]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915/ringbuffer: Drop the redundant dev from the vfunc interface
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
5cdf5881
CW
61static int
62i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
64
65static void
66i915_gem_object_put_pages(struct drm_gem_object *obj);
67
31169714
CW
68static LIST_HEAD(shrink_list);
69static DEFINE_SPINLOCK(shrink_list_lock);
70
73aa808f
CW
71/* some bookkeeping */
72static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
74{
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
77}
78
79static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
81{
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
84}
85
86static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
88{
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
91}
92
93static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
95{
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
98}
99
100static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
102{
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
105}
106
107static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
109{
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
112}
113
30dbf0c0
CW
114int
115i915_gem_check_is_wedged(struct drm_device *dev)
116{
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
121
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
124
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
128
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
132
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
137 */
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
142}
143
76c1dec1
CW
144static int i915_mutex_lock_interruptible(struct drm_device *dev)
145{
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
148
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
152
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
156
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
160 }
161
23bc5982 162 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
163 return 0;
164}
30dbf0c0 165
7d1c4804
CW
166static inline bool
167i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
168{
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
172}
173
73aa808f
CW
174int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
79e53945 176 unsigned long end)
673a394b
EA
177{
178 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 179
79e53945
JB
180 if (start >= end ||
181 (start & (PAGE_SIZE - 1)) != 0 ||
182 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
183 return -EINVAL;
184 }
185
79e53945
JB
186 drm_mm_init(&dev_priv->mm.gtt_space, start,
187 end - start);
673a394b 188
73aa808f 189 dev_priv->mm.gtt_total = end - start;
79e53945
JB
190
191 return 0;
192}
673a394b 193
79e53945
JB
194int
195i915_gem_init_ioctl(struct drm_device *dev, void *data,
196 struct drm_file *file_priv)
197{
198 struct drm_i915_gem_init *args = data;
199 int ret;
200
201 mutex_lock(&dev->struct_mutex);
202 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
203 mutex_unlock(&dev->struct_mutex);
204
79e53945 205 return ret;
673a394b
EA
206}
207
5a125c3c
EA
208int
209i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210 struct drm_file *file_priv)
211{
73aa808f 212 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 213 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
214
215 if (!(dev->driver->driver_features & DRIVER_GEM))
216 return -ENODEV;
217
73aa808f
CW
218 mutex_lock(&dev->struct_mutex);
219 args->aper_size = dev_priv->mm.gtt_total;
220 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
221 mutex_unlock(&dev->struct_mutex);
5a125c3c
EA
222
223 return 0;
224}
225
673a394b
EA
226
227/**
228 * Creates a new mm object and returns a handle to it.
229 */
230int
231i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file_priv)
233{
234 struct drm_i915_gem_create *args = data;
235 struct drm_gem_object *obj;
a1a2d1d3
PP
236 int ret;
237 u32 handle;
673a394b
EA
238
239 args->size = roundup(args->size, PAGE_SIZE);
240
241 /* Allocate the new object */
ac52bc56 242 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
243 if (obj == NULL)
244 return -ENOMEM;
245
246 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754 247 if (ret) {
202f2fef
CW
248 drm_gem_object_release(obj);
249 i915_gem_info_remove_obj(dev->dev_private, obj->size);
250 kfree(obj);
673a394b 251 return ret;
1dfd9754 252 }
673a394b 253
202f2fef
CW
254 /* drop reference from allocate - handle holds it now */
255 drm_gem_object_unreference(obj);
256 trace_i915_gem_object_create(obj);
257
1dfd9754 258 args->handle = handle;
673a394b
EA
259 return 0;
260}
261
eb01459f
EA
262static inline int
263fast_shmem_read(struct page **pages,
264 loff_t page_base, int page_offset,
265 char __user *data,
266 int length)
267{
b5e4feb6 268 char *vaddr;
4f27b75d 269 int ret;
eb01459f 270
3e4d3af5 271 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
4f27b75d 272 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
3e4d3af5 273 kunmap_atomic(vaddr);
eb01459f 274
4f27b75d 275 return ret;
eb01459f
EA
276}
277
280b713b
EA
278static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
279{
280 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 281 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
282
283 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
284 obj_priv->tiling_mode != I915_TILING_NONE;
285}
286
99a03df5 287static inline void
40123c1f
EA
288slow_shmem_copy(struct page *dst_page,
289 int dst_offset,
290 struct page *src_page,
291 int src_offset,
292 int length)
293{
294 char *dst_vaddr, *src_vaddr;
295
99a03df5
CW
296 dst_vaddr = kmap(dst_page);
297 src_vaddr = kmap(src_page);
40123c1f
EA
298
299 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
300
99a03df5
CW
301 kunmap(src_page);
302 kunmap(dst_page);
40123c1f
EA
303}
304
99a03df5 305static inline void
280b713b
EA
306slow_shmem_bit17_copy(struct page *gpu_page,
307 int gpu_offset,
308 struct page *cpu_page,
309 int cpu_offset,
310 int length,
311 int is_read)
312{
313 char *gpu_vaddr, *cpu_vaddr;
314
315 /* Use the unswizzled path if this page isn't affected. */
316 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
317 if (is_read)
318 return slow_shmem_copy(cpu_page, cpu_offset,
319 gpu_page, gpu_offset, length);
320 else
321 return slow_shmem_copy(gpu_page, gpu_offset,
322 cpu_page, cpu_offset, length);
323 }
324
99a03df5
CW
325 gpu_vaddr = kmap(gpu_page);
326 cpu_vaddr = kmap(cpu_page);
280b713b
EA
327
328 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
329 * XORing with the other bits (A9 for Y, A9 and A10 for X)
330 */
331 while (length > 0) {
332 int cacheline_end = ALIGN(gpu_offset + 1, 64);
333 int this_length = min(cacheline_end - gpu_offset, length);
334 int swizzled_gpu_offset = gpu_offset ^ 64;
335
336 if (is_read) {
337 memcpy(cpu_vaddr + cpu_offset,
338 gpu_vaddr + swizzled_gpu_offset,
339 this_length);
340 } else {
341 memcpy(gpu_vaddr + swizzled_gpu_offset,
342 cpu_vaddr + cpu_offset,
343 this_length);
344 }
345 cpu_offset += this_length;
346 gpu_offset += this_length;
347 length -= this_length;
348 }
349
99a03df5
CW
350 kunmap(cpu_page);
351 kunmap(gpu_page);
280b713b
EA
352}
353
eb01459f
EA
354/**
355 * This is the fast shmem pread path, which attempts to copy_from_user directly
356 * from the backing pages of the object to the user's address space. On a
357 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
358 */
359static int
360i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
361 struct drm_i915_gem_pread *args,
362 struct drm_file *file_priv)
363{
23010e43 364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
365 ssize_t remain;
366 loff_t offset, page_base;
367 char __user *user_data;
368 int page_offset, page_length;
eb01459f
EA
369
370 user_data = (char __user *) (uintptr_t) args->data_ptr;
371 remain = args->size;
372
23010e43 373 obj_priv = to_intel_bo(obj);
eb01459f
EA
374 offset = args->offset;
375
376 while (remain > 0) {
377 /* Operation in this page
378 *
379 * page_base = page offset within aperture
380 * page_offset = offset within page
381 * page_length = bytes to copy for this page
382 */
383 page_base = (offset & ~(PAGE_SIZE-1));
384 page_offset = offset & (PAGE_SIZE-1);
385 page_length = remain;
386 if ((page_offset + remain) > PAGE_SIZE)
387 page_length = PAGE_SIZE - page_offset;
388
4f27b75d
CW
389 if (fast_shmem_read(obj_priv->pages,
390 page_base, page_offset,
391 user_data, page_length))
392 return -EFAULT;
eb01459f
EA
393
394 remain -= page_length;
395 user_data += page_length;
396 offset += page_length;
397 }
398
4f27b75d 399 return 0;
eb01459f
EA
400}
401
07f73f69
CW
402static int
403i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
404{
405 int ret;
406
4bdadb97 407 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
408
409 /* If we've insufficient memory to map in the pages, attempt
410 * to make some space by throwing out some old buffers.
411 */
412 if (ret == -ENOMEM) {
413 struct drm_device *dev = obj->dev;
07f73f69 414
0108a3ed
DV
415 ret = i915_gem_evict_something(dev, obj->size,
416 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
417 if (ret)
418 return ret;
419
4bdadb97 420 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
421 }
422
423 return ret;
424}
425
eb01459f
EA
426/**
427 * This is the fallback shmem pread path, which allocates temporary storage
428 * in kernel space to copy_to_user into outside of the struct_mutex, so we
429 * can copy out of the object's backing pages while holding the struct mutex
430 * and not take page faults.
431 */
432static int
433i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
434 struct drm_i915_gem_pread *args,
435 struct drm_file *file_priv)
436{
23010e43 437 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
438 struct mm_struct *mm = current->mm;
439 struct page **user_pages;
440 ssize_t remain;
441 loff_t offset, pinned_pages, i;
442 loff_t first_data_page, last_data_page, num_pages;
443 int shmem_page_index, shmem_page_offset;
444 int data_page_index, data_page_offset;
445 int page_length;
446 int ret;
447 uint64_t data_ptr = args->data_ptr;
280b713b 448 int do_bit17_swizzling;
eb01459f
EA
449
450 remain = args->size;
451
452 /* Pin the user pages containing the data. We can't fault while
453 * holding the struct mutex, yet we want to hold it while
454 * dereferencing the user data.
455 */
456 first_data_page = data_ptr / PAGE_SIZE;
457 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
458 num_pages = last_data_page - first_data_page + 1;
459
4f27b75d 460 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
461 if (user_pages == NULL)
462 return -ENOMEM;
463
4f27b75d 464 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
465 down_read(&mm->mmap_sem);
466 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 467 num_pages, 1, 0, user_pages, NULL);
eb01459f 468 up_read(&mm->mmap_sem);
4f27b75d 469 mutex_lock(&dev->struct_mutex);
eb01459f
EA
470 if (pinned_pages < num_pages) {
471 ret = -EFAULT;
4f27b75d 472 goto out;
eb01459f
EA
473 }
474
4f27b75d
CW
475 ret = i915_gem_object_set_cpu_read_domain_range(obj,
476 args->offset,
477 args->size);
07f73f69 478 if (ret)
4f27b75d 479 goto out;
eb01459f 480
4f27b75d 481 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 482
23010e43 483 obj_priv = to_intel_bo(obj);
eb01459f
EA
484 offset = args->offset;
485
486 while (remain > 0) {
487 /* Operation in this page
488 *
489 * shmem_page_index = page number within shmem file
490 * shmem_page_offset = offset within page in shmem file
491 * data_page_index = page number in get_user_pages return
492 * data_page_offset = offset with data_page_index page.
493 * page_length = bytes to copy for this page
494 */
495 shmem_page_index = offset / PAGE_SIZE;
496 shmem_page_offset = offset & ~PAGE_MASK;
497 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
498 data_page_offset = data_ptr & ~PAGE_MASK;
499
500 page_length = remain;
501 if ((shmem_page_offset + page_length) > PAGE_SIZE)
502 page_length = PAGE_SIZE - shmem_page_offset;
503 if ((data_page_offset + page_length) > PAGE_SIZE)
504 page_length = PAGE_SIZE - data_page_offset;
505
280b713b 506 if (do_bit17_swizzling) {
99a03df5 507 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 508 shmem_page_offset,
99a03df5
CW
509 user_pages[data_page_index],
510 data_page_offset,
511 page_length,
512 1);
513 } else {
514 slow_shmem_copy(user_pages[data_page_index],
515 data_page_offset,
516 obj_priv->pages[shmem_page_index],
517 shmem_page_offset,
518 page_length);
280b713b 519 }
eb01459f
EA
520
521 remain -= page_length;
522 data_ptr += page_length;
523 offset += page_length;
524 }
525
4f27b75d 526out:
eb01459f
EA
527 for (i = 0; i < pinned_pages; i++) {
528 SetPageDirty(user_pages[i]);
529 page_cache_release(user_pages[i]);
530 }
8e7d2b2c 531 drm_free_large(user_pages);
eb01459f
EA
532
533 return ret;
534}
535
673a394b
EA
536/**
537 * Reads data from the object referenced by handle.
538 *
539 * On error, the contents of *data are undefined.
540 */
541int
542i915_gem_pread_ioctl(struct drm_device *dev, void *data,
543 struct drm_file *file_priv)
544{
545 struct drm_i915_gem_pread *args = data;
546 struct drm_gem_object *obj;
547 struct drm_i915_gem_object *obj_priv;
35b62a89 548 int ret = 0;
673a394b 549
4f27b75d 550 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 551 if (ret)
4f27b75d 552 return ret;
673a394b
EA
553
554 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
555 if (obj == NULL) {
556 ret = -ENOENT;
557 goto unlock;
4f27b75d 558 }
23010e43 559 obj_priv = to_intel_bo(obj);
673a394b 560
7dcd2499
CW
561 /* Bounds check source. */
562 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 563 ret = -EINVAL;
35b62a89 564 goto out;
ce9d419d
CW
565 }
566
35b62a89
CW
567 if (args->size == 0)
568 goto out;
569
ce9d419d
CW
570 if (!access_ok(VERIFY_WRITE,
571 (char __user *)(uintptr_t)args->data_ptr,
572 args->size)) {
573 ret = -EFAULT;
35b62a89 574 goto out;
673a394b
EA
575 }
576
b5e4feb6
CW
577 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
578 args->size);
579 if (ret) {
580 ret = -EFAULT;
581 goto out;
280b713b 582 }
673a394b 583
4f27b75d
CW
584 ret = i915_gem_object_get_pages_or_evict(obj);
585 if (ret)
586 goto out;
587
588 ret = i915_gem_object_set_cpu_read_domain_range(obj,
589 args->offset,
590 args->size);
591 if (ret)
592 goto out_put;
593
594 ret = -EFAULT;
595 if (!i915_gem_object_needs_bit17_swizzle(obj))
280b713b 596 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
4f27b75d
CW
597 if (ret == -EFAULT)
598 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
673a394b 599
4f27b75d
CW
600out_put:
601 i915_gem_object_put_pages(obj);
35b62a89 602out:
4f27b75d 603 drm_gem_object_unreference(obj);
1d7cfea1 604unlock:
4f27b75d 605 mutex_unlock(&dev->struct_mutex);
eb01459f 606 return ret;
673a394b
EA
607}
608
0839ccb8
KP
609/* This is the fast write path which cannot handle
610 * page faults in the source data
9b7530cc 611 */
0839ccb8
KP
612
613static inline int
614fast_user_write(struct io_mapping *mapping,
615 loff_t page_base, int page_offset,
616 char __user *user_data,
617 int length)
9b7530cc 618{
9b7530cc 619 char *vaddr_atomic;
0839ccb8 620 unsigned long unwritten;
9b7530cc 621
3e4d3af5 622 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
623 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
624 user_data, length);
3e4d3af5 625 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 626 return unwritten;
0839ccb8
KP
627}
628
629/* Here's the write path which can sleep for
630 * page faults
631 */
632
ab34c226 633static inline void
3de09aa3
EA
634slow_kernel_write(struct io_mapping *mapping,
635 loff_t gtt_base, int gtt_offset,
636 struct page *user_page, int user_offset,
637 int length)
0839ccb8 638{
ab34c226
CW
639 char __iomem *dst_vaddr;
640 char *src_vaddr;
0839ccb8 641
ab34c226
CW
642 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
643 src_vaddr = kmap(user_page);
644
645 memcpy_toio(dst_vaddr + gtt_offset,
646 src_vaddr + user_offset,
647 length);
648
649 kunmap(user_page);
650 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
651}
652
40123c1f
EA
653static inline int
654fast_shmem_write(struct page **pages,
655 loff_t page_base, int page_offset,
656 char __user *data,
657 int length)
658{
b5e4feb6 659 char *vaddr;
fbd5a26d 660 int ret;
40123c1f 661
3e4d3af5 662 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
fbd5a26d 663 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
3e4d3af5 664 kunmap_atomic(vaddr);
40123c1f 665
fbd5a26d 666 return ret;
40123c1f
EA
667}
668
3de09aa3
EA
669/**
670 * This is the fast pwrite path, where we copy the data directly from the
671 * user into the GTT, uncached.
672 */
673a394b 673static int
3de09aa3
EA
674i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
675 struct drm_i915_gem_pwrite *args,
676 struct drm_file *file_priv)
673a394b 677{
23010e43 678 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 679 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 680 ssize_t remain;
0839ccb8 681 loff_t offset, page_base;
673a394b 682 char __user *user_data;
0839ccb8 683 int page_offset, page_length;
673a394b
EA
684
685 user_data = (char __user *) (uintptr_t) args->data_ptr;
686 remain = args->size;
673a394b 687
23010e43 688 obj_priv = to_intel_bo(obj);
673a394b 689 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
690
691 while (remain > 0) {
692 /* Operation in this page
693 *
0839ccb8
KP
694 * page_base = page offset within aperture
695 * page_offset = offset within page
696 * page_length = bytes to copy for this page
673a394b 697 */
0839ccb8
KP
698 page_base = (offset & ~(PAGE_SIZE-1));
699 page_offset = offset & (PAGE_SIZE-1);
700 page_length = remain;
701 if ((page_offset + remain) > PAGE_SIZE)
702 page_length = PAGE_SIZE - page_offset;
703
0839ccb8 704 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
705 * source page isn't available. Return the error and we'll
706 * retry in the slow path.
0839ccb8 707 */
fbd5a26d
CW
708 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
709 page_offset, user_data, page_length))
710
711 return -EFAULT;
673a394b 712
0839ccb8
KP
713 remain -= page_length;
714 user_data += page_length;
715 offset += page_length;
673a394b 716 }
673a394b 717
fbd5a26d 718 return 0;
673a394b
EA
719}
720
3de09aa3
EA
721/**
722 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
723 * the memory and maps it using kmap_atomic for copying.
724 *
725 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
726 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
727 */
3043c60c 728static int
3de09aa3
EA
729i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file_priv)
673a394b 732{
23010e43 733 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
734 drm_i915_private_t *dev_priv = dev->dev_private;
735 ssize_t remain;
736 loff_t gtt_page_base, offset;
737 loff_t first_data_page, last_data_page, num_pages;
738 loff_t pinned_pages, i;
739 struct page **user_pages;
740 struct mm_struct *mm = current->mm;
741 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 742 int ret;
3de09aa3
EA
743 uint64_t data_ptr = args->data_ptr;
744
745 remain = args->size;
746
747 /* Pin the user pages containing the data. We can't fault while
748 * holding the struct mutex, and all of the pwrite implementations
749 * want to hold it while dereferencing the user data.
750 */
751 first_data_page = data_ptr / PAGE_SIZE;
752 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
753 num_pages = last_data_page - first_data_page + 1;
754
fbd5a26d 755 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
756 if (user_pages == NULL)
757 return -ENOMEM;
758
fbd5a26d 759 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
760 down_read(&mm->mmap_sem);
761 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
762 num_pages, 0, 0, user_pages, NULL);
763 up_read(&mm->mmap_sem);
fbd5a26d 764 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
765 if (pinned_pages < num_pages) {
766 ret = -EFAULT;
767 goto out_unpin_pages;
768 }
673a394b 769
3de09aa3
EA
770 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
771 if (ret)
fbd5a26d 772 goto out_unpin_pages;
3de09aa3 773
23010e43 774 obj_priv = to_intel_bo(obj);
3de09aa3
EA
775 offset = obj_priv->gtt_offset + args->offset;
776
777 while (remain > 0) {
778 /* Operation in this page
779 *
780 * gtt_page_base = page offset within aperture
781 * gtt_page_offset = offset within page in aperture
782 * data_page_index = page number in get_user_pages return
783 * data_page_offset = offset with data_page_index page.
784 * page_length = bytes to copy for this page
785 */
786 gtt_page_base = offset & PAGE_MASK;
787 gtt_page_offset = offset & ~PAGE_MASK;
788 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
789 data_page_offset = data_ptr & ~PAGE_MASK;
790
791 page_length = remain;
792 if ((gtt_page_offset + page_length) > PAGE_SIZE)
793 page_length = PAGE_SIZE - gtt_page_offset;
794 if ((data_page_offset + page_length) > PAGE_SIZE)
795 page_length = PAGE_SIZE - data_page_offset;
796
ab34c226
CW
797 slow_kernel_write(dev_priv->mm.gtt_mapping,
798 gtt_page_base, gtt_page_offset,
799 user_pages[data_page_index],
800 data_page_offset,
801 page_length);
3de09aa3
EA
802
803 remain -= page_length;
804 offset += page_length;
805 data_ptr += page_length;
806 }
807
3de09aa3
EA
808out_unpin_pages:
809 for (i = 0; i < pinned_pages; i++)
810 page_cache_release(user_pages[i]);
8e7d2b2c 811 drm_free_large(user_pages);
3de09aa3
EA
812
813 return ret;
814}
815
40123c1f
EA
816/**
817 * This is the fast shmem pwrite path, which attempts to directly
818 * copy_from_user into the kmapped pages backing the object.
819 */
3043c60c 820static int
40123c1f
EA
821i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
822 struct drm_i915_gem_pwrite *args,
823 struct drm_file *file_priv)
673a394b 824{
23010e43 825 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
826 ssize_t remain;
827 loff_t offset, page_base;
828 char __user *user_data;
829 int page_offset, page_length;
40123c1f
EA
830
831 user_data = (char __user *) (uintptr_t) args->data_ptr;
832 remain = args->size;
673a394b 833
23010e43 834 obj_priv = to_intel_bo(obj);
40123c1f
EA
835 offset = args->offset;
836 obj_priv->dirty = 1;
837
838 while (remain > 0) {
839 /* Operation in this page
840 *
841 * page_base = page offset within aperture
842 * page_offset = offset within page
843 * page_length = bytes to copy for this page
844 */
845 page_base = (offset & ~(PAGE_SIZE-1));
846 page_offset = offset & (PAGE_SIZE-1);
847 page_length = remain;
848 if ((page_offset + remain) > PAGE_SIZE)
849 page_length = PAGE_SIZE - page_offset;
850
fbd5a26d 851 if (fast_shmem_write(obj_priv->pages,
40123c1f 852 page_base, page_offset,
fbd5a26d
CW
853 user_data, page_length))
854 return -EFAULT;
40123c1f
EA
855
856 remain -= page_length;
857 user_data += page_length;
858 offset += page_length;
859 }
860
fbd5a26d 861 return 0;
40123c1f
EA
862}
863
864/**
865 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
866 * the memory and maps it using kmap_atomic for copying.
867 *
868 * This avoids taking mmap_sem for faulting on the user's address while the
869 * struct_mutex is held.
870 */
871static int
872i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
873 struct drm_i915_gem_pwrite *args,
874 struct drm_file *file_priv)
875{
23010e43 876 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
877 struct mm_struct *mm = current->mm;
878 struct page **user_pages;
879 ssize_t remain;
880 loff_t offset, pinned_pages, i;
881 loff_t first_data_page, last_data_page, num_pages;
882 int shmem_page_index, shmem_page_offset;
883 int data_page_index, data_page_offset;
884 int page_length;
885 int ret;
886 uint64_t data_ptr = args->data_ptr;
280b713b 887 int do_bit17_swizzling;
40123c1f
EA
888
889 remain = args->size;
890
891 /* Pin the user pages containing the data. We can't fault while
892 * holding the struct mutex, and all of the pwrite implementations
893 * want to hold it while dereferencing the user data.
894 */
895 first_data_page = data_ptr / PAGE_SIZE;
896 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
897 num_pages = last_data_page - first_data_page + 1;
898
4f27b75d 899 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
900 if (user_pages == NULL)
901 return -ENOMEM;
902
fbd5a26d 903 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
904 down_read(&mm->mmap_sem);
905 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
906 num_pages, 0, 0, user_pages, NULL);
907 up_read(&mm->mmap_sem);
fbd5a26d 908 mutex_lock(&dev->struct_mutex);
40123c1f
EA
909 if (pinned_pages < num_pages) {
910 ret = -EFAULT;
fbd5a26d 911 goto out;
673a394b
EA
912 }
913
fbd5a26d 914 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 915 if (ret)
fbd5a26d 916 goto out;
40123c1f 917
fbd5a26d 918 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 919
23010e43 920 obj_priv = to_intel_bo(obj);
673a394b 921 offset = args->offset;
40123c1f 922 obj_priv->dirty = 1;
673a394b 923
40123c1f
EA
924 while (remain > 0) {
925 /* Operation in this page
926 *
927 * shmem_page_index = page number within shmem file
928 * shmem_page_offset = offset within page in shmem file
929 * data_page_index = page number in get_user_pages return
930 * data_page_offset = offset with data_page_index page.
931 * page_length = bytes to copy for this page
932 */
933 shmem_page_index = offset / PAGE_SIZE;
934 shmem_page_offset = offset & ~PAGE_MASK;
935 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
936 data_page_offset = data_ptr & ~PAGE_MASK;
937
938 page_length = remain;
939 if ((shmem_page_offset + page_length) > PAGE_SIZE)
940 page_length = PAGE_SIZE - shmem_page_offset;
941 if ((data_page_offset + page_length) > PAGE_SIZE)
942 page_length = PAGE_SIZE - data_page_offset;
943
280b713b 944 if (do_bit17_swizzling) {
99a03df5 945 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
946 shmem_page_offset,
947 user_pages[data_page_index],
948 data_page_offset,
99a03df5
CW
949 page_length,
950 0);
951 } else {
952 slow_shmem_copy(obj_priv->pages[shmem_page_index],
953 shmem_page_offset,
954 user_pages[data_page_index],
955 data_page_offset,
956 page_length);
280b713b 957 }
40123c1f
EA
958
959 remain -= page_length;
960 data_ptr += page_length;
961 offset += page_length;
673a394b
EA
962 }
963
fbd5a26d 964out:
40123c1f
EA
965 for (i = 0; i < pinned_pages; i++)
966 page_cache_release(user_pages[i]);
8e7d2b2c 967 drm_free_large(user_pages);
673a394b 968
40123c1f 969 return ret;
673a394b
EA
970}
971
972/**
973 * Writes data to the object referenced by handle.
974 *
975 * On error, the contents of the buffer that were to be modified are undefined.
976 */
977int
978i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 979 struct drm_file *file)
673a394b
EA
980{
981 struct drm_i915_gem_pwrite *args = data;
982 struct drm_gem_object *obj;
983 struct drm_i915_gem_object *obj_priv;
984 int ret = 0;
985
fbd5a26d 986 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 987 if (ret)
fbd5a26d 988 return ret;
1d7cfea1
CW
989
990 obj = drm_gem_object_lookup(dev, file, args->handle);
991 if (obj == NULL) {
992 ret = -ENOENT;
993 goto unlock;
fbd5a26d 994 }
23010e43 995 obj_priv = to_intel_bo(obj);
673a394b 996
fbd5a26d 997
7dcd2499
CW
998 /* Bounds check destination. */
999 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 1000 ret = -EINVAL;
35b62a89 1001 goto out;
ce9d419d
CW
1002 }
1003
35b62a89
CW
1004 if (args->size == 0)
1005 goto out;
1006
ce9d419d
CW
1007 if (!access_ok(VERIFY_READ,
1008 (char __user *)(uintptr_t)args->data_ptr,
1009 args->size)) {
1010 ret = -EFAULT;
35b62a89 1011 goto out;
673a394b
EA
1012 }
1013
b5e4feb6
CW
1014 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1015 args->size);
1016 if (ret) {
1017 ret = -EFAULT;
1018 goto out;
673a394b
EA
1019 }
1020
1021 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1022 * it would end up going through the fenced access, and we'll get
1023 * different detiling behavior between reading and writing.
1024 * pread/pwrite currently are reading and writing from the CPU
1025 * perspective, requiring manual detiling by the client.
1026 */
71acb5eb 1027 if (obj_priv->phys_obj)
fbd5a26d 1028 ret = i915_gem_phys_pwrite(dev, obj, args, file);
71acb5eb 1029 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
5cdf5881 1030 obj_priv->gtt_space &&
9b8c4a0b 1031 obj->write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d
CW
1032 ret = i915_gem_object_pin(obj, 0);
1033 if (ret)
1034 goto out;
1035
1036 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1037 if (ret)
1038 goto out_unpin;
1039
1040 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1041 if (ret == -EFAULT)
1042 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1043
1044out_unpin:
1045 i915_gem_object_unpin(obj);
40123c1f 1046 } else {
fbd5a26d
CW
1047 ret = i915_gem_object_get_pages_or_evict(obj);
1048 if (ret)
1049 goto out;
673a394b 1050
fbd5a26d
CW
1051 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1052 if (ret)
1053 goto out_put;
673a394b 1054
fbd5a26d
CW
1055 ret = -EFAULT;
1056 if (!i915_gem_object_needs_bit17_swizzle(obj))
1057 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1058 if (ret == -EFAULT)
1059 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1060
1061out_put:
1062 i915_gem_object_put_pages(obj);
1063 }
673a394b 1064
35b62a89 1065out:
fbd5a26d 1066 drm_gem_object_unreference(obj);
1d7cfea1 1067unlock:
fbd5a26d 1068 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1069 return ret;
1070}
1071
1072/**
2ef7eeaa
EA
1073 * Called when user space prepares to use an object with the CPU, either
1074 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1075 */
1076int
1077i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1078 struct drm_file *file_priv)
1079{
a09ba7fa 1080 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1081 struct drm_i915_gem_set_domain *args = data;
1082 struct drm_gem_object *obj;
652c393a 1083 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1084 uint32_t read_domains = args->read_domains;
1085 uint32_t write_domain = args->write_domain;
673a394b
EA
1086 int ret;
1087
1088 if (!(dev->driver->driver_features & DRIVER_GEM))
1089 return -ENODEV;
1090
2ef7eeaa 1091 /* Only handle setting domains to types used by the CPU. */
21d509e3 1092 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1093 return -EINVAL;
1094
21d509e3 1095 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1096 return -EINVAL;
1097
1098 /* Having something in the write domain implies it's in the read
1099 * domain, and only that read domain. Enforce that in the request.
1100 */
1101 if (write_domain != 0 && read_domains != write_domain)
1102 return -EINVAL;
1103
76c1dec1 1104 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1105 if (ret)
76c1dec1 1106 return ret;
1d7cfea1 1107
673a394b 1108 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
1109 if (obj == NULL) {
1110 ret = -ENOENT;
1111 goto unlock;
76c1dec1 1112 }
23010e43 1113 obj_priv = to_intel_bo(obj);
673a394b 1114
652c393a
JB
1115 intel_mark_busy(dev, obj);
1116
2ef7eeaa
EA
1117 if (read_domains & I915_GEM_DOMAIN_GTT) {
1118 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1119
a09ba7fa
EA
1120 /* Update the LRU on the fence for the CPU access that's
1121 * about to occur.
1122 */
1123 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1124 struct drm_i915_fence_reg *reg =
1125 &dev_priv->fence_regs[obj_priv->fence_reg];
1126 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1127 &dev_priv->mm.fence_list);
1128 }
1129
02354392
EA
1130 /* Silently promote "you're not bound, there was nothing to do"
1131 * to success, since the client was just asking us to
1132 * make sure everything was done.
1133 */
1134 if (ret == -EINVAL)
1135 ret = 0;
2ef7eeaa 1136 } else {
e47c68e9 1137 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1138 }
1139
7d1c4804
CW
1140 /* Maintain LRU order of "inactive" objects */
1141 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
69dc4987 1142 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1143
673a394b 1144 drm_gem_object_unreference(obj);
1d7cfea1 1145unlock:
673a394b
EA
1146 mutex_unlock(&dev->struct_mutex);
1147 return ret;
1148}
1149
1150/**
1151 * Called when user space has done writes to this buffer
1152 */
1153int
1154i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1155 struct drm_file *file_priv)
1156{
1157 struct drm_i915_gem_sw_finish *args = data;
1158 struct drm_gem_object *obj;
673a394b
EA
1159 int ret = 0;
1160
1161 if (!(dev->driver->driver_features & DRIVER_GEM))
1162 return -ENODEV;
1163
76c1dec1 1164 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1165 if (ret)
76c1dec1 1166 return ret;
1d7cfea1 1167
673a394b
EA
1168 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1169 if (obj == NULL) {
1d7cfea1
CW
1170 ret = -ENOENT;
1171 goto unlock;
673a394b
EA
1172 }
1173
673a394b 1174 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1175 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1176 i915_gem_object_flush_cpu_write_domain(obj);
1177
673a394b 1178 drm_gem_object_unreference(obj);
1d7cfea1 1179unlock:
673a394b
EA
1180 mutex_unlock(&dev->struct_mutex);
1181 return ret;
1182}
1183
1184/**
1185 * Maps the contents of an object, returning the address it is mapped
1186 * into.
1187 *
1188 * While the mapping holds a reference on the contents of the object, it doesn't
1189 * imply a ref on the object itself.
1190 */
1191int
1192i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1193 struct drm_file *file_priv)
1194{
1195 struct drm_i915_gem_mmap *args = data;
1196 struct drm_gem_object *obj;
1197 loff_t offset;
1198 unsigned long addr;
1199
1200 if (!(dev->driver->driver_features & DRIVER_GEM))
1201 return -ENODEV;
1202
1203 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1204 if (obj == NULL)
bf79cb91 1205 return -ENOENT;
673a394b
EA
1206
1207 offset = args->offset;
1208
1209 down_write(&current->mm->mmap_sem);
1210 addr = do_mmap(obj->filp, 0, args->size,
1211 PROT_READ | PROT_WRITE, MAP_SHARED,
1212 args->offset);
1213 up_write(&current->mm->mmap_sem);
bc9025bd 1214 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1215 if (IS_ERR((void *)addr))
1216 return addr;
1217
1218 args->addr_ptr = (uint64_t) addr;
1219
1220 return 0;
1221}
1222
de151cf6
JB
1223/**
1224 * i915_gem_fault - fault a page into the GTT
1225 * vma: VMA in question
1226 * vmf: fault info
1227 *
1228 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1229 * from userspace. The fault handler takes care of binding the object to
1230 * the GTT (if needed), allocating and programming a fence register (again,
1231 * only if needed based on whether the old reg is still valid or the object
1232 * is tiled) and inserting a new PTE into the faulting process.
1233 *
1234 * Note that the faulting process may involve evicting existing objects
1235 * from the GTT and/or fence registers to make room. So performance may
1236 * suffer if the GTT working set is large or there are few fence registers
1237 * left.
1238 */
1239int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1240{
1241 struct drm_gem_object *obj = vma->vm_private_data;
1242 struct drm_device *dev = obj->dev;
7d1c4804 1243 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1244 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1245 pgoff_t page_offset;
1246 unsigned long pfn;
1247 int ret = 0;
0f973f27 1248 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1249
1250 /* We don't use vmf->pgoff since that has the fake offset */
1251 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1252 PAGE_SHIFT;
1253
1254 /* Now bind it into the GTT if needed */
1255 mutex_lock(&dev->struct_mutex);
1256 if (!obj_priv->gtt_space) {
e67b8ce1 1257 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1258 if (ret)
1259 goto unlock;
07f4f3e8 1260
07f4f3e8 1261 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1262 if (ret)
1263 goto unlock;
de151cf6
JB
1264 }
1265
1266 /* Need a new fence register? */
a09ba7fa 1267 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1268 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1269 if (ret)
1270 goto unlock;
d9ddcb96 1271 }
de151cf6 1272
7d1c4804 1273 if (i915_gem_object_is_inactive(obj_priv))
69dc4987 1274 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1275
de151cf6
JB
1276 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1277 page_offset;
1278
1279 /* Finally, remap it using the new GTT offset */
1280 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1281unlock:
de151cf6
JB
1282 mutex_unlock(&dev->struct_mutex);
1283
1284 switch (ret) {
c715089f
CW
1285 case 0:
1286 case -ERESTARTSYS:
1287 return VM_FAULT_NOPAGE;
de151cf6
JB
1288 case -ENOMEM:
1289 case -EAGAIN:
1290 return VM_FAULT_OOM;
de151cf6 1291 default:
c715089f 1292 return VM_FAULT_SIGBUS;
de151cf6
JB
1293 }
1294}
1295
1296/**
1297 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1298 * @obj: obj in question
1299 *
1300 * GEM memory mapping works by handing back to userspace a fake mmap offset
1301 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1302 * up the object based on the offset and sets up the various memory mapping
1303 * structures.
1304 *
1305 * This routine allocates and attaches a fake offset for @obj.
1306 */
1307static int
1308i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1309{
1310 struct drm_device *dev = obj->dev;
1311 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1312 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1313 struct drm_map_list *list;
f77d390c 1314 struct drm_local_map *map;
de151cf6
JB
1315 int ret = 0;
1316
1317 /* Set the object up for mmap'ing */
1318 list = &obj->map_list;
9a298b2a 1319 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1320 if (!list->map)
1321 return -ENOMEM;
1322
1323 map = list->map;
1324 map->type = _DRM_GEM;
1325 map->size = obj->size;
1326 map->handle = obj;
1327
1328 /* Get a DRM GEM mmap offset allocated... */
1329 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1330 obj->size / PAGE_SIZE, 0, 0);
1331 if (!list->file_offset_node) {
1332 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1333 ret = -ENOSPC;
de151cf6
JB
1334 goto out_free_list;
1335 }
1336
1337 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1338 obj->size / PAGE_SIZE, 0);
1339 if (!list->file_offset_node) {
1340 ret = -ENOMEM;
1341 goto out_free_list;
1342 }
1343
1344 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1345 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1346 if (ret) {
de151cf6
JB
1347 DRM_ERROR("failed to add to map hash\n");
1348 goto out_free_mm;
1349 }
1350
1351 /* By now we should be all set, any drm_mmap request on the offset
1352 * below will get to our mmap & fault handler */
1353 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1354
1355 return 0;
1356
1357out_free_mm:
1358 drm_mm_put_block(list->file_offset_node);
1359out_free_list:
9a298b2a 1360 kfree(list->map);
de151cf6
JB
1361
1362 return ret;
1363}
1364
901782b2
CW
1365/**
1366 * i915_gem_release_mmap - remove physical page mappings
1367 * @obj: obj in question
1368 *
af901ca1 1369 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1370 * relinquish ownership of the pages back to the system.
1371 *
1372 * It is vital that we remove the page mapping if we have mapped a tiled
1373 * object through the GTT and then lose the fence register due to
1374 * resource pressure. Similarly if the object has been moved out of the
1375 * aperture, than pages mapped into userspace must be revoked. Removing the
1376 * mapping will then trigger a page fault on the next user access, allowing
1377 * fixup by i915_gem_fault().
1378 */
d05ca301 1379void
901782b2
CW
1380i915_gem_release_mmap(struct drm_gem_object *obj)
1381{
1382 struct drm_device *dev = obj->dev;
23010e43 1383 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1384
1385 if (dev->dev_mapping)
1386 unmap_mapping_range(dev->dev_mapping,
1387 obj_priv->mmap_offset, obj->size, 1);
1388}
1389
ab00b3e5
JB
1390static void
1391i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1392{
1393 struct drm_device *dev = obj->dev;
23010e43 1394 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1395 struct drm_gem_mm *mm = dev->mm_private;
1396 struct drm_map_list *list;
1397
1398 list = &obj->map_list;
1399 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1400
1401 if (list->file_offset_node) {
1402 drm_mm_put_block(list->file_offset_node);
1403 list->file_offset_node = NULL;
1404 }
1405
1406 if (list->map) {
9a298b2a 1407 kfree(list->map);
ab00b3e5
JB
1408 list->map = NULL;
1409 }
1410
1411 obj_priv->mmap_offset = 0;
1412}
1413
de151cf6
JB
1414/**
1415 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1416 * @obj: object to check
1417 *
1418 * Return the required GTT alignment for an object, taking into account
1419 * potential fence register mapping if needed.
1420 */
1421static uint32_t
1422i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1423{
1424 struct drm_device *dev = obj->dev;
23010e43 1425 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1426 int start, i;
1427
1428 /*
1429 * Minimum alignment is 4k (GTT page size), but might be greater
1430 * if a fence register is needed for the object.
1431 */
a6c45cf0 1432 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1433 return 4096;
1434
1435 /*
1436 * Previous chips need to be aligned to the size of the smallest
1437 * fence register that can contain the object.
1438 */
a6c45cf0 1439 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1440 start = 1024*1024;
1441 else
1442 start = 512*1024;
1443
1444 for (i = start; i < obj->size; i <<= 1)
1445 ;
1446
1447 return i;
1448}
1449
1450/**
1451 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1452 * @dev: DRM device
1453 * @data: GTT mapping ioctl data
1454 * @file_priv: GEM object info
1455 *
1456 * Simply returns the fake offset to userspace so it can mmap it.
1457 * The mmap call will end up in drm_gem_mmap(), which will set things
1458 * up so we can get faults in the handler above.
1459 *
1460 * The fault handler will take care of binding the object into the GTT
1461 * (since it may have been evicted to make room for something), allocating
1462 * a fence register, and mapping the appropriate aperture address into
1463 * userspace.
1464 */
1465int
1466i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1467 struct drm_file *file_priv)
1468{
1469 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1470 struct drm_gem_object *obj;
1471 struct drm_i915_gem_object *obj_priv;
1472 int ret;
1473
1474 if (!(dev->driver->driver_features & DRIVER_GEM))
1475 return -ENODEV;
1476
76c1dec1 1477 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1478 if (ret)
76c1dec1 1479 return ret;
de151cf6 1480
1d7cfea1
CW
1481 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1482 if (obj == NULL) {
1483 ret = -ENOENT;
1484 goto unlock;
1485 }
23010e43 1486 obj_priv = to_intel_bo(obj);
de151cf6 1487
ab18282d
CW
1488 if (obj_priv->madv != I915_MADV_WILLNEED) {
1489 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1490 ret = -EINVAL;
1491 goto out;
ab18282d
CW
1492 }
1493
de151cf6
JB
1494 if (!obj_priv->mmap_offset) {
1495 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1496 if (ret)
1497 goto out;
de151cf6
JB
1498 }
1499
1500 args->offset = obj_priv->mmap_offset;
1501
de151cf6
JB
1502 /*
1503 * Pull it into the GTT so that we have a page list (makes the
1504 * initial fault faster and any subsequent flushing possible).
1505 */
1506 if (!obj_priv->agp_mem) {
e67b8ce1 1507 ret = i915_gem_object_bind_to_gtt(obj, 0);
1d7cfea1
CW
1508 if (ret)
1509 goto out;
de151cf6
JB
1510 }
1511
1d7cfea1 1512out:
de151cf6 1513 drm_gem_object_unreference(obj);
1d7cfea1 1514unlock:
de151cf6 1515 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1516 return ret;
de151cf6
JB
1517}
1518
5cdf5881 1519static void
856fa198 1520i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1521{
23010e43 1522 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1523 int page_count = obj->size / PAGE_SIZE;
1524 int i;
1525
856fa198 1526 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1527 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1528
856fa198
EA
1529 if (--obj_priv->pages_refcount != 0)
1530 return;
673a394b 1531
280b713b
EA
1532 if (obj_priv->tiling_mode != I915_TILING_NONE)
1533 i915_gem_object_save_bit_17_swizzle(obj);
1534
3ef94daa 1535 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1536 obj_priv->dirty = 0;
3ef94daa
CW
1537
1538 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1539 if (obj_priv->dirty)
1540 set_page_dirty(obj_priv->pages[i]);
1541
1542 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1543 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1544
1545 page_cache_release(obj_priv->pages[i]);
1546 }
673a394b
EA
1547 obj_priv->dirty = 0;
1548
8e7d2b2c 1549 drm_free_large(obj_priv->pages);
856fa198 1550 obj_priv->pages = NULL;
673a394b
EA
1551}
1552
a56ba56c
CW
1553static uint32_t
1554i915_gem_next_request_seqno(struct drm_device *dev,
1555 struct intel_ring_buffer *ring)
1556{
1557 drm_i915_private_t *dev_priv = dev->dev_private;
1558
1559 ring->outstanding_lazy_request = true;
1560 return dev_priv->next_seqno;
1561}
1562
673a394b 1563static void
617dbe27 1564i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1565 struct intel_ring_buffer *ring)
673a394b
EA
1566{
1567 struct drm_device *dev = obj->dev;
69dc4987 1568 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1569 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1570 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1571
852835f3
ZN
1572 BUG_ON(ring == NULL);
1573 obj_priv->ring = ring;
673a394b
EA
1574
1575 /* Add a reference if we're newly entering the active list. */
1576 if (!obj_priv->active) {
1577 drm_gem_object_reference(obj);
1578 obj_priv->active = 1;
1579 }
e35a41de 1580
673a394b 1581 /* Move from whatever list we were on to the tail of execution. */
69dc4987
CW
1582 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1583 list_move_tail(&obj_priv->ring_list, &ring->active_list);
ce44b0ea 1584 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1585}
1586
ce44b0ea
EA
1587static void
1588i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1589{
1590 struct drm_device *dev = obj->dev;
1591 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1592 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1593
1594 BUG_ON(!obj_priv->active);
69dc4987
CW
1595 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1596 list_del_init(&obj_priv->ring_list);
ce44b0ea
EA
1597 obj_priv->last_rendering_seqno = 0;
1598}
673a394b 1599
963b4836
CW
1600/* Immediately discard the backing storage */
1601static void
1602i915_gem_object_truncate(struct drm_gem_object *obj)
1603{
23010e43 1604 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1605 struct inode *inode;
963b4836 1606
ae9fed6b
CW
1607 /* Our goal here is to return as much of the memory as
1608 * is possible back to the system as we are called from OOM.
1609 * To do this we must instruct the shmfs to drop all of its
1610 * backing pages, *now*. Here we mirror the actions taken
1611 * when by shmem_delete_inode() to release the backing store.
1612 */
bb6baf76 1613 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1614 truncate_inode_pages(inode->i_mapping, 0);
1615 if (inode->i_op->truncate_range)
1616 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1617
1618 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1619}
1620
1621static inline int
1622i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1623{
1624 return obj_priv->madv == I915_MADV_DONTNEED;
1625}
1626
673a394b
EA
1627static void
1628i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1629{
1630 struct drm_device *dev = obj->dev;
1631 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1632 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 1633
673a394b 1634 if (obj_priv->pin_count != 0)
69dc4987 1635 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
673a394b 1636 else
69dc4987
CW
1637 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1638 list_del_init(&obj_priv->ring_list);
673a394b 1639
99fcb766
DV
1640 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1641
ce44b0ea 1642 obj_priv->last_rendering_seqno = 0;
852835f3 1643 obj_priv->ring = NULL;
673a394b
EA
1644 if (obj_priv->active) {
1645 obj_priv->active = 0;
1646 drm_gem_object_unreference(obj);
1647 }
23bc5982 1648 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1649}
1650
63560396
DV
1651static void
1652i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1653 uint32_t flush_domains,
852835f3 1654 struct intel_ring_buffer *ring)
63560396
DV
1655{
1656 drm_i915_private_t *dev_priv = dev->dev_private;
1657 struct drm_i915_gem_object *obj_priv, *next;
1658
1659 list_for_each_entry_safe(obj_priv, next,
64193406 1660 &ring->gpu_write_list,
63560396 1661 gpu_write_list) {
a8089e84 1662 struct drm_gem_object *obj = &obj_priv->base;
63560396 1663
64193406 1664 if (obj->write_domain & flush_domains) {
63560396
DV
1665 uint32_t old_write_domain = obj->write_domain;
1666
1667 obj->write_domain = 0;
1668 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1669 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1670
1671 /* update the fence lru list */
007cc8ac
DV
1672 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1673 struct drm_i915_fence_reg *reg =
1674 &dev_priv->fence_regs[obj_priv->fence_reg];
1675 list_move_tail(&reg->lru_list,
63560396 1676 &dev_priv->mm.fence_list);
007cc8ac 1677 }
63560396
DV
1678
1679 trace_i915_gem_object_change_domain(obj,
1680 obj->read_domains,
1681 old_write_domain);
1682 }
1683 }
1684}
8187a2b7 1685
5a5a0c64 1686uint32_t
8a1a49f9 1687i915_add_request(struct drm_device *dev,
f787a5f5 1688 struct drm_file *file,
8dc5d147 1689 struct drm_i915_gem_request *request,
8a1a49f9 1690 struct intel_ring_buffer *ring)
673a394b
EA
1691{
1692 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1693 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1694 uint32_t seqno;
1695 int was_empty;
673a394b 1696
f787a5f5
CW
1697 if (file != NULL)
1698 file_priv = file->driver_priv;
b962442e 1699
8dc5d147
CW
1700 if (request == NULL) {
1701 request = kzalloc(sizeof(*request), GFP_KERNEL);
1702 if (request == NULL)
1703 return 0;
1704 }
673a394b 1705
78501eac 1706 seqno = ring->add_request(ring, 0);
a56ba56c 1707 ring->outstanding_lazy_request = false;
673a394b
EA
1708
1709 request->seqno = seqno;
852835f3 1710 request->ring = ring;
673a394b 1711 request->emitted_jiffies = jiffies;
852835f3
ZN
1712 was_empty = list_empty(&ring->request_list);
1713 list_add_tail(&request->list, &ring->request_list);
1714
f787a5f5 1715 if (file_priv) {
1c25595f 1716 spin_lock(&file_priv->mm.lock);
f787a5f5 1717 request->file_priv = file_priv;
b962442e 1718 list_add_tail(&request->client_list,
f787a5f5 1719 &file_priv->mm.request_list);
1c25595f 1720 spin_unlock(&file_priv->mm.lock);
b962442e 1721 }
673a394b 1722
f65d9421 1723 if (!dev_priv->mm.suspended) {
b3b079db
CW
1724 mod_timer(&dev_priv->hangcheck_timer,
1725 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1726 if (was_empty)
b3b079db
CW
1727 queue_delayed_work(dev_priv->wq,
1728 &dev_priv->mm.retire_work, HZ);
f65d9421 1729 }
673a394b
EA
1730 return seqno;
1731}
1732
1733/**
1734 * Command execution barrier
1735 *
1736 * Ensures that all commands in the ring are finished
1737 * before signalling the CPU
1738 */
8a1a49f9 1739static void
852835f3 1740i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1741{
673a394b 1742 uint32_t flush_domains = 0;
673a394b
EA
1743
1744 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1745 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1746 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3 1747
78501eac 1748 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1749}
1750
f787a5f5
CW
1751static inline void
1752i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1753{
1c25595f 1754 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1755
1c25595f
CW
1756 if (!file_priv)
1757 return;
1c5d22f7 1758
1c25595f
CW
1759 spin_lock(&file_priv->mm.lock);
1760 list_del(&request->client_list);
1761 request->file_priv = NULL;
1762 spin_unlock(&file_priv->mm.lock);
673a394b 1763}
673a394b 1764
dfaae392
CW
1765static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1766 struct intel_ring_buffer *ring)
9375e446 1767{
dfaae392
CW
1768 while (!list_empty(&ring->request_list)) {
1769 struct drm_i915_gem_request *request;
673a394b 1770
dfaae392
CW
1771 request = list_first_entry(&ring->request_list,
1772 struct drm_i915_gem_request,
1773 list);
de151cf6 1774
dfaae392 1775 list_del(&request->list);
f787a5f5 1776 i915_gem_request_remove_from_client(request);
dfaae392
CW
1777 kfree(request);
1778 }
673a394b 1779
dfaae392 1780 while (!list_empty(&ring->active_list)) {
9375e446
CW
1781 struct drm_i915_gem_object *obj_priv;
1782
dfaae392 1783 obj_priv = list_first_entry(&ring->active_list,
9375e446 1784 struct drm_i915_gem_object,
69dc4987 1785 ring_list);
9375e446
CW
1786
1787 obj_priv->base.write_domain = 0;
dfaae392 1788 list_del_init(&obj_priv->gpu_write_list);
9375e446 1789 i915_gem_object_move_to_inactive(&obj_priv->base);
673a394b
EA
1790 }
1791}
1792
069efc1d 1793void i915_gem_reset(struct drm_device *dev)
673a394b 1794{
77f01230
CW
1795 struct drm_i915_private *dev_priv = dev->dev_private;
1796 struct drm_i915_gem_object *obj_priv;
069efc1d 1797 int i;
673a394b 1798
dfaae392 1799 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1800 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
549f7365 1801 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
dfaae392
CW
1802
1803 /* Remove anything from the flushing lists. The GPU cache is likely
1804 * to be lost on reset along with the data, so simply move the
1805 * lost bo to the inactive list.
1806 */
1807 while (!list_empty(&dev_priv->mm.flushing_list)) {
1808 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1809 struct drm_i915_gem_object,
69dc4987 1810 mm_list);
dfaae392
CW
1811
1812 obj_priv->base.write_domain = 0;
1813 list_del_init(&obj_priv->gpu_write_list);
1814 i915_gem_object_move_to_inactive(&obj_priv->base);
1815 }
1816
1817 /* Move everything out of the GPU domains to ensure we do any
1818 * necessary invalidation upon reuse.
1819 */
77f01230
CW
1820 list_for_each_entry(obj_priv,
1821 &dev_priv->mm.inactive_list,
69dc4987 1822 mm_list)
77f01230
CW
1823 {
1824 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1825 }
069efc1d
CW
1826
1827 /* The fence registers are invalidated so clear them out */
1828 for (i = 0; i < 16; i++) {
1829 struct drm_i915_fence_reg *reg;
1830
1831 reg = &dev_priv->fence_regs[i];
1832 if (!reg->obj)
1833 continue;
1834
1835 i915_gem_clear_fence_reg(reg->obj);
1836 }
673a394b
EA
1837}
1838
1839/**
1840 * This function clears the request list as sequence numbers are passed.
1841 */
b09a1fec
CW
1842static void
1843i915_gem_retire_requests_ring(struct drm_device *dev,
1844 struct intel_ring_buffer *ring)
673a394b
EA
1845{
1846 drm_i915_private_t *dev_priv = dev->dev_private;
1847 uint32_t seqno;
1848
b84d5f0c
CW
1849 if (!ring->status_page.page_addr ||
1850 list_empty(&ring->request_list))
6c0594a3
KW
1851 return;
1852
23bc5982 1853 WARN_ON(i915_verify_lists(dev));
673a394b 1854
78501eac 1855 seqno = ring->get_seqno(ring);
852835f3 1856 while (!list_empty(&ring->request_list)) {
673a394b 1857 struct drm_i915_gem_request *request;
673a394b 1858
852835f3 1859 request = list_first_entry(&ring->request_list,
673a394b
EA
1860 struct drm_i915_gem_request,
1861 list);
673a394b 1862
dfaae392 1863 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1864 break;
1865
1866 trace_i915_gem_request_retire(dev, request->seqno);
1867
1868 list_del(&request->list);
f787a5f5 1869 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1870 kfree(request);
1871 }
673a394b 1872
b84d5f0c
CW
1873 /* Move any buffers on the active list that are no longer referenced
1874 * by the ringbuffer to the flushing/inactive lists as appropriate.
1875 */
1876 while (!list_empty(&ring->active_list)) {
1877 struct drm_gem_object *obj;
1878 struct drm_i915_gem_object *obj_priv;
1879
1880 obj_priv = list_first_entry(&ring->active_list,
1881 struct drm_i915_gem_object,
69dc4987 1882 ring_list);
673a394b 1883
dfaae392 1884 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1885 break;
b84d5f0c
CW
1886
1887 obj = &obj_priv->base;
b84d5f0c
CW
1888 if (obj->write_domain != 0)
1889 i915_gem_object_move_to_flushing(obj);
1890 else
1891 i915_gem_object_move_to_inactive(obj);
673a394b 1892 }
9d34e5db
CW
1893
1894 if (unlikely (dev_priv->trace_irq_seqno &&
1895 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
78501eac 1896 ring->user_irq_put(ring);
9d34e5db
CW
1897 dev_priv->trace_irq_seqno = 0;
1898 }
23bc5982
CW
1899
1900 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1901}
1902
b09a1fec
CW
1903void
1904i915_gem_retire_requests(struct drm_device *dev)
1905{
1906 drm_i915_private_t *dev_priv = dev->dev_private;
1907
be72615b
CW
1908 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1909 struct drm_i915_gem_object *obj_priv, *tmp;
1910
1911 /* We must be careful that during unbind() we do not
1912 * accidentally infinitely recurse into retire requests.
1913 * Currently:
1914 * retire -> free -> unbind -> wait -> retire_ring
1915 */
1916 list_for_each_entry_safe(obj_priv, tmp,
1917 &dev_priv->mm.deferred_free_list,
69dc4987 1918 mm_list)
be72615b
CW
1919 i915_gem_free_object_tail(&obj_priv->base);
1920 }
1921
b09a1fec 1922 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 1923 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
549f7365 1924 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
b09a1fec
CW
1925}
1926
75ef9da2 1927static void
673a394b
EA
1928i915_gem_retire_work_handler(struct work_struct *work)
1929{
1930 drm_i915_private_t *dev_priv;
1931 struct drm_device *dev;
1932
1933 dev_priv = container_of(work, drm_i915_private_t,
1934 mm.retire_work.work);
1935 dev = dev_priv->dev;
1936
891b48cf
CW
1937 /* Come back later if the device is busy... */
1938 if (!mutex_trylock(&dev->struct_mutex)) {
1939 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1940 return;
1941 }
1942
b09a1fec 1943 i915_gem_retire_requests(dev);
d1b851fc 1944
6dbe2772 1945 if (!dev_priv->mm.suspended &&
d1b851fc 1946 (!list_empty(&dev_priv->render_ring.request_list) ||
549f7365
CW
1947 !list_empty(&dev_priv->bsd_ring.request_list) ||
1948 !list_empty(&dev_priv->blt_ring.request_list)))
9c9fe1f8 1949 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1950 mutex_unlock(&dev->struct_mutex);
1951}
1952
5a5a0c64 1953int
852835f3 1954i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1955 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1956{
1957 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1958 u32 ier;
673a394b
EA
1959 int ret = 0;
1960
1961 BUG_ON(seqno == 0);
1962
ba1234d1 1963 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
1964 return -EAGAIN;
1965
a56ba56c 1966 if (ring->outstanding_lazy_request) {
8dc5d147 1967 seqno = i915_add_request(dev, NULL, NULL, ring);
e35a41de
DV
1968 if (seqno == 0)
1969 return -ENOMEM;
1970 }
a56ba56c 1971 BUG_ON(seqno == dev_priv->next_seqno);
ffed1d09 1972
78501eac 1973 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
bad720ff 1974 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1975 ier = I915_READ(DEIER) | I915_READ(GTIER);
1976 else
1977 ier = I915_READ(IER);
802c7eb6
JB
1978 if (!ier) {
1979 DRM_ERROR("something (likely vbetool) disabled "
1980 "interrupts, re-enabling\n");
1981 i915_driver_irq_preinstall(dev);
1982 i915_driver_irq_postinstall(dev);
1983 }
1984
1c5d22f7
CW
1985 trace_i915_gem_request_wait_begin(dev, seqno);
1986
852835f3 1987 ring->waiting_gem_seqno = seqno;
78501eac 1988 ring->user_irq_get(ring);
48764bf4 1989 if (interruptible)
852835f3 1990 ret = wait_event_interruptible(ring->irq_queue,
78501eac 1991 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 1992 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1993 else
852835f3 1994 wait_event(ring->irq_queue,
78501eac 1995 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 1996 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1997
78501eac 1998 ring->user_irq_put(ring);
852835f3 1999 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
2000
2001 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2002 }
ba1234d1 2003 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2004 ret = -EAGAIN;
673a394b
EA
2005
2006 if (ret && ret != -ERESTARTSYS)
8bff917c 2007 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2008 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2009 dev_priv->next_seqno);
673a394b
EA
2010
2011 /* Directly dispatch request retiring. While we have the work queue
2012 * to handle this, the waiter on a request often wants an associated
2013 * buffer to have made it to the inactive list, and we would need
2014 * a separate wait queue to handle that.
2015 */
2016 if (ret == 0)
b09a1fec 2017 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2018
2019 return ret;
2020}
2021
48764bf4
DV
2022/**
2023 * Waits for a sequence number to be signaled, and cleans up the
2024 * request and object lists appropriately for that event.
2025 */
2026static int
852835f3 2027i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2028 struct intel_ring_buffer *ring)
48764bf4 2029{
852835f3 2030 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2031}
2032
20f0cd55 2033static void
9220434a 2034i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2035 struct drm_file *file_priv,
9220434a
CW
2036 struct intel_ring_buffer *ring,
2037 uint32_t invalidate_domains,
2038 uint32_t flush_domains)
2039{
78501eac 2040 ring->flush(ring, invalidate_domains, flush_domains);
9220434a
CW
2041 i915_gem_process_flushing_list(dev, flush_domains, ring);
2042}
2043
8187a2b7
ZN
2044static void
2045i915_gem_flush(struct drm_device *dev,
c78ec30b 2046 struct drm_file *file_priv,
8187a2b7 2047 uint32_t invalidate_domains,
9220434a
CW
2048 uint32_t flush_domains,
2049 uint32_t flush_rings)
8187a2b7
ZN
2050{
2051 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2052
8187a2b7
ZN
2053 if (flush_domains & I915_GEM_DOMAIN_CPU)
2054 drm_agp_chipset_flush(dev);
8bff917c 2055
9220434a
CW
2056 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2057 if (flush_rings & RING_RENDER)
c78ec30b 2058 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2059 &dev_priv->render_ring,
2060 invalidate_domains, flush_domains);
2061 if (flush_rings & RING_BSD)
c78ec30b 2062 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2063 &dev_priv->bsd_ring,
2064 invalidate_domains, flush_domains);
549f7365
CW
2065 if (flush_rings & RING_BLT)
2066 i915_gem_flush_ring(dev, file_priv,
2067 &dev_priv->blt_ring,
2068 invalidate_domains, flush_domains);
9220434a 2069 }
8187a2b7
ZN
2070}
2071
673a394b
EA
2072/**
2073 * Ensures that all rendering to the object has completed and the object is
2074 * safe to unbind from the GTT or access from the CPU.
2075 */
2076static int
2cf34d7b
CW
2077i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2078 bool interruptible)
673a394b
EA
2079{
2080 struct drm_device *dev = obj->dev;
23010e43 2081 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2082 int ret;
2083
e47c68e9
EA
2084 /* This function only exists to support waiting for existing rendering,
2085 * not for emitting required flushes.
673a394b 2086 */
e47c68e9 2087 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2088
2089 /* If there is rendering queued on the buffer being evicted, wait for
2090 * it.
2091 */
2092 if (obj_priv->active) {
2cf34d7b
CW
2093 ret = i915_do_wait_request(dev,
2094 obj_priv->last_rendering_seqno,
2095 interruptible,
2096 obj_priv->ring);
2097 if (ret)
673a394b
EA
2098 return ret;
2099 }
2100
2101 return 0;
2102}
2103
2104/**
2105 * Unbinds an object from the GTT aperture.
2106 */
0f973f27 2107int
673a394b
EA
2108i915_gem_object_unbind(struct drm_gem_object *obj)
2109{
2110 struct drm_device *dev = obj->dev;
73aa808f 2111 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2112 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2113 int ret = 0;
2114
673a394b
EA
2115 if (obj_priv->gtt_space == NULL)
2116 return 0;
2117
2118 if (obj_priv->pin_count != 0) {
2119 DRM_ERROR("Attempting to unbind pinned buffer\n");
2120 return -EINVAL;
2121 }
2122
5323fd04
EA
2123 /* blow away mappings if mapped through GTT */
2124 i915_gem_release_mmap(obj);
2125
673a394b
EA
2126 /* Move the object to the CPU domain to ensure that
2127 * any possible CPU writes while it's not in the GTT
2128 * are flushed when we go to remap it. This will
2129 * also ensure that all pending GPU writes are finished
2130 * before we unbind.
2131 */
e47c68e9 2132 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2133 if (ret == -ERESTARTSYS)
673a394b 2134 return ret;
8dc1775d
CW
2135 /* Continue on if we fail due to EIO, the GPU is hung so we
2136 * should be safe and we need to cleanup or else we might
2137 * cause memory corruption through use-after-free.
2138 */
812ed492
CW
2139 if (ret) {
2140 i915_gem_clflush_object(obj);
2141 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2142 }
673a394b 2143
96b47b65
DV
2144 /* release the fence reg _after_ flushing */
2145 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2146 i915_gem_clear_fence_reg(obj);
2147
73aa808f
CW
2148 drm_unbind_agp(obj_priv->agp_mem);
2149 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
673a394b 2150
856fa198 2151 i915_gem_object_put_pages(obj);
a32808c0 2152 BUG_ON(obj_priv->pages_refcount);
673a394b 2153
73aa808f 2154 i915_gem_info_remove_gtt(dev_priv, obj->size);
69dc4987 2155 list_del_init(&obj_priv->mm_list);
673a394b 2156
73aa808f
CW
2157 drm_mm_put_block(obj_priv->gtt_space);
2158 obj_priv->gtt_space = NULL;
9af90d19 2159 obj_priv->gtt_offset = 0;
673a394b 2160
963b4836
CW
2161 if (i915_gem_object_is_purgeable(obj_priv))
2162 i915_gem_object_truncate(obj);
2163
1c5d22f7
CW
2164 trace_i915_gem_object_unbind(obj);
2165
8dc1775d 2166 return ret;
673a394b
EA
2167}
2168
a56ba56c
CW
2169static int i915_ring_idle(struct drm_device *dev,
2170 struct intel_ring_buffer *ring)
2171{
64193406
CW
2172 if (list_empty(&ring->gpu_write_list))
2173 return 0;
2174
a56ba56c
CW
2175 i915_gem_flush_ring(dev, NULL, ring,
2176 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2177 return i915_wait_request(dev,
2178 i915_gem_next_request_seqno(dev, ring),
2179 ring);
2180}
2181
b47eb4a2 2182int
4df2faf4
DV
2183i915_gpu_idle(struct drm_device *dev)
2184{
2185 drm_i915_private_t *dev_priv = dev->dev_private;
2186 bool lists_empty;
852835f3 2187 int ret;
4df2faf4 2188
d1b851fc
ZN
2189 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2190 list_empty(&dev_priv->render_ring.active_list) &&
549f7365
CW
2191 list_empty(&dev_priv->bsd_ring.active_list) &&
2192 list_empty(&dev_priv->blt_ring.active_list));
4df2faf4
DV
2193 if (lists_empty)
2194 return 0;
2195
2196 /* Flush everything onto the inactive list. */
a56ba56c 2197 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2198 if (ret)
2199 return ret;
d1b851fc 2200
87acb0a5
CW
2201 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2202 if (ret)
2203 return ret;
d1b851fc 2204
549f7365
CW
2205 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2206 if (ret)
2207 return ret;
4df2faf4 2208
8a1a49f9 2209 return 0;
4df2faf4
DV
2210}
2211
5cdf5881 2212static int
4bdadb97
CW
2213i915_gem_object_get_pages(struct drm_gem_object *obj,
2214 gfp_t gfpmask)
673a394b 2215{
23010e43 2216 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2217 int page_count, i;
2218 struct address_space *mapping;
2219 struct inode *inode;
2220 struct page *page;
673a394b 2221
778c3544
DV
2222 BUG_ON(obj_priv->pages_refcount
2223 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2224
856fa198 2225 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2226 return 0;
2227
2228 /* Get the list of pages out of our struct file. They'll be pinned
2229 * at this point until we release them.
2230 */
2231 page_count = obj->size / PAGE_SIZE;
856fa198 2232 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2233 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2234 if (obj_priv->pages == NULL) {
856fa198 2235 obj_priv->pages_refcount--;
673a394b
EA
2236 return -ENOMEM;
2237 }
2238
2239 inode = obj->filp->f_path.dentry->d_inode;
2240 mapping = inode->i_mapping;
2241 for (i = 0; i < page_count; i++) {
4bdadb97 2242 page = read_cache_page_gfp(mapping, i,
985b823b 2243 GFP_HIGHUSER |
4bdadb97 2244 __GFP_COLD |
cd9f040d 2245 __GFP_RECLAIMABLE |
4bdadb97 2246 gfpmask);
1f2b1013
CW
2247 if (IS_ERR(page))
2248 goto err_pages;
2249
856fa198 2250 obj_priv->pages[i] = page;
673a394b 2251 }
280b713b
EA
2252
2253 if (obj_priv->tiling_mode != I915_TILING_NONE)
2254 i915_gem_object_do_bit_17_swizzle(obj);
2255
673a394b 2256 return 0;
1f2b1013
CW
2257
2258err_pages:
2259 while (i--)
2260 page_cache_release(obj_priv->pages[i]);
2261
2262 drm_free_large(obj_priv->pages);
2263 obj_priv->pages = NULL;
2264 obj_priv->pages_refcount--;
2265 return PTR_ERR(page);
673a394b
EA
2266}
2267
4e901fdc
EA
2268static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2269{
2270 struct drm_gem_object *obj = reg->obj;
2271 struct drm_device *dev = obj->dev;
2272 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2273 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2274 int regnum = obj_priv->fence_reg;
2275 uint64_t val;
2276
2277 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2278 0xfffff000) << 32;
2279 val |= obj_priv->gtt_offset & 0xfffff000;
2280 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2281 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2282
2283 if (obj_priv->tiling_mode == I915_TILING_Y)
2284 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2285 val |= I965_FENCE_REG_VALID;
2286
2287 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2288}
2289
de151cf6
JB
2290static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2291{
2292 struct drm_gem_object *obj = reg->obj;
2293 struct drm_device *dev = obj->dev;
2294 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2295 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2296 int regnum = obj_priv->fence_reg;
2297 uint64_t val;
2298
2299 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2300 0xfffff000) << 32;
2301 val |= obj_priv->gtt_offset & 0xfffff000;
2302 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2303 if (obj_priv->tiling_mode == I915_TILING_Y)
2304 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2305 val |= I965_FENCE_REG_VALID;
2306
2307 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2308}
2309
2310static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2311{
2312 struct drm_gem_object *obj = reg->obj;
2313 struct drm_device *dev = obj->dev;
2314 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2315 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2316 int regnum = obj_priv->fence_reg;
0f973f27 2317 int tile_width;
dc529a4f 2318 uint32_t fence_reg, val;
de151cf6
JB
2319 uint32_t pitch_val;
2320
2321 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2322 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2323 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2324 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2325 return;
2326 }
2327
0f973f27
JB
2328 if (obj_priv->tiling_mode == I915_TILING_Y &&
2329 HAS_128_BYTE_Y_TILING(dev))
2330 tile_width = 128;
de151cf6 2331 else
0f973f27
JB
2332 tile_width = 512;
2333
2334 /* Note: pitch better be a power of two tile widths */
2335 pitch_val = obj_priv->stride / tile_width;
2336 pitch_val = ffs(pitch_val) - 1;
de151cf6 2337
c36a2a6d
DV
2338 if (obj_priv->tiling_mode == I915_TILING_Y &&
2339 HAS_128_BYTE_Y_TILING(dev))
2340 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2341 else
2342 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2343
de151cf6
JB
2344 val = obj_priv->gtt_offset;
2345 if (obj_priv->tiling_mode == I915_TILING_Y)
2346 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2347 val |= I915_FENCE_SIZE_BITS(obj->size);
2348 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2349 val |= I830_FENCE_REG_VALID;
2350
dc529a4f
EA
2351 if (regnum < 8)
2352 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2353 else
2354 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2355 I915_WRITE(fence_reg, val);
de151cf6
JB
2356}
2357
2358static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2359{
2360 struct drm_gem_object *obj = reg->obj;
2361 struct drm_device *dev = obj->dev;
2362 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2363 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2364 int regnum = obj_priv->fence_reg;
2365 uint32_t val;
2366 uint32_t pitch_val;
8d7773a3 2367 uint32_t fence_size_bits;
de151cf6 2368
8d7773a3 2369 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2370 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2371 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2372 __func__, obj_priv->gtt_offset);
de151cf6
JB
2373 return;
2374 }
2375
e76a16de
EA
2376 pitch_val = obj_priv->stride / 128;
2377 pitch_val = ffs(pitch_val) - 1;
2378 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2379
de151cf6
JB
2380 val = obj_priv->gtt_offset;
2381 if (obj_priv->tiling_mode == I915_TILING_Y)
2382 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2383 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2384 WARN_ON(fence_size_bits & ~0x00000f00);
2385 val |= fence_size_bits;
de151cf6
JB
2386 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2387 val |= I830_FENCE_REG_VALID;
2388
2389 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2390}
2391
2cf34d7b
CW
2392static int i915_find_fence_reg(struct drm_device *dev,
2393 bool interruptible)
ae3db24a
DV
2394{
2395 struct drm_i915_fence_reg *reg = NULL;
2396 struct drm_i915_gem_object *obj_priv = NULL;
2397 struct drm_i915_private *dev_priv = dev->dev_private;
2398 struct drm_gem_object *obj = NULL;
2399 int i, avail, ret;
2400
2401 /* First try to find a free reg */
2402 avail = 0;
2403 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2404 reg = &dev_priv->fence_regs[i];
2405 if (!reg->obj)
2406 return i;
2407
23010e43 2408 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2409 if (!obj_priv->pin_count)
2410 avail++;
2411 }
2412
2413 if (avail == 0)
2414 return -ENOSPC;
2415
2416 /* None available, try to steal one or wait for a user to finish */
2417 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2418 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2419 lru_list) {
2420 obj = reg->obj;
2421 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2422
2423 if (obj_priv->pin_count)
2424 continue;
2425
2426 /* found one! */
2427 i = obj_priv->fence_reg;
2428 break;
2429 }
2430
2431 BUG_ON(i == I915_FENCE_REG_NONE);
2432
2433 /* We only have a reference on obj from the active list. put_fence_reg
2434 * might drop that one, causing a use-after-free in it. So hold a
2435 * private reference to obj like the other callers of put_fence_reg
2436 * (set_tiling ioctl) do. */
2437 drm_gem_object_reference(obj);
2cf34d7b 2438 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2439 drm_gem_object_unreference(obj);
2440 if (ret != 0)
2441 return ret;
2442
2443 return i;
2444}
2445
de151cf6
JB
2446/**
2447 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2448 * @obj: object to map through a fence reg
2449 *
2450 * When mapping objects through the GTT, userspace wants to be able to write
2451 * to them without having to worry about swizzling if the object is tiled.
2452 *
2453 * This function walks the fence regs looking for a free one for @obj,
2454 * stealing one if it can't find any.
2455 *
2456 * It then sets up the reg based on the object's properties: address, pitch
2457 * and tiling format.
2458 */
8c4b8c3f 2459int
2cf34d7b
CW
2460i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2461 bool interruptible)
de151cf6
JB
2462{
2463 struct drm_device *dev = obj->dev;
79e53945 2464 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2465 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2466 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2467 int ret;
de151cf6 2468
a09ba7fa
EA
2469 /* Just update our place in the LRU if our fence is getting used. */
2470 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2471 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2472 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2473 return 0;
2474 }
2475
de151cf6
JB
2476 switch (obj_priv->tiling_mode) {
2477 case I915_TILING_NONE:
2478 WARN(1, "allocating a fence for non-tiled object?\n");
2479 break;
2480 case I915_TILING_X:
0f973f27
JB
2481 if (!obj_priv->stride)
2482 return -EINVAL;
2483 WARN((obj_priv->stride & (512 - 1)),
2484 "object 0x%08x is X tiled but has non-512B pitch\n",
2485 obj_priv->gtt_offset);
de151cf6
JB
2486 break;
2487 case I915_TILING_Y:
0f973f27
JB
2488 if (!obj_priv->stride)
2489 return -EINVAL;
2490 WARN((obj_priv->stride & (128 - 1)),
2491 "object 0x%08x is Y tiled but has non-128B pitch\n",
2492 obj_priv->gtt_offset);
de151cf6
JB
2493 break;
2494 }
2495
2cf34d7b 2496 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2497 if (ret < 0)
2498 return ret;
de151cf6 2499
ae3db24a
DV
2500 obj_priv->fence_reg = ret;
2501 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2502 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2503
de151cf6
JB
2504 reg->obj = obj;
2505
e259befd
CW
2506 switch (INTEL_INFO(dev)->gen) {
2507 case 6:
4e901fdc 2508 sandybridge_write_fence_reg(reg);
e259befd
CW
2509 break;
2510 case 5:
2511 case 4:
de151cf6 2512 i965_write_fence_reg(reg);
e259befd
CW
2513 break;
2514 case 3:
de151cf6 2515 i915_write_fence_reg(reg);
e259befd
CW
2516 break;
2517 case 2:
de151cf6 2518 i830_write_fence_reg(reg);
e259befd
CW
2519 break;
2520 }
d9ddcb96 2521
ae3db24a
DV
2522 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2523 obj_priv->tiling_mode);
1c5d22f7 2524
d9ddcb96 2525 return 0;
de151cf6
JB
2526}
2527
2528/**
2529 * i915_gem_clear_fence_reg - clear out fence register info
2530 * @obj: object to clear
2531 *
2532 * Zeroes out the fence register itself and clears out the associated
2533 * data structures in dev_priv and obj_priv.
2534 */
2535static void
2536i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2537{
2538 struct drm_device *dev = obj->dev;
79e53945 2539 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2540 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2541 struct drm_i915_fence_reg *reg =
2542 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2543 uint32_t fence_reg;
de151cf6 2544
e259befd
CW
2545 switch (INTEL_INFO(dev)->gen) {
2546 case 6:
4e901fdc
EA
2547 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2548 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2549 break;
2550 case 5:
2551 case 4:
de151cf6 2552 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2553 break;
2554 case 3:
9b74f734 2555 if (obj_priv->fence_reg >= 8)
e259befd 2556 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2557 else
e259befd
CW
2558 case 2:
2559 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2560
2561 I915_WRITE(fence_reg, 0);
e259befd 2562 break;
dc529a4f 2563 }
de151cf6 2564
007cc8ac 2565 reg->obj = NULL;
de151cf6 2566 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2567 list_del_init(&reg->lru_list);
de151cf6
JB
2568}
2569
52dc7d32
CW
2570/**
2571 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2572 * to the buffer to finish, and then resets the fence register.
2573 * @obj: tiled object holding a fence register.
2cf34d7b 2574 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2575 *
2576 * Zeroes out the fence register itself and clears out the associated
2577 * data structures in dev_priv and obj_priv.
2578 */
2579int
2cf34d7b
CW
2580i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2581 bool interruptible)
52dc7d32
CW
2582{
2583 struct drm_device *dev = obj->dev;
53640e1d 2584 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2585 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2586 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2587
2588 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2589 return 0;
2590
10ae9bd2
DV
2591 /* If we've changed tiling, GTT-mappings of the object
2592 * need to re-fault to ensure that the correct fence register
2593 * setup is in place.
2594 */
2595 i915_gem_release_mmap(obj);
2596
52dc7d32
CW
2597 /* On the i915, GPU access to tiled buffers is via a fence,
2598 * therefore we must wait for any outstanding access to complete
2599 * before clearing the fence.
2600 */
53640e1d
CW
2601 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2602 if (reg->gpu) {
52dc7d32
CW
2603 int ret;
2604
2cf34d7b 2605 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad 2606 if (ret)
2dafb1e0
CW
2607 return ret;
2608
2cf34d7b 2609 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2610 if (ret)
52dc7d32 2611 return ret;
53640e1d
CW
2612
2613 reg->gpu = false;
52dc7d32
CW
2614 }
2615
4a726612 2616 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2617 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2618
2619 return 0;
2620}
2621
673a394b
EA
2622/**
2623 * Finds free space in the GTT aperture and binds the object there.
2624 */
2625static int
2626i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2627{
2628 struct drm_device *dev = obj->dev;
2629 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2630 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2631 struct drm_mm_node *free_space;
4bdadb97 2632 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2633 int ret;
673a394b 2634
bb6baf76 2635 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2636 DRM_ERROR("Attempting to bind a purgeable object\n");
2637 return -EINVAL;
2638 }
2639
673a394b 2640 if (alignment == 0)
0f973f27 2641 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2642 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2643 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2644 return -EINVAL;
2645 }
2646
654fc607
CW
2647 /* If the object is bigger than the entire aperture, reject it early
2648 * before evicting everything in a vain attempt to find space.
2649 */
73aa808f 2650 if (obj->size > dev_priv->mm.gtt_total) {
654fc607
CW
2651 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2652 return -E2BIG;
2653 }
2654
673a394b
EA
2655 search_free:
2656 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2657 obj->size, alignment, 0);
9af90d19 2658 if (free_space != NULL)
673a394b
EA
2659 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2660 alignment);
673a394b
EA
2661 if (obj_priv->gtt_space == NULL) {
2662 /* If the gtt is empty and we're still having trouble
2663 * fitting our object in, we're out of memory.
2664 */
0108a3ed 2665 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2666 if (ret)
673a394b 2667 return ret;
9731129c 2668
673a394b
EA
2669 goto search_free;
2670 }
2671
4bdadb97 2672 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2673 if (ret) {
2674 drm_mm_put_block(obj_priv->gtt_space);
2675 obj_priv->gtt_space = NULL;
07f73f69
CW
2676
2677 if (ret == -ENOMEM) {
2678 /* first try to clear up some space from the GTT */
0108a3ed
DV
2679 ret = i915_gem_evict_something(dev, obj->size,
2680 alignment);
07f73f69 2681 if (ret) {
07f73f69 2682 /* now try to shrink everyone else */
4bdadb97
CW
2683 if (gfpmask) {
2684 gfpmask = 0;
2685 goto search_free;
07f73f69
CW
2686 }
2687
2688 return ret;
2689 }
2690
2691 goto search_free;
2692 }
2693
673a394b
EA
2694 return ret;
2695 }
2696
673a394b
EA
2697 /* Create an AGP memory structure pointing at our pages, and bind it
2698 * into the GTT.
2699 */
2700 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2701 obj_priv->pages,
07f73f69 2702 obj->size >> PAGE_SHIFT,
9af90d19 2703 obj_priv->gtt_space->start,
ba1eb1d8 2704 obj_priv->agp_type);
673a394b 2705 if (obj_priv->agp_mem == NULL) {
856fa198 2706 i915_gem_object_put_pages(obj);
673a394b
EA
2707 drm_mm_put_block(obj_priv->gtt_space);
2708 obj_priv->gtt_space = NULL;
07f73f69 2709
0108a3ed 2710 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2711 if (ret)
07f73f69 2712 return ret;
07f73f69
CW
2713
2714 goto search_free;
673a394b 2715 }
673a394b 2716
bf1a1092 2717 /* keep track of bounds object by adding it to the inactive list */
69dc4987 2718 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
73aa808f 2719 i915_gem_info_add_gtt(dev_priv, obj->size);
bf1a1092 2720
673a394b
EA
2721 /* Assert that the object is not currently in any GPU domain. As it
2722 * wasn't in the GTT, there shouldn't be any way it could have been in
2723 * a GPU cache
2724 */
21d509e3
CW
2725 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2726 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2727
9af90d19 2728 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1c5d22f7
CW
2729 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2730
673a394b
EA
2731 return 0;
2732}
2733
2734void
2735i915_gem_clflush_object(struct drm_gem_object *obj)
2736{
23010e43 2737 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2738
2739 /* If we don't have a page list set up, then we're not pinned
2740 * to GPU, and we can ignore the cache flush because it'll happen
2741 * again at bind time.
2742 */
856fa198 2743 if (obj_priv->pages == NULL)
673a394b
EA
2744 return;
2745
1c5d22f7 2746 trace_i915_gem_object_clflush(obj);
cfa16a0d 2747
856fa198 2748 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2749}
2750
e47c68e9 2751/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2752static int
ba3d8d74
DV
2753i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2754 bool pipelined)
e47c68e9
EA
2755{
2756 struct drm_device *dev = obj->dev;
1c5d22f7 2757 uint32_t old_write_domain;
e47c68e9
EA
2758
2759 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2760 return 0;
e47c68e9
EA
2761
2762 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2763 old_write_domain = obj->write_domain;
c78ec30b 2764 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2765 to_intel_bo(obj)->ring,
2766 0, obj->write_domain);
48b956c5 2767 BUG_ON(obj->write_domain);
1c5d22f7
CW
2768
2769 trace_i915_gem_object_change_domain(obj,
2770 obj->read_domains,
2771 old_write_domain);
ba3d8d74
DV
2772
2773 if (pipelined)
2774 return 0;
2775
2cf34d7b 2776 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2777}
2778
2779/** Flushes the GTT write domain for the object if it's dirty. */
2780static void
2781i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2782{
1c5d22f7
CW
2783 uint32_t old_write_domain;
2784
e47c68e9
EA
2785 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2786 return;
2787
2788 /* No actual flushing is required for the GTT write domain. Writes
2789 * to it immediately go to main memory as far as we know, so there's
2790 * no chipset flush. It also doesn't land in render cache.
2791 */
1c5d22f7 2792 old_write_domain = obj->write_domain;
e47c68e9 2793 obj->write_domain = 0;
1c5d22f7
CW
2794
2795 trace_i915_gem_object_change_domain(obj,
2796 obj->read_domains,
2797 old_write_domain);
e47c68e9
EA
2798}
2799
2800/** Flushes the CPU write domain for the object if it's dirty. */
2801static void
2802i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2803{
2804 struct drm_device *dev = obj->dev;
1c5d22f7 2805 uint32_t old_write_domain;
e47c68e9
EA
2806
2807 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2808 return;
2809
2810 i915_gem_clflush_object(obj);
2811 drm_agp_chipset_flush(dev);
1c5d22f7 2812 old_write_domain = obj->write_domain;
e47c68e9 2813 obj->write_domain = 0;
1c5d22f7
CW
2814
2815 trace_i915_gem_object_change_domain(obj,
2816 obj->read_domains,
2817 old_write_domain);
e47c68e9
EA
2818}
2819
2ef7eeaa
EA
2820/**
2821 * Moves a single object to the GTT read, and possibly write domain.
2822 *
2823 * This function returns when the move is complete, including waiting on
2824 * flushes to occur.
2825 */
79e53945 2826int
2ef7eeaa
EA
2827i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2828{
23010e43 2829 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2830 uint32_t old_write_domain, old_read_domains;
e47c68e9 2831 int ret;
2ef7eeaa 2832
02354392
EA
2833 /* Not valid to be called on unbound objects. */
2834 if (obj_priv->gtt_space == NULL)
2835 return -EINVAL;
2836
ba3d8d74 2837 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2dafb1e0
CW
2838 if (ret != 0)
2839 return ret;
2840
7213342d 2841 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2842
ba3d8d74 2843 if (write) {
2cf34d7b 2844 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2845 if (ret)
2846 return ret;
ba3d8d74 2847 }
e47c68e9 2848
1c5d22f7
CW
2849 old_write_domain = obj->write_domain;
2850 old_read_domains = obj->read_domains;
2851
e47c68e9
EA
2852 /* It should now be out of any other write domains, and we can update
2853 * the domain values for our changes.
2854 */
2855 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2856 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2857 if (write) {
7213342d 2858 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2859 obj->write_domain = I915_GEM_DOMAIN_GTT;
2860 obj_priv->dirty = 1;
2ef7eeaa
EA
2861 }
2862
1c5d22f7
CW
2863 trace_i915_gem_object_change_domain(obj,
2864 old_read_domains,
2865 old_write_domain);
2866
e47c68e9
EA
2867 return 0;
2868}
2869
b9241ea3
ZW
2870/*
2871 * Prepare buffer for display plane. Use uninterruptible for possible flush
2872 * wait, as in modesetting process we're not supposed to be interrupted.
2873 */
2874int
48b956c5
CW
2875i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2876 bool pipelined)
b9241ea3 2877{
23010e43 2878 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2879 uint32_t old_read_domains;
b9241ea3
ZW
2880 int ret;
2881
2882 /* Not valid to be called on unbound objects. */
2883 if (obj_priv->gtt_space == NULL)
2884 return -EINVAL;
2885
ced270fa 2886 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2dafb1e0
CW
2887 if (ret)
2888 return ret;
b9241ea3 2889
ced270fa
CW
2890 /* Currently, we are always called from an non-interruptible context. */
2891 if (!pipelined) {
2892 ret = i915_gem_object_wait_rendering(obj, false);
2893 if (ret)
b9241ea3
ZW
2894 return ret;
2895 }
2896
b118c1e3
CW
2897 i915_gem_object_flush_cpu_write_domain(obj);
2898
b9241ea3 2899 old_read_domains = obj->read_domains;
c78ec30b 2900 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2901
2902 trace_i915_gem_object_change_domain(obj,
2903 old_read_domains,
ba3d8d74 2904 obj->write_domain);
b9241ea3
ZW
2905
2906 return 0;
2907}
2908
e47c68e9
EA
2909/**
2910 * Moves a single object to the CPU read, and possibly write domain.
2911 *
2912 * This function returns when the move is complete, including waiting on
2913 * flushes to occur.
2914 */
2915static int
2916i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2917{
1c5d22f7 2918 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2919 int ret;
2920
ba3d8d74 2921 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2922 if (ret != 0)
2923 return ret;
2ef7eeaa 2924
e47c68e9 2925 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2926
e47c68e9
EA
2927 /* If we have a partially-valid cache of the object in the CPU,
2928 * finish invalidating it and free the per-page flags.
2ef7eeaa 2929 */
e47c68e9 2930 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2931
7213342d 2932 if (write) {
2cf34d7b 2933 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
2934 if (ret)
2935 return ret;
2936 }
2937
1c5d22f7
CW
2938 old_write_domain = obj->write_domain;
2939 old_read_domains = obj->read_domains;
2940
e47c68e9
EA
2941 /* Flush the CPU cache if it's still invalid. */
2942 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2943 i915_gem_clflush_object(obj);
2ef7eeaa 2944
e47c68e9 2945 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2946 }
2947
2948 /* It should now be out of any other write domains, and we can update
2949 * the domain values for our changes.
2950 */
e47c68e9
EA
2951 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2952
2953 /* If we're writing through the CPU, then the GPU read domains will
2954 * need to be invalidated at next use.
2955 */
2956 if (write) {
c78ec30b 2957 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
2958 obj->write_domain = I915_GEM_DOMAIN_CPU;
2959 }
2ef7eeaa 2960
1c5d22f7
CW
2961 trace_i915_gem_object_change_domain(obj,
2962 old_read_domains,
2963 old_write_domain);
2964
2ef7eeaa
EA
2965 return 0;
2966}
2967
673a394b
EA
2968/*
2969 * Set the next domain for the specified object. This
2970 * may not actually perform the necessary flushing/invaliding though,
2971 * as that may want to be batched with other set_domain operations
2972 *
2973 * This is (we hope) the only really tricky part of gem. The goal
2974 * is fairly simple -- track which caches hold bits of the object
2975 * and make sure they remain coherent. A few concrete examples may
2976 * help to explain how it works. For shorthand, we use the notation
2977 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2978 * a pair of read and write domain masks.
2979 *
2980 * Case 1: the batch buffer
2981 *
2982 * 1. Allocated
2983 * 2. Written by CPU
2984 * 3. Mapped to GTT
2985 * 4. Read by GPU
2986 * 5. Unmapped from GTT
2987 * 6. Freed
2988 *
2989 * Let's take these a step at a time
2990 *
2991 * 1. Allocated
2992 * Pages allocated from the kernel may still have
2993 * cache contents, so we set them to (CPU, CPU) always.
2994 * 2. Written by CPU (using pwrite)
2995 * The pwrite function calls set_domain (CPU, CPU) and
2996 * this function does nothing (as nothing changes)
2997 * 3. Mapped by GTT
2998 * This function asserts that the object is not
2999 * currently in any GPU-based read or write domains
3000 * 4. Read by GPU
3001 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3002 * As write_domain is zero, this function adds in the
3003 * current read domains (CPU+COMMAND, 0).
3004 * flush_domains is set to CPU.
3005 * invalidate_domains is set to COMMAND
3006 * clflush is run to get data out of the CPU caches
3007 * then i915_dev_set_domain calls i915_gem_flush to
3008 * emit an MI_FLUSH and drm_agp_chipset_flush
3009 * 5. Unmapped from GTT
3010 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3011 * flush_domains and invalidate_domains end up both zero
3012 * so no flushing/invalidating happens
3013 * 6. Freed
3014 * yay, done
3015 *
3016 * Case 2: The shared render buffer
3017 *
3018 * 1. Allocated
3019 * 2. Mapped to GTT
3020 * 3. Read/written by GPU
3021 * 4. set_domain to (CPU,CPU)
3022 * 5. Read/written by CPU
3023 * 6. Read/written by GPU
3024 *
3025 * 1. Allocated
3026 * Same as last example, (CPU, CPU)
3027 * 2. Mapped to GTT
3028 * Nothing changes (assertions find that it is not in the GPU)
3029 * 3. Read/written by GPU
3030 * execbuffer calls set_domain (RENDER, RENDER)
3031 * flush_domains gets CPU
3032 * invalidate_domains gets GPU
3033 * clflush (obj)
3034 * MI_FLUSH and drm_agp_chipset_flush
3035 * 4. set_domain (CPU, CPU)
3036 * flush_domains gets GPU
3037 * invalidate_domains gets CPU
3038 * wait_rendering (obj) to make sure all drawing is complete.
3039 * This will include an MI_FLUSH to get the data from GPU
3040 * to memory
3041 * clflush (obj) to invalidate the CPU cache
3042 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3043 * 5. Read/written by CPU
3044 * cache lines are loaded and dirtied
3045 * 6. Read written by GPU
3046 * Same as last GPU access
3047 *
3048 * Case 3: The constant buffer
3049 *
3050 * 1. Allocated
3051 * 2. Written by CPU
3052 * 3. Read by GPU
3053 * 4. Updated (written) by CPU again
3054 * 5. Read by GPU
3055 *
3056 * 1. Allocated
3057 * (CPU, CPU)
3058 * 2. Written by CPU
3059 * (CPU, CPU)
3060 * 3. Read by GPU
3061 * (CPU+RENDER, 0)
3062 * flush_domains = CPU
3063 * invalidate_domains = RENDER
3064 * clflush (obj)
3065 * MI_FLUSH
3066 * drm_agp_chipset_flush
3067 * 4. Updated (written) by CPU again
3068 * (CPU, CPU)
3069 * flush_domains = 0 (no previous write domain)
3070 * invalidate_domains = 0 (no new read domains)
3071 * 5. Read by GPU
3072 * (CPU+RENDER, 0)
3073 * flush_domains = CPU
3074 * invalidate_domains = RENDER
3075 * clflush (obj)
3076 * MI_FLUSH
3077 * drm_agp_chipset_flush
3078 */
c0d90829 3079static void
b6651458
CW
3080i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3081 struct intel_ring_buffer *ring)
673a394b
EA
3082{
3083 struct drm_device *dev = obj->dev;
9220434a 3084 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 3085 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3086 uint32_t invalidate_domains = 0;
3087 uint32_t flush_domains = 0;
1c5d22f7 3088 uint32_t old_read_domains;
e47c68e9 3089
652c393a
JB
3090 intel_mark_busy(dev, obj);
3091
673a394b
EA
3092 /*
3093 * If the object isn't moving to a new write domain,
3094 * let the object stay in multiple read domains
3095 */
8b0e378a
EA
3096 if (obj->pending_write_domain == 0)
3097 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3098 else
3099 obj_priv->dirty = 1;
3100
3101 /*
3102 * Flush the current write domain if
3103 * the new read domains don't match. Invalidate
3104 * any read domains which differ from the old
3105 * write domain
3106 */
8b0e378a
EA
3107 if (obj->write_domain &&
3108 obj->write_domain != obj->pending_read_domains) {
673a394b 3109 flush_domains |= obj->write_domain;
8b0e378a
EA
3110 invalidate_domains |=
3111 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3112 }
3113 /*
3114 * Invalidate any read caches which may have
3115 * stale data. That is, any new read domains.
3116 */
8b0e378a 3117 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3118 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3119 i915_gem_clflush_object(obj);
673a394b 3120
1c5d22f7
CW
3121 old_read_domains = obj->read_domains;
3122
efbeed96
EA
3123 /* The actual obj->write_domain will be updated with
3124 * pending_write_domain after we emit the accumulated flush for all
3125 * of our domain changes in execbuffers (which clears objects'
3126 * write_domains). So if we have a current write domain that we
3127 * aren't changing, set pending_write_domain to that.
3128 */
3129 if (flush_domains == 0 && obj->pending_write_domain == 0)
3130 obj->pending_write_domain = obj->write_domain;
8b0e378a 3131 obj->read_domains = obj->pending_read_domains;
673a394b
EA
3132
3133 dev->invalidate_domains |= invalidate_domains;
3134 dev->flush_domains |= flush_domains;
b6651458 3135 if (flush_domains & I915_GEM_GPU_DOMAINS)
9220434a 3136 dev_priv->mm.flush_rings |= obj_priv->ring->id;
b6651458
CW
3137 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3138 dev_priv->mm.flush_rings |= ring->id;
1c5d22f7
CW
3139
3140 trace_i915_gem_object_change_domain(obj,
3141 old_read_domains,
3142 obj->write_domain);
673a394b
EA
3143}
3144
3145/**
e47c68e9 3146 * Moves the object from a partially CPU read to a full one.
673a394b 3147 *
e47c68e9
EA
3148 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3149 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3150 */
e47c68e9
EA
3151static void
3152i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3153{
23010e43 3154 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3155
e47c68e9
EA
3156 if (!obj_priv->page_cpu_valid)
3157 return;
3158
3159 /* If we're partially in the CPU read domain, finish moving it in.
3160 */
3161 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3162 int i;
3163
3164 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3165 if (obj_priv->page_cpu_valid[i])
3166 continue;
856fa198 3167 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3168 }
e47c68e9
EA
3169 }
3170
3171 /* Free the page_cpu_valid mappings which are now stale, whether
3172 * or not we've got I915_GEM_DOMAIN_CPU.
3173 */
9a298b2a 3174 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3175 obj_priv->page_cpu_valid = NULL;
3176}
3177
3178/**
3179 * Set the CPU read domain on a range of the object.
3180 *
3181 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3182 * not entirely valid. The page_cpu_valid member of the object flags which
3183 * pages have been flushed, and will be respected by
3184 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3185 * of the whole object.
3186 *
3187 * This function returns when the move is complete, including waiting on
3188 * flushes to occur.
3189 */
3190static int
3191i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3192 uint64_t offset, uint64_t size)
3193{
23010e43 3194 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3195 uint32_t old_read_domains;
e47c68e9 3196 int i, ret;
673a394b 3197
e47c68e9
EA
3198 if (offset == 0 && size == obj->size)
3199 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3200
ba3d8d74 3201 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3202 if (ret != 0)
6a47baa6 3203 return ret;
e47c68e9
EA
3204 i915_gem_object_flush_gtt_write_domain(obj);
3205
3206 /* If we're already fully in the CPU read domain, we're done. */
3207 if (obj_priv->page_cpu_valid == NULL &&
3208 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3209 return 0;
673a394b 3210
e47c68e9
EA
3211 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3212 * newly adding I915_GEM_DOMAIN_CPU
3213 */
673a394b 3214 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3215 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3216 GFP_KERNEL);
e47c68e9
EA
3217 if (obj_priv->page_cpu_valid == NULL)
3218 return -ENOMEM;
3219 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3220 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3221
3222 /* Flush the cache on any pages that are still invalid from the CPU's
3223 * perspective.
3224 */
e47c68e9
EA
3225 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3226 i++) {
673a394b
EA
3227 if (obj_priv->page_cpu_valid[i])
3228 continue;
3229
856fa198 3230 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3231
3232 obj_priv->page_cpu_valid[i] = 1;
3233 }
3234
e47c68e9
EA
3235 /* It should now be out of any other write domains, and we can update
3236 * the domain values for our changes.
3237 */
3238 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3239
1c5d22f7 3240 old_read_domains = obj->read_domains;
e47c68e9
EA
3241 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3242
1c5d22f7
CW
3243 trace_i915_gem_object_change_domain(obj,
3244 old_read_domains,
3245 obj->write_domain);
3246
673a394b
EA
3247 return 0;
3248}
3249
673a394b
EA
3250/**
3251 * Pin an object to the GTT and evaluate the relocations landing in it.
3252 */
3253static int
9af90d19
CW
3254i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3255 struct drm_file *file_priv,
3256 struct drm_i915_gem_exec_object2 *entry)
673a394b 3257{
9af90d19 3258 struct drm_device *dev = obj->base.dev;
0839ccb8 3259 drm_i915_private_t *dev_priv = dev->dev_private;
2549d6c2 3260 struct drm_i915_gem_relocation_entry __user *user_relocs;
9af90d19
CW
3261 struct drm_gem_object *target_obj = NULL;
3262 uint32_t target_handle = 0;
3263 int i, ret = 0;
673a394b 3264
2549d6c2 3265 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
673a394b 3266 for (i = 0; i < entry->relocation_count; i++) {
2549d6c2 3267 struct drm_i915_gem_relocation_entry reloc;
9af90d19 3268 uint32_t target_offset;
673a394b 3269
9af90d19
CW
3270 if (__copy_from_user_inatomic(&reloc,
3271 user_relocs+i,
3272 sizeof(reloc))) {
3273 ret = -EFAULT;
3274 break;
76446cac 3275 }
76446cac 3276
9af90d19
CW
3277 if (reloc.target_handle != target_handle) {
3278 drm_gem_object_unreference(target_obj);
673a394b 3279
9af90d19
CW
3280 target_obj = drm_gem_object_lookup(dev, file_priv,
3281 reloc.target_handle);
3282 if (target_obj == NULL) {
3283 ret = -ENOENT;
3284 break;
3285 }
3286
3287 target_handle = reloc.target_handle;
673a394b 3288 }
9af90d19 3289 target_offset = to_intel_bo(target_obj)->gtt_offset;
673a394b 3290
8542a0bb
CW
3291#if WATCH_RELOC
3292 DRM_INFO("%s: obj %p offset %08x target %d "
3293 "read %08x write %08x gtt %08x "
3294 "presumed %08x delta %08x\n",
3295 __func__,
3296 obj,
2549d6c2
CW
3297 (int) reloc.offset,
3298 (int) reloc.target_handle,
3299 (int) reloc.read_domains,
3300 (int) reloc.write_domain,
9af90d19 3301 (int) target_offset,
2549d6c2
CW
3302 (int) reloc.presumed_offset,
3303 reloc.delta);
8542a0bb
CW
3304#endif
3305
673a394b
EA
3306 /* The target buffer should have appeared before us in the
3307 * exec_object list, so it should have a GTT space bound by now.
3308 */
9af90d19 3309 if (target_offset == 0) {
673a394b 3310 DRM_ERROR("No GTT space found for object %d\n",
2549d6c2 3311 reloc.target_handle);
9af90d19
CW
3312 ret = -EINVAL;
3313 break;
673a394b
EA
3314 }
3315
8542a0bb 3316 /* Validate that the target is in a valid r/w GPU domain */
2549d6c2 3317 if (reloc.write_domain & (reloc.write_domain - 1)) {
16edd550
DV
3318 DRM_ERROR("reloc with multiple write domains: "
3319 "obj %p target %d offset %d "
3320 "read %08x write %08x",
2549d6c2
CW
3321 obj, reloc.target_handle,
3322 (int) reloc.offset,
3323 reloc.read_domains,
3324 reloc.write_domain);
9af90d19
CW
3325 ret = -EINVAL;
3326 break;
16edd550 3327 }
2549d6c2
CW
3328 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3329 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3330 DRM_ERROR("reloc with read/write CPU domains: "
3331 "obj %p target %d offset %d "
3332 "read %08x write %08x",
2549d6c2
CW
3333 obj, reloc.target_handle,
3334 (int) reloc.offset,
3335 reloc.read_domains,
3336 reloc.write_domain);
9af90d19
CW
3337 ret = -EINVAL;
3338 break;
e47c68e9 3339 }
2549d6c2
CW
3340 if (reloc.write_domain && target_obj->pending_write_domain &&
3341 reloc.write_domain != target_obj->pending_write_domain) {
673a394b
EA
3342 DRM_ERROR("Write domain conflict: "
3343 "obj %p target %d offset %d "
3344 "new %08x old %08x\n",
2549d6c2
CW
3345 obj, reloc.target_handle,
3346 (int) reloc.offset,
3347 reloc.write_domain,
673a394b 3348 target_obj->pending_write_domain);
9af90d19
CW
3349 ret = -EINVAL;
3350 break;
673a394b
EA
3351 }
3352
2549d6c2 3353 target_obj->pending_read_domains |= reloc.read_domains;
878a3c37 3354 target_obj->pending_write_domain |= reloc.write_domain;
673a394b
EA
3355
3356 /* If the relocation already has the right value in it, no
3357 * more work needs to be done.
3358 */
9af90d19 3359 if (target_offset == reloc.presumed_offset)
673a394b 3360 continue;
673a394b 3361
8542a0bb 3362 /* Check that the relocation address is valid... */
9af90d19 3363 if (reloc.offset > obj->base.size - 4) {
8542a0bb
CW
3364 DRM_ERROR("Relocation beyond object bounds: "
3365 "obj %p target %d offset %d size %d.\n",
2549d6c2 3366 obj, reloc.target_handle,
9af90d19
CW
3367 (int) reloc.offset, (int) obj->base.size);
3368 ret = -EINVAL;
3369 break;
8542a0bb 3370 }
2549d6c2 3371 if (reloc.offset & 3) {
8542a0bb
CW
3372 DRM_ERROR("Relocation not 4-byte aligned: "
3373 "obj %p target %d offset %d.\n",
2549d6c2
CW
3374 obj, reloc.target_handle,
3375 (int) reloc.offset);
9af90d19
CW
3376 ret = -EINVAL;
3377 break;
8542a0bb
CW
3378 }
3379
3380 /* and points to somewhere within the target object. */
2549d6c2 3381 if (reloc.delta >= target_obj->size) {
8542a0bb
CW
3382 DRM_ERROR("Relocation beyond target object bounds: "
3383 "obj %p target %d delta %d size %d.\n",
2549d6c2
CW
3384 obj, reloc.target_handle,
3385 (int) reloc.delta, (int) target_obj->size);
9af90d19
CW
3386 ret = -EINVAL;
3387 break;
673a394b
EA
3388 }
3389
9af90d19
CW
3390 reloc.delta += target_offset;
3391 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
f0c43d9b
CW
3392 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3393 char *vaddr;
673a394b 3394
c48c43e4 3395 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
f0c43d9b 3396 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
c48c43e4 3397 kunmap_atomic(vaddr);
f0c43d9b
CW
3398 } else {
3399 uint32_t __iomem *reloc_entry;
3400 void __iomem *reloc_page;
b962442e 3401
9af90d19
CW
3402 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3403 if (ret)
3404 break;
b962442e 3405
f0c43d9b 3406 /* Map the page containing the relocation we're going to perform. */
9af90d19 3407 reloc.offset += obj->gtt_offset;
f0c43d9b 3408 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
c48c43e4 3409 reloc.offset & PAGE_MASK);
f0c43d9b
CW
3410 reloc_entry = (uint32_t __iomem *)
3411 (reloc_page + (reloc.offset & ~PAGE_MASK));
3412 iowrite32(reloc.delta, reloc_entry);
c48c43e4 3413 io_mapping_unmap_atomic(reloc_page);
f0c43d9b 3414 }
b962442e 3415
b5dc608c
CW
3416 /* and update the user's relocation entry */
3417 reloc.presumed_offset = target_offset;
3418 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3419 &reloc.presumed_offset,
3420 sizeof(reloc.presumed_offset))) {
3421 ret = -EFAULT;
3422 break;
3423 }
b962442e 3424 }
b962442e 3425
9af90d19 3426 drm_gem_object_unreference(target_obj);
673a394b
EA
3427 return ret;
3428}
3429
40a5f0de 3430static int
9af90d19
CW
3431i915_gem_execbuffer_pin(struct drm_device *dev,
3432 struct drm_file *file,
3433 struct drm_gem_object **object_list,
3434 struct drm_i915_gem_exec_object2 *exec_list,
3435 int count)
40a5f0de 3436{
9af90d19
CW
3437 struct drm_i915_private *dev_priv = dev->dev_private;
3438 int ret, i, retry;
40a5f0de 3439
9af90d19
CW
3440 /* attempt to pin all of the buffers into the GTT */
3441 for (retry = 0; retry < 2; retry++) {
3442 ret = 0;
3443 for (i = 0; i < count; i++) {
3444 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3445 struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
3446 bool need_fence =
3447 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3448 obj->tiling_mode != I915_TILING_NONE;
3449
3450 /* Check fence reg constraints and rebind if necessary */
3451 if (need_fence &&
3452 !i915_gem_object_fence_offset_ok(&obj->base,
3453 obj->tiling_mode)) {
3454 ret = i915_gem_object_unbind(&obj->base);
3455 if (ret)
3456 break;
3457 }
40a5f0de 3458
9af90d19
CW
3459 ret = i915_gem_object_pin(&obj->base, entry->alignment);
3460 if (ret)
3461 break;
40a5f0de 3462
9af90d19
CW
3463 /*
3464 * Pre-965 chips need a fence register set up in order
3465 * to properly handle blits to/from tiled surfaces.
3466 */
3467 if (need_fence) {
3468 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3469 if (ret) {
3470 i915_gem_object_unpin(&obj->base);
3471 break;
3472 }
40a5f0de 3473
9af90d19
CW
3474 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3475 }
40a5f0de 3476
9af90d19 3477 entry->offset = obj->gtt_offset;
40a5f0de
EA
3478 }
3479
9af90d19
CW
3480 while (i--)
3481 i915_gem_object_unpin(object_list[i]);
3482
3483 if (ret == 0)
3484 break;
673a394b 3485
9af90d19
CW
3486 if (ret != -ENOSPC || retry)
3487 return ret;
3488
3489 ret = i915_gem_evict_everything(dev);
3490 if (ret)
3491 return ret;
40a5f0de
EA
3492 }
3493
2bc43b5c 3494 return 0;
40a5f0de
EA
3495}
3496
673a394b
EA
3497/* Throttle our rendering by waiting until the ring has completed our requests
3498 * emitted over 20 msec ago.
3499 *
b962442e
EA
3500 * Note that if we were to use the current jiffies each time around the loop,
3501 * we wouldn't escape the function with any frames outstanding if the time to
3502 * render a frame was over 20ms.
3503 *
673a394b
EA
3504 * This should get us reasonable parallelism between CPU and GPU but also
3505 * relatively low latency when blocking on a particular request to finish.
3506 */
40a5f0de 3507static int
f787a5f5 3508i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3509{
f787a5f5
CW
3510 struct drm_i915_private *dev_priv = dev->dev_private;
3511 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3512 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3513 struct drm_i915_gem_request *request;
3514 struct intel_ring_buffer *ring = NULL;
3515 u32 seqno = 0;
3516 int ret;
93533c29 3517
1c25595f 3518 spin_lock(&file_priv->mm.lock);
f787a5f5 3519 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3520 if (time_after_eq(request->emitted_jiffies, recent_enough))
3521 break;
40a5f0de 3522
f787a5f5
CW
3523 ring = request->ring;
3524 seqno = request->seqno;
b962442e 3525 }
1c25595f 3526 spin_unlock(&file_priv->mm.lock);
40a5f0de 3527
f787a5f5
CW
3528 if (seqno == 0)
3529 return 0;
2bc43b5c 3530
f787a5f5 3531 ret = 0;
78501eac 3532 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3533 /* And wait for the seqno passing without holding any locks and
3534 * causing extra latency for others. This is safe as the irq
3535 * generation is designed to be run atomically and so is
3536 * lockless.
3537 */
78501eac 3538 ring->user_irq_get(ring);
f787a5f5 3539 ret = wait_event_interruptible(ring->irq_queue,
78501eac 3540 i915_seqno_passed(ring->get_seqno(ring), seqno)
f787a5f5 3541 || atomic_read(&dev_priv->mm.wedged));
78501eac 3542 ring->user_irq_put(ring);
40a5f0de 3543
f787a5f5
CW
3544 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3545 ret = -EIO;
40a5f0de
EA
3546 }
3547
f787a5f5
CW
3548 if (ret == 0)
3549 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3550
3551 return ret;
3552}
3553
83d60795 3554static int
2549d6c2
CW
3555i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3556 uint64_t exec_offset)
83d60795
CW
3557{
3558 uint32_t exec_start, exec_len;
3559
3560 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3561 exec_len = (uint32_t) exec->batch_len;
3562
3563 if ((exec_start | exec_len) & 0x7)
3564 return -EINVAL;
3565
3566 if (!exec_start)
3567 return -EINVAL;
3568
3569 return 0;
3570}
3571
6b95a207 3572static int
2549d6c2
CW
3573validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3574 int count)
6b95a207 3575{
2549d6c2 3576 int i;
6b95a207 3577
2549d6c2
CW
3578 for (i = 0; i < count; i++) {
3579 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3580 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
6b95a207 3581
2549d6c2
CW
3582 if (!access_ok(VERIFY_READ, ptr, length))
3583 return -EFAULT;
40a5f0de 3584
b5dc608c
CW
3585 /* we may also need to update the presumed offsets */
3586 if (!access_ok(VERIFY_WRITE, ptr, length))
3587 return -EFAULT;
3588
2549d6c2
CW
3589 if (fault_in_pages_readable(ptr, length))
3590 return -EFAULT;
6b95a207 3591 }
6b95a207 3592
83d60795 3593 return 0;
6b95a207
KH
3594}
3595
8dc5d147 3596static int
76446cac 3597i915_gem_do_execbuffer(struct drm_device *dev, void *data,
9af90d19 3598 struct drm_file *file,
76446cac
JB
3599 struct drm_i915_gem_execbuffer2 *args,
3600 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3601{
3602 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3603 struct drm_gem_object **object_list = NULL;
3604 struct drm_gem_object *batch_obj;
b70d11da 3605 struct drm_i915_gem_object *obj_priv;
201361a5 3606 struct drm_clip_rect *cliprects = NULL;
8dc5d147 3607 struct drm_i915_gem_request *request = NULL;
9af90d19 3608 int ret, i, flips;
673a394b 3609 uint64_t exec_offset;
673a394b 3610
852835f3
ZN
3611 struct intel_ring_buffer *ring = NULL;
3612
30dbf0c0
CW
3613 ret = i915_gem_check_is_wedged(dev);
3614 if (ret)
3615 return ret;
3616
2549d6c2
CW
3617 ret = validate_exec_list(exec_list, args->buffer_count);
3618 if (ret)
3619 return ret;
3620
673a394b
EA
3621#if WATCH_EXEC
3622 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3623 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3624#endif
549f7365
CW
3625 switch (args->flags & I915_EXEC_RING_MASK) {
3626 case I915_EXEC_DEFAULT:
3627 case I915_EXEC_RENDER:
3628 ring = &dev_priv->render_ring;
3629 break;
3630 case I915_EXEC_BSD:
d1b851fc 3631 if (!HAS_BSD(dev)) {
549f7365 3632 DRM_ERROR("execbuf with invalid ring (BSD)\n");
d1b851fc
ZN
3633 return -EINVAL;
3634 }
3635 ring = &dev_priv->bsd_ring;
549f7365
CW
3636 break;
3637 case I915_EXEC_BLT:
3638 if (!HAS_BLT(dev)) {
3639 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3640 return -EINVAL;
3641 }
3642 ring = &dev_priv->blt_ring;
3643 break;
3644 default:
3645 DRM_ERROR("execbuf with unknown ring: %d\n",
3646 (int)(args->flags & I915_EXEC_RING_MASK));
3647 return -EINVAL;
d1b851fc
ZN
3648 }
3649
4f481ed2
EA
3650 if (args->buffer_count < 1) {
3651 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3652 return -EINVAL;
3653 }
c8e0f93a 3654 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3655 if (object_list == NULL) {
3656 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3657 args->buffer_count);
3658 ret = -ENOMEM;
3659 goto pre_mutex_err;
3660 }
673a394b 3661
201361a5 3662 if (args->num_cliprects != 0) {
9a298b2a
EA
3663 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3664 GFP_KERNEL);
a40e8d31
OA
3665 if (cliprects == NULL) {
3666 ret = -ENOMEM;
201361a5 3667 goto pre_mutex_err;
a40e8d31 3668 }
201361a5
EA
3669
3670 ret = copy_from_user(cliprects,
3671 (struct drm_clip_rect __user *)
3672 (uintptr_t) args->cliprects_ptr,
3673 sizeof(*cliprects) * args->num_cliprects);
3674 if (ret != 0) {
3675 DRM_ERROR("copy %d cliprects failed: %d\n",
3676 args->num_cliprects, ret);
c877cdce 3677 ret = -EFAULT;
201361a5
EA
3678 goto pre_mutex_err;
3679 }
3680 }
3681
8dc5d147
CW
3682 request = kzalloc(sizeof(*request), GFP_KERNEL);
3683 if (request == NULL) {
3684 ret = -ENOMEM;
40a5f0de 3685 goto pre_mutex_err;
8dc5d147 3686 }
40a5f0de 3687
76c1dec1
CW
3688 ret = i915_mutex_lock_interruptible(dev);
3689 if (ret)
a198bc80 3690 goto pre_mutex_err;
673a394b
EA
3691
3692 if (dev_priv->mm.suspended) {
673a394b 3693 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3694 ret = -EBUSY;
3695 goto pre_mutex_err;
673a394b
EA
3696 }
3697
ac94a962 3698 /* Look up object handles */
673a394b 3699 for (i = 0; i < args->buffer_count; i++) {
9af90d19 3700 object_list[i] = drm_gem_object_lookup(dev, file,
673a394b
EA
3701 exec_list[i].handle);
3702 if (object_list[i] == NULL) {
3703 DRM_ERROR("Invalid object handle %d at index %d\n",
3704 exec_list[i].handle, i);
0ce907f8
CW
3705 /* prevent error path from reading uninitialized data */
3706 args->buffer_count = i + 1;
bf79cb91 3707 ret = -ENOENT;
673a394b
EA
3708 goto err;
3709 }
b70d11da 3710
23010e43 3711 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3712 if (obj_priv->in_execbuffer) {
3713 DRM_ERROR("Object %p appears more than once in object list\n",
3714 object_list[i]);
0ce907f8
CW
3715 /* prevent error path from reading uninitialized data */
3716 args->buffer_count = i + 1;
bf79cb91 3717 ret = -EINVAL;
b70d11da
KH
3718 goto err;
3719 }
3720 obj_priv->in_execbuffer = true;
ac94a962 3721 }
673a394b 3722
9af90d19
CW
3723 /* Move the objects en-masse into the GTT, evicting if necessary. */
3724 ret = i915_gem_execbuffer_pin(dev, file,
3725 object_list, exec_list,
3726 args->buffer_count);
3727 if (ret)
3728 goto err;
ac94a962 3729
9af90d19
CW
3730 /* The objects are in their final locations, apply the relocations. */
3731 for (i = 0; i < args->buffer_count; i++) {
3732 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3733 obj->base.pending_read_domains = 0;
3734 obj->base.pending_write_domain = 0;
3735 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3736 if (ret)
ac94a962 3737 goto err;
673a394b
EA
3738 }
3739
3740 /* Set the pending read domains for the batch buffer to COMMAND */
3741 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3742 if (batch_obj->pending_write_domain) {
3743 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3744 ret = -EINVAL;
3745 goto err;
3746 }
3747 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3748
9af90d19
CW
3749 /* Sanity check the batch buffer */
3750 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3751 ret = i915_gem_check_execbuffer(args, exec_offset);
83d60795
CW
3752 if (ret != 0) {
3753 DRM_ERROR("execbuf with invalid offset/length\n");
3754 goto err;
3755 }
3756
646f0f6e
KP
3757 /* Zero the global flush/invalidate flags. These
3758 * will be modified as new domains are computed
3759 * for each object
3760 */
3761 dev->invalidate_domains = 0;
3762 dev->flush_domains = 0;
9220434a 3763 dev_priv->mm.flush_rings = 0;
646f0f6e 3764
673a394b
EA
3765 for (i = 0; i < args->buffer_count; i++) {
3766 struct drm_gem_object *obj = object_list[i];
673a394b 3767
646f0f6e 3768 /* Compute new gpu domains and update invalidate/flush */
b6651458 3769 i915_gem_object_set_to_gpu_domain(obj, ring);
673a394b
EA
3770 }
3771
646f0f6e
KP
3772 if (dev->invalidate_domains | dev->flush_domains) {
3773#if WATCH_EXEC
3774 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3775 __func__,
3776 dev->invalidate_domains,
3777 dev->flush_domains);
3778#endif
9af90d19 3779 i915_gem_flush(dev, file,
646f0f6e 3780 dev->invalidate_domains,
9220434a
CW
3781 dev->flush_domains,
3782 dev_priv->mm.flush_rings);
646f0f6e 3783 }
673a394b 3784
efbeed96
EA
3785 for (i = 0; i < args->buffer_count; i++) {
3786 struct drm_gem_object *obj = object_list[i];
1c5d22f7 3787 uint32_t old_write_domain = obj->write_domain;
efbeed96 3788 obj->write_domain = obj->pending_write_domain;
1c5d22f7
CW
3789 trace_i915_gem_object_change_domain(obj,
3790 obj->read_domains,
3791 old_write_domain);
efbeed96
EA
3792 }
3793
673a394b
EA
3794#if WATCH_COHERENCY
3795 for (i = 0; i < args->buffer_count; i++) {
3796 i915_gem_object_check_coherency(object_list[i],
3797 exec_list[i].handle);
3798 }
3799#endif
3800
673a394b 3801#if WATCH_EXEC
6911a9b8 3802 i915_gem_dump_object(batch_obj,
673a394b
EA
3803 args->batch_len,
3804 __func__,
3805 ~0);
3806#endif
3807
e59f2bac
CW
3808 /* Check for any pending flips. As we only maintain a flip queue depth
3809 * of 1, we can simply insert a WAIT for the next display flip prior
3810 * to executing the batch and avoid stalling the CPU.
3811 */
3812 flips = 0;
3813 for (i = 0; i < args->buffer_count; i++) {
3814 if (object_list[i]->write_domain)
3815 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3816 }
3817 if (flips) {
3818 int plane, flip_mask;
3819
3820 for (plane = 0; flips >> plane; plane++) {
3821 if (((flips >> plane) & 1) == 0)
3822 continue;
3823
3824 if (plane)
3825 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3826 else
3827 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3828
78501eac
CW
3829 intel_ring_begin(ring, 2);
3830 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3831 intel_ring_emit(ring, MI_NOOP);
3832 intel_ring_advance(ring);
e59f2bac
CW
3833 }
3834 }
3835
673a394b 3836 /* Exec the batchbuffer */
78501eac 3837 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
673a394b
EA
3838 if (ret) {
3839 DRM_ERROR("dispatch failed %d\n", ret);
3840 goto err;
3841 }
3842
3843 /*
3844 * Ensure that the commands in the batch buffer are
3845 * finished before the interrupt fires
3846 */
8a1a49f9 3847 i915_retire_commands(dev, ring);
673a394b 3848
673a394b
EA
3849 for (i = 0; i < args->buffer_count; i++) {
3850 struct drm_gem_object *obj = object_list[i];
673a394b 3851
617dbe27 3852 i915_gem_object_move_to_active(obj, ring);
64193406
CW
3853 if (obj->write_domain)
3854 list_move_tail(&to_intel_bo(obj)->gpu_write_list,
3855 &ring->gpu_write_list);
673a394b 3856 }
673a394b 3857
9af90d19 3858 i915_add_request(dev, file, request, ring);
8dc5d147 3859 request = NULL;
673a394b 3860
673a394b 3861err:
b70d11da
KH
3862 for (i = 0; i < args->buffer_count; i++) {
3863 if (object_list[i]) {
23010e43 3864 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3865 obj_priv->in_execbuffer = false;
3866 }
aad87dff 3867 drm_gem_object_unreference(object_list[i]);
b70d11da 3868 }
673a394b 3869
673a394b
EA
3870 mutex_unlock(&dev->struct_mutex);
3871
93533c29 3872pre_mutex_err:
8e7d2b2c 3873 drm_free_large(object_list);
9a298b2a 3874 kfree(cliprects);
8dc5d147 3875 kfree(request);
673a394b
EA
3876
3877 return ret;
3878}
3879
76446cac
JB
3880/*
3881 * Legacy execbuffer just creates an exec2 list from the original exec object
3882 * list array and passes it to the real function.
3883 */
3884int
3885i915_gem_execbuffer(struct drm_device *dev, void *data,
3886 struct drm_file *file_priv)
3887{
3888 struct drm_i915_gem_execbuffer *args = data;
3889 struct drm_i915_gem_execbuffer2 exec2;
3890 struct drm_i915_gem_exec_object *exec_list = NULL;
3891 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3892 int ret, i;
3893
3894#if WATCH_EXEC
3895 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3896 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3897#endif
3898
3899 if (args->buffer_count < 1) {
3900 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3901 return -EINVAL;
3902 }
3903
3904 /* Copy in the exec list from userland */
3905 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3906 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3907 if (exec_list == NULL || exec2_list == NULL) {
3908 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3909 args->buffer_count);
3910 drm_free_large(exec_list);
3911 drm_free_large(exec2_list);
3912 return -ENOMEM;
3913 }
3914 ret = copy_from_user(exec_list,
3915 (struct drm_i915_relocation_entry __user *)
3916 (uintptr_t) args->buffers_ptr,
3917 sizeof(*exec_list) * args->buffer_count);
3918 if (ret != 0) {
3919 DRM_ERROR("copy %d exec entries failed %d\n",
3920 args->buffer_count, ret);
3921 drm_free_large(exec_list);
3922 drm_free_large(exec2_list);
3923 return -EFAULT;
3924 }
3925
3926 for (i = 0; i < args->buffer_count; i++) {
3927 exec2_list[i].handle = exec_list[i].handle;
3928 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3929 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3930 exec2_list[i].alignment = exec_list[i].alignment;
3931 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 3932 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
3933 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3934 else
3935 exec2_list[i].flags = 0;
3936 }
3937
3938 exec2.buffers_ptr = args->buffers_ptr;
3939 exec2.buffer_count = args->buffer_count;
3940 exec2.batch_start_offset = args->batch_start_offset;
3941 exec2.batch_len = args->batch_len;
3942 exec2.DR1 = args->DR1;
3943 exec2.DR4 = args->DR4;
3944 exec2.num_cliprects = args->num_cliprects;
3945 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3946 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3947
3948 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3949 if (!ret) {
3950 /* Copy the new buffer offsets back to the user's exec list. */
3951 for (i = 0; i < args->buffer_count; i++)
3952 exec_list[i].offset = exec2_list[i].offset;
3953 /* ... and back out to userspace */
3954 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3955 (uintptr_t) args->buffers_ptr,
3956 exec_list,
3957 sizeof(*exec_list) * args->buffer_count);
3958 if (ret) {
3959 ret = -EFAULT;
3960 DRM_ERROR("failed to copy %d exec entries "
3961 "back to user (%d)\n",
3962 args->buffer_count, ret);
3963 }
76446cac
JB
3964 }
3965
3966 drm_free_large(exec_list);
3967 drm_free_large(exec2_list);
3968 return ret;
3969}
3970
3971int
3972i915_gem_execbuffer2(struct drm_device *dev, void *data,
3973 struct drm_file *file_priv)
3974{
3975 struct drm_i915_gem_execbuffer2 *args = data;
3976 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3977 int ret;
3978
3979#if WATCH_EXEC
3980 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3981 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3982#endif
3983
3984 if (args->buffer_count < 1) {
3985 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3986 return -EINVAL;
3987 }
3988
3989 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3990 if (exec2_list == NULL) {
3991 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3992 args->buffer_count);
3993 return -ENOMEM;
3994 }
3995 ret = copy_from_user(exec2_list,
3996 (struct drm_i915_relocation_entry __user *)
3997 (uintptr_t) args->buffers_ptr,
3998 sizeof(*exec2_list) * args->buffer_count);
3999 if (ret != 0) {
4000 DRM_ERROR("copy %d exec entries failed %d\n",
4001 args->buffer_count, ret);
4002 drm_free_large(exec2_list);
4003 return -EFAULT;
4004 }
4005
4006 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4007 if (!ret) {
4008 /* Copy the new buffer offsets back to the user's exec list. */
4009 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4010 (uintptr_t) args->buffers_ptr,
4011 exec2_list,
4012 sizeof(*exec2_list) * args->buffer_count);
4013 if (ret) {
4014 ret = -EFAULT;
4015 DRM_ERROR("failed to copy %d exec entries "
4016 "back to user (%d)\n",
4017 args->buffer_count, ret);
4018 }
4019 }
4020
4021 drm_free_large(exec2_list);
4022 return ret;
4023}
4024
673a394b
EA
4025int
4026i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4027{
4028 struct drm_device *dev = obj->dev;
f13d3f73 4029 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4030 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4031 int ret;
4032
778c3544 4033 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 4034 WARN_ON(i915_verify_lists(dev));
ac0c6b5a
CW
4035
4036 if (obj_priv->gtt_space != NULL) {
4037 if (alignment == 0)
4038 alignment = i915_gem_get_gtt_alignment(obj);
4039 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4040 WARN(obj_priv->pin_count,
4041 "bo is already pinned with incorrect alignment:"
4042 " offset=%x, req.alignment=%x\n",
4043 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4044 ret = i915_gem_object_unbind(obj);
4045 if (ret)
4046 return ret;
4047 }
4048 }
4049
673a394b
EA
4050 if (obj_priv->gtt_space == NULL) {
4051 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4052 if (ret)
673a394b 4053 return ret;
22c344e9 4054 }
76446cac 4055
673a394b
EA
4056 obj_priv->pin_count++;
4057
4058 /* If the object is not active and not pending a flush,
4059 * remove it from the inactive list
4060 */
4061 if (obj_priv->pin_count == 1) {
73aa808f 4062 i915_gem_info_add_pin(dev_priv, obj->size);
f13d3f73 4063 if (!obj_priv->active)
69dc4987 4064 list_move_tail(&obj_priv->mm_list,
f13d3f73 4065 &dev_priv->mm.pinned_list);
673a394b 4066 }
673a394b 4067
23bc5982 4068 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4069 return 0;
4070}
4071
4072void
4073i915_gem_object_unpin(struct drm_gem_object *obj)
4074{
4075 struct drm_device *dev = obj->dev;
4076 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4077 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4078
23bc5982 4079 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4080 obj_priv->pin_count--;
4081 BUG_ON(obj_priv->pin_count < 0);
4082 BUG_ON(obj_priv->gtt_space == NULL);
4083
4084 /* If the object is no longer pinned, and is
4085 * neither active nor being flushed, then stick it on
4086 * the inactive list
4087 */
4088 if (obj_priv->pin_count == 0) {
f13d3f73 4089 if (!obj_priv->active)
69dc4987 4090 list_move_tail(&obj_priv->mm_list,
673a394b 4091 &dev_priv->mm.inactive_list);
73aa808f 4092 i915_gem_info_remove_pin(dev_priv, obj->size);
673a394b 4093 }
23bc5982 4094 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4095}
4096
4097int
4098i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4099 struct drm_file *file_priv)
4100{
4101 struct drm_i915_gem_pin *args = data;
4102 struct drm_gem_object *obj;
4103 struct drm_i915_gem_object *obj_priv;
4104 int ret;
4105
1d7cfea1
CW
4106 ret = i915_mutex_lock_interruptible(dev);
4107 if (ret)
4108 return ret;
673a394b
EA
4109
4110 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4111 if (obj == NULL) {
1d7cfea1
CW
4112 ret = -ENOENT;
4113 goto unlock;
673a394b 4114 }
23010e43 4115 obj_priv = to_intel_bo(obj);
673a394b 4116
bb6baf76
CW
4117 if (obj_priv->madv != I915_MADV_WILLNEED) {
4118 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
4119 ret = -EINVAL;
4120 goto out;
3ef94daa
CW
4121 }
4122
79e53945
JB
4123 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4124 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4125 args->handle);
1d7cfea1
CW
4126 ret = -EINVAL;
4127 goto out;
79e53945
JB
4128 }
4129
4130 obj_priv->user_pin_count++;
4131 obj_priv->pin_filp = file_priv;
4132 if (obj_priv->user_pin_count == 1) {
4133 ret = i915_gem_object_pin(obj, args->alignment);
1d7cfea1
CW
4134 if (ret)
4135 goto out;
673a394b
EA
4136 }
4137
4138 /* XXX - flush the CPU caches for pinned objects
4139 * as the X server doesn't manage domains yet
4140 */
e47c68e9 4141 i915_gem_object_flush_cpu_write_domain(obj);
673a394b 4142 args->offset = obj_priv->gtt_offset;
1d7cfea1 4143out:
673a394b 4144 drm_gem_object_unreference(obj);
1d7cfea1 4145unlock:
673a394b 4146 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4147 return ret;
673a394b
EA
4148}
4149
4150int
4151i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4152 struct drm_file *file_priv)
4153{
4154 struct drm_i915_gem_pin *args = data;
4155 struct drm_gem_object *obj;
79e53945 4156 struct drm_i915_gem_object *obj_priv;
76c1dec1 4157 int ret;
673a394b 4158
1d7cfea1
CW
4159 ret = i915_mutex_lock_interruptible(dev);
4160 if (ret)
4161 return ret;
673a394b
EA
4162
4163 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4164 if (obj == NULL) {
1d7cfea1
CW
4165 ret = -ENOENT;
4166 goto unlock;
673a394b 4167 }
23010e43 4168 obj_priv = to_intel_bo(obj);
76c1dec1 4169
79e53945
JB
4170 if (obj_priv->pin_filp != file_priv) {
4171 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4172 args->handle);
1d7cfea1
CW
4173 ret = -EINVAL;
4174 goto out;
79e53945
JB
4175 }
4176 obj_priv->user_pin_count--;
4177 if (obj_priv->user_pin_count == 0) {
4178 obj_priv->pin_filp = NULL;
4179 i915_gem_object_unpin(obj);
4180 }
673a394b 4181
1d7cfea1 4182out:
673a394b 4183 drm_gem_object_unreference(obj);
1d7cfea1 4184unlock:
673a394b 4185 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4186 return ret;
673a394b
EA
4187}
4188
4189int
4190i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4191 struct drm_file *file_priv)
4192{
4193 struct drm_i915_gem_busy *args = data;
4194 struct drm_gem_object *obj;
4195 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4196 int ret;
4197
76c1dec1 4198 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4199 if (ret)
76c1dec1 4200 return ret;
673a394b 4201
673a394b
EA
4202 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4203 if (obj == NULL) {
1d7cfea1
CW
4204 ret = -ENOENT;
4205 goto unlock;
673a394b 4206 }
1d7cfea1 4207 obj_priv = to_intel_bo(obj);
d1b851fc 4208
0be555b6
CW
4209 /* Count all active objects as busy, even if they are currently not used
4210 * by the gpu. Users of this interface expect objects to eventually
4211 * become non-busy without any further actions, therefore emit any
4212 * necessary flushes here.
c4de0a5d 4213 */
0be555b6
CW
4214 args->busy = obj_priv->active;
4215 if (args->busy) {
4216 /* Unconditionally flush objects, even when the gpu still uses this
4217 * object. Userspace calling this function indicates that it wants to
4218 * use this buffer rather sooner than later, so issuing the required
4219 * flush earlier is beneficial.
4220 */
c78ec30b
CW
4221 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4222 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4223 obj_priv->ring,
4224 0, obj->write_domain);
0be555b6
CW
4225
4226 /* Update the active list for the hardware's current position.
4227 * Otherwise this only updates on a delayed timer or when irqs
4228 * are actually unmasked, and our working set ends up being
4229 * larger than required.
4230 */
4231 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4232
4233 args->busy = obj_priv->active;
4234 }
673a394b
EA
4235
4236 drm_gem_object_unreference(obj);
1d7cfea1 4237unlock:
673a394b 4238 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4239 return ret;
673a394b
EA
4240}
4241
4242int
4243i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4244 struct drm_file *file_priv)
4245{
4246 return i915_gem_ring_throttle(dev, file_priv);
4247}
4248
3ef94daa
CW
4249int
4250i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4251 struct drm_file *file_priv)
4252{
4253 struct drm_i915_gem_madvise *args = data;
4254 struct drm_gem_object *obj;
4255 struct drm_i915_gem_object *obj_priv;
76c1dec1 4256 int ret;
3ef94daa
CW
4257
4258 switch (args->madv) {
4259 case I915_MADV_DONTNEED:
4260 case I915_MADV_WILLNEED:
4261 break;
4262 default:
4263 return -EINVAL;
4264 }
4265
1d7cfea1
CW
4266 ret = i915_mutex_lock_interruptible(dev);
4267 if (ret)
4268 return ret;
4269
3ef94daa
CW
4270 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4271 if (obj == NULL) {
1d7cfea1
CW
4272 ret = -ENOENT;
4273 goto unlock;
3ef94daa 4274 }
23010e43 4275 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4276
4277 if (obj_priv->pin_count) {
1d7cfea1
CW
4278 ret = -EINVAL;
4279 goto out;
3ef94daa
CW
4280 }
4281
bb6baf76
CW
4282 if (obj_priv->madv != __I915_MADV_PURGED)
4283 obj_priv->madv = args->madv;
3ef94daa 4284
2d7ef395
CW
4285 /* if the object is no longer bound, discard its backing storage */
4286 if (i915_gem_object_is_purgeable(obj_priv) &&
4287 obj_priv->gtt_space == NULL)
4288 i915_gem_object_truncate(obj);
4289
bb6baf76
CW
4290 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4291
1d7cfea1 4292out:
3ef94daa 4293 drm_gem_object_unreference(obj);
1d7cfea1 4294unlock:
3ef94daa 4295 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4296 return ret;
3ef94daa
CW
4297}
4298
ac52bc56
DV
4299struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4300 size_t size)
4301{
73aa808f 4302 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 4303 struct drm_i915_gem_object *obj;
ac52bc56 4304
c397b908
DV
4305 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4306 if (obj == NULL)
4307 return NULL;
673a394b 4308
c397b908
DV
4309 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4310 kfree(obj);
4311 return NULL;
4312 }
673a394b 4313
73aa808f
CW
4314 i915_gem_info_add_obj(dev_priv, size);
4315
c397b908
DV
4316 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4317 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4318
c397b908 4319 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4320 obj->base.driver_private = NULL;
c397b908 4321 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987
CW
4322 INIT_LIST_HEAD(&obj->mm_list);
4323 INIT_LIST_HEAD(&obj->ring_list);
c397b908 4324 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4325 obj->madv = I915_MADV_WILLNEED;
de151cf6 4326
c397b908
DV
4327 return &obj->base;
4328}
4329
4330int i915_gem_init_object(struct drm_gem_object *obj)
4331{
4332 BUG();
de151cf6 4333
673a394b
EA
4334 return 0;
4335}
4336
be72615b 4337static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4338{
de151cf6 4339 struct drm_device *dev = obj->dev;
be72615b 4340 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4341 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4342 int ret;
673a394b 4343
be72615b
CW
4344 ret = i915_gem_object_unbind(obj);
4345 if (ret == -ERESTARTSYS) {
69dc4987 4346 list_move(&obj_priv->mm_list,
be72615b
CW
4347 &dev_priv->mm.deferred_free_list);
4348 return;
4349 }
673a394b 4350
7e616158
CW
4351 if (obj_priv->mmap_offset)
4352 i915_gem_free_mmap_offset(obj);
de151cf6 4353
c397b908 4354 drm_gem_object_release(obj);
73aa808f 4355 i915_gem_info_remove_obj(dev_priv, obj->size);
c397b908 4356
9a298b2a 4357 kfree(obj_priv->page_cpu_valid);
280b713b 4358 kfree(obj_priv->bit_17);
c397b908 4359 kfree(obj_priv);
673a394b
EA
4360}
4361
be72615b
CW
4362void i915_gem_free_object(struct drm_gem_object *obj)
4363{
4364 struct drm_device *dev = obj->dev;
4365 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4366
4367 trace_i915_gem_object_destroy(obj);
4368
4369 while (obj_priv->pin_count > 0)
4370 i915_gem_object_unpin(obj);
4371
4372 if (obj_priv->phys_obj)
4373 i915_gem_detach_phys_object(dev, obj);
4374
4375 i915_gem_free_object_tail(obj);
4376}
4377
29105ccc
CW
4378int
4379i915_gem_idle(struct drm_device *dev)
4380{
4381 drm_i915_private_t *dev_priv = dev->dev_private;
4382 int ret;
28dfe52a 4383
29105ccc 4384 mutex_lock(&dev->struct_mutex);
1c5d22f7 4385
87acb0a5 4386 if (dev_priv->mm.suspended) {
29105ccc
CW
4387 mutex_unlock(&dev->struct_mutex);
4388 return 0;
28dfe52a
EA
4389 }
4390
29105ccc 4391 ret = i915_gpu_idle(dev);
6dbe2772
KP
4392 if (ret) {
4393 mutex_unlock(&dev->struct_mutex);
673a394b 4394 return ret;
6dbe2772 4395 }
673a394b 4396
29105ccc
CW
4397 /* Under UMS, be paranoid and evict. */
4398 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4399 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4400 if (ret) {
4401 mutex_unlock(&dev->struct_mutex);
4402 return ret;
4403 }
4404 }
4405
4406 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4407 * We need to replace this with a semaphore, or something.
4408 * And not confound mm.suspended!
4409 */
4410 dev_priv->mm.suspended = 1;
bc0c7f14 4411 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4412
4413 i915_kernel_lost_context(dev);
6dbe2772 4414 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4415
6dbe2772
KP
4416 mutex_unlock(&dev->struct_mutex);
4417
29105ccc
CW
4418 /* Cancel the retire work handler, which should be idle now. */
4419 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4420
673a394b
EA
4421 return 0;
4422}
4423
e552eb70
JB
4424/*
4425 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4426 * over cache flushing.
4427 */
8187a2b7 4428static int
e552eb70
JB
4429i915_gem_init_pipe_control(struct drm_device *dev)
4430{
4431 drm_i915_private_t *dev_priv = dev->dev_private;
4432 struct drm_gem_object *obj;
4433 struct drm_i915_gem_object *obj_priv;
4434 int ret;
4435
34dc4d44 4436 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4437 if (obj == NULL) {
4438 DRM_ERROR("Failed to allocate seqno page\n");
4439 ret = -ENOMEM;
4440 goto err;
4441 }
4442 obj_priv = to_intel_bo(obj);
4443 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4444
4445 ret = i915_gem_object_pin(obj, 4096);
4446 if (ret)
4447 goto err_unref;
4448
4449 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4450 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4451 if (dev_priv->seqno_page == NULL)
4452 goto err_unpin;
4453
4454 dev_priv->seqno_obj = obj;
4455 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4456
4457 return 0;
4458
4459err_unpin:
4460 i915_gem_object_unpin(obj);
4461err_unref:
4462 drm_gem_object_unreference(obj);
4463err:
4464 return ret;
4465}
4466
8187a2b7
ZN
4467
4468static void
e552eb70
JB
4469i915_gem_cleanup_pipe_control(struct drm_device *dev)
4470{
4471 drm_i915_private_t *dev_priv = dev->dev_private;
4472 struct drm_gem_object *obj;
4473 struct drm_i915_gem_object *obj_priv;
4474
4475 obj = dev_priv->seqno_obj;
4476 obj_priv = to_intel_bo(obj);
4477 kunmap(obj_priv->pages[0]);
4478 i915_gem_object_unpin(obj);
4479 drm_gem_object_unreference(obj);
4480 dev_priv->seqno_obj = NULL;
4481
4482 dev_priv->seqno_page = NULL;
673a394b
EA
4483}
4484
8187a2b7
ZN
4485int
4486i915_gem_init_ringbuffer(struct drm_device *dev)
4487{
4488 drm_i915_private_t *dev_priv = dev->dev_private;
4489 int ret;
68f95ba9 4490
8187a2b7
ZN
4491 if (HAS_PIPE_CONTROL(dev)) {
4492 ret = i915_gem_init_pipe_control(dev);
4493 if (ret)
4494 return ret;
4495 }
68f95ba9 4496
5c1143bb 4497 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4498 if (ret)
4499 goto cleanup_pipe_control;
4500
4501 if (HAS_BSD(dev)) {
5c1143bb 4502 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4503 if (ret)
4504 goto cleanup_render_ring;
d1b851fc 4505 }
68f95ba9 4506
549f7365
CW
4507 if (HAS_BLT(dev)) {
4508 ret = intel_init_blt_ring_buffer(dev);
4509 if (ret)
4510 goto cleanup_bsd_ring;
4511 }
4512
6f392d54
CW
4513 dev_priv->next_seqno = 1;
4514
68f95ba9
CW
4515 return 0;
4516
549f7365 4517cleanup_bsd_ring:
78501eac 4518 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
68f95ba9 4519cleanup_render_ring:
78501eac 4520 intel_cleanup_ring_buffer(&dev_priv->render_ring);
68f95ba9
CW
4521cleanup_pipe_control:
4522 if (HAS_PIPE_CONTROL(dev))
4523 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4524 return ret;
4525}
4526
4527void
4528i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4529{
4530 drm_i915_private_t *dev_priv = dev->dev_private;
4531
78501eac
CW
4532 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4533 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4534 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
8187a2b7
ZN
4535 if (HAS_PIPE_CONTROL(dev))
4536 i915_gem_cleanup_pipe_control(dev);
4537}
4538
673a394b
EA
4539int
4540i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4541 struct drm_file *file_priv)
4542{
4543 drm_i915_private_t *dev_priv = dev->dev_private;
4544 int ret;
4545
79e53945
JB
4546 if (drm_core_check_feature(dev, DRIVER_MODESET))
4547 return 0;
4548
ba1234d1 4549 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4550 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4551 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4552 }
4553
673a394b 4554 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4555 dev_priv->mm.suspended = 0;
4556
4557 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4558 if (ret != 0) {
4559 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4560 return ret;
d816f6ac 4561 }
9bb2d6f9 4562
69dc4987 4563 BUG_ON(!list_empty(&dev_priv->mm.active_list));
852835f3 4564 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 4565 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
549f7365 4566 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
673a394b
EA
4567 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4568 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4569 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 4570 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
549f7365 4571 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
673a394b 4572 mutex_unlock(&dev->struct_mutex);
dbb19d30 4573
5f35308b
CW
4574 ret = drm_irq_install(dev);
4575 if (ret)
4576 goto cleanup_ringbuffer;
dbb19d30 4577
673a394b 4578 return 0;
5f35308b
CW
4579
4580cleanup_ringbuffer:
4581 mutex_lock(&dev->struct_mutex);
4582 i915_gem_cleanup_ringbuffer(dev);
4583 dev_priv->mm.suspended = 1;
4584 mutex_unlock(&dev->struct_mutex);
4585
4586 return ret;
673a394b
EA
4587}
4588
4589int
4590i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4591 struct drm_file *file_priv)
4592{
79e53945
JB
4593 if (drm_core_check_feature(dev, DRIVER_MODESET))
4594 return 0;
4595
dbb19d30 4596 drm_irq_uninstall(dev);
e6890f6f 4597 return i915_gem_idle(dev);
673a394b
EA
4598}
4599
4600void
4601i915_gem_lastclose(struct drm_device *dev)
4602{
4603 int ret;
673a394b 4604
e806b495
EA
4605 if (drm_core_check_feature(dev, DRIVER_MODESET))
4606 return;
4607
6dbe2772
KP
4608 ret = i915_gem_idle(dev);
4609 if (ret)
4610 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4611}
4612
64193406
CW
4613static void
4614init_ring_lists(struct intel_ring_buffer *ring)
4615{
4616 INIT_LIST_HEAD(&ring->active_list);
4617 INIT_LIST_HEAD(&ring->request_list);
4618 INIT_LIST_HEAD(&ring->gpu_write_list);
4619}
4620
673a394b
EA
4621void
4622i915_gem_load(struct drm_device *dev)
4623{
b5aa8a0f 4624 int i;
673a394b
EA
4625 drm_i915_private_t *dev_priv = dev->dev_private;
4626
69dc4987 4627 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
4628 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4629 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4630 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4631 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4632 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
64193406
CW
4633 init_ring_lists(&dev_priv->render_ring);
4634 init_ring_lists(&dev_priv->bsd_ring);
4635 init_ring_lists(&dev_priv->blt_ring);
007cc8ac
DV
4636 for (i = 0; i < 16; i++)
4637 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4638 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4639 i915_gem_retire_work_handler);
30dbf0c0 4640 init_completion(&dev_priv->error_completion);
31169714
CW
4641 spin_lock(&shrink_list_lock);
4642 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4643 spin_unlock(&shrink_list_lock);
4644
94400120
DA
4645 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4646 if (IS_GEN3(dev)) {
4647 u32 tmp = I915_READ(MI_ARB_STATE);
4648 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4649 /* arb state is a masked write, so set bit + bit in mask */
4650 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4651 I915_WRITE(MI_ARB_STATE, tmp);
4652 }
4653 }
4654
de151cf6 4655 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4656 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4657 dev_priv->fence_reg_start = 3;
de151cf6 4658
a6c45cf0 4659 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4660 dev_priv->num_fence_regs = 16;
4661 else
4662 dev_priv->num_fence_regs = 8;
4663
b5aa8a0f 4664 /* Initialize fence registers to zero */
a6c45cf0
CW
4665 switch (INTEL_INFO(dev)->gen) {
4666 case 6:
4667 for (i = 0; i < 16; i++)
4668 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4669 break;
4670 case 5:
4671 case 4:
b5aa8a0f
GH
4672 for (i = 0; i < 16; i++)
4673 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4674 break;
4675 case 3:
b5aa8a0f
GH
4676 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4677 for (i = 0; i < 8; i++)
4678 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4679 case 2:
4680 for (i = 0; i < 8; i++)
4681 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4682 break;
b5aa8a0f 4683 }
673a394b 4684 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4685 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4686}
71acb5eb
DA
4687
4688/*
4689 * Create a physically contiguous memory object for this object
4690 * e.g. for cursor + overlay regs
4691 */
995b6762
CW
4692static int i915_gem_init_phys_object(struct drm_device *dev,
4693 int id, int size, int align)
71acb5eb
DA
4694{
4695 drm_i915_private_t *dev_priv = dev->dev_private;
4696 struct drm_i915_gem_phys_object *phys_obj;
4697 int ret;
4698
4699 if (dev_priv->mm.phys_objs[id - 1] || !size)
4700 return 0;
4701
9a298b2a 4702 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4703 if (!phys_obj)
4704 return -ENOMEM;
4705
4706 phys_obj->id = id;
4707
6eeefaf3 4708 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4709 if (!phys_obj->handle) {
4710 ret = -ENOMEM;
4711 goto kfree_obj;
4712 }
4713#ifdef CONFIG_X86
4714 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4715#endif
4716
4717 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4718
4719 return 0;
4720kfree_obj:
9a298b2a 4721 kfree(phys_obj);
71acb5eb
DA
4722 return ret;
4723}
4724
995b6762 4725static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4726{
4727 drm_i915_private_t *dev_priv = dev->dev_private;
4728 struct drm_i915_gem_phys_object *phys_obj;
4729
4730 if (!dev_priv->mm.phys_objs[id - 1])
4731 return;
4732
4733 phys_obj = dev_priv->mm.phys_objs[id - 1];
4734 if (phys_obj->cur_obj) {
4735 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4736 }
4737
4738#ifdef CONFIG_X86
4739 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4740#endif
4741 drm_pci_free(dev, phys_obj->handle);
4742 kfree(phys_obj);
4743 dev_priv->mm.phys_objs[id - 1] = NULL;
4744}
4745
4746void i915_gem_free_all_phys_object(struct drm_device *dev)
4747{
4748 int i;
4749
260883c8 4750 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4751 i915_gem_free_phys_object(dev, i);
4752}
4753
4754void i915_gem_detach_phys_object(struct drm_device *dev,
4755 struct drm_gem_object *obj)
4756{
4757 struct drm_i915_gem_object *obj_priv;
4758 int i;
4759 int ret;
4760 int page_count;
4761
23010e43 4762 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4763 if (!obj_priv->phys_obj)
4764 return;
4765
4bdadb97 4766 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4767 if (ret)
4768 goto out;
4769
4770 page_count = obj->size / PAGE_SIZE;
4771
4772 for (i = 0; i < page_count; i++) {
3e4d3af5 4773 char *dst = kmap_atomic(obj_priv->pages[i]);
71acb5eb
DA
4774 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4775
4776 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4777 kunmap_atomic(dst);
71acb5eb 4778 }
856fa198 4779 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4780 drm_agp_chipset_flush(dev);
d78b47b9
CW
4781
4782 i915_gem_object_put_pages(obj);
71acb5eb
DA
4783out:
4784 obj_priv->phys_obj->cur_obj = NULL;
4785 obj_priv->phys_obj = NULL;
4786}
4787
4788int
4789i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4790 struct drm_gem_object *obj,
4791 int id,
4792 int align)
71acb5eb
DA
4793{
4794 drm_i915_private_t *dev_priv = dev->dev_private;
4795 struct drm_i915_gem_object *obj_priv;
4796 int ret = 0;
4797 int page_count;
4798 int i;
4799
4800 if (id > I915_MAX_PHYS_OBJECT)
4801 return -EINVAL;
4802
23010e43 4803 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4804
4805 if (obj_priv->phys_obj) {
4806 if (obj_priv->phys_obj->id == id)
4807 return 0;
4808 i915_gem_detach_phys_object(dev, obj);
4809 }
4810
71acb5eb
DA
4811 /* create a new object */
4812 if (!dev_priv->mm.phys_objs[id - 1]) {
4813 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4814 obj->size, align);
71acb5eb 4815 if (ret) {
aeb565df 4816 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4817 goto out;
4818 }
4819 }
4820
4821 /* bind to the object */
4822 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4823 obj_priv->phys_obj->cur_obj = obj;
4824
4bdadb97 4825 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4826 if (ret) {
4827 DRM_ERROR("failed to get page list\n");
4828 goto out;
4829 }
4830
4831 page_count = obj->size / PAGE_SIZE;
4832
4833 for (i = 0; i < page_count; i++) {
3e4d3af5 4834 char *src = kmap_atomic(obj_priv->pages[i]);
71acb5eb
DA
4835 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4836
4837 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4838 kunmap_atomic(src);
71acb5eb
DA
4839 }
4840
d78b47b9
CW
4841 i915_gem_object_put_pages(obj);
4842
71acb5eb
DA
4843 return 0;
4844out:
4845 return ret;
4846}
4847
4848static int
4849i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4850 struct drm_i915_gem_pwrite *args,
4851 struct drm_file *file_priv)
4852{
23010e43 4853 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4854 void *obj_addr;
4855 int ret;
4856 char __user *user_data;
4857
4858 user_data = (char __user *) (uintptr_t) args->data_ptr;
4859 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4860
44d98a61 4861 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4862 ret = copy_from_user(obj_addr, user_data, args->size);
4863 if (ret)
4864 return -EFAULT;
4865
4866 drm_agp_chipset_flush(dev);
4867 return 0;
4868}
b962442e 4869
f787a5f5 4870void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4871{
f787a5f5 4872 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4873
4874 /* Clean up our request list when the client is going away, so that
4875 * later retire_requests won't dereference our soon-to-be-gone
4876 * file_priv.
4877 */
1c25595f 4878 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4879 while (!list_empty(&file_priv->mm.request_list)) {
4880 struct drm_i915_gem_request *request;
4881
4882 request = list_first_entry(&file_priv->mm.request_list,
4883 struct drm_i915_gem_request,
4884 client_list);
4885 list_del(&request->client_list);
4886 request->file_priv = NULL;
4887 }
1c25595f 4888 spin_unlock(&file_priv->mm.lock);
b962442e 4889}
31169714 4890
1637ef41
CW
4891static int
4892i915_gpu_is_active(struct drm_device *dev)
4893{
4894 drm_i915_private_t *dev_priv = dev->dev_private;
4895 int lists_empty;
4896
1637ef41 4897 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
87acb0a5 4898 list_empty(&dev_priv->render_ring.active_list) &&
549f7365
CW
4899 list_empty(&dev_priv->bsd_ring.active_list) &&
4900 list_empty(&dev_priv->blt_ring.active_list);
1637ef41
CW
4901
4902 return !lists_empty;
4903}
4904
31169714 4905static int
7f8275d0 4906i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4907{
4908 drm_i915_private_t *dev_priv, *next_dev;
4909 struct drm_i915_gem_object *obj_priv, *next_obj;
4910 int cnt = 0;
4911 int would_deadlock = 1;
4912
4913 /* "fast-path" to count number of available objects */
4914 if (nr_to_scan == 0) {
4915 spin_lock(&shrink_list_lock);
4916 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4917 struct drm_device *dev = dev_priv->dev;
4918
4919 if (mutex_trylock(&dev->struct_mutex)) {
4920 list_for_each_entry(obj_priv,
4921 &dev_priv->mm.inactive_list,
69dc4987 4922 mm_list)
31169714
CW
4923 cnt++;
4924 mutex_unlock(&dev->struct_mutex);
4925 }
4926 }
4927 spin_unlock(&shrink_list_lock);
4928
4929 return (cnt / 100) * sysctl_vfs_cache_pressure;
4930 }
4931
4932 spin_lock(&shrink_list_lock);
4933
1637ef41 4934rescan:
31169714
CW
4935 /* first scan for clean buffers */
4936 list_for_each_entry_safe(dev_priv, next_dev,
4937 &shrink_list, mm.shrink_list) {
4938 struct drm_device *dev = dev_priv->dev;
4939
4940 if (! mutex_trylock(&dev->struct_mutex))
4941 continue;
4942
4943 spin_unlock(&shrink_list_lock);
b09a1fec 4944 i915_gem_retire_requests(dev);
31169714
CW
4945
4946 list_for_each_entry_safe(obj_priv, next_obj,
4947 &dev_priv->mm.inactive_list,
69dc4987 4948 mm_list) {
31169714 4949 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4950 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4951 if (--nr_to_scan <= 0)
4952 break;
4953 }
4954 }
4955
4956 spin_lock(&shrink_list_lock);
4957 mutex_unlock(&dev->struct_mutex);
4958
963b4836
CW
4959 would_deadlock = 0;
4960
31169714
CW
4961 if (nr_to_scan <= 0)
4962 break;
4963 }
4964
4965 /* second pass, evict/count anything still on the inactive list */
4966 list_for_each_entry_safe(dev_priv, next_dev,
4967 &shrink_list, mm.shrink_list) {
4968 struct drm_device *dev = dev_priv->dev;
4969
4970 if (! mutex_trylock(&dev->struct_mutex))
4971 continue;
4972
4973 spin_unlock(&shrink_list_lock);
4974
4975 list_for_each_entry_safe(obj_priv, next_obj,
4976 &dev_priv->mm.inactive_list,
69dc4987 4977 mm_list) {
31169714 4978 if (nr_to_scan > 0) {
a8089e84 4979 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4980 nr_to_scan--;
4981 } else
4982 cnt++;
4983 }
4984
4985 spin_lock(&shrink_list_lock);
4986 mutex_unlock(&dev->struct_mutex);
4987
4988 would_deadlock = 0;
4989 }
4990
1637ef41
CW
4991 if (nr_to_scan) {
4992 int active = 0;
4993
4994 /*
4995 * We are desperate for pages, so as a last resort, wait
4996 * for the GPU to finish and discard whatever we can.
4997 * This has a dramatic impact to reduce the number of
4998 * OOM-killer events whilst running the GPU aggressively.
4999 */
5000 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5001 struct drm_device *dev = dev_priv->dev;
5002
5003 if (!mutex_trylock(&dev->struct_mutex))
5004 continue;
5005
5006 spin_unlock(&shrink_list_lock);
5007
5008 if (i915_gpu_is_active(dev)) {
5009 i915_gpu_idle(dev);
5010 active++;
5011 }
5012
5013 spin_lock(&shrink_list_lock);
5014 mutex_unlock(&dev->struct_mutex);
5015 }
5016
5017 if (active)
5018 goto rescan;
5019 }
5020
31169714
CW
5021 spin_unlock(&shrink_list_lock);
5022
5023 if (would_deadlock)
5024 return -1;
5025 else if (cnt > 0)
5026 return (cnt / 100) * sysctl_vfs_cache_pressure;
5027 else
5028 return 0;
5029}
5030
5031static struct shrinker shrinker = {
5032 .shrink = i915_gem_shrink,
5033 .seeks = DEFAULT_SEEKS,
5034};
5035
5036__init void
5037i915_gem_shrinker_init(void)
5038{
5039 register_shrinker(&shrinker);
5040}
5041
5042__exit void
5043i915_gem_shrinker_exit(void)
5044{
5045 unregister_shrinker(&shrinker);
5046}