4127 obj->phys_obj->cur_obj = obj;
71acb5eb 4128
05394f39 4129 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4130
4131 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4132 struct page *page;
4133 char *dst, *src;
4134
5949eac4 4135 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4136 if (IS_ERR(page))
4137 return PTR_ERR(page);
71acb5eb 4138
ff75b9bc 4139 src = kmap_atomic(page);
05394f39 4140 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4141 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4142 kunmap_atomic(src);
71acb5eb 4143
e5281ccd
CW
4144 mark_page_accessed(page);
4145 page_cache_release(page);
4146 }
d78b47b9 4147
71acb5eb 4148 return 0;
71acb5eb
DA
4149}
4150
4151static int
05394f39
CW
4152i915_gem_phys_pwrite(struct drm_device *dev,
4153 struct drm_i915_gem_object *obj,
71acb5eb
DA
4154 struct drm_i915_gem_pwrite *args,
4155 struct drm_file *file_priv)
4156{
05394f39 4157 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4158 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4159
b47b30cc
CW
4160 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4161 unsigned long unwritten;
4162
4163 /* The physical object once assigned is fixed for the lifetime
4164 * of the obj, so we can safely drop the lock and continue
4165 * to access vaddr.
4166 */
4167 mutex_unlock(&dev->struct_mutex);
4168 unwritten = copy_from_user(vaddr, user_data, args->size);
4169 mutex_lock(&dev->struct_mutex);
4170 if (unwritten)
4171 return -EFAULT;
4172 }
71acb5eb 4173
40ce6575 4174 intel_gtt_chipset_flush();
71acb5eb
DA
4175 return 0;
4176}
b962442e 4177
f787a5f5 4178void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4179{
f787a5f5 4180 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4181
4182 /* Clean up our request list when the client is going away, so that
4183 * later retire_requests won't dereference our soon-to-be-gone
4184 * file_priv.
4185 */
1c25595f 4186 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4187 while (!list_empty(&file_priv->mm.request_list)) {
4188 struct drm_i915_gem_request *request;
4189
4190 request = list_first_entry(&file_priv->mm.request_list,
4191 struct drm_i915_gem_request,
4192 client_list);
4193 list_del(&request->client_list);
4194 request->file_priv = NULL;
4195 }
1c25595f 4196 spin_unlock(&file_priv->mm.lock);
b962442e 4197}
31169714 4198
1637ef41
CW
4199static int
4200i915_gpu_is_active(struct drm_device *dev)
4201{
4202 drm_i915_private_t *dev_priv = dev->dev_private;
4203 int lists_empty;
4204
1637ef41 4205 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4206 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4207
4208 return !lists_empty;
4209}
4210
31169714 4211static int
1495f230 4212i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4213{
17250b71
CW
4214 struct drm_i915_private *dev_priv =
4215 container_of(shrinker,
4216 struct drm_i915_private,
4217 mm.inactive_shrinker);
4218 struct drm_device *dev = dev_priv->dev;
4219 struct drm_i915_gem_object *obj, *next;
1495f230 4220 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4221 int cnt;
4222
4223 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4224 return 0;
31169714
CW
4225
4226 /* "fast-path" to count number of available objects */
4227 if (nr_to_scan == 0) {
17250b71
CW
4228 cnt = 0;
4229 list_for_each_entry(obj,
4230 &dev_priv->mm.inactive_list,
4231 mm_list)
4232 cnt++;
4233 mutex_unlock(&dev->struct_mutex);
4234 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4235 }
4236
1637ef41 4237rescan:
31169714 4238 /* first scan for clean buffers */
17250b71 4239 i915_gem_retire_requests(dev);
31169714 4240
17250b71
CW
4241 list_for_each_entry_safe(obj, next,
4242 &dev_priv->mm.inactive_list,
4243 mm_list) {
4244 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4245 if (i915_gem_object_unbind(obj) == 0 &&
4246 --nr_to_scan == 0)
17250b71 4247 break;
31169714 4248 }
31169714
CW
4249 }
4250
4251 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4252 cnt = 0;
4253 list_for_each_entry_safe(obj, next,
4254 &dev_priv->mm.inactive_list,
4255 mm_list) {
2021746e
CW
4256 if (nr_to_scan &&
4257 i915_gem_object_unbind(obj) == 0)
17250b71 4258 nr_to_scan--;
2021746e 4259 else
17250b71
CW
4260 cnt++;
4261 }
4262
4263 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4264 /*
4265 * We are desperate for pages, so as a last resort, wait
4266 * for the GPU to finish and discard whatever we can.
4267 * This has a dramatic impact to reduce the number of
4268 * OOM-killer events whilst running the GPU aggressively.
4269 */
b2da9fe5 4270 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4271 goto rescan;
4272 }
17250b71
CW
4273 mutex_unlock(&dev->struct_mutex);
4274 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4275}