]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915/fbc: sanitize i915.enable_fbc during FBC init
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
0ccdacf6 35#include "intel_mocs.h"
5949eac4 36#include <linux/shmem_fs.h>
5a0e3ad6 37#include <linux/slab.h>
673a394b 38#include <linux/swap.h>
79e53945 39#include <linux/pci.h>
1286ff73 40#include <linux/dma-buf.h>
673a394b 41
05394f39 42static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 43static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 44static void
b4716185
CW
45i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46static void
47i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 48
c76ce038
CW
49static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51{
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53}
54
2c22569b
CW
55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56{
b50a5371
AS
57 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 return false;
59
2c22569b
CW
60 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 return true;
62
63 return obj->pin_display;
64}
65
4f1959ee
AS
66static int
67insert_mappable_node(struct drm_i915_private *i915,
68 struct drm_mm_node *node, u32 size)
69{
70 memset(node, 0, sizeof(*node));
71 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
72 size, 0, 0, 0,
73 i915->ggtt.mappable_end,
74 DRM_MM_SEARCH_DEFAULT,
75 DRM_MM_CREATE_DEFAULT);
76}
77
78static void
79remove_mappable_node(struct drm_mm_node *node)
80{
81 drm_mm_remove_node(node);
82}
83
73aa808f
CW
84/* some bookkeeping */
85static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 size_t size)
87{
c20e8355 88 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89 dev_priv->mm.object_count++;
90 dev_priv->mm.object_memory += size;
c20e8355 91 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
92}
93
94static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 size_t size)
96{
c20e8355 97 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98 dev_priv->mm.object_count--;
99 dev_priv->mm.object_memory -= size;
c20e8355 100 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
101}
102
21dd3734 103static int
33196ded 104i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 105{
30dbf0c0
CW
106 int ret;
107
d98c52cf 108 if (!i915_reset_in_progress(error))
30dbf0c0
CW
109 return 0;
110
0a6759c6
DV
111 /*
112 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
113 * userspace. If it takes that long something really bad is going on and
114 * we should simply try to bail out and fail as gracefully as possible.
115 */
1f83fee0 116 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 117 !i915_reset_in_progress(error),
1f83fee0 118 10*HZ);
0a6759c6
DV
119 if (ret == 0) {
120 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
121 return -EIO;
122 } else if (ret < 0) {
30dbf0c0 123 return ret;
d98c52cf
CW
124 } else {
125 return 0;
0a6759c6 126 }
30dbf0c0
CW
127}
128
54cf91dc 129int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 130{
33196ded 131 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
132 int ret;
133
33196ded 134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
23bc5982 142 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
72e96d64 150 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 151 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 152 struct drm_i915_gem_get_aperture *args = data;
ca1543be 153 struct i915_vma *vma;
6299f992 154 size_t pinned;
5a125c3c 155
6299f992 156 pinned = 0;
73aa808f 157 mutex_lock(&dev->struct_mutex);
1c7f4bca 158 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
ca1543be
TU
159 if (vma->pin_count)
160 pinned += vma->node.size;
1c7f4bca 161 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
ca1543be
TU
162 if (vma->pin_count)
163 pinned += vma->node.size;
73aa808f 164 mutex_unlock(&dev->struct_mutex);
5a125c3c 165
72e96d64 166 args->aper_size = ggtt->base.total;
0206e353 167 args->aper_available_size = args->aper_size - pinned;
6299f992 168
5a125c3c
EA
169 return 0;
170}
171
6a2c4232
CW
172static int
173i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 174{
6a2c4232
CW
175 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
176 char *vaddr = obj->phys_handle->vaddr;
177 struct sg_table *st;
178 struct scatterlist *sg;
179 int i;
00731155 180
6a2c4232
CW
181 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182 return -EINVAL;
183
184 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 struct page *page;
186 char *src;
187
188 page = shmem_read_mapping_page(mapping, i);
189 if (IS_ERR(page))
190 return PTR_ERR(page);
191
192 src = kmap_atomic(page);
193 memcpy(vaddr, src, PAGE_SIZE);
194 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 kunmap_atomic(src);
196
09cbfeaf 197 put_page(page);
6a2c4232
CW
198 vaddr += PAGE_SIZE;
199 }
200
c033666a 201 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
202
203 st = kmalloc(sizeof(*st), GFP_KERNEL);
204 if (st == NULL)
205 return -ENOMEM;
206
207 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 kfree(st);
209 return -ENOMEM;
210 }
211
212 sg = st->sgl;
213 sg->offset = 0;
214 sg->length = obj->base.size;
00731155 215
6a2c4232
CW
216 sg_dma_address(sg) = obj->phys_handle->busaddr;
217 sg_dma_len(sg) = obj->base.size;
218
219 obj->pages = st;
6a2c4232
CW
220 return 0;
221}
222
223static void
224i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
225{
226 int ret;
227
228 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 229
6a2c4232 230 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 231 if (WARN_ON(ret)) {
6a2c4232
CW
232 /* In the event of a disaster, abandon all caches and
233 * hope for the best.
234 */
6a2c4232
CW
235 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
236 }
237
238 if (obj->madv == I915_MADV_DONTNEED)
239 obj->dirty = 0;
240
241 if (obj->dirty) {
00731155 242 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 243 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
244 int i;
245
246 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
247 struct page *page;
248 char *dst;
249
250 page = shmem_read_mapping_page(mapping, i);
251 if (IS_ERR(page))
252 continue;
253
254 dst = kmap_atomic(page);
255 drm_clflush_virt_range(vaddr, PAGE_SIZE);
256 memcpy(dst, vaddr, PAGE_SIZE);
257 kunmap_atomic(dst);
258
259 set_page_dirty(page);
260 if (obj->madv == I915_MADV_WILLNEED)
00731155 261 mark_page_accessed(page);
09cbfeaf 262 put_page(page);
00731155
CW
263 vaddr += PAGE_SIZE;
264 }
6a2c4232 265 obj->dirty = 0;
00731155
CW
266 }
267
6a2c4232
CW
268 sg_free_table(obj->pages);
269 kfree(obj->pages);
6a2c4232
CW
270}
271
272static void
273i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274{
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276}
277
278static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282};
283
284static int
285drop_pages(struct drm_i915_gem_object *obj)
286{
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
1c7f4bca 291 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
6a2c4232
CW
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
00731155
CW
299}
300
301int
302i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304{
305 drm_dma_handle_t *phys;
6a2c4232 306 int ret;
00731155
CW
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
6a2c4232
CW
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
00731155
CW
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
00731155 330 obj->phys_handle = phys;
6a2c4232
CW
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
00731155
CW
334}
335
336static int
337i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340{
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 343 char __user *user_data = u64_to_user_ptr(args->data_ptr);
063e4e6b 344 int ret = 0;
6a2c4232
CW
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
00731155 352
77a0d1ca 353 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
00731155
CW
368 }
369
6a2c4232 370 drm_clflush_virt_range(vaddr, args->size);
c033666a 371 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
372
373out:
de152b62 374 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 375 return ret;
00731155
CW
376}
377
42dcedd4
CW
378void *i915_gem_object_alloc(struct drm_device *dev)
379{
380 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
382}
383
384void i915_gem_object_free(struct drm_i915_gem_object *obj)
385{
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 387 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
388}
389
ff72145b
DA
390static int
391i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
673a394b 395{
05394f39 396 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
397 int ret;
398 u32 handle;
673a394b 399
ff72145b 400 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
401 if (size == 0)
402 return -EINVAL;
673a394b
EA
403
404 /* Allocate the new object */
d37cd8a8 405 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
406 if (IS_ERR(obj))
407 return PTR_ERR(obj);
673a394b 408
05394f39 409 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 410 /* drop reference from allocate - handle holds it now */
d861e338
DV
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
202f2fef 414
ff72145b 415 *handle_p = handle;
673a394b
EA
416 return 0;
417}
418
ff72145b
DA
419int
420i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423{
424 /* have to work out size/pitch and return them */
de45eaf7 425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
da6b51d0 428 args->size, &args->handle);
ff72145b
DA
429}
430
ff72145b
DA
431/**
432 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
433 * @dev: drm device pointer
434 * @data: ioctl data blob
435 * @file: drm file pointer
ff72145b
DA
436 */
437int
438i915_gem_create_ioctl(struct drm_device *dev, void *data,
439 struct drm_file *file)
440{
441 struct drm_i915_gem_create *args = data;
63ed2cb2 442
ff72145b 443 return i915_gem_create(file, dev,
da6b51d0 444 args->size, &args->handle);
ff72145b
DA
445}
446
8461d226
DV
447static inline int
448__copy_to_user_swizzled(char __user *cpu_vaddr,
449 const char *gpu_vaddr, int gpu_offset,
450 int length)
451{
452 int ret, cpu_offset = 0;
453
454 while (length > 0) {
455 int cacheline_end = ALIGN(gpu_offset + 1, 64);
456 int this_length = min(cacheline_end - gpu_offset, length);
457 int swizzled_gpu_offset = gpu_offset ^ 64;
458
459 ret = __copy_to_user(cpu_vaddr + cpu_offset,
460 gpu_vaddr + swizzled_gpu_offset,
461 this_length);
462 if (ret)
463 return ret + length;
464
465 cpu_offset += this_length;
466 gpu_offset += this_length;
467 length -= this_length;
468 }
469
470 return 0;
471}
472
8c59967c 473static inline int
4f0c7cfb
BW
474__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475 const char __user *cpu_vaddr,
8c59967c
DV
476 int length)
477{
478 int ret, cpu_offset = 0;
479
480 while (length > 0) {
481 int cacheline_end = ALIGN(gpu_offset + 1, 64);
482 int this_length = min(cacheline_end - gpu_offset, length);
483 int swizzled_gpu_offset = gpu_offset ^ 64;
484
485 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486 cpu_vaddr + cpu_offset,
487 this_length);
488 if (ret)
489 return ret + length;
490
491 cpu_offset += this_length;
492 gpu_offset += this_length;
493 length -= this_length;
494 }
495
496 return 0;
497}
498
4c914c0c
BV
499/*
500 * Pins the specified object's pages and synchronizes the object with
501 * GPU accesses. Sets needs_clflush to non-zero if the caller should
502 * flush the object from the CPU cache.
503 */
504int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505 int *needs_clflush)
506{
507 int ret;
508
509 *needs_clflush = 0;
510
b9bcd14a 511 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4c914c0c
BV
512 return -EINVAL;
513
514 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515 /* If we're not in the cpu read domain, set ourself into the gtt
516 * read domain and manually flush cachelines (if required). This
517 * optimizes for the case when the gpu will dirty the data
518 * anyway again before the next pread happens. */
519 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520 obj->cache_level);
521 ret = i915_gem_object_wait_rendering(obj, true);
522 if (ret)
523 return ret;
524 }
525
526 ret = i915_gem_object_get_pages(obj);
527 if (ret)
528 return ret;
529
530 i915_gem_object_pin_pages(obj);
531
532 return ret;
533}
534
d174bd64
DV
535/* Per-page copy function for the shmem pread fastpath.
536 * Flushes invalid cachelines before reading the target if
537 * needs_clflush is set. */
eb01459f 538static int
d174bd64
DV
539shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
540 char __user *user_data,
541 bool page_do_bit17_swizzling, bool needs_clflush)
542{
543 char *vaddr;
544 int ret;
545
e7e58eb5 546 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
547 return -EINVAL;
548
549 vaddr = kmap_atomic(page);
550 if (needs_clflush)
551 drm_clflush_virt_range(vaddr + shmem_page_offset,
552 page_length);
553 ret = __copy_to_user_inatomic(user_data,
554 vaddr + shmem_page_offset,
555 page_length);
556 kunmap_atomic(vaddr);
557
f60d7f0c 558 return ret ? -EFAULT : 0;
d174bd64
DV
559}
560
23c18c71
DV
561static void
562shmem_clflush_swizzled_range(char *addr, unsigned long length,
563 bool swizzled)
564{
e7e58eb5 565 if (unlikely(swizzled)) {
23c18c71
DV
566 unsigned long start = (unsigned long) addr;
567 unsigned long end = (unsigned long) addr + length;
568
569 /* For swizzling simply ensure that we always flush both
570 * channels. Lame, but simple and it works. Swizzled
571 * pwrite/pread is far from a hotpath - current userspace
572 * doesn't use it at all. */
573 start = round_down(start, 128);
574 end = round_up(end, 128);
575
576 drm_clflush_virt_range((void *)start, end - start);
577 } else {
578 drm_clflush_virt_range(addr, length);
579 }
580
581}
582
d174bd64
DV
583/* Only difference to the fast-path function is that this can handle bit17
584 * and uses non-atomic copy and kmap functions. */
585static int
586shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
587 char __user *user_data,
588 bool page_do_bit17_swizzling, bool needs_clflush)
589{
590 char *vaddr;
591 int ret;
592
593 vaddr = kmap(page);
594 if (needs_clflush)
23c18c71
DV
595 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
596 page_length,
597 page_do_bit17_swizzling);
d174bd64
DV
598
599 if (page_do_bit17_swizzling)
600 ret = __copy_to_user_swizzled(user_data,
601 vaddr, shmem_page_offset,
602 page_length);
603 else
604 ret = __copy_to_user(user_data,
605 vaddr + shmem_page_offset,
606 page_length);
607 kunmap(page);
608
f60d7f0c 609 return ret ? - EFAULT : 0;
d174bd64
DV
610}
611
b50a5371
AS
612static inline unsigned long
613slow_user_access(struct io_mapping *mapping,
614 uint64_t page_base, int page_offset,
615 char __user *user_data,
616 unsigned long length, bool pwrite)
617{
618 void __iomem *ioaddr;
619 void *vaddr;
620 uint64_t unwritten;
621
622 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
623 /* We can use the cpu mem copy function because this is X86. */
624 vaddr = (void __force *)ioaddr + page_offset;
625 if (pwrite)
626 unwritten = __copy_from_user(vaddr, user_data, length);
627 else
628 unwritten = __copy_to_user(user_data, vaddr, length);
629
630 io_mapping_unmap(ioaddr);
631 return unwritten;
632}
633
634static int
635i915_gem_gtt_pread(struct drm_device *dev,
636 struct drm_i915_gem_object *obj, uint64_t size,
637 uint64_t data_offset, uint64_t data_ptr)
638{
639 struct drm_i915_private *dev_priv = dev->dev_private;
640 struct i915_ggtt *ggtt = &dev_priv->ggtt;
641 struct drm_mm_node node;
642 char __user *user_data;
643 uint64_t remain;
644 uint64_t offset;
645 int ret;
646
647 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
648 if (ret) {
649 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
650 if (ret)
651 goto out;
652
653 ret = i915_gem_object_get_pages(obj);
654 if (ret) {
655 remove_mappable_node(&node);
656 goto out;
657 }
658
659 i915_gem_object_pin_pages(obj);
660 } else {
661 node.start = i915_gem_obj_ggtt_offset(obj);
662 node.allocated = false;
663 ret = i915_gem_object_put_fence(obj);
664 if (ret)
665 goto out_unpin;
666 }
667
668 ret = i915_gem_object_set_to_gtt_domain(obj, false);
669 if (ret)
670 goto out_unpin;
671
672 user_data = u64_to_user_ptr(data_ptr);
673 remain = size;
674 offset = data_offset;
675
676 mutex_unlock(&dev->struct_mutex);
677 if (likely(!i915.prefault_disable)) {
678 ret = fault_in_multipages_writeable(user_data, remain);
679 if (ret) {
680 mutex_lock(&dev->struct_mutex);
681 goto out_unpin;
682 }
683 }
684
685 while (remain > 0) {
686 /* Operation in this page
687 *
688 * page_base = page offset within aperture
689 * page_offset = offset within page
690 * page_length = bytes to copy for this page
691 */
692 u32 page_base = node.start;
693 unsigned page_offset = offset_in_page(offset);
694 unsigned page_length = PAGE_SIZE - page_offset;
695 page_length = remain < page_length ? remain : page_length;
696 if (node.allocated) {
697 wmb();
698 ggtt->base.insert_page(&ggtt->base,
699 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
700 node.start,
701 I915_CACHE_NONE, 0);
702 wmb();
703 } else {
704 page_base += offset & PAGE_MASK;
705 }
706 /* This is a slow read/write as it tries to read from
707 * and write to user memory which may result into page
708 * faults, and so we cannot perform this under struct_mutex.
709 */
710 if (slow_user_access(ggtt->mappable, page_base,
711 page_offset, user_data,
712 page_length, false)) {
713 ret = -EFAULT;
714 break;
715 }
716
717 remain -= page_length;
718 user_data += page_length;
719 offset += page_length;
720 }
721
722 mutex_lock(&dev->struct_mutex);
723 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
724 /* The user has modified the object whilst we tried
725 * reading from it, and we now have no idea what domain
726 * the pages should be in. As we have just been touching
727 * them directly, flush everything back to the GTT
728 * domain.
729 */
730 ret = i915_gem_object_set_to_gtt_domain(obj, false);
731 }
732
733out_unpin:
734 if (node.allocated) {
735 wmb();
736 ggtt->base.clear_range(&ggtt->base,
737 node.start, node.size,
738 true);
739 i915_gem_object_unpin_pages(obj);
740 remove_mappable_node(&node);
741 } else {
742 i915_gem_object_ggtt_unpin(obj);
743 }
744out:
745 return ret;
746}
747
eb01459f 748static int
dbf7bff0
DV
749i915_gem_shmem_pread(struct drm_device *dev,
750 struct drm_i915_gem_object *obj,
751 struct drm_i915_gem_pread *args,
752 struct drm_file *file)
eb01459f 753{
8461d226 754 char __user *user_data;
eb01459f 755 ssize_t remain;
8461d226 756 loff_t offset;
eb2c0c81 757 int shmem_page_offset, page_length, ret = 0;
8461d226 758 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 759 int prefaulted = 0;
8489731c 760 int needs_clflush = 0;
67d5a50c 761 struct sg_page_iter sg_iter;
eb01459f 762
6eae0059 763 if (!i915_gem_object_has_struct_page(obj))
b50a5371
AS
764 return -ENODEV;
765
3ed605bc 766 user_data = u64_to_user_ptr(args->data_ptr);
eb01459f
EA
767 remain = args->size;
768
8461d226 769 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 770
4c914c0c 771 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
772 if (ret)
773 return ret;
774
8461d226 775 offset = args->offset;
eb01459f 776
67d5a50c
ID
777 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
778 offset >> PAGE_SHIFT) {
2db76d7c 779 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
780
781 if (remain <= 0)
782 break;
783
eb01459f
EA
784 /* Operation in this page
785 *
eb01459f 786 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
787 * page_length = bytes to copy for this page
788 */
c8cbbb8b 789 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
790 page_length = remain;
791 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 793
8461d226
DV
794 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
795 (page_to_phys(page) & (1 << 17)) != 0;
796
d174bd64
DV
797 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
798 user_data, page_do_bit17_swizzling,
799 needs_clflush);
800 if (ret == 0)
801 goto next_page;
dbf7bff0 802
dbf7bff0
DV
803 mutex_unlock(&dev->struct_mutex);
804
d330a953 805 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 806 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
807 /* Userspace is tricking us, but we've already clobbered
808 * its pages with the prefault and promised to write the
809 * data up to the first fault. Hence ignore any errors
810 * and just continue. */
811 (void)ret;
812 prefaulted = 1;
813 }
eb01459f 814
d174bd64
DV
815 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 needs_clflush);
eb01459f 818
dbf7bff0 819 mutex_lock(&dev->struct_mutex);
f60d7f0c 820
f60d7f0c 821 if (ret)
8461d226 822 goto out;
8461d226 823
17793c9a 824next_page:
eb01459f 825 remain -= page_length;
8461d226 826 user_data += page_length;
eb01459f
EA
827 offset += page_length;
828 }
829
4f27b75d 830out:
f60d7f0c
CW
831 i915_gem_object_unpin_pages(obj);
832
eb01459f
EA
833 return ret;
834}
835
673a394b
EA
836/**
837 * Reads data from the object referenced by handle.
14bb2c11
TU
838 * @dev: drm device pointer
839 * @data: ioctl data blob
840 * @file: drm file pointer
673a394b
EA
841 *
842 * On error, the contents of *data are undefined.
843 */
844int
845i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 846 struct drm_file *file)
673a394b
EA
847{
848 struct drm_i915_gem_pread *args = data;
05394f39 849 struct drm_i915_gem_object *obj;
35b62a89 850 int ret = 0;
673a394b 851
51311d0a
CW
852 if (args->size == 0)
853 return 0;
854
855 if (!access_ok(VERIFY_WRITE,
3ed605bc 856 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
857 args->size))
858 return -EFAULT;
859
4f27b75d 860 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 861 if (ret)
4f27b75d 862 return ret;
673a394b 863
a8ad0bd8 864 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 865 if (&obj->base == NULL) {
1d7cfea1
CW
866 ret = -ENOENT;
867 goto unlock;
4f27b75d 868 }
673a394b 869
7dcd2499 870 /* Bounds check source. */
05394f39
CW
871 if (args->offset > obj->base.size ||
872 args->size > obj->base.size - args->offset) {
ce9d419d 873 ret = -EINVAL;
35b62a89 874 goto out;
ce9d419d
CW
875 }
876
db53a302
CW
877 trace_i915_gem_object_pread(obj, args->offset, args->size);
878
dbf7bff0 879 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 880
b50a5371
AS
881 /* pread for non shmem backed objects */
882 if (ret == -EFAULT || ret == -ENODEV)
883 ret = i915_gem_gtt_pread(dev, obj, args->size,
884 args->offset, args->data_ptr);
885
35b62a89 886out:
05394f39 887 drm_gem_object_unreference(&obj->base);
1d7cfea1 888unlock:
4f27b75d 889 mutex_unlock(&dev->struct_mutex);
eb01459f 890 return ret;
673a394b
EA
891}
892
0839ccb8
KP
893/* This is the fast write path which cannot handle
894 * page faults in the source data
9b7530cc 895 */
0839ccb8
KP
896
897static inline int
898fast_user_write(struct io_mapping *mapping,
899 loff_t page_base, int page_offset,
900 char __user *user_data,
901 int length)
9b7530cc 902{
4f0c7cfb
BW
903 void __iomem *vaddr_atomic;
904 void *vaddr;
0839ccb8 905 unsigned long unwritten;
9b7530cc 906
3e4d3af5 907 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
908 /* We can use the cpu mem copy function because this is X86. */
909 vaddr = (void __force*)vaddr_atomic + page_offset;
910 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 911 user_data, length);
3e4d3af5 912 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 913 return unwritten;
0839ccb8
KP
914}
915
3de09aa3
EA
916/**
917 * This is the fast pwrite path, where we copy the data directly from the
918 * user into the GTT, uncached.
14bb2c11
TU
919 * @dev: drm device pointer
920 * @obj: i915 gem object
921 * @args: pwrite arguments structure
922 * @file: drm file pointer
3de09aa3 923 */
673a394b 924static int
4f1959ee 925i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
05394f39 926 struct drm_i915_gem_object *obj,
3de09aa3 927 struct drm_i915_gem_pwrite *args,
05394f39 928 struct drm_file *file)
673a394b 929{
4f1959ee 930 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 931 struct drm_device *dev = obj->base.dev;
4f1959ee
AS
932 struct drm_mm_node node;
933 uint64_t remain, offset;
673a394b 934 char __user *user_data;
4f1959ee 935 int ret;
b50a5371
AS
936 bool hit_slow_path = false;
937
938 if (obj->tiling_mode != I915_TILING_NONE)
939 return -EFAULT;
935aaa69 940
1ec9e26d 941 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
4f1959ee
AS
942 if (ret) {
943 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
944 if (ret)
945 goto out;
946
947 ret = i915_gem_object_get_pages(obj);
948 if (ret) {
949 remove_mappable_node(&node);
950 goto out;
951 }
952
953 i915_gem_object_pin_pages(obj);
954 } else {
955 node.start = i915_gem_obj_ggtt_offset(obj);
956 node.allocated = false;
b50a5371
AS
957 ret = i915_gem_object_put_fence(obj);
958 if (ret)
959 goto out_unpin;
4f1959ee 960 }
935aaa69
DV
961
962 ret = i915_gem_object_set_to_gtt_domain(obj, true);
963 if (ret)
964 goto out_unpin;
965
77a0d1ca 966 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
4f1959ee 967 obj->dirty = true;
063e4e6b 968
4f1959ee
AS
969 user_data = u64_to_user_ptr(args->data_ptr);
970 offset = args->offset;
971 remain = args->size;
972 while (remain) {
673a394b
EA
973 /* Operation in this page
974 *
0839ccb8
KP
975 * page_base = page offset within aperture
976 * page_offset = offset within page
977 * page_length = bytes to copy for this page
673a394b 978 */
4f1959ee
AS
979 u32 page_base = node.start;
980 unsigned page_offset = offset_in_page(offset);
981 unsigned page_length = PAGE_SIZE - page_offset;
982 page_length = remain < page_length ? remain : page_length;
983 if (node.allocated) {
984 wmb(); /* flush the write before we modify the GGTT */
985 ggtt->base.insert_page(&ggtt->base,
986 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
987 node.start, I915_CACHE_NONE, 0);
988 wmb(); /* flush modifications to the GGTT (insert_page) */
989 } else {
990 page_base += offset & PAGE_MASK;
991 }
0839ccb8 992 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
993 * source page isn't available. Return the error and we'll
994 * retry in the slow path.
b50a5371
AS
995 * If the object is non-shmem backed, we retry again with the
996 * path that handles page fault.
0839ccb8 997 */
72e96d64 998 if (fast_user_write(ggtt->mappable, page_base,
935aaa69 999 page_offset, user_data, page_length)) {
b50a5371
AS
1000 hit_slow_path = true;
1001 mutex_unlock(&dev->struct_mutex);
1002 if (slow_user_access(ggtt->mappable,
1003 page_base,
1004 page_offset, user_data,
1005 page_length, true)) {
1006 ret = -EFAULT;
1007 mutex_lock(&dev->struct_mutex);
1008 goto out_flush;
1009 }
1010
1011 mutex_lock(&dev->struct_mutex);
935aaa69 1012 }
673a394b 1013
0839ccb8
KP
1014 remain -= page_length;
1015 user_data += page_length;
1016 offset += page_length;
673a394b 1017 }
673a394b 1018
063e4e6b 1019out_flush:
b50a5371
AS
1020 if (hit_slow_path) {
1021 if (ret == 0 &&
1022 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1023 /* The user has modified the object whilst we tried
1024 * reading from it, and we now have no idea what domain
1025 * the pages should be in. As we have just been touching
1026 * them directly, flush everything back to the GTT
1027 * domain.
1028 */
1029 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030 }
1031 }
1032
de152b62 1033 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 1034out_unpin:
4f1959ee
AS
1035 if (node.allocated) {
1036 wmb();
1037 ggtt->base.clear_range(&ggtt->base,
1038 node.start, node.size,
1039 true);
1040 i915_gem_object_unpin_pages(obj);
1041 remove_mappable_node(&node);
1042 } else {
1043 i915_gem_object_ggtt_unpin(obj);
1044 }
935aaa69 1045out:
3de09aa3 1046 return ret;
673a394b
EA
1047}
1048
d174bd64
DV
1049/* Per-page copy function for the shmem pwrite fastpath.
1050 * Flushes invalid cachelines before writing to the target if
1051 * needs_clflush_before is set and flushes out any written cachelines after
1052 * writing if needs_clflush is set. */
3043c60c 1053static int
d174bd64
DV
1054shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1055 char __user *user_data,
1056 bool page_do_bit17_swizzling,
1057 bool needs_clflush_before,
1058 bool needs_clflush_after)
673a394b 1059{
d174bd64 1060 char *vaddr;
673a394b 1061 int ret;
3de09aa3 1062
e7e58eb5 1063 if (unlikely(page_do_bit17_swizzling))
d174bd64 1064 return -EINVAL;
3de09aa3 1065
d174bd64
DV
1066 vaddr = kmap_atomic(page);
1067 if (needs_clflush_before)
1068 drm_clflush_virt_range(vaddr + shmem_page_offset,
1069 page_length);
c2831a94
CW
1070 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1071 user_data, page_length);
d174bd64
DV
1072 if (needs_clflush_after)
1073 drm_clflush_virt_range(vaddr + shmem_page_offset,
1074 page_length);
1075 kunmap_atomic(vaddr);
3de09aa3 1076
755d2218 1077 return ret ? -EFAULT : 0;
3de09aa3
EA
1078}
1079
d174bd64
DV
1080/* Only difference to the fast-path function is that this can handle bit17
1081 * and uses non-atomic copy and kmap functions. */
3043c60c 1082static int
d174bd64
DV
1083shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1084 char __user *user_data,
1085 bool page_do_bit17_swizzling,
1086 bool needs_clflush_before,
1087 bool needs_clflush_after)
673a394b 1088{
d174bd64
DV
1089 char *vaddr;
1090 int ret;
e5281ccd 1091
d174bd64 1092 vaddr = kmap(page);
e7e58eb5 1093 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
1094 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1095 page_length,
1096 page_do_bit17_swizzling);
d174bd64
DV
1097 if (page_do_bit17_swizzling)
1098 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
1099 user_data,
1100 page_length);
d174bd64
DV
1101 else
1102 ret = __copy_from_user(vaddr + shmem_page_offset,
1103 user_data,
1104 page_length);
1105 if (needs_clflush_after)
23c18c71
DV
1106 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1107 page_length,
1108 page_do_bit17_swizzling);
d174bd64 1109 kunmap(page);
40123c1f 1110
755d2218 1111 return ret ? -EFAULT : 0;
40123c1f
EA
1112}
1113
40123c1f 1114static int
e244a443
DV
1115i915_gem_shmem_pwrite(struct drm_device *dev,
1116 struct drm_i915_gem_object *obj,
1117 struct drm_i915_gem_pwrite *args,
1118 struct drm_file *file)
40123c1f 1119{
40123c1f 1120 ssize_t remain;
8c59967c
DV
1121 loff_t offset;
1122 char __user *user_data;
eb2c0c81 1123 int shmem_page_offset, page_length, ret = 0;
8c59967c 1124 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 1125 int hit_slowpath = 0;
58642885
DV
1126 int needs_clflush_after = 0;
1127 int needs_clflush_before = 0;
67d5a50c 1128 struct sg_page_iter sg_iter;
40123c1f 1129
3ed605bc 1130 user_data = u64_to_user_ptr(args->data_ptr);
40123c1f
EA
1131 remain = args->size;
1132
8c59967c 1133 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 1134
58642885
DV
1135 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1136 /* If we're not in the cpu write domain, set ourself into the gtt
1137 * write domain and manually flush cachelines (if required). This
1138 * optimizes for the case when the gpu will use the data
1139 * right away and we therefore have to clflush anyway. */
2c22569b 1140 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
1141 ret = i915_gem_object_wait_rendering(obj, false);
1142 if (ret)
1143 return ret;
58642885 1144 }
c76ce038
CW
1145 /* Same trick applies to invalidate partially written cachelines read
1146 * before writing. */
1147 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1148 needs_clflush_before =
1149 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 1150
755d2218
CW
1151 ret = i915_gem_object_get_pages(obj);
1152 if (ret)
1153 return ret;
1154
77a0d1ca 1155 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1156
755d2218
CW
1157 i915_gem_object_pin_pages(obj);
1158
673a394b 1159 offset = args->offset;
05394f39 1160 obj->dirty = 1;
673a394b 1161
67d5a50c
ID
1162 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1163 offset >> PAGE_SHIFT) {
2db76d7c 1164 struct page *page = sg_page_iter_page(&sg_iter);
58642885 1165 int partial_cacheline_write;
e5281ccd 1166
9da3da66
CW
1167 if (remain <= 0)
1168 break;
1169
40123c1f
EA
1170 /* Operation in this page
1171 *
40123c1f 1172 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
1173 * page_length = bytes to copy for this page
1174 */
c8cbbb8b 1175 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
1176
1177 page_length = remain;
1178 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1179 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 1180
58642885
DV
1181 /* If we don't overwrite a cacheline completely we need to be
1182 * careful to have up-to-date data by first clflushing. Don't
1183 * overcomplicate things and flush the entire patch. */
1184 partial_cacheline_write = needs_clflush_before &&
1185 ((shmem_page_offset | page_length)
1186 & (boot_cpu_data.x86_clflush_size - 1));
1187
8c59967c
DV
1188 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1189 (page_to_phys(page) & (1 << 17)) != 0;
1190
d174bd64
DV
1191 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1192 user_data, page_do_bit17_swizzling,
1193 partial_cacheline_write,
1194 needs_clflush_after);
1195 if (ret == 0)
1196 goto next_page;
e244a443
DV
1197
1198 hit_slowpath = 1;
e244a443 1199 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1200 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1201 user_data, page_do_bit17_swizzling,
1202 partial_cacheline_write,
1203 needs_clflush_after);
40123c1f 1204
e244a443 1205 mutex_lock(&dev->struct_mutex);
755d2218 1206
755d2218 1207 if (ret)
8c59967c 1208 goto out;
8c59967c 1209
17793c9a 1210next_page:
40123c1f 1211 remain -= page_length;
8c59967c 1212 user_data += page_length;
40123c1f 1213 offset += page_length;
673a394b
EA
1214 }
1215
fbd5a26d 1216out:
755d2218
CW
1217 i915_gem_object_unpin_pages(obj);
1218
e244a443 1219 if (hit_slowpath) {
8dcf015e
DV
1220 /*
1221 * Fixup: Flush cpu caches in case we didn't flush the dirty
1222 * cachelines in-line while writing and the object moved
1223 * out of the cpu write domain while we've dropped the lock.
1224 */
1225 if (!needs_clflush_after &&
1226 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1227 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1228 needs_clflush_after = true;
e244a443 1229 }
8c59967c 1230 }
673a394b 1231
58642885 1232 if (needs_clflush_after)
c033666a 1233 i915_gem_chipset_flush(to_i915(dev));
ed75a55b
VS
1234 else
1235 obj->cache_dirty = true;
58642885 1236
de152b62 1237 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1238 return ret;
673a394b
EA
1239}
1240
1241/**
1242 * Writes data to the object referenced by handle.
14bb2c11
TU
1243 * @dev: drm device
1244 * @data: ioctl data blob
1245 * @file: drm file
673a394b
EA
1246 *
1247 * On error, the contents of the buffer that were to be modified are undefined.
1248 */
1249int
1250i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1251 struct drm_file *file)
673a394b 1252{
5d77d9c5 1253 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1254 struct drm_i915_gem_pwrite *args = data;
05394f39 1255 struct drm_i915_gem_object *obj;
51311d0a
CW
1256 int ret;
1257
1258 if (args->size == 0)
1259 return 0;
1260
1261 if (!access_ok(VERIFY_READ,
3ed605bc 1262 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1263 args->size))
1264 return -EFAULT;
1265
d330a953 1266 if (likely(!i915.prefault_disable)) {
3ed605bc 1267 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
0b74b508
XZ
1268 args->size);
1269 if (ret)
1270 return -EFAULT;
1271 }
673a394b 1272
5d77d9c5
ID
1273 intel_runtime_pm_get(dev_priv);
1274
fbd5a26d 1275 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1276 if (ret)
5d77d9c5 1277 goto put_rpm;
1d7cfea1 1278
a8ad0bd8 1279 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 1280 if (&obj->base == NULL) {
1d7cfea1
CW
1281 ret = -ENOENT;
1282 goto unlock;
fbd5a26d 1283 }
673a394b 1284
7dcd2499 1285 /* Bounds check destination. */
05394f39
CW
1286 if (args->offset > obj->base.size ||
1287 args->size > obj->base.size - args->offset) {
ce9d419d 1288 ret = -EINVAL;
35b62a89 1289 goto out;
ce9d419d
CW
1290 }
1291
db53a302
CW
1292 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1293
935aaa69 1294 ret = -EFAULT;
673a394b
EA
1295 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1296 * it would end up going through the fenced access, and we'll get
1297 * different detiling behavior between reading and writing.
1298 * pread/pwrite currently are reading and writing from the CPU
1299 * perspective, requiring manual detiling by the client.
1300 */
6eae0059
CW
1301 if (!i915_gem_object_has_struct_page(obj) ||
1302 cpu_write_needs_clflush(obj)) {
4f1959ee 1303 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
935aaa69
DV
1304 /* Note that the gtt paths might fail with non-page-backed user
1305 * pointers (e.g. gtt mappings when moving data between
1306 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1307 }
673a394b 1308
b50a5371 1309 if (ret == -EFAULT) {
6a2c4232
CW
1310 if (obj->phys_handle)
1311 ret = i915_gem_phys_pwrite(obj, args, file);
6eae0059 1312 else if (i915_gem_object_has_struct_page(obj))
6a2c4232 1313 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
b50a5371
AS
1314 else
1315 ret = -ENODEV;
6a2c4232 1316 }
5c0480f2 1317
35b62a89 1318out:
05394f39 1319 drm_gem_object_unreference(&obj->base);
1d7cfea1 1320unlock:
fbd5a26d 1321 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1322put_rpm:
1323 intel_runtime_pm_put(dev_priv);
1324
673a394b
EA
1325 return ret;
1326}
1327
f4457ae7
CW
1328static int
1329i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
b361237b 1330{
f4457ae7
CW
1331 if (__i915_terminally_wedged(reset_counter))
1332 return -EIO;
d98c52cf 1333
f4457ae7 1334 if (__i915_reset_in_progress(reset_counter)) {
b361237b
CW
1335 /* Non-interruptible callers can't handle -EAGAIN, hence return
1336 * -EIO unconditionally for these. */
1337 if (!interruptible)
1338 return -EIO;
1339
d98c52cf 1340 return -EAGAIN;
b361237b
CW
1341 }
1342
1343 return 0;
1344}
1345
094f9a54
CW
1346static void fake_irq(unsigned long data)
1347{
1348 wake_up_process((struct task_struct *)data);
1349}
1350
1351static bool missed_irq(struct drm_i915_private *dev_priv,
0bc40be8 1352 struct intel_engine_cs *engine)
094f9a54 1353{
0bc40be8 1354 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
094f9a54
CW
1355}
1356
ca5b721e
CW
1357static unsigned long local_clock_us(unsigned *cpu)
1358{
1359 unsigned long t;
1360
1361 /* Cheaply and approximately convert from nanoseconds to microseconds.
1362 * The result and subsequent calculations are also defined in the same
1363 * approximate microseconds units. The principal source of timing
1364 * error here is from the simple truncation.
1365 *
1366 * Note that local_clock() is only defined wrt to the current CPU;
1367 * the comparisons are no longer valid if we switch CPUs. Instead of
1368 * blocking preemption for the entire busywait, we can detect the CPU
1369 * switch and use that as indicator of system load and a reason to
1370 * stop busywaiting, see busywait_stop().
1371 */
1372 *cpu = get_cpu();
1373 t = local_clock() >> 10;
1374 put_cpu();
1375
1376 return t;
1377}
1378
1379static bool busywait_stop(unsigned long timeout, unsigned cpu)
1380{
1381 unsigned this_cpu;
1382
1383 if (time_after(local_clock_us(&this_cpu), timeout))
1384 return true;
1385
1386 return this_cpu != cpu;
1387}
1388
91b0c352 1389static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
b29c19b6 1390{
2def4ad9 1391 unsigned long timeout;
ca5b721e
CW
1392 unsigned cpu;
1393
1394 /* When waiting for high frequency requests, e.g. during synchronous
1395 * rendering split between the CPU and GPU, the finite amount of time
1396 * required to set up the irq and wait upon it limits the response
1397 * rate. By busywaiting on the request completion for a short while we
1398 * can service the high frequency waits as quick as possible. However,
1399 * if it is a slow request, we want to sleep as quickly as possible.
1400 * The tradeoff between waiting and sleeping is roughly the time it
1401 * takes to sleep on a request, on the order of a microsecond.
1402 */
2def4ad9 1403
4a570db5 1404 if (req->engine->irq_refcount)
2def4ad9
CW
1405 return -EBUSY;
1406
821485dc
CW
1407 /* Only spin if we know the GPU is processing this request */
1408 if (!i915_gem_request_started(req, true))
1409 return -EAGAIN;
1410
ca5b721e 1411 timeout = local_clock_us(&cpu) + 5;
2def4ad9 1412 while (!need_resched()) {
eed29a5b 1413 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1414 return 0;
1415
91b0c352
CW
1416 if (signal_pending_state(state, current))
1417 break;
1418
ca5b721e 1419 if (busywait_stop(timeout, cpu))
2def4ad9 1420 break;
b29c19b6 1421
2def4ad9
CW
1422 cpu_relax_lowlatency();
1423 }
821485dc 1424
eed29a5b 1425 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1426 return 0;
1427
1428 return -EAGAIN;
b29c19b6
CW
1429}
1430
b361237b 1431/**
9c654818
JH
1432 * __i915_wait_request - wait until execution of request has finished
1433 * @req: duh!
b361237b
CW
1434 * @interruptible: do an interruptible wait (normally yes)
1435 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
14bb2c11 1436 * @rps: RPS client
b361237b 1437 *
f69061be
DV
1438 * Note: It is of utmost importance that the passed in seqno and reset_counter
1439 * values have been read by the caller in an smp safe manner. Where read-side
1440 * locks are involved, it is sufficient to read the reset_counter before
1441 * unlocking the lock that protects the seqno. For lockless tricks, the
1442 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1443 * inserted.
1444 *
9c654818 1445 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1446 * errno with remaining time filled in timeout argument.
1447 */
9c654818 1448int __i915_wait_request(struct drm_i915_gem_request *req,
b29c19b6 1449 bool interruptible,
5ed0bdf2 1450 s64 *timeout,
2e1b8730 1451 struct intel_rps_client *rps)
b361237b 1452{
666796da 1453 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
c033666a 1454 struct drm_i915_private *dev_priv = req->i915;
168c3f21 1455 const bool irq_test_in_progress =
666796da 1456 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
91b0c352 1457 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
094f9a54 1458 DEFINE_WAIT(wait);
47e9766d 1459 unsigned long timeout_expire;
e0313db0 1460 s64 before = 0; /* Only to silence a compiler warning. */
b361237b
CW
1461 int ret;
1462
9df7575f 1463 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1464
b4716185
CW
1465 if (list_empty(&req->list))
1466 return 0;
1467
1b5a433a 1468 if (i915_gem_request_completed(req, true))
b361237b
CW
1469 return 0;
1470
bb6d1984
CW
1471 timeout_expire = 0;
1472 if (timeout) {
1473 if (WARN_ON(*timeout < 0))
1474 return -EINVAL;
1475
1476 if (*timeout == 0)
1477 return -ETIME;
1478
1479 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
e0313db0
TU
1480
1481 /*
1482 * Record current time in case interrupted by signal, or wedged.
1483 */
1484 before = ktime_get_raw_ns();
bb6d1984 1485 }
b361237b 1486
2e1b8730 1487 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1488 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1489
74328ee5 1490 trace_i915_gem_request_wait_begin(req);
2def4ad9
CW
1491
1492 /* Optimistic spin for the next jiffie before touching IRQs */
91b0c352 1493 ret = __i915_spin_request(req, state);
2def4ad9
CW
1494 if (ret == 0)
1495 goto out;
1496
e2f80391 1497 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
2def4ad9
CW
1498 ret = -ENODEV;
1499 goto out;
1500 }
1501
094f9a54
CW
1502 for (;;) {
1503 struct timer_list timer;
b361237b 1504
e2f80391 1505 prepare_to_wait(&engine->irq_queue, &wait, state);
b361237b 1506
f69061be 1507 /* We need to check whether any gpu reset happened in between
f4457ae7
CW
1508 * the request being submitted and now. If a reset has occurred,
1509 * the request is effectively complete (we either are in the
1510 * process of or have discarded the rendering and completely
1511 * reset the GPU. The results of the request are lost and we
1512 * are free to continue on with the original operation.
1513 */
299259a3 1514 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
f4457ae7 1515 ret = 0;
094f9a54
CW
1516 break;
1517 }
f69061be 1518
1b5a433a 1519 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1520 ret = 0;
1521 break;
1522 }
b361237b 1523
91b0c352 1524 if (signal_pending_state(state, current)) {
094f9a54
CW
1525 ret = -ERESTARTSYS;
1526 break;
1527 }
1528
47e9766d 1529 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1530 ret = -ETIME;
1531 break;
1532 }
1533
1534 timer.function = NULL;
e2f80391 1535 if (timeout || missed_irq(dev_priv, engine)) {
47e9766d
MK
1536 unsigned long expire;
1537
094f9a54 1538 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
e2f80391 1539 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1540 mod_timer(&timer, expire);
1541 }
1542
5035c275 1543 io_schedule();
094f9a54 1544
094f9a54
CW
1545 if (timer.function) {
1546 del_singleshot_timer_sync(&timer);
1547 destroy_timer_on_stack(&timer);
1548 }
1549 }
168c3f21 1550 if (!irq_test_in_progress)
e2f80391 1551 engine->irq_put(engine);
094f9a54 1552
e2f80391 1553 finish_wait(&engine->irq_queue, &wait);
b361237b 1554
2def4ad9 1555out:
2def4ad9
CW
1556 trace_i915_gem_request_wait_end(req);
1557
b361237b 1558 if (timeout) {
e0313db0 1559 s64 tres = *timeout - (ktime_get_raw_ns() - before);
5ed0bdf2
TG
1560
1561 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1562
1563 /*
1564 * Apparently ktime isn't accurate enough and occasionally has a
1565 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1566 * things up to make the test happy. We allow up to 1 jiffy.
1567 *
1568 * This is a regrssion from the timespec->ktime conversion.
1569 */
1570 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1571 *timeout = 0;
b361237b
CW
1572 }
1573
094f9a54 1574 return ret;
b361237b
CW
1575}
1576
fcfa423c
JH
1577int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1578 struct drm_file *file)
1579{
fcfa423c
JH
1580 struct drm_i915_file_private *file_priv;
1581
1582 WARN_ON(!req || !file || req->file_priv);
1583
1584 if (!req || !file)
1585 return -EINVAL;
1586
1587 if (req->file_priv)
1588 return -EINVAL;
1589
fcfa423c
JH
1590 file_priv = file->driver_priv;
1591
1592 spin_lock(&file_priv->mm.lock);
1593 req->file_priv = file_priv;
1594 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1595 spin_unlock(&file_priv->mm.lock);
1596
1597 req->pid = get_pid(task_pid(current));
1598
1599 return 0;
1600}
1601
b4716185
CW
1602static inline void
1603i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1604{
1605 struct drm_i915_file_private *file_priv = request->file_priv;
1606
1607 if (!file_priv)
1608 return;
1609
1610 spin_lock(&file_priv->mm.lock);
1611 list_del(&request->client_list);
1612 request->file_priv = NULL;
1613 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1614
1615 put_pid(request->pid);
1616 request->pid = NULL;
b4716185
CW
1617}
1618
1619static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1620{
1621 trace_i915_gem_request_retire(request);
1622
1623 /* We know the GPU must have read the request to have
1624 * sent us the seqno + interrupt, so use the position
1625 * of tail of the request to update the last known position
1626 * of the GPU head.
1627 *
1628 * Note this requires that we are always called in request
1629 * completion order.
1630 */
1631 request->ringbuf->last_retired_head = request->postfix;
1632
1633 list_del_init(&request->list);
1634 i915_gem_request_remove_from_client(request);
1635
a16a4052 1636 if (request->previous_context) {
73db04cf 1637 if (i915.enable_execlists)
a16a4052
CW
1638 intel_lr_context_unpin(request->previous_context,
1639 request->engine);
73db04cf
CW
1640 }
1641
a16a4052 1642 i915_gem_context_unreference(request->ctx);
b4716185
CW
1643 i915_gem_request_unreference(request);
1644}
1645
1646static void
1647__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1648{
4a570db5 1649 struct intel_engine_cs *engine = req->engine;
b4716185
CW
1650 struct drm_i915_gem_request *tmp;
1651
c033666a 1652 lockdep_assert_held(&engine->i915->dev->struct_mutex);
b4716185
CW
1653
1654 if (list_empty(&req->list))
1655 return;
1656
1657 do {
1658 tmp = list_first_entry(&engine->request_list,
1659 typeof(*tmp), list);
1660
1661 i915_gem_request_retire(tmp);
1662 } while (tmp != req);
1663
1664 WARN_ON(i915_verify_lists(engine->dev));
1665}
1666
b361237b 1667/**
a4b3a571 1668 * Waits for a request to be signaled, and cleans up the
b361237b 1669 * request and object lists appropriately for that event.
14bb2c11 1670 * @req: request to wait on
b361237b
CW
1671 */
1672int
a4b3a571 1673i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1674{
791bee12 1675 struct drm_i915_private *dev_priv = req->i915;
a4b3a571 1676 bool interruptible;
b361237b
CW
1677 int ret;
1678
a4b3a571
DV
1679 interruptible = dev_priv->mm.interruptible;
1680
791bee12 1681 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
b361237b 1682
299259a3 1683 ret = __i915_wait_request(req, interruptible, NULL, NULL);
b4716185
CW
1684 if (ret)
1685 return ret;
d26e3af8 1686
e075a32f
CW
1687 /* If the GPU hung, we want to keep the requests to find the guilty. */
1688 if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
1689 __i915_gem_request_retire__upto(req);
1690
d26e3af8
CW
1691 return 0;
1692}
1693
b361237b
CW
1694/**
1695 * Ensures that all rendering to the object has completed and the object is
1696 * safe to unbind from the GTT or access from the CPU.
14bb2c11
TU
1697 * @obj: i915 gem object
1698 * @readonly: waiting for read access or write
b361237b 1699 */
2e2f351d 1700int
b361237b
CW
1701i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1702 bool readonly)
1703{
b4716185 1704 int ret, i;
b361237b 1705
b4716185 1706 if (!obj->active)
b361237b
CW
1707 return 0;
1708
b4716185
CW
1709 if (readonly) {
1710 if (obj->last_write_req != NULL) {
1711 ret = i915_wait_request(obj->last_write_req);
1712 if (ret)
1713 return ret;
b361237b 1714
4a570db5 1715 i = obj->last_write_req->engine->id;
b4716185
CW
1716 if (obj->last_read_req[i] == obj->last_write_req)
1717 i915_gem_object_retire__read(obj, i);
1718 else
1719 i915_gem_object_retire__write(obj);
1720 }
1721 } else {
666796da 1722 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1723 if (obj->last_read_req[i] == NULL)
1724 continue;
1725
1726 ret = i915_wait_request(obj->last_read_req[i]);
1727 if (ret)
1728 return ret;
1729
1730 i915_gem_object_retire__read(obj, i);
1731 }
d501b1d2 1732 GEM_BUG_ON(obj->active);
b4716185
CW
1733 }
1734
1735 return 0;
1736}
1737
1738static void
1739i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1740 struct drm_i915_gem_request *req)
1741{
4a570db5 1742 int ring = req->engine->id;
b4716185
CW
1743
1744 if (obj->last_read_req[ring] == req)
1745 i915_gem_object_retire__read(obj, ring);
1746 else if (obj->last_write_req == req)
1747 i915_gem_object_retire__write(obj);
1748
e075a32f
CW
1749 if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
1750 __i915_gem_request_retire__upto(req);
b361237b
CW
1751}
1752
3236f57a
CW
1753/* A nonblocking variant of the above wait. This is a highly dangerous routine
1754 * as the object state may change during this call.
1755 */
1756static __must_check int
1757i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1758 struct intel_rps_client *rps,
3236f57a
CW
1759 bool readonly)
1760{
1761 struct drm_device *dev = obj->base.dev;
1762 struct drm_i915_private *dev_priv = dev->dev_private;
666796da 1763 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
b4716185 1764 int ret, i, n = 0;
3236f57a
CW
1765
1766 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1767 BUG_ON(!dev_priv->mm.interruptible);
1768
b4716185 1769 if (!obj->active)
3236f57a
CW
1770 return 0;
1771
b4716185
CW
1772 if (readonly) {
1773 struct drm_i915_gem_request *req;
1774
1775 req = obj->last_write_req;
1776 if (req == NULL)
1777 return 0;
1778
b4716185
CW
1779 requests[n++] = i915_gem_request_reference(req);
1780 } else {
666796da 1781 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1782 struct drm_i915_gem_request *req;
1783
1784 req = obj->last_read_req[i];
1785 if (req == NULL)
1786 continue;
1787
b4716185
CW
1788 requests[n++] = i915_gem_request_reference(req);
1789 }
1790 }
1791
3236f57a 1792 mutex_unlock(&dev->struct_mutex);
299259a3 1793 ret = 0;
b4716185 1794 for (i = 0; ret == 0 && i < n; i++)
299259a3 1795 ret = __i915_wait_request(requests[i], true, NULL, rps);
3236f57a
CW
1796 mutex_lock(&dev->struct_mutex);
1797
b4716185
CW
1798 for (i = 0; i < n; i++) {
1799 if (ret == 0)
1800 i915_gem_object_retire_request(obj, requests[i]);
1801 i915_gem_request_unreference(requests[i]);
1802 }
1803
1804 return ret;
3236f57a
CW
1805}
1806
2e1b8730
CW
1807static struct intel_rps_client *to_rps_client(struct drm_file *file)
1808{
1809 struct drm_i915_file_private *fpriv = file->driver_priv;
1810 return &fpriv->rps;
1811}
1812
673a394b 1813/**
2ef7eeaa
EA
1814 * Called when user space prepares to use an object with the CPU, either
1815 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1816 * @dev: drm device
1817 * @data: ioctl data blob
1818 * @file: drm file
673a394b
EA
1819 */
1820int
1821i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1822 struct drm_file *file)
673a394b
EA
1823{
1824 struct drm_i915_gem_set_domain *args = data;
05394f39 1825 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1826 uint32_t read_domains = args->read_domains;
1827 uint32_t write_domain = args->write_domain;
673a394b
EA
1828 int ret;
1829
2ef7eeaa 1830 /* Only handle setting domains to types used by the CPU. */
21d509e3 1831 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1832 return -EINVAL;
1833
21d509e3 1834 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1835 return -EINVAL;
1836
1837 /* Having something in the write domain implies it's in the read
1838 * domain, and only that read domain. Enforce that in the request.
1839 */
1840 if (write_domain != 0 && read_domains != write_domain)
1841 return -EINVAL;
1842
76c1dec1 1843 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1844 if (ret)
76c1dec1 1845 return ret;
1d7cfea1 1846
a8ad0bd8 1847 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 1848 if (&obj->base == NULL) {
1d7cfea1
CW
1849 ret = -ENOENT;
1850 goto unlock;
76c1dec1 1851 }
673a394b 1852
3236f57a
CW
1853 /* Try to flush the object off the GPU without holding the lock.
1854 * We will repeat the flush holding the lock in the normal manner
1855 * to catch cases where we are gazumped.
1856 */
6e4930f6 1857 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1858 to_rps_client(file),
6e4930f6 1859 !write_domain);
3236f57a
CW
1860 if (ret)
1861 goto unref;
1862
43566ded 1863 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1864 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1865 else
e47c68e9 1866 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1867
031b698a
DV
1868 if (write_domain != 0)
1869 intel_fb_obj_invalidate(obj,
1870 write_domain == I915_GEM_DOMAIN_GTT ?
1871 ORIGIN_GTT : ORIGIN_CPU);
1872
3236f57a 1873unref:
05394f39 1874 drm_gem_object_unreference(&obj->base);
1d7cfea1 1875unlock:
673a394b
EA
1876 mutex_unlock(&dev->struct_mutex);
1877 return ret;
1878}
1879
1880/**
1881 * Called when user space has done writes to this buffer
14bb2c11
TU
1882 * @dev: drm device
1883 * @data: ioctl data blob
1884 * @file: drm file
673a394b
EA
1885 */
1886int
1887i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1888 struct drm_file *file)
673a394b
EA
1889{
1890 struct drm_i915_gem_sw_finish *args = data;
05394f39 1891 struct drm_i915_gem_object *obj;
673a394b
EA
1892 int ret = 0;
1893
76c1dec1 1894 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1895 if (ret)
76c1dec1 1896 return ret;
1d7cfea1 1897
a8ad0bd8 1898 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 1899 if (&obj->base == NULL) {
1d7cfea1
CW
1900 ret = -ENOENT;
1901 goto unlock;
673a394b
EA
1902 }
1903
673a394b 1904 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1905 if (obj->pin_display)
e62b59e4 1906 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1907
05394f39 1908 drm_gem_object_unreference(&obj->base);
1d7cfea1 1909unlock:
673a394b
EA
1910 mutex_unlock(&dev->struct_mutex);
1911 return ret;
1912}
1913
1914/**
14bb2c11
TU
1915 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1916 * it is mapped to.
1917 * @dev: drm device
1918 * @data: ioctl data blob
1919 * @file: drm file
673a394b
EA
1920 *
1921 * While the mapping holds a reference on the contents of the object, it doesn't
1922 * imply a ref on the object itself.
34367381
DV
1923 *
1924 * IMPORTANT:
1925 *
1926 * DRM driver writers who look a this function as an example for how to do GEM
1927 * mmap support, please don't implement mmap support like here. The modern way
1928 * to implement DRM mmap support is with an mmap offset ioctl (like
1929 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1930 * That way debug tooling like valgrind will understand what's going on, hiding
1931 * the mmap call in a driver private ioctl will break that. The i915 driver only
1932 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1933 */
1934int
1935i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1936 struct drm_file *file)
673a394b
EA
1937{
1938 struct drm_i915_gem_mmap *args = data;
1939 struct drm_gem_object *obj;
673a394b
EA
1940 unsigned long addr;
1941
1816f923
AG
1942 if (args->flags & ~(I915_MMAP_WC))
1943 return -EINVAL;
1944
568a58e5 1945 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1946 return -ENODEV;
1947
a8ad0bd8 1948 obj = drm_gem_object_lookup(file, args->handle);
673a394b 1949 if (obj == NULL)
bf79cb91 1950 return -ENOENT;
673a394b 1951
1286ff73
DV
1952 /* prime objects have no backing filp to GEM mmap
1953 * pages from.
1954 */
1955 if (!obj->filp) {
1956 drm_gem_object_unreference_unlocked(obj);
1957 return -EINVAL;
1958 }
1959
6be5ceb0 1960 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1961 PROT_READ | PROT_WRITE, MAP_SHARED,
1962 args->offset);
1816f923
AG
1963 if (args->flags & I915_MMAP_WC) {
1964 struct mm_struct *mm = current->mm;
1965 struct vm_area_struct *vma;
1966
80a89a5e
MH
1967 if (down_write_killable(&mm->mmap_sem)) {
1968 drm_gem_object_unreference_unlocked(obj);
1969 return -EINTR;
1970 }
1816f923
AG
1971 vma = find_vma(mm, addr);
1972 if (vma)
1973 vma->vm_page_prot =
1974 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1975 else
1976 addr = -ENOMEM;
1977 up_write(&mm->mmap_sem);
1978 }
bc9025bd 1979 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1980 if (IS_ERR((void *)addr))
1981 return addr;
1982
1983 args->addr_ptr = (uint64_t) addr;
1984
1985 return 0;
1986}
1987
de151cf6
JB
1988/**
1989 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1990 * @vma: VMA in question
1991 * @vmf: fault info
de151cf6
JB
1992 *
1993 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1994 * from userspace. The fault handler takes care of binding the object to
1995 * the GTT (if needed), allocating and programming a fence register (again,
1996 * only if needed based on whether the old reg is still valid or the object
1997 * is tiled) and inserting a new PTE into the faulting process.
1998 *
1999 * Note that the faulting process may involve evicting existing objects
2000 * from the GTT and/or fence registers to make room. So performance may
2001 * suffer if the GTT working set is large or there are few fence registers
2002 * left.
2003 */
2004int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2005{
05394f39
CW
2006 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2007 struct drm_device *dev = obj->base.dev;
72e96d64
JL
2008 struct drm_i915_private *dev_priv = to_i915(dev);
2009 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 2010 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
2011 pgoff_t page_offset;
2012 unsigned long pfn;
2013 int ret = 0;
0f973f27 2014 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 2015
f65c9168
PZ
2016 intel_runtime_pm_get(dev_priv);
2017
de151cf6
JB
2018 /* We don't use vmf->pgoff since that has the fake offset */
2019 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2020 PAGE_SHIFT;
2021
d9bc7e9f
CW
2022 ret = i915_mutex_lock_interruptible(dev);
2023 if (ret)
2024 goto out;
a00b10c3 2025
db53a302
CW
2026 trace_i915_gem_object_fault(obj, page_offset, true, write);
2027
6e4930f6
CW
2028 /* Try to flush the object off the GPU first without holding the lock.
2029 * Upon reacquiring the lock, we will perform our sanity checks and then
2030 * repeat the flush holding the lock in the normal manner to catch cases
2031 * where we are gazumped.
2032 */
2033 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2034 if (ret)
2035 goto unlock;
2036
eb119bd6
CW
2037 /* Access to snoopable pages through the GTT is incoherent. */
2038 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 2039 ret = -EFAULT;
eb119bd6
CW
2040 goto unlock;
2041 }
2042
c5ad54cf 2043 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 2044 if (obj->base.size >= ggtt->mappable_end &&
e7ded2d7 2045 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 2046 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 2047
c5ad54cf
JL
2048 memset(&view, 0, sizeof(view));
2049 view.type = I915_GGTT_VIEW_PARTIAL;
2050 view.params.partial.offset = rounddown(page_offset, chunk_size);
2051 view.params.partial.size =
2052 min_t(unsigned int,
2053 chunk_size,
2054 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2055 view.params.partial.offset);
2056 }
2057
2058 /* Now pin it into the GTT if needed */
2059 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
2060 if (ret)
2061 goto unlock;
4a684a41 2062
c9839303
CW
2063 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2064 if (ret)
2065 goto unpin;
74898d7e 2066
06d98131 2067 ret = i915_gem_object_get_fence(obj);
d9e86c0e 2068 if (ret)
c9839303 2069 goto unpin;
7d1c4804 2070
b90b91d8 2071 /* Finally, remap it using the new GTT offset */
72e96d64 2072 pfn = ggtt->mappable_base +
c5ad54cf 2073 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 2074 pfn >>= PAGE_SHIFT;
de151cf6 2075
c5ad54cf
JL
2076 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2077 /* Overriding existing pages in partial view does not cause
2078 * us any trouble as TLBs are still valid because the fault
2079 * is due to userspace losing part of the mapping or never
2080 * having accessed it before (at this partials' range).
2081 */
2082 unsigned long base = vma->vm_start +
2083 (view.params.partial.offset << PAGE_SHIFT);
2084 unsigned int i;
b90b91d8 2085
c5ad54cf
JL
2086 for (i = 0; i < view.params.partial.size; i++) {
2087 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
2088 if (ret)
2089 break;
2090 }
2091
2092 obj->fault_mappable = true;
c5ad54cf
JL
2093 } else {
2094 if (!obj->fault_mappable) {
2095 unsigned long size = min_t(unsigned long,
2096 vma->vm_end - vma->vm_start,
2097 obj->base.size);
2098 int i;
2099
2100 for (i = 0; i < size >> PAGE_SHIFT; i++) {
2101 ret = vm_insert_pfn(vma,
2102 (unsigned long)vma->vm_start + i * PAGE_SIZE,
2103 pfn + i);
2104 if (ret)
2105 break;
2106 }
2107
2108 obj->fault_mappable = true;
2109 } else
2110 ret = vm_insert_pfn(vma,
2111 (unsigned long)vmf->virtual_address,
2112 pfn + page_offset);
2113 }
c9839303 2114unpin:
c5ad54cf 2115 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 2116unlock:
de151cf6 2117 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 2118out:
de151cf6 2119 switch (ret) {
d9bc7e9f 2120 case -EIO:
2232f031
DV
2121 /*
2122 * We eat errors when the gpu is terminally wedged to avoid
2123 * userspace unduly crashing (gl has no provisions for mmaps to
2124 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2125 * and so needs to be reported.
2126 */
2127 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
2128 ret = VM_FAULT_SIGBUS;
2129 break;
2130 }
045e769a 2131 case -EAGAIN:
571c608d
DV
2132 /*
2133 * EAGAIN means the gpu is hung and we'll wait for the error
2134 * handler to reset everything when re-faulting in
2135 * i915_mutex_lock_interruptible.
d9bc7e9f 2136 */
c715089f
CW
2137 case 0:
2138 case -ERESTARTSYS:
bed636ab 2139 case -EINTR:
e79e0fe3
DR
2140 case -EBUSY:
2141 /*
2142 * EBUSY is ok: this just means that another thread
2143 * already did the job.
2144 */
f65c9168
PZ
2145 ret = VM_FAULT_NOPAGE;
2146 break;
de151cf6 2147 case -ENOMEM:
f65c9168
PZ
2148 ret = VM_FAULT_OOM;
2149 break;
a7c2e1aa 2150 case -ENOSPC:
45d67817 2151 case -EFAULT:
f65c9168
PZ
2152 ret = VM_FAULT_SIGBUS;
2153 break;
de151cf6 2154 default:
a7c2e1aa 2155 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
2156 ret = VM_FAULT_SIGBUS;
2157 break;
de151cf6 2158 }
f65c9168
PZ
2159
2160 intel_runtime_pm_put(dev_priv);
2161 return ret;
de151cf6
JB
2162}
2163
901782b2
CW
2164/**
2165 * i915_gem_release_mmap - remove physical page mappings
2166 * @obj: obj in question
2167 *
af901ca1 2168 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
2169 * relinquish ownership of the pages back to the system.
2170 *
2171 * It is vital that we remove the page mapping if we have mapped a tiled
2172 * object through the GTT and then lose the fence register due to
2173 * resource pressure. Similarly if the object has been moved out of the
2174 * aperture, than pages mapped into userspace must be revoked. Removing the
2175 * mapping will then trigger a page fault on the next user access, allowing
2176 * fixup by i915_gem_fault().
2177 */
d05ca301 2178void
05394f39 2179i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 2180{
349f2ccf
CW
2181 /* Serialisation between user GTT access and our code depends upon
2182 * revoking the CPU's PTE whilst the mutex is held. The next user
2183 * pagefault then has to wait until we release the mutex.
2184 */
2185 lockdep_assert_held(&obj->base.dev->struct_mutex);
2186
6299f992
CW
2187 if (!obj->fault_mappable)
2188 return;
901782b2 2189
6796cb16
DH
2190 drm_vma_node_unmap(&obj->base.vma_node,
2191 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
2192
2193 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2194 * memory transactions from userspace before we return. The TLB
2195 * flushing implied above by changing the PTE above *should* be
2196 * sufficient, an extra barrier here just provides us with a bit
2197 * of paranoid documentation about our requirement to serialise
2198 * memory writes before touching registers / GSM.
2199 */
2200 wmb();
2201
6299f992 2202 obj->fault_mappable = false;
901782b2
CW
2203}
2204
eedd10f4
CW
2205void
2206i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2207{
2208 struct drm_i915_gem_object *obj;
2209
2210 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2211 i915_gem_release_mmap(obj);
2212}
2213
0fa87796 2214uint32_t
e28f8711 2215i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 2216{
e28f8711 2217 uint32_t gtt_size;
92b88aeb
CW
2218
2219 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
2220 tiling_mode == I915_TILING_NONE)
2221 return size;
92b88aeb
CW
2222
2223 /* Previous chips need a power-of-two fence region when tiling */
7e22dbbb 2224 if (IS_GEN3(dev))
e28f8711 2225 gtt_size = 1024*1024;
92b88aeb 2226 else
e28f8711 2227 gtt_size = 512*1024;
92b88aeb 2228
e28f8711
CW
2229 while (gtt_size < size)
2230 gtt_size <<= 1;
92b88aeb 2231
e28f8711 2232 return gtt_size;
92b88aeb
CW
2233}
2234
de151cf6
JB
2235/**
2236 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
14bb2c11
TU
2237 * @dev: drm device
2238 * @size: object size
2239 * @tiling_mode: tiling mode
2240 * @fenced: is fenced alignemned required or not
de151cf6
JB
2241 *
2242 * Return the required GTT alignment for an object, taking into account
5e783301 2243 * potential fence register mapping.
de151cf6 2244 */
d865110c
ID
2245uint32_t
2246i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2247 int tiling_mode, bool fenced)
de151cf6 2248{
de151cf6
JB
2249 /*
2250 * Minimum alignment is 4k (GTT page size), but might be greater
2251 * if a fence register is needed for the object.
2252 */
d865110c 2253 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 2254 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2255 return 4096;
2256
a00b10c3
CW
2257 /*
2258 * Previous chips need to be aligned to the size of the smallest
2259 * fence register that can contain the object.
2260 */
e28f8711 2261 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
2262}
2263
d8cb5086
CW
2264static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2265{
2266 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2267 int ret;
2268
da494d7c
DV
2269 dev_priv->mm.shrinker_no_lock_stealing = true;
2270
d8cb5086
CW
2271 ret = drm_gem_create_mmap_offset(&obj->base);
2272 if (ret != -ENOSPC)
da494d7c 2273 goto out;
d8cb5086
CW
2274
2275 /* Badly fragmented mmap space? The only way we can recover
2276 * space is by destroying unwanted objects. We can't randomly release
2277 * mmap_offsets as userspace expects them to be persistent for the
2278 * lifetime of the objects. The closest we can is to release the
2279 * offsets on purgeable objects by truncating it and marking it purged,
2280 * which prevents userspace from ever using that object again.
2281 */
21ab4e74
CW
2282 i915_gem_shrink(dev_priv,
2283 obj->base.size >> PAGE_SHIFT,
2284 I915_SHRINK_BOUND |
2285 I915_SHRINK_UNBOUND |
2286 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2287 ret = drm_gem_create_mmap_offset(&obj->base);
2288 if (ret != -ENOSPC)
da494d7c 2289 goto out;
d8cb5086
CW
2290
2291 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2292 ret = drm_gem_create_mmap_offset(&obj->base);
2293out:
2294 dev_priv->mm.shrinker_no_lock_stealing = false;
2295
2296 return ret;
d8cb5086
CW
2297}
2298
2299static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2300{
d8cb5086
CW
2301 drm_gem_free_mmap_offset(&obj->base);
2302}
2303
da6b51d0 2304int
ff72145b
DA
2305i915_gem_mmap_gtt(struct drm_file *file,
2306 struct drm_device *dev,
da6b51d0 2307 uint32_t handle,
ff72145b 2308 uint64_t *offset)
de151cf6 2309{
05394f39 2310 struct drm_i915_gem_object *obj;
de151cf6
JB
2311 int ret;
2312
76c1dec1 2313 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2314 if (ret)
76c1dec1 2315 return ret;
de151cf6 2316
a8ad0bd8 2317 obj = to_intel_bo(drm_gem_object_lookup(file, handle));
c8725226 2318 if (&obj->base == NULL) {
1d7cfea1
CW
2319 ret = -ENOENT;
2320 goto unlock;
2321 }
de151cf6 2322
05394f39 2323 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2324 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2325 ret = -EFAULT;
1d7cfea1 2326 goto out;
ab18282d
CW
2327 }
2328
d8cb5086
CW
2329 ret = i915_gem_object_create_mmap_offset(obj);
2330 if (ret)
2331 goto out;
de151cf6 2332
0de23977 2333 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2334
1d7cfea1 2335out:
05394f39 2336 drm_gem_object_unreference(&obj->base);
1d7cfea1 2337unlock:
de151cf6 2338 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2339 return ret;
de151cf6
JB
2340}
2341
ff72145b
DA
2342/**
2343 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2344 * @dev: DRM device
2345 * @data: GTT mapping ioctl data
2346 * @file: GEM object info
2347 *
2348 * Simply returns the fake offset to userspace so it can mmap it.
2349 * The mmap call will end up in drm_gem_mmap(), which will set things
2350 * up so we can get faults in the handler above.
2351 *
2352 * The fault handler will take care of binding the object into the GTT
2353 * (since it may have been evicted to make room for something), allocating
2354 * a fence register, and mapping the appropriate aperture address into
2355 * userspace.
2356 */
2357int
2358i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2359 struct drm_file *file)
2360{
2361 struct drm_i915_gem_mmap_gtt *args = data;
2362
da6b51d0 2363 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2364}
2365
225067ee
DV
2366/* Immediately discard the backing storage */
2367static void
2368i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2369{
4d6294bf 2370 i915_gem_object_free_mmap_offset(obj);
1286ff73 2371
4d6294bf
CW
2372 if (obj->base.filp == NULL)
2373 return;
e5281ccd 2374
225067ee
DV
2375 /* Our goal here is to return as much of the memory as
2376 * is possible back to the system as we are called from OOM.
2377 * To do this we must instruct the shmfs to drop all of its
2378 * backing pages, *now*.
2379 */
5537252b 2380 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2381 obj->madv = __I915_MADV_PURGED;
2382}
e5281ccd 2383
5537252b
CW
2384/* Try to discard unwanted pages */
2385static void
2386i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2387{
5537252b
CW
2388 struct address_space *mapping;
2389
2390 switch (obj->madv) {
2391 case I915_MADV_DONTNEED:
2392 i915_gem_object_truncate(obj);
2393 case __I915_MADV_PURGED:
2394 return;
2395 }
2396
2397 if (obj->base.filp == NULL)
2398 return;
2399
2400 mapping = file_inode(obj->base.filp)->i_mapping,
2401 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2402}
2403
5cdf5881 2404static void
05394f39 2405i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2406{
85d1225e
DG
2407 struct sgt_iter sgt_iter;
2408 struct page *page;
90797e6d 2409 int ret;
1286ff73 2410
05394f39 2411 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2412
6c085a72 2413 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2414 if (WARN_ON(ret)) {
6c085a72
CW
2415 /* In the event of a disaster, abandon all caches and
2416 * hope for the best.
2417 */
2c22569b 2418 i915_gem_clflush_object(obj, true);
6c085a72
CW
2419 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2420 }
2421
e2273302
ID
2422 i915_gem_gtt_finish_object(obj);
2423
6dacfd2f 2424 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2425 i915_gem_object_save_bit_17_swizzle(obj);
2426
05394f39
CW
2427 if (obj->madv == I915_MADV_DONTNEED)
2428 obj->dirty = 0;
3ef94daa 2429
85d1225e 2430 for_each_sgt_page(page, sgt_iter, obj->pages) {
05394f39 2431 if (obj->dirty)
9da3da66 2432 set_page_dirty(page);
3ef94daa 2433
05394f39 2434 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2435 mark_page_accessed(page);
3ef94daa 2436
09cbfeaf 2437 put_page(page);
3ef94daa 2438 }
05394f39 2439 obj->dirty = 0;
673a394b 2440
9da3da66
CW
2441 sg_free_table(obj->pages);
2442 kfree(obj->pages);
37e680a1 2443}
6c085a72 2444
dd624afd 2445int
37e680a1
CW
2446i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2447{
2448 const struct drm_i915_gem_object_ops *ops = obj->ops;
2449
2f745ad3 2450 if (obj->pages == NULL)
37e680a1
CW
2451 return 0;
2452
a5570178
CW
2453 if (obj->pages_pin_count)
2454 return -EBUSY;
2455
9843877d 2456 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2457
a2165e31
CW
2458 /* ->put_pages might need to allocate memory for the bit17 swizzle
2459 * array, hence protect them from being reaped by removing them from gtt
2460 * lists early. */
35c20a60 2461 list_del(&obj->global_list);
a2165e31 2462
0a798eb9 2463 if (obj->mapping) {
fb8621d3
CW
2464 if (is_vmalloc_addr(obj->mapping))
2465 vunmap(obj->mapping);
2466 else
2467 kunmap(kmap_to_page(obj->mapping));
0a798eb9
CW
2468 obj->mapping = NULL;
2469 }
2470
37e680a1 2471 ops->put_pages(obj);
05394f39 2472 obj->pages = NULL;
37e680a1 2473
5537252b 2474 i915_gem_object_invalidate(obj);
6c085a72
CW
2475
2476 return 0;
2477}
2478
37e680a1 2479static int
6c085a72 2480i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2481{
6c085a72 2482 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2483 int page_count, i;
2484 struct address_space *mapping;
9da3da66
CW
2485 struct sg_table *st;
2486 struct scatterlist *sg;
85d1225e 2487 struct sgt_iter sgt_iter;
e5281ccd 2488 struct page *page;
90797e6d 2489 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2490 int ret;
6c085a72 2491 gfp_t gfp;
e5281ccd 2492
6c085a72
CW
2493 /* Assert that the object is not currently in any GPU domain. As it
2494 * wasn't in the GTT, there shouldn't be any way it could have been in
2495 * a GPU cache
2496 */
2497 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2498 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2499
9da3da66
CW
2500 st = kmalloc(sizeof(*st), GFP_KERNEL);
2501 if (st == NULL)
2502 return -ENOMEM;
2503
05394f39 2504 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2505 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2506 kfree(st);
e5281ccd 2507 return -ENOMEM;
9da3da66 2508 }
e5281ccd 2509
9da3da66
CW
2510 /* Get the list of pages out of our struct file. They'll be pinned
2511 * at this point until we release them.
2512 *
2513 * Fail silently without starting the shrinker
2514 */
496ad9aa 2515 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2516 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2517 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2518 sg = st->sgl;
2519 st->nents = 0;
2520 for (i = 0; i < page_count; i++) {
6c085a72
CW
2521 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2522 if (IS_ERR(page)) {
21ab4e74
CW
2523 i915_gem_shrink(dev_priv,
2524 page_count,
2525 I915_SHRINK_BOUND |
2526 I915_SHRINK_UNBOUND |
2527 I915_SHRINK_PURGEABLE);
6c085a72
CW
2528 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2529 }
2530 if (IS_ERR(page)) {
2531 /* We've tried hard to allocate the memory by reaping
2532 * our own buffer, now let the real VM do its job and
2533 * go down in flames if truly OOM.
2534 */
6c085a72 2535 i915_gem_shrink_all(dev_priv);
f461d1be 2536 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2537 if (IS_ERR(page)) {
2538 ret = PTR_ERR(page);
6c085a72 2539 goto err_pages;
e2273302 2540 }
6c085a72 2541 }
426729dc
KRW
2542#ifdef CONFIG_SWIOTLB
2543 if (swiotlb_nr_tbl()) {
2544 st->nents++;
2545 sg_set_page(sg, page, PAGE_SIZE, 0);
2546 sg = sg_next(sg);
2547 continue;
2548 }
2549#endif
90797e6d
ID
2550 if (!i || page_to_pfn(page) != last_pfn + 1) {
2551 if (i)
2552 sg = sg_next(sg);
2553 st->nents++;
2554 sg_set_page(sg, page, PAGE_SIZE, 0);
2555 } else {
2556 sg->length += PAGE_SIZE;
2557 }
2558 last_pfn = page_to_pfn(page);
3bbbe706
DV
2559
2560 /* Check that the i965g/gm workaround works. */
2561 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2562 }
426729dc
KRW
2563#ifdef CONFIG_SWIOTLB
2564 if (!swiotlb_nr_tbl())
2565#endif
2566 sg_mark_end(sg);
74ce6b6c
CW
2567 obj->pages = st;
2568
e2273302
ID
2569 ret = i915_gem_gtt_prepare_object(obj);
2570 if (ret)
2571 goto err_pages;
2572
6dacfd2f 2573 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2574 i915_gem_object_do_bit_17_swizzle(obj);
2575
656bfa3a
DV
2576 if (obj->tiling_mode != I915_TILING_NONE &&
2577 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2578 i915_gem_object_pin_pages(obj);
2579
e5281ccd
CW
2580 return 0;
2581
2582err_pages:
90797e6d 2583 sg_mark_end(sg);
85d1225e
DG
2584 for_each_sgt_page(page, sgt_iter, st)
2585 put_page(page);
9da3da66
CW
2586 sg_free_table(st);
2587 kfree(st);
0820baf3
CW
2588
2589 /* shmemfs first checks if there is enough memory to allocate the page
2590 * and reports ENOSPC should there be insufficient, along with the usual
2591 * ENOMEM for a genuine allocation failure.
2592 *
2593 * We use ENOSPC in our driver to mean that we have run out of aperture
2594 * space and so want to translate the error from shmemfs back to our
2595 * usual understanding of ENOMEM.
2596 */
e2273302
ID
2597 if (ret == -ENOSPC)
2598 ret = -ENOMEM;
2599
2600 return ret;
673a394b
EA
2601}
2602
37e680a1
CW
2603/* Ensure that the associated pages are gathered from the backing storage
2604 * and pinned into our object. i915_gem_object_get_pages() may be called
2605 * multiple times before they are released by a single call to
2606 * i915_gem_object_put_pages() - once the pages are no longer referenced
2607 * either as a result of memory pressure (reaping pages under the shrinker)
2608 * or as the object is itself released.
2609 */
2610int
2611i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2612{
2613 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2614 const struct drm_i915_gem_object_ops *ops = obj->ops;
2615 int ret;
2616
2f745ad3 2617 if (obj->pages)
37e680a1
CW
2618 return 0;
2619
43e28f09 2620 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2621 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2622 return -EFAULT;
43e28f09
CW
2623 }
2624
a5570178
CW
2625 BUG_ON(obj->pages_pin_count);
2626
37e680a1
CW
2627 ret = ops->get_pages(obj);
2628 if (ret)
2629 return ret;
2630
35c20a60 2631 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2632
2633 obj->get_page.sg = obj->pages->sgl;
2634 obj->get_page.last = 0;
2635
37e680a1 2636 return 0;
673a394b
EA
2637}
2638
dd6034c6
DG
2639/* The 'mapping' part of i915_gem_object_pin_map() below */
2640static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2641{
2642 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2643 struct sg_table *sgt = obj->pages;
85d1225e
DG
2644 struct sgt_iter sgt_iter;
2645 struct page *page;
b338fa47
DG
2646 struct page *stack_pages[32];
2647 struct page **pages = stack_pages;
dd6034c6
DG
2648 unsigned long i = 0;
2649 void *addr;
2650
2651 /* A single page can always be kmapped */
2652 if (n_pages == 1)
2653 return kmap(sg_page(sgt->sgl));
2654
b338fa47
DG
2655 if (n_pages > ARRAY_SIZE(stack_pages)) {
2656 /* Too big for stack -- allocate temporary array instead */
2657 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2658 if (!pages)
2659 return NULL;
2660 }
dd6034c6 2661
85d1225e
DG
2662 for_each_sgt_page(page, sgt_iter, sgt)
2663 pages[i++] = page;
dd6034c6
DG
2664
2665 /* Check that we have the expected number of pages */
2666 GEM_BUG_ON(i != n_pages);
2667
2668 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2669
b338fa47
DG
2670 if (pages != stack_pages)
2671 drm_free_large(pages);
dd6034c6
DG
2672
2673 return addr;
2674}
2675
2676/* get, pin, and map the pages of the object into kernel space */
0a798eb9
CW
2677void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2678{
2679 int ret;
2680
2681 lockdep_assert_held(&obj->base.dev->struct_mutex);
2682
2683 ret = i915_gem_object_get_pages(obj);
2684 if (ret)
2685 return ERR_PTR(ret);
2686
2687 i915_gem_object_pin_pages(obj);
2688
dd6034c6
DG
2689 if (!obj->mapping) {
2690 obj->mapping = i915_gem_object_map(obj);
2691 if (!obj->mapping) {
0a798eb9
CW
2692 i915_gem_object_unpin_pages(obj);
2693 return ERR_PTR(-ENOMEM);
2694 }
2695 }
2696
2697 return obj->mapping;
2698}
2699
b4716185 2700void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2701 struct drm_i915_gem_request *req)
673a394b 2702{
b4716185 2703 struct drm_i915_gem_object *obj = vma->obj;
e2f80391 2704 struct intel_engine_cs *engine;
b2af0376 2705
666796da 2706 engine = i915_gem_request_get_engine(req);
673a394b
EA
2707
2708 /* Add a reference if we're newly entering the active list. */
b4716185 2709 if (obj->active == 0)
05394f39 2710 drm_gem_object_reference(&obj->base);
666796da 2711 obj->active |= intel_engine_flag(engine);
e35a41de 2712
117897f4 2713 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
e2f80391 2714 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
caea7476 2715
1c7f4bca 2716 list_move_tail(&vma->vm_link, &vma->vm->active_list);
caea7476
CW
2717}
2718
b4716185
CW
2719static void
2720i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2721{
d501b1d2
CW
2722 GEM_BUG_ON(obj->last_write_req == NULL);
2723 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
b4716185
CW
2724
2725 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2726 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2727}
2728
caea7476 2729static void
b4716185 2730i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2731{
feb822cf 2732 struct i915_vma *vma;
ce44b0ea 2733
d501b1d2
CW
2734 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2735 GEM_BUG_ON(!(obj->active & (1 << ring)));
b4716185 2736
117897f4 2737 list_del_init(&obj->engine_list[ring]);
b4716185
CW
2738 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2739
4a570db5 2740 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
b4716185
CW
2741 i915_gem_object_retire__write(obj);
2742
2743 obj->active &= ~(1 << ring);
2744 if (obj->active)
2745 return;
caea7476 2746
6c246959
CW
2747 /* Bump our place on the bound list to keep it roughly in LRU order
2748 * so that we don't steal from recently used but inactive objects
2749 * (unless we are forced to ofc!)
2750 */
2751 list_move_tail(&obj->global_list,
2752 &to_i915(obj->base.dev)->mm.bound_list);
2753
1c7f4bca
CW
2754 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2755 if (!list_empty(&vma->vm_link))
2756 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
feb822cf 2757 }
caea7476 2758
97b2a6a1 2759 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2760 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2761}
2762
9d773091 2763static int
c033666a 2764i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
53d227f2 2765{
e2f80391 2766 struct intel_engine_cs *engine;
29dcb570 2767 int ret;
53d227f2 2768
107f27a5 2769 /* Carefully retire all requests without writing to the rings */
b4ac5afc 2770 for_each_engine(engine, dev_priv) {
666796da 2771 ret = intel_engine_idle(engine);
107f27a5
CW
2772 if (ret)
2773 return ret;
9d773091 2774 }
c033666a 2775 i915_gem_retire_requests(dev_priv);
107f27a5
CW
2776
2777 /* Finally reset hw state */
29dcb570 2778 for_each_engine(engine, dev_priv)
e2f80391 2779 intel_ring_init_seqno(engine, seqno);
498d2ac1 2780
9d773091 2781 return 0;
53d227f2
DV
2782}
2783
fca26bb4
MK
2784int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2785{
2786 struct drm_i915_private *dev_priv = dev->dev_private;
2787 int ret;
2788
2789 if (seqno == 0)
2790 return -EINVAL;
2791
2792 /* HWS page needs to be set less than what we
2793 * will inject to ring
2794 */
c033666a 2795 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
fca26bb4
MK
2796 if (ret)
2797 return ret;
2798
2799 /* Carefully set the last_seqno value so that wrap
2800 * detection still works
2801 */
2802 dev_priv->next_seqno = seqno;
2803 dev_priv->last_seqno = seqno - 1;
2804 if (dev_priv->last_seqno == 0)
2805 dev_priv->last_seqno--;
2806
2807 return 0;
2808}
2809
9d773091 2810int
c033666a 2811i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
53d227f2 2812{
9d773091
CW
2813 /* reserve 0 for non-seqno */
2814 if (dev_priv->next_seqno == 0) {
c033666a 2815 int ret = i915_gem_init_seqno(dev_priv, 0);
9d773091
CW
2816 if (ret)
2817 return ret;
53d227f2 2818
9d773091
CW
2819 dev_priv->next_seqno = 1;
2820 }
53d227f2 2821
f72b3435 2822 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2823 return 0;
53d227f2
DV
2824}
2825
bf7dc5b7
JH
2826/*
2827 * NB: This function is not allowed to fail. Doing so would mean the the
2828 * request is not being tracked for completion but the work itself is
2829 * going to happen on the hardware. This would be a Bad Thing(tm).
2830 */
75289874 2831void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2832 struct drm_i915_gem_object *obj,
2833 bool flush_caches)
673a394b 2834{
e2f80391 2835 struct intel_engine_cs *engine;
75289874 2836 struct drm_i915_private *dev_priv;
48e29f55 2837 struct intel_ringbuffer *ringbuf;
6d3d8274 2838 u32 request_start;
0251a963 2839 u32 reserved_tail;
3cce469c
CW
2840 int ret;
2841
48e29f55 2842 if (WARN_ON(request == NULL))
bf7dc5b7 2843 return;
48e29f55 2844
4a570db5 2845 engine = request->engine;
39dabecd 2846 dev_priv = request->i915;
75289874
JH
2847 ringbuf = request->ringbuf;
2848
29b1b415
JH
2849 /*
2850 * To ensure that this call will not fail, space for its emissions
2851 * should already have been reserved in the ring buffer. Let the ring
2852 * know that it is time to use that space up.
2853 */
48e29f55 2854 request_start = intel_ring_get_tail(ringbuf);
0251a963
CW
2855 reserved_tail = request->reserved_space;
2856 request->reserved_space = 0;
2857
cc889e0f
DV
2858 /*
2859 * Emit any outstanding flushes - execbuf can fail to emit the flush
2860 * after having emitted the batchbuffer command. Hence we need to fix
2861 * things up similar to emitting the lazy request. The difference here
2862 * is that the flush _must_ happen before the next request, no matter
2863 * what.
2864 */
5b4a60c2
JH
2865 if (flush_caches) {
2866 if (i915.enable_execlists)
4866d729 2867 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2868 else
4866d729 2869 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2870 /* Not allowed to fail! */
2871 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2872 }
cc889e0f 2873
7c90b7de
CW
2874 trace_i915_gem_request_add(request);
2875
2876 request->head = request_start;
2877
2878 /* Whilst this request exists, batch_obj will be on the
2879 * active_list, and so will hold the active reference. Only when this
2880 * request is retired will the the batch_obj be moved onto the
2881 * inactive_list and lose its active reference. Hence we do not need
2882 * to explicitly hold another reference here.
2883 */
2884 request->batch_obj = obj;
2885
2886 /* Seal the request and mark it as pending execution. Note that
2887 * we may inspect this state, without holding any locks, during
2888 * hangcheck. Hence we apply the barrier to ensure that we do not
2889 * see a more recent value in the hws than we are tracking.
2890 */
2891 request->emitted_jiffies = jiffies;
2892 request->previous_seqno = engine->last_submitted_seqno;
2893 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2894 list_add_tail(&request->list, &engine->request_list);
2895
a71d8d94
CW
2896 /* Record the position of the start of the request so that
2897 * should we detect the updated seqno part-way through the
2898 * GPU processing the request, we never over-estimate the
2899 * position of the head.
2900 */
6d3d8274 2901 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2902
bf7dc5b7 2903 if (i915.enable_execlists)
e2f80391 2904 ret = engine->emit_request(request);
bf7dc5b7 2905 else {
e2f80391 2906 ret = engine->add_request(request);
53292cdb
MT
2907
2908 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2909 }
bf7dc5b7
JH
2910 /* Not allowed to fail! */
2911 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2912
c033666a 2913 i915_queue_hangcheck(engine->i915);
10cd45b6 2914
87255483
DV
2915 queue_delayed_work(dev_priv->wq,
2916 &dev_priv->mm.retire_work,
2917 round_jiffies_up_relative(HZ));
7d993739 2918 intel_mark_busy(dev_priv);
cc889e0f 2919
29b1b415 2920 /* Sanity check that the reserved size was large enough. */
0251a963
CW
2921 ret = intel_ring_get_tail(ringbuf) - request_start;
2922 if (ret < 0)
2923 ret += ringbuf->size;
2924 WARN_ONCE(ret > reserved_tail,
2925 "Not enough space reserved (%d bytes) "
2926 "for adding the request (%d bytes)\n",
2927 reserved_tail, ret);
673a394b
EA
2928}
2929
939fd762 2930static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
e2efd130 2931 const struct i915_gem_context *ctx)
be62acb4 2932{
44e2c070 2933 unsigned long elapsed;
be62acb4 2934
44e2c070
MK
2935 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2936
2937 if (ctx->hang_stats.banned)
be62acb4
MK
2938 return true;
2939
676fa572
CW
2940 if (ctx->hang_stats.ban_period_seconds &&
2941 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2942 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2943 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2944 return true;
88b4aa87
MK
2945 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2946 if (i915_stop_ring_allow_warn(dev_priv))
2947 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2948 return true;
3fac8978 2949 }
be62acb4
MK
2950 }
2951
2952 return false;
2953}
2954
939fd762 2955static void i915_set_reset_status(struct drm_i915_private *dev_priv,
e2efd130 2956 struct i915_gem_context *ctx,
b6b0fac0 2957 const bool guilty)
aa60c664 2958{
44e2c070
MK
2959 struct i915_ctx_hang_stats *hs;
2960
2961 if (WARN_ON(!ctx))
2962 return;
aa60c664 2963
44e2c070
MK
2964 hs = &ctx->hang_stats;
2965
2966 if (guilty) {
939fd762 2967 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2968 hs->batch_active++;
2969 hs->guilty_ts = get_seconds();
2970 } else {
2971 hs->batch_pending++;
aa60c664
MK
2972 }
2973}
2974
abfe262a
JH
2975void i915_gem_request_free(struct kref *req_ref)
2976{
2977 struct drm_i915_gem_request *req = container_of(req_ref,
2978 typeof(*req), ref);
efab6d8d 2979 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2980}
2981
26827088 2982static inline int
0bc40be8 2983__i915_gem_request_alloc(struct intel_engine_cs *engine,
e2efd130 2984 struct i915_gem_context *ctx,
26827088 2985 struct drm_i915_gem_request **req_out)
6689cb2b 2986{
c033666a 2987 struct drm_i915_private *dev_priv = engine->i915;
299259a3 2988 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
eed29a5b 2989 struct drm_i915_gem_request *req;
6689cb2b 2990 int ret;
6689cb2b 2991
217e46b5
JH
2992 if (!req_out)
2993 return -EINVAL;
2994
bccca494 2995 *req_out = NULL;
6689cb2b 2996
f4457ae7
CW
2997 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2998 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2999 * and restart.
3000 */
3001 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
299259a3
CW
3002 if (ret)
3003 return ret;
3004
eed29a5b
DV
3005 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
3006 if (req == NULL)
6689cb2b
JH
3007 return -ENOMEM;
3008
c033666a 3009 ret = i915_gem_get_seqno(engine->i915, &req->seqno);
9a0c1e27
CW
3010 if (ret)
3011 goto err;
6689cb2b 3012
40e895ce
JH
3013 kref_init(&req->ref);
3014 req->i915 = dev_priv;
4a570db5 3015 req->engine = engine;
299259a3 3016 req->reset_counter = reset_counter;
40e895ce
JH
3017 req->ctx = ctx;
3018 i915_gem_context_reference(req->ctx);
6689cb2b 3019
29b1b415
JH
3020 /*
3021 * Reserve space in the ring buffer for all the commands required to
3022 * eventually emit this request. This is to guarantee that the
3023 * i915_add_request() call can't fail. Note that the reserve may need
3024 * to be redone if the request is not actually submitted straight
3025 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 3026 */
0251a963 3027 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
bfa01200
CW
3028
3029 if (i915.enable_execlists)
3030 ret = intel_logical_ring_alloc_request_extras(req);
3031 else
3032 ret = intel_ring_alloc_request_extras(req);
3033 if (ret)
3034 goto err_ctx;
29b1b415 3035
bccca494 3036 *req_out = req;
6689cb2b 3037 return 0;
9a0c1e27 3038
bfa01200
CW
3039err_ctx:
3040 i915_gem_context_unreference(ctx);
9a0c1e27
CW
3041err:
3042 kmem_cache_free(dev_priv->requests, req);
3043 return ret;
0e50e96b
MK
3044}
3045
26827088
DG
3046/**
3047 * i915_gem_request_alloc - allocate a request structure
3048 *
3049 * @engine: engine that we wish to issue the request on.
3050 * @ctx: context that the request will be associated with.
3051 * This can be NULL if the request is not directly related to
3052 * any specific user context, in which case this function will
3053 * choose an appropriate context to use.
3054 *
3055 * Returns a pointer to the allocated request if successful,
3056 * or an error code if not.
3057 */
3058struct drm_i915_gem_request *
3059i915_gem_request_alloc(struct intel_engine_cs *engine,
e2efd130 3060 struct i915_gem_context *ctx)
26827088
DG
3061{
3062 struct drm_i915_gem_request *req;
3063 int err;
3064
3065 if (ctx == NULL)
c033666a 3066 ctx = engine->i915->kernel_context;
26827088
DG
3067 err = __i915_gem_request_alloc(engine, ctx, &req);
3068 return err ? ERR_PTR(err) : req;
3069}
3070
8d9fc7fd 3071struct drm_i915_gem_request *
0bc40be8 3072i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 3073{
4db080f9
CW
3074 struct drm_i915_gem_request *request;
3075
0bc40be8 3076 list_for_each_entry(request, &engine->request_list, list) {
1b5a433a 3077 if (i915_gem_request_completed(request, false))
4db080f9 3078 continue;
aa60c664 3079
b6b0fac0 3080 return request;
4db080f9 3081 }
b6b0fac0
MK
3082
3083 return NULL;
3084}
3085
666796da 3086static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
0bc40be8 3087 struct intel_engine_cs *engine)
b6b0fac0
MK
3088{
3089 struct drm_i915_gem_request *request;
3090 bool ring_hung;
3091
0bc40be8 3092 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
3093
3094 if (request == NULL)
3095 return;
3096
0bc40be8 3097 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 3098
939fd762 3099 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0 3100
0bc40be8 3101 list_for_each_entry_continue(request, &engine->request_list, list)
939fd762 3102 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 3103}
aa60c664 3104
666796da 3105static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
0bc40be8 3106 struct intel_engine_cs *engine)
4db080f9 3107{
608c1a52
CW
3108 struct intel_ringbuffer *buffer;
3109
0bc40be8 3110 while (!list_empty(&engine->active_list)) {
05394f39 3111 struct drm_i915_gem_object *obj;
9375e446 3112
0bc40be8 3113 obj = list_first_entry(&engine->active_list,
05394f39 3114 struct drm_i915_gem_object,
117897f4 3115 engine_list[engine->id]);
9375e446 3116
0bc40be8 3117 i915_gem_object_retire__read(obj, engine->id);
673a394b 3118 }
1d62beea 3119
dcb4c12a
OM
3120 /*
3121 * Clear the execlists queue up before freeing the requests, as those
3122 * are the ones that keep the context and ringbuffer backing objects
3123 * pinned in place.
3124 */
dcb4c12a 3125
7de1691a 3126 if (i915.enable_execlists) {
27af5eea
TU
3127 /* Ensure irq handler finishes or is cancelled. */
3128 tasklet_kill(&engine->irq_tasklet);
1197b4f2 3129
e39d42fa 3130 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
3131 }
3132
1d62beea
BW
3133 /*
3134 * We must free the requests after all the corresponding objects have
3135 * been moved off active lists. Which is the same order as the normal
3136 * retire_requests function does. This is important if object hold
3137 * implicit references on things like e.g. ppgtt address spaces through
3138 * the request.
3139 */
0bc40be8 3140 while (!list_empty(&engine->request_list)) {
1d62beea
BW
3141 struct drm_i915_gem_request *request;
3142
0bc40be8 3143 request = list_first_entry(&engine->request_list,
1d62beea
BW
3144 struct drm_i915_gem_request,
3145 list);
3146
b4716185 3147 i915_gem_request_retire(request);
1d62beea 3148 }
608c1a52
CW
3149
3150 /* Having flushed all requests from all queues, we know that all
3151 * ringbuffers must now be empty. However, since we do not reclaim
3152 * all space when retiring the request (to prevent HEADs colliding
3153 * with rapid ringbuffer wraparound) the amount of available space
3154 * upon reset is less than when we start. Do one more pass over
3155 * all the ringbuffers to reset last_retired_head.
3156 */
0bc40be8 3157 list_for_each_entry(buffer, &engine->buffers, link) {
608c1a52
CW
3158 buffer->last_retired_head = buffer->tail;
3159 intel_ring_update_space(buffer);
3160 }
2ed53a94
CW
3161
3162 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
673a394b
EA
3163}
3164
069efc1d 3165void i915_gem_reset(struct drm_device *dev)
673a394b 3166{
77f01230 3167 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 3168 struct intel_engine_cs *engine;
673a394b 3169
4db080f9
CW
3170 /*
3171 * Before we free the objects from the requests, we need to inspect
3172 * them for finding the guilty party. As the requests only borrow
3173 * their reference to the objects, the inspection must be done first.
3174 */
b4ac5afc 3175 for_each_engine(engine, dev_priv)
666796da 3176 i915_gem_reset_engine_status(dev_priv, engine);
4db080f9 3177
b4ac5afc 3178 for_each_engine(engine, dev_priv)
666796da 3179 i915_gem_reset_engine_cleanup(dev_priv, engine);
dfaae392 3180
acce9ffa
BW
3181 i915_gem_context_reset(dev);
3182
19b2dbde 3183 i915_gem_restore_fences(dev);
b4716185
CW
3184
3185 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3186}
3187
3188/**
3189 * This function clears the request list as sequence numbers are passed.
14bb2c11 3190 * @engine: engine to retire requests on
673a394b 3191 */
1cf0ba14 3192void
0bc40be8 3193i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
673a394b 3194{
0bc40be8 3195 WARN_ON(i915_verify_lists(engine->dev));
673a394b 3196
832a3aad
CW
3197 /* Retire requests first as we use it above for the early return.
3198 * If we retire requests last, we may use a later seqno and so clear
3199 * the requests lists without clearing the active list, leading to
3200 * confusion.
e9103038 3201 */
0bc40be8 3202 while (!list_empty(&engine->request_list)) {
673a394b 3203 struct drm_i915_gem_request *request;
673a394b 3204
0bc40be8 3205 request = list_first_entry(&engine->request_list,
673a394b
EA
3206 struct drm_i915_gem_request,
3207 list);
673a394b 3208
1b5a433a 3209 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
3210 break;
3211
b4716185 3212 i915_gem_request_retire(request);
b84d5f0c 3213 }
673a394b 3214
832a3aad
CW
3215 /* Move any buffers on the active list that are no longer referenced
3216 * by the ringbuffer to the flushing/inactive lists as appropriate,
3217 * before we free the context associated with the requests.
3218 */
0bc40be8 3219 while (!list_empty(&engine->active_list)) {
832a3aad
CW
3220 struct drm_i915_gem_object *obj;
3221
0bc40be8
TU
3222 obj = list_first_entry(&engine->active_list,
3223 struct drm_i915_gem_object,
117897f4 3224 engine_list[engine->id]);
832a3aad 3225
0bc40be8 3226 if (!list_empty(&obj->last_read_req[engine->id]->list))
832a3aad
CW
3227 break;
3228
0bc40be8 3229 i915_gem_object_retire__read(obj, engine->id);
832a3aad
CW
3230 }
3231
0bc40be8
TU
3232 if (unlikely(engine->trace_irq_req &&
3233 i915_gem_request_completed(engine->trace_irq_req, true))) {
3234 engine->irq_put(engine);
3235 i915_gem_request_assign(&engine->trace_irq_req, NULL);
9d34e5db 3236 }
23bc5982 3237
0bc40be8 3238 WARN_ON(i915_verify_lists(engine->dev));
673a394b
EA
3239}
3240
b29c19b6 3241bool
c033666a 3242i915_gem_retire_requests(struct drm_i915_private *dev_priv)
b09a1fec 3243{
e2f80391 3244 struct intel_engine_cs *engine;
b29c19b6 3245 bool idle = true;
b09a1fec 3246
b4ac5afc 3247 for_each_engine(engine, dev_priv) {
e2f80391
TU
3248 i915_gem_retire_requests_ring(engine);
3249 idle &= list_empty(&engine->request_list);
c86ee3a9 3250 if (i915.enable_execlists) {
27af5eea 3251 spin_lock_bh(&engine->execlist_lock);
e2f80391 3252 idle &= list_empty(&engine->execlist_queue);
27af5eea 3253 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 3254 }
b29c19b6
CW
3255 }
3256
3257 if (idle)
3258 mod_delayed_work(dev_priv->wq,
3259 &dev_priv->mm.idle_work,
3260 msecs_to_jiffies(100));
3261
3262 return idle;
b09a1fec
CW
3263}
3264
75ef9da2 3265static void
673a394b
EA
3266i915_gem_retire_work_handler(struct work_struct *work)
3267{
b29c19b6
CW
3268 struct drm_i915_private *dev_priv =
3269 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3270 struct drm_device *dev = dev_priv->dev;
0a58705b 3271 bool idle;
673a394b 3272
891b48cf 3273 /* Come back later if the device is busy... */
b29c19b6
CW
3274 idle = false;
3275 if (mutex_trylock(&dev->struct_mutex)) {
c033666a 3276 idle = i915_gem_retire_requests(dev_priv);
b29c19b6 3277 mutex_unlock(&dev->struct_mutex);
673a394b 3278 }
b29c19b6 3279 if (!idle)
bcb45086
CW
3280 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3281 round_jiffies_up_relative(HZ));
b29c19b6 3282}
0a58705b 3283
b29c19b6
CW
3284static void
3285i915_gem_idle_work_handler(struct work_struct *work)
3286{
3287 struct drm_i915_private *dev_priv =
3288 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 3289 struct drm_device *dev = dev_priv->dev;
b4ac5afc 3290 struct intel_engine_cs *engine;
b29c19b6 3291
b4ac5afc
DG
3292 for_each_engine(engine, dev_priv)
3293 if (!list_empty(&engine->request_list))
423795cb 3294 return;
35c94185 3295
30ecad77 3296 /* we probably should sync with hangcheck here, using cancel_work_sync.
b4ac5afc 3297 * Also locking seems to be fubar here, engine->request_list is protected
30ecad77
DV
3298 * by dev->struct_mutex. */
3299
7d993739 3300 intel_mark_idle(dev_priv);
35c94185
CW
3301
3302 if (mutex_trylock(&dev->struct_mutex)) {
b4ac5afc 3303 for_each_engine(engine, dev_priv)
e2f80391 3304 i915_gem_batch_pool_fini(&engine->batch_pool);
b29c19b6 3305
35c94185
CW
3306 mutex_unlock(&dev->struct_mutex);
3307 }
673a394b
EA
3308}
3309
30dfebf3
DV
3310/**
3311 * Ensures that an object will eventually get non-busy by flushing any required
3312 * write domains, emitting any outstanding lazy request and retiring and
3313 * completed requests.
14bb2c11 3314 * @obj: object to flush
30dfebf3
DV
3315 */
3316static int
3317i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3318{
a5ac0f90 3319 int i;
b4716185
CW
3320
3321 if (!obj->active)
3322 return 0;
30dfebf3 3323
666796da 3324 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185 3325 struct drm_i915_gem_request *req;
41c52415 3326
b4716185
CW
3327 req = obj->last_read_req[i];
3328 if (req == NULL)
3329 continue;
3330
e6db7469 3331 if (i915_gem_request_completed(req, true))
b4716185 3332 i915_gem_object_retire__read(obj, i);
30dfebf3
DV
3333 }
3334
3335 return 0;
3336}
3337
23ba4fd0
BW
3338/**
3339 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3340 * @dev: drm device pointer
3341 * @data: ioctl data blob
3342 * @file: drm file pointer
23ba4fd0
BW
3343 *
3344 * Returns 0 if successful, else an error is returned with the remaining time in
3345 * the timeout parameter.
3346 * -ETIME: object is still busy after timeout
3347 * -ERESTARTSYS: signal interrupted the wait
3348 * -ENONENT: object doesn't exist
3349 * Also possible, but rare:
3350 * -EAGAIN: GPU wedged
3351 * -ENOMEM: damn
3352 * -ENODEV: Internal IRQ fail
3353 * -E?: The add request failed
3354 *
3355 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3356 * non-zero timeout parameter the wait ioctl will wait for the given number of
3357 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3358 * without holding struct_mutex the object may become re-busied before this
3359 * function completes. A similar but shorter * race condition exists in the busy
3360 * ioctl
3361 */
3362int
3363i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3364{
3365 struct drm_i915_gem_wait *args = data;
3366 struct drm_i915_gem_object *obj;
666796da 3367 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185
CW
3368 int i, n = 0;
3369 int ret;
23ba4fd0 3370
11b5d511
DV
3371 if (args->flags != 0)
3372 return -EINVAL;
3373
23ba4fd0
BW
3374 ret = i915_mutex_lock_interruptible(dev);
3375 if (ret)
3376 return ret;
3377
a8ad0bd8 3378 obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
23ba4fd0
BW
3379 if (&obj->base == NULL) {
3380 mutex_unlock(&dev->struct_mutex);
3381 return -ENOENT;
3382 }
3383
30dfebf3
DV
3384 /* Need to make sure the object gets inactive eventually. */
3385 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3386 if (ret)
3387 goto out;
3388
b4716185 3389 if (!obj->active)
97b2a6a1 3390 goto out;
23ba4fd0 3391
23ba4fd0 3392 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3393 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3394 */
762e4583 3395 if (args->timeout_ns == 0) {
23ba4fd0
BW
3396 ret = -ETIME;
3397 goto out;
3398 }
3399
3400 drm_gem_object_unreference(&obj->base);
b4716185 3401
666796da 3402 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
3403 if (obj->last_read_req[i] == NULL)
3404 continue;
3405
3406 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3407 }
3408
23ba4fd0
BW
3409 mutex_unlock(&dev->struct_mutex);
3410
b4716185
CW
3411 for (i = 0; i < n; i++) {
3412 if (ret == 0)
299259a3 3413 ret = __i915_wait_request(req[i], true,
b4716185 3414 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3415 to_rps_client(file));
73db04cf 3416 i915_gem_request_unreference(req[i]);
b4716185 3417 }
ff865885 3418 return ret;
23ba4fd0
BW
3419
3420out:
3421 drm_gem_object_unreference(&obj->base);
3422 mutex_unlock(&dev->struct_mutex);
3423 return ret;
3424}
3425
b4716185
CW
3426static int
3427__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3428 struct intel_engine_cs *to,
91af127f
JH
3429 struct drm_i915_gem_request *from_req,
3430 struct drm_i915_gem_request **to_req)
b4716185
CW
3431{
3432 struct intel_engine_cs *from;
3433 int ret;
3434
666796da 3435 from = i915_gem_request_get_engine(from_req);
b4716185
CW
3436 if (to == from)
3437 return 0;
3438
91af127f 3439 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3440 return 0;
3441
c033666a 3442 if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
a6f766f3 3443 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3444 ret = __i915_wait_request(from_req,
a6f766f3
CW
3445 i915->mm.interruptible,
3446 NULL,
3447 &i915->rps.semaphores);
b4716185
CW
3448 if (ret)
3449 return ret;
3450
91af127f 3451 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3452 } else {
3453 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3454 u32 seqno = i915_gem_request_get_seqno(from_req);
3455
3456 WARN_ON(!to_req);
b4716185
CW
3457
3458 if (seqno <= from->semaphore.sync_seqno[idx])
3459 return 0;
3460
91af127f 3461 if (*to_req == NULL) {
26827088
DG
3462 struct drm_i915_gem_request *req;
3463
3464 req = i915_gem_request_alloc(to, NULL);
3465 if (IS_ERR(req))
3466 return PTR_ERR(req);
3467
3468 *to_req = req;
91af127f
JH
3469 }
3470
599d924c
JH
3471 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3472 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3473 if (ret)
3474 return ret;
3475
3476 /* We use last_read_req because sync_to()
3477 * might have just caused seqno wrap under
3478 * the radar.
3479 */
3480 from->semaphore.sync_seqno[idx] =
3481 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3482 }
3483
3484 return 0;
3485}
3486
5816d648
BW
3487/**
3488 * i915_gem_object_sync - sync an object to a ring.
3489 *
3490 * @obj: object which may be in use on another ring.
3491 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3492 * @to_req: request we wish to use the object for. See below.
3493 * This will be allocated and returned if a request is
3494 * required but not passed in.
5816d648
BW
3495 *
3496 * This code is meant to abstract object synchronization with the GPU.
3497 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3498 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3499 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3500 * into a buffer at any time, but multiple readers. To ensure each has
3501 * a coherent view of memory, we must:
3502 *
3503 * - If there is an outstanding write request to the object, the new
3504 * request must wait for it to complete (either CPU or in hw, requests
3505 * on the same ring will be naturally ordered).
3506 *
3507 * - If we are a write request (pending_write_domain is set), the new
3508 * request must wait for outstanding read requests to complete.
5816d648 3509 *
91af127f
JH
3510 * For CPU synchronisation (NULL to) no request is required. For syncing with
3511 * rings to_req must be non-NULL. However, a request does not have to be
3512 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3513 * request will be allocated automatically and returned through *to_req. Note
3514 * that it is not guaranteed that commands will be emitted (because the system
3515 * might already be idle). Hence there is no need to create a request that
3516 * might never have any work submitted. Note further that if a request is
3517 * returned in *to_req, it is the responsibility of the caller to submit
3518 * that request (after potentially adding more work to it).
3519 *
5816d648
BW
3520 * Returns 0 if successful, else propagates up the lower layer error.
3521 */
2911a35b
BW
3522int
3523i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3524 struct intel_engine_cs *to,
3525 struct drm_i915_gem_request **to_req)
2911a35b 3526{
b4716185 3527 const bool readonly = obj->base.pending_write_domain == 0;
666796da 3528 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185 3529 int ret, i, n;
41c52415 3530
b4716185 3531 if (!obj->active)
2911a35b
BW
3532 return 0;
3533
b4716185
CW
3534 if (to == NULL)
3535 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3536
b4716185
CW
3537 n = 0;
3538 if (readonly) {
3539 if (obj->last_write_req)
3540 req[n++] = obj->last_write_req;
3541 } else {
666796da 3542 for (i = 0; i < I915_NUM_ENGINES; i++)
b4716185
CW
3543 if (obj->last_read_req[i])
3544 req[n++] = obj->last_read_req[i];
3545 }
3546 for (i = 0; i < n; i++) {
91af127f 3547 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3548 if (ret)
3549 return ret;
3550 }
2911a35b 3551
b4716185 3552 return 0;
2911a35b
BW
3553}
3554
b5ffc9bc
CW
3555static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3556{
3557 u32 old_write_domain, old_read_domains;
3558
b5ffc9bc
CW
3559 /* Force a pagefault for domain tracking on next user access */
3560 i915_gem_release_mmap(obj);
3561
b97c3d9c
KP
3562 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3563 return;
3564
b5ffc9bc
CW
3565 old_read_domains = obj->base.read_domains;
3566 old_write_domain = obj->base.write_domain;
3567
3568 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3569 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3570
3571 trace_i915_gem_object_change_domain(obj,
3572 old_read_domains,
3573 old_write_domain);
3574}
3575
8ef8561f
CW
3576static void __i915_vma_iounmap(struct i915_vma *vma)
3577{
3578 GEM_BUG_ON(vma->pin_count);
3579
3580 if (vma->iomap == NULL)
3581 return;
3582
3583 io_mapping_unmap(vma->iomap);
3584 vma->iomap = NULL;
3585}
3586
e9f24d5f 3587static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3588{
07fe0b12 3589 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3590 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3591 int ret;
673a394b 3592
1c7f4bca 3593 if (list_empty(&vma->obj_link))
673a394b
EA
3594 return 0;
3595
0ff501cb
DV
3596 if (!drm_mm_node_allocated(&vma->node)) {
3597 i915_gem_vma_destroy(vma);
0ff501cb
DV
3598 return 0;
3599 }
433544bd 3600
d7f46fc4 3601 if (vma->pin_count)
31d8d651 3602 return -EBUSY;
673a394b 3603
c4670ad0
CW
3604 BUG_ON(obj->pages == NULL);
3605
e9f24d5f
TU
3606 if (wait) {
3607 ret = i915_gem_object_wait_rendering(obj, false);
3608 if (ret)
3609 return ret;
3610 }
a8198eea 3611
596c5923 3612 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3613 i915_gem_object_finish_gtt(obj);
5323fd04 3614
8b1bc9b4
DV
3615 /* release the fence reg _after_ flushing */
3616 ret = i915_gem_object_put_fence(obj);
3617 if (ret)
3618 return ret;
8ef8561f
CW
3619
3620 __i915_vma_iounmap(vma);
8b1bc9b4 3621 }
96b47b65 3622
07fe0b12 3623 trace_i915_vma_unbind(vma);
db53a302 3624
777dc5bb 3625 vma->vm->unbind_vma(vma);
5e562f1d 3626 vma->bound = 0;
6f65e29a 3627
1c7f4bca 3628 list_del_init(&vma->vm_link);
596c5923 3629 if (vma->is_ggtt) {
fe14d5f4
TU
3630 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3631 obj->map_and_fenceable = false;
3632 } else if (vma->ggtt_view.pages) {
3633 sg_free_table(vma->ggtt_view.pages);
3634 kfree(vma->ggtt_view.pages);
fe14d5f4 3635 }
016a65a3 3636 vma->ggtt_view.pages = NULL;
fe14d5f4 3637 }
673a394b 3638
2f633156
BW
3639 drm_mm_remove_node(&vma->node);
3640 i915_gem_vma_destroy(vma);
3641
3642 /* Since the unbound list is global, only move to that list if
b93dab6e 3643 * no more VMAs exist. */
e2273302 3644 if (list_empty(&obj->vma_list))
2f633156 3645 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3646
70903c3b
CW
3647 /* And finally now the object is completely decoupled from this vma,
3648 * we can drop its hold on the backing storage and allow it to be
3649 * reaped by the shrinker.
3650 */
3651 i915_gem_object_unpin_pages(obj);
3652
88241785 3653 return 0;
54cf91dc
CW
3654}
3655
e9f24d5f
TU
3656int i915_vma_unbind(struct i915_vma *vma)
3657{
3658 return __i915_vma_unbind(vma, true);
3659}
3660
3661int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3662{
3663 return __i915_vma_unbind(vma, false);
3664}
3665
b2da9fe5 3666int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3667{
3e31c6c0 3668 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 3669 struct intel_engine_cs *engine;
b4ac5afc 3670 int ret;
4df2faf4 3671
4df2faf4 3672 /* Flush everything onto the inactive list. */
b4ac5afc 3673 for_each_engine(engine, dev_priv) {
ecdb5fd8 3674 if (!i915.enable_execlists) {
73cfa865
JH
3675 struct drm_i915_gem_request *req;
3676
e2f80391 3677 req = i915_gem_request_alloc(engine, NULL);
26827088
DG
3678 if (IS_ERR(req))
3679 return PTR_ERR(req);
73cfa865 3680
ba01cc93 3681 ret = i915_switch_context(req);
75289874 3682 i915_add_request_no_flush(req);
aa9b7810
CW
3683 if (ret)
3684 return ret;
ecdb5fd8 3685 }
b6c7488d 3686
666796da 3687 ret = intel_engine_idle(engine);
1ec14ad3
CW
3688 if (ret)
3689 return ret;
3690 }
4df2faf4 3691
b4716185 3692 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3693 return 0;
4df2faf4
DV
3694}
3695
4144f9b5 3696static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3697 unsigned long cache_level)
3698{
4144f9b5 3699 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3700 struct drm_mm_node *other;
3701
4144f9b5
CW
3702 /*
3703 * On some machines we have to be careful when putting differing types
3704 * of snoopable memory together to avoid the prefetcher crossing memory
3705 * domains and dying. During vm initialisation, we decide whether or not
3706 * these constraints apply and set the drm_mm.color_adjust
3707 * appropriately.
42d6ab48 3708 */
4144f9b5 3709 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3710 return true;
3711
c6cfb325 3712 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3713 return true;
3714
3715 if (list_empty(&gtt_space->node_list))
3716 return true;
3717
3718 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3719 if (other->allocated && !other->hole_follows && other->color != cache_level)
3720 return false;
3721
3722 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3723 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3724 return false;
3725
3726 return true;
3727}
3728
673a394b 3729/**
91e6711e
JL
3730 * Finds free space in the GTT aperture and binds the object or a view of it
3731 * there.
14bb2c11
TU
3732 * @obj: object to bind
3733 * @vm: address space to bind into
3734 * @ggtt_view: global gtt view if applicable
3735 * @alignment: requested alignment
3736 * @flags: mask of PIN_* flags to use
673a394b 3737 */
262de145 3738static struct i915_vma *
07fe0b12
BW
3739i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3740 struct i915_address_space *vm,
ec7adb6e 3741 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3742 unsigned alignment,
ec7adb6e 3743 uint64_t flags)
673a394b 3744{
05394f39 3745 struct drm_device *dev = obj->base.dev;
72e96d64
JL
3746 struct drm_i915_private *dev_priv = to_i915(dev);
3747 struct i915_ggtt *ggtt = &dev_priv->ggtt;
65bd342f 3748 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3749 u32 search_flag, alloc_flag;
3750 u64 start, end;
65bd342f 3751 u64 size, fence_size;
2f633156 3752 struct i915_vma *vma;
07f73f69 3753 int ret;
673a394b 3754
91e6711e
JL
3755 if (i915_is_ggtt(vm)) {
3756 u32 view_size;
3757
3758 if (WARN_ON(!ggtt_view))
3759 return ERR_PTR(-EINVAL);
ec7adb6e 3760
91e6711e
JL
3761 view_size = i915_ggtt_view_size(obj, ggtt_view);
3762
3763 fence_size = i915_gem_get_gtt_size(dev,
3764 view_size,
3765 obj->tiling_mode);
3766 fence_alignment = i915_gem_get_gtt_alignment(dev,
3767 view_size,
3768 obj->tiling_mode,
3769 true);
3770 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3771 view_size,
3772 obj->tiling_mode,
3773 false);
3774 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3775 } else {
3776 fence_size = i915_gem_get_gtt_size(dev,
3777 obj->base.size,
3778 obj->tiling_mode);
3779 fence_alignment = i915_gem_get_gtt_alignment(dev,
3780 obj->base.size,
3781 obj->tiling_mode,
3782 true);
3783 unfenced_alignment =
3784 i915_gem_get_gtt_alignment(dev,
3785 obj->base.size,
3786 obj->tiling_mode,
3787 false);
3788 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3789 }
a00b10c3 3790
101b506a
MT
3791 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3792 end = vm->total;
3793 if (flags & PIN_MAPPABLE)
72e96d64 3794 end = min_t(u64, end, ggtt->mappable_end);
101b506a 3795 if (flags & PIN_ZONE_4G)
48ea1e32 3796 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3797
673a394b 3798 if (alignment == 0)
1ec9e26d 3799 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3800 unfenced_alignment;
1ec9e26d 3801 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3802 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3803 ggtt_view ? ggtt_view->type : 0,
3804 alignment);
262de145 3805 return ERR_PTR(-EINVAL);
673a394b
EA
3806 }
3807
91e6711e
JL
3808 /* If binding the object/GGTT view requires more space than the entire
3809 * aperture has, reject it early before evicting everything in a vain
3810 * attempt to find space.
654fc607 3811 */
91e6711e 3812 if (size > end) {
65bd342f 3813 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3814 ggtt_view ? ggtt_view->type : 0,
3815 size,
1ec9e26d 3816 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3817 end);
262de145 3818 return ERR_PTR(-E2BIG);
654fc607
CW
3819 }
3820
37e680a1 3821 ret = i915_gem_object_get_pages(obj);
6c085a72 3822 if (ret)
262de145 3823 return ERR_PTR(ret);
6c085a72 3824
fbdda6fb
CW
3825 i915_gem_object_pin_pages(obj);
3826
ec7adb6e
JL
3827 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3828 i915_gem_obj_lookup_or_create_vma(obj, vm);
3829
262de145 3830 if (IS_ERR(vma))
bc6bc15b 3831 goto err_unpin;
2f633156 3832
506a8e87
CW
3833 if (flags & PIN_OFFSET_FIXED) {
3834 uint64_t offset = flags & PIN_OFFSET_MASK;
3835
3836 if (offset & (alignment - 1) || offset + size > end) {
3837 ret = -EINVAL;
3838 goto err_free_vma;
3839 }
3840 vma->node.start = offset;
3841 vma->node.size = size;
3842 vma->node.color = obj->cache_level;
3843 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3844 if (ret) {
3845 ret = i915_gem_evict_for_vma(vma);
3846 if (ret == 0)
3847 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3848 }
3849 if (ret)
3850 goto err_free_vma;
101b506a 3851 } else {
506a8e87
CW
3852 if (flags & PIN_HIGH) {
3853 search_flag = DRM_MM_SEARCH_BELOW;
3854 alloc_flag = DRM_MM_CREATE_TOP;
3855 } else {
3856 search_flag = DRM_MM_SEARCH_DEFAULT;
3857 alloc_flag = DRM_MM_CREATE_DEFAULT;
3858 }
101b506a 3859
0a9ae0d7 3860search_free:
506a8e87
CW
3861 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3862 size, alignment,
3863 obj->cache_level,
3864 start, end,
3865 search_flag,
3866 alloc_flag);
3867 if (ret) {
3868 ret = i915_gem_evict_something(dev, vm, size, alignment,
3869 obj->cache_level,
3870 start, end,
3871 flags);
3872 if (ret == 0)
3873 goto search_free;
9731129c 3874
506a8e87
CW
3875 goto err_free_vma;
3876 }
673a394b 3877 }
4144f9b5 3878 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3879 ret = -EINVAL;
bc6bc15b 3880 goto err_remove_node;
673a394b
EA
3881 }
3882
fe14d5f4 3883 trace_i915_vma_bind(vma, flags);
0875546c 3884 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3885 if (ret)
e2273302 3886 goto err_remove_node;
fe14d5f4 3887
35c20a60 3888 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
1c7f4bca 3889 list_add_tail(&vma->vm_link, &vm->inactive_list);
bf1a1092 3890
262de145 3891 return vma;
2f633156 3892
bc6bc15b 3893err_remove_node:
6286ef9b 3894 drm_mm_remove_node(&vma->node);
bc6bc15b 3895err_free_vma:
2f633156 3896 i915_gem_vma_destroy(vma);
262de145 3897 vma = ERR_PTR(ret);
bc6bc15b 3898err_unpin:
2f633156 3899 i915_gem_object_unpin_pages(obj);
262de145 3900 return vma;
673a394b
EA
3901}
3902
000433b6 3903bool
2c22569b
CW
3904i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3905 bool force)
673a394b 3906{
673a394b
EA
3907 /* If we don't have a page list set up, then we're not pinned
3908 * to GPU, and we can ignore the cache flush because it'll happen
3909 * again at bind time.
3910 */
05394f39 3911 if (obj->pages == NULL)
000433b6 3912 return false;
673a394b 3913
769ce464
ID
3914 /*
3915 * Stolen memory is always coherent with the GPU as it is explicitly
3916 * marked as wc by the system, or the system is cache-coherent.
3917 */
6a2c4232 3918 if (obj->stolen || obj->phys_handle)
000433b6 3919 return false;
769ce464 3920
9c23f7fc
CW
3921 /* If the GPU is snooping the contents of the CPU cache,
3922 * we do not need to manually clear the CPU cache lines. However,
3923 * the caches are only snooped when the render cache is
3924 * flushed/invalidated. As we always have to emit invalidations
3925 * and flushes when moving into and out of the RENDER domain, correct
3926 * snooping behaviour occurs naturally as the result of our domain
3927 * tracking.
3928 */
0f71979a
CW
3929 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3930 obj->cache_dirty = true;
000433b6 3931 return false;
0f71979a 3932 }
9c23f7fc 3933
1c5d22f7 3934 trace_i915_gem_object_clflush(obj);
9da3da66 3935 drm_clflush_sg(obj->pages);
0f71979a 3936 obj->cache_dirty = false;
000433b6
CW
3937
3938 return true;
e47c68e9
EA
3939}
3940
3941/** Flushes the GTT write domain for the object if it's dirty. */
3942static void
05394f39 3943i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3944{
1c5d22f7
CW
3945 uint32_t old_write_domain;
3946
05394f39 3947 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3948 return;
3949
63256ec5 3950 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3951 * to it immediately go to main memory as far as we know, so there's
3952 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3953 *
3954 * However, we do have to enforce the order so that all writes through
3955 * the GTT land before any writes to the device, such as updates to
3956 * the GATT itself.
e47c68e9 3957 */
63256ec5
CW
3958 wmb();
3959
05394f39
CW
3960 old_write_domain = obj->base.write_domain;
3961 obj->base.write_domain = 0;
1c5d22f7 3962
de152b62 3963 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3964
1c5d22f7 3965 trace_i915_gem_object_change_domain(obj,
05394f39 3966 obj->base.read_domains,
1c5d22f7 3967 old_write_domain);
e47c68e9
EA
3968}
3969
3970/** Flushes the CPU write domain for the object if it's dirty. */
3971static void
e62b59e4 3972i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3973{
1c5d22f7 3974 uint32_t old_write_domain;
e47c68e9 3975
05394f39 3976 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3977 return;
3978
e62b59e4 3979 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3980 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3981
05394f39
CW
3982 old_write_domain = obj->base.write_domain;
3983 obj->base.write_domain = 0;
1c5d22f7 3984
de152b62 3985 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3986
1c5d22f7 3987 trace_i915_gem_object_change_domain(obj,
05394f39 3988 obj->base.read_domains,
1c5d22f7 3989 old_write_domain);
e47c68e9
EA
3990}
3991
2ef7eeaa
EA
3992/**
3993 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3994 * @obj: object to act on
3995 * @write: ask for write access or read only
2ef7eeaa
EA
3996 *
3997 * This function returns when the move is complete, including waiting on
3998 * flushes to occur.
3999 */
79e53945 4000int
2021746e 4001i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 4002{
72e96d64
JL
4003 struct drm_device *dev = obj->base.dev;
4004 struct drm_i915_private *dev_priv = to_i915(dev);
4005 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1c5d22f7 4006 uint32_t old_write_domain, old_read_domains;
43566ded 4007 struct i915_vma *vma;
e47c68e9 4008 int ret;
2ef7eeaa 4009
8d7e3de1
CW
4010 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4011 return 0;
4012
0201f1ec 4013 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4014 if (ret)
4015 return ret;
4016
43566ded
CW
4017 /* Flush and acquire obj->pages so that we are coherent through
4018 * direct access in memory with previous cached writes through
4019 * shmemfs and that our cache domain tracking remains valid.
4020 * For example, if the obj->filp was moved to swap without us
4021 * being notified and releasing the pages, we would mistakenly
4022 * continue to assume that the obj remained out of the CPU cached
4023 * domain.
4024 */
4025 ret = i915_gem_object_get_pages(obj);
4026 if (ret)
4027 return ret;
4028
e62b59e4 4029 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 4030
d0a57789
CW
4031 /* Serialise direct access to this object with the barriers for
4032 * coherent writes from the GPU, by effectively invalidating the
4033 * GTT domain upon first access.
4034 */
4035 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4036 mb();
4037
05394f39
CW
4038 old_write_domain = obj->base.write_domain;
4039 old_read_domains = obj->base.read_domains;
1c5d22f7 4040
e47c68e9
EA
4041 /* It should now be out of any other write domains, and we can update
4042 * the domain values for our changes.
4043 */
05394f39
CW
4044 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4045 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 4046 if (write) {
05394f39
CW
4047 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4048 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4049 obj->dirty = 1;
2ef7eeaa
EA
4050 }
4051
1c5d22f7
CW
4052 trace_i915_gem_object_change_domain(obj,
4053 old_read_domains,
4054 old_write_domain);
4055
8325a09d 4056 /* And bump the LRU for this access */
43566ded
CW
4057 vma = i915_gem_obj_to_ggtt(obj);
4058 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
1c7f4bca 4059 list_move_tail(&vma->vm_link,
72e96d64 4060 &ggtt->base.inactive_list);
8325a09d 4061
e47c68e9
EA
4062 return 0;
4063}
4064
ef55f92a
CW
4065/**
4066 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
4067 * @obj: object to act on
4068 * @cache_level: new cache level to set for the object
ef55f92a
CW
4069 *
4070 * After this function returns, the object will be in the new cache-level
4071 * across all GTT and the contents of the backing storage will be coherent,
4072 * with respect to the new cache-level. In order to keep the backing storage
4073 * coherent for all users, we only allow a single cache level to be set
4074 * globally on the object and prevent it from being changed whilst the
4075 * hardware is reading from the object. That is if the object is currently
4076 * on the scanout it will be set to uncached (or equivalent display
4077 * cache coherency) and all non-MOCS GPU access will also be uncached so
4078 * that all direct access to the scanout remains coherent.
4079 */
e4ffd173
CW
4080int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4081 enum i915_cache_level cache_level)
4082{
7bddb01f 4083 struct drm_device *dev = obj->base.dev;
df6f783a 4084 struct i915_vma *vma, *next;
ef55f92a 4085 bool bound = false;
ed75a55b 4086 int ret = 0;
e4ffd173
CW
4087
4088 if (obj->cache_level == cache_level)
ed75a55b 4089 goto out;
e4ffd173 4090
ef55f92a
CW
4091 /* Inspect the list of currently bound VMA and unbind any that would
4092 * be invalid given the new cache-level. This is principally to
4093 * catch the issue of the CS prefetch crossing page boundaries and
4094 * reading an invalid PTE on older architectures.
4095 */
1c7f4bca 4096 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
ef55f92a
CW
4097 if (!drm_mm_node_allocated(&vma->node))
4098 continue;
4099
4100 if (vma->pin_count) {
4101 DRM_DEBUG("can not change the cache level of pinned objects\n");
4102 return -EBUSY;
4103 }
4104
4144f9b5 4105 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 4106 ret = i915_vma_unbind(vma);
3089c6f2
BW
4107 if (ret)
4108 return ret;
ef55f92a
CW
4109 } else
4110 bound = true;
42d6ab48
CW
4111 }
4112
ef55f92a
CW
4113 /* We can reuse the existing drm_mm nodes but need to change the
4114 * cache-level on the PTE. We could simply unbind them all and
4115 * rebind with the correct cache-level on next use. However since
4116 * we already have a valid slot, dma mapping, pages etc, we may as
4117 * rewrite the PTE in the belief that doing so tramples upon less
4118 * state and so involves less work.
4119 */
4120 if (bound) {
4121 /* Before we change the PTE, the GPU must not be accessing it.
4122 * If we wait upon the object, we know that all the bound
4123 * VMA are no longer active.
4124 */
2e2f351d 4125 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
4126 if (ret)
4127 return ret;
4128
ef55f92a
CW
4129 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4130 /* Access to snoopable pages through the GTT is
4131 * incoherent and on some machines causes a hard
4132 * lockup. Relinquish the CPU mmaping to force
4133 * userspace to refault in the pages and we can
4134 * then double check if the GTT mapping is still
4135 * valid for that pointer access.
4136 */
4137 i915_gem_release_mmap(obj);
4138
4139 /* As we no longer need a fence for GTT access,
4140 * we can relinquish it now (and so prevent having
4141 * to steal a fence from someone else on the next
4142 * fence request). Note GPU activity would have
4143 * dropped the fence as all snoopable access is
4144 * supposed to be linear.
4145 */
e4ffd173
CW
4146 ret = i915_gem_object_put_fence(obj);
4147 if (ret)
4148 return ret;
ef55f92a
CW
4149 } else {
4150 /* We either have incoherent backing store and
4151 * so no GTT access or the architecture is fully
4152 * coherent. In such cases, existing GTT mmaps
4153 * ignore the cache bit in the PTE and we can
4154 * rewrite it without confusing the GPU or having
4155 * to force userspace to fault back in its mmaps.
4156 */
e4ffd173
CW
4157 }
4158
1c7f4bca 4159 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
4160 if (!drm_mm_node_allocated(&vma->node))
4161 continue;
4162
4163 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4164 if (ret)
4165 return ret;
4166 }
e4ffd173
CW
4167 }
4168
1c7f4bca 4169 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
4170 vma->node.color = cache_level;
4171 obj->cache_level = cache_level;
4172
ed75a55b 4173out:
ef55f92a
CW
4174 /* Flush the dirty CPU caches to the backing storage so that the
4175 * object is now coherent at its new cache level (with respect
4176 * to the access domain).
4177 */
b50a5371 4178 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 4179 if (i915_gem_clflush_object(obj, true))
c033666a 4180 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
4181 }
4182
e4ffd173
CW
4183 return 0;
4184}
4185
199adf40
BW
4186int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4187 struct drm_file *file)
e6994aee 4188{
199adf40 4189 struct drm_i915_gem_caching *args = data;
e6994aee 4190 struct drm_i915_gem_object *obj;
e6994aee 4191
a8ad0bd8 4192 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
432be69d
CW
4193 if (&obj->base == NULL)
4194 return -ENOENT;
e6994aee 4195
651d794f
CW
4196 switch (obj->cache_level) {
4197 case I915_CACHE_LLC:
4198 case I915_CACHE_L3_LLC:
4199 args->caching = I915_CACHING_CACHED;
4200 break;
4201
4257d3ba
CW
4202 case I915_CACHE_WT:
4203 args->caching = I915_CACHING_DISPLAY;
4204 break;
4205
651d794f
CW
4206 default:
4207 args->caching = I915_CACHING_NONE;
4208 break;
4209 }
e6994aee 4210
432be69d
CW
4211 drm_gem_object_unreference_unlocked(&obj->base);
4212 return 0;
e6994aee
CW
4213}
4214
199adf40
BW
4215int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4216 struct drm_file *file)
e6994aee 4217{
fd0fe6ac 4218 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 4219 struct drm_i915_gem_caching *args = data;
e6994aee
CW
4220 struct drm_i915_gem_object *obj;
4221 enum i915_cache_level level;
4222 int ret;
4223
199adf40
BW
4224 switch (args->caching) {
4225 case I915_CACHING_NONE:
e6994aee
CW
4226 level = I915_CACHE_NONE;
4227 break;
199adf40 4228 case I915_CACHING_CACHED:
e5756c10
ID
4229 /*
4230 * Due to a HW issue on BXT A stepping, GPU stores via a
4231 * snooped mapping may leave stale data in a corresponding CPU
4232 * cacheline, whereas normally such cachelines would get
4233 * invalidated.
4234 */
ca377809 4235 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
4236 return -ENODEV;
4237
e6994aee
CW
4238 level = I915_CACHE_LLC;
4239 break;
4257d3ba
CW
4240 case I915_CACHING_DISPLAY:
4241 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4242 break;
e6994aee
CW
4243 default:
4244 return -EINVAL;
4245 }
4246
fd0fe6ac
ID
4247 intel_runtime_pm_get(dev_priv);
4248
3bc2913e
BW
4249 ret = i915_mutex_lock_interruptible(dev);
4250 if (ret)
fd0fe6ac 4251 goto rpm_put;
3bc2913e 4252
a8ad0bd8 4253 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
e6994aee
CW
4254 if (&obj->base == NULL) {
4255 ret = -ENOENT;
4256 goto unlock;
4257 }
4258
4259 ret = i915_gem_object_set_cache_level(obj, level);
4260
4261 drm_gem_object_unreference(&obj->base);
4262unlock:
4263 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
4264rpm_put:
4265 intel_runtime_pm_put(dev_priv);
4266
e6994aee
CW
4267 return ret;
4268}
4269
b9241ea3 4270/*
2da3b9b9
CW
4271 * Prepare buffer for display plane (scanout, cursors, etc).
4272 * Can be called from an uninterruptible phase (modesetting) and allows
4273 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4274 */
4275int
2da3b9b9
CW
4276i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4277 u32 alignment,
e6617330 4278 const struct i915_ggtt_view *view)
b9241ea3 4279{
2da3b9b9 4280 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4281 int ret;
4282
cc98b413
CW
4283 /* Mark the pin_display early so that we account for the
4284 * display coherency whilst setting up the cache domains.
4285 */
8a0c39b1 4286 obj->pin_display++;
cc98b413 4287
a7ef0640
EA
4288 /* The display engine is not coherent with the LLC cache on gen6. As
4289 * a result, we make sure that the pinning that is about to occur is
4290 * done with uncached PTEs. This is lowest common denominator for all
4291 * chipsets.
4292 *
4293 * However for gen6+, we could do better by using the GFDT bit instead
4294 * of uncaching, which would allow us to flush all the LLC-cached data
4295 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4296 */
651d794f
CW
4297 ret = i915_gem_object_set_cache_level(obj,
4298 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4299 if (ret)
cc98b413 4300 goto err_unpin_display;
a7ef0640 4301
2da3b9b9
CW
4302 /* As the user may map the buffer once pinned in the display plane
4303 * (e.g. libkms for the bootup splash), we have to ensure that we
4304 * always use map_and_fenceable for all scanout buffers.
4305 */
50470bb0
TU
4306 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4307 view->type == I915_GGTT_VIEW_NORMAL ?
4308 PIN_MAPPABLE : 0);
2da3b9b9 4309 if (ret)
cc98b413 4310 goto err_unpin_display;
2da3b9b9 4311
e62b59e4 4312 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4313
2da3b9b9 4314 old_write_domain = obj->base.write_domain;
05394f39 4315 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4316
4317 /* It should now be out of any other write domains, and we can update
4318 * the domain values for our changes.
4319 */
e5f1d962 4320 obj->base.write_domain = 0;
05394f39 4321 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4322
4323 trace_i915_gem_object_change_domain(obj,
4324 old_read_domains,
2da3b9b9 4325 old_write_domain);
b9241ea3
ZW
4326
4327 return 0;
cc98b413
CW
4328
4329err_unpin_display:
8a0c39b1 4330 obj->pin_display--;
cc98b413
CW
4331 return ret;
4332}
4333
4334void
e6617330
TU
4335i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4336 const struct i915_ggtt_view *view)
cc98b413 4337{
8a0c39b1
TU
4338 if (WARN_ON(obj->pin_display == 0))
4339 return;
4340
e6617330
TU
4341 i915_gem_object_ggtt_unpin_view(obj, view);
4342
8a0c39b1 4343 obj->pin_display--;
b9241ea3
ZW
4344}
4345
e47c68e9
EA
4346/**
4347 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
4348 * @obj: object to act on
4349 * @write: requesting write or read-only access
e47c68e9
EA
4350 *
4351 * This function returns when the move is complete, including waiting on
4352 * flushes to occur.
4353 */
dabdfe02 4354int
919926ae 4355i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4356{
1c5d22f7 4357 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4358 int ret;
4359
8d7e3de1
CW
4360 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4361 return 0;
4362
0201f1ec 4363 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4364 if (ret)
4365 return ret;
4366
e47c68e9 4367 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4368
05394f39
CW
4369 old_write_domain = obj->base.write_domain;
4370 old_read_domains = obj->base.read_domains;
1c5d22f7 4371
e47c68e9 4372 /* Flush the CPU cache if it's still invalid. */
05394f39 4373 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4374 i915_gem_clflush_object(obj, false);
2ef7eeaa 4375
05394f39 4376 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4377 }
4378
4379 /* It should now be out of any other write domains, and we can update
4380 * the domain values for our changes.
4381 */
05394f39 4382 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4383
4384 /* If we're writing through the CPU, then the GPU read domains will
4385 * need to be invalidated at next use.
4386 */
4387 if (write) {
05394f39
CW
4388 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4389 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4390 }
2ef7eeaa 4391
1c5d22f7
CW
4392 trace_i915_gem_object_change_domain(obj,
4393 old_read_domains,
4394 old_write_domain);
4395
2ef7eeaa
EA
4396 return 0;
4397}
4398
673a394b
EA
4399/* Throttle our rendering by waiting until the ring has completed our requests
4400 * emitted over 20 msec ago.
4401 *
b962442e
EA
4402 * Note that if we were to use the current jiffies each time around the loop,
4403 * we wouldn't escape the function with any frames outstanding if the time to
4404 * render a frame was over 20ms.
4405 *
673a394b
EA
4406 * This should get us reasonable parallelism between CPU and GPU but also
4407 * relatively low latency when blocking on a particular request to finish.
4408 */
40a5f0de 4409static int
f787a5f5 4410i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4411{
f787a5f5
CW
4412 struct drm_i915_private *dev_priv = dev->dev_private;
4413 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4414 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4415 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 4416 int ret;
93533c29 4417
308887aa
DV
4418 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4419 if (ret)
4420 return ret;
4421
f4457ae7
CW
4422 /* ABI: return -EIO if already wedged */
4423 if (i915_terminally_wedged(&dev_priv->gpu_error))
4424 return -EIO;
e110e8d6 4425
1c25595f 4426 spin_lock(&file_priv->mm.lock);
f787a5f5 4427 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4428 if (time_after_eq(request->emitted_jiffies, recent_enough))
4429 break;
40a5f0de 4430
fcfa423c
JH
4431 /*
4432 * Note that the request might not have been submitted yet.
4433 * In which case emitted_jiffies will be zero.
4434 */
4435 if (!request->emitted_jiffies)
4436 continue;
4437
54fb2411 4438 target = request;
b962442e 4439 }
ff865885
JH
4440 if (target)
4441 i915_gem_request_reference(target);
1c25595f 4442 spin_unlock(&file_priv->mm.lock);
40a5f0de 4443
54fb2411 4444 if (target == NULL)
f787a5f5 4445 return 0;
2bc43b5c 4446
299259a3 4447 ret = __i915_wait_request(target, true, NULL, NULL);
f787a5f5
CW
4448 if (ret == 0)
4449 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4450
73db04cf 4451 i915_gem_request_unreference(target);
ff865885 4452
40a5f0de
EA
4453 return ret;
4454}
4455
d23db88c
CW
4456static bool
4457i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4458{
4459 struct drm_i915_gem_object *obj = vma->obj;
4460
4461 if (alignment &&
4462 vma->node.start & (alignment - 1))
4463 return true;
4464
4465 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4466 return true;
4467
4468 if (flags & PIN_OFFSET_BIAS &&
4469 vma->node.start < (flags & PIN_OFFSET_MASK))
4470 return true;
4471
506a8e87
CW
4472 if (flags & PIN_OFFSET_FIXED &&
4473 vma->node.start != (flags & PIN_OFFSET_MASK))
4474 return true;
4475
d23db88c
CW
4476 return false;
4477}
4478
d0710abb
CW
4479void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4480{
4481 struct drm_i915_gem_object *obj = vma->obj;
4482 bool mappable, fenceable;
4483 u32 fence_size, fence_alignment;
4484
4485 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4486 obj->base.size,
4487 obj->tiling_mode);
4488 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4489 obj->base.size,
4490 obj->tiling_mode,
4491 true);
4492
4493 fenceable = (vma->node.size == fence_size &&
4494 (vma->node.start & (fence_alignment - 1)) == 0);
4495
4496 mappable = (vma->node.start + fence_size <=
62106b4f 4497 to_i915(obj->base.dev)->ggtt.mappable_end);
d0710abb
CW
4498
4499 obj->map_and_fenceable = mappable && fenceable;
4500}
4501
ec7adb6e
JL
4502static int
4503i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4504 struct i915_address_space *vm,
4505 const struct i915_ggtt_view *ggtt_view,
4506 uint32_t alignment,
4507 uint64_t flags)
673a394b 4508{
6e7186af 4509 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4510 struct i915_vma *vma;
ef79e17c 4511 unsigned bound;
673a394b
EA
4512 int ret;
4513
6e7186af
BW
4514 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4515 return -ENODEV;
4516
bf3d149b 4517 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4518 return -EINVAL;
07fe0b12 4519
c826c449
CW
4520 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4521 return -EINVAL;
4522
ec7adb6e
JL
4523 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4524 return -EINVAL;
4525
4526 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4527 i915_gem_obj_to_vma(obj, vm);
4528
07fe0b12 4529 if (vma) {
d7f46fc4
BW
4530 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4531 return -EBUSY;
4532
d23db88c 4533 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4534 WARN(vma->pin_count,
ec7adb6e 4535 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4536 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4537 " obj->map_and_fenceable=%d\n",
ec7adb6e 4538 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4539 upper_32_bits(vma->node.start),
4540 lower_32_bits(vma->node.start),
fe14d5f4 4541 alignment,
d23db88c 4542 !!(flags & PIN_MAPPABLE),
05394f39 4543 obj->map_and_fenceable);
07fe0b12 4544 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4545 if (ret)
4546 return ret;
8ea99c92
DV
4547
4548 vma = NULL;
ac0c6b5a
CW
4549 }
4550 }
4551
ef79e17c 4552 bound = vma ? vma->bound : 0;
8ea99c92 4553 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4554 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4555 flags);
262de145
DV
4556 if (IS_ERR(vma))
4557 return PTR_ERR(vma);
0875546c
DV
4558 } else {
4559 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4560 if (ret)
4561 return ret;
4562 }
74898d7e 4563
91e6711e
JL
4564 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4565 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4566 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4567 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4568 }
ef79e17c 4569
8ea99c92 4570 vma->pin_count++;
673a394b
EA
4571 return 0;
4572}
4573
ec7adb6e
JL
4574int
4575i915_gem_object_pin(struct drm_i915_gem_object *obj,
4576 struct i915_address_space *vm,
4577 uint32_t alignment,
4578 uint64_t flags)
4579{
4580 return i915_gem_object_do_pin(obj, vm,
4581 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4582 alignment, flags);
4583}
4584
4585int
4586i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4587 const struct i915_ggtt_view *view,
4588 uint32_t alignment,
4589 uint64_t flags)
4590{
72e96d64
JL
4591 struct drm_device *dev = obj->base.dev;
4592 struct drm_i915_private *dev_priv = to_i915(dev);
4593 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4594
ade7daa1 4595 BUG_ON(!view);
ec7adb6e 4596
72e96d64 4597 return i915_gem_object_do_pin(obj, &ggtt->base, view,
6fafab76 4598 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4599}
4600
673a394b 4601void
e6617330
TU
4602i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4603 const struct i915_ggtt_view *view)
673a394b 4604{
e6617330 4605 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4606
e6617330 4607 WARN_ON(vma->pin_count == 0);
9abc4648 4608 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4609
30154650 4610 --vma->pin_count;
673a394b
EA
4611}
4612
673a394b
EA
4613int
4614i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4615 struct drm_file *file)
673a394b
EA
4616{
4617 struct drm_i915_gem_busy *args = data;
05394f39 4618 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4619 int ret;
4620
76c1dec1 4621 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4622 if (ret)
76c1dec1 4623 return ret;
673a394b 4624
a8ad0bd8 4625 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 4626 if (&obj->base == NULL) {
1d7cfea1
CW
4627 ret = -ENOENT;
4628 goto unlock;
673a394b 4629 }
d1b851fc 4630
0be555b6
CW
4631 /* Count all active objects as busy, even if they are currently not used
4632 * by the gpu. Users of this interface expect objects to eventually
4633 * become non-busy without any further actions, therefore emit any
4634 * necessary flushes here.
c4de0a5d 4635 */
30dfebf3 4636 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4637 if (ret)
4638 goto unref;
0be555b6 4639
426960be
CW
4640 args->busy = 0;
4641 if (obj->active) {
4642 int i;
4643
666796da 4644 for (i = 0; i < I915_NUM_ENGINES; i++) {
426960be
CW
4645 struct drm_i915_gem_request *req;
4646
4647 req = obj->last_read_req[i];
4648 if (req)
4a570db5 4649 args->busy |= 1 << (16 + req->engine->exec_id);
426960be
CW
4650 }
4651 if (obj->last_write_req)
4a570db5 4652 args->busy |= obj->last_write_req->engine->exec_id;
426960be 4653 }
673a394b 4654
b4716185 4655unref:
05394f39 4656 drm_gem_object_unreference(&obj->base);
1d7cfea1 4657unlock:
673a394b 4658 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4659 return ret;
673a394b
EA
4660}
4661
4662int
4663i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4664 struct drm_file *file_priv)
4665{
0206e353 4666 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4667}
4668
3ef94daa
CW
4669int
4670i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4671 struct drm_file *file_priv)
4672{
656bfa3a 4673 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4674 struct drm_i915_gem_madvise *args = data;
05394f39 4675 struct drm_i915_gem_object *obj;
76c1dec1 4676 int ret;
3ef94daa
CW
4677
4678 switch (args->madv) {
4679 case I915_MADV_DONTNEED:
4680 case I915_MADV_WILLNEED:
4681 break;
4682 default:
4683 return -EINVAL;
4684 }
4685
1d7cfea1
CW
4686 ret = i915_mutex_lock_interruptible(dev);
4687 if (ret)
4688 return ret;
4689
a8ad0bd8 4690 obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
c8725226 4691 if (&obj->base == NULL) {
1d7cfea1
CW
4692 ret = -ENOENT;
4693 goto unlock;
3ef94daa 4694 }
3ef94daa 4695
d7f46fc4 4696 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4697 ret = -EINVAL;
4698 goto out;
3ef94daa
CW
4699 }
4700
656bfa3a
DV
4701 if (obj->pages &&
4702 obj->tiling_mode != I915_TILING_NONE &&
4703 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4704 if (obj->madv == I915_MADV_WILLNEED)
4705 i915_gem_object_unpin_pages(obj);
4706 if (args->madv == I915_MADV_WILLNEED)
4707 i915_gem_object_pin_pages(obj);
4708 }
4709
05394f39
CW
4710 if (obj->madv != __I915_MADV_PURGED)
4711 obj->madv = args->madv;
3ef94daa 4712
6c085a72 4713 /* if the object is no longer attached, discard its backing storage */
be6a0376 4714 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4715 i915_gem_object_truncate(obj);
4716
05394f39 4717 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4718
1d7cfea1 4719out:
05394f39 4720 drm_gem_object_unreference(&obj->base);
1d7cfea1 4721unlock:
3ef94daa 4722 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4723 return ret;
3ef94daa
CW
4724}
4725
37e680a1
CW
4726void i915_gem_object_init(struct drm_i915_gem_object *obj,
4727 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4728{
b4716185
CW
4729 int i;
4730
35c20a60 4731 INIT_LIST_HEAD(&obj->global_list);
666796da 4732 for (i = 0; i < I915_NUM_ENGINES; i++)
117897f4 4733 INIT_LIST_HEAD(&obj->engine_list[i]);
b25cb2f8 4734 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4735 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4736 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4737
37e680a1
CW
4738 obj->ops = ops;
4739
0327d6ba
CW
4740 obj->fence_reg = I915_FENCE_REG_NONE;
4741 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4742
4743 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4744}
4745
37e680a1 4746static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4747 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4748 .get_pages = i915_gem_object_get_pages_gtt,
4749 .put_pages = i915_gem_object_put_pages_gtt,
4750};
4751
d37cd8a8 4752struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 4753 size_t size)
ac52bc56 4754{
c397b908 4755 struct drm_i915_gem_object *obj;
5949eac4 4756 struct address_space *mapping;
1a240d4d 4757 gfp_t mask;
fe3db79b 4758 int ret;
ac52bc56 4759
42dcedd4 4760 obj = i915_gem_object_alloc(dev);
c397b908 4761 if (obj == NULL)
fe3db79b 4762 return ERR_PTR(-ENOMEM);
673a394b 4763
fe3db79b
CW
4764 ret = drm_gem_object_init(dev, &obj->base, size);
4765 if (ret)
4766 goto fail;
673a394b 4767
bed1ea95
CW
4768 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4769 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4770 /* 965gm cannot relocate objects above 4GiB. */
4771 mask &= ~__GFP_HIGHMEM;
4772 mask |= __GFP_DMA32;
4773 }
4774
496ad9aa 4775 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4776 mapping_set_gfp_mask(mapping, mask);
5949eac4 4777
37e680a1 4778 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4779
c397b908
DV
4780 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4781 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4782
3d29b842
ED
4783 if (HAS_LLC(dev)) {
4784 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4785 * cache) for about a 10% performance improvement
4786 * compared to uncached. Graphics requests other than
4787 * display scanout are coherent with the CPU in
4788 * accessing this cache. This means in this mode we
4789 * don't need to clflush on the CPU side, and on the
4790 * GPU side we only need to flush internal caches to
4791 * get data visible to the CPU.
4792 *
4793 * However, we maintain the display planes as UC, and so
4794 * need to rebind when first used as such.
4795 */
4796 obj->cache_level = I915_CACHE_LLC;
4797 } else
4798 obj->cache_level = I915_CACHE_NONE;
4799
d861e338
DV
4800 trace_i915_gem_object_create(obj);
4801
05394f39 4802 return obj;
fe3db79b
CW
4803
4804fail:
4805 i915_gem_object_free(obj);
4806
4807 return ERR_PTR(ret);
c397b908
DV
4808}
4809
340fbd8c
CW
4810static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4811{
4812 /* If we are the last user of the backing storage (be it shmemfs
4813 * pages or stolen etc), we know that the pages are going to be
4814 * immediately released. In this case, we can then skip copying
4815 * back the contents from the GPU.
4816 */
4817
4818 if (obj->madv != I915_MADV_WILLNEED)
4819 return false;
4820
4821 if (obj->base.filp == NULL)
4822 return true;
4823
4824 /* At first glance, this looks racy, but then again so would be
4825 * userspace racing mmap against close. However, the first external
4826 * reference to the filp can only be obtained through the
4827 * i915_gem_mmap_ioctl() which safeguards us against the user
4828 * acquiring such a reference whilst we are in the middle of
4829 * freeing the object.
4830 */
4831 return atomic_long_read(&obj->base.filp->f_count) == 1;
4832}
4833
1488fc08 4834void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4835{
1488fc08 4836 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4837 struct drm_device *dev = obj->base.dev;
3e31c6c0 4838 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4839 struct i915_vma *vma, *next;
673a394b 4840
f65c9168
PZ
4841 intel_runtime_pm_get(dev_priv);
4842
26e12f89
CW
4843 trace_i915_gem_object_destroy(obj);
4844
1c7f4bca 4845 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
d7f46fc4
BW
4846 int ret;
4847
4848 vma->pin_count = 0;
4849 ret = i915_vma_unbind(vma);
07fe0b12
BW
4850 if (WARN_ON(ret == -ERESTARTSYS)) {
4851 bool was_interruptible;
1488fc08 4852
07fe0b12
BW
4853 was_interruptible = dev_priv->mm.interruptible;
4854 dev_priv->mm.interruptible = false;
1488fc08 4855
07fe0b12 4856 WARN_ON(i915_vma_unbind(vma));
1488fc08 4857
07fe0b12
BW
4858 dev_priv->mm.interruptible = was_interruptible;
4859 }
1488fc08
CW
4860 }
4861
1d64ae71
BW
4862 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4863 * before progressing. */
4864 if (obj->stolen)
4865 i915_gem_object_unpin_pages(obj);
4866
a071fa00
DV
4867 WARN_ON(obj->frontbuffer_bits);
4868
656bfa3a
DV
4869 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4870 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4871 obj->tiling_mode != I915_TILING_NONE)
4872 i915_gem_object_unpin_pages(obj);
4873
401c29f6
BW
4874 if (WARN_ON(obj->pages_pin_count))
4875 obj->pages_pin_count = 0;
340fbd8c 4876 if (discard_backing_storage(obj))
5537252b 4877 obj->madv = I915_MADV_DONTNEED;
37e680a1 4878 i915_gem_object_put_pages(obj);
d8cb5086 4879 i915_gem_object_free_mmap_offset(obj);
de151cf6 4880
9da3da66
CW
4881 BUG_ON(obj->pages);
4882
2f745ad3
CW
4883 if (obj->base.import_attach)
4884 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4885
5cc9ed4b
CW
4886 if (obj->ops->release)
4887 obj->ops->release(obj);
4888
05394f39
CW
4889 drm_gem_object_release(&obj->base);
4890 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4891
05394f39 4892 kfree(obj->bit_17);
42dcedd4 4893 i915_gem_object_free(obj);
f65c9168
PZ
4894
4895 intel_runtime_pm_put(dev_priv);
673a394b
EA
4896}
4897
ec7adb6e
JL
4898struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4899 struct i915_address_space *vm)
e656a6cb
DV
4900{
4901 struct i915_vma *vma;
1c7f4bca 4902 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4903 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4904 vma->vm == vm)
e656a6cb 4905 return vma;
ec7adb6e
JL
4906 }
4907 return NULL;
4908}
4909
4910struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4911 const struct i915_ggtt_view *view)
4912{
ec7adb6e 4913 struct i915_vma *vma;
e656a6cb 4914
598b9ec8 4915 GEM_BUG_ON(!view);
ec7adb6e 4916
1c7f4bca 4917 list_for_each_entry(vma, &obj->vma_list, obj_link)
598b9ec8 4918 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4919 return vma;
e656a6cb
DV
4920 return NULL;
4921}
4922
2f633156
BW
4923void i915_gem_vma_destroy(struct i915_vma *vma)
4924{
4925 WARN_ON(vma->node.allocated);
aaa05667
CW
4926
4927 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4928 if (!list_empty(&vma->exec_list))
4929 return;
4930
596c5923
CW
4931 if (!vma->is_ggtt)
4932 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
b9d06dd9 4933
1c7f4bca 4934 list_del(&vma->obj_link);
b93dab6e 4935
e20d2ab7 4936 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4937}
4938
e3efda49 4939static void
117897f4 4940i915_gem_stop_engines(struct drm_device *dev)
e3efda49
CW
4941{
4942 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4943 struct intel_engine_cs *engine;
e3efda49 4944
b4ac5afc 4945 for_each_engine(engine, dev_priv)
117897f4 4946 dev_priv->gt.stop_engine(engine);
e3efda49
CW
4947}
4948
29105ccc 4949int
45c5f202 4950i915_gem_suspend(struct drm_device *dev)
29105ccc 4951{
3e31c6c0 4952 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4953 int ret = 0;
28dfe52a 4954
45c5f202 4955 mutex_lock(&dev->struct_mutex);
b2da9fe5 4956 ret = i915_gpu_idle(dev);
f7403347 4957 if (ret)
45c5f202 4958 goto err;
f7403347 4959
c033666a 4960 i915_gem_retire_requests(dev_priv);
673a394b 4961
117897f4 4962 i915_gem_stop_engines(dev);
b2e862d0 4963 i915_gem_context_lost(dev_priv);
45c5f202
CW
4964 mutex_unlock(&dev->struct_mutex);
4965
737b1506 4966 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4967 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4968 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4969
bdcf120b
CW
4970 /* Assert that we sucessfully flushed all the work and
4971 * reset the GPU back to its idle, low power state.
4972 */
4973 WARN_ON(dev_priv->mm.busy);
4974
673a394b 4975 return 0;
45c5f202
CW
4976
4977err:
4978 mutex_unlock(&dev->struct_mutex);
4979 return ret;
673a394b
EA
4980}
4981
f691e2f4
DV
4982void i915_gem_init_swizzling(struct drm_device *dev)
4983{
3e31c6c0 4984 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4985
11782b02 4986 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4987 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4988 return;
4989
4990 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4991 DISP_TILE_SURFACE_SWIZZLING);
4992
11782b02
DV
4993 if (IS_GEN5(dev))
4994 return;
4995
f691e2f4
DV
4996 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4997 if (IS_GEN6(dev))
6b26c86d 4998 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4999 else if (IS_GEN7(dev))
6b26c86d 5000 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
5001 else if (IS_GEN8(dev))
5002 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
5003 else
5004 BUG();
f691e2f4 5005}
e21af88d 5006
81e7f200
VS
5007static void init_unused_ring(struct drm_device *dev, u32 base)
5008{
5009 struct drm_i915_private *dev_priv = dev->dev_private;
5010
5011 I915_WRITE(RING_CTL(base), 0);
5012 I915_WRITE(RING_HEAD(base), 0);
5013 I915_WRITE(RING_TAIL(base), 0);
5014 I915_WRITE(RING_START(base), 0);
5015}
5016
5017static void init_unused_rings(struct drm_device *dev)
5018{
5019 if (IS_I830(dev)) {
5020 init_unused_ring(dev, PRB1_BASE);
5021 init_unused_ring(dev, SRB0_BASE);
5022 init_unused_ring(dev, SRB1_BASE);
5023 init_unused_ring(dev, SRB2_BASE);
5024 init_unused_ring(dev, SRB3_BASE);
5025 } else if (IS_GEN2(dev)) {
5026 init_unused_ring(dev, SRB0_BASE);
5027 init_unused_ring(dev, SRB1_BASE);
5028 } else if (IS_GEN3(dev)) {
5029 init_unused_ring(dev, PRB1_BASE);
5030 init_unused_ring(dev, PRB2_BASE);
5031 }
5032}
5033
117897f4 5034int i915_gem_init_engines(struct drm_device *dev)
8187a2b7 5035{
4fc7c971 5036 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 5037 int ret;
68f95ba9 5038
5c1143bb 5039 ret = intel_init_render_ring_buffer(dev);
68f95ba9 5040 if (ret)
b6913e4b 5041 return ret;
68f95ba9
CW
5042
5043 if (HAS_BSD(dev)) {
5c1143bb 5044 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
5045 if (ret)
5046 goto cleanup_render_ring;
d1b851fc 5047 }
68f95ba9 5048
d39398f5 5049 if (HAS_BLT(dev)) {
549f7365
CW
5050 ret = intel_init_blt_ring_buffer(dev);
5051 if (ret)
5052 goto cleanup_bsd_ring;
5053 }
5054
9a8a2213
BW
5055 if (HAS_VEBOX(dev)) {
5056 ret = intel_init_vebox_ring_buffer(dev);
5057 if (ret)
5058 goto cleanup_blt_ring;
5059 }
5060
845f74a7
ZY
5061 if (HAS_BSD2(dev)) {
5062 ret = intel_init_bsd2_ring_buffer(dev);
5063 if (ret)
5064 goto cleanup_vebox_ring;
5065 }
9a8a2213 5066
4fc7c971
BW
5067 return 0;
5068
9a8a2213 5069cleanup_vebox_ring:
117897f4 5070 intel_cleanup_engine(&dev_priv->engine[VECS]);
4fc7c971 5071cleanup_blt_ring:
117897f4 5072 intel_cleanup_engine(&dev_priv->engine[BCS]);
4fc7c971 5073cleanup_bsd_ring:
117897f4 5074 intel_cleanup_engine(&dev_priv->engine[VCS]);
4fc7c971 5075cleanup_render_ring:
117897f4 5076 intel_cleanup_engine(&dev_priv->engine[RCS]);
4fc7c971
BW
5077
5078 return ret;
5079}
5080
5081int
5082i915_gem_init_hw(struct drm_device *dev)
5083{
3e31c6c0 5084 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 5085 struct intel_engine_cs *engine;
d200cda6 5086 int ret;
4fc7c971 5087
5e4f5189
CW
5088 /* Double layer security blanket, see i915_gem_init() */
5089 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5090
3accaf7e 5091 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 5092 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 5093
0bf21347
VS
5094 if (IS_HASWELL(dev))
5095 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5096 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 5097
88a2b2a3 5098 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
5099 if (IS_IVYBRIDGE(dev)) {
5100 u32 temp = I915_READ(GEN7_MSG_CTL);
5101 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5102 I915_WRITE(GEN7_MSG_CTL, temp);
5103 } else if (INTEL_INFO(dev)->gen >= 7) {
5104 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5105 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5106 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5107 }
88a2b2a3
BW
5108 }
5109
4fc7c971
BW
5110 i915_gem_init_swizzling(dev);
5111
d5abdfda
DV
5112 /*
5113 * At least 830 can leave some of the unused rings
5114 * "active" (ie. head != tail) after resume which
5115 * will prevent c3 entry. Makes sure all unused rings
5116 * are totally idle.
5117 */
5118 init_unused_rings(dev);
5119
ed54c1a1 5120 BUG_ON(!dev_priv->kernel_context);
90638cc1 5121
4ad2fd88
JH
5122 ret = i915_ppgtt_init_hw(dev);
5123 if (ret) {
5124 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5125 goto out;
5126 }
5127
5128 /* Need to do basic initialisation of all rings first: */
b4ac5afc 5129 for_each_engine(engine, dev_priv) {
e2f80391 5130 ret = engine->init_hw(engine);
35a57ffb 5131 if (ret)
5e4f5189 5132 goto out;
35a57ffb 5133 }
99433931 5134
0ccdacf6
PA
5135 intel_mocs_init_l3cc_table(dev);
5136
33a732f4 5137 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
5138 ret = intel_guc_setup(dev);
5139 if (ret)
5140 goto out;
33a732f4 5141
e84fe803
NH
5142 /*
5143 * Increment the next seqno by 0x100 so we have a visible break
5144 * on re-initialisation
5145 */
5146 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
e21af88d 5147
5e4f5189
CW
5148out:
5149 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 5150 return ret;
8187a2b7
ZN
5151}
5152
1070a42b
CW
5153int i915_gem_init(struct drm_device *dev)
5154{
5155 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
5156 int ret;
5157
1070a42b 5158 mutex_lock(&dev->struct_mutex);
d62b4892 5159
a83014d3 5160 if (!i915.enable_execlists) {
f3dc74c0 5161 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
117897f4
TU
5162 dev_priv->gt.init_engines = i915_gem_init_engines;
5163 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5164 dev_priv->gt.stop_engine = intel_stop_engine;
454afebd 5165 } else {
f3dc74c0 5166 dev_priv->gt.execbuf_submit = intel_execlists_submission;
117897f4
TU
5167 dev_priv->gt.init_engines = intel_logical_rings_init;
5168 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5169 dev_priv->gt.stop_engine = intel_logical_ring_stop;
a83014d3
OM
5170 }
5171
5e4f5189
CW
5172 /* This is just a security blanket to placate dragons.
5173 * On some systems, we very sporadically observe that the first TLBs
5174 * used by the CS may be stale, despite us poking the TLB reset. If
5175 * we hold the forcewake during initialisation these problems
5176 * just magically go away.
5177 */
5178 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5179
72778cb2 5180 i915_gem_init_userptr(dev_priv);
d85489d3 5181 i915_gem_init_ggtt(dev);
d62b4892 5182
2fa48d8d 5183 ret = i915_gem_context_init(dev);
7bcc3777
JN
5184 if (ret)
5185 goto out_unlock;
2fa48d8d 5186
117897f4 5187 ret = dev_priv->gt.init_engines(dev);
35a57ffb 5188 if (ret)
7bcc3777 5189 goto out_unlock;
2fa48d8d 5190
1070a42b 5191 ret = i915_gem_init_hw(dev);
60990320
CW
5192 if (ret == -EIO) {
5193 /* Allow ring initialisation to fail by marking the GPU as
5194 * wedged. But we only want to do this where the GPU is angry,
5195 * for all other failure, such as an allocation failure, bail.
5196 */
5197 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 5198 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 5199 ret = 0;
1070a42b 5200 }
7bcc3777
JN
5201
5202out_unlock:
5e4f5189 5203 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 5204 mutex_unlock(&dev->struct_mutex);
1070a42b 5205
60990320 5206 return ret;
1070a42b
CW
5207}
5208
8187a2b7 5209void
117897f4 5210i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 5211{
3e31c6c0 5212 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 5213 struct intel_engine_cs *engine;
8187a2b7 5214
b4ac5afc 5215 for_each_engine(engine, dev_priv)
117897f4 5216 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
5217}
5218
64193406 5219static void
666796da 5220init_engine_lists(struct intel_engine_cs *engine)
64193406 5221{
0bc40be8
TU
5222 INIT_LIST_HEAD(&engine->active_list);
5223 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
5224}
5225
40ae4e16
ID
5226void
5227i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5228{
5229 struct drm_device *dev = dev_priv->dev;
5230
5231 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5232 !IS_CHERRYVIEW(dev_priv))
5233 dev_priv->num_fence_regs = 32;
5234 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5235 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5236 dev_priv->num_fence_regs = 16;
5237 else
5238 dev_priv->num_fence_regs = 8;
5239
c033666a 5240 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
5241 dev_priv->num_fence_regs =
5242 I915_READ(vgtif_reg(avail_rs.fence_num));
5243
5244 /* Initialize fence registers to zero */
5245 i915_gem_restore_fences(dev);
5246
5247 i915_gem_detect_bit_6_swizzle(dev);
5248}
5249
673a394b 5250void
d64aa096 5251i915_gem_load_init(struct drm_device *dev)
673a394b 5252{
3e31c6c0 5253 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5254 int i;
5255
efab6d8d 5256 dev_priv->objects =
42dcedd4
CW
5257 kmem_cache_create("i915_gem_object",
5258 sizeof(struct drm_i915_gem_object), 0,
5259 SLAB_HWCACHE_ALIGN,
5260 NULL);
e20d2ab7
CW
5261 dev_priv->vmas =
5262 kmem_cache_create("i915_gem_vma",
5263 sizeof(struct i915_vma), 0,
5264 SLAB_HWCACHE_ALIGN,
5265 NULL);
efab6d8d
CW
5266 dev_priv->requests =
5267 kmem_cache_create("i915_gem_request",
5268 sizeof(struct drm_i915_gem_request), 0,
5269 SLAB_HWCACHE_ALIGN,
5270 NULL);
673a394b 5271
fc8c067e 5272 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 5273 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5274 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5275 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5276 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
5277 for (i = 0; i < I915_NUM_ENGINES; i++)
5278 init_engine_lists(&dev_priv->engine[i]);
4b9de737 5279 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5280 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5281 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5282 i915_gem_retire_work_handler);
b29c19b6
CW
5283 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5284 i915_gem_idle_work_handler);
1f83fee0 5285 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5286
72bfa19c
CW
5287 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5288
e84fe803
NH
5289 /*
5290 * Set initial sequence number for requests.
5291 * Using this number allows the wraparound to happen early,
5292 * catching any obvious problems.
5293 */
5294 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5295 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5296
19b2dbde 5297 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 5298
6b95a207 5299 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5300
ce453d81
CW
5301 dev_priv->mm.interruptible = true;
5302
f99d7069 5303 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5304}
71acb5eb 5305
d64aa096
ID
5306void i915_gem_load_cleanup(struct drm_device *dev)
5307{
5308 struct drm_i915_private *dev_priv = to_i915(dev);
5309
5310 kmem_cache_destroy(dev_priv->requests);
5311 kmem_cache_destroy(dev_priv->vmas);
5312 kmem_cache_destroy(dev_priv->objects);
5313}
5314
461fb99c
CW
5315int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5316{
5317 struct drm_i915_gem_object *obj;
5318
5319 /* Called just before we write the hibernation image.
5320 *
5321 * We need to update the domain tracking to reflect that the CPU
5322 * will be accessing all the pages to create and restore from the
5323 * hibernation, and so upon restoration those pages will be in the
5324 * CPU domain.
5325 *
5326 * To make sure the hibernation image contains the latest state,
5327 * we update that state just before writing out the image.
5328 */
5329
5330 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5331 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5332 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5333 }
5334
5335 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5336 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5337 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5338 }
5339
5340 return 0;
5341}
5342
f787a5f5 5343void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5344{
f787a5f5 5345 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5346
5347 /* Clean up our request list when the client is going away, so that
5348 * later retire_requests won't dereference our soon-to-be-gone
5349 * file_priv.
5350 */
1c25595f 5351 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5352 while (!list_empty(&file_priv->mm.request_list)) {
5353 struct drm_i915_gem_request *request;
5354
5355 request = list_first_entry(&file_priv->mm.request_list,
5356 struct drm_i915_gem_request,
5357 client_list);
5358 list_del(&request->client_list);
5359 request->file_priv = NULL;
5360 }
1c25595f 5361 spin_unlock(&file_priv->mm.lock);
b29c19b6 5362
2e1b8730 5363 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5364 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5365 list_del(&file_priv->rps.link);
8d3afd7d 5366 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5367 }
b29c19b6
CW
5368}
5369
5370int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5371{
5372 struct drm_i915_file_private *file_priv;
e422b888 5373 int ret;
b29c19b6
CW
5374
5375 DRM_DEBUG_DRIVER("\n");
5376
5377 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5378 if (!file_priv)
5379 return -ENOMEM;
5380
5381 file->driver_priv = file_priv;
5382 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5383 file_priv->file = file;
2e1b8730 5384 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5385
5386 spin_lock_init(&file_priv->mm.lock);
5387 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5388
de1add36
TU
5389 file_priv->bsd_ring = -1;
5390
e422b888
BW
5391 ret = i915_gem_context_open(dev, file);
5392 if (ret)
5393 kfree(file_priv);
b29c19b6 5394
e422b888 5395 return ret;
b29c19b6
CW
5396}
5397
b680c37a
DV
5398/**
5399 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5400 * @old: current GEM buffer for the frontbuffer slots
5401 * @new: new GEM buffer for the frontbuffer slots
5402 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5403 *
5404 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5405 * from @old and setting them in @new. Both @old and @new can be NULL.
5406 */
a071fa00
DV
5407void i915_gem_track_fb(struct drm_i915_gem_object *old,
5408 struct drm_i915_gem_object *new,
5409 unsigned frontbuffer_bits)
5410{
5411 if (old) {
5412 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5413 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5414 old->frontbuffer_bits &= ~frontbuffer_bits;
5415 }
5416
5417 if (new) {
5418 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5419 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5420 new->frontbuffer_bits |= frontbuffer_bits;
5421 }
5422}
5423
a70a3148 5424/* All the new VM stuff */
088e0df4
MT
5425u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5426 struct i915_address_space *vm)
a70a3148
BW
5427{
5428 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5429 struct i915_vma *vma;
5430
896ab1a5 5431 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5432
1c7f4bca 5433 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5434 if (vma->is_ggtt &&
ec7adb6e
JL
5435 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5436 continue;
5437 if (vma->vm == vm)
a70a3148 5438 return vma->node.start;
a70a3148 5439 }
ec7adb6e 5440
f25748ea
DV
5441 WARN(1, "%s vma for this object not found.\n",
5442 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5443 return -1;
5444}
5445
088e0df4
MT
5446u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5447 const struct i915_ggtt_view *view)
a70a3148
BW
5448{
5449 struct i915_vma *vma;
5450
1c7f4bca 5451 list_for_each_entry(vma, &o->vma_list, obj_link)
8aac2220 5452 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5453 return vma->node.start;
5454
5678ad73 5455 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5456 return -1;
5457}
5458
5459bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5460 struct i915_address_space *vm)
5461{
5462 struct i915_vma *vma;
5463
1c7f4bca 5464 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5465 if (vma->is_ggtt &&
ec7adb6e
JL
5466 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5467 continue;
5468 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5469 return true;
5470 }
5471
5472 return false;
5473}
5474
5475bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5476 const struct i915_ggtt_view *view)
ec7adb6e 5477{
ec7adb6e
JL
5478 struct i915_vma *vma;
5479
1c7f4bca 5480 list_for_each_entry(vma, &o->vma_list, obj_link)
ff5ec22d 5481 if (vma->is_ggtt &&
9abc4648 5482 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5483 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5484 return true;
5485
5486 return false;
5487}
5488
5489bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5490{
5a1d5eb0 5491 struct i915_vma *vma;
a70a3148 5492
1c7f4bca 5493 list_for_each_entry(vma, &o->vma_list, obj_link)
5a1d5eb0 5494 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5495 return true;
5496
5497 return false;
5498}
5499
8da32727 5500unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
a70a3148 5501{
a70a3148
BW
5502 struct i915_vma *vma;
5503
8da32727 5504 GEM_BUG_ON(list_empty(&o->vma_list));
a70a3148 5505
1c7f4bca 5506 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5507 if (vma->is_ggtt &&
8da32727 5508 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
a70a3148 5509 return vma->node.size;
ec7adb6e 5510 }
8da32727 5511
a70a3148
BW
5512 return 0;
5513}
5514
ec7adb6e 5515bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5516{
5517 struct i915_vma *vma;
1c7f4bca 5518 list_for_each_entry(vma, &obj->vma_list, obj_link)
ec7adb6e
JL
5519 if (vma->pin_count > 0)
5520 return true;
a6631ae1 5521
ec7adb6e 5522 return false;
5c2abbea 5523}
ea70299d 5524
033908ae
DG
5525/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5526struct page *
5527i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5528{
5529 struct page *page;
5530
5531 /* Only default objects have per-page dirty tracking */
b9bcd14a 5532 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
033908ae
DG
5533 return NULL;
5534
5535 page = i915_gem_object_get_page(obj, n);
5536 set_page_dirty(page);
5537 return page;
5538}
5539
ea70299d
DG
5540/* Allocate a new GEM object and fill it with the supplied data */
5541struct drm_i915_gem_object *
5542i915_gem_object_create_from_data(struct drm_device *dev,
5543 const void *data, size_t size)
5544{
5545 struct drm_i915_gem_object *obj;
5546 struct sg_table *sg;
5547 size_t bytes;
5548 int ret;
5549
d37cd8a8 5550 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 5551 if (IS_ERR(obj))
ea70299d
DG
5552 return obj;
5553
5554 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5555 if (ret)
5556 goto fail;
5557
5558 ret = i915_gem_object_get_pages(obj);
5559 if (ret)
5560 goto fail;
5561
5562 i915_gem_object_pin_pages(obj);
5563 sg = obj->pages;
5564 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5565 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5566 i915_gem_object_unpin_pages(obj);
5567
5568 if (WARN_ON(bytes != size)) {
5569 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5570 ret = -EFAULT;
5571 goto fail;
5572 }
5573
5574 return obj;
5575
5576fail:
5577 drm_gem_object_unreference(&obj->base);
5578 return ERR_PTR(ret);
5579}