]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: revert pageflip/mappable related abi breakage
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0f8c6d7c
CW
39struct change_domains {
40 uint32_t invalidate_domains;
41 uint32_t flush_domains;
42 uint32_t flush_rings;
43};
44
a00b10c3
CW
45static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
46static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
ba3d8d74
DV
47
48static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
49 bool pipelined);
e47c68e9
EA
50static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
51static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
52static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
53 int write);
54static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
55 uint64_t offset,
56 uint64_t size);
57static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
58static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
59 bool interruptible);
de151cf6 60static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
a00b10c3
CW
61 unsigned alignment,
62 bool mappable,
63 bool need_fence);
de151cf6 64static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
65static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
66 struct drm_i915_gem_pwrite *args,
67 struct drm_file *file_priv);
be72615b 68static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 69
17250b71
CW
70static int i915_gem_inactive_shrink(struct shrinker *shrinker,
71 int nr_to_scan,
72 gfp_t gfp_mask);
73
31169714 74
73aa808f
CW
75/* some bookkeeping */
76static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77 size_t size)
78{
79 dev_priv->mm.object_count++;
80 dev_priv->mm.object_memory += size;
81}
82
83static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84 size_t size)
85{
86 dev_priv->mm.object_count--;
87 dev_priv->mm.object_memory -= size;
88}
89
90static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
a00b10c3 91 struct drm_i915_gem_object *obj)
73aa808f
CW
92{
93 dev_priv->mm.gtt_count++;
a00b10c3
CW
94 dev_priv->mm.gtt_memory += obj->gtt_space->size;
95 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
fb7d516a 96 dev_priv->mm.mappable_gtt_used +=
a00b10c3
CW
97 min_t(size_t, obj->gtt_space->size,
98 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
fb7d516a 99 }
73aa808f
CW
100}
101
102static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
a00b10c3 103 struct drm_i915_gem_object *obj)
73aa808f
CW
104{
105 dev_priv->mm.gtt_count--;
a00b10c3
CW
106 dev_priv->mm.gtt_memory -= obj->gtt_space->size;
107 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
fb7d516a 108 dev_priv->mm.mappable_gtt_used -=
a00b10c3
CW
109 min_t(size_t, obj->gtt_space->size,
110 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
fb7d516a
DV
111 }
112}
113
114/**
115 * Update the mappable working set counters. Call _only_ when there is a change
116 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
117 * @mappable: new state the changed mappable flag (either pin_ or fault_).
118 */
119static void
120i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
a00b10c3 121 struct drm_i915_gem_object *obj,
fb7d516a
DV
122 bool mappable)
123{
fb7d516a 124 if (mappable) {
a00b10c3 125 if (obj->pin_mappable && obj->fault_mappable)
fb7d516a
DV
126 /* Combined state was already mappable. */
127 return;
128 dev_priv->mm.gtt_mappable_count++;
a00b10c3 129 dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
fb7d516a 130 } else {
a00b10c3 131 if (obj->pin_mappable || obj->fault_mappable)
fb7d516a
DV
132 /* Combined state still mappable. */
133 return;
134 dev_priv->mm.gtt_mappable_count--;
a00b10c3 135 dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
fb7d516a 136 }
73aa808f
CW
137}
138
139static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
a00b10c3 140 struct drm_i915_gem_object *obj,
fb7d516a 141 bool mappable)
73aa808f
CW
142{
143 dev_priv->mm.pin_count++;
a00b10c3 144 dev_priv->mm.pin_memory += obj->gtt_space->size;
fb7d516a 145 if (mappable) {
a00b10c3 146 obj->pin_mappable = true;
fb7d516a
DV
147 i915_gem_info_update_mappable(dev_priv, obj, true);
148 }
73aa808f
CW
149}
150
151static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
a00b10c3 152 struct drm_i915_gem_object *obj)
73aa808f
CW
153{
154 dev_priv->mm.pin_count--;
a00b10c3
CW
155 dev_priv->mm.pin_memory -= obj->gtt_space->size;
156 if (obj->pin_mappable) {
157 obj->pin_mappable = false;
fb7d516a
DV
158 i915_gem_info_update_mappable(dev_priv, obj, false);
159 }
73aa808f
CW
160}
161
30dbf0c0
CW
162int
163i915_gem_check_is_wedged(struct drm_device *dev)
164{
165 struct drm_i915_private *dev_priv = dev->dev_private;
166 struct completion *x = &dev_priv->error_completion;
167 unsigned long flags;
168 int ret;
169
170 if (!atomic_read(&dev_priv->mm.wedged))
171 return 0;
172
173 ret = wait_for_completion_interruptible(x);
174 if (ret)
175 return ret;
176
177 /* Success, we reset the GPU! */
178 if (!atomic_read(&dev_priv->mm.wedged))
179 return 0;
180
181 /* GPU is hung, bump the completion count to account for
182 * the token we just consumed so that we never hit zero and
183 * end up waiting upon a subsequent completion event that
184 * will never happen.
185 */
186 spin_lock_irqsave(&x->wait.lock, flags);
187 x->done++;
188 spin_unlock_irqrestore(&x->wait.lock, flags);
189 return -EIO;
190}
191
76c1dec1
CW
192static int i915_mutex_lock_interruptible(struct drm_device *dev)
193{
194 struct drm_i915_private *dev_priv = dev->dev_private;
195 int ret;
196
197 ret = i915_gem_check_is_wedged(dev);
198 if (ret)
199 return ret;
200
201 ret = mutex_lock_interruptible(&dev->struct_mutex);
202 if (ret)
203 return ret;
204
205 if (atomic_read(&dev_priv->mm.wedged)) {
206 mutex_unlock(&dev->struct_mutex);
207 return -EAGAIN;
208 }
209
23bc5982 210 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
211 return 0;
212}
30dbf0c0 213
7d1c4804
CW
214static inline bool
215i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
216{
217 return obj_priv->gtt_space &&
218 !obj_priv->active &&
219 obj_priv->pin_count == 0;
220}
221
73aa808f
CW
222int i915_gem_do_init(struct drm_device *dev,
223 unsigned long start,
53984635 224 unsigned long mappable_end,
79e53945 225 unsigned long end)
673a394b
EA
226{
227 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 228
79e53945
JB
229 if (start >= end ||
230 (start & (PAGE_SIZE - 1)) != 0 ||
231 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
232 return -EINVAL;
233 }
234
79e53945
JB
235 drm_mm_init(&dev_priv->mm.gtt_space, start,
236 end - start);
673a394b 237
73aa808f 238 dev_priv->mm.gtt_total = end - start;
fb7d516a 239 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
53984635 240 dev_priv->mm.gtt_mappable_end = mappable_end;
79e53945
JB
241
242 return 0;
243}
673a394b 244
79e53945
JB
245int
246i915_gem_init_ioctl(struct drm_device *dev, void *data,
247 struct drm_file *file_priv)
248{
249 struct drm_i915_gem_init *args = data;
250 int ret;
251
252 mutex_lock(&dev->struct_mutex);
53984635 253 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
254 mutex_unlock(&dev->struct_mutex);
255
79e53945 256 return ret;
673a394b
EA
257}
258
5a125c3c
EA
259int
260i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file_priv)
262{
73aa808f 263 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 264 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
265
266 if (!(dev->driver->driver_features & DRIVER_GEM))
267 return -ENODEV;
268
73aa808f
CW
269 mutex_lock(&dev->struct_mutex);
270 args->aper_size = dev_priv->mm.gtt_total;
271 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
272 mutex_unlock(&dev->struct_mutex);
5a125c3c
EA
273
274 return 0;
275}
276
673a394b
EA
277
278/**
279 * Creates a new mm object and returns a handle to it.
280 */
281int
282i915_gem_create_ioctl(struct drm_device *dev, void *data,
283 struct drm_file *file_priv)
284{
285 struct drm_i915_gem_create *args = data;
286 struct drm_gem_object *obj;
a1a2d1d3
PP
287 int ret;
288 u32 handle;
673a394b
EA
289
290 args->size = roundup(args->size, PAGE_SIZE);
291
292 /* Allocate the new object */
ac52bc56 293 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
294 if (obj == NULL)
295 return -ENOMEM;
296
297 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754 298 if (ret) {
202f2fef
CW
299 drm_gem_object_release(obj);
300 i915_gem_info_remove_obj(dev->dev_private, obj->size);
301 kfree(obj);
673a394b 302 return ret;
1dfd9754 303 }
673a394b 304
202f2fef
CW
305 /* drop reference from allocate - handle holds it now */
306 drm_gem_object_unreference(obj);
307 trace_i915_gem_object_create(obj);
308
1dfd9754 309 args->handle = handle;
673a394b
EA
310 return 0;
311}
312
280b713b
EA
313static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
314{
315 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 316 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
317
318 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
319 obj_priv->tiling_mode != I915_TILING_NONE;
320}
321
99a03df5 322static inline void
40123c1f
EA
323slow_shmem_copy(struct page *dst_page,
324 int dst_offset,
325 struct page *src_page,
326 int src_offset,
327 int length)
328{
329 char *dst_vaddr, *src_vaddr;
330
99a03df5
CW
331 dst_vaddr = kmap(dst_page);
332 src_vaddr = kmap(src_page);
40123c1f
EA
333
334 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
335
99a03df5
CW
336 kunmap(src_page);
337 kunmap(dst_page);
40123c1f
EA
338}
339
99a03df5 340static inline void
280b713b
EA
341slow_shmem_bit17_copy(struct page *gpu_page,
342 int gpu_offset,
343 struct page *cpu_page,
344 int cpu_offset,
345 int length,
346 int is_read)
347{
348 char *gpu_vaddr, *cpu_vaddr;
349
350 /* Use the unswizzled path if this page isn't affected. */
351 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
352 if (is_read)
353 return slow_shmem_copy(cpu_page, cpu_offset,
354 gpu_page, gpu_offset, length);
355 else
356 return slow_shmem_copy(gpu_page, gpu_offset,
357 cpu_page, cpu_offset, length);
358 }
359
99a03df5
CW
360 gpu_vaddr = kmap(gpu_page);
361 cpu_vaddr = kmap(cpu_page);
280b713b
EA
362
363 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
364 * XORing with the other bits (A9 for Y, A9 and A10 for X)
365 */
366 while (length > 0) {
367 int cacheline_end = ALIGN(gpu_offset + 1, 64);
368 int this_length = min(cacheline_end - gpu_offset, length);
369 int swizzled_gpu_offset = gpu_offset ^ 64;
370
371 if (is_read) {
372 memcpy(cpu_vaddr + cpu_offset,
373 gpu_vaddr + swizzled_gpu_offset,
374 this_length);
375 } else {
376 memcpy(gpu_vaddr + swizzled_gpu_offset,
377 cpu_vaddr + cpu_offset,
378 this_length);
379 }
380 cpu_offset += this_length;
381 gpu_offset += this_length;
382 length -= this_length;
383 }
384
99a03df5
CW
385 kunmap(cpu_page);
386 kunmap(gpu_page);
280b713b
EA
387}
388
eb01459f
EA
389/**
390 * This is the fast shmem pread path, which attempts to copy_from_user directly
391 * from the backing pages of the object to the user's address space. On a
392 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
393 */
394static int
395i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
396 struct drm_i915_gem_pread *args,
397 struct drm_file *file_priv)
398{
23010e43 399 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
e5281ccd 400 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
eb01459f 401 ssize_t remain;
e5281ccd 402 loff_t offset;
eb01459f
EA
403 char __user *user_data;
404 int page_offset, page_length;
eb01459f
EA
405
406 user_data = (char __user *) (uintptr_t) args->data_ptr;
407 remain = args->size;
408
23010e43 409 obj_priv = to_intel_bo(obj);
eb01459f
EA
410 offset = args->offset;
411
412 while (remain > 0) {
e5281ccd
CW
413 struct page *page;
414 char *vaddr;
415 int ret;
416
eb01459f
EA
417 /* Operation in this page
418 *
eb01459f
EA
419 * page_offset = offset within page
420 * page_length = bytes to copy for this page
421 */
eb01459f
EA
422 page_offset = offset & (PAGE_SIZE-1);
423 page_length = remain;
424 if ((page_offset + remain) > PAGE_SIZE)
425 page_length = PAGE_SIZE - page_offset;
426
e5281ccd
CW
427 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
428 GFP_HIGHUSER | __GFP_RECLAIMABLE);
429 if (IS_ERR(page))
430 return PTR_ERR(page);
431
432 vaddr = kmap_atomic(page);
433 ret = __copy_to_user_inatomic(user_data,
434 vaddr + page_offset,
435 page_length);
436 kunmap_atomic(vaddr);
437
438 mark_page_accessed(page);
439 page_cache_release(page);
440 if (ret)
4f27b75d 441 return -EFAULT;
eb01459f
EA
442
443 remain -= page_length;
444 user_data += page_length;
445 offset += page_length;
446 }
447
4f27b75d 448 return 0;
eb01459f
EA
449}
450
451/**
452 * This is the fallback shmem pread path, which allocates temporary storage
453 * in kernel space to copy_to_user into outside of the struct_mutex, so we
454 * can copy out of the object's backing pages while holding the struct mutex
455 * and not take page faults.
456 */
457static int
458i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
459 struct drm_i915_gem_pread *args,
460 struct drm_file *file_priv)
461{
e5281ccd 462 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
23010e43 463 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
464 struct mm_struct *mm = current->mm;
465 struct page **user_pages;
466 ssize_t remain;
467 loff_t offset, pinned_pages, i;
468 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
469 int shmem_page_offset;
470 int data_page_index, data_page_offset;
eb01459f
EA
471 int page_length;
472 int ret;
473 uint64_t data_ptr = args->data_ptr;
280b713b 474 int do_bit17_swizzling;
eb01459f
EA
475
476 remain = args->size;
477
478 /* Pin the user pages containing the data. We can't fault while
479 * holding the struct mutex, yet we want to hold it while
480 * dereferencing the user data.
481 */
482 first_data_page = data_ptr / PAGE_SIZE;
483 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
484 num_pages = last_data_page - first_data_page + 1;
485
4f27b75d 486 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
487 if (user_pages == NULL)
488 return -ENOMEM;
489
4f27b75d 490 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
491 down_read(&mm->mmap_sem);
492 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 493 num_pages, 1, 0, user_pages, NULL);
eb01459f 494 up_read(&mm->mmap_sem);
4f27b75d 495 mutex_lock(&dev->struct_mutex);
eb01459f
EA
496 if (pinned_pages < num_pages) {
497 ret = -EFAULT;
4f27b75d 498 goto out;
eb01459f
EA
499 }
500
4f27b75d
CW
501 ret = i915_gem_object_set_cpu_read_domain_range(obj,
502 args->offset,
503 args->size);
07f73f69 504 if (ret)
4f27b75d 505 goto out;
eb01459f 506
4f27b75d 507 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 508
23010e43 509 obj_priv = to_intel_bo(obj);
eb01459f
EA
510 offset = args->offset;
511
512 while (remain > 0) {
e5281ccd
CW
513 struct page *page;
514
eb01459f
EA
515 /* Operation in this page
516 *
eb01459f
EA
517 * shmem_page_offset = offset within page in shmem file
518 * data_page_index = page number in get_user_pages return
519 * data_page_offset = offset with data_page_index page.
520 * page_length = bytes to copy for this page
521 */
eb01459f
EA
522 shmem_page_offset = offset & ~PAGE_MASK;
523 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
524 data_page_offset = data_ptr & ~PAGE_MASK;
525
526 page_length = remain;
527 if ((shmem_page_offset + page_length) > PAGE_SIZE)
528 page_length = PAGE_SIZE - shmem_page_offset;
529 if ((data_page_offset + page_length) > PAGE_SIZE)
530 page_length = PAGE_SIZE - data_page_offset;
531
e5281ccd
CW
532 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
533 GFP_HIGHUSER | __GFP_RECLAIMABLE);
534 if (IS_ERR(page))
535 return PTR_ERR(page);
536
280b713b 537 if (do_bit17_swizzling) {
e5281ccd 538 slow_shmem_bit17_copy(page,
280b713b 539 shmem_page_offset,
99a03df5
CW
540 user_pages[data_page_index],
541 data_page_offset,
542 page_length,
543 1);
544 } else {
545 slow_shmem_copy(user_pages[data_page_index],
546 data_page_offset,
e5281ccd 547 page,
99a03df5
CW
548 shmem_page_offset,
549 page_length);
280b713b 550 }
eb01459f 551
e5281ccd
CW
552 mark_page_accessed(page);
553 page_cache_release(page);
554
eb01459f
EA
555 remain -= page_length;
556 data_ptr += page_length;
557 offset += page_length;
558 }
559
4f27b75d 560out:
eb01459f
EA
561 for (i = 0; i < pinned_pages; i++) {
562 SetPageDirty(user_pages[i]);
e5281ccd 563 mark_page_accessed(user_pages[i]);
eb01459f
EA
564 page_cache_release(user_pages[i]);
565 }
8e7d2b2c 566 drm_free_large(user_pages);
eb01459f
EA
567
568 return ret;
569}
570
673a394b
EA
571/**
572 * Reads data from the object referenced by handle.
573 *
574 * On error, the contents of *data are undefined.
575 */
576int
577i915_gem_pread_ioctl(struct drm_device *dev, void *data,
578 struct drm_file *file_priv)
579{
580 struct drm_i915_gem_pread *args = data;
581 struct drm_gem_object *obj;
582 struct drm_i915_gem_object *obj_priv;
35b62a89 583 int ret = 0;
673a394b 584
4f27b75d 585 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 586 if (ret)
4f27b75d 587 return ret;
673a394b
EA
588
589 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
590 if (obj == NULL) {
591 ret = -ENOENT;
592 goto unlock;
4f27b75d 593 }
23010e43 594 obj_priv = to_intel_bo(obj);
673a394b 595
7dcd2499
CW
596 /* Bounds check source. */
597 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 598 ret = -EINVAL;
35b62a89 599 goto out;
ce9d419d
CW
600 }
601
35b62a89
CW
602 if (args->size == 0)
603 goto out;
604
ce9d419d
CW
605 if (!access_ok(VERIFY_WRITE,
606 (char __user *)(uintptr_t)args->data_ptr,
607 args->size)) {
608 ret = -EFAULT;
35b62a89 609 goto out;
673a394b
EA
610 }
611
b5e4feb6
CW
612 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
613 args->size);
614 if (ret) {
615 ret = -EFAULT;
616 goto out;
280b713b 617 }
673a394b 618
4f27b75d
CW
619 ret = i915_gem_object_set_cpu_read_domain_range(obj,
620 args->offset,
621 args->size);
622 if (ret)
e5281ccd 623 goto out;
4f27b75d
CW
624
625 ret = -EFAULT;
626 if (!i915_gem_object_needs_bit17_swizzle(obj))
280b713b 627 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
4f27b75d
CW
628 if (ret == -EFAULT)
629 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
673a394b 630
35b62a89 631out:
4f27b75d 632 drm_gem_object_unreference(obj);
1d7cfea1 633unlock:
4f27b75d 634 mutex_unlock(&dev->struct_mutex);
eb01459f 635 return ret;
673a394b
EA
636}
637
0839ccb8
KP
638/* This is the fast write path which cannot handle
639 * page faults in the source data
9b7530cc 640 */
0839ccb8
KP
641
642static inline int
643fast_user_write(struct io_mapping *mapping,
644 loff_t page_base, int page_offset,
645 char __user *user_data,
646 int length)
9b7530cc 647{
9b7530cc 648 char *vaddr_atomic;
0839ccb8 649 unsigned long unwritten;
9b7530cc 650
3e4d3af5 651 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
652 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
653 user_data, length);
3e4d3af5 654 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 655 return unwritten;
0839ccb8
KP
656}
657
658/* Here's the write path which can sleep for
659 * page faults
660 */
661
ab34c226 662static inline void
3de09aa3
EA
663slow_kernel_write(struct io_mapping *mapping,
664 loff_t gtt_base, int gtt_offset,
665 struct page *user_page, int user_offset,
666 int length)
0839ccb8 667{
ab34c226
CW
668 char __iomem *dst_vaddr;
669 char *src_vaddr;
0839ccb8 670
ab34c226
CW
671 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
672 src_vaddr = kmap(user_page);
673
674 memcpy_toio(dst_vaddr + gtt_offset,
675 src_vaddr + user_offset,
676 length);
677
678 kunmap(user_page);
679 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
680}
681
3de09aa3
EA
682/**
683 * This is the fast pwrite path, where we copy the data directly from the
684 * user into the GTT, uncached.
685 */
673a394b 686static int
3de09aa3
EA
687i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
688 struct drm_i915_gem_pwrite *args,
689 struct drm_file *file_priv)
673a394b 690{
23010e43 691 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 692 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 693 ssize_t remain;
0839ccb8 694 loff_t offset, page_base;
673a394b 695 char __user *user_data;
0839ccb8 696 int page_offset, page_length;
673a394b
EA
697
698 user_data = (char __user *) (uintptr_t) args->data_ptr;
699 remain = args->size;
673a394b 700
23010e43 701 obj_priv = to_intel_bo(obj);
673a394b 702 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
703
704 while (remain > 0) {
705 /* Operation in this page
706 *
0839ccb8
KP
707 * page_base = page offset within aperture
708 * page_offset = offset within page
709 * page_length = bytes to copy for this page
673a394b 710 */
0839ccb8
KP
711 page_base = (offset & ~(PAGE_SIZE-1));
712 page_offset = offset & (PAGE_SIZE-1);
713 page_length = remain;
714 if ((page_offset + remain) > PAGE_SIZE)
715 page_length = PAGE_SIZE - page_offset;
716
0839ccb8 717 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
718 * source page isn't available. Return the error and we'll
719 * retry in the slow path.
0839ccb8 720 */
fbd5a26d
CW
721 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
722 page_offset, user_data, page_length))
723
724 return -EFAULT;
673a394b 725
0839ccb8
KP
726 remain -= page_length;
727 user_data += page_length;
728 offset += page_length;
673a394b 729 }
673a394b 730
fbd5a26d 731 return 0;
673a394b
EA
732}
733
3de09aa3
EA
734/**
735 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
736 * the memory and maps it using kmap_atomic for copying.
737 *
738 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
739 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
740 */
3043c60c 741static int
3de09aa3
EA
742i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
743 struct drm_i915_gem_pwrite *args,
744 struct drm_file *file_priv)
673a394b 745{
23010e43 746 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
747 drm_i915_private_t *dev_priv = dev->dev_private;
748 ssize_t remain;
749 loff_t gtt_page_base, offset;
750 loff_t first_data_page, last_data_page, num_pages;
751 loff_t pinned_pages, i;
752 struct page **user_pages;
753 struct mm_struct *mm = current->mm;
754 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 755 int ret;
3de09aa3
EA
756 uint64_t data_ptr = args->data_ptr;
757
758 remain = args->size;
759
760 /* Pin the user pages containing the data. We can't fault while
761 * holding the struct mutex, and all of the pwrite implementations
762 * want to hold it while dereferencing the user data.
763 */
764 first_data_page = data_ptr / PAGE_SIZE;
765 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
766 num_pages = last_data_page - first_data_page + 1;
767
fbd5a26d 768 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
769 if (user_pages == NULL)
770 return -ENOMEM;
771
fbd5a26d 772 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
773 down_read(&mm->mmap_sem);
774 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
775 num_pages, 0, 0, user_pages, NULL);
776 up_read(&mm->mmap_sem);
fbd5a26d 777 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
778 if (pinned_pages < num_pages) {
779 ret = -EFAULT;
780 goto out_unpin_pages;
781 }
673a394b 782
3de09aa3
EA
783 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
784 if (ret)
fbd5a26d 785 goto out_unpin_pages;
3de09aa3 786
23010e43 787 obj_priv = to_intel_bo(obj);
3de09aa3
EA
788 offset = obj_priv->gtt_offset + args->offset;
789
790 while (remain > 0) {
791 /* Operation in this page
792 *
793 * gtt_page_base = page offset within aperture
794 * gtt_page_offset = offset within page in aperture
795 * data_page_index = page number in get_user_pages return
796 * data_page_offset = offset with data_page_index page.
797 * page_length = bytes to copy for this page
798 */
799 gtt_page_base = offset & PAGE_MASK;
800 gtt_page_offset = offset & ~PAGE_MASK;
801 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
802 data_page_offset = data_ptr & ~PAGE_MASK;
803
804 page_length = remain;
805 if ((gtt_page_offset + page_length) > PAGE_SIZE)
806 page_length = PAGE_SIZE - gtt_page_offset;
807 if ((data_page_offset + page_length) > PAGE_SIZE)
808 page_length = PAGE_SIZE - data_page_offset;
809
ab34c226
CW
810 slow_kernel_write(dev_priv->mm.gtt_mapping,
811 gtt_page_base, gtt_page_offset,
812 user_pages[data_page_index],
813 data_page_offset,
814 page_length);
3de09aa3
EA
815
816 remain -= page_length;
817 offset += page_length;
818 data_ptr += page_length;
819 }
820
3de09aa3
EA
821out_unpin_pages:
822 for (i = 0; i < pinned_pages; i++)
823 page_cache_release(user_pages[i]);
8e7d2b2c 824 drm_free_large(user_pages);
3de09aa3
EA
825
826 return ret;
827}
828
40123c1f
EA
829/**
830 * This is the fast shmem pwrite path, which attempts to directly
831 * copy_from_user into the kmapped pages backing the object.
832 */
3043c60c 833static int
40123c1f
EA
834i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
835 struct drm_i915_gem_pwrite *args,
836 struct drm_file *file_priv)
673a394b 837{
e5281ccd 838 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
23010e43 839 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f 840 ssize_t remain;
e5281ccd 841 loff_t offset;
40123c1f
EA
842 char __user *user_data;
843 int page_offset, page_length;
40123c1f
EA
844
845 user_data = (char __user *) (uintptr_t) args->data_ptr;
846 remain = args->size;
673a394b 847
23010e43 848 obj_priv = to_intel_bo(obj);
40123c1f
EA
849 offset = args->offset;
850 obj_priv->dirty = 1;
851
852 while (remain > 0) {
e5281ccd
CW
853 struct page *page;
854 char *vaddr;
855 int ret;
856
40123c1f
EA
857 /* Operation in this page
858 *
40123c1f
EA
859 * page_offset = offset within page
860 * page_length = bytes to copy for this page
861 */
40123c1f
EA
862 page_offset = offset & (PAGE_SIZE-1);
863 page_length = remain;
864 if ((page_offset + remain) > PAGE_SIZE)
865 page_length = PAGE_SIZE - page_offset;
866
e5281ccd
CW
867 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
868 GFP_HIGHUSER | __GFP_RECLAIMABLE);
869 if (IS_ERR(page))
870 return PTR_ERR(page);
871
872 vaddr = kmap_atomic(page, KM_USER0);
873 ret = __copy_from_user_inatomic(vaddr + page_offset,
874 user_data,
875 page_length);
876 kunmap_atomic(vaddr, KM_USER0);
877
878 set_page_dirty(page);
879 mark_page_accessed(page);
880 page_cache_release(page);
881
882 /* If we get a fault while copying data, then (presumably) our
883 * source page isn't available. Return the error and we'll
884 * retry in the slow path.
885 */
886 if (ret)
fbd5a26d 887 return -EFAULT;
40123c1f
EA
888
889 remain -= page_length;
890 user_data += page_length;
891 offset += page_length;
892 }
893
fbd5a26d 894 return 0;
40123c1f
EA
895}
896
897/**
898 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
899 * the memory and maps it using kmap_atomic for copying.
900 *
901 * This avoids taking mmap_sem for faulting on the user's address while the
902 * struct_mutex is held.
903 */
904static int
905i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
906 struct drm_i915_gem_pwrite *args,
907 struct drm_file *file_priv)
908{
e5281ccd 909 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
23010e43 910 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
911 struct mm_struct *mm = current->mm;
912 struct page **user_pages;
913 ssize_t remain;
914 loff_t offset, pinned_pages, i;
915 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 916 int shmem_page_offset;
40123c1f
EA
917 int data_page_index, data_page_offset;
918 int page_length;
919 int ret;
920 uint64_t data_ptr = args->data_ptr;
280b713b 921 int do_bit17_swizzling;
40123c1f
EA
922
923 remain = args->size;
924
925 /* Pin the user pages containing the data. We can't fault while
926 * holding the struct mutex, and all of the pwrite implementations
927 * want to hold it while dereferencing the user data.
928 */
929 first_data_page = data_ptr / PAGE_SIZE;
930 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
931 num_pages = last_data_page - first_data_page + 1;
932
4f27b75d 933 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
934 if (user_pages == NULL)
935 return -ENOMEM;
936
fbd5a26d 937 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
938 down_read(&mm->mmap_sem);
939 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
940 num_pages, 0, 0, user_pages, NULL);
941 up_read(&mm->mmap_sem);
fbd5a26d 942 mutex_lock(&dev->struct_mutex);
40123c1f
EA
943 if (pinned_pages < num_pages) {
944 ret = -EFAULT;
fbd5a26d 945 goto out;
673a394b
EA
946 }
947
fbd5a26d 948 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 949 if (ret)
fbd5a26d 950 goto out;
40123c1f 951
fbd5a26d 952 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 953
23010e43 954 obj_priv = to_intel_bo(obj);
673a394b 955 offset = args->offset;
40123c1f 956 obj_priv->dirty = 1;
673a394b 957
40123c1f 958 while (remain > 0) {
e5281ccd
CW
959 struct page *page;
960
40123c1f
EA
961 /* Operation in this page
962 *
40123c1f
EA
963 * shmem_page_offset = offset within page in shmem file
964 * data_page_index = page number in get_user_pages return
965 * data_page_offset = offset with data_page_index page.
966 * page_length = bytes to copy for this page
967 */
40123c1f
EA
968 shmem_page_offset = offset & ~PAGE_MASK;
969 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
970 data_page_offset = data_ptr & ~PAGE_MASK;
971
972 page_length = remain;
973 if ((shmem_page_offset + page_length) > PAGE_SIZE)
974 page_length = PAGE_SIZE - shmem_page_offset;
975 if ((data_page_offset + page_length) > PAGE_SIZE)
976 page_length = PAGE_SIZE - data_page_offset;
977
e5281ccd
CW
978 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
979 GFP_HIGHUSER | __GFP_RECLAIMABLE);
980 if (IS_ERR(page)) {
981 ret = PTR_ERR(page);
982 goto out;
983 }
984
280b713b 985 if (do_bit17_swizzling) {
e5281ccd 986 slow_shmem_bit17_copy(page,
280b713b
EA
987 shmem_page_offset,
988 user_pages[data_page_index],
989 data_page_offset,
99a03df5
CW
990 page_length,
991 0);
992 } else {
e5281ccd 993 slow_shmem_copy(page,
99a03df5
CW
994 shmem_page_offset,
995 user_pages[data_page_index],
996 data_page_offset,
997 page_length);
280b713b 998 }
40123c1f 999
e5281ccd
CW
1000 set_page_dirty(page);
1001 mark_page_accessed(page);
1002 page_cache_release(page);
1003
40123c1f
EA
1004 remain -= page_length;
1005 data_ptr += page_length;
1006 offset += page_length;
673a394b
EA
1007 }
1008
fbd5a26d 1009out:
40123c1f
EA
1010 for (i = 0; i < pinned_pages; i++)
1011 page_cache_release(user_pages[i]);
8e7d2b2c 1012 drm_free_large(user_pages);
673a394b 1013
40123c1f 1014 return ret;
673a394b
EA
1015}
1016
1017/**
1018 * Writes data to the object referenced by handle.
1019 *
1020 * On error, the contents of the buffer that were to be modified are undefined.
1021 */
1022int
1023i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1024 struct drm_file *file)
673a394b
EA
1025{
1026 struct drm_i915_gem_pwrite *args = data;
1027 struct drm_gem_object *obj;
1028 struct drm_i915_gem_object *obj_priv;
1029 int ret = 0;
1030
fbd5a26d 1031 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1032 if (ret)
fbd5a26d 1033 return ret;
1d7cfea1
CW
1034
1035 obj = drm_gem_object_lookup(dev, file, args->handle);
1036 if (obj == NULL) {
1037 ret = -ENOENT;
1038 goto unlock;
fbd5a26d 1039 }
23010e43 1040 obj_priv = to_intel_bo(obj);
673a394b 1041
fbd5a26d 1042
7dcd2499
CW
1043 /* Bounds check destination. */
1044 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 1045 ret = -EINVAL;
35b62a89 1046 goto out;
ce9d419d
CW
1047 }
1048
35b62a89
CW
1049 if (args->size == 0)
1050 goto out;
1051
ce9d419d
CW
1052 if (!access_ok(VERIFY_READ,
1053 (char __user *)(uintptr_t)args->data_ptr,
1054 args->size)) {
1055 ret = -EFAULT;
35b62a89 1056 goto out;
673a394b
EA
1057 }
1058
b5e4feb6
CW
1059 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1060 args->size);
1061 if (ret) {
1062 ret = -EFAULT;
1063 goto out;
673a394b
EA
1064 }
1065
1066 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1067 * it would end up going through the fenced access, and we'll get
1068 * different detiling behavior between reading and writing.
1069 * pread/pwrite currently are reading and writing from the CPU
1070 * perspective, requiring manual detiling by the client.
1071 */
71acb5eb 1072 if (obj_priv->phys_obj)
fbd5a26d 1073 ret = i915_gem_phys_pwrite(dev, obj, args, file);
71acb5eb 1074 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
5cdf5881 1075 obj_priv->gtt_space &&
9b8c4a0b 1076 obj->write_domain != I915_GEM_DOMAIN_CPU) {
a00b10c3 1077 ret = i915_gem_object_pin(obj, 0, true, false);
fbd5a26d
CW
1078 if (ret)
1079 goto out;
1080
1081 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1082 if (ret)
1083 goto out_unpin;
1084
1085 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1086 if (ret == -EFAULT)
1087 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1088
1089out_unpin:
1090 i915_gem_object_unpin(obj);
40123c1f 1091 } else {
fbd5a26d
CW
1092 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1093 if (ret)
e5281ccd 1094 goto out;
673a394b 1095
fbd5a26d
CW
1096 ret = -EFAULT;
1097 if (!i915_gem_object_needs_bit17_swizzle(obj))
1098 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1099 if (ret == -EFAULT)
1100 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1101 }
673a394b 1102
35b62a89 1103out:
fbd5a26d 1104 drm_gem_object_unreference(obj);
1d7cfea1 1105unlock:
fbd5a26d 1106 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1107 return ret;
1108}
1109
1110/**
2ef7eeaa
EA
1111 * Called when user space prepares to use an object with the CPU, either
1112 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1113 */
1114int
1115i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1116 struct drm_file *file_priv)
1117{
a09ba7fa 1118 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1119 struct drm_i915_gem_set_domain *args = data;
1120 struct drm_gem_object *obj;
652c393a 1121 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1122 uint32_t read_domains = args->read_domains;
1123 uint32_t write_domain = args->write_domain;
673a394b
EA
1124 int ret;
1125
1126 if (!(dev->driver->driver_features & DRIVER_GEM))
1127 return -ENODEV;
1128
2ef7eeaa 1129 /* Only handle setting domains to types used by the CPU. */
21d509e3 1130 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1131 return -EINVAL;
1132
21d509e3 1133 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1134 return -EINVAL;
1135
1136 /* Having something in the write domain implies it's in the read
1137 * domain, and only that read domain. Enforce that in the request.
1138 */
1139 if (write_domain != 0 && read_domains != write_domain)
1140 return -EINVAL;
1141
76c1dec1 1142 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1143 if (ret)
76c1dec1 1144 return ret;
1d7cfea1 1145
673a394b 1146 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
1147 if (obj == NULL) {
1148 ret = -ENOENT;
1149 goto unlock;
76c1dec1 1150 }
23010e43 1151 obj_priv = to_intel_bo(obj);
673a394b 1152
652c393a
JB
1153 intel_mark_busy(dev, obj);
1154
2ef7eeaa
EA
1155 if (read_domains & I915_GEM_DOMAIN_GTT) {
1156 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1157
a09ba7fa
EA
1158 /* Update the LRU on the fence for the CPU access that's
1159 * about to occur.
1160 */
1161 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1162 struct drm_i915_fence_reg *reg =
1163 &dev_priv->fence_regs[obj_priv->fence_reg];
1164 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1165 &dev_priv->mm.fence_list);
1166 }
1167
02354392
EA
1168 /* Silently promote "you're not bound, there was nothing to do"
1169 * to success, since the client was just asking us to
1170 * make sure everything was done.
1171 */
1172 if (ret == -EINVAL)
1173 ret = 0;
2ef7eeaa 1174 } else {
e47c68e9 1175 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1176 }
1177
7d1c4804
CW
1178 /* Maintain LRU order of "inactive" objects */
1179 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
69dc4987 1180 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1181
673a394b 1182 drm_gem_object_unreference(obj);
1d7cfea1 1183unlock:
673a394b
EA
1184 mutex_unlock(&dev->struct_mutex);
1185 return ret;
1186}
1187
1188/**
1189 * Called when user space has done writes to this buffer
1190 */
1191int
1192i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1193 struct drm_file *file_priv)
1194{
1195 struct drm_i915_gem_sw_finish *args = data;
1196 struct drm_gem_object *obj;
673a394b
EA
1197 int ret = 0;
1198
1199 if (!(dev->driver->driver_features & DRIVER_GEM))
1200 return -ENODEV;
1201
76c1dec1 1202 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1203 if (ret)
76c1dec1 1204 return ret;
1d7cfea1 1205
673a394b
EA
1206 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1207 if (obj == NULL) {
1d7cfea1
CW
1208 ret = -ENOENT;
1209 goto unlock;
673a394b
EA
1210 }
1211
673a394b 1212 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1213 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1214 i915_gem_object_flush_cpu_write_domain(obj);
1215
673a394b 1216 drm_gem_object_unreference(obj);
1d7cfea1 1217unlock:
673a394b
EA
1218 mutex_unlock(&dev->struct_mutex);
1219 return ret;
1220}
1221
1222/**
1223 * Maps the contents of an object, returning the address it is mapped
1224 * into.
1225 *
1226 * While the mapping holds a reference on the contents of the object, it doesn't
1227 * imply a ref on the object itself.
1228 */
1229int
1230i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1231 struct drm_file *file_priv)
1232{
da761a6e 1233 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1234 struct drm_i915_gem_mmap *args = data;
1235 struct drm_gem_object *obj;
1236 loff_t offset;
1237 unsigned long addr;
1238
1239 if (!(dev->driver->driver_features & DRIVER_GEM))
1240 return -ENODEV;
1241
1242 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1243 if (obj == NULL)
bf79cb91 1244 return -ENOENT;
673a394b 1245
da761a6e
CW
1246 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1247 drm_gem_object_unreference_unlocked(obj);
1248 return -E2BIG;
1249 }
1250
673a394b
EA
1251 offset = args->offset;
1252
1253 down_write(&current->mm->mmap_sem);
1254 addr = do_mmap(obj->filp, 0, args->size,
1255 PROT_READ | PROT_WRITE, MAP_SHARED,
1256 args->offset);
1257 up_write(&current->mm->mmap_sem);
bc9025bd 1258 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1259 if (IS_ERR((void *)addr))
1260 return addr;
1261
1262 args->addr_ptr = (uint64_t) addr;
1263
1264 return 0;
1265}
1266
de151cf6
JB
1267/**
1268 * i915_gem_fault - fault a page into the GTT
1269 * vma: VMA in question
1270 * vmf: fault info
1271 *
1272 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1273 * from userspace. The fault handler takes care of binding the object to
1274 * the GTT (if needed), allocating and programming a fence register (again,
1275 * only if needed based on whether the old reg is still valid or the object
1276 * is tiled) and inserting a new PTE into the faulting process.
1277 *
1278 * Note that the faulting process may involve evicting existing objects
1279 * from the GTT and/or fence registers to make room. So performance may
1280 * suffer if the GTT working set is large or there are few fence registers
1281 * left.
1282 */
1283int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1284{
1285 struct drm_gem_object *obj = vma->vm_private_data;
1286 struct drm_device *dev = obj->dev;
7d1c4804 1287 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1288 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1289 pgoff_t page_offset;
1290 unsigned long pfn;
1291 int ret = 0;
0f973f27 1292 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1293
1294 /* We don't use vmf->pgoff since that has the fake offset */
1295 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1296 PAGE_SHIFT;
1297
1298 /* Now bind it into the GTT if needed */
1299 mutex_lock(&dev->struct_mutex);
fb7d516a 1300 BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
a00b10c3
CW
1301
1302 if (obj_priv->gtt_space) {
1303 if (!obj_priv->mappable ||
1304 (obj_priv->tiling_mode && !obj_priv->fenceable)) {
1305 ret = i915_gem_object_unbind(obj);
1306 if (ret)
1307 goto unlock;
1308 }
1309 }
16e809ac 1310
de151cf6 1311 if (!obj_priv->gtt_space) {
a00b10c3
CW
1312 ret = i915_gem_object_bind_to_gtt(obj, 0,
1313 true, obj_priv->tiling_mode);
c715089f
CW
1314 if (ret)
1315 goto unlock;
de151cf6
JB
1316 }
1317
4a684a41
CW
1318 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1319 if (ret)
1320 goto unlock;
1321
fb7d516a
DV
1322 if (!obj_priv->fault_mappable) {
1323 obj_priv->fault_mappable = true;
a00b10c3 1324 i915_gem_info_update_mappable(dev_priv, obj_priv, true);
fb7d516a
DV
1325 }
1326
de151cf6 1327 /* Need a new fence register? */
a09ba7fa 1328 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1329 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1330 if (ret)
1331 goto unlock;
d9ddcb96 1332 }
de151cf6 1333
7d1c4804 1334 if (i915_gem_object_is_inactive(obj_priv))
69dc4987 1335 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1336
de151cf6
JB
1337 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1338 page_offset;
1339
1340 /* Finally, remap it using the new GTT offset */
1341 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1342unlock:
de151cf6
JB
1343 mutex_unlock(&dev->struct_mutex);
1344
1345 switch (ret) {
c715089f
CW
1346 case 0:
1347 case -ERESTARTSYS:
1348 return VM_FAULT_NOPAGE;
de151cf6
JB
1349 case -ENOMEM:
1350 case -EAGAIN:
1351 return VM_FAULT_OOM;
de151cf6 1352 default:
c715089f 1353 return VM_FAULT_SIGBUS;
de151cf6
JB
1354 }
1355}
1356
1357/**
1358 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1359 * @obj: obj in question
1360 *
1361 * GEM memory mapping works by handing back to userspace a fake mmap offset
1362 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1363 * up the object based on the offset and sets up the various memory mapping
1364 * structures.
1365 *
1366 * This routine allocates and attaches a fake offset for @obj.
1367 */
1368static int
1369i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1370{
1371 struct drm_device *dev = obj->dev;
1372 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1373 struct drm_map_list *list;
f77d390c 1374 struct drm_local_map *map;
de151cf6
JB
1375 int ret = 0;
1376
1377 /* Set the object up for mmap'ing */
1378 list = &obj->map_list;
9a298b2a 1379 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1380 if (!list->map)
1381 return -ENOMEM;
1382
1383 map = list->map;
1384 map->type = _DRM_GEM;
1385 map->size = obj->size;
1386 map->handle = obj;
1387
1388 /* Get a DRM GEM mmap offset allocated... */
1389 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1390 obj->size / PAGE_SIZE, 0, 0);
1391 if (!list->file_offset_node) {
1392 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1393 ret = -ENOSPC;
de151cf6
JB
1394 goto out_free_list;
1395 }
1396
1397 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1398 obj->size / PAGE_SIZE, 0);
1399 if (!list->file_offset_node) {
1400 ret = -ENOMEM;
1401 goto out_free_list;
1402 }
1403
1404 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1405 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1406 if (ret) {
de151cf6
JB
1407 DRM_ERROR("failed to add to map hash\n");
1408 goto out_free_mm;
1409 }
1410
de151cf6
JB
1411 return 0;
1412
1413out_free_mm:
1414 drm_mm_put_block(list->file_offset_node);
1415out_free_list:
9a298b2a 1416 kfree(list->map);
39a01d1f 1417 list->map = NULL;
de151cf6
JB
1418
1419 return ret;
1420}
1421
901782b2
CW
1422/**
1423 * i915_gem_release_mmap - remove physical page mappings
1424 * @obj: obj in question
1425 *
af901ca1 1426 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1427 * relinquish ownership of the pages back to the system.
1428 *
1429 * It is vital that we remove the page mapping if we have mapped a tiled
1430 * object through the GTT and then lose the fence register due to
1431 * resource pressure. Similarly if the object has been moved out of the
1432 * aperture, than pages mapped into userspace must be revoked. Removing the
1433 * mapping will then trigger a page fault on the next user access, allowing
1434 * fixup by i915_gem_fault().
1435 */
d05ca301 1436void
901782b2
CW
1437i915_gem_release_mmap(struct drm_gem_object *obj)
1438{
1439 struct drm_device *dev = obj->dev;
fb7d516a 1440 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1441 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2 1442
39a01d1f 1443 if (unlikely(obj->map_list.map && dev->dev_mapping))
901782b2 1444 unmap_mapping_range(dev->dev_mapping,
39a01d1f
CW
1445 (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
1446 obj->size, 1);
fb7d516a
DV
1447
1448 if (obj_priv->fault_mappable) {
1449 obj_priv->fault_mappable = false;
a00b10c3 1450 i915_gem_info_update_mappable(dev_priv, obj_priv, false);
fb7d516a 1451 }
901782b2
CW
1452}
1453
ab00b3e5
JB
1454static void
1455i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1456{
1457 struct drm_device *dev = obj->dev;
ab00b3e5 1458 struct drm_gem_mm *mm = dev->mm_private;
39a01d1f 1459 struct drm_map_list *list = &obj->map_list;
ab00b3e5 1460
ab00b3e5 1461 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1462 drm_mm_put_block(list->file_offset_node);
1463 kfree(list->map);
1464 list->map = NULL;
ab00b3e5
JB
1465}
1466
de151cf6
JB
1467/**
1468 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1469 * @obj: object to check
1470 *
1471 * Return the required GTT alignment for an object, taking into account
1472 * potential fence register mapping if needed.
1473 */
1474static uint32_t
a00b10c3 1475i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
de151cf6 1476{
a00b10c3 1477 struct drm_device *dev = obj_priv->base.dev;
de151cf6
JB
1478
1479 /*
1480 * Minimum alignment is 4k (GTT page size), but might be greater
1481 * if a fence register is needed for the object.
1482 */
a00b10c3
CW
1483 if (INTEL_INFO(dev)->gen >= 4 ||
1484 obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1485 return 4096;
1486
a00b10c3
CW
1487 /*
1488 * Previous chips need to be aligned to the size of the smallest
1489 * fence register that can contain the object.
1490 */
1491 return i915_gem_get_gtt_size(obj_priv);
1492}
1493
1494static uint32_t
1495i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
1496{
1497 struct drm_device *dev = obj_priv->base.dev;
1498 uint32_t size;
1499
1500 /*
1501 * Minimum alignment is 4k (GTT page size), but might be greater
1502 * if a fence register is needed for the object.
1503 */
1504 if (INTEL_INFO(dev)->gen >= 4)
1505 return obj_priv->base.size;
1506
de151cf6
JB
1507 /*
1508 * Previous chips need to be aligned to the size of the smallest
1509 * fence register that can contain the object.
1510 */
a6c45cf0 1511 if (INTEL_INFO(dev)->gen == 3)
a00b10c3 1512 size = 1024*1024;
de151cf6 1513 else
a00b10c3 1514 size = 512*1024;
de151cf6 1515
a00b10c3
CW
1516 while (size < obj_priv->base.size)
1517 size <<= 1;
de151cf6 1518
a00b10c3 1519 return size;
de151cf6
JB
1520}
1521
1522/**
1523 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1524 * @dev: DRM device
1525 * @data: GTT mapping ioctl data
1526 * @file_priv: GEM object info
1527 *
1528 * Simply returns the fake offset to userspace so it can mmap it.
1529 * The mmap call will end up in drm_gem_mmap(), which will set things
1530 * up so we can get faults in the handler above.
1531 *
1532 * The fault handler will take care of binding the object into the GTT
1533 * (since it may have been evicted to make room for something), allocating
1534 * a fence register, and mapping the appropriate aperture address into
1535 * userspace.
1536 */
1537int
1538i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1539 struct drm_file *file_priv)
1540{
da761a6e 1541 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 1542 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1543 struct drm_gem_object *obj;
1544 struct drm_i915_gem_object *obj_priv;
1545 int ret;
1546
1547 if (!(dev->driver->driver_features & DRIVER_GEM))
1548 return -ENODEV;
1549
76c1dec1 1550 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1551 if (ret)
76c1dec1 1552 return ret;
de151cf6 1553
1d7cfea1
CW
1554 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1555 if (obj == NULL) {
1556 ret = -ENOENT;
1557 goto unlock;
1558 }
23010e43 1559 obj_priv = to_intel_bo(obj);
de151cf6 1560
da761a6e
CW
1561 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1562 ret = -E2BIG;
1563 goto unlock;
1564 }
1565
ab18282d
CW
1566 if (obj_priv->madv != I915_MADV_WILLNEED) {
1567 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1568 ret = -EINVAL;
1569 goto out;
ab18282d
CW
1570 }
1571
39a01d1f 1572 if (!obj->map_list.map) {
de151cf6 1573 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1574 if (ret)
1575 goto out;
de151cf6
JB
1576 }
1577
39a01d1f 1578 args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
de151cf6 1579
1d7cfea1 1580out:
de151cf6 1581 drm_gem_object_unreference(obj);
1d7cfea1 1582unlock:
de151cf6 1583 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1584 return ret;
de151cf6
JB
1585}
1586
e5281ccd
CW
1587static int
1588i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
1589 gfp_t gfpmask)
1590{
1591 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1592 int page_count, i;
1593 struct address_space *mapping;
1594 struct inode *inode;
1595 struct page *page;
1596
1597 /* Get the list of pages out of our struct file. They'll be pinned
1598 * at this point until we release them.
1599 */
1600 page_count = obj->size / PAGE_SIZE;
1601 BUG_ON(obj_priv->pages != NULL);
1602 obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1603 if (obj_priv->pages == NULL)
1604 return -ENOMEM;
1605
1606 inode = obj->filp->f_path.dentry->d_inode;
1607 mapping = inode->i_mapping;
1608 for (i = 0; i < page_count; i++) {
1609 page = read_cache_page_gfp(mapping, i,
1610 GFP_HIGHUSER |
1611 __GFP_COLD |
1612 __GFP_RECLAIMABLE |
1613 gfpmask);
1614 if (IS_ERR(page))
1615 goto err_pages;
1616
1617 obj_priv->pages[i] = page;
1618 }
1619
1620 if (obj_priv->tiling_mode != I915_TILING_NONE)
1621 i915_gem_object_do_bit_17_swizzle(obj);
1622
1623 return 0;
1624
1625err_pages:
1626 while (i--)
1627 page_cache_release(obj_priv->pages[i]);
1628
1629 drm_free_large(obj_priv->pages);
1630 obj_priv->pages = NULL;
1631 return PTR_ERR(page);
1632}
1633
5cdf5881 1634static void
e5281ccd 1635i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
673a394b 1636{
23010e43 1637 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1638 int page_count = obj->size / PAGE_SIZE;
1639 int i;
1640
bb6baf76 1641 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1642
280b713b
EA
1643 if (obj_priv->tiling_mode != I915_TILING_NONE)
1644 i915_gem_object_save_bit_17_swizzle(obj);
1645
3ef94daa 1646 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1647 obj_priv->dirty = 0;
3ef94daa
CW
1648
1649 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1650 if (obj_priv->dirty)
1651 set_page_dirty(obj_priv->pages[i]);
1652
1653 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1654 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1655
1656 page_cache_release(obj_priv->pages[i]);
1657 }
673a394b
EA
1658 obj_priv->dirty = 0;
1659
8e7d2b2c 1660 drm_free_large(obj_priv->pages);
856fa198 1661 obj_priv->pages = NULL;
673a394b
EA
1662}
1663
a56ba56c
CW
1664static uint32_t
1665i915_gem_next_request_seqno(struct drm_device *dev,
1666 struct intel_ring_buffer *ring)
1667{
1668 drm_i915_private_t *dev_priv = dev->dev_private;
1669
1670 ring->outstanding_lazy_request = true;
1671 return dev_priv->next_seqno;
1672}
1673
673a394b 1674static void
617dbe27 1675i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1676 struct intel_ring_buffer *ring)
673a394b
EA
1677{
1678 struct drm_device *dev = obj->dev;
69dc4987 1679 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1680 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1681 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1682
852835f3
ZN
1683 BUG_ON(ring == NULL);
1684 obj_priv->ring = ring;
673a394b
EA
1685
1686 /* Add a reference if we're newly entering the active list. */
1687 if (!obj_priv->active) {
1688 drm_gem_object_reference(obj);
1689 obj_priv->active = 1;
1690 }
e35a41de 1691
673a394b 1692 /* Move from whatever list we were on to the tail of execution. */
69dc4987
CW
1693 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1694 list_move_tail(&obj_priv->ring_list, &ring->active_list);
ce44b0ea 1695 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1696}
1697
ce44b0ea
EA
1698static void
1699i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1700{
1701 struct drm_device *dev = obj->dev;
1702 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1703 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1704
1705 BUG_ON(!obj_priv->active);
69dc4987
CW
1706 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1707 list_del_init(&obj_priv->ring_list);
ce44b0ea
EA
1708 obj_priv->last_rendering_seqno = 0;
1709}
673a394b 1710
963b4836
CW
1711/* Immediately discard the backing storage */
1712static void
1713i915_gem_object_truncate(struct drm_gem_object *obj)
1714{
23010e43 1715 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1716 struct inode *inode;
963b4836 1717
ae9fed6b
CW
1718 /* Our goal here is to return as much of the memory as
1719 * is possible back to the system as we are called from OOM.
1720 * To do this we must instruct the shmfs to drop all of its
1721 * backing pages, *now*. Here we mirror the actions taken
1722 * when by shmem_delete_inode() to release the backing store.
1723 */
bb6baf76 1724 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1725 truncate_inode_pages(inode->i_mapping, 0);
1726 if (inode->i_op->truncate_range)
1727 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1728
1729 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1730}
1731
1732static inline int
1733i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1734{
1735 return obj_priv->madv == I915_MADV_DONTNEED;
1736}
1737
673a394b
EA
1738static void
1739i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1740{
1741 struct drm_device *dev = obj->dev;
1742 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1743 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 1744
673a394b 1745 if (obj_priv->pin_count != 0)
69dc4987 1746 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
673a394b 1747 else
69dc4987
CW
1748 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1749 list_del_init(&obj_priv->ring_list);
673a394b 1750
99fcb766
DV
1751 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1752
ce44b0ea 1753 obj_priv->last_rendering_seqno = 0;
852835f3 1754 obj_priv->ring = NULL;
673a394b
EA
1755 if (obj_priv->active) {
1756 obj_priv->active = 0;
1757 drm_gem_object_unreference(obj);
1758 }
23bc5982 1759 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1760}
1761
63560396
DV
1762static void
1763i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1764 uint32_t flush_domains,
852835f3 1765 struct intel_ring_buffer *ring)
63560396
DV
1766{
1767 drm_i915_private_t *dev_priv = dev->dev_private;
1768 struct drm_i915_gem_object *obj_priv, *next;
1769
1770 list_for_each_entry_safe(obj_priv, next,
64193406 1771 &ring->gpu_write_list,
63560396 1772 gpu_write_list) {
a8089e84 1773 struct drm_gem_object *obj = &obj_priv->base;
63560396 1774
64193406 1775 if (obj->write_domain & flush_domains) {
63560396
DV
1776 uint32_t old_write_domain = obj->write_domain;
1777
1778 obj->write_domain = 0;
1779 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1780 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1781
1782 /* update the fence lru list */
007cc8ac
DV
1783 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1784 struct drm_i915_fence_reg *reg =
1785 &dev_priv->fence_regs[obj_priv->fence_reg];
1786 list_move_tail(&reg->lru_list,
63560396 1787 &dev_priv->mm.fence_list);
007cc8ac 1788 }
63560396
DV
1789
1790 trace_i915_gem_object_change_domain(obj,
1791 obj->read_domains,
1792 old_write_domain);
1793 }
1794 }
1795}
8187a2b7 1796
3cce469c 1797int
8a1a49f9 1798i915_add_request(struct drm_device *dev,
f787a5f5 1799 struct drm_file *file,
8dc5d147 1800 struct drm_i915_gem_request *request,
8a1a49f9 1801 struct intel_ring_buffer *ring)
673a394b
EA
1802{
1803 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1804 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1805 uint32_t seqno;
1806 int was_empty;
3cce469c
CW
1807 int ret;
1808
1809 BUG_ON(request == NULL);
673a394b 1810
f787a5f5
CW
1811 if (file != NULL)
1812 file_priv = file->driver_priv;
b962442e 1813
3cce469c
CW
1814 ret = ring->add_request(ring, &seqno);
1815 if (ret)
1816 return ret;
673a394b 1817
a56ba56c 1818 ring->outstanding_lazy_request = false;
673a394b
EA
1819
1820 request->seqno = seqno;
852835f3 1821 request->ring = ring;
673a394b 1822 request->emitted_jiffies = jiffies;
852835f3
ZN
1823 was_empty = list_empty(&ring->request_list);
1824 list_add_tail(&request->list, &ring->request_list);
1825
f787a5f5 1826 if (file_priv) {
1c25595f 1827 spin_lock(&file_priv->mm.lock);
f787a5f5 1828 request->file_priv = file_priv;
b962442e 1829 list_add_tail(&request->client_list,
f787a5f5 1830 &file_priv->mm.request_list);
1c25595f 1831 spin_unlock(&file_priv->mm.lock);
b962442e 1832 }
673a394b 1833
f65d9421 1834 if (!dev_priv->mm.suspended) {
b3b079db
CW
1835 mod_timer(&dev_priv->hangcheck_timer,
1836 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1837 if (was_empty)
b3b079db
CW
1838 queue_delayed_work(dev_priv->wq,
1839 &dev_priv->mm.retire_work, HZ);
f65d9421 1840 }
3cce469c 1841 return 0;
673a394b
EA
1842}
1843
1844/**
1845 * Command execution barrier
1846 *
1847 * Ensures that all commands in the ring are finished
1848 * before signalling the CPU
1849 */
8a1a49f9 1850static void
852835f3 1851i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1852{
673a394b 1853 uint32_t flush_domains = 0;
673a394b
EA
1854
1855 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1856 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1857 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3 1858
78501eac 1859 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1860}
1861
f787a5f5
CW
1862static inline void
1863i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1864{
1c25595f 1865 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1866
1c25595f
CW
1867 if (!file_priv)
1868 return;
1c5d22f7 1869
1c25595f
CW
1870 spin_lock(&file_priv->mm.lock);
1871 list_del(&request->client_list);
1872 request->file_priv = NULL;
1873 spin_unlock(&file_priv->mm.lock);
673a394b 1874}
673a394b 1875
dfaae392
CW
1876static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1877 struct intel_ring_buffer *ring)
9375e446 1878{
dfaae392
CW
1879 while (!list_empty(&ring->request_list)) {
1880 struct drm_i915_gem_request *request;
673a394b 1881
dfaae392
CW
1882 request = list_first_entry(&ring->request_list,
1883 struct drm_i915_gem_request,
1884 list);
de151cf6 1885
dfaae392 1886 list_del(&request->list);
f787a5f5 1887 i915_gem_request_remove_from_client(request);
dfaae392
CW
1888 kfree(request);
1889 }
673a394b 1890
dfaae392 1891 while (!list_empty(&ring->active_list)) {
9375e446
CW
1892 struct drm_i915_gem_object *obj_priv;
1893
dfaae392 1894 obj_priv = list_first_entry(&ring->active_list,
9375e446 1895 struct drm_i915_gem_object,
69dc4987 1896 ring_list);
9375e446
CW
1897
1898 obj_priv->base.write_domain = 0;
dfaae392 1899 list_del_init(&obj_priv->gpu_write_list);
9375e446 1900 i915_gem_object_move_to_inactive(&obj_priv->base);
673a394b
EA
1901 }
1902}
1903
069efc1d 1904void i915_gem_reset(struct drm_device *dev)
673a394b 1905{
77f01230
CW
1906 struct drm_i915_private *dev_priv = dev->dev_private;
1907 struct drm_i915_gem_object *obj_priv;
069efc1d 1908 int i;
673a394b 1909
dfaae392 1910 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1911 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
549f7365 1912 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
dfaae392
CW
1913
1914 /* Remove anything from the flushing lists. The GPU cache is likely
1915 * to be lost on reset along with the data, so simply move the
1916 * lost bo to the inactive list.
1917 */
1918 while (!list_empty(&dev_priv->mm.flushing_list)) {
1919 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1920 struct drm_i915_gem_object,
69dc4987 1921 mm_list);
dfaae392
CW
1922
1923 obj_priv->base.write_domain = 0;
1924 list_del_init(&obj_priv->gpu_write_list);
1925 i915_gem_object_move_to_inactive(&obj_priv->base);
1926 }
1927
1928 /* Move everything out of the GPU domains to ensure we do any
1929 * necessary invalidation upon reuse.
1930 */
77f01230
CW
1931 list_for_each_entry(obj_priv,
1932 &dev_priv->mm.inactive_list,
69dc4987 1933 mm_list)
77f01230
CW
1934 {
1935 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1936 }
069efc1d
CW
1937
1938 /* The fence registers are invalidated so clear them out */
1939 for (i = 0; i < 16; i++) {
1940 struct drm_i915_fence_reg *reg;
1941
1942 reg = &dev_priv->fence_regs[i];
1943 if (!reg->obj)
1944 continue;
1945
1946 i915_gem_clear_fence_reg(reg->obj);
1947 }
673a394b
EA
1948}
1949
1950/**
1951 * This function clears the request list as sequence numbers are passed.
1952 */
b09a1fec
CW
1953static void
1954i915_gem_retire_requests_ring(struct drm_device *dev,
1955 struct intel_ring_buffer *ring)
673a394b
EA
1956{
1957 drm_i915_private_t *dev_priv = dev->dev_private;
1958 uint32_t seqno;
1959
b84d5f0c
CW
1960 if (!ring->status_page.page_addr ||
1961 list_empty(&ring->request_list))
6c0594a3
KW
1962 return;
1963
23bc5982 1964 WARN_ON(i915_verify_lists(dev));
673a394b 1965
78501eac 1966 seqno = ring->get_seqno(ring);
852835f3 1967 while (!list_empty(&ring->request_list)) {
673a394b 1968 struct drm_i915_gem_request *request;
673a394b 1969
852835f3 1970 request = list_first_entry(&ring->request_list,
673a394b
EA
1971 struct drm_i915_gem_request,
1972 list);
673a394b 1973
dfaae392 1974 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1975 break;
1976
1977 trace_i915_gem_request_retire(dev, request->seqno);
1978
1979 list_del(&request->list);
f787a5f5 1980 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1981 kfree(request);
1982 }
673a394b 1983
b84d5f0c
CW
1984 /* Move any buffers on the active list that are no longer referenced
1985 * by the ringbuffer to the flushing/inactive lists as appropriate.
1986 */
1987 while (!list_empty(&ring->active_list)) {
1988 struct drm_gem_object *obj;
1989 struct drm_i915_gem_object *obj_priv;
1990
1991 obj_priv = list_first_entry(&ring->active_list,
1992 struct drm_i915_gem_object,
69dc4987 1993 ring_list);
673a394b 1994
dfaae392 1995 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1996 break;
b84d5f0c
CW
1997
1998 obj = &obj_priv->base;
b84d5f0c
CW
1999 if (obj->write_domain != 0)
2000 i915_gem_object_move_to_flushing(obj);
2001 else
2002 i915_gem_object_move_to_inactive(obj);
673a394b 2003 }
9d34e5db
CW
2004
2005 if (unlikely (dev_priv->trace_irq_seqno &&
2006 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
78501eac 2007 ring->user_irq_put(ring);
9d34e5db
CW
2008 dev_priv->trace_irq_seqno = 0;
2009 }
23bc5982
CW
2010
2011 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2012}
2013
b09a1fec
CW
2014void
2015i915_gem_retire_requests(struct drm_device *dev)
2016{
2017 drm_i915_private_t *dev_priv = dev->dev_private;
2018
be72615b
CW
2019 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
2020 struct drm_i915_gem_object *obj_priv, *tmp;
2021
2022 /* We must be careful that during unbind() we do not
2023 * accidentally infinitely recurse into retire requests.
2024 * Currently:
2025 * retire -> free -> unbind -> wait -> retire_ring
2026 */
2027 list_for_each_entry_safe(obj_priv, tmp,
2028 &dev_priv->mm.deferred_free_list,
69dc4987 2029 mm_list)
be72615b
CW
2030 i915_gem_free_object_tail(&obj_priv->base);
2031 }
2032
b09a1fec 2033 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 2034 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
549f7365 2035 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
b09a1fec
CW
2036}
2037
75ef9da2 2038static void
673a394b
EA
2039i915_gem_retire_work_handler(struct work_struct *work)
2040{
2041 drm_i915_private_t *dev_priv;
2042 struct drm_device *dev;
2043
2044 dev_priv = container_of(work, drm_i915_private_t,
2045 mm.retire_work.work);
2046 dev = dev_priv->dev;
2047
891b48cf
CW
2048 /* Come back later if the device is busy... */
2049 if (!mutex_trylock(&dev->struct_mutex)) {
2050 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2051 return;
2052 }
2053
b09a1fec 2054 i915_gem_retire_requests(dev);
d1b851fc 2055
6dbe2772 2056 if (!dev_priv->mm.suspended &&
d1b851fc 2057 (!list_empty(&dev_priv->render_ring.request_list) ||
549f7365
CW
2058 !list_empty(&dev_priv->bsd_ring.request_list) ||
2059 !list_empty(&dev_priv->blt_ring.request_list)))
9c9fe1f8 2060 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
2061 mutex_unlock(&dev->struct_mutex);
2062}
2063
5a5a0c64 2064int
852835f3 2065i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 2066 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
2067{
2068 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 2069 u32 ier;
673a394b
EA
2070 int ret = 0;
2071
2072 BUG_ON(seqno == 0);
2073
ba1234d1 2074 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
2075 return -EAGAIN;
2076
a56ba56c 2077 if (ring->outstanding_lazy_request) {
3cce469c
CW
2078 struct drm_i915_gem_request *request;
2079
2080 request = kzalloc(sizeof(*request), GFP_KERNEL);
2081 if (request == NULL)
e35a41de 2082 return -ENOMEM;
3cce469c
CW
2083
2084 ret = i915_add_request(dev, NULL, request, ring);
2085 if (ret) {
2086 kfree(request);
2087 return ret;
2088 }
2089
2090 seqno = request->seqno;
e35a41de 2091 }
a56ba56c 2092 BUG_ON(seqno == dev_priv->next_seqno);
ffed1d09 2093
78501eac 2094 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
bad720ff 2095 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
2096 ier = I915_READ(DEIER) | I915_READ(GTIER);
2097 else
2098 ier = I915_READ(IER);
802c7eb6
JB
2099 if (!ier) {
2100 DRM_ERROR("something (likely vbetool) disabled "
2101 "interrupts, re-enabling\n");
2102 i915_driver_irq_preinstall(dev);
2103 i915_driver_irq_postinstall(dev);
2104 }
2105
1c5d22f7
CW
2106 trace_i915_gem_request_wait_begin(dev, seqno);
2107
b2223497 2108 ring->waiting_seqno = seqno;
78501eac 2109 ring->user_irq_get(ring);
48764bf4 2110 if (interruptible)
852835f3 2111 ret = wait_event_interruptible(ring->irq_queue,
78501eac 2112 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2113 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2114 else
852835f3 2115 wait_event(ring->irq_queue,
78501eac 2116 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2117 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2118
78501eac 2119 ring->user_irq_put(ring);
b2223497 2120 ring->waiting_seqno = 0;
1c5d22f7
CW
2121
2122 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2123 }
ba1234d1 2124 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2125 ret = -EAGAIN;
673a394b
EA
2126
2127 if (ret && ret != -ERESTARTSYS)
8bff917c 2128 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2129 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2130 dev_priv->next_seqno);
673a394b
EA
2131
2132 /* Directly dispatch request retiring. While we have the work queue
2133 * to handle this, the waiter on a request often wants an associated
2134 * buffer to have made it to the inactive list, and we would need
2135 * a separate wait queue to handle that.
2136 */
2137 if (ret == 0)
b09a1fec 2138 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2139
2140 return ret;
2141}
2142
48764bf4
DV
2143/**
2144 * Waits for a sequence number to be signaled, and cleans up the
2145 * request and object lists appropriately for that event.
2146 */
2147static int
852835f3 2148i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2149 struct intel_ring_buffer *ring)
48764bf4 2150{
852835f3 2151 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2152}
2153
20f0cd55 2154static void
9220434a 2155i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2156 struct drm_file *file_priv,
9220434a
CW
2157 struct intel_ring_buffer *ring,
2158 uint32_t invalidate_domains,
2159 uint32_t flush_domains)
2160{
78501eac 2161 ring->flush(ring, invalidate_domains, flush_domains);
9220434a
CW
2162 i915_gem_process_flushing_list(dev, flush_domains, ring);
2163}
2164
8187a2b7
ZN
2165static void
2166i915_gem_flush(struct drm_device *dev,
c78ec30b 2167 struct drm_file *file_priv,
8187a2b7 2168 uint32_t invalidate_domains,
9220434a
CW
2169 uint32_t flush_domains,
2170 uint32_t flush_rings)
8187a2b7
ZN
2171{
2172 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2173
8187a2b7
ZN
2174 if (flush_domains & I915_GEM_DOMAIN_CPU)
2175 drm_agp_chipset_flush(dev);
8bff917c 2176
9220434a
CW
2177 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2178 if (flush_rings & RING_RENDER)
c78ec30b 2179 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2180 &dev_priv->render_ring,
2181 invalidate_domains, flush_domains);
2182 if (flush_rings & RING_BSD)
c78ec30b 2183 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2184 &dev_priv->bsd_ring,
2185 invalidate_domains, flush_domains);
549f7365
CW
2186 if (flush_rings & RING_BLT)
2187 i915_gem_flush_ring(dev, file_priv,
2188 &dev_priv->blt_ring,
2189 invalidate_domains, flush_domains);
9220434a 2190 }
8187a2b7
ZN
2191}
2192
673a394b
EA
2193/**
2194 * Ensures that all rendering to the object has completed and the object is
2195 * safe to unbind from the GTT or access from the CPU.
2196 */
2197static int
2cf34d7b
CW
2198i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2199 bool interruptible)
673a394b
EA
2200{
2201 struct drm_device *dev = obj->dev;
23010e43 2202 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2203 int ret;
2204
e47c68e9
EA
2205 /* This function only exists to support waiting for existing rendering,
2206 * not for emitting required flushes.
673a394b 2207 */
e47c68e9 2208 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2209
2210 /* If there is rendering queued on the buffer being evicted, wait for
2211 * it.
2212 */
2213 if (obj_priv->active) {
2cf34d7b
CW
2214 ret = i915_do_wait_request(dev,
2215 obj_priv->last_rendering_seqno,
2216 interruptible,
2217 obj_priv->ring);
2218 if (ret)
673a394b
EA
2219 return ret;
2220 }
2221
2222 return 0;
2223}
2224
2225/**
2226 * Unbinds an object from the GTT aperture.
2227 */
0f973f27 2228int
673a394b
EA
2229i915_gem_object_unbind(struct drm_gem_object *obj)
2230{
2231 struct drm_device *dev = obj->dev;
73aa808f 2232 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2233 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2234 int ret = 0;
2235
673a394b
EA
2236 if (obj_priv->gtt_space == NULL)
2237 return 0;
2238
2239 if (obj_priv->pin_count != 0) {
2240 DRM_ERROR("Attempting to unbind pinned buffer\n");
2241 return -EINVAL;
2242 }
2243
5323fd04
EA
2244 /* blow away mappings if mapped through GTT */
2245 i915_gem_release_mmap(obj);
2246
673a394b
EA
2247 /* Move the object to the CPU domain to ensure that
2248 * any possible CPU writes while it's not in the GTT
2249 * are flushed when we go to remap it. This will
2250 * also ensure that all pending GPU writes are finished
2251 * before we unbind.
2252 */
e47c68e9 2253 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2254 if (ret == -ERESTARTSYS)
673a394b 2255 return ret;
8dc1775d
CW
2256 /* Continue on if we fail due to EIO, the GPU is hung so we
2257 * should be safe and we need to cleanup or else we might
2258 * cause memory corruption through use-after-free.
2259 */
812ed492
CW
2260 if (ret) {
2261 i915_gem_clflush_object(obj);
2262 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2263 }
673a394b 2264
96b47b65
DV
2265 /* release the fence reg _after_ flushing */
2266 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2267 i915_gem_clear_fence_reg(obj);
2268
73aa808f
CW
2269 drm_unbind_agp(obj_priv->agp_mem);
2270 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
673a394b 2271
e5281ccd 2272 i915_gem_object_put_pages_gtt(obj);
673a394b 2273
a00b10c3 2274 i915_gem_info_remove_gtt(dev_priv, obj_priv);
69dc4987 2275 list_del_init(&obj_priv->mm_list);
a00b10c3
CW
2276 obj_priv->fenceable = true;
2277 obj_priv->mappable = true;
673a394b 2278
73aa808f
CW
2279 drm_mm_put_block(obj_priv->gtt_space);
2280 obj_priv->gtt_space = NULL;
9af90d19 2281 obj_priv->gtt_offset = 0;
673a394b 2282
963b4836
CW
2283 if (i915_gem_object_is_purgeable(obj_priv))
2284 i915_gem_object_truncate(obj);
2285
1c5d22f7
CW
2286 trace_i915_gem_object_unbind(obj);
2287
8dc1775d 2288 return ret;
673a394b
EA
2289}
2290
a56ba56c
CW
2291static int i915_ring_idle(struct drm_device *dev,
2292 struct intel_ring_buffer *ring)
2293{
395b70be 2294 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2295 return 0;
2296
a56ba56c
CW
2297 i915_gem_flush_ring(dev, NULL, ring,
2298 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2299 return i915_wait_request(dev,
2300 i915_gem_next_request_seqno(dev, ring),
2301 ring);
2302}
2303
b47eb4a2 2304int
4df2faf4
DV
2305i915_gpu_idle(struct drm_device *dev)
2306{
2307 drm_i915_private_t *dev_priv = dev->dev_private;
2308 bool lists_empty;
852835f3 2309 int ret;
4df2faf4 2310
d1b851fc 2311 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2312 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2313 if (lists_empty)
2314 return 0;
2315
2316 /* Flush everything onto the inactive list. */
a56ba56c 2317 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2318 if (ret)
2319 return ret;
d1b851fc 2320
87acb0a5
CW
2321 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2322 if (ret)
2323 return ret;
d1b851fc 2324
549f7365
CW
2325 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2326 if (ret)
2327 return ret;
4df2faf4 2328
8a1a49f9 2329 return 0;
4df2faf4
DV
2330}
2331
a00b10c3 2332static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
4e901fdc 2333{
4e901fdc
EA
2334 struct drm_device *dev = obj->dev;
2335 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2336 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3 2337 u32 size = i915_gem_get_gtt_size(obj_priv);
4e901fdc
EA
2338 int regnum = obj_priv->fence_reg;
2339 uint64_t val;
2340
a00b10c3 2341 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
4e901fdc
EA
2342 0xfffff000) << 32;
2343 val |= obj_priv->gtt_offset & 0xfffff000;
2344 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2345 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2346
2347 if (obj_priv->tiling_mode == I915_TILING_Y)
2348 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2349 val |= I965_FENCE_REG_VALID;
2350
2351 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2352}
2353
a00b10c3 2354static void i965_write_fence_reg(struct drm_gem_object *obj)
de151cf6 2355{
de151cf6
JB
2356 struct drm_device *dev = obj->dev;
2357 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2358 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3 2359 u32 size = i915_gem_get_gtt_size(obj_priv);
de151cf6
JB
2360 int regnum = obj_priv->fence_reg;
2361 uint64_t val;
2362
a00b10c3 2363 val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
de151cf6
JB
2364 0xfffff000) << 32;
2365 val |= obj_priv->gtt_offset & 0xfffff000;
2366 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2367 if (obj_priv->tiling_mode == I915_TILING_Y)
2368 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2369 val |= I965_FENCE_REG_VALID;
2370
2371 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2372}
2373
a00b10c3 2374static void i915_write_fence_reg(struct drm_gem_object *obj)
de151cf6 2375{
de151cf6
JB
2376 struct drm_device *dev = obj->dev;
2377 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2378 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3
CW
2379 u32 size = i915_gem_get_gtt_size(obj_priv);
2380 uint32_t fence_reg, val, pitch_val;
0f973f27 2381 int tile_width;
de151cf6
JB
2382
2383 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
a00b10c3
CW
2384 (obj_priv->gtt_offset & (size - 1))) {
2385 WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
2386 __func__, obj_priv->gtt_offset, obj_priv->fenceable, size,
2387 obj_priv->gtt_space->start, obj_priv->gtt_space->size);
de151cf6
JB
2388 return;
2389 }
2390
0f973f27
JB
2391 if (obj_priv->tiling_mode == I915_TILING_Y &&
2392 HAS_128_BYTE_Y_TILING(dev))
2393 tile_width = 128;
de151cf6 2394 else
0f973f27
JB
2395 tile_width = 512;
2396
2397 /* Note: pitch better be a power of two tile widths */
2398 pitch_val = obj_priv->stride / tile_width;
2399 pitch_val = ffs(pitch_val) - 1;
de151cf6 2400
c36a2a6d
DV
2401 if (obj_priv->tiling_mode == I915_TILING_Y &&
2402 HAS_128_BYTE_Y_TILING(dev))
2403 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2404 else
2405 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2406
de151cf6
JB
2407 val = obj_priv->gtt_offset;
2408 if (obj_priv->tiling_mode == I915_TILING_Y)
2409 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2410 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2411 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2412 val |= I830_FENCE_REG_VALID;
2413
a00b10c3
CW
2414 fence_reg = obj_priv->fence_reg;
2415 if (fence_reg < 8)
2416 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2417 else
a00b10c3 2418 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2419 I915_WRITE(fence_reg, val);
de151cf6
JB
2420}
2421
a00b10c3 2422static void i830_write_fence_reg(struct drm_gem_object *obj)
de151cf6 2423{
de151cf6
JB
2424 struct drm_device *dev = obj->dev;
2425 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2426 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a00b10c3 2427 u32 size = i915_gem_get_gtt_size(obj_priv);
de151cf6
JB
2428 int regnum = obj_priv->fence_reg;
2429 uint32_t val;
2430 uint32_t pitch_val;
8d7773a3 2431 uint32_t fence_size_bits;
de151cf6 2432
8d7773a3 2433 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2434 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2435 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2436 __func__, obj_priv->gtt_offset);
de151cf6
JB
2437 return;
2438 }
2439
e76a16de
EA
2440 pitch_val = obj_priv->stride / 128;
2441 pitch_val = ffs(pitch_val) - 1;
2442 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2443
de151cf6
JB
2444 val = obj_priv->gtt_offset;
2445 if (obj_priv->tiling_mode == I915_TILING_Y)
2446 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2447 fence_size_bits = I830_FENCE_SIZE_BITS(size);
8d7773a3
DV
2448 WARN_ON(fence_size_bits & ~0x00000f00);
2449 val |= fence_size_bits;
de151cf6
JB
2450 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2451 val |= I830_FENCE_REG_VALID;
2452
2453 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2454}
2455
2cf34d7b
CW
2456static int i915_find_fence_reg(struct drm_device *dev,
2457 bool interruptible)
ae3db24a 2458{
ae3db24a 2459 struct drm_i915_private *dev_priv = dev->dev_private;
a00b10c3
CW
2460 struct drm_i915_fence_reg *reg;
2461 struct drm_i915_gem_object *obj_priv = NULL;
ae3db24a
DV
2462 int i, avail, ret;
2463
2464 /* First try to find a free reg */
2465 avail = 0;
2466 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2467 reg = &dev_priv->fence_regs[i];
2468 if (!reg->obj)
2469 return i;
2470
23010e43 2471 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2472 if (!obj_priv->pin_count)
2473 avail++;
2474 }
2475
2476 if (avail == 0)
2477 return -ENOSPC;
2478
2479 /* None available, try to steal one or wait for a user to finish */
a00b10c3 2480 avail = I915_FENCE_REG_NONE;
007cc8ac
DV
2481 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2482 lru_list) {
a00b10c3 2483 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2484 if (obj_priv->pin_count)
2485 continue;
2486
2487 /* found one! */
a00b10c3 2488 avail = obj_priv->fence_reg;
ae3db24a
DV
2489 break;
2490 }
2491
a00b10c3 2492 BUG_ON(avail == I915_FENCE_REG_NONE);
ae3db24a
DV
2493
2494 /* We only have a reference on obj from the active list. put_fence_reg
2495 * might drop that one, causing a use-after-free in it. So hold a
2496 * private reference to obj like the other callers of put_fence_reg
2497 * (set_tiling ioctl) do. */
a00b10c3
CW
2498 drm_gem_object_reference(&obj_priv->base);
2499 ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
2500 drm_gem_object_unreference(&obj_priv->base);
ae3db24a
DV
2501 if (ret != 0)
2502 return ret;
2503
a00b10c3 2504 return avail;
ae3db24a
DV
2505}
2506
de151cf6
JB
2507/**
2508 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2509 * @obj: object to map through a fence reg
2510 *
2511 * When mapping objects through the GTT, userspace wants to be able to write
2512 * to them without having to worry about swizzling if the object is tiled.
2513 *
2514 * This function walks the fence regs looking for a free one for @obj,
2515 * stealing one if it can't find any.
2516 *
2517 * It then sets up the reg based on the object's properties: address, pitch
2518 * and tiling format.
2519 */
8c4b8c3f 2520int
2cf34d7b
CW
2521i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2522 bool interruptible)
de151cf6
JB
2523{
2524 struct drm_device *dev = obj->dev;
79e53945 2525 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2526 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2527 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2528 int ret;
de151cf6 2529
a09ba7fa
EA
2530 /* Just update our place in the LRU if our fence is getting used. */
2531 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2532 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2533 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2534 return 0;
2535 }
2536
de151cf6
JB
2537 switch (obj_priv->tiling_mode) {
2538 case I915_TILING_NONE:
2539 WARN(1, "allocating a fence for non-tiled object?\n");
2540 break;
2541 case I915_TILING_X:
0f973f27
JB
2542 if (!obj_priv->stride)
2543 return -EINVAL;
2544 WARN((obj_priv->stride & (512 - 1)),
2545 "object 0x%08x is X tiled but has non-512B pitch\n",
2546 obj_priv->gtt_offset);
de151cf6
JB
2547 break;
2548 case I915_TILING_Y:
0f973f27
JB
2549 if (!obj_priv->stride)
2550 return -EINVAL;
2551 WARN((obj_priv->stride & (128 - 1)),
2552 "object 0x%08x is Y tiled but has non-128B pitch\n",
2553 obj_priv->gtt_offset);
de151cf6
JB
2554 break;
2555 }
2556
2cf34d7b 2557 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2558 if (ret < 0)
2559 return ret;
de151cf6 2560
ae3db24a
DV
2561 obj_priv->fence_reg = ret;
2562 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2563 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2564
de151cf6
JB
2565 reg->obj = obj;
2566
e259befd
CW
2567 switch (INTEL_INFO(dev)->gen) {
2568 case 6:
a00b10c3 2569 sandybridge_write_fence_reg(obj);
e259befd
CW
2570 break;
2571 case 5:
2572 case 4:
a00b10c3 2573 i965_write_fence_reg(obj);
e259befd
CW
2574 break;
2575 case 3:
a00b10c3 2576 i915_write_fence_reg(obj);
e259befd
CW
2577 break;
2578 case 2:
a00b10c3 2579 i830_write_fence_reg(obj);
e259befd
CW
2580 break;
2581 }
d9ddcb96 2582
a00b10c3
CW
2583 trace_i915_gem_object_get_fence(obj,
2584 obj_priv->fence_reg,
2585 obj_priv->tiling_mode);
1c5d22f7 2586
d9ddcb96 2587 return 0;
de151cf6
JB
2588}
2589
2590/**
2591 * i915_gem_clear_fence_reg - clear out fence register info
2592 * @obj: object to clear
2593 *
2594 * Zeroes out the fence register itself and clears out the associated
2595 * data structures in dev_priv and obj_priv.
2596 */
2597static void
2598i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2599{
2600 struct drm_device *dev = obj->dev;
79e53945 2601 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2602 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2603 struct drm_i915_fence_reg *reg =
2604 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2605 uint32_t fence_reg;
de151cf6 2606
e259befd
CW
2607 switch (INTEL_INFO(dev)->gen) {
2608 case 6:
4e901fdc
EA
2609 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2610 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2611 break;
2612 case 5:
2613 case 4:
de151cf6 2614 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2615 break;
2616 case 3:
9b74f734 2617 if (obj_priv->fence_reg >= 8)
e259befd 2618 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2619 else
e259befd
CW
2620 case 2:
2621 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2622
2623 I915_WRITE(fence_reg, 0);
e259befd 2624 break;
dc529a4f 2625 }
de151cf6 2626
007cc8ac 2627 reg->obj = NULL;
de151cf6 2628 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2629 list_del_init(&reg->lru_list);
de151cf6
JB
2630}
2631
52dc7d32
CW
2632/**
2633 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2634 * to the buffer to finish, and then resets the fence register.
2635 * @obj: tiled object holding a fence register.
2cf34d7b 2636 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2637 *
2638 * Zeroes out the fence register itself and clears out the associated
2639 * data structures in dev_priv and obj_priv.
2640 */
2641int
2cf34d7b
CW
2642i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2643 bool interruptible)
52dc7d32
CW
2644{
2645 struct drm_device *dev = obj->dev;
53640e1d 2646 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2647 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2648 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2649
2650 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2651 return 0;
2652
10ae9bd2
DV
2653 /* If we've changed tiling, GTT-mappings of the object
2654 * need to re-fault to ensure that the correct fence register
2655 * setup is in place.
2656 */
2657 i915_gem_release_mmap(obj);
2658
52dc7d32
CW
2659 /* On the i915, GPU access to tiled buffers is via a fence,
2660 * therefore we must wait for any outstanding access to complete
2661 * before clearing the fence.
2662 */
53640e1d
CW
2663 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2664 if (reg->gpu) {
52dc7d32
CW
2665 int ret;
2666
2cf34d7b 2667 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad 2668 if (ret)
2dafb1e0
CW
2669 return ret;
2670
2cf34d7b 2671 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2672 if (ret)
52dc7d32 2673 return ret;
53640e1d
CW
2674
2675 reg->gpu = false;
52dc7d32
CW
2676 }
2677
4a726612 2678 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2679 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2680
2681 return 0;
2682}
2683
673a394b
EA
2684/**
2685 * Finds free space in the GTT aperture and binds the object there.
2686 */
2687static int
920afa77
DV
2688i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2689 unsigned alignment,
a00b10c3
CW
2690 bool mappable,
2691 bool need_fence)
673a394b
EA
2692{
2693 struct drm_device *dev = obj->dev;
2694 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2695 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2696 struct drm_mm_node *free_space;
a00b10c3
CW
2697 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2698 u32 size, fence_size, fence_alignment;
07f73f69 2699 int ret;
673a394b 2700
bb6baf76 2701 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2702 DRM_ERROR("Attempting to bind a purgeable object\n");
2703 return -EINVAL;
2704 }
2705
a00b10c3
CW
2706 fence_size = i915_gem_get_gtt_size(obj_priv);
2707 fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
2708
673a394b 2709 if (alignment == 0)
a00b10c3
CW
2710 alignment = need_fence ? fence_alignment : 4096;
2711 if (need_fence && alignment & (fence_alignment - 1)) {
673a394b
EA
2712 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2713 return -EINVAL;
2714 }
2715
a00b10c3
CW
2716 size = need_fence ? fence_size : obj->size;
2717
654fc607
CW
2718 /* If the object is bigger than the entire aperture, reject it early
2719 * before evicting everything in a vain attempt to find space.
2720 */
920afa77
DV
2721 if (obj->size >
2722 (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2723 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2724 return -E2BIG;
2725 }
2726
673a394b 2727 search_free:
920afa77
DV
2728 if (mappable)
2729 free_space =
2730 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2731 size, alignment, 0,
920afa77
DV
2732 dev_priv->mm.gtt_mappable_end,
2733 0);
2734 else
2735 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2736 size, alignment, 0);
920afa77
DV
2737
2738 if (free_space != NULL) {
2739 if (mappable)
2740 obj_priv->gtt_space =
2741 drm_mm_get_block_range_generic(free_space,
a00b10c3 2742 size, alignment, 0,
920afa77
DV
2743 dev_priv->mm.gtt_mappable_end,
2744 0);
2745 else
2746 obj_priv->gtt_space =
a00b10c3 2747 drm_mm_get_block(free_space, size, alignment);
920afa77 2748 }
673a394b
EA
2749 if (obj_priv->gtt_space == NULL) {
2750 /* If the gtt is empty and we're still having trouble
2751 * fitting our object in, we're out of memory.
2752 */
a00b10c3 2753 ret = i915_gem_evict_something(dev, size, alignment, mappable);
9731129c 2754 if (ret)
673a394b 2755 return ret;
9731129c 2756
673a394b
EA
2757 goto search_free;
2758 }
2759
e5281ccd 2760 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b
EA
2761 if (ret) {
2762 drm_mm_put_block(obj_priv->gtt_space);
2763 obj_priv->gtt_space = NULL;
07f73f69
CW
2764
2765 if (ret == -ENOMEM) {
2766 /* first try to clear up some space from the GTT */
a00b10c3 2767 ret = i915_gem_evict_something(dev, size,
920afa77 2768 alignment, mappable);
07f73f69 2769 if (ret) {
07f73f69 2770 /* now try to shrink everyone else */
4bdadb97
CW
2771 if (gfpmask) {
2772 gfpmask = 0;
2773 goto search_free;
07f73f69
CW
2774 }
2775
2776 return ret;
2777 }
2778
2779 goto search_free;
2780 }
2781
673a394b
EA
2782 return ret;
2783 }
2784
673a394b
EA
2785 /* Create an AGP memory structure pointing at our pages, and bind it
2786 * into the GTT.
2787 */
2788 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2789 obj_priv->pages,
07f73f69 2790 obj->size >> PAGE_SHIFT,
9af90d19 2791 obj_priv->gtt_space->start,
ba1eb1d8 2792 obj_priv->agp_type);
673a394b 2793 if (obj_priv->agp_mem == NULL) {
e5281ccd 2794 i915_gem_object_put_pages_gtt(obj);
673a394b
EA
2795 drm_mm_put_block(obj_priv->gtt_space);
2796 obj_priv->gtt_space = NULL;
07f73f69 2797
a00b10c3
CW
2798 ret = i915_gem_evict_something(dev, size,
2799 alignment, mappable);
9731129c 2800 if (ret)
07f73f69 2801 return ret;
07f73f69
CW
2802
2803 goto search_free;
673a394b 2804 }
673a394b 2805
fb7d516a
DV
2806 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2807
bf1a1092 2808 /* keep track of bounds object by adding it to the inactive list */
69dc4987 2809 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
a00b10c3 2810 i915_gem_info_add_gtt(dev_priv, obj_priv);
bf1a1092 2811
673a394b
EA
2812 /* Assert that the object is not currently in any GPU domain. As it
2813 * wasn't in the GTT, there shouldn't be any way it could have been in
2814 * a GPU cache
2815 */
21d509e3
CW
2816 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2817 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2818
ec57d260 2819 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
1c5d22f7 2820
a00b10c3
CW
2821 obj_priv->fenceable =
2822 obj_priv->gtt_space->size == fence_size &&
2823 (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
2824
2825 obj_priv->mappable =
2826 obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
2827
673a394b
EA
2828 return 0;
2829}
2830
2831void
2832i915_gem_clflush_object(struct drm_gem_object *obj)
2833{
23010e43 2834 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2835
2836 /* If we don't have a page list set up, then we're not pinned
2837 * to GPU, and we can ignore the cache flush because it'll happen
2838 * again at bind time.
2839 */
856fa198 2840 if (obj_priv->pages == NULL)
673a394b
EA
2841 return;
2842
1c5d22f7 2843 trace_i915_gem_object_clflush(obj);
cfa16a0d 2844
856fa198 2845 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2846}
2847
e47c68e9 2848/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2849static int
ba3d8d74
DV
2850i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2851 bool pipelined)
e47c68e9
EA
2852{
2853 struct drm_device *dev = obj->dev;
e47c68e9
EA
2854
2855 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2856 return 0;
e47c68e9
EA
2857
2858 /* Queue the GPU write cache flushing we need. */
c78ec30b 2859 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2860 to_intel_bo(obj)->ring,
2861 0, obj->write_domain);
48b956c5 2862 BUG_ON(obj->write_domain);
1c5d22f7 2863
ba3d8d74
DV
2864 if (pipelined)
2865 return 0;
2866
2cf34d7b 2867 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2868}
2869
2870/** Flushes the GTT write domain for the object if it's dirty. */
2871static void
2872i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2873{
1c5d22f7
CW
2874 uint32_t old_write_domain;
2875
e47c68e9
EA
2876 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2877 return;
2878
2879 /* No actual flushing is required for the GTT write domain. Writes
2880 * to it immediately go to main memory as far as we know, so there's
2881 * no chipset flush. It also doesn't land in render cache.
2882 */
4a684a41
CW
2883 i915_gem_release_mmap(obj);
2884
1c5d22f7 2885 old_write_domain = obj->write_domain;
e47c68e9 2886 obj->write_domain = 0;
1c5d22f7
CW
2887
2888 trace_i915_gem_object_change_domain(obj,
2889 obj->read_domains,
2890 old_write_domain);
e47c68e9
EA
2891}
2892
2893/** Flushes the CPU write domain for the object if it's dirty. */
2894static void
2895i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2896{
2897 struct drm_device *dev = obj->dev;
1c5d22f7 2898 uint32_t old_write_domain;
e47c68e9
EA
2899
2900 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2901 return;
2902
2903 i915_gem_clflush_object(obj);
2904 drm_agp_chipset_flush(dev);
1c5d22f7 2905 old_write_domain = obj->write_domain;
e47c68e9 2906 obj->write_domain = 0;
1c5d22f7
CW
2907
2908 trace_i915_gem_object_change_domain(obj,
2909 obj->read_domains,
2910 old_write_domain);
e47c68e9
EA
2911}
2912
2ef7eeaa
EA
2913/**
2914 * Moves a single object to the GTT read, and possibly write domain.
2915 *
2916 * This function returns when the move is complete, including waiting on
2917 * flushes to occur.
2918 */
79e53945 2919int
2ef7eeaa
EA
2920i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2921{
23010e43 2922 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2923 uint32_t old_write_domain, old_read_domains;
e47c68e9 2924 int ret;
2ef7eeaa 2925
02354392
EA
2926 /* Not valid to be called on unbound objects. */
2927 if (obj_priv->gtt_space == NULL)
2928 return -EINVAL;
2929
ba3d8d74 2930 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2dafb1e0
CW
2931 if (ret != 0)
2932 return ret;
2933
7213342d 2934 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2935
ba3d8d74 2936 if (write) {
2cf34d7b 2937 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2938 if (ret)
2939 return ret;
ba3d8d74 2940 }
e47c68e9 2941
1c5d22f7
CW
2942 old_write_domain = obj->write_domain;
2943 old_read_domains = obj->read_domains;
2944
e47c68e9
EA
2945 /* It should now be out of any other write domains, and we can update
2946 * the domain values for our changes.
2947 */
2948 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2949 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2950 if (write) {
7213342d 2951 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2952 obj->write_domain = I915_GEM_DOMAIN_GTT;
2953 obj_priv->dirty = 1;
2ef7eeaa
EA
2954 }
2955
1c5d22f7
CW
2956 trace_i915_gem_object_change_domain(obj,
2957 old_read_domains,
2958 old_write_domain);
2959
e47c68e9
EA
2960 return 0;
2961}
2962
b9241ea3
ZW
2963/*
2964 * Prepare buffer for display plane. Use uninterruptible for possible flush
2965 * wait, as in modesetting process we're not supposed to be interrupted.
2966 */
2967int
48b956c5
CW
2968i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2969 bool pipelined)
b9241ea3 2970{
23010e43 2971 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2972 uint32_t old_read_domains;
b9241ea3
ZW
2973 int ret;
2974
2975 /* Not valid to be called on unbound objects. */
2976 if (obj_priv->gtt_space == NULL)
2977 return -EINVAL;
2978
ced270fa 2979 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2dafb1e0
CW
2980 if (ret)
2981 return ret;
b9241ea3 2982
ced270fa
CW
2983 /* Currently, we are always called from an non-interruptible context. */
2984 if (!pipelined) {
2985 ret = i915_gem_object_wait_rendering(obj, false);
2986 if (ret)
b9241ea3
ZW
2987 return ret;
2988 }
2989
b118c1e3
CW
2990 i915_gem_object_flush_cpu_write_domain(obj);
2991
b9241ea3 2992 old_read_domains = obj->read_domains;
c78ec30b 2993 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2994
2995 trace_i915_gem_object_change_domain(obj,
2996 old_read_domains,
ba3d8d74 2997 obj->write_domain);
b9241ea3
ZW
2998
2999 return 0;
3000}
3001
e47c68e9
EA
3002/**
3003 * Moves a single object to the CPU read, and possibly write domain.
3004 *
3005 * This function returns when the move is complete, including waiting on
3006 * flushes to occur.
3007 */
3008static int
3009i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
3010{
1c5d22f7 3011 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3012 int ret;
3013
ba3d8d74 3014 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
3015 if (ret != 0)
3016 return ret;
2ef7eeaa 3017
e47c68e9 3018 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3019
e47c68e9
EA
3020 /* If we have a partially-valid cache of the object in the CPU,
3021 * finish invalidating it and free the per-page flags.
2ef7eeaa 3022 */
e47c68e9 3023 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3024
7213342d 3025 if (write) {
2cf34d7b 3026 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
3027 if (ret)
3028 return ret;
3029 }
3030
1c5d22f7
CW
3031 old_write_domain = obj->write_domain;
3032 old_read_domains = obj->read_domains;
3033
e47c68e9
EA
3034 /* Flush the CPU cache if it's still invalid. */
3035 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3036 i915_gem_clflush_object(obj);
2ef7eeaa 3037
e47c68e9 3038 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3039 }
3040
3041 /* It should now be out of any other write domains, and we can update
3042 * the domain values for our changes.
3043 */
e47c68e9
EA
3044 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3045
3046 /* If we're writing through the CPU, then the GPU read domains will
3047 * need to be invalidated at next use.
3048 */
3049 if (write) {
c78ec30b 3050 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
3051 obj->write_domain = I915_GEM_DOMAIN_CPU;
3052 }
2ef7eeaa 3053
1c5d22f7
CW
3054 trace_i915_gem_object_change_domain(obj,
3055 old_read_domains,
3056 old_write_domain);
3057
2ef7eeaa
EA
3058 return 0;
3059}
3060
673a394b
EA
3061/*
3062 * Set the next domain for the specified object. This
3063 * may not actually perform the necessary flushing/invaliding though,
3064 * as that may want to be batched with other set_domain operations
3065 *
3066 * This is (we hope) the only really tricky part of gem. The goal
3067 * is fairly simple -- track which caches hold bits of the object
3068 * and make sure they remain coherent. A few concrete examples may
3069 * help to explain how it works. For shorthand, we use the notation
3070 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3071 * a pair of read and write domain masks.
3072 *
3073 * Case 1: the batch buffer
3074 *
3075 * 1. Allocated
3076 * 2. Written by CPU
3077 * 3. Mapped to GTT
3078 * 4. Read by GPU
3079 * 5. Unmapped from GTT
3080 * 6. Freed
3081 *
3082 * Let's take these a step at a time
3083 *
3084 * 1. Allocated
3085 * Pages allocated from the kernel may still have
3086 * cache contents, so we set them to (CPU, CPU) always.
3087 * 2. Written by CPU (using pwrite)
3088 * The pwrite function calls set_domain (CPU, CPU) and
3089 * this function does nothing (as nothing changes)
3090 * 3. Mapped by GTT
3091 * This function asserts that the object is not
3092 * currently in any GPU-based read or write domains
3093 * 4. Read by GPU
3094 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3095 * As write_domain is zero, this function adds in the
3096 * current read domains (CPU+COMMAND, 0).
3097 * flush_domains is set to CPU.
3098 * invalidate_domains is set to COMMAND
3099 * clflush is run to get data out of the CPU caches
3100 * then i915_dev_set_domain calls i915_gem_flush to
3101 * emit an MI_FLUSH and drm_agp_chipset_flush
3102 * 5. Unmapped from GTT
3103 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3104 * flush_domains and invalidate_domains end up both zero
3105 * so no flushing/invalidating happens
3106 * 6. Freed
3107 * yay, done
3108 *
3109 * Case 2: The shared render buffer
3110 *
3111 * 1. Allocated
3112 * 2. Mapped to GTT
3113 * 3. Read/written by GPU
3114 * 4. set_domain to (CPU,CPU)
3115 * 5. Read/written by CPU
3116 * 6. Read/written by GPU
3117 *
3118 * 1. Allocated
3119 * Same as last example, (CPU, CPU)
3120 * 2. Mapped to GTT
3121 * Nothing changes (assertions find that it is not in the GPU)
3122 * 3. Read/written by GPU
3123 * execbuffer calls set_domain (RENDER, RENDER)
3124 * flush_domains gets CPU
3125 * invalidate_domains gets GPU
3126 * clflush (obj)
3127 * MI_FLUSH and drm_agp_chipset_flush
3128 * 4. set_domain (CPU, CPU)
3129 * flush_domains gets GPU
3130 * invalidate_domains gets CPU
3131 * wait_rendering (obj) to make sure all drawing is complete.
3132 * This will include an MI_FLUSH to get the data from GPU
3133 * to memory
3134 * clflush (obj) to invalidate the CPU cache
3135 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3136 * 5. Read/written by CPU
3137 * cache lines are loaded and dirtied
3138 * 6. Read written by GPU
3139 * Same as last GPU access
3140 *
3141 * Case 3: The constant buffer
3142 *
3143 * 1. Allocated
3144 * 2. Written by CPU
3145 * 3. Read by GPU
3146 * 4. Updated (written) by CPU again
3147 * 5. Read by GPU
3148 *
3149 * 1. Allocated
3150 * (CPU, CPU)
3151 * 2. Written by CPU
3152 * (CPU, CPU)
3153 * 3. Read by GPU
3154 * (CPU+RENDER, 0)
3155 * flush_domains = CPU
3156 * invalidate_domains = RENDER
3157 * clflush (obj)
3158 * MI_FLUSH
3159 * drm_agp_chipset_flush
3160 * 4. Updated (written) by CPU again
3161 * (CPU, CPU)
3162 * flush_domains = 0 (no previous write domain)
3163 * invalidate_domains = 0 (no new read domains)
3164 * 5. Read by GPU
3165 * (CPU+RENDER, 0)
3166 * flush_domains = CPU
3167 * invalidate_domains = RENDER
3168 * clflush (obj)
3169 * MI_FLUSH
3170 * drm_agp_chipset_flush
3171 */
c0d90829 3172static void
b6651458 3173i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
0f8c6d7c
CW
3174 struct intel_ring_buffer *ring,
3175 struct change_domains *cd)
673a394b 3176{
23010e43 3177 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3178 uint32_t invalidate_domains = 0;
3179 uint32_t flush_domains = 0;
652c393a 3180
673a394b
EA
3181 /*
3182 * If the object isn't moving to a new write domain,
3183 * let the object stay in multiple read domains
3184 */
8b0e378a
EA
3185 if (obj->pending_write_domain == 0)
3186 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3187
3188 /*
3189 * Flush the current write domain if
3190 * the new read domains don't match. Invalidate
3191 * any read domains which differ from the old
3192 * write domain
3193 */
8b0e378a 3194 if (obj->write_domain &&
13b29289
CW
3195 (obj->write_domain != obj->pending_read_domains ||
3196 obj_priv->ring != ring)) {
673a394b 3197 flush_domains |= obj->write_domain;
8b0e378a
EA
3198 invalidate_domains |=
3199 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3200 }
3201 /*
3202 * Invalidate any read caches which may have
3203 * stale data. That is, any new read domains.
3204 */
8b0e378a 3205 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3206 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3207 i915_gem_clflush_object(obj);
673a394b 3208
4a684a41
CW
3209 /* blow away mappings if mapped through GTT */
3210 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
3211 i915_gem_release_mmap(obj);
3212
efbeed96
EA
3213 /* The actual obj->write_domain will be updated with
3214 * pending_write_domain after we emit the accumulated flush for all
3215 * of our domain changes in execbuffers (which clears objects'
3216 * write_domains). So if we have a current write domain that we
3217 * aren't changing, set pending_write_domain to that.
3218 */
3219 if (flush_domains == 0 && obj->pending_write_domain == 0)
3220 obj->pending_write_domain = obj->write_domain;
673a394b 3221
0f8c6d7c
CW
3222 cd->invalidate_domains |= invalidate_domains;
3223 cd->flush_domains |= flush_domains;
b6651458 3224 if (flush_domains & I915_GEM_GPU_DOMAINS)
0f8c6d7c 3225 cd->flush_rings |= obj_priv->ring->id;
b6651458 3226 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
0f8c6d7c 3227 cd->flush_rings |= ring->id;
673a394b
EA
3228}
3229
3230/**
e47c68e9 3231 * Moves the object from a partially CPU read to a full one.
673a394b 3232 *
e47c68e9
EA
3233 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3234 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3235 */
e47c68e9
EA
3236static void
3237i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3238{
23010e43 3239 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3240
e47c68e9
EA
3241 if (!obj_priv->page_cpu_valid)
3242 return;
3243
3244 /* If we're partially in the CPU read domain, finish moving it in.
3245 */
3246 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3247 int i;
3248
3249 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3250 if (obj_priv->page_cpu_valid[i])
3251 continue;
856fa198 3252 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3253 }
e47c68e9
EA
3254 }
3255
3256 /* Free the page_cpu_valid mappings which are now stale, whether
3257 * or not we've got I915_GEM_DOMAIN_CPU.
3258 */
9a298b2a 3259 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3260 obj_priv->page_cpu_valid = NULL;
3261}
3262
3263/**
3264 * Set the CPU read domain on a range of the object.
3265 *
3266 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3267 * not entirely valid. The page_cpu_valid member of the object flags which
3268 * pages have been flushed, and will be respected by
3269 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3270 * of the whole object.
3271 *
3272 * This function returns when the move is complete, including waiting on
3273 * flushes to occur.
3274 */
3275static int
3276i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3277 uint64_t offset, uint64_t size)
3278{
23010e43 3279 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3280 uint32_t old_read_domains;
e47c68e9 3281 int i, ret;
673a394b 3282
e47c68e9
EA
3283 if (offset == 0 && size == obj->size)
3284 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3285
ba3d8d74 3286 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3287 if (ret != 0)
6a47baa6 3288 return ret;
e47c68e9
EA
3289 i915_gem_object_flush_gtt_write_domain(obj);
3290
3291 /* If we're already fully in the CPU read domain, we're done. */
3292 if (obj_priv->page_cpu_valid == NULL &&
3293 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3294 return 0;
673a394b 3295
e47c68e9
EA
3296 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3297 * newly adding I915_GEM_DOMAIN_CPU
3298 */
673a394b 3299 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3300 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3301 GFP_KERNEL);
e47c68e9
EA
3302 if (obj_priv->page_cpu_valid == NULL)
3303 return -ENOMEM;
3304 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3305 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3306
3307 /* Flush the cache on any pages that are still invalid from the CPU's
3308 * perspective.
3309 */
e47c68e9
EA
3310 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3311 i++) {
673a394b
EA
3312 if (obj_priv->page_cpu_valid[i])
3313 continue;
3314
856fa198 3315 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3316
3317 obj_priv->page_cpu_valid[i] = 1;
3318 }
3319
e47c68e9
EA
3320 /* It should now be out of any other write domains, and we can update
3321 * the domain values for our changes.
3322 */
3323 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3324
1c5d22f7 3325 old_read_domains = obj->read_domains;
e47c68e9
EA
3326 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3327
1c5d22f7
CW
3328 trace_i915_gem_object_change_domain(obj,
3329 old_read_domains,
3330 obj->write_domain);
3331
673a394b
EA
3332 return 0;
3333}
3334
673a394b
EA
3335/**
3336 * Pin an object to the GTT and evaluate the relocations landing in it.
3337 */
3338static int
9af90d19
CW
3339i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3340 struct drm_file *file_priv,
3341 struct drm_i915_gem_exec_object2 *entry)
673a394b 3342{
9af90d19 3343 struct drm_device *dev = obj->base.dev;
0839ccb8 3344 drm_i915_private_t *dev_priv = dev->dev_private;
2549d6c2 3345 struct drm_i915_gem_relocation_entry __user *user_relocs;
9af90d19
CW
3346 struct drm_gem_object *target_obj = NULL;
3347 uint32_t target_handle = 0;
3348 int i, ret = 0;
673a394b 3349
2549d6c2 3350 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
673a394b 3351 for (i = 0; i < entry->relocation_count; i++) {
2549d6c2 3352 struct drm_i915_gem_relocation_entry reloc;
9af90d19 3353 uint32_t target_offset;
673a394b 3354
9af90d19
CW
3355 if (__copy_from_user_inatomic(&reloc,
3356 user_relocs+i,
3357 sizeof(reloc))) {
3358 ret = -EFAULT;
3359 break;
76446cac 3360 }
76446cac 3361
9af90d19
CW
3362 if (reloc.target_handle != target_handle) {
3363 drm_gem_object_unreference(target_obj);
673a394b 3364
9af90d19
CW
3365 target_obj = drm_gem_object_lookup(dev, file_priv,
3366 reloc.target_handle);
3367 if (target_obj == NULL) {
3368 ret = -ENOENT;
3369 break;
3370 }
3371
3372 target_handle = reloc.target_handle;
673a394b 3373 }
9af90d19 3374 target_offset = to_intel_bo(target_obj)->gtt_offset;
673a394b 3375
8542a0bb
CW
3376#if WATCH_RELOC
3377 DRM_INFO("%s: obj %p offset %08x target %d "
3378 "read %08x write %08x gtt %08x "
3379 "presumed %08x delta %08x\n",
3380 __func__,
3381 obj,
2549d6c2
CW
3382 (int) reloc.offset,
3383 (int) reloc.target_handle,
3384 (int) reloc.read_domains,
3385 (int) reloc.write_domain,
9af90d19 3386 (int) target_offset,
2549d6c2
CW
3387 (int) reloc.presumed_offset,
3388 reloc.delta);
8542a0bb
CW
3389#endif
3390
673a394b
EA
3391 /* The target buffer should have appeared before us in the
3392 * exec_object list, so it should have a GTT space bound by now.
3393 */
9af90d19 3394 if (target_offset == 0) {
673a394b 3395 DRM_ERROR("No GTT space found for object %d\n",
2549d6c2 3396 reloc.target_handle);
9af90d19
CW
3397 ret = -EINVAL;
3398 break;
673a394b
EA
3399 }
3400
8542a0bb 3401 /* Validate that the target is in a valid r/w GPU domain */
2549d6c2 3402 if (reloc.write_domain & (reloc.write_domain - 1)) {
16edd550
DV
3403 DRM_ERROR("reloc with multiple write domains: "
3404 "obj %p target %d offset %d "
3405 "read %08x write %08x",
2549d6c2
CW
3406 obj, reloc.target_handle,
3407 (int) reloc.offset,
3408 reloc.read_domains,
3409 reloc.write_domain);
9af90d19
CW
3410 ret = -EINVAL;
3411 break;
16edd550 3412 }
2549d6c2
CW
3413 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3414 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3415 DRM_ERROR("reloc with read/write CPU domains: "
3416 "obj %p target %d offset %d "
3417 "read %08x write %08x",
2549d6c2
CW
3418 obj, reloc.target_handle,
3419 (int) reloc.offset,
3420 reloc.read_domains,
3421 reloc.write_domain);
9af90d19
CW
3422 ret = -EINVAL;
3423 break;
e47c68e9 3424 }
2549d6c2
CW
3425 if (reloc.write_domain && target_obj->pending_write_domain &&
3426 reloc.write_domain != target_obj->pending_write_domain) {
673a394b
EA
3427 DRM_ERROR("Write domain conflict: "
3428 "obj %p target %d offset %d "
3429 "new %08x old %08x\n",
2549d6c2
CW
3430 obj, reloc.target_handle,
3431 (int) reloc.offset,
3432 reloc.write_domain,
673a394b 3433 target_obj->pending_write_domain);
9af90d19
CW
3434 ret = -EINVAL;
3435 break;
673a394b
EA
3436 }
3437
2549d6c2 3438 target_obj->pending_read_domains |= reloc.read_domains;
878a3c37 3439 target_obj->pending_write_domain |= reloc.write_domain;
673a394b
EA
3440
3441 /* If the relocation already has the right value in it, no
3442 * more work needs to be done.
3443 */
9af90d19 3444 if (target_offset == reloc.presumed_offset)
673a394b 3445 continue;
673a394b 3446
8542a0bb 3447 /* Check that the relocation address is valid... */
9af90d19 3448 if (reloc.offset > obj->base.size - 4) {
8542a0bb
CW
3449 DRM_ERROR("Relocation beyond object bounds: "
3450 "obj %p target %d offset %d size %d.\n",
2549d6c2 3451 obj, reloc.target_handle,
9af90d19
CW
3452 (int) reloc.offset, (int) obj->base.size);
3453 ret = -EINVAL;
3454 break;
8542a0bb 3455 }
2549d6c2 3456 if (reloc.offset & 3) {
8542a0bb
CW
3457 DRM_ERROR("Relocation not 4-byte aligned: "
3458 "obj %p target %d offset %d.\n",
2549d6c2
CW
3459 obj, reloc.target_handle,
3460 (int) reloc.offset);
9af90d19
CW
3461 ret = -EINVAL;
3462 break;
8542a0bb
CW
3463 }
3464
3465 /* and points to somewhere within the target object. */
2549d6c2 3466 if (reloc.delta >= target_obj->size) {
8542a0bb
CW
3467 DRM_ERROR("Relocation beyond target object bounds: "
3468 "obj %p target %d delta %d size %d.\n",
2549d6c2
CW
3469 obj, reloc.target_handle,
3470 (int) reloc.delta, (int) target_obj->size);
9af90d19
CW
3471 ret = -EINVAL;
3472 break;
673a394b
EA
3473 }
3474
9af90d19
CW
3475 reloc.delta += target_offset;
3476 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
f0c43d9b
CW
3477 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3478 char *vaddr;
673a394b 3479
c48c43e4 3480 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
f0c43d9b 3481 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
c48c43e4 3482 kunmap_atomic(vaddr);
f0c43d9b
CW
3483 } else {
3484 uint32_t __iomem *reloc_entry;
3485 void __iomem *reloc_page;
b962442e 3486
9af90d19
CW
3487 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3488 if (ret)
3489 break;
b962442e 3490
f0c43d9b 3491 /* Map the page containing the relocation we're going to perform. */
9af90d19 3492 reloc.offset += obj->gtt_offset;
f0c43d9b 3493 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
c48c43e4 3494 reloc.offset & PAGE_MASK);
f0c43d9b
CW
3495 reloc_entry = (uint32_t __iomem *)
3496 (reloc_page + (reloc.offset & ~PAGE_MASK));
3497 iowrite32(reloc.delta, reloc_entry);
c48c43e4 3498 io_mapping_unmap_atomic(reloc_page);
f0c43d9b 3499 }
b962442e 3500
b5dc608c
CW
3501 /* and update the user's relocation entry */
3502 reloc.presumed_offset = target_offset;
3503 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3504 &reloc.presumed_offset,
3505 sizeof(reloc.presumed_offset))) {
3506 ret = -EFAULT;
3507 break;
3508 }
b962442e 3509 }
b962442e 3510
9af90d19 3511 drm_gem_object_unreference(target_obj);
673a394b
EA
3512 return ret;
3513}
3514
40a5f0de 3515static int
9af90d19
CW
3516i915_gem_execbuffer_pin(struct drm_device *dev,
3517 struct drm_file *file,
3518 struct drm_gem_object **object_list,
3519 struct drm_i915_gem_exec_object2 *exec_list,
3520 int count)
40a5f0de 3521{
9af90d19
CW
3522 struct drm_i915_private *dev_priv = dev->dev_private;
3523 int ret, i, retry;
40a5f0de 3524
9af90d19 3525 /* attempt to pin all of the buffers into the GTT */
5eac3ab4
CW
3526 retry = 0;
3527 do {
9af90d19
CW
3528 ret = 0;
3529 for (i = 0; i < count; i++) {
3530 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
16e809ac 3531 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
9af90d19
CW
3532 bool need_fence =
3533 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3534 obj->tiling_mode != I915_TILING_NONE;
3535
16e809ac
DV
3536 /* g33/pnv can't fence buffers in the unmappable part */
3537 bool need_mappable =
3538 entry->relocation_count ? true : need_fence;
3539
9af90d19 3540 /* Check fence reg constraints and rebind if necessary */
a00b10c3
CW
3541 if ((need_fence && !obj->fenceable) ||
3542 (need_mappable && !obj->mappable)) {
9af90d19
CW
3543 ret = i915_gem_object_unbind(&obj->base);
3544 if (ret)
3545 break;
3546 }
40a5f0de 3547
920afa77 3548 ret = i915_gem_object_pin(&obj->base,
16e809ac 3549 entry->alignment,
a00b10c3
CW
3550 need_mappable,
3551 need_fence);
9af90d19
CW
3552 if (ret)
3553 break;
40a5f0de 3554
9af90d19
CW
3555 /*
3556 * Pre-965 chips need a fence register set up in order
3557 * to properly handle blits to/from tiled surfaces.
3558 */
3559 if (need_fence) {
3560 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3561 if (ret) {
3562 i915_gem_object_unpin(&obj->base);
3563 break;
3564 }
40a5f0de 3565
9af90d19
CW
3566 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3567 }
40a5f0de 3568
9af90d19 3569 entry->offset = obj->gtt_offset;
40a5f0de
EA
3570 }
3571
9af90d19
CW
3572 while (i--)
3573 i915_gem_object_unpin(object_list[i]);
3574
5eac3ab4 3575 if (ret != -ENOSPC || retry > 1)
9af90d19
CW
3576 return ret;
3577
5eac3ab4
CW
3578 /* First attempt, just clear anything that is purgeable.
3579 * Second attempt, clear the entire GTT.
3580 */
3581 ret = i915_gem_evict_everything(dev, retry == 0);
9af90d19
CW
3582 if (ret)
3583 return ret;
40a5f0de 3584
5eac3ab4
CW
3585 retry++;
3586 } while (1);
40a5f0de
EA
3587}
3588
13b29289
CW
3589static int
3590i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3591 struct drm_file *file,
3592 struct intel_ring_buffer *ring,
3593 struct drm_gem_object **objects,
3594 int count)
3595{
0f8c6d7c 3596 struct change_domains cd;
13b29289
CW
3597 int ret, i;
3598
0f8c6d7c
CW
3599 cd.invalidate_domains = 0;
3600 cd.flush_domains = 0;
3601 cd.flush_rings = 0;
13b29289 3602 for (i = 0; i < count; i++)
0f8c6d7c 3603 i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
13b29289 3604
0f8c6d7c 3605 if (cd.invalidate_domains | cd.flush_domains) {
13b29289
CW
3606#if WATCH_EXEC
3607 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3608 __func__,
0f8c6d7c
CW
3609 cd.invalidate_domains,
3610 cd.flush_domains);
13b29289
CW
3611#endif
3612 i915_gem_flush(dev, file,
0f8c6d7c
CW
3613 cd.invalidate_domains,
3614 cd.flush_domains,
3615 cd.flush_rings);
13b29289
CW
3616 }
3617
3618 for (i = 0; i < count; i++) {
3619 struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
3620 /* XXX replace with semaphores */
3621 if (obj->ring && ring != obj->ring) {
3622 ret = i915_gem_object_wait_rendering(&obj->base, true);
3623 if (ret)
3624 return ret;
3625 }
3626 }
3627
3628 return 0;
3629}
3630
673a394b
EA
3631/* Throttle our rendering by waiting until the ring has completed our requests
3632 * emitted over 20 msec ago.
3633 *
b962442e
EA
3634 * Note that if we were to use the current jiffies each time around the loop,
3635 * we wouldn't escape the function with any frames outstanding if the time to
3636 * render a frame was over 20ms.
3637 *
673a394b
EA
3638 * This should get us reasonable parallelism between CPU and GPU but also
3639 * relatively low latency when blocking on a particular request to finish.
3640 */
40a5f0de 3641static int
f787a5f5 3642i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3643{
f787a5f5
CW
3644 struct drm_i915_private *dev_priv = dev->dev_private;
3645 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3646 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3647 struct drm_i915_gem_request *request;
3648 struct intel_ring_buffer *ring = NULL;
3649 u32 seqno = 0;
3650 int ret;
93533c29 3651
1c25595f 3652 spin_lock(&file_priv->mm.lock);
f787a5f5 3653 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3654 if (time_after_eq(request->emitted_jiffies, recent_enough))
3655 break;
40a5f0de 3656
f787a5f5
CW
3657 ring = request->ring;
3658 seqno = request->seqno;
b962442e 3659 }
1c25595f 3660 spin_unlock(&file_priv->mm.lock);
40a5f0de 3661
f787a5f5
CW
3662 if (seqno == 0)
3663 return 0;
2bc43b5c 3664
f787a5f5 3665 ret = 0;
78501eac 3666 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3667 /* And wait for the seqno passing without holding any locks and
3668 * causing extra latency for others. This is safe as the irq
3669 * generation is designed to be run atomically and so is
3670 * lockless.
3671 */
78501eac 3672 ring->user_irq_get(ring);
f787a5f5 3673 ret = wait_event_interruptible(ring->irq_queue,
78501eac 3674 i915_seqno_passed(ring->get_seqno(ring), seqno)
f787a5f5 3675 || atomic_read(&dev_priv->mm.wedged));
78501eac 3676 ring->user_irq_put(ring);
40a5f0de 3677
f787a5f5
CW
3678 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3679 ret = -EIO;
40a5f0de
EA
3680 }
3681
f787a5f5
CW
3682 if (ret == 0)
3683 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3684
3685 return ret;
3686}
3687
83d60795 3688static int
2549d6c2
CW
3689i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3690 uint64_t exec_offset)
83d60795
CW
3691{
3692 uint32_t exec_start, exec_len;
3693
3694 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3695 exec_len = (uint32_t) exec->batch_len;
3696
3697 if ((exec_start | exec_len) & 0x7)
3698 return -EINVAL;
3699
3700 if (!exec_start)
3701 return -EINVAL;
3702
3703 return 0;
3704}
3705
6b95a207 3706static int
2549d6c2
CW
3707validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3708 int count)
6b95a207 3709{
2549d6c2 3710 int i;
6b95a207 3711
2549d6c2
CW
3712 for (i = 0; i < count; i++) {
3713 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3714 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
6b95a207 3715
2549d6c2
CW
3716 if (!access_ok(VERIFY_READ, ptr, length))
3717 return -EFAULT;
40a5f0de 3718
b5dc608c
CW
3719 /* we may also need to update the presumed offsets */
3720 if (!access_ok(VERIFY_WRITE, ptr, length))
3721 return -EFAULT;
3722
2549d6c2
CW
3723 if (fault_in_pages_readable(ptr, length))
3724 return -EFAULT;
6b95a207 3725 }
6b95a207 3726
83d60795 3727 return 0;
6b95a207
KH
3728}
3729
8dc5d147 3730static int
76446cac 3731i915_gem_do_execbuffer(struct drm_device *dev, void *data,
9af90d19 3732 struct drm_file *file,
76446cac
JB
3733 struct drm_i915_gem_execbuffer2 *args,
3734 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3735{
3736 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3737 struct drm_gem_object **object_list = NULL;
3738 struct drm_gem_object *batch_obj;
201361a5 3739 struct drm_clip_rect *cliprects = NULL;
8dc5d147 3740 struct drm_i915_gem_request *request = NULL;
9af90d19 3741 int ret, i, flips;
673a394b 3742 uint64_t exec_offset;
673a394b 3743
852835f3
ZN
3744 struct intel_ring_buffer *ring = NULL;
3745
30dbf0c0
CW
3746 ret = i915_gem_check_is_wedged(dev);
3747 if (ret)
3748 return ret;
3749
2549d6c2
CW
3750 ret = validate_exec_list(exec_list, args->buffer_count);
3751 if (ret)
3752 return ret;
3753
673a394b
EA
3754#if WATCH_EXEC
3755 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3756 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3757#endif
549f7365
CW
3758 switch (args->flags & I915_EXEC_RING_MASK) {
3759 case I915_EXEC_DEFAULT:
3760 case I915_EXEC_RENDER:
3761 ring = &dev_priv->render_ring;
3762 break;
3763 case I915_EXEC_BSD:
d1b851fc 3764 if (!HAS_BSD(dev)) {
549f7365 3765 DRM_ERROR("execbuf with invalid ring (BSD)\n");
d1b851fc
ZN
3766 return -EINVAL;
3767 }
3768 ring = &dev_priv->bsd_ring;
549f7365
CW
3769 break;
3770 case I915_EXEC_BLT:
3771 if (!HAS_BLT(dev)) {
3772 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3773 return -EINVAL;
3774 }
3775 ring = &dev_priv->blt_ring;
3776 break;
3777 default:
3778 DRM_ERROR("execbuf with unknown ring: %d\n",
3779 (int)(args->flags & I915_EXEC_RING_MASK));
3780 return -EINVAL;
d1b851fc
ZN
3781 }
3782
4f481ed2
EA
3783 if (args->buffer_count < 1) {
3784 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3785 return -EINVAL;
3786 }
c8e0f93a 3787 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3788 if (object_list == NULL) {
3789 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3790 args->buffer_count);
3791 ret = -ENOMEM;
3792 goto pre_mutex_err;
3793 }
673a394b 3794
201361a5 3795 if (args->num_cliprects != 0) {
9a298b2a
EA
3796 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3797 GFP_KERNEL);
a40e8d31
OA
3798 if (cliprects == NULL) {
3799 ret = -ENOMEM;
201361a5 3800 goto pre_mutex_err;
a40e8d31 3801 }
201361a5
EA
3802
3803 ret = copy_from_user(cliprects,
3804 (struct drm_clip_rect __user *)
3805 (uintptr_t) args->cliprects_ptr,
3806 sizeof(*cliprects) * args->num_cliprects);
3807 if (ret != 0) {
3808 DRM_ERROR("copy %d cliprects failed: %d\n",
3809 args->num_cliprects, ret);
c877cdce 3810 ret = -EFAULT;
201361a5
EA
3811 goto pre_mutex_err;
3812 }
3813 }
3814
8dc5d147
CW
3815 request = kzalloc(sizeof(*request), GFP_KERNEL);
3816 if (request == NULL) {
3817 ret = -ENOMEM;
40a5f0de 3818 goto pre_mutex_err;
8dc5d147 3819 }
40a5f0de 3820
76c1dec1
CW
3821 ret = i915_mutex_lock_interruptible(dev);
3822 if (ret)
a198bc80 3823 goto pre_mutex_err;
673a394b
EA
3824
3825 if (dev_priv->mm.suspended) {
673a394b 3826 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3827 ret = -EBUSY;
3828 goto pre_mutex_err;
673a394b
EA
3829 }
3830
ac94a962 3831 /* Look up object handles */
673a394b 3832 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3833 struct drm_i915_gem_object *obj_priv;
3834
9af90d19 3835 object_list[i] = drm_gem_object_lookup(dev, file,
673a394b
EA
3836 exec_list[i].handle);
3837 if (object_list[i] == NULL) {
3838 DRM_ERROR("Invalid object handle %d at index %d\n",
3839 exec_list[i].handle, i);
0ce907f8
CW
3840 /* prevent error path from reading uninitialized data */
3841 args->buffer_count = i + 1;
bf79cb91 3842 ret = -ENOENT;
673a394b
EA
3843 goto err;
3844 }
b70d11da 3845
23010e43 3846 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3847 if (obj_priv->in_execbuffer) {
3848 DRM_ERROR("Object %p appears more than once in object list\n",
3849 object_list[i]);
0ce907f8
CW
3850 /* prevent error path from reading uninitialized data */
3851 args->buffer_count = i + 1;
bf79cb91 3852 ret = -EINVAL;
b70d11da
KH
3853 goto err;
3854 }
3855 obj_priv->in_execbuffer = true;
ac94a962 3856 }
673a394b 3857
9af90d19
CW
3858 /* Move the objects en-masse into the GTT, evicting if necessary. */
3859 ret = i915_gem_execbuffer_pin(dev, file,
3860 object_list, exec_list,
3861 args->buffer_count);
3862 if (ret)
3863 goto err;
ac94a962 3864
9af90d19
CW
3865 /* The objects are in their final locations, apply the relocations. */
3866 for (i = 0; i < args->buffer_count; i++) {
3867 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3868 obj->base.pending_read_domains = 0;
3869 obj->base.pending_write_domain = 0;
3870 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3871 if (ret)
ac94a962 3872 goto err;
673a394b
EA
3873 }
3874
3875 /* Set the pending read domains for the batch buffer to COMMAND */
3876 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3877 if (batch_obj->pending_write_domain) {
3878 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3879 ret = -EINVAL;
3880 goto err;
3881 }
3882 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3883
9af90d19
CW
3884 /* Sanity check the batch buffer */
3885 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3886 ret = i915_gem_check_execbuffer(args, exec_offset);
83d60795
CW
3887 if (ret != 0) {
3888 DRM_ERROR("execbuf with invalid offset/length\n");
3889 goto err;
3890 }
3891
13b29289
CW
3892 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
3893 object_list, args->buffer_count);
3894 if (ret)
3895 goto err;
673a394b 3896
673a394b
EA
3897#if WATCH_COHERENCY
3898 for (i = 0; i < args->buffer_count; i++) {
3899 i915_gem_object_check_coherency(object_list[i],
3900 exec_list[i].handle);
3901 }
3902#endif
3903
673a394b 3904#if WATCH_EXEC
6911a9b8 3905 i915_gem_dump_object(batch_obj,
673a394b
EA
3906 args->batch_len,
3907 __func__,
3908 ~0);
3909#endif
3910
e59f2bac
CW
3911 /* Check for any pending flips. As we only maintain a flip queue depth
3912 * of 1, we can simply insert a WAIT for the next display flip prior
3913 * to executing the batch and avoid stalling the CPU.
3914 */
3915 flips = 0;
3916 for (i = 0; i < args->buffer_count; i++) {
3917 if (object_list[i]->write_domain)
3918 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3919 }
3920 if (flips) {
3921 int plane, flip_mask;
3922
3923 for (plane = 0; flips >> plane; plane++) {
3924 if (((flips >> plane) & 1) == 0)
3925 continue;
3926
3927 if (plane)
3928 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3929 else
3930 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3931
e1f99ce6
CW
3932 ret = intel_ring_begin(ring, 2);
3933 if (ret)
3934 goto err;
3935
78501eac
CW
3936 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3937 intel_ring_emit(ring, MI_NOOP);
3938 intel_ring_advance(ring);
e59f2bac
CW
3939 }
3940 }
3941
673a394b 3942 /* Exec the batchbuffer */
78501eac 3943 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
673a394b
EA
3944 if (ret) {
3945 DRM_ERROR("dispatch failed %d\n", ret);
3946 goto err;
3947 }
3948
673a394b
EA
3949 for (i = 0; i < args->buffer_count; i++) {
3950 struct drm_gem_object *obj = object_list[i];
673a394b 3951
7e318e18
CW
3952 obj->read_domains = obj->pending_read_domains;
3953 obj->write_domain = obj->pending_write_domain;
3954
617dbe27 3955 i915_gem_object_move_to_active(obj, ring);
7e318e18
CW
3956 if (obj->write_domain) {
3957 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3958 obj_priv->dirty = 1;
3959 list_move_tail(&obj_priv->gpu_write_list,
64193406 3960 &ring->gpu_write_list);
7e318e18
CW
3961 intel_mark_busy(dev, obj);
3962 }
3963
3964 trace_i915_gem_object_change_domain(obj,
3965 obj->read_domains,
3966 obj->write_domain);
673a394b 3967 }
673a394b 3968
7e318e18
CW
3969 /*
3970 * Ensure that the commands in the batch buffer are
3971 * finished before the interrupt fires
3972 */
3973 i915_retire_commands(dev, ring);
3974
3cce469c
CW
3975 if (i915_add_request(dev, file, request, ring))
3976 ring->outstanding_lazy_request = true;
3977 else
3978 request = NULL;
673a394b 3979
673a394b 3980err:
b70d11da 3981 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3982 if (object_list[i] == NULL)
3983 break;
3984
3985 to_intel_bo(object_list[i])->in_execbuffer = false;
aad87dff 3986 drm_gem_object_unreference(object_list[i]);
b70d11da 3987 }
673a394b 3988
673a394b
EA
3989 mutex_unlock(&dev->struct_mutex);
3990
93533c29 3991pre_mutex_err:
8e7d2b2c 3992 drm_free_large(object_list);
9a298b2a 3993 kfree(cliprects);
8dc5d147 3994 kfree(request);
673a394b
EA
3995
3996 return ret;
3997}
3998
76446cac
JB
3999/*
4000 * Legacy execbuffer just creates an exec2 list from the original exec object
4001 * list array and passes it to the real function.
4002 */
4003int
4004i915_gem_execbuffer(struct drm_device *dev, void *data,
4005 struct drm_file *file_priv)
4006{
4007 struct drm_i915_gem_execbuffer *args = data;
4008 struct drm_i915_gem_execbuffer2 exec2;
4009 struct drm_i915_gem_exec_object *exec_list = NULL;
4010 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4011 int ret, i;
4012
4013#if WATCH_EXEC
4014 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4015 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4016#endif
4017
4018 if (args->buffer_count < 1) {
4019 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4020 return -EINVAL;
4021 }
4022
4023 /* Copy in the exec list from userland */
4024 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4025 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4026 if (exec_list == NULL || exec2_list == NULL) {
4027 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4028 args->buffer_count);
4029 drm_free_large(exec_list);
4030 drm_free_large(exec2_list);
4031 return -ENOMEM;
4032 }
4033 ret = copy_from_user(exec_list,
4034 (struct drm_i915_relocation_entry __user *)
4035 (uintptr_t) args->buffers_ptr,
4036 sizeof(*exec_list) * args->buffer_count);
4037 if (ret != 0) {
4038 DRM_ERROR("copy %d exec entries failed %d\n",
4039 args->buffer_count, ret);
4040 drm_free_large(exec_list);
4041 drm_free_large(exec2_list);
4042 return -EFAULT;
4043 }
4044
4045 for (i = 0; i < args->buffer_count; i++) {
4046 exec2_list[i].handle = exec_list[i].handle;
4047 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4048 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4049 exec2_list[i].alignment = exec_list[i].alignment;
4050 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 4051 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
4052 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4053 else
4054 exec2_list[i].flags = 0;
4055 }
4056
4057 exec2.buffers_ptr = args->buffers_ptr;
4058 exec2.buffer_count = args->buffer_count;
4059 exec2.batch_start_offset = args->batch_start_offset;
4060 exec2.batch_len = args->batch_len;
4061 exec2.DR1 = args->DR1;
4062 exec2.DR4 = args->DR4;
4063 exec2.num_cliprects = args->num_cliprects;
4064 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 4065 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
4066
4067 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4068 if (!ret) {
4069 /* Copy the new buffer offsets back to the user's exec list. */
4070 for (i = 0; i < args->buffer_count; i++)
4071 exec_list[i].offset = exec2_list[i].offset;
4072 /* ... and back out to userspace */
4073 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4074 (uintptr_t) args->buffers_ptr,
4075 exec_list,
4076 sizeof(*exec_list) * args->buffer_count);
4077 if (ret) {
4078 ret = -EFAULT;
4079 DRM_ERROR("failed to copy %d exec entries "
4080 "back to user (%d)\n",
4081 args->buffer_count, ret);
4082 }
76446cac
JB
4083 }
4084
4085 drm_free_large(exec_list);
4086 drm_free_large(exec2_list);
4087 return ret;
4088}
4089
4090int
4091i915_gem_execbuffer2(struct drm_device *dev, void *data,
4092 struct drm_file *file_priv)
4093{
4094 struct drm_i915_gem_execbuffer2 *args = data;
4095 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4096 int ret;
4097
4098#if WATCH_EXEC
4099 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4100 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4101#endif
4102
4103 if (args->buffer_count < 1) {
4104 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4105 return -EINVAL;
4106 }
4107
4108 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4109 if (exec2_list == NULL) {
4110 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4111 args->buffer_count);
4112 return -ENOMEM;
4113 }
4114 ret = copy_from_user(exec2_list,
4115 (struct drm_i915_relocation_entry __user *)
4116 (uintptr_t) args->buffers_ptr,
4117 sizeof(*exec2_list) * args->buffer_count);
4118 if (ret != 0) {
4119 DRM_ERROR("copy %d exec entries failed %d\n",
4120 args->buffer_count, ret);
4121 drm_free_large(exec2_list);
4122 return -EFAULT;
4123 }
4124
4125 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4126 if (!ret) {
4127 /* Copy the new buffer offsets back to the user's exec list. */
4128 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4129 (uintptr_t) args->buffers_ptr,
4130 exec2_list,
4131 sizeof(*exec2_list) * args->buffer_count);
4132 if (ret) {
4133 ret = -EFAULT;
4134 DRM_ERROR("failed to copy %d exec entries "
4135 "back to user (%d)\n",
4136 args->buffer_count, ret);
4137 }
4138 }
4139
4140 drm_free_large(exec2_list);
4141 return ret;
4142}
4143
673a394b 4144int
920afa77 4145i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
a00b10c3 4146 bool mappable, bool need_fence)
673a394b
EA
4147{
4148 struct drm_device *dev = obj->dev;
f13d3f73 4149 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4150 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4151 int ret;
4152
778c3544 4153 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
085ce264 4154 BUG_ON(need_fence && !mappable);
23bc5982 4155 WARN_ON(i915_verify_lists(dev));
ac0c6b5a
CW
4156
4157 if (obj_priv->gtt_space != NULL) {
a00b10c3
CW
4158 if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
4159 (need_fence && !obj_priv->fenceable) ||
4160 (mappable && !obj_priv->mappable)) {
ae7d49d8
CW
4161 WARN(obj_priv->pin_count,
4162 "bo is already pinned with incorrect alignment:"
a00b10c3
CW
4163 " offset=%x, req.alignment=%x, need_fence=%d, fenceable=%d, mappable=%d, cpu_accessible=%d\n",
4164 obj_priv->gtt_offset, alignment,
4165 need_fence, obj_priv->fenceable,
4166 mappable, obj_priv->mappable);
ac0c6b5a
CW
4167 ret = i915_gem_object_unbind(obj);
4168 if (ret)
4169 return ret;
4170 }
4171 }
4172
673a394b 4173 if (obj_priv->gtt_space == NULL) {
a00b10c3
CW
4174 ret = i915_gem_object_bind_to_gtt(obj, alignment,
4175 mappable, need_fence);
9731129c 4176 if (ret)
673a394b 4177 return ret;
22c344e9 4178 }
76446cac 4179
7465378f 4180 if (obj_priv->pin_count++ == 0) {
a00b10c3 4181 i915_gem_info_add_pin(dev_priv, obj_priv, mappable);
f13d3f73 4182 if (!obj_priv->active)
69dc4987 4183 list_move_tail(&obj_priv->mm_list,
f13d3f73 4184 &dev_priv->mm.pinned_list);
673a394b 4185 }
fb7d516a 4186 BUG_ON(!obj_priv->pin_mappable && mappable);
673a394b 4187
23bc5982 4188 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4189 return 0;
4190}
4191
4192void
4193i915_gem_object_unpin(struct drm_gem_object *obj)
4194{
4195 struct drm_device *dev = obj->dev;
4196 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4197 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4198
23bc5982 4199 WARN_ON(i915_verify_lists(dev));
7465378f 4200 BUG_ON(obj_priv->pin_count == 0);
673a394b
EA
4201 BUG_ON(obj_priv->gtt_space == NULL);
4202
7465378f 4203 if (--obj_priv->pin_count == 0) {
f13d3f73 4204 if (!obj_priv->active)
69dc4987 4205 list_move_tail(&obj_priv->mm_list,
673a394b 4206 &dev_priv->mm.inactive_list);
a00b10c3 4207 i915_gem_info_remove_pin(dev_priv, obj_priv);
673a394b 4208 }
23bc5982 4209 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4210}
4211
4212int
4213i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4214 struct drm_file *file_priv)
4215{
4216 struct drm_i915_gem_pin *args = data;
4217 struct drm_gem_object *obj;
4218 struct drm_i915_gem_object *obj_priv;
4219 int ret;
4220
1d7cfea1
CW
4221 ret = i915_mutex_lock_interruptible(dev);
4222 if (ret)
4223 return ret;
673a394b
EA
4224
4225 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4226 if (obj == NULL) {
1d7cfea1
CW
4227 ret = -ENOENT;
4228 goto unlock;
673a394b 4229 }
23010e43 4230 obj_priv = to_intel_bo(obj);
673a394b 4231
bb6baf76
CW
4232 if (obj_priv->madv != I915_MADV_WILLNEED) {
4233 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
4234 ret = -EINVAL;
4235 goto out;
3ef94daa
CW
4236 }
4237
79e53945
JB
4238 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4239 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4240 args->handle);
1d7cfea1
CW
4241 ret = -EINVAL;
4242 goto out;
79e53945
JB
4243 }
4244
4245 obj_priv->user_pin_count++;
4246 obj_priv->pin_filp = file_priv;
4247 if (obj_priv->user_pin_count == 1) {
a00b10c3
CW
4248 ret = i915_gem_object_pin(obj, args->alignment,
4249 true, obj_priv->tiling_mode);
1d7cfea1
CW
4250 if (ret)
4251 goto out;
673a394b
EA
4252 }
4253
4254 /* XXX - flush the CPU caches for pinned objects
4255 * as the X server doesn't manage domains yet
4256 */
e47c68e9 4257 i915_gem_object_flush_cpu_write_domain(obj);
673a394b 4258 args->offset = obj_priv->gtt_offset;
1d7cfea1 4259out:
673a394b 4260 drm_gem_object_unreference(obj);
1d7cfea1 4261unlock:
673a394b 4262 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4263 return ret;
673a394b
EA
4264}
4265
4266int
4267i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4268 struct drm_file *file_priv)
4269{
4270 struct drm_i915_gem_pin *args = data;
4271 struct drm_gem_object *obj;
79e53945 4272 struct drm_i915_gem_object *obj_priv;
76c1dec1 4273 int ret;
673a394b 4274
1d7cfea1
CW
4275 ret = i915_mutex_lock_interruptible(dev);
4276 if (ret)
4277 return ret;
673a394b
EA
4278
4279 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4280 if (obj == NULL) {
1d7cfea1
CW
4281 ret = -ENOENT;
4282 goto unlock;
673a394b 4283 }
23010e43 4284 obj_priv = to_intel_bo(obj);
76c1dec1 4285
79e53945
JB
4286 if (obj_priv->pin_filp != file_priv) {
4287 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4288 args->handle);
1d7cfea1
CW
4289 ret = -EINVAL;
4290 goto out;
79e53945
JB
4291 }
4292 obj_priv->user_pin_count--;
4293 if (obj_priv->user_pin_count == 0) {
4294 obj_priv->pin_filp = NULL;
4295 i915_gem_object_unpin(obj);
4296 }
673a394b 4297
1d7cfea1 4298out:
673a394b 4299 drm_gem_object_unreference(obj);
1d7cfea1 4300unlock:
673a394b 4301 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4302 return ret;
673a394b
EA
4303}
4304
4305int
4306i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4307 struct drm_file *file_priv)
4308{
4309 struct drm_i915_gem_busy *args = data;
4310 struct drm_gem_object *obj;
4311 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4312 int ret;
4313
76c1dec1 4314 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4315 if (ret)
76c1dec1 4316 return ret;
673a394b 4317
673a394b
EA
4318 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4319 if (obj == NULL) {
1d7cfea1
CW
4320 ret = -ENOENT;
4321 goto unlock;
673a394b 4322 }
1d7cfea1 4323 obj_priv = to_intel_bo(obj);
d1b851fc 4324
0be555b6
CW
4325 /* Count all active objects as busy, even if they are currently not used
4326 * by the gpu. Users of this interface expect objects to eventually
4327 * become non-busy without any further actions, therefore emit any
4328 * necessary flushes here.
c4de0a5d 4329 */
0be555b6
CW
4330 args->busy = obj_priv->active;
4331 if (args->busy) {
4332 /* Unconditionally flush objects, even when the gpu still uses this
4333 * object. Userspace calling this function indicates that it wants to
4334 * use this buffer rather sooner than later, so issuing the required
4335 * flush earlier is beneficial.
4336 */
c78ec30b
CW
4337 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4338 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4339 obj_priv->ring,
4340 0, obj->write_domain);
0be555b6
CW
4341
4342 /* Update the active list for the hardware's current position.
4343 * Otherwise this only updates on a delayed timer or when irqs
4344 * are actually unmasked, and our working set ends up being
4345 * larger than required.
4346 */
4347 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4348
4349 args->busy = obj_priv->active;
4350 }
673a394b
EA
4351
4352 drm_gem_object_unreference(obj);
1d7cfea1 4353unlock:
673a394b 4354 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4355 return ret;
673a394b
EA
4356}
4357
4358int
4359i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4360 struct drm_file *file_priv)
4361{
4362 return i915_gem_ring_throttle(dev, file_priv);
4363}
4364
3ef94daa
CW
4365int
4366i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4367 struct drm_file *file_priv)
4368{
4369 struct drm_i915_gem_madvise *args = data;
4370 struct drm_gem_object *obj;
4371 struct drm_i915_gem_object *obj_priv;
76c1dec1 4372 int ret;
3ef94daa
CW
4373
4374 switch (args->madv) {
4375 case I915_MADV_DONTNEED:
4376 case I915_MADV_WILLNEED:
4377 break;
4378 default:
4379 return -EINVAL;
4380 }
4381
1d7cfea1
CW
4382 ret = i915_mutex_lock_interruptible(dev);
4383 if (ret)
4384 return ret;
4385
3ef94daa
CW
4386 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4387 if (obj == NULL) {
1d7cfea1
CW
4388 ret = -ENOENT;
4389 goto unlock;
3ef94daa 4390 }
23010e43 4391 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4392
4393 if (obj_priv->pin_count) {
1d7cfea1
CW
4394 ret = -EINVAL;
4395 goto out;
3ef94daa
CW
4396 }
4397
bb6baf76
CW
4398 if (obj_priv->madv != __I915_MADV_PURGED)
4399 obj_priv->madv = args->madv;
3ef94daa 4400
2d7ef395
CW
4401 /* if the object is no longer bound, discard its backing storage */
4402 if (i915_gem_object_is_purgeable(obj_priv) &&
4403 obj_priv->gtt_space == NULL)
4404 i915_gem_object_truncate(obj);
4405
bb6baf76
CW
4406 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4407
1d7cfea1 4408out:
3ef94daa 4409 drm_gem_object_unreference(obj);
1d7cfea1 4410unlock:
3ef94daa 4411 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4412 return ret;
3ef94daa
CW
4413}
4414
ac52bc56
DV
4415struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4416 size_t size)
4417{
73aa808f 4418 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 4419 struct drm_i915_gem_object *obj;
ac52bc56 4420
c397b908
DV
4421 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4422 if (obj == NULL)
4423 return NULL;
673a394b 4424
c397b908
DV
4425 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4426 kfree(obj);
4427 return NULL;
4428 }
673a394b 4429
73aa808f
CW
4430 i915_gem_info_add_obj(dev_priv, size);
4431
c397b908
DV
4432 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4433 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4434
c397b908 4435 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4436 obj->base.driver_private = NULL;
c397b908 4437 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987
CW
4438 INIT_LIST_HEAD(&obj->mm_list);
4439 INIT_LIST_HEAD(&obj->ring_list);
c397b908 4440 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4441 obj->madv = I915_MADV_WILLNEED;
a00b10c3
CW
4442 obj->fenceable = true;
4443 obj->mappable = true;
de151cf6 4444
c397b908
DV
4445 return &obj->base;
4446}
4447
4448int i915_gem_init_object(struct drm_gem_object *obj)
4449{
4450 BUG();
de151cf6 4451
673a394b
EA
4452 return 0;
4453}
4454
be72615b 4455static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4456{
de151cf6 4457 struct drm_device *dev = obj->dev;
be72615b 4458 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4459 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4460 int ret;
673a394b 4461
be72615b
CW
4462 ret = i915_gem_object_unbind(obj);
4463 if (ret == -ERESTARTSYS) {
69dc4987 4464 list_move(&obj_priv->mm_list,
be72615b
CW
4465 &dev_priv->mm.deferred_free_list);
4466 return;
4467 }
673a394b 4468
39a01d1f 4469 if (obj->map_list.map)
7e616158 4470 i915_gem_free_mmap_offset(obj);
de151cf6 4471
c397b908 4472 drm_gem_object_release(obj);
73aa808f 4473 i915_gem_info_remove_obj(dev_priv, obj->size);
c397b908 4474
9a298b2a 4475 kfree(obj_priv->page_cpu_valid);
280b713b 4476 kfree(obj_priv->bit_17);
c397b908 4477 kfree(obj_priv);
673a394b
EA
4478}
4479
be72615b
CW
4480void i915_gem_free_object(struct drm_gem_object *obj)
4481{
4482 struct drm_device *dev = obj->dev;
4483 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4484
4485 trace_i915_gem_object_destroy(obj);
4486
4487 while (obj_priv->pin_count > 0)
4488 i915_gem_object_unpin(obj);
4489
4490 if (obj_priv->phys_obj)
4491 i915_gem_detach_phys_object(dev, obj);
4492
4493 i915_gem_free_object_tail(obj);
4494}
4495
29105ccc
CW
4496int
4497i915_gem_idle(struct drm_device *dev)
4498{
4499 drm_i915_private_t *dev_priv = dev->dev_private;
4500 int ret;
28dfe52a 4501
29105ccc 4502 mutex_lock(&dev->struct_mutex);
1c5d22f7 4503
87acb0a5 4504 if (dev_priv->mm.suspended) {
29105ccc
CW
4505 mutex_unlock(&dev->struct_mutex);
4506 return 0;
28dfe52a
EA
4507 }
4508
29105ccc 4509 ret = i915_gpu_idle(dev);
6dbe2772
KP
4510 if (ret) {
4511 mutex_unlock(&dev->struct_mutex);
673a394b 4512 return ret;
6dbe2772 4513 }
673a394b 4514
29105ccc
CW
4515 /* Under UMS, be paranoid and evict. */
4516 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 4517 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
4518 if (ret) {
4519 mutex_unlock(&dev->struct_mutex);
4520 return ret;
4521 }
4522 }
4523
4524 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4525 * We need to replace this with a semaphore, or something.
4526 * And not confound mm.suspended!
4527 */
4528 dev_priv->mm.suspended = 1;
bc0c7f14 4529 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4530
4531 i915_kernel_lost_context(dev);
6dbe2772 4532 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4533
6dbe2772
KP
4534 mutex_unlock(&dev->struct_mutex);
4535
29105ccc
CW
4536 /* Cancel the retire work handler, which should be idle now. */
4537 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4538
673a394b
EA
4539 return 0;
4540}
4541
e552eb70
JB
4542/*
4543 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4544 * over cache flushing.
4545 */
8187a2b7 4546static int
e552eb70
JB
4547i915_gem_init_pipe_control(struct drm_device *dev)
4548{
4549 drm_i915_private_t *dev_priv = dev->dev_private;
4550 struct drm_gem_object *obj;
4551 struct drm_i915_gem_object *obj_priv;
4552 int ret;
4553
34dc4d44 4554 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4555 if (obj == NULL) {
4556 DRM_ERROR("Failed to allocate seqno page\n");
4557 ret = -ENOMEM;
4558 goto err;
4559 }
4560 obj_priv = to_intel_bo(obj);
4561 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4562
a00b10c3 4563 ret = i915_gem_object_pin(obj, 4096, true, false);
e552eb70
JB
4564 if (ret)
4565 goto err_unref;
4566
4567 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4568 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4569 if (dev_priv->seqno_page == NULL)
4570 goto err_unpin;
4571
4572 dev_priv->seqno_obj = obj;
4573 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4574
4575 return 0;
4576
4577err_unpin:
4578 i915_gem_object_unpin(obj);
4579err_unref:
4580 drm_gem_object_unreference(obj);
4581err:
4582 return ret;
4583}
4584
8187a2b7
ZN
4585
4586static void
e552eb70
JB
4587i915_gem_cleanup_pipe_control(struct drm_device *dev)
4588{
4589 drm_i915_private_t *dev_priv = dev->dev_private;
4590 struct drm_gem_object *obj;
4591 struct drm_i915_gem_object *obj_priv;
4592
4593 obj = dev_priv->seqno_obj;
4594 obj_priv = to_intel_bo(obj);
4595 kunmap(obj_priv->pages[0]);
4596 i915_gem_object_unpin(obj);
4597 drm_gem_object_unreference(obj);
4598 dev_priv->seqno_obj = NULL;
4599
4600 dev_priv->seqno_page = NULL;
673a394b
EA
4601}
4602
8187a2b7
ZN
4603int
4604i915_gem_init_ringbuffer(struct drm_device *dev)
4605{
4606 drm_i915_private_t *dev_priv = dev->dev_private;
4607 int ret;
68f95ba9 4608
8187a2b7
ZN
4609 if (HAS_PIPE_CONTROL(dev)) {
4610 ret = i915_gem_init_pipe_control(dev);
4611 if (ret)
4612 return ret;
4613 }
68f95ba9 4614
5c1143bb 4615 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4616 if (ret)
4617 goto cleanup_pipe_control;
4618
4619 if (HAS_BSD(dev)) {
5c1143bb 4620 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4621 if (ret)
4622 goto cleanup_render_ring;
d1b851fc 4623 }
68f95ba9 4624
549f7365
CW
4625 if (HAS_BLT(dev)) {
4626 ret = intel_init_blt_ring_buffer(dev);
4627 if (ret)
4628 goto cleanup_bsd_ring;
4629 }
4630
6f392d54
CW
4631 dev_priv->next_seqno = 1;
4632
68f95ba9
CW
4633 return 0;
4634
549f7365 4635cleanup_bsd_ring:
78501eac 4636 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
68f95ba9 4637cleanup_render_ring:
78501eac 4638 intel_cleanup_ring_buffer(&dev_priv->render_ring);
68f95ba9
CW
4639cleanup_pipe_control:
4640 if (HAS_PIPE_CONTROL(dev))
4641 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4642 return ret;
4643}
4644
4645void
4646i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4647{
4648 drm_i915_private_t *dev_priv = dev->dev_private;
4649
78501eac
CW
4650 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4651 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4652 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
8187a2b7
ZN
4653 if (HAS_PIPE_CONTROL(dev))
4654 i915_gem_cleanup_pipe_control(dev);
4655}
4656
673a394b
EA
4657int
4658i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4659 struct drm_file *file_priv)
4660{
4661 drm_i915_private_t *dev_priv = dev->dev_private;
4662 int ret;
4663
79e53945
JB
4664 if (drm_core_check_feature(dev, DRIVER_MODESET))
4665 return 0;
4666
ba1234d1 4667 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4668 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4669 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4670 }
4671
673a394b 4672 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4673 dev_priv->mm.suspended = 0;
4674
4675 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4676 if (ret != 0) {
4677 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4678 return ret;
d816f6ac 4679 }
9bb2d6f9 4680
69dc4987 4681 BUG_ON(!list_empty(&dev_priv->mm.active_list));
852835f3 4682 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 4683 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
549f7365 4684 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
673a394b
EA
4685 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4686 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4687 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 4688 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
549f7365 4689 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
673a394b 4690 mutex_unlock(&dev->struct_mutex);
dbb19d30 4691
5f35308b
CW
4692 ret = drm_irq_install(dev);
4693 if (ret)
4694 goto cleanup_ringbuffer;
dbb19d30 4695
673a394b 4696 return 0;
5f35308b
CW
4697
4698cleanup_ringbuffer:
4699 mutex_lock(&dev->struct_mutex);
4700 i915_gem_cleanup_ringbuffer(dev);
4701 dev_priv->mm.suspended = 1;
4702 mutex_unlock(&dev->struct_mutex);
4703
4704 return ret;
673a394b
EA
4705}
4706
4707int
4708i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4709 struct drm_file *file_priv)
4710{
79e53945
JB
4711 if (drm_core_check_feature(dev, DRIVER_MODESET))
4712 return 0;
4713
dbb19d30 4714 drm_irq_uninstall(dev);
e6890f6f 4715 return i915_gem_idle(dev);
673a394b
EA
4716}
4717
4718void
4719i915_gem_lastclose(struct drm_device *dev)
4720{
4721 int ret;
673a394b 4722
e806b495
EA
4723 if (drm_core_check_feature(dev, DRIVER_MODESET))
4724 return;
4725
6dbe2772
KP
4726 ret = i915_gem_idle(dev);
4727 if (ret)
4728 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4729}
4730
64193406
CW
4731static void
4732init_ring_lists(struct intel_ring_buffer *ring)
4733{
4734 INIT_LIST_HEAD(&ring->active_list);
4735 INIT_LIST_HEAD(&ring->request_list);
4736 INIT_LIST_HEAD(&ring->gpu_write_list);
4737}
4738
673a394b
EA
4739void
4740i915_gem_load(struct drm_device *dev)
4741{
b5aa8a0f 4742 int i;
673a394b
EA
4743 drm_i915_private_t *dev_priv = dev->dev_private;
4744
69dc4987 4745 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
4746 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4747 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4748 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4749 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4750 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
64193406
CW
4751 init_ring_lists(&dev_priv->render_ring);
4752 init_ring_lists(&dev_priv->bsd_ring);
4753 init_ring_lists(&dev_priv->blt_ring);
007cc8ac
DV
4754 for (i = 0; i < 16; i++)
4755 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4756 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4757 i915_gem_retire_work_handler);
30dbf0c0 4758 init_completion(&dev_priv->error_completion);
31169714 4759
94400120
DA
4760 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4761 if (IS_GEN3(dev)) {
4762 u32 tmp = I915_READ(MI_ARB_STATE);
4763 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4764 /* arb state is a masked write, so set bit + bit in mask */
4765 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4766 I915_WRITE(MI_ARB_STATE, tmp);
4767 }
4768 }
4769
de151cf6 4770 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4771 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4772 dev_priv->fence_reg_start = 3;
de151cf6 4773
a6c45cf0 4774 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4775 dev_priv->num_fence_regs = 16;
4776 else
4777 dev_priv->num_fence_regs = 8;
4778
b5aa8a0f 4779 /* Initialize fence registers to zero */
a6c45cf0
CW
4780 switch (INTEL_INFO(dev)->gen) {
4781 case 6:
4782 for (i = 0; i < 16; i++)
4783 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4784 break;
4785 case 5:
4786 case 4:
b5aa8a0f
GH
4787 for (i = 0; i < 16; i++)
4788 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4789 break;
4790 case 3:
b5aa8a0f
GH
4791 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4792 for (i = 0; i < 8; i++)
4793 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4794 case 2:
4795 for (i = 0; i < 8; i++)
4796 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4797 break;
b5aa8a0f 4798 }
673a394b 4799 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4800 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71
CW
4801
4802 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4803 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4804 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4805}
71acb5eb
DA
4806
4807/*
4808 * Create a physically contiguous memory object for this object
4809 * e.g. for cursor + overlay regs
4810 */
995b6762
CW
4811static int i915_gem_init_phys_object(struct drm_device *dev,
4812 int id, int size, int align)
71acb5eb
DA
4813{
4814 drm_i915_private_t *dev_priv = dev->dev_private;
4815 struct drm_i915_gem_phys_object *phys_obj;
4816 int ret;
4817
4818 if (dev_priv->mm.phys_objs[id - 1] || !size)
4819 return 0;
4820
9a298b2a 4821 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4822 if (!phys_obj)
4823 return -ENOMEM;
4824
4825 phys_obj->id = id;
4826
6eeefaf3 4827 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4828 if (!phys_obj->handle) {
4829 ret = -ENOMEM;
4830 goto kfree_obj;
4831 }
4832#ifdef CONFIG_X86
4833 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4834#endif
4835
4836 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4837
4838 return 0;
4839kfree_obj:
9a298b2a 4840 kfree(phys_obj);
71acb5eb
DA
4841 return ret;
4842}
4843
995b6762 4844static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4845{
4846 drm_i915_private_t *dev_priv = dev->dev_private;
4847 struct drm_i915_gem_phys_object *phys_obj;
4848
4849 if (!dev_priv->mm.phys_objs[id - 1])
4850 return;
4851
4852 phys_obj = dev_priv->mm.phys_objs[id - 1];
4853 if (phys_obj->cur_obj) {
4854 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4855 }
4856
4857#ifdef CONFIG_X86
4858 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4859#endif
4860 drm_pci_free(dev, phys_obj->handle);
4861 kfree(phys_obj);
4862 dev_priv->mm.phys_objs[id - 1] = NULL;
4863}
4864
4865void i915_gem_free_all_phys_object(struct drm_device *dev)
4866{
4867 int i;
4868
260883c8 4869 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4870 i915_gem_free_phys_object(dev, i);
4871}
4872
4873void i915_gem_detach_phys_object(struct drm_device *dev,
4874 struct drm_gem_object *obj)
4875{
e5281ccd
CW
4876 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
4877 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4878 char *vaddr;
71acb5eb 4879 int i;
71acb5eb
DA
4880 int page_count;
4881
71acb5eb
DA
4882 if (!obj_priv->phys_obj)
4883 return;
e5281ccd 4884 vaddr = obj_priv->phys_obj->handle->vaddr;
71acb5eb
DA
4885
4886 page_count = obj->size / PAGE_SIZE;
4887
4888 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4889 struct page *page = read_cache_page_gfp(mapping, i,
4890 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4891 if (!IS_ERR(page)) {
4892 char *dst = kmap_atomic(page);
4893 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4894 kunmap_atomic(dst);
4895
4896 drm_clflush_pages(&page, 1);
4897
4898 set_page_dirty(page);
4899 mark_page_accessed(page);
4900 page_cache_release(page);
4901 }
71acb5eb 4902 }
71acb5eb 4903 drm_agp_chipset_flush(dev);
d78b47b9 4904
71acb5eb
DA
4905 obj_priv->phys_obj->cur_obj = NULL;
4906 obj_priv->phys_obj = NULL;
4907}
4908
4909int
4910i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4911 struct drm_gem_object *obj,
4912 int id,
4913 int align)
71acb5eb 4914{
e5281ccd 4915 struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
71acb5eb
DA
4916 drm_i915_private_t *dev_priv = dev->dev_private;
4917 struct drm_i915_gem_object *obj_priv;
4918 int ret = 0;
4919 int page_count;
4920 int i;
4921
4922 if (id > I915_MAX_PHYS_OBJECT)
4923 return -EINVAL;
4924
23010e43 4925 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4926
4927 if (obj_priv->phys_obj) {
4928 if (obj_priv->phys_obj->id == id)
4929 return 0;
4930 i915_gem_detach_phys_object(dev, obj);
4931 }
4932
71acb5eb
DA
4933 /* create a new object */
4934 if (!dev_priv->mm.phys_objs[id - 1]) {
4935 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4936 obj->size, align);
71acb5eb 4937 if (ret) {
aeb565df 4938 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
e5281ccd 4939 return ret;
71acb5eb
DA
4940 }
4941 }
4942
4943 /* bind to the object */
4944 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4945 obj_priv->phys_obj->cur_obj = obj;
4946
71acb5eb
DA
4947 page_count = obj->size / PAGE_SIZE;
4948
4949 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4950 struct page *page;
4951 char *dst, *src;
4952
4953 page = read_cache_page_gfp(mapping, i,
4954 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4955 if (IS_ERR(page))
4956 return PTR_ERR(page);
71acb5eb 4957
ff75b9bc 4958 src = kmap_atomic(page);
e5281ccd 4959 dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4960 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4961 kunmap_atomic(src);
71acb5eb 4962
e5281ccd
CW
4963 mark_page_accessed(page);
4964 page_cache_release(page);
4965 }
d78b47b9 4966
71acb5eb 4967 return 0;
71acb5eb
DA
4968}
4969
4970static int
4971i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4972 struct drm_i915_gem_pwrite *args,
4973 struct drm_file *file_priv)
4974{
23010e43 4975 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4976 void *obj_addr;
4977 int ret;
4978 char __user *user_data;
4979
4980 user_data = (char __user *) (uintptr_t) args->data_ptr;
4981 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4982
44d98a61 4983 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4984 ret = copy_from_user(obj_addr, user_data, args->size);
4985 if (ret)
4986 return -EFAULT;
4987
4988 drm_agp_chipset_flush(dev);
4989 return 0;
4990}
b962442e 4991
f787a5f5 4992void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4993{
f787a5f5 4994 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4995
4996 /* Clean up our request list when the client is going away, so that
4997 * later retire_requests won't dereference our soon-to-be-gone
4998 * file_priv.
4999 */
1c25595f 5000 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5001 while (!list_empty(&file_priv->mm.request_list)) {
5002 struct drm_i915_gem_request *request;
5003
5004 request = list_first_entry(&file_priv->mm.request_list,
5005 struct drm_i915_gem_request,
5006 client_list);
5007 list_del(&request->client_list);
5008 request->file_priv = NULL;
5009 }
1c25595f 5010 spin_unlock(&file_priv->mm.lock);
b962442e 5011}
31169714 5012
1637ef41
CW
5013static int
5014i915_gpu_is_active(struct drm_device *dev)
5015{
5016 drm_i915_private_t *dev_priv = dev->dev_private;
5017 int lists_empty;
5018
1637ef41 5019 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 5020 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
5021
5022 return !lists_empty;
5023}
5024
31169714 5025static int
17250b71
CW
5026i915_gem_inactive_shrink(struct shrinker *shrinker,
5027 int nr_to_scan,
5028 gfp_t gfp_mask)
31169714 5029{
17250b71
CW
5030 struct drm_i915_private *dev_priv =
5031 container_of(shrinker,
5032 struct drm_i915_private,
5033 mm.inactive_shrinker);
5034 struct drm_device *dev = dev_priv->dev;
5035 struct drm_i915_gem_object *obj, *next;
5036 int cnt;
5037
5038 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 5039 return 0;
31169714
CW
5040
5041 /* "fast-path" to count number of available objects */
5042 if (nr_to_scan == 0) {
17250b71
CW
5043 cnt = 0;
5044 list_for_each_entry(obj,
5045 &dev_priv->mm.inactive_list,
5046 mm_list)
5047 cnt++;
5048 mutex_unlock(&dev->struct_mutex);
5049 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
5050 }
5051
1637ef41 5052rescan:
31169714 5053 /* first scan for clean buffers */
17250b71 5054 i915_gem_retire_requests(dev);
31169714 5055
17250b71
CW
5056 list_for_each_entry_safe(obj, next,
5057 &dev_priv->mm.inactive_list,
5058 mm_list) {
5059 if (i915_gem_object_is_purgeable(obj)) {
5060 i915_gem_object_unbind(&obj->base);
5061 if (--nr_to_scan == 0)
5062 break;
31169714 5063 }
31169714
CW
5064 }
5065
5066 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
5067 cnt = 0;
5068 list_for_each_entry_safe(obj, next,
5069 &dev_priv->mm.inactive_list,
5070 mm_list) {
5071 if (nr_to_scan) {
5072 i915_gem_object_unbind(&obj->base);
5073 nr_to_scan--;
5074 } else
5075 cnt++;
5076 }
5077
5078 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
5079 /*
5080 * We are desperate for pages, so as a last resort, wait
5081 * for the GPU to finish and discard whatever we can.
5082 * This has a dramatic impact to reduce the number of
5083 * OOM-killer events whilst running the GPU aggressively.
5084 */
17250b71 5085 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
5086 goto rescan;
5087 }
17250b71
CW
5088 mutex_unlock(&dev->struct_mutex);
5089 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 5090}