]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Choose not to evict faultable objects from the GGTT
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
c13d87ea 32#include "i915_gem_dmabuf.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
c13d87ea 38#include <linux/reservation.h>
5949eac4 39#include <linux/shmem_fs.h>
5a0e3ad6 40#include <linux/slab.h>
673a394b 41#include <linux/swap.h>
79e53945 42#include <linux/pci.h>
1286ff73 43#include <linux/dma-buf.h>
673a394b 44
05394f39 45static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 46static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 47
c76ce038
CW
48static bool cpu_cache_is_coherent(struct drm_device *dev,
49 enum i915_cache_level level)
50{
51 return HAS_LLC(dev) || level != I915_CACHE_NONE;
52}
53
2c22569b
CW
54static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55{
b50a5371
AS
56 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57 return false;
58
2c22569b
CW
59 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60 return true;
61
62 return obj->pin_display;
63}
64
4f1959ee
AS
65static int
66insert_mappable_node(struct drm_i915_private *i915,
67 struct drm_mm_node *node, u32 size)
68{
69 memset(node, 0, sizeof(*node));
70 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71 size, 0, 0, 0,
72 i915->ggtt.mappable_end,
73 DRM_MM_SEARCH_DEFAULT,
74 DRM_MM_CREATE_DEFAULT);
75}
76
77static void
78remove_mappable_node(struct drm_mm_node *node)
79{
80 drm_mm_remove_node(node);
81}
82
73aa808f
CW
83/* some bookkeeping */
84static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85 size_t size)
86{
c20e8355 87 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
88 dev_priv->mm.object_count++;
89 dev_priv->mm.object_memory += size;
c20e8355 90 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
91}
92
93static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count--;
98 dev_priv->mm.object_memory -= size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
21dd3734 102static int
33196ded 103i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 104{
30dbf0c0
CW
105 int ret;
106
d98c52cf 107 if (!i915_reset_in_progress(error))
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0 115 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 116 !i915_reset_in_progress(error),
1f83fee0 117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
d98c52cf
CW
123 } else {
124 return 0;
0a6759c6 125 }
30dbf0c0
CW
126}
127
54cf91dc 128int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 129{
fac5e23e 130 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
131 int ret;
132
33196ded 133 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
134 if (ret)
135 return ret;
136
137 ret = mutex_lock_interruptible(&dev->struct_mutex);
138 if (ret)
139 return ret;
140
76c1dec1
CW
141 return 0;
142}
30dbf0c0 143
5a125c3c
EA
144int
145i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 146 struct drm_file *file)
5a125c3c 147{
72e96d64 148 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 149 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 150 struct drm_i915_gem_get_aperture *args = data;
ca1543be 151 struct i915_vma *vma;
6299f992 152 size_t pinned;
5a125c3c 153
6299f992 154 pinned = 0;
73aa808f 155 mutex_lock(&dev->struct_mutex);
1c7f4bca 156 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 157 if (i915_vma_is_pinned(vma))
ca1543be 158 pinned += vma->node.size;
1c7f4bca 159 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 160 if (i915_vma_is_pinned(vma))
ca1543be 161 pinned += vma->node.size;
73aa808f 162 mutex_unlock(&dev->struct_mutex);
5a125c3c 163
72e96d64 164 args->aper_size = ggtt->base.total;
0206e353 165 args->aper_available_size = args->aper_size - pinned;
6299f992 166
5a125c3c
EA
167 return 0;
168}
169
6a2c4232
CW
170static int
171i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 172{
93c76a3d 173 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232
CW
174 char *vaddr = obj->phys_handle->vaddr;
175 struct sg_table *st;
176 struct scatterlist *sg;
177 int i;
00731155 178
6a2c4232
CW
179 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180 return -EINVAL;
181
182 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183 struct page *page;
184 char *src;
185
186 page = shmem_read_mapping_page(mapping, i);
187 if (IS_ERR(page))
188 return PTR_ERR(page);
189
190 src = kmap_atomic(page);
191 memcpy(vaddr, src, PAGE_SIZE);
192 drm_clflush_virt_range(vaddr, PAGE_SIZE);
193 kunmap_atomic(src);
194
09cbfeaf 195 put_page(page);
6a2c4232
CW
196 vaddr += PAGE_SIZE;
197 }
198
c033666a 199 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
200
201 st = kmalloc(sizeof(*st), GFP_KERNEL);
202 if (st == NULL)
203 return -ENOMEM;
204
205 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206 kfree(st);
207 return -ENOMEM;
208 }
209
210 sg = st->sgl;
211 sg->offset = 0;
212 sg->length = obj->base.size;
00731155 213
6a2c4232
CW
214 sg_dma_address(sg) = obj->phys_handle->busaddr;
215 sg_dma_len(sg) = obj->base.size;
216
217 obj->pages = st;
6a2c4232
CW
218 return 0;
219}
220
221static void
222i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223{
224 int ret;
225
226 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 227
6a2c4232 228 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 229 if (WARN_ON(ret)) {
6a2c4232
CW
230 /* In the event of a disaster, abandon all caches and
231 * hope for the best.
232 */
6a2c4232
CW
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
93c76a3d 240 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 241 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
00731155 259 mark_page_accessed(page);
09cbfeaf 260 put_page(page);
00731155
CW
261 vaddr += PAGE_SIZE;
262 }
6a2c4232 263 obj->dirty = 0;
00731155
CW
264 }
265
6a2c4232
CW
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
6a2c4232
CW
268}
269
270static void
271i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272{
273 drm_pci_free(obj->base.dev, obj->phys_handle);
274}
275
276static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277 .get_pages = i915_gem_object_get_pages_phys,
278 .put_pages = i915_gem_object_put_pages_phys,
279 .release = i915_gem_object_release_phys,
280};
281
35a9611c 282int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
283{
284 struct i915_vma *vma;
285 LIST_HEAD(still_in_list);
02bef8f9
CW
286 int ret;
287
288 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 289
02bef8f9
CW
290 /* Closed vma are removed from the obj->vma_list - but they may
291 * still have an active binding on the object. To remove those we
292 * must wait for all rendering to complete to the object (as unbinding
293 * must anyway), and retire the requests.
aa653a68 294 */
02bef8f9
CW
295 ret = i915_gem_object_wait_rendering(obj, false);
296 if (ret)
297 return ret;
298
299 i915_gem_retire_requests(to_i915(obj->base.dev));
300
aa653a68
CW
301 while ((vma = list_first_entry_or_null(&obj->vma_list,
302 struct i915_vma,
303 obj_link))) {
304 list_move_tail(&vma->obj_link, &still_in_list);
305 ret = i915_vma_unbind(vma);
306 if (ret)
307 break;
308 }
309 list_splice(&still_in_list, &obj->vma_list);
310
311 return ret;
312}
313
00e60f26
CW
314/**
315 * Ensures that all rendering to the object has completed and the object is
316 * safe to unbind from the GTT or access from the CPU.
317 * @obj: i915 gem object
318 * @readonly: waiting for just read access or read-write access
319 */
320int
321i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
322 bool readonly)
323{
324 struct reservation_object *resv;
325 struct i915_gem_active *active;
326 unsigned long active_mask;
327 int idx;
328
329 lockdep_assert_held(&obj->base.dev->struct_mutex);
330
331 if (!readonly) {
332 active = obj->last_read;
333 active_mask = i915_gem_object_get_active(obj);
334 } else {
335 active_mask = 1;
336 active = &obj->last_write;
337 }
338
339 for_each_active(active_mask, idx) {
340 int ret;
341
342 ret = i915_gem_active_wait(&active[idx],
343 &obj->base.dev->struct_mutex);
344 if (ret)
345 return ret;
346 }
347
348 resv = i915_gem_object_get_dmabuf_resv(obj);
349 if (resv) {
350 long err;
351
352 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
353 MAX_SCHEDULE_TIMEOUT);
354 if (err < 0)
355 return err;
356 }
357
358 return 0;
359}
360
b8f9096d
CW
361/* A nonblocking variant of the above wait. Must be called prior to
362 * acquiring the mutex for the object, as the object state may change
363 * during this call. A reference must be held by the caller for the object.
00e60f26
CW
364 */
365static __must_check int
b8f9096d
CW
366__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
367 struct intel_rps_client *rps,
368 bool readonly)
00e60f26 369{
00e60f26
CW
370 struct i915_gem_active *active;
371 unsigned long active_mask;
b8f9096d 372 int idx;
00e60f26 373
b8f9096d 374 active_mask = __I915_BO_ACTIVE(obj);
00e60f26
CW
375 if (!active_mask)
376 return 0;
377
378 if (!readonly) {
379 active = obj->last_read;
380 } else {
381 active_mask = 1;
382 active = &obj->last_write;
383 }
384
b8f9096d
CW
385 for_each_active(active_mask, idx) {
386 int ret;
00e60f26 387
b8f9096d
CW
388 ret = i915_gem_active_wait_unlocked(&active[idx],
389 true, NULL, rps);
390 if (ret)
391 return ret;
00e60f26
CW
392 }
393
b8f9096d 394 return 0;
00e60f26
CW
395}
396
397static struct intel_rps_client *to_rps_client(struct drm_file *file)
398{
399 struct drm_i915_file_private *fpriv = file->driver_priv;
400
401 return &fpriv->rps;
402}
403
00731155
CW
404int
405i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
406 int align)
407{
408 drm_dma_handle_t *phys;
6a2c4232 409 int ret;
00731155
CW
410
411 if (obj->phys_handle) {
412 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
413 return -EBUSY;
414
415 return 0;
416 }
417
418 if (obj->madv != I915_MADV_WILLNEED)
419 return -EFAULT;
420
421 if (obj->base.filp == NULL)
422 return -EINVAL;
423
4717ca9e
CW
424 ret = i915_gem_object_unbind(obj);
425 if (ret)
426 return ret;
427
428 ret = i915_gem_object_put_pages(obj);
6a2c4232
CW
429 if (ret)
430 return ret;
431
00731155
CW
432 /* create a new object */
433 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
434 if (!phys)
435 return -ENOMEM;
436
00731155 437 obj->phys_handle = phys;
6a2c4232
CW
438 obj->ops = &i915_gem_phys_ops;
439
440 return i915_gem_object_get_pages(obj);
00731155
CW
441}
442
443static int
444i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
445 struct drm_i915_gem_pwrite *args,
446 struct drm_file *file_priv)
447{
448 struct drm_device *dev = obj->base.dev;
449 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 450 char __user *user_data = u64_to_user_ptr(args->data_ptr);
063e4e6b 451 int ret = 0;
6a2c4232
CW
452
453 /* We manually control the domain here and pretend that it
454 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
455 */
456 ret = i915_gem_object_wait_rendering(obj, false);
457 if (ret)
458 return ret;
00731155 459
77a0d1ca 460 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
461 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
462 unsigned long unwritten;
463
464 /* The physical object once assigned is fixed for the lifetime
465 * of the obj, so we can safely drop the lock and continue
466 * to access vaddr.
467 */
468 mutex_unlock(&dev->struct_mutex);
469 unwritten = copy_from_user(vaddr, user_data, args->size);
470 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
471 if (unwritten) {
472 ret = -EFAULT;
473 goto out;
474 }
00731155
CW
475 }
476
6a2c4232 477 drm_clflush_virt_range(vaddr, args->size);
c033666a 478 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
479
480out:
de152b62 481 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 482 return ret;
00731155
CW
483}
484
42dcedd4
CW
485void *i915_gem_object_alloc(struct drm_device *dev)
486{
fac5e23e 487 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 488 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
489}
490
491void i915_gem_object_free(struct drm_i915_gem_object *obj)
492{
fac5e23e 493 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 494 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
495}
496
ff72145b
DA
497static int
498i915_gem_create(struct drm_file *file,
499 struct drm_device *dev,
500 uint64_t size,
501 uint32_t *handle_p)
673a394b 502{
05394f39 503 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
504 int ret;
505 u32 handle;
673a394b 506
ff72145b 507 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
508 if (size == 0)
509 return -EINVAL;
673a394b
EA
510
511 /* Allocate the new object */
d37cd8a8 512 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
513 if (IS_ERR(obj))
514 return PTR_ERR(obj);
673a394b 515
05394f39 516 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 517 /* drop reference from allocate - handle holds it now */
34911fd3 518 i915_gem_object_put_unlocked(obj);
d861e338
DV
519 if (ret)
520 return ret;
202f2fef 521
ff72145b 522 *handle_p = handle;
673a394b
EA
523 return 0;
524}
525
ff72145b
DA
526int
527i915_gem_dumb_create(struct drm_file *file,
528 struct drm_device *dev,
529 struct drm_mode_create_dumb *args)
530{
531 /* have to work out size/pitch and return them */
de45eaf7 532 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
533 args->size = args->pitch * args->height;
534 return i915_gem_create(file, dev,
da6b51d0 535 args->size, &args->handle);
ff72145b
DA
536}
537
ff72145b
DA
538/**
539 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
540 * @dev: drm device pointer
541 * @data: ioctl data blob
542 * @file: drm file pointer
ff72145b
DA
543 */
544int
545i915_gem_create_ioctl(struct drm_device *dev, void *data,
546 struct drm_file *file)
547{
548 struct drm_i915_gem_create *args = data;
63ed2cb2 549
ff72145b 550 return i915_gem_create(file, dev,
da6b51d0 551 args->size, &args->handle);
ff72145b
DA
552}
553
8461d226
DV
554static inline int
555__copy_to_user_swizzled(char __user *cpu_vaddr,
556 const char *gpu_vaddr, int gpu_offset,
557 int length)
558{
559 int ret, cpu_offset = 0;
560
561 while (length > 0) {
562 int cacheline_end = ALIGN(gpu_offset + 1, 64);
563 int this_length = min(cacheline_end - gpu_offset, length);
564 int swizzled_gpu_offset = gpu_offset ^ 64;
565
566 ret = __copy_to_user(cpu_vaddr + cpu_offset,
567 gpu_vaddr + swizzled_gpu_offset,
568 this_length);
569 if (ret)
570 return ret + length;
571
572 cpu_offset += this_length;
573 gpu_offset += this_length;
574 length -= this_length;
575 }
576
577 return 0;
578}
579
8c59967c 580static inline int
4f0c7cfb
BW
581__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
582 const char __user *cpu_vaddr,
8c59967c
DV
583 int length)
584{
585 int ret, cpu_offset = 0;
586
587 while (length > 0) {
588 int cacheline_end = ALIGN(gpu_offset + 1, 64);
589 int this_length = min(cacheline_end - gpu_offset, length);
590 int swizzled_gpu_offset = gpu_offset ^ 64;
591
592 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
593 cpu_vaddr + cpu_offset,
594 this_length);
595 if (ret)
596 return ret + length;
597
598 cpu_offset += this_length;
599 gpu_offset += this_length;
600 length -= this_length;
601 }
602
603 return 0;
604}
605
4c914c0c
BV
606/*
607 * Pins the specified object's pages and synchronizes the object with
608 * GPU accesses. Sets needs_clflush to non-zero if the caller should
609 * flush the object from the CPU cache.
610 */
611int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 612 unsigned int *needs_clflush)
4c914c0c
BV
613{
614 int ret;
615
616 *needs_clflush = 0;
617
43394c7d
CW
618 if (!i915_gem_object_has_struct_page(obj))
619 return -ENODEV;
4c914c0c 620
c13d87ea
CW
621 ret = i915_gem_object_wait_rendering(obj, true);
622 if (ret)
623 return ret;
624
9764951e
CW
625 ret = i915_gem_object_get_pages(obj);
626 if (ret)
627 return ret;
628
629 i915_gem_object_pin_pages(obj);
630
a314d5cb
CW
631 i915_gem_object_flush_gtt_write_domain(obj);
632
43394c7d
CW
633 /* If we're not in the cpu read domain, set ourself into the gtt
634 * read domain and manually flush cachelines (if required). This
635 * optimizes for the case when the gpu will dirty the data
636 * anyway again before the next pread happens.
637 */
638 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
4c914c0c
BV
639 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
640 obj->cache_level);
43394c7d 641
43394c7d
CW
642 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
643 ret = i915_gem_object_set_to_cpu_domain(obj, false);
9764951e
CW
644 if (ret)
645 goto err_unpin;
646
43394c7d 647 *needs_clflush = 0;
4c914c0c
BV
648 }
649
9764951e 650 /* return with the pages pinned */
43394c7d 651 return 0;
9764951e
CW
652
653err_unpin:
654 i915_gem_object_unpin_pages(obj);
655 return ret;
43394c7d
CW
656}
657
658int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
659 unsigned int *needs_clflush)
660{
661 int ret;
662
663 *needs_clflush = 0;
664 if (!i915_gem_object_has_struct_page(obj))
665 return -ENODEV;
666
667 ret = i915_gem_object_wait_rendering(obj, false);
668 if (ret)
669 return ret;
670
9764951e
CW
671 ret = i915_gem_object_get_pages(obj);
672 if (ret)
673 return ret;
674
675 i915_gem_object_pin_pages(obj);
676
a314d5cb
CW
677 i915_gem_object_flush_gtt_write_domain(obj);
678
43394c7d
CW
679 /* If we're not in the cpu write domain, set ourself into the
680 * gtt write domain and manually flush cachelines (as required).
681 * This optimizes for the case when the gpu will use the data
682 * right away and we therefore have to clflush anyway.
683 */
684 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
685 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
686
687 /* Same trick applies to invalidate partially written cachelines read
688 * before writing.
689 */
690 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
691 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
692 obj->cache_level);
693
43394c7d
CW
694 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
695 ret = i915_gem_object_set_to_cpu_domain(obj, true);
9764951e
CW
696 if (ret)
697 goto err_unpin;
698
43394c7d
CW
699 *needs_clflush = 0;
700 }
701
702 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
703 obj->cache_dirty = true;
704
705 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
706 obj->dirty = 1;
9764951e 707 /* return with the pages pinned */
43394c7d 708 return 0;
9764951e
CW
709
710err_unpin:
711 i915_gem_object_unpin_pages(obj);
712 return ret;
4c914c0c
BV
713}
714
d174bd64
DV
715/* Per-page copy function for the shmem pread fastpath.
716 * Flushes invalid cachelines before reading the target if
717 * needs_clflush is set. */
eb01459f 718static int
d174bd64
DV
719shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
720 char __user *user_data,
721 bool page_do_bit17_swizzling, bool needs_clflush)
722{
723 char *vaddr;
724 int ret;
725
e7e58eb5 726 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
727 return -EINVAL;
728
729 vaddr = kmap_atomic(page);
730 if (needs_clflush)
731 drm_clflush_virt_range(vaddr + shmem_page_offset,
732 page_length);
733 ret = __copy_to_user_inatomic(user_data,
734 vaddr + shmem_page_offset,
735 page_length);
736 kunmap_atomic(vaddr);
737
f60d7f0c 738 return ret ? -EFAULT : 0;
d174bd64
DV
739}
740
23c18c71
DV
741static void
742shmem_clflush_swizzled_range(char *addr, unsigned long length,
743 bool swizzled)
744{
e7e58eb5 745 if (unlikely(swizzled)) {
23c18c71
DV
746 unsigned long start = (unsigned long) addr;
747 unsigned long end = (unsigned long) addr + length;
748
749 /* For swizzling simply ensure that we always flush both
750 * channels. Lame, but simple and it works. Swizzled
751 * pwrite/pread is far from a hotpath - current userspace
752 * doesn't use it at all. */
753 start = round_down(start, 128);
754 end = round_up(end, 128);
755
756 drm_clflush_virt_range((void *)start, end - start);
757 } else {
758 drm_clflush_virt_range(addr, length);
759 }
760
761}
762
d174bd64
DV
763/* Only difference to the fast-path function is that this can handle bit17
764 * and uses non-atomic copy and kmap functions. */
765static int
766shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
767 char __user *user_data,
768 bool page_do_bit17_swizzling, bool needs_clflush)
769{
770 char *vaddr;
771 int ret;
772
773 vaddr = kmap(page);
774 if (needs_clflush)
23c18c71
DV
775 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
776 page_length,
777 page_do_bit17_swizzling);
d174bd64
DV
778
779 if (page_do_bit17_swizzling)
780 ret = __copy_to_user_swizzled(user_data,
781 vaddr, shmem_page_offset,
782 page_length);
783 else
784 ret = __copy_to_user(user_data,
785 vaddr + shmem_page_offset,
786 page_length);
787 kunmap(page);
788
f60d7f0c 789 return ret ? - EFAULT : 0;
d174bd64
DV
790}
791
b50a5371
AS
792static inline unsigned long
793slow_user_access(struct io_mapping *mapping,
794 uint64_t page_base, int page_offset,
795 char __user *user_data,
796 unsigned long length, bool pwrite)
797{
798 void __iomem *ioaddr;
799 void *vaddr;
800 uint64_t unwritten;
801
802 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
803 /* We can use the cpu mem copy function because this is X86. */
804 vaddr = (void __force *)ioaddr + page_offset;
805 if (pwrite)
806 unwritten = __copy_from_user(vaddr, user_data, length);
807 else
808 unwritten = __copy_to_user(user_data, vaddr, length);
809
810 io_mapping_unmap(ioaddr);
811 return unwritten;
812}
813
814static int
815i915_gem_gtt_pread(struct drm_device *dev,
816 struct drm_i915_gem_object *obj, uint64_t size,
817 uint64_t data_offset, uint64_t data_ptr)
818{
fac5e23e 819 struct drm_i915_private *dev_priv = to_i915(dev);
b50a5371 820 struct i915_ggtt *ggtt = &dev_priv->ggtt;
058d88c4 821 struct i915_vma *vma;
b50a5371
AS
822 struct drm_mm_node node;
823 char __user *user_data;
824 uint64_t remain;
825 uint64_t offset;
826 int ret;
827
058d88c4 828 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
18034584
CW
829 if (!IS_ERR(vma)) {
830 node.start = i915_ggtt_offset(vma);
831 node.allocated = false;
49ef5294 832 ret = i915_vma_put_fence(vma);
18034584
CW
833 if (ret) {
834 i915_vma_unpin(vma);
835 vma = ERR_PTR(ret);
836 }
837 }
058d88c4 838 if (IS_ERR(vma)) {
b50a5371
AS
839 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
840 if (ret)
841 goto out;
842
843 ret = i915_gem_object_get_pages(obj);
844 if (ret) {
845 remove_mappable_node(&node);
846 goto out;
847 }
848
849 i915_gem_object_pin_pages(obj);
b50a5371
AS
850 }
851
852 ret = i915_gem_object_set_to_gtt_domain(obj, false);
853 if (ret)
854 goto out_unpin;
855
856 user_data = u64_to_user_ptr(data_ptr);
857 remain = size;
858 offset = data_offset;
859
860 mutex_unlock(&dev->struct_mutex);
861 if (likely(!i915.prefault_disable)) {
862 ret = fault_in_multipages_writeable(user_data, remain);
863 if (ret) {
864 mutex_lock(&dev->struct_mutex);
865 goto out_unpin;
866 }
867 }
868
869 while (remain > 0) {
870 /* Operation in this page
871 *
872 * page_base = page offset within aperture
873 * page_offset = offset within page
874 * page_length = bytes to copy for this page
875 */
876 u32 page_base = node.start;
877 unsigned page_offset = offset_in_page(offset);
878 unsigned page_length = PAGE_SIZE - page_offset;
879 page_length = remain < page_length ? remain : page_length;
880 if (node.allocated) {
881 wmb();
882 ggtt->base.insert_page(&ggtt->base,
883 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
884 node.start,
885 I915_CACHE_NONE, 0);
886 wmb();
887 } else {
888 page_base += offset & PAGE_MASK;
889 }
890 /* This is a slow read/write as it tries to read from
891 * and write to user memory which may result into page
892 * faults, and so we cannot perform this under struct_mutex.
893 */
894 if (slow_user_access(ggtt->mappable, page_base,
895 page_offset, user_data,
896 page_length, false)) {
897 ret = -EFAULT;
898 break;
899 }
900
901 remain -= page_length;
902 user_data += page_length;
903 offset += page_length;
904 }
905
906 mutex_lock(&dev->struct_mutex);
907 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
908 /* The user has modified the object whilst we tried
909 * reading from it, and we now have no idea what domain
910 * the pages should be in. As we have just been touching
911 * them directly, flush everything back to the GTT
912 * domain.
913 */
914 ret = i915_gem_object_set_to_gtt_domain(obj, false);
915 }
916
917out_unpin:
918 if (node.allocated) {
919 wmb();
920 ggtt->base.clear_range(&ggtt->base,
921 node.start, node.size,
922 true);
923 i915_gem_object_unpin_pages(obj);
924 remove_mappable_node(&node);
925 } else {
058d88c4 926 i915_vma_unpin(vma);
b50a5371
AS
927 }
928out:
929 return ret;
930}
931
eb01459f 932static int
dbf7bff0
DV
933i915_gem_shmem_pread(struct drm_device *dev,
934 struct drm_i915_gem_object *obj,
935 struct drm_i915_gem_pread *args,
936 struct drm_file *file)
eb01459f 937{
8461d226 938 char __user *user_data;
eb01459f 939 ssize_t remain;
8461d226 940 loff_t offset;
eb2c0c81 941 int shmem_page_offset, page_length, ret = 0;
8461d226 942 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 943 int prefaulted = 0;
8489731c 944 int needs_clflush = 0;
67d5a50c 945 struct sg_page_iter sg_iter;
eb01459f 946
4c914c0c 947 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
948 if (ret)
949 return ret;
950
43394c7d
CW
951 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
952 user_data = u64_to_user_ptr(args->data_ptr);
8461d226 953 offset = args->offset;
43394c7d 954 remain = args->size;
eb01459f 955
67d5a50c
ID
956 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
957 offset >> PAGE_SHIFT) {
2db76d7c 958 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
959
960 if (remain <= 0)
961 break;
962
eb01459f
EA
963 /* Operation in this page
964 *
eb01459f 965 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
966 * page_length = bytes to copy for this page
967 */
c8cbbb8b 968 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
969 page_length = remain;
970 if ((shmem_page_offset + page_length) > PAGE_SIZE)
971 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 972
8461d226
DV
973 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
974 (page_to_phys(page) & (1 << 17)) != 0;
975
d174bd64
DV
976 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 needs_clflush);
979 if (ret == 0)
980 goto next_page;
dbf7bff0 981
dbf7bff0
DV
982 mutex_unlock(&dev->struct_mutex);
983
d330a953 984 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 985 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
986 /* Userspace is tricking us, but we've already clobbered
987 * its pages with the prefault and promised to write the
988 * data up to the first fault. Hence ignore any errors
989 * and just continue. */
990 (void)ret;
991 prefaulted = 1;
992 }
eb01459f 993
d174bd64
DV
994 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
995 user_data, page_do_bit17_swizzling,
996 needs_clflush);
eb01459f 997
dbf7bff0 998 mutex_lock(&dev->struct_mutex);
f60d7f0c 999
f60d7f0c 1000 if (ret)
8461d226 1001 goto out;
8461d226 1002
17793c9a 1003next_page:
eb01459f 1004 remain -= page_length;
8461d226 1005 user_data += page_length;
eb01459f
EA
1006 offset += page_length;
1007 }
1008
4f27b75d 1009out:
43394c7d 1010 i915_gem_obj_finish_shmem_access(obj);
f60d7f0c 1011
eb01459f
EA
1012 return ret;
1013}
1014
673a394b
EA
1015/**
1016 * Reads data from the object referenced by handle.
14bb2c11
TU
1017 * @dev: drm device pointer
1018 * @data: ioctl data blob
1019 * @file: drm file pointer
673a394b
EA
1020 *
1021 * On error, the contents of *data are undefined.
1022 */
1023int
1024i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1025 struct drm_file *file)
673a394b
EA
1026{
1027 struct drm_i915_gem_pread *args = data;
05394f39 1028 struct drm_i915_gem_object *obj;
35b62a89 1029 int ret = 0;
673a394b 1030
51311d0a
CW
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_WRITE,
3ed605bc 1035 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1036 args->size))
1037 return -EFAULT;
1038
03ac0642 1039 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1040 if (!obj)
1041 return -ENOENT;
673a394b 1042
7dcd2499 1043 /* Bounds check source. */
05394f39
CW
1044 if (args->offset > obj->base.size ||
1045 args->size > obj->base.size - args->offset) {
ce9d419d 1046 ret = -EINVAL;
258a5ede 1047 goto err;
ce9d419d
CW
1048 }
1049
db53a302
CW
1050 trace_i915_gem_object_pread(obj, args->offset, args->size);
1051
258a5ede
CW
1052 ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
1053 if (ret)
1054 goto err;
1055
1056 ret = i915_mutex_lock_interruptible(dev);
1057 if (ret)
1058 goto err;
1059
dbf7bff0 1060 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 1061
b50a5371 1062 /* pread for non shmem backed objects */
1dd5b6f2
CW
1063 if (ret == -EFAULT || ret == -ENODEV) {
1064 intel_runtime_pm_get(to_i915(dev));
b50a5371
AS
1065 ret = i915_gem_gtt_pread(dev, obj, args->size,
1066 args->offset, args->data_ptr);
1dd5b6f2
CW
1067 intel_runtime_pm_put(to_i915(dev));
1068 }
b50a5371 1069
f8c417cd 1070 i915_gem_object_put(obj);
4f27b75d 1071 mutex_unlock(&dev->struct_mutex);
258a5ede
CW
1072
1073 return ret;
1074
1075err:
1076 i915_gem_object_put_unlocked(obj);
eb01459f 1077 return ret;
673a394b
EA
1078}
1079
0839ccb8
KP
1080/* This is the fast write path which cannot handle
1081 * page faults in the source data
9b7530cc 1082 */
0839ccb8
KP
1083
1084static inline int
1085fast_user_write(struct io_mapping *mapping,
1086 loff_t page_base, int page_offset,
1087 char __user *user_data,
1088 int length)
9b7530cc 1089{
4f0c7cfb
BW
1090 void __iomem *vaddr_atomic;
1091 void *vaddr;
0839ccb8 1092 unsigned long unwritten;
9b7530cc 1093
3e4d3af5 1094 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
1095 /* We can use the cpu mem copy function because this is X86. */
1096 vaddr = (void __force*)vaddr_atomic + page_offset;
1097 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 1098 user_data, length);
3e4d3af5 1099 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 1100 return unwritten;
0839ccb8
KP
1101}
1102
3de09aa3
EA
1103/**
1104 * This is the fast pwrite path, where we copy the data directly from the
1105 * user into the GTT, uncached.
62f90b38 1106 * @i915: i915 device private data
14bb2c11
TU
1107 * @obj: i915 gem object
1108 * @args: pwrite arguments structure
1109 * @file: drm file pointer
3de09aa3 1110 */
673a394b 1111static int
4f1959ee 1112i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
05394f39 1113 struct drm_i915_gem_object *obj,
3de09aa3 1114 struct drm_i915_gem_pwrite *args,
05394f39 1115 struct drm_file *file)
673a394b 1116{
4f1959ee 1117 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1118 struct drm_device *dev = obj->base.dev;
058d88c4 1119 struct i915_vma *vma;
4f1959ee
AS
1120 struct drm_mm_node node;
1121 uint64_t remain, offset;
673a394b 1122 char __user *user_data;
4f1959ee 1123 int ret;
b50a5371
AS
1124 bool hit_slow_path = false;
1125
3e510a8e 1126 if (i915_gem_object_is_tiled(obj))
b50a5371 1127 return -EFAULT;
935aaa69 1128
058d88c4 1129 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1130 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1131 if (!IS_ERR(vma)) {
1132 node.start = i915_ggtt_offset(vma);
1133 node.allocated = false;
49ef5294 1134 ret = i915_vma_put_fence(vma);
18034584
CW
1135 if (ret) {
1136 i915_vma_unpin(vma);
1137 vma = ERR_PTR(ret);
1138 }
1139 }
058d88c4 1140 if (IS_ERR(vma)) {
4f1959ee
AS
1141 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
1142 if (ret)
1143 goto out;
1144
1145 ret = i915_gem_object_get_pages(obj);
1146 if (ret) {
1147 remove_mappable_node(&node);
1148 goto out;
1149 }
1150
1151 i915_gem_object_pin_pages(obj);
4f1959ee 1152 }
935aaa69
DV
1153
1154 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1155 if (ret)
1156 goto out_unpin;
1157
b19482d7 1158 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
4f1959ee 1159 obj->dirty = true;
063e4e6b 1160
4f1959ee
AS
1161 user_data = u64_to_user_ptr(args->data_ptr);
1162 offset = args->offset;
1163 remain = args->size;
1164 while (remain) {
673a394b
EA
1165 /* Operation in this page
1166 *
0839ccb8
KP
1167 * page_base = page offset within aperture
1168 * page_offset = offset within page
1169 * page_length = bytes to copy for this page
673a394b 1170 */
4f1959ee
AS
1171 u32 page_base = node.start;
1172 unsigned page_offset = offset_in_page(offset);
1173 unsigned page_length = PAGE_SIZE - page_offset;
1174 page_length = remain < page_length ? remain : page_length;
1175 if (node.allocated) {
1176 wmb(); /* flush the write before we modify the GGTT */
1177 ggtt->base.insert_page(&ggtt->base,
1178 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1179 node.start, I915_CACHE_NONE, 0);
1180 wmb(); /* flush modifications to the GGTT (insert_page) */
1181 } else {
1182 page_base += offset & PAGE_MASK;
1183 }
0839ccb8 1184 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1185 * source page isn't available. Return the error and we'll
1186 * retry in the slow path.
b50a5371
AS
1187 * If the object is non-shmem backed, we retry again with the
1188 * path that handles page fault.
0839ccb8 1189 */
72e96d64 1190 if (fast_user_write(ggtt->mappable, page_base,
935aaa69 1191 page_offset, user_data, page_length)) {
b50a5371
AS
1192 hit_slow_path = true;
1193 mutex_unlock(&dev->struct_mutex);
1194 if (slow_user_access(ggtt->mappable,
1195 page_base,
1196 page_offset, user_data,
1197 page_length, true)) {
1198 ret = -EFAULT;
1199 mutex_lock(&dev->struct_mutex);
1200 goto out_flush;
1201 }
1202
1203 mutex_lock(&dev->struct_mutex);
935aaa69 1204 }
673a394b 1205
0839ccb8
KP
1206 remain -= page_length;
1207 user_data += page_length;
1208 offset += page_length;
673a394b 1209 }
673a394b 1210
063e4e6b 1211out_flush:
b50a5371
AS
1212 if (hit_slow_path) {
1213 if (ret == 0 &&
1214 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1215 /* The user has modified the object whilst we tried
1216 * reading from it, and we now have no idea what domain
1217 * the pages should be in. As we have just been touching
1218 * them directly, flush everything back to the GTT
1219 * domain.
1220 */
1221 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1222 }
1223 }
1224
b19482d7 1225 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
935aaa69 1226out_unpin:
4f1959ee
AS
1227 if (node.allocated) {
1228 wmb();
1229 ggtt->base.clear_range(&ggtt->base,
1230 node.start, node.size,
1231 true);
1232 i915_gem_object_unpin_pages(obj);
1233 remove_mappable_node(&node);
1234 } else {
058d88c4 1235 i915_vma_unpin(vma);
4f1959ee 1236 }
935aaa69 1237out:
3de09aa3 1238 return ret;
673a394b
EA
1239}
1240
d174bd64
DV
1241/* Per-page copy function for the shmem pwrite fastpath.
1242 * Flushes invalid cachelines before writing to the target if
1243 * needs_clflush_before is set and flushes out any written cachelines after
1244 * writing if needs_clflush is set. */
3043c60c 1245static int
d174bd64
DV
1246shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1247 char __user *user_data,
1248 bool page_do_bit17_swizzling,
1249 bool needs_clflush_before,
1250 bool needs_clflush_after)
673a394b 1251{
d174bd64 1252 char *vaddr;
673a394b 1253 int ret;
3de09aa3 1254
e7e58eb5 1255 if (unlikely(page_do_bit17_swizzling))
d174bd64 1256 return -EINVAL;
3de09aa3 1257
d174bd64
DV
1258 vaddr = kmap_atomic(page);
1259 if (needs_clflush_before)
1260 drm_clflush_virt_range(vaddr + shmem_page_offset,
1261 page_length);
c2831a94
CW
1262 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1263 user_data, page_length);
d174bd64
DV
1264 if (needs_clflush_after)
1265 drm_clflush_virt_range(vaddr + shmem_page_offset,
1266 page_length);
1267 kunmap_atomic(vaddr);
3de09aa3 1268
755d2218 1269 return ret ? -EFAULT : 0;
3de09aa3
EA
1270}
1271
d174bd64
DV
1272/* Only difference to the fast-path function is that this can handle bit17
1273 * and uses non-atomic copy and kmap functions. */
3043c60c 1274static int
d174bd64
DV
1275shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1276 char __user *user_data,
1277 bool page_do_bit17_swizzling,
1278 bool needs_clflush_before,
1279 bool needs_clflush_after)
673a394b 1280{
d174bd64
DV
1281 char *vaddr;
1282 int ret;
e5281ccd 1283
d174bd64 1284 vaddr = kmap(page);
e7e58eb5 1285 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
1286 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1287 page_length,
1288 page_do_bit17_swizzling);
d174bd64
DV
1289 if (page_do_bit17_swizzling)
1290 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
1291 user_data,
1292 page_length);
d174bd64
DV
1293 else
1294 ret = __copy_from_user(vaddr + shmem_page_offset,
1295 user_data,
1296 page_length);
1297 if (needs_clflush_after)
23c18c71
DV
1298 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1299 page_length,
1300 page_do_bit17_swizzling);
d174bd64 1301 kunmap(page);
40123c1f 1302
755d2218 1303 return ret ? -EFAULT : 0;
40123c1f
EA
1304}
1305
40123c1f 1306static int
e244a443
DV
1307i915_gem_shmem_pwrite(struct drm_device *dev,
1308 struct drm_i915_gem_object *obj,
1309 struct drm_i915_gem_pwrite *args,
1310 struct drm_file *file)
40123c1f 1311{
40123c1f 1312 ssize_t remain;
8c59967c
DV
1313 loff_t offset;
1314 char __user *user_data;
eb2c0c81 1315 int shmem_page_offset, page_length, ret = 0;
8c59967c 1316 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 1317 int hit_slowpath = 0;
43394c7d 1318 unsigned int needs_clflush;
67d5a50c 1319 struct sg_page_iter sg_iter;
40123c1f 1320
43394c7d 1321 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
755d2218
CW
1322 if (ret)
1323 return ret;
1324
43394c7d
CW
1325 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1326 user_data = u64_to_user_ptr(args->data_ptr);
673a394b 1327 offset = args->offset;
43394c7d 1328 remain = args->size;
673a394b 1329
67d5a50c
ID
1330 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1331 offset >> PAGE_SHIFT) {
2db76d7c 1332 struct page *page = sg_page_iter_page(&sg_iter);
58642885 1333 int partial_cacheline_write;
e5281ccd 1334
9da3da66
CW
1335 if (remain <= 0)
1336 break;
1337
40123c1f
EA
1338 /* Operation in this page
1339 *
40123c1f 1340 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
1341 * page_length = bytes to copy for this page
1342 */
c8cbbb8b 1343 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
1344
1345 page_length = remain;
1346 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1347 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 1348
58642885
DV
1349 /* If we don't overwrite a cacheline completely we need to be
1350 * careful to have up-to-date data by first clflushing. Don't
1351 * overcomplicate things and flush the entire patch. */
43394c7d 1352 partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
58642885
DV
1353 ((shmem_page_offset | page_length)
1354 & (boot_cpu_data.x86_clflush_size - 1));
1355
8c59967c
DV
1356 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1357 (page_to_phys(page) & (1 << 17)) != 0;
1358
d174bd64
DV
1359 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1360 user_data, page_do_bit17_swizzling,
1361 partial_cacheline_write,
43394c7d 1362 needs_clflush & CLFLUSH_AFTER);
d174bd64
DV
1363 if (ret == 0)
1364 goto next_page;
e244a443
DV
1365
1366 hit_slowpath = 1;
e244a443 1367 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1368 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1369 user_data, page_do_bit17_swizzling,
1370 partial_cacheline_write,
43394c7d 1371 needs_clflush & CLFLUSH_AFTER);
40123c1f 1372
e244a443 1373 mutex_lock(&dev->struct_mutex);
755d2218 1374
755d2218 1375 if (ret)
8c59967c 1376 goto out;
8c59967c 1377
17793c9a 1378next_page:
40123c1f 1379 remain -= page_length;
8c59967c 1380 user_data += page_length;
40123c1f 1381 offset += page_length;
673a394b
EA
1382 }
1383
fbd5a26d 1384out:
43394c7d 1385 i915_gem_obj_finish_shmem_access(obj);
755d2218 1386
e244a443 1387 if (hit_slowpath) {
8dcf015e
DV
1388 /*
1389 * Fixup: Flush cpu caches in case we didn't flush the dirty
1390 * cachelines in-line while writing and the object moved
1391 * out of the cpu write domain while we've dropped the lock.
1392 */
43394c7d 1393 if (!(needs_clflush & CLFLUSH_AFTER) &&
8dcf015e 1394 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1395 if (i915_gem_clflush_object(obj, obj->pin_display))
43394c7d 1396 needs_clflush |= CLFLUSH_AFTER;
e244a443 1397 }
8c59967c 1398 }
673a394b 1399
43394c7d 1400 if (needs_clflush & CLFLUSH_AFTER)
c033666a 1401 i915_gem_chipset_flush(to_i915(dev));
58642885 1402
de152b62 1403 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1404 return ret;
673a394b
EA
1405}
1406
1407/**
1408 * Writes data to the object referenced by handle.
14bb2c11
TU
1409 * @dev: drm device
1410 * @data: ioctl data blob
1411 * @file: drm file
673a394b
EA
1412 *
1413 * On error, the contents of the buffer that were to be modified are undefined.
1414 */
1415int
1416i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1417 struct drm_file *file)
673a394b 1418{
fac5e23e 1419 struct drm_i915_private *dev_priv = to_i915(dev);
673a394b 1420 struct drm_i915_gem_pwrite *args = data;
05394f39 1421 struct drm_i915_gem_object *obj;
51311d0a
CW
1422 int ret;
1423
1424 if (args->size == 0)
1425 return 0;
1426
1427 if (!access_ok(VERIFY_READ,
3ed605bc 1428 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1429 args->size))
1430 return -EFAULT;
1431
d330a953 1432 if (likely(!i915.prefault_disable)) {
3ed605bc 1433 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
0b74b508
XZ
1434 args->size);
1435 if (ret)
1436 return -EFAULT;
1437 }
673a394b 1438
03ac0642 1439 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1440 if (!obj)
1441 return -ENOENT;
673a394b 1442
7dcd2499 1443 /* Bounds check destination. */
05394f39
CW
1444 if (args->offset > obj->base.size ||
1445 args->size > obj->base.size - args->offset) {
ce9d419d 1446 ret = -EINVAL;
258a5ede 1447 goto err;
ce9d419d
CW
1448 }
1449
db53a302
CW
1450 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1451
258a5ede
CW
1452 ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
1453 if (ret)
1454 goto err;
1455
1456 intel_runtime_pm_get(dev_priv);
1457
1458 ret = i915_mutex_lock_interruptible(dev);
1459 if (ret)
1460 goto err_rpm;
1461
935aaa69 1462 ret = -EFAULT;
673a394b
EA
1463 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1464 * it would end up going through the fenced access, and we'll get
1465 * different detiling behavior between reading and writing.
1466 * pread/pwrite currently are reading and writing from the CPU
1467 * perspective, requiring manual detiling by the client.
1468 */
6eae0059
CW
1469 if (!i915_gem_object_has_struct_page(obj) ||
1470 cpu_write_needs_clflush(obj)) {
4f1959ee 1471 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
935aaa69
DV
1472 /* Note that the gtt paths might fail with non-page-backed user
1473 * pointers (e.g. gtt mappings when moving data between
1474 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1475 }
673a394b 1476
d1054ee4 1477 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1478 if (obj->phys_handle)
1479 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1480 else
43394c7d 1481 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
6a2c4232 1482 }
5c0480f2 1483
f8c417cd 1484 i915_gem_object_put(obj);
fbd5a26d 1485 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1486 intel_runtime_pm_put(dev_priv);
1487
673a394b 1488 return ret;
258a5ede
CW
1489
1490err_rpm:
1491 intel_runtime_pm_put(dev_priv);
1492err:
1493 i915_gem_object_put_unlocked(obj);
1494 return ret;
673a394b
EA
1495}
1496
d243ad82 1497static inline enum fb_op_origin
aeecc969
CW
1498write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1499{
50349247
CW
1500 return (domain == I915_GEM_DOMAIN_GTT ?
1501 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
aeecc969
CW
1502}
1503
673a394b 1504/**
2ef7eeaa
EA
1505 * Called when user space prepares to use an object with the CPU, either
1506 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1507 * @dev: drm device
1508 * @data: ioctl data blob
1509 * @file: drm file
673a394b
EA
1510 */
1511int
1512i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1513 struct drm_file *file)
673a394b
EA
1514{
1515 struct drm_i915_gem_set_domain *args = data;
05394f39 1516 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1517 uint32_t read_domains = args->read_domains;
1518 uint32_t write_domain = args->write_domain;
673a394b
EA
1519 int ret;
1520
2ef7eeaa 1521 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1522 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1523 return -EINVAL;
1524
1525 /* Having something in the write domain implies it's in the read
1526 * domain, and only that read domain. Enforce that in the request.
1527 */
1528 if (write_domain != 0 && read_domains != write_domain)
1529 return -EINVAL;
1530
03ac0642 1531 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1532 if (!obj)
1533 return -ENOENT;
673a394b 1534
3236f57a
CW
1535 /* Try to flush the object off the GPU without holding the lock.
1536 * We will repeat the flush holding the lock in the normal manner
1537 * to catch cases where we are gazumped.
1538 */
b8f9096d
CW
1539 ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
1540 if (ret)
1541 goto err;
1542
1543 ret = i915_mutex_lock_interruptible(dev);
3236f57a 1544 if (ret)
b8f9096d 1545 goto err;
3236f57a 1546
43566ded 1547 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1548 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1549 else
e47c68e9 1550 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1551
031b698a 1552 if (write_domain != 0)
aeecc969 1553 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
031b698a 1554
f8c417cd 1555 i915_gem_object_put(obj);
673a394b
EA
1556 mutex_unlock(&dev->struct_mutex);
1557 return ret;
b8f9096d
CW
1558
1559err:
1560 i915_gem_object_put_unlocked(obj);
1561 return ret;
673a394b
EA
1562}
1563
1564/**
1565 * Called when user space has done writes to this buffer
14bb2c11
TU
1566 * @dev: drm device
1567 * @data: ioctl data blob
1568 * @file: drm file
673a394b
EA
1569 */
1570int
1571i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1572 struct drm_file *file)
673a394b
EA
1573{
1574 struct drm_i915_gem_sw_finish *args = data;
05394f39 1575 struct drm_i915_gem_object *obj;
c21724cc 1576 int err = 0;
1d7cfea1 1577
03ac0642 1578 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1579 if (!obj)
1580 return -ENOENT;
673a394b 1581
673a394b 1582 /* Pinned buffers may be scanout, so flush the cache */
c21724cc
CW
1583 if (READ_ONCE(obj->pin_display)) {
1584 err = i915_mutex_lock_interruptible(dev);
1585 if (!err) {
1586 i915_gem_object_flush_cpu_write_domain(obj);
1587 mutex_unlock(&dev->struct_mutex);
1588 }
1589 }
e47c68e9 1590
c21724cc
CW
1591 i915_gem_object_put_unlocked(obj);
1592 return err;
673a394b
EA
1593}
1594
1595/**
14bb2c11
TU
1596 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1597 * it is mapped to.
1598 * @dev: drm device
1599 * @data: ioctl data blob
1600 * @file: drm file
673a394b
EA
1601 *
1602 * While the mapping holds a reference on the contents of the object, it doesn't
1603 * imply a ref on the object itself.
34367381
DV
1604 *
1605 * IMPORTANT:
1606 *
1607 * DRM driver writers who look a this function as an example for how to do GEM
1608 * mmap support, please don't implement mmap support like here. The modern way
1609 * to implement DRM mmap support is with an mmap offset ioctl (like
1610 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1611 * That way debug tooling like valgrind will understand what's going on, hiding
1612 * the mmap call in a driver private ioctl will break that. The i915 driver only
1613 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1614 */
1615int
1616i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1617 struct drm_file *file)
673a394b
EA
1618{
1619 struct drm_i915_gem_mmap *args = data;
03ac0642 1620 struct drm_i915_gem_object *obj;
673a394b
EA
1621 unsigned long addr;
1622
1816f923
AG
1623 if (args->flags & ~(I915_MMAP_WC))
1624 return -EINVAL;
1625
568a58e5 1626 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1627 return -ENODEV;
1628
03ac0642
CW
1629 obj = i915_gem_object_lookup(file, args->handle);
1630 if (!obj)
bf79cb91 1631 return -ENOENT;
673a394b 1632
1286ff73
DV
1633 /* prime objects have no backing filp to GEM mmap
1634 * pages from.
1635 */
03ac0642 1636 if (!obj->base.filp) {
34911fd3 1637 i915_gem_object_put_unlocked(obj);
1286ff73
DV
1638 return -EINVAL;
1639 }
1640
03ac0642 1641 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1642 PROT_READ | PROT_WRITE, MAP_SHARED,
1643 args->offset);
1816f923
AG
1644 if (args->flags & I915_MMAP_WC) {
1645 struct mm_struct *mm = current->mm;
1646 struct vm_area_struct *vma;
1647
80a89a5e 1648 if (down_write_killable(&mm->mmap_sem)) {
34911fd3 1649 i915_gem_object_put_unlocked(obj);
80a89a5e
MH
1650 return -EINTR;
1651 }
1816f923
AG
1652 vma = find_vma(mm, addr);
1653 if (vma)
1654 vma->vm_page_prot =
1655 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1656 else
1657 addr = -ENOMEM;
1658 up_write(&mm->mmap_sem);
aeecc969
CW
1659
1660 /* This may race, but that's ok, it only gets set */
50349247 1661 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1662 }
34911fd3 1663 i915_gem_object_put_unlocked(obj);
673a394b
EA
1664 if (IS_ERR((void *)addr))
1665 return addr;
1666
1667 args->addr_ptr = (uint64_t) addr;
1668
1669 return 0;
1670}
1671
03af84fe
CW
1672static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1673{
1674 u64 size;
1675
1676 size = i915_gem_object_get_stride(obj);
1677 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1678
1679 return size >> PAGE_SHIFT;
1680}
1681
de151cf6
JB
1682/**
1683 * i915_gem_fault - fault a page into the GTT
058d88c4 1684 * @area: CPU VMA in question
d9072a3e 1685 * @vmf: fault info
de151cf6
JB
1686 *
1687 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1688 * from userspace. The fault handler takes care of binding the object to
1689 * the GTT (if needed), allocating and programming a fence register (again,
1690 * only if needed based on whether the old reg is still valid or the object
1691 * is tiled) and inserting a new PTE into the faulting process.
1692 *
1693 * Note that the faulting process may involve evicting existing objects
1694 * from the GTT and/or fence registers to make room. So performance may
1695 * suffer if the GTT working set is large or there are few fence registers
1696 * left.
1697 */
058d88c4 1698int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
de151cf6 1699{
03af84fe 1700#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
058d88c4 1701 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1702 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1703 struct drm_i915_private *dev_priv = to_i915(dev);
1704 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1705 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1706 struct i915_vma *vma;
de151cf6
JB
1707 pgoff_t page_offset;
1708 unsigned long pfn;
82118877 1709 unsigned int flags;
b8f9096d 1710 int ret;
f65c9168 1711
de151cf6 1712 /* We don't use vmf->pgoff since that has the fake offset */
058d88c4 1713 page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
de151cf6
JB
1714 PAGE_SHIFT;
1715
db53a302
CW
1716 trace_i915_gem_object_fault(obj, page_offset, true, write);
1717
6e4930f6 1718 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1719 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1720 * repeat the flush holding the lock in the normal manner to catch cases
1721 * where we are gazumped.
1722 */
b8f9096d 1723 ret = __unsafe_wait_rendering(obj, NULL, !write);
6e4930f6 1724 if (ret)
b8f9096d
CW
1725 goto err;
1726
1727 intel_runtime_pm_get(dev_priv);
1728
1729 ret = i915_mutex_lock_interruptible(dev);
1730 if (ret)
1731 goto err_rpm;
6e4930f6 1732
eb119bd6
CW
1733 /* Access to snoopable pages through the GTT is incoherent. */
1734 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1735 ret = -EFAULT;
b8f9096d 1736 goto err_unlock;
eb119bd6
CW
1737 }
1738
82118877
CW
1739 /* If the object is smaller than a couple of partial vma, it is
1740 * not worth only creating a single partial vma - we may as well
1741 * clear enough space for the full object.
1742 */
1743 flags = PIN_MAPPABLE;
1744 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1745 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1746
a61007a8 1747 /* Now pin it into the GTT as needed */
82118877 1748 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8
CW
1749 if (IS_ERR(vma)) {
1750 struct i915_ggtt_view view;
03af84fe
CW
1751 unsigned int chunk_size;
1752
a61007a8 1753 /* Use a partial view if it is bigger than available space */
03af84fe
CW
1754 chunk_size = MIN_CHUNK_PAGES;
1755 if (i915_gem_object_is_tiled(obj))
1756 chunk_size = max(chunk_size, tile_row_pages(obj));
e7ded2d7 1757
c5ad54cf
JL
1758 memset(&view, 0, sizeof(view));
1759 view.type = I915_GGTT_VIEW_PARTIAL;
1760 view.params.partial.offset = rounddown(page_offset, chunk_size);
1761 view.params.partial.size =
a61007a8 1762 min_t(unsigned int, chunk_size,
058d88c4 1763 (area->vm_end - area->vm_start) / PAGE_SIZE -
c5ad54cf 1764 view.params.partial.offset);
c5ad54cf 1765
aa136d9d
CW
1766 /* If the partial covers the entire object, just create a
1767 * normal VMA.
1768 */
1769 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1770 view.type = I915_GGTT_VIEW_NORMAL;
1771
50349247
CW
1772 /* Userspace is now writing through an untracked VMA, abandon
1773 * all hope that the hardware is able to track future writes.
1774 */
1775 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1776
a61007a8
CW
1777 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1778 }
058d88c4
CW
1779 if (IS_ERR(vma)) {
1780 ret = PTR_ERR(vma);
b8f9096d 1781 goto err_unlock;
058d88c4 1782 }
4a684a41 1783
c9839303
CW
1784 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1785 if (ret)
b8f9096d 1786 goto err_unpin;
74898d7e 1787
49ef5294 1788 ret = i915_vma_get_fence(vma);
d9e86c0e 1789 if (ret)
b8f9096d 1790 goto err_unpin;
7d1c4804 1791
b90b91d8 1792 /* Finally, remap it using the new GTT offset */
bde13ebd 1793 pfn = ggtt->mappable_base + i915_ggtt_offset(vma);
f343c5f6 1794 pfn >>= PAGE_SHIFT;
de151cf6 1795
a61007a8 1796 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
c5ad54cf 1797 if (!obj->fault_mappable) {
058d88c4
CW
1798 unsigned long size =
1799 min_t(unsigned long,
1800 area->vm_end - area->vm_start,
1801 obj->base.size) >> PAGE_SHIFT;
1802 unsigned long base = area->vm_start;
c5ad54cf
JL
1803 int i;
1804
058d88c4
CW
1805 for (i = 0; i < size; i++) {
1806 ret = vm_insert_pfn(area,
1807 base + i * PAGE_SIZE,
c5ad54cf
JL
1808 pfn + i);
1809 if (ret)
1810 break;
1811 }
c5ad54cf 1812 } else
058d88c4 1813 ret = vm_insert_pfn(area,
c5ad54cf
JL
1814 (unsigned long)vmf->virtual_address,
1815 pfn + page_offset);
a61007a8
CW
1816 } else {
1817 /* Overriding existing pages in partial view does not cause
1818 * us any trouble as TLBs are still valid because the fault
1819 * is due to userspace losing part of the mapping or never
1820 * having accessed it before (at this partials' range).
1821 */
1822 const struct i915_ggtt_view *view = &vma->ggtt_view;
1823 unsigned long base = area->vm_start +
1824 (view->params.partial.offset << PAGE_SHIFT);
1825 unsigned int i;
1826
1827 for (i = 0; i < view->params.partial.size; i++) {
1828 ret = vm_insert_pfn(area,
1829 base + i * PAGE_SIZE,
1830 pfn + i);
1831 if (ret)
1832 break;
1833 }
c5ad54cf 1834 }
a61007a8
CW
1835
1836 obj->fault_mappable = true;
b8f9096d 1837err_unpin:
058d88c4 1838 __i915_vma_unpin(vma);
b8f9096d 1839err_unlock:
de151cf6 1840 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1841err_rpm:
1842 intel_runtime_pm_put(dev_priv);
1843err:
de151cf6 1844 switch (ret) {
d9bc7e9f 1845 case -EIO:
2232f031
DV
1846 /*
1847 * We eat errors when the gpu is terminally wedged to avoid
1848 * userspace unduly crashing (gl has no provisions for mmaps to
1849 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1850 * and so needs to be reported.
1851 */
1852 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1853 ret = VM_FAULT_SIGBUS;
1854 break;
1855 }
045e769a 1856 case -EAGAIN:
571c608d
DV
1857 /*
1858 * EAGAIN means the gpu is hung and we'll wait for the error
1859 * handler to reset everything when re-faulting in
1860 * i915_mutex_lock_interruptible.
d9bc7e9f 1861 */
c715089f
CW
1862 case 0:
1863 case -ERESTARTSYS:
bed636ab 1864 case -EINTR:
e79e0fe3
DR
1865 case -EBUSY:
1866 /*
1867 * EBUSY is ok: this just means that another thread
1868 * already did the job.
1869 */
f65c9168
PZ
1870 ret = VM_FAULT_NOPAGE;
1871 break;
de151cf6 1872 case -ENOMEM:
f65c9168
PZ
1873 ret = VM_FAULT_OOM;
1874 break;
a7c2e1aa 1875 case -ENOSPC:
45d67817 1876 case -EFAULT:
f65c9168
PZ
1877 ret = VM_FAULT_SIGBUS;
1878 break;
de151cf6 1879 default:
a7c2e1aa 1880 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1881 ret = VM_FAULT_SIGBUS;
1882 break;
de151cf6 1883 }
f65c9168 1884 return ret;
de151cf6
JB
1885}
1886
901782b2
CW
1887/**
1888 * i915_gem_release_mmap - remove physical page mappings
1889 * @obj: obj in question
1890 *
af901ca1 1891 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1892 * relinquish ownership of the pages back to the system.
1893 *
1894 * It is vital that we remove the page mapping if we have mapped a tiled
1895 * object through the GTT and then lose the fence register due to
1896 * resource pressure. Similarly if the object has been moved out of the
1897 * aperture, than pages mapped into userspace must be revoked. Removing the
1898 * mapping will then trigger a page fault on the next user access, allowing
1899 * fixup by i915_gem_fault().
1900 */
d05ca301 1901void
05394f39 1902i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1903{
349f2ccf
CW
1904 /* Serialisation between user GTT access and our code depends upon
1905 * revoking the CPU's PTE whilst the mutex is held. The next user
1906 * pagefault then has to wait until we release the mutex.
1907 */
1908 lockdep_assert_held(&obj->base.dev->struct_mutex);
1909
6299f992
CW
1910 if (!obj->fault_mappable)
1911 return;
901782b2 1912
6796cb16
DH
1913 drm_vma_node_unmap(&obj->base.vma_node,
1914 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1915
1916 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1917 * memory transactions from userspace before we return. The TLB
1918 * flushing implied above by changing the PTE above *should* be
1919 * sufficient, an extra barrier here just provides us with a bit
1920 * of paranoid documentation about our requirement to serialise
1921 * memory writes before touching registers / GSM.
1922 */
1923 wmb();
1924
6299f992 1925 obj->fault_mappable = false;
901782b2
CW
1926}
1927
eedd10f4
CW
1928void
1929i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1930{
1931 struct drm_i915_gem_object *obj;
1932
1933 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1934 i915_gem_release_mmap(obj);
1935}
1936
ad1a7d20
CW
1937/**
1938 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 1939 * @dev_priv: i915 device
ad1a7d20
CW
1940 * @size: object size
1941 * @tiling_mode: tiling mode
1942 *
1943 * Return the required global GTT size for an object, taking into account
1944 * potential fence register mapping.
1945 */
a9f1481f
CW
1946u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1947 u64 size, int tiling_mode)
92b88aeb 1948{
ad1a7d20 1949 u64 ggtt_size;
92b88aeb 1950
ad1a7d20
CW
1951 GEM_BUG_ON(size == 0);
1952
a9f1481f 1953 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
1954 tiling_mode == I915_TILING_NONE)
1955 return size;
92b88aeb
CW
1956
1957 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 1958 if (IS_GEN3(dev_priv))
ad1a7d20 1959 ggtt_size = 1024*1024;
92b88aeb 1960 else
ad1a7d20 1961 ggtt_size = 512*1024;
92b88aeb 1962
ad1a7d20
CW
1963 while (ggtt_size < size)
1964 ggtt_size <<= 1;
92b88aeb 1965
ad1a7d20 1966 return ggtt_size;
92b88aeb
CW
1967}
1968
de151cf6 1969/**
ad1a7d20 1970 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 1971 * @dev_priv: i915 device
14bb2c11
TU
1972 * @size: object size
1973 * @tiling_mode: tiling mode
ad1a7d20 1974 * @fenced: is fenced alignment required or not
de151cf6 1975 *
ad1a7d20 1976 * Return the required global GTT alignment for an object, taking into account
5e783301 1977 * potential fence register mapping.
de151cf6 1978 */
a9f1481f 1979u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 1980 int tiling_mode, bool fenced)
de151cf6 1981{
ad1a7d20
CW
1982 GEM_BUG_ON(size == 0);
1983
de151cf6
JB
1984 /*
1985 * Minimum alignment is 4k (GTT page size), but might be greater
1986 * if a fence register is needed for the object.
1987 */
a9f1481f 1988 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
e28f8711 1989 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1990 return 4096;
1991
a00b10c3
CW
1992 /*
1993 * Previous chips need to be aligned to the size of the smallest
1994 * fence register that can contain the object.
1995 */
a9f1481f 1996 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
1997}
1998
d8cb5086
CW
1999static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2000{
fac5e23e 2001 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2002 int err;
da494d7c 2003
f3f6184c
CW
2004 err = drm_gem_create_mmap_offset(&obj->base);
2005 if (!err)
2006 return 0;
d8cb5086 2007
f3f6184c
CW
2008 /* We can idle the GPU locklessly to flush stale objects, but in order
2009 * to claim that space for ourselves, we need to take the big
2010 * struct_mutex to free the requests+objects and allocate our slot.
d8cb5086 2011 */
f3f6184c
CW
2012 err = i915_gem_wait_for_idle(dev_priv, true);
2013 if (err)
2014 return err;
2015
2016 err = i915_mutex_lock_interruptible(&dev_priv->drm);
2017 if (!err) {
2018 i915_gem_retire_requests(dev_priv);
2019 err = drm_gem_create_mmap_offset(&obj->base);
2020 mutex_unlock(&dev_priv->drm.struct_mutex);
2021 }
da494d7c 2022
f3f6184c 2023 return err;
d8cb5086
CW
2024}
2025
2026static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2027{
d8cb5086
CW
2028 drm_gem_free_mmap_offset(&obj->base);
2029}
2030
da6b51d0 2031int
ff72145b
DA
2032i915_gem_mmap_gtt(struct drm_file *file,
2033 struct drm_device *dev,
da6b51d0 2034 uint32_t handle,
ff72145b 2035 uint64_t *offset)
de151cf6 2036{
05394f39 2037 struct drm_i915_gem_object *obj;
de151cf6
JB
2038 int ret;
2039
03ac0642 2040 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2041 if (!obj)
2042 return -ENOENT;
ab18282d 2043
d8cb5086 2044 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2045 if (ret == 0)
2046 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2047
f3f6184c 2048 i915_gem_object_put_unlocked(obj);
1d7cfea1 2049 return ret;
de151cf6
JB
2050}
2051
ff72145b
DA
2052/**
2053 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2054 * @dev: DRM device
2055 * @data: GTT mapping ioctl data
2056 * @file: GEM object info
2057 *
2058 * Simply returns the fake offset to userspace so it can mmap it.
2059 * The mmap call will end up in drm_gem_mmap(), which will set things
2060 * up so we can get faults in the handler above.
2061 *
2062 * The fault handler will take care of binding the object into the GTT
2063 * (since it may have been evicted to make room for something), allocating
2064 * a fence register, and mapping the appropriate aperture address into
2065 * userspace.
2066 */
2067int
2068i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2069 struct drm_file *file)
2070{
2071 struct drm_i915_gem_mmap_gtt *args = data;
2072
da6b51d0 2073 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2074}
2075
225067ee
DV
2076/* Immediately discard the backing storage */
2077static void
2078i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2079{
4d6294bf 2080 i915_gem_object_free_mmap_offset(obj);
1286ff73 2081
4d6294bf
CW
2082 if (obj->base.filp == NULL)
2083 return;
e5281ccd 2084
225067ee
DV
2085 /* Our goal here is to return as much of the memory as
2086 * is possible back to the system as we are called from OOM.
2087 * To do this we must instruct the shmfs to drop all of its
2088 * backing pages, *now*.
2089 */
5537252b 2090 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2091 obj->madv = __I915_MADV_PURGED;
2092}
e5281ccd 2093
5537252b
CW
2094/* Try to discard unwanted pages */
2095static void
2096i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2097{
5537252b
CW
2098 struct address_space *mapping;
2099
2100 switch (obj->madv) {
2101 case I915_MADV_DONTNEED:
2102 i915_gem_object_truncate(obj);
2103 case __I915_MADV_PURGED:
2104 return;
2105 }
2106
2107 if (obj->base.filp == NULL)
2108 return;
2109
93c76a3d 2110 mapping = obj->base.filp->f_mapping,
5537252b 2111 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2112}
2113
5cdf5881 2114static void
05394f39 2115i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2116{
85d1225e
DG
2117 struct sgt_iter sgt_iter;
2118 struct page *page;
90797e6d 2119 int ret;
1286ff73 2120
05394f39 2121 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2122
6c085a72 2123 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2124 if (WARN_ON(ret)) {
6c085a72
CW
2125 /* In the event of a disaster, abandon all caches and
2126 * hope for the best.
2127 */
2c22569b 2128 i915_gem_clflush_object(obj, true);
6c085a72
CW
2129 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2130 }
2131
e2273302
ID
2132 i915_gem_gtt_finish_object(obj);
2133
6dacfd2f 2134 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2135 i915_gem_object_save_bit_17_swizzle(obj);
2136
05394f39
CW
2137 if (obj->madv == I915_MADV_DONTNEED)
2138 obj->dirty = 0;
3ef94daa 2139
85d1225e 2140 for_each_sgt_page(page, sgt_iter, obj->pages) {
05394f39 2141 if (obj->dirty)
9da3da66 2142 set_page_dirty(page);
3ef94daa 2143
05394f39 2144 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2145 mark_page_accessed(page);
3ef94daa 2146
09cbfeaf 2147 put_page(page);
3ef94daa 2148 }
05394f39 2149 obj->dirty = 0;
673a394b 2150
9da3da66
CW
2151 sg_free_table(obj->pages);
2152 kfree(obj->pages);
37e680a1 2153}
6c085a72 2154
dd624afd 2155int
37e680a1
CW
2156i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2157{
2158 const struct drm_i915_gem_object_ops *ops = obj->ops;
2159
2f745ad3 2160 if (obj->pages == NULL)
37e680a1
CW
2161 return 0;
2162
a5570178
CW
2163 if (obj->pages_pin_count)
2164 return -EBUSY;
2165
15717de2 2166 GEM_BUG_ON(obj->bind_count);
3e123027 2167
a2165e31
CW
2168 /* ->put_pages might need to allocate memory for the bit17 swizzle
2169 * array, hence protect them from being reaped by removing them from gtt
2170 * lists early. */
35c20a60 2171 list_del(&obj->global_list);
a2165e31 2172
0a798eb9 2173 if (obj->mapping) {
4b30cb23
CW
2174 void *ptr;
2175
2176 ptr = ptr_mask_bits(obj->mapping);
2177 if (is_vmalloc_addr(ptr))
2178 vunmap(ptr);
fb8621d3 2179 else
4b30cb23
CW
2180 kunmap(kmap_to_page(ptr));
2181
0a798eb9
CW
2182 obj->mapping = NULL;
2183 }
2184
37e680a1 2185 ops->put_pages(obj);
05394f39 2186 obj->pages = NULL;
37e680a1 2187
5537252b 2188 i915_gem_object_invalidate(obj);
6c085a72
CW
2189
2190 return 0;
2191}
2192
37e680a1 2193static int
6c085a72 2194i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2195{
fac5e23e 2196 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2197 int page_count, i;
2198 struct address_space *mapping;
9da3da66
CW
2199 struct sg_table *st;
2200 struct scatterlist *sg;
85d1225e 2201 struct sgt_iter sgt_iter;
e5281ccd 2202 struct page *page;
90797e6d 2203 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2204 int ret;
6c085a72 2205 gfp_t gfp;
e5281ccd 2206
6c085a72
CW
2207 /* Assert that the object is not currently in any GPU domain. As it
2208 * wasn't in the GTT, there shouldn't be any way it could have been in
2209 * a GPU cache
2210 */
2211 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2212 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2213
9da3da66
CW
2214 st = kmalloc(sizeof(*st), GFP_KERNEL);
2215 if (st == NULL)
2216 return -ENOMEM;
2217
05394f39 2218 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2219 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2220 kfree(st);
e5281ccd 2221 return -ENOMEM;
9da3da66 2222 }
e5281ccd 2223
9da3da66
CW
2224 /* Get the list of pages out of our struct file. They'll be pinned
2225 * at this point until we release them.
2226 *
2227 * Fail silently without starting the shrinker
2228 */
93c76a3d 2229 mapping = obj->base.filp->f_mapping;
c62d2555 2230 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2231 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2232 sg = st->sgl;
2233 st->nents = 0;
2234 for (i = 0; i < page_count; i++) {
6c085a72
CW
2235 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2236 if (IS_ERR(page)) {
21ab4e74
CW
2237 i915_gem_shrink(dev_priv,
2238 page_count,
2239 I915_SHRINK_BOUND |
2240 I915_SHRINK_UNBOUND |
2241 I915_SHRINK_PURGEABLE);
6c085a72
CW
2242 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2243 }
2244 if (IS_ERR(page)) {
2245 /* We've tried hard to allocate the memory by reaping
2246 * our own buffer, now let the real VM do its job and
2247 * go down in flames if truly OOM.
2248 */
6c085a72 2249 i915_gem_shrink_all(dev_priv);
f461d1be 2250 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2251 if (IS_ERR(page)) {
2252 ret = PTR_ERR(page);
6c085a72 2253 goto err_pages;
e2273302 2254 }
6c085a72 2255 }
426729dc
KRW
2256#ifdef CONFIG_SWIOTLB
2257 if (swiotlb_nr_tbl()) {
2258 st->nents++;
2259 sg_set_page(sg, page, PAGE_SIZE, 0);
2260 sg = sg_next(sg);
2261 continue;
2262 }
2263#endif
90797e6d
ID
2264 if (!i || page_to_pfn(page) != last_pfn + 1) {
2265 if (i)
2266 sg = sg_next(sg);
2267 st->nents++;
2268 sg_set_page(sg, page, PAGE_SIZE, 0);
2269 } else {
2270 sg->length += PAGE_SIZE;
2271 }
2272 last_pfn = page_to_pfn(page);
3bbbe706
DV
2273
2274 /* Check that the i965g/gm workaround works. */
2275 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2276 }
426729dc
KRW
2277#ifdef CONFIG_SWIOTLB
2278 if (!swiotlb_nr_tbl())
2279#endif
2280 sg_mark_end(sg);
74ce6b6c
CW
2281 obj->pages = st;
2282
e2273302
ID
2283 ret = i915_gem_gtt_prepare_object(obj);
2284 if (ret)
2285 goto err_pages;
2286
6dacfd2f 2287 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2288 i915_gem_object_do_bit_17_swizzle(obj);
2289
3e510a8e 2290 if (i915_gem_object_is_tiled(obj) &&
656bfa3a
DV
2291 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2292 i915_gem_object_pin_pages(obj);
2293
e5281ccd
CW
2294 return 0;
2295
2296err_pages:
90797e6d 2297 sg_mark_end(sg);
85d1225e
DG
2298 for_each_sgt_page(page, sgt_iter, st)
2299 put_page(page);
9da3da66
CW
2300 sg_free_table(st);
2301 kfree(st);
0820baf3
CW
2302
2303 /* shmemfs first checks if there is enough memory to allocate the page
2304 * and reports ENOSPC should there be insufficient, along with the usual
2305 * ENOMEM for a genuine allocation failure.
2306 *
2307 * We use ENOSPC in our driver to mean that we have run out of aperture
2308 * space and so want to translate the error from shmemfs back to our
2309 * usual understanding of ENOMEM.
2310 */
e2273302
ID
2311 if (ret == -ENOSPC)
2312 ret = -ENOMEM;
2313
2314 return ret;
673a394b
EA
2315}
2316
37e680a1
CW
2317/* Ensure that the associated pages are gathered from the backing storage
2318 * and pinned into our object. i915_gem_object_get_pages() may be called
2319 * multiple times before they are released by a single call to
2320 * i915_gem_object_put_pages() - once the pages are no longer referenced
2321 * either as a result of memory pressure (reaping pages under the shrinker)
2322 * or as the object is itself released.
2323 */
2324int
2325i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2326{
fac5e23e 2327 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
37e680a1
CW
2328 const struct drm_i915_gem_object_ops *ops = obj->ops;
2329 int ret;
2330
2f745ad3 2331 if (obj->pages)
37e680a1
CW
2332 return 0;
2333
43e28f09 2334 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2335 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2336 return -EFAULT;
43e28f09
CW
2337 }
2338
a5570178
CW
2339 BUG_ON(obj->pages_pin_count);
2340
37e680a1
CW
2341 ret = ops->get_pages(obj);
2342 if (ret)
2343 return ret;
2344
35c20a60 2345 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2346
2347 obj->get_page.sg = obj->pages->sgl;
2348 obj->get_page.last = 0;
2349
37e680a1 2350 return 0;
673a394b
EA
2351}
2352
dd6034c6 2353/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2354static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2355 enum i915_map_type type)
dd6034c6
DG
2356{
2357 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2358 struct sg_table *sgt = obj->pages;
85d1225e
DG
2359 struct sgt_iter sgt_iter;
2360 struct page *page;
b338fa47
DG
2361 struct page *stack_pages[32];
2362 struct page **pages = stack_pages;
dd6034c6 2363 unsigned long i = 0;
d31d7cb1 2364 pgprot_t pgprot;
dd6034c6
DG
2365 void *addr;
2366
2367 /* A single page can always be kmapped */
d31d7cb1 2368 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2369 return kmap(sg_page(sgt->sgl));
2370
b338fa47
DG
2371 if (n_pages > ARRAY_SIZE(stack_pages)) {
2372 /* Too big for stack -- allocate temporary array instead */
2373 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2374 if (!pages)
2375 return NULL;
2376 }
dd6034c6 2377
85d1225e
DG
2378 for_each_sgt_page(page, sgt_iter, sgt)
2379 pages[i++] = page;
dd6034c6
DG
2380
2381 /* Check that we have the expected number of pages */
2382 GEM_BUG_ON(i != n_pages);
2383
d31d7cb1
CW
2384 switch (type) {
2385 case I915_MAP_WB:
2386 pgprot = PAGE_KERNEL;
2387 break;
2388 case I915_MAP_WC:
2389 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2390 break;
2391 }
2392 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2393
b338fa47
DG
2394 if (pages != stack_pages)
2395 drm_free_large(pages);
dd6034c6
DG
2396
2397 return addr;
2398}
2399
2400/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2401void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2402 enum i915_map_type type)
0a798eb9 2403{
d31d7cb1
CW
2404 enum i915_map_type has_type;
2405 bool pinned;
2406 void *ptr;
0a798eb9
CW
2407 int ret;
2408
2409 lockdep_assert_held(&obj->base.dev->struct_mutex);
d31d7cb1 2410 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9
CW
2411
2412 ret = i915_gem_object_get_pages(obj);
2413 if (ret)
2414 return ERR_PTR(ret);
2415
2416 i915_gem_object_pin_pages(obj);
d31d7cb1 2417 pinned = obj->pages_pin_count > 1;
0a798eb9 2418
d31d7cb1
CW
2419 ptr = ptr_unpack_bits(obj->mapping, has_type);
2420 if (ptr && has_type != type) {
2421 if (pinned) {
2422 ret = -EBUSY;
2423 goto err;
0a798eb9 2424 }
d31d7cb1
CW
2425
2426 if (is_vmalloc_addr(ptr))
2427 vunmap(ptr);
2428 else
2429 kunmap(kmap_to_page(ptr));
2430
2431 ptr = obj->mapping = NULL;
0a798eb9
CW
2432 }
2433
d31d7cb1
CW
2434 if (!ptr) {
2435 ptr = i915_gem_object_map(obj, type);
2436 if (!ptr) {
2437 ret = -ENOMEM;
2438 goto err;
2439 }
2440
2441 obj->mapping = ptr_pack_bits(ptr, type);
2442 }
2443
2444 return ptr;
2445
2446err:
2447 i915_gem_object_unpin_pages(obj);
2448 return ERR_PTR(ret);
0a798eb9
CW
2449}
2450
b4716185 2451static void
fa545cbf
CW
2452i915_gem_object_retire__write(struct i915_gem_active *active,
2453 struct drm_i915_gem_request *request)
e2d05a8b 2454{
fa545cbf
CW
2455 struct drm_i915_gem_object *obj =
2456 container_of(active, struct drm_i915_gem_object, last_write);
b4716185 2457
de152b62 2458 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2459}
2460
caea7476 2461static void
fa545cbf
CW
2462i915_gem_object_retire__read(struct i915_gem_active *active,
2463 struct drm_i915_gem_request *request)
ce44b0ea 2464{
fa545cbf
CW
2465 int idx = request->engine->id;
2466 struct drm_i915_gem_object *obj =
2467 container_of(active, struct drm_i915_gem_object, last_read[idx]);
ce44b0ea 2468
573adb39 2469 GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
b4716185 2470
573adb39
CW
2471 i915_gem_object_clear_active(obj, idx);
2472 if (i915_gem_object_is_active(obj))
b4716185 2473 return;
caea7476 2474
6c246959
CW
2475 /* Bump our place on the bound list to keep it roughly in LRU order
2476 * so that we don't steal from recently used but inactive objects
2477 * (unless we are forced to ofc!)
2478 */
b0decaf7
CW
2479 if (obj->bind_count)
2480 list_move_tail(&obj->global_list,
2481 &request->i915->mm.bound_list);
caea7476 2482
f8c417cd 2483 i915_gem_object_put(obj);
c8725f3d
CW
2484}
2485
7b4d3a16 2486static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2487{
44e2c070 2488 unsigned long elapsed;
be62acb4 2489
44e2c070 2490 if (ctx->hang_stats.banned)
be62acb4
MK
2491 return true;
2492
7b4d3a16 2493 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2494 if (ctx->hang_stats.ban_period_seconds &&
2495 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2496 DRM_DEBUG("context hanging too fast, banning!\n");
2497 return true;
be62acb4
MK
2498 }
2499
2500 return false;
2501}
2502
7b4d3a16 2503static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2504 const bool guilty)
aa60c664 2505{
7b4d3a16 2506 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2507
2508 if (guilty) {
7b4d3a16 2509 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2510 hs->batch_active++;
2511 hs->guilty_ts = get_seconds();
2512 } else {
2513 hs->batch_pending++;
aa60c664
MK
2514 }
2515}
2516
8d9fc7fd 2517struct drm_i915_gem_request *
0bc40be8 2518i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2519{
4db080f9
CW
2520 struct drm_i915_gem_request *request;
2521
f69a02c9
CW
2522 /* We are called by the error capture and reset at a random
2523 * point in time. In particular, note that neither is crucially
2524 * ordered with an interrupt. After a hang, the GPU is dead and we
2525 * assume that no more writes can happen (we waited long enough for
2526 * all writes that were in transaction to be flushed) - adding an
2527 * extra delay for a recent interrupt is pointless. Hence, we do
2528 * not need an engine->irq_seqno_barrier() before the seqno reads.
2529 */
efdf7c06 2530 list_for_each_entry(request, &engine->request_list, link) {
f69a02c9 2531 if (i915_gem_request_completed(request))
4db080f9 2532 continue;
aa60c664 2533
b6b0fac0 2534 return request;
4db080f9 2535 }
b6b0fac0
MK
2536
2537 return NULL;
2538}
2539
7b4d3a16 2540static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
b6b0fac0
MK
2541{
2542 struct drm_i915_gem_request *request;
2543 bool ring_hung;
2544
0bc40be8 2545 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2546 if (request == NULL)
2547 return;
2548
0bc40be8 2549 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2550
7b4d3a16 2551 i915_set_reset_status(request->ctx, ring_hung);
efdf7c06 2552 list_for_each_entry_continue(request, &engine->request_list, link)
7b4d3a16 2553 i915_set_reset_status(request->ctx, false);
4db080f9 2554}
aa60c664 2555
7b4d3a16 2556static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
4db080f9 2557{
dcff85c8 2558 struct drm_i915_gem_request *request;
7e37f889 2559 struct intel_ring *ring;
608c1a52 2560
c4b0930b
CW
2561 /* Mark all pending requests as complete so that any concurrent
2562 * (lockless) lookup doesn't try and wait upon the request as we
2563 * reset it.
2564 */
87b723a1 2565 intel_engine_init_seqno(engine, engine->last_submitted_seqno);
c4b0930b 2566
dcb4c12a
OM
2567 /*
2568 * Clear the execlists queue up before freeing the requests, as those
2569 * are the ones that keep the context and ringbuffer backing objects
2570 * pinned in place.
2571 */
dcb4c12a 2572
7de1691a 2573 if (i915.enable_execlists) {
27af5eea
TU
2574 /* Ensure irq handler finishes or is cancelled. */
2575 tasklet_kill(&engine->irq_tasklet);
1197b4f2 2576
e39d42fa 2577 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
2578 }
2579
1d62beea
BW
2580 /*
2581 * We must free the requests after all the corresponding objects have
2582 * been moved off active lists. Which is the same order as the normal
2583 * retire_requests function does. This is important if object hold
2584 * implicit references on things like e.g. ppgtt address spaces through
2585 * the request.
2586 */
87b723a1
CW
2587 request = i915_gem_active_raw(&engine->last_request,
2588 &engine->i915->drm.struct_mutex);
dcff85c8 2589 if (request)
05235c53 2590 i915_gem_request_retire_upto(request);
dcff85c8 2591 GEM_BUG_ON(intel_engine_is_active(engine));
608c1a52
CW
2592
2593 /* Having flushed all requests from all queues, we know that all
2594 * ringbuffers must now be empty. However, since we do not reclaim
2595 * all space when retiring the request (to prevent HEADs colliding
2596 * with rapid ringbuffer wraparound) the amount of available space
2597 * upon reset is less than when we start. Do one more pass over
2598 * all the ringbuffers to reset last_retired_head.
2599 */
7e37f889
CW
2600 list_for_each_entry(ring, &engine->buffers, link) {
2601 ring->last_retired_head = ring->tail;
2602 intel_ring_update_space(ring);
608c1a52 2603 }
2ed53a94 2604
b913b33c 2605 engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
673a394b
EA
2606}
2607
069efc1d 2608void i915_gem_reset(struct drm_device *dev)
673a394b 2609{
fac5e23e 2610 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 2611 struct intel_engine_cs *engine;
673a394b 2612
4db080f9
CW
2613 /*
2614 * Before we free the objects from the requests, we need to inspect
2615 * them for finding the guilty party. As the requests only borrow
2616 * their reference to the objects, the inspection must be done first.
2617 */
b4ac5afc 2618 for_each_engine(engine, dev_priv)
7b4d3a16 2619 i915_gem_reset_engine_status(engine);
4db080f9 2620
b4ac5afc 2621 for_each_engine(engine, dev_priv)
7b4d3a16 2622 i915_gem_reset_engine_cleanup(engine);
b913b33c 2623 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2624
acce9ffa
BW
2625 i915_gem_context_reset(dev);
2626
19b2dbde 2627 i915_gem_restore_fences(dev);
673a394b
EA
2628}
2629
75ef9da2 2630static void
673a394b
EA
2631i915_gem_retire_work_handler(struct work_struct *work)
2632{
b29c19b6 2633 struct drm_i915_private *dev_priv =
67d97da3 2634 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2635 struct drm_device *dev = &dev_priv->drm;
673a394b 2636
891b48cf 2637 /* Come back later if the device is busy... */
b29c19b6 2638 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2639 i915_gem_retire_requests(dev_priv);
b29c19b6 2640 mutex_unlock(&dev->struct_mutex);
673a394b 2641 }
67d97da3
CW
2642
2643 /* Keep the retire handler running until we are finally idle.
2644 * We do not need to do this test under locking as in the worst-case
2645 * we queue the retire worker once too often.
2646 */
c9615613
CW
2647 if (READ_ONCE(dev_priv->gt.awake)) {
2648 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2649 queue_delayed_work(dev_priv->wq,
2650 &dev_priv->gt.retire_work,
bcb45086 2651 round_jiffies_up_relative(HZ));
c9615613 2652 }
b29c19b6 2653}
0a58705b 2654
b29c19b6
CW
2655static void
2656i915_gem_idle_work_handler(struct work_struct *work)
2657{
2658 struct drm_i915_private *dev_priv =
67d97da3 2659 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2660 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2661 struct intel_engine_cs *engine;
67d97da3
CW
2662 bool rearm_hangcheck;
2663
2664 if (!READ_ONCE(dev_priv->gt.awake))
2665 return;
2666
2667 if (READ_ONCE(dev_priv->gt.active_engines))
2668 return;
2669
2670 rearm_hangcheck =
2671 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2672
2673 if (!mutex_trylock(&dev->struct_mutex)) {
2674 /* Currently busy, come back later */
2675 mod_delayed_work(dev_priv->wq,
2676 &dev_priv->gt.idle_work,
2677 msecs_to_jiffies(50));
2678 goto out_rearm;
2679 }
2680
2681 if (dev_priv->gt.active_engines)
2682 goto out_unlock;
b29c19b6 2683
b4ac5afc 2684 for_each_engine(engine, dev_priv)
67d97da3 2685 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2686
67d97da3
CW
2687 GEM_BUG_ON(!dev_priv->gt.awake);
2688 dev_priv->gt.awake = false;
2689 rearm_hangcheck = false;
30ecad77 2690
67d97da3
CW
2691 if (INTEL_GEN(dev_priv) >= 6)
2692 gen6_rps_idle(dev_priv);
2693 intel_runtime_pm_put(dev_priv);
2694out_unlock:
2695 mutex_unlock(&dev->struct_mutex);
b29c19b6 2696
67d97da3
CW
2697out_rearm:
2698 if (rearm_hangcheck) {
2699 GEM_BUG_ON(!dev_priv->gt.awake);
2700 i915_queue_hangcheck(dev_priv);
35c94185 2701 }
673a394b
EA
2702}
2703
b1f788c6
CW
2704void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2705{
2706 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2707 struct drm_i915_file_private *fpriv = file->driver_priv;
2708 struct i915_vma *vma, *vn;
2709
2710 mutex_lock(&obj->base.dev->struct_mutex);
2711 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2712 if (vma->vm->file == fpriv)
2713 i915_vma_close(vma);
2714 mutex_unlock(&obj->base.dev->struct_mutex);
2715}
2716
23ba4fd0
BW
2717/**
2718 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2719 * @dev: drm device pointer
2720 * @data: ioctl data blob
2721 * @file: drm file pointer
23ba4fd0
BW
2722 *
2723 * Returns 0 if successful, else an error is returned with the remaining time in
2724 * the timeout parameter.
2725 * -ETIME: object is still busy after timeout
2726 * -ERESTARTSYS: signal interrupted the wait
2727 * -ENONENT: object doesn't exist
2728 * Also possible, but rare:
2729 * -EAGAIN: GPU wedged
2730 * -ENOMEM: damn
2731 * -ENODEV: Internal IRQ fail
2732 * -E?: The add request failed
2733 *
2734 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2735 * non-zero timeout parameter the wait ioctl will wait for the given number of
2736 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2737 * without holding struct_mutex the object may become re-busied before this
2738 * function completes. A similar but shorter * race condition exists in the busy
2739 * ioctl
2740 */
2741int
2742i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2743{
2744 struct drm_i915_gem_wait *args = data;
033d549b 2745 struct intel_rps_client *rps = to_rps_client(file);
23ba4fd0 2746 struct drm_i915_gem_object *obj;
033d549b
CW
2747 unsigned long active;
2748 int idx, ret = 0;
23ba4fd0 2749
11b5d511
DV
2750 if (args->flags != 0)
2751 return -EINVAL;
2752
03ac0642 2753 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 2754 if (!obj)
23ba4fd0 2755 return -ENOENT;
23ba4fd0 2756
033d549b
CW
2757 active = __I915_BO_ACTIVE(obj);
2758 for_each_active(active, idx) {
2759 s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
2760 ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
2761 timeout, rps);
2762 if (ret)
2763 break;
b4716185
CW
2764 }
2765
033d549b 2766 i915_gem_object_put_unlocked(obj);
ff865885 2767 return ret;
23ba4fd0
BW
2768}
2769
b4716185 2770static int
fa545cbf 2771__i915_gem_object_sync(struct drm_i915_gem_request *to,
8e637178 2772 struct drm_i915_gem_request *from)
b4716185 2773{
b4716185
CW
2774 int ret;
2775
8e637178 2776 if (to->engine == from->engine)
b4716185
CW
2777 return 0;
2778
39df9190 2779 if (!i915.semaphores) {
776f3236
CW
2780 ret = i915_wait_request(from,
2781 from->i915->mm.interruptible,
2782 NULL,
2783 NO_WAITBOOST);
b4716185
CW
2784 if (ret)
2785 return ret;
b4716185 2786 } else {
8e637178 2787 int idx = intel_engine_sync_index(from->engine, to->engine);
ddf07be7 2788 if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
b4716185
CW
2789 return 0;
2790
8e637178 2791 trace_i915_gem_ring_sync_to(to, from);
ddf07be7 2792 ret = to->engine->semaphore.sync_to(to, from);
b4716185
CW
2793 if (ret)
2794 return ret;
2795
ddf07be7 2796 from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
b4716185
CW
2797 }
2798
2799 return 0;
2800}
2801
5816d648
BW
2802/**
2803 * i915_gem_object_sync - sync an object to a ring.
2804 *
2805 * @obj: object which may be in use on another ring.
8e637178 2806 * @to: request we are wishing to use
5816d648
BW
2807 *
2808 * This code is meant to abstract object synchronization with the GPU.
8e637178
CW
2809 * Conceptually we serialise writes between engines inside the GPU.
2810 * We only allow one engine to write into a buffer at any time, but
2811 * multiple readers. To ensure each has a coherent view of memory, we must:
b4716185
CW
2812 *
2813 * - If there is an outstanding write request to the object, the new
2814 * request must wait for it to complete (either CPU or in hw, requests
2815 * on the same ring will be naturally ordered).
2816 *
2817 * - If we are a write request (pending_write_domain is set), the new
2818 * request must wait for outstanding read requests to complete.
5816d648
BW
2819 *
2820 * Returns 0 if successful, else propagates up the lower layer error.
2821 */
2911a35b
BW
2822int
2823i915_gem_object_sync(struct drm_i915_gem_object *obj,
8e637178 2824 struct drm_i915_gem_request *to)
2911a35b 2825{
8cac6f6c
CW
2826 struct i915_gem_active *active;
2827 unsigned long active_mask;
2828 int idx;
41c52415 2829
8cac6f6c 2830 lockdep_assert_held(&obj->base.dev->struct_mutex);
2911a35b 2831
573adb39 2832 active_mask = i915_gem_object_get_active(obj);
8cac6f6c
CW
2833 if (!active_mask)
2834 return 0;
27c01aae 2835
8cac6f6c
CW
2836 if (obj->base.pending_write_domain) {
2837 active = obj->last_read;
b4716185 2838 } else {
8cac6f6c
CW
2839 active_mask = 1;
2840 active = &obj->last_write;
b4716185 2841 }
8cac6f6c
CW
2842
2843 for_each_active(active_mask, idx) {
2844 struct drm_i915_gem_request *request;
2845 int ret;
2846
2847 request = i915_gem_active_peek(&active[idx],
2848 &obj->base.dev->struct_mutex);
2849 if (!request)
2850 continue;
2851
fa545cbf 2852 ret = __i915_gem_object_sync(to, request);
b4716185
CW
2853 if (ret)
2854 return ret;
2855 }
2911a35b 2856
b4716185 2857 return 0;
2911a35b
BW
2858}
2859
b5ffc9bc
CW
2860static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2861{
2862 u32 old_write_domain, old_read_domains;
2863
b5ffc9bc
CW
2864 /* Force a pagefault for domain tracking on next user access */
2865 i915_gem_release_mmap(obj);
2866
b97c3d9c
KP
2867 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2868 return;
2869
b5ffc9bc
CW
2870 old_read_domains = obj->base.read_domains;
2871 old_write_domain = obj->base.write_domain;
2872
2873 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2874 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2875
2876 trace_i915_gem_object_change_domain(obj,
2877 old_read_domains,
2878 old_write_domain);
2879}
2880
8ef8561f
CW
2881static void __i915_vma_iounmap(struct i915_vma *vma)
2882{
20dfbde4 2883 GEM_BUG_ON(i915_vma_is_pinned(vma));
8ef8561f
CW
2884
2885 if (vma->iomap == NULL)
2886 return;
2887
2888 io_mapping_unmap(vma->iomap);
2889 vma->iomap = NULL;
2890}
2891
df0e9a28 2892int i915_vma_unbind(struct i915_vma *vma)
673a394b 2893{
07fe0b12 2894 struct drm_i915_gem_object *obj = vma->obj;
b0decaf7 2895 unsigned long active;
43e28f09 2896 int ret;
673a394b 2897
b0decaf7
CW
2898 /* First wait upon any activity as retiring the request may
2899 * have side-effects such as unpinning or even unbinding this vma.
2900 */
2901 active = i915_vma_get_active(vma);
df0e9a28 2902 if (active) {
b0decaf7
CW
2903 int idx;
2904
b1f788c6
CW
2905 /* When a closed VMA is retired, it is unbound - eek.
2906 * In order to prevent it from being recursively closed,
2907 * take a pin on the vma so that the second unbind is
2908 * aborted.
2909 */
20dfbde4 2910 __i915_vma_pin(vma);
b1f788c6 2911
b0decaf7
CW
2912 for_each_active(active, idx) {
2913 ret = i915_gem_active_retire(&vma->last_read[idx],
2914 &vma->vm->dev->struct_mutex);
2915 if (ret)
b1f788c6 2916 break;
b0decaf7
CW
2917 }
2918
20dfbde4 2919 __i915_vma_unpin(vma);
b1f788c6
CW
2920 if (ret)
2921 return ret;
2922
b0decaf7
CW
2923 GEM_BUG_ON(i915_vma_is_active(vma));
2924 }
2925
20dfbde4 2926 if (i915_vma_is_pinned(vma))
b0decaf7
CW
2927 return -EBUSY;
2928
b1f788c6
CW
2929 if (!drm_mm_node_allocated(&vma->node))
2930 goto destroy;
433544bd 2931
15717de2
CW
2932 GEM_BUG_ON(obj->bind_count == 0);
2933 GEM_BUG_ON(!obj->pages);
c4670ad0 2934
05a20d09 2935 if (i915_vma_is_map_and_fenceable(vma)) {
8b1bc9b4 2936 i915_gem_object_finish_gtt(obj);
5323fd04 2937
8b1bc9b4 2938 /* release the fence reg _after_ flushing */
49ef5294 2939 ret = i915_vma_put_fence(vma);
8b1bc9b4
DV
2940 if (ret)
2941 return ret;
8ef8561f
CW
2942
2943 __i915_vma_iounmap(vma);
05a20d09 2944 vma->flags &= ~I915_VMA_CAN_FENCE;
8b1bc9b4 2945 }
96b47b65 2946
50e046b6
CW
2947 if (likely(!vma->vm->closed)) {
2948 trace_i915_vma_unbind(vma);
2949 vma->vm->unbind_vma(vma);
2950 }
3272db53 2951 vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
6f65e29a 2952
50e046b6
CW
2953 drm_mm_remove_node(&vma->node);
2954 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2955
05a20d09
CW
2956 if (vma->pages != obj->pages) {
2957 GEM_BUG_ON(!vma->pages);
2958 sg_free_table(vma->pages);
2959 kfree(vma->pages);
fe14d5f4 2960 }
247177dd 2961 vma->pages = NULL;
673a394b 2962
2f633156 2963 /* Since the unbound list is global, only move to that list if
b93dab6e 2964 * no more VMAs exist. */
15717de2
CW
2965 if (--obj->bind_count == 0)
2966 list_move_tail(&obj->global_list,
2967 &to_i915(obj->base.dev)->mm.unbound_list);
673a394b 2968
70903c3b
CW
2969 /* And finally now the object is completely decoupled from this vma,
2970 * we can drop its hold on the backing storage and allow it to be
2971 * reaped by the shrinker.
2972 */
2973 i915_gem_object_unpin_pages(obj);
2974
b1f788c6 2975destroy:
3272db53 2976 if (unlikely(i915_vma_is_closed(vma)))
b1f788c6
CW
2977 i915_vma_destroy(vma);
2978
88241785 2979 return 0;
54cf91dc
CW
2980}
2981
dcff85c8
CW
2982int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
2983 bool interruptible)
4df2faf4 2984{
e2f80391 2985 struct intel_engine_cs *engine;
b4ac5afc 2986 int ret;
4df2faf4 2987
b4ac5afc 2988 for_each_engine(engine, dev_priv) {
62e63007
CW
2989 if (engine->last_context == NULL)
2990 continue;
2991
dcff85c8 2992 ret = intel_engine_idle(engine, interruptible);
1ec14ad3
CW
2993 if (ret)
2994 return ret;
2995 }
4df2faf4 2996
8a1a49f9 2997 return 0;
4df2faf4
DV
2998}
2999
4144f9b5 3000static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3001 unsigned long cache_level)
3002{
4144f9b5 3003 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3004 struct drm_mm_node *other;
3005
4144f9b5
CW
3006 /*
3007 * On some machines we have to be careful when putting differing types
3008 * of snoopable memory together to avoid the prefetcher crossing memory
3009 * domains and dying. During vm initialisation, we decide whether or not
3010 * these constraints apply and set the drm_mm.color_adjust
3011 * appropriately.
42d6ab48 3012 */
4144f9b5 3013 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3014 return true;
3015
c6cfb325 3016 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3017 return true;
3018
3019 if (list_empty(&gtt_space->node_list))
3020 return true;
3021
3022 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3023 if (other->allocated && !other->hole_follows && other->color != cache_level)
3024 return false;
3025
3026 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3027 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3028 return false;
3029
3030 return true;
3031}
3032
673a394b 3033/**
59bfa124
CW
3034 * i915_vma_insert - finds a slot for the vma in its address space
3035 * @vma: the vma
91b2db6f 3036 * @size: requested size in bytes (can be larger than the VMA)
59bfa124 3037 * @alignment: required alignment
14bb2c11 3038 * @flags: mask of PIN_* flags to use
59bfa124
CW
3039 *
3040 * First we try to allocate some free space that meets the requirements for
3041 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
3042 * preferrably the oldest idle entry to make room for the new VMA.
3043 *
3044 * Returns:
3045 * 0 on success, negative error code otherwise.
673a394b 3046 */
59bfa124
CW
3047static int
3048i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
673a394b 3049{
59bfa124
CW
3050 struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
3051 struct drm_i915_gem_object *obj = vma->obj;
de180033
CW
3052 u64 start, end;
3053 u64 min_alignment;
07f73f69 3054 int ret;
673a394b 3055
3272db53 3056 GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
59bfa124 3057 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
de180033
CW
3058
3059 size = max(size, vma->size);
3060 if (flags & PIN_MAPPABLE)
3e510a8e
CW
3061 size = i915_gem_get_ggtt_size(dev_priv, size,
3062 i915_gem_object_get_tiling(obj));
de180033
CW
3063
3064 min_alignment =
3e510a8e
CW
3065 i915_gem_get_ggtt_alignment(dev_priv, size,
3066 i915_gem_object_get_tiling(obj),
de180033
CW
3067 flags & PIN_MAPPABLE);
3068 if (alignment == 0)
3069 alignment = min_alignment;
3070 if (alignment & (min_alignment - 1)) {
3071 DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
3072 alignment, min_alignment);
59bfa124 3073 return -EINVAL;
91e6711e 3074 }
a00b10c3 3075
101b506a 3076 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
de180033
CW
3077
3078 end = vma->vm->total;
101b506a 3079 if (flags & PIN_MAPPABLE)
91b2db6f 3080 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
101b506a 3081 if (flags & PIN_ZONE_4G)
48ea1e32 3082 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3083
91e6711e
JL
3084 /* If binding the object/GGTT view requires more space than the entire
3085 * aperture has, reject it early before evicting everything in a vain
3086 * attempt to find space.
654fc607 3087 */
91e6711e 3088 if (size > end) {
de180033 3089 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
91b2db6f 3090 size, obj->base.size,
1ec9e26d 3091 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3092 end);
59bfa124 3093 return -E2BIG;
654fc607
CW
3094 }
3095
37e680a1 3096 ret = i915_gem_object_get_pages(obj);
6c085a72 3097 if (ret)
59bfa124 3098 return ret;
6c085a72 3099
fbdda6fb
CW
3100 i915_gem_object_pin_pages(obj);
3101
506a8e87 3102 if (flags & PIN_OFFSET_FIXED) {
59bfa124 3103 u64 offset = flags & PIN_OFFSET_MASK;
de180033 3104 if (offset & (alignment - 1) || offset > end - size) {
506a8e87 3105 ret = -EINVAL;
de180033 3106 goto err_unpin;
506a8e87 3107 }
de180033 3108
506a8e87
CW
3109 vma->node.start = offset;
3110 vma->node.size = size;
3111 vma->node.color = obj->cache_level;
de180033 3112 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
506a8e87
CW
3113 if (ret) {
3114 ret = i915_gem_evict_for_vma(vma);
3115 if (ret == 0)
de180033
CW
3116 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3117 if (ret)
3118 goto err_unpin;
506a8e87 3119 }
101b506a 3120 } else {
de180033
CW
3121 u32 search_flag, alloc_flag;
3122
506a8e87
CW
3123 if (flags & PIN_HIGH) {
3124 search_flag = DRM_MM_SEARCH_BELOW;
3125 alloc_flag = DRM_MM_CREATE_TOP;
3126 } else {
3127 search_flag = DRM_MM_SEARCH_DEFAULT;
3128 alloc_flag = DRM_MM_CREATE_DEFAULT;
3129 }
101b506a 3130
954c4691
CW
3131 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3132 * so we know that we always have a minimum alignment of 4096.
3133 * The drm_mm range manager is optimised to return results
3134 * with zero alignment, so where possible use the optimal
3135 * path.
3136 */
3137 if (alignment <= 4096)
3138 alignment = 0;
3139
0a9ae0d7 3140search_free:
de180033
CW
3141 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3142 &vma->node,
506a8e87
CW
3143 size, alignment,
3144 obj->cache_level,
3145 start, end,
3146 search_flag,
3147 alloc_flag);
3148 if (ret) {
de180033 3149 ret = i915_gem_evict_something(vma->vm, size, alignment,
506a8e87
CW
3150 obj->cache_level,
3151 start, end,
3152 flags);
3153 if (ret == 0)
3154 goto search_free;
9731129c 3155
de180033 3156 goto err_unpin;
506a8e87 3157 }
673a394b 3158 }
37508589 3159 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
673a394b 3160
35c20a60 3161 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
de180033 3162 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
15717de2 3163 obj->bind_count++;
bf1a1092 3164
59bfa124 3165 return 0;
2f633156 3166
bc6bc15b 3167err_unpin:
2f633156 3168 i915_gem_object_unpin_pages(obj);
59bfa124 3169 return ret;
673a394b
EA
3170}
3171
000433b6 3172bool
2c22569b
CW
3173i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3174 bool force)
673a394b 3175{
673a394b
EA
3176 /* If we don't have a page list set up, then we're not pinned
3177 * to GPU, and we can ignore the cache flush because it'll happen
3178 * again at bind time.
3179 */
05394f39 3180 if (obj->pages == NULL)
000433b6 3181 return false;
673a394b 3182
769ce464
ID
3183 /*
3184 * Stolen memory is always coherent with the GPU as it is explicitly
3185 * marked as wc by the system, or the system is cache-coherent.
3186 */
6a2c4232 3187 if (obj->stolen || obj->phys_handle)
000433b6 3188 return false;
769ce464 3189
9c23f7fc
CW
3190 /* If the GPU is snooping the contents of the CPU cache,
3191 * we do not need to manually clear the CPU cache lines. However,
3192 * the caches are only snooped when the render cache is
3193 * flushed/invalidated. As we always have to emit invalidations
3194 * and flushes when moving into and out of the RENDER domain, correct
3195 * snooping behaviour occurs naturally as the result of our domain
3196 * tracking.
3197 */
0f71979a
CW
3198 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3199 obj->cache_dirty = true;
000433b6 3200 return false;
0f71979a 3201 }
9c23f7fc 3202
1c5d22f7 3203 trace_i915_gem_object_clflush(obj);
9da3da66 3204 drm_clflush_sg(obj->pages);
0f71979a 3205 obj->cache_dirty = false;
000433b6
CW
3206
3207 return true;
e47c68e9
EA
3208}
3209
3210/** Flushes the GTT write domain for the object if it's dirty. */
3211static void
05394f39 3212i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3213{
3b5724d7 3214 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1c5d22f7 3215
05394f39 3216 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3217 return;
3218
63256ec5 3219 /* No actual flushing is required for the GTT write domain. Writes
3b5724d7 3220 * to it "immediately" go to main memory as far as we know, so there's
e47c68e9 3221 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3222 *
3223 * However, we do have to enforce the order so that all writes through
3224 * the GTT land before any writes to the device, such as updates to
3225 * the GATT itself.
3b5724d7
CW
3226 *
3227 * We also have to wait a bit for the writes to land from the GTT.
3228 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3229 * timing. This issue has only been observed when switching quickly
3230 * between GTT writes and CPU reads from inside the kernel on recent hw,
3231 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3232 * system agents we cannot reproduce this behaviour).
e47c68e9 3233 */
63256ec5 3234 wmb();
3b5724d7
CW
3235 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3236 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base));
63256ec5 3237
d243ad82 3238 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
f99d7069 3239
b0dc465f 3240 obj->base.write_domain = 0;
1c5d22f7 3241 trace_i915_gem_object_change_domain(obj,
05394f39 3242 obj->base.read_domains,
b0dc465f 3243 I915_GEM_DOMAIN_GTT);
e47c68e9
EA
3244}
3245
3246/** Flushes the CPU write domain for the object if it's dirty. */
3247static void
e62b59e4 3248i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3249{
05394f39 3250 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3251 return;
3252
e62b59e4 3253 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3254 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3255
de152b62 3256 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3257
b0dc465f 3258 obj->base.write_domain = 0;
1c5d22f7 3259 trace_i915_gem_object_change_domain(obj,
05394f39 3260 obj->base.read_domains,
b0dc465f 3261 I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3262}
3263
2ef7eeaa
EA
3264/**
3265 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3266 * @obj: object to act on
3267 * @write: ask for write access or read only
2ef7eeaa
EA
3268 *
3269 * This function returns when the move is complete, including waiting on
3270 * flushes to occur.
3271 */
79e53945 3272int
2021746e 3273i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3274{
1c5d22f7 3275 uint32_t old_write_domain, old_read_domains;
43566ded 3276 struct i915_vma *vma;
e47c68e9 3277 int ret;
2ef7eeaa 3278
0201f1ec 3279 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3280 if (ret)
3281 return ret;
3282
c13d87ea
CW
3283 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3284 return 0;
3285
43566ded
CW
3286 /* Flush and acquire obj->pages so that we are coherent through
3287 * direct access in memory with previous cached writes through
3288 * shmemfs and that our cache domain tracking remains valid.
3289 * For example, if the obj->filp was moved to swap without us
3290 * being notified and releasing the pages, we would mistakenly
3291 * continue to assume that the obj remained out of the CPU cached
3292 * domain.
3293 */
3294 ret = i915_gem_object_get_pages(obj);
3295 if (ret)
3296 return ret;
3297
e62b59e4 3298 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3299
d0a57789
CW
3300 /* Serialise direct access to this object with the barriers for
3301 * coherent writes from the GPU, by effectively invalidating the
3302 * GTT domain upon first access.
3303 */
3304 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3305 mb();
3306
05394f39
CW
3307 old_write_domain = obj->base.write_domain;
3308 old_read_domains = obj->base.read_domains;
1c5d22f7 3309
e47c68e9
EA
3310 /* It should now be out of any other write domains, and we can update
3311 * the domain values for our changes.
3312 */
05394f39
CW
3313 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3314 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3315 if (write) {
05394f39
CW
3316 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3317 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3318 obj->dirty = 1;
2ef7eeaa
EA
3319 }
3320
1c5d22f7
CW
3321 trace_i915_gem_object_change_domain(obj,
3322 old_read_domains,
3323 old_write_domain);
3324
8325a09d 3325 /* And bump the LRU for this access */
058d88c4 3326 vma = i915_gem_object_to_ggtt(obj, NULL);
b0decaf7
CW
3327 if (vma &&
3328 drm_mm_node_allocated(&vma->node) &&
3329 !i915_vma_is_active(vma))
3330 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
8325a09d 3331
e47c68e9
EA
3332 return 0;
3333}
3334
ef55f92a
CW
3335/**
3336 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3337 * @obj: object to act on
3338 * @cache_level: new cache level to set for the object
ef55f92a
CW
3339 *
3340 * After this function returns, the object will be in the new cache-level
3341 * across all GTT and the contents of the backing storage will be coherent,
3342 * with respect to the new cache-level. In order to keep the backing storage
3343 * coherent for all users, we only allow a single cache level to be set
3344 * globally on the object and prevent it from being changed whilst the
3345 * hardware is reading from the object. That is if the object is currently
3346 * on the scanout it will be set to uncached (or equivalent display
3347 * cache coherency) and all non-MOCS GPU access will also be uncached so
3348 * that all direct access to the scanout remains coherent.
3349 */
e4ffd173
CW
3350int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3351 enum i915_cache_level cache_level)
3352{
aa653a68 3353 struct i915_vma *vma;
ed75a55b 3354 int ret = 0;
e4ffd173
CW
3355
3356 if (obj->cache_level == cache_level)
ed75a55b 3357 goto out;
e4ffd173 3358
ef55f92a
CW
3359 /* Inspect the list of currently bound VMA and unbind any that would
3360 * be invalid given the new cache-level. This is principally to
3361 * catch the issue of the CS prefetch crossing page boundaries and
3362 * reading an invalid PTE on older architectures.
3363 */
aa653a68
CW
3364restart:
3365 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3366 if (!drm_mm_node_allocated(&vma->node))
3367 continue;
3368
20dfbde4 3369 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3370 DRM_DEBUG("can not change the cache level of pinned objects\n");
3371 return -EBUSY;
3372 }
3373
aa653a68
CW
3374 if (i915_gem_valid_gtt_space(vma, cache_level))
3375 continue;
3376
3377 ret = i915_vma_unbind(vma);
3378 if (ret)
3379 return ret;
3380
3381 /* As unbinding may affect other elements in the
3382 * obj->vma_list (due to side-effects from retiring
3383 * an active vma), play safe and restart the iterator.
3384 */
3385 goto restart;
42d6ab48
CW
3386 }
3387
ef55f92a
CW
3388 /* We can reuse the existing drm_mm nodes but need to change the
3389 * cache-level on the PTE. We could simply unbind them all and
3390 * rebind with the correct cache-level on next use. However since
3391 * we already have a valid slot, dma mapping, pages etc, we may as
3392 * rewrite the PTE in the belief that doing so tramples upon less
3393 * state and so involves less work.
3394 */
15717de2 3395 if (obj->bind_count) {
ef55f92a
CW
3396 /* Before we change the PTE, the GPU must not be accessing it.
3397 * If we wait upon the object, we know that all the bound
3398 * VMA are no longer active.
3399 */
2e2f351d 3400 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3401 if (ret)
3402 return ret;
3403
aa653a68 3404 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3405 /* Access to snoopable pages through the GTT is
3406 * incoherent and on some machines causes a hard
3407 * lockup. Relinquish the CPU mmaping to force
3408 * userspace to refault in the pages and we can
3409 * then double check if the GTT mapping is still
3410 * valid for that pointer access.
3411 */
3412 i915_gem_release_mmap(obj);
3413
3414 /* As we no longer need a fence for GTT access,
3415 * we can relinquish it now (and so prevent having
3416 * to steal a fence from someone else on the next
3417 * fence request). Note GPU activity would have
3418 * dropped the fence as all snoopable access is
3419 * supposed to be linear.
3420 */
49ef5294
CW
3421 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3422 ret = i915_vma_put_fence(vma);
3423 if (ret)
3424 return ret;
3425 }
ef55f92a
CW
3426 } else {
3427 /* We either have incoherent backing store and
3428 * so no GTT access or the architecture is fully
3429 * coherent. In such cases, existing GTT mmaps
3430 * ignore the cache bit in the PTE and we can
3431 * rewrite it without confusing the GPU or having
3432 * to force userspace to fault back in its mmaps.
3433 */
e4ffd173
CW
3434 }
3435
1c7f4bca 3436 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3437 if (!drm_mm_node_allocated(&vma->node))
3438 continue;
3439
3440 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3441 if (ret)
3442 return ret;
3443 }
e4ffd173
CW
3444 }
3445
1c7f4bca 3446 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3447 vma->node.color = cache_level;
3448 obj->cache_level = cache_level;
3449
ed75a55b 3450out:
ef55f92a
CW
3451 /* Flush the dirty CPU caches to the backing storage so that the
3452 * object is now coherent at its new cache level (with respect
3453 * to the access domain).
3454 */
b50a5371 3455 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 3456 if (i915_gem_clflush_object(obj, true))
c033666a 3457 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3458 }
3459
e4ffd173
CW
3460 return 0;
3461}
3462
199adf40
BW
3463int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3464 struct drm_file *file)
e6994aee 3465{
199adf40 3466 struct drm_i915_gem_caching *args = data;
e6994aee 3467 struct drm_i915_gem_object *obj;
e6994aee 3468
03ac0642
CW
3469 obj = i915_gem_object_lookup(file, args->handle);
3470 if (!obj)
432be69d 3471 return -ENOENT;
e6994aee 3472
651d794f
CW
3473 switch (obj->cache_level) {
3474 case I915_CACHE_LLC:
3475 case I915_CACHE_L3_LLC:
3476 args->caching = I915_CACHING_CACHED;
3477 break;
3478
4257d3ba
CW
3479 case I915_CACHE_WT:
3480 args->caching = I915_CACHING_DISPLAY;
3481 break;
3482
651d794f
CW
3483 default:
3484 args->caching = I915_CACHING_NONE;
3485 break;
3486 }
e6994aee 3487
34911fd3 3488 i915_gem_object_put_unlocked(obj);
432be69d 3489 return 0;
e6994aee
CW
3490}
3491
199adf40
BW
3492int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3493 struct drm_file *file)
e6994aee 3494{
fac5e23e 3495 struct drm_i915_private *dev_priv = to_i915(dev);
199adf40 3496 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3497 struct drm_i915_gem_object *obj;
3498 enum i915_cache_level level;
3499 int ret;
3500
199adf40
BW
3501 switch (args->caching) {
3502 case I915_CACHING_NONE:
e6994aee
CW
3503 level = I915_CACHE_NONE;
3504 break;
199adf40 3505 case I915_CACHING_CACHED:
e5756c10
ID
3506 /*
3507 * Due to a HW issue on BXT A stepping, GPU stores via a
3508 * snooped mapping may leave stale data in a corresponding CPU
3509 * cacheline, whereas normally such cachelines would get
3510 * invalidated.
3511 */
ca377809 3512 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3513 return -ENODEV;
3514
e6994aee
CW
3515 level = I915_CACHE_LLC;
3516 break;
4257d3ba
CW
3517 case I915_CACHING_DISPLAY:
3518 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3519 break;
e6994aee
CW
3520 default:
3521 return -EINVAL;
3522 }
3523
fd0fe6ac
ID
3524 intel_runtime_pm_get(dev_priv);
3525
3bc2913e
BW
3526 ret = i915_mutex_lock_interruptible(dev);
3527 if (ret)
fd0fe6ac 3528 goto rpm_put;
3bc2913e 3529
03ac0642
CW
3530 obj = i915_gem_object_lookup(file, args->handle);
3531 if (!obj) {
e6994aee
CW
3532 ret = -ENOENT;
3533 goto unlock;
3534 }
3535
3536 ret = i915_gem_object_set_cache_level(obj, level);
3537
f8c417cd 3538 i915_gem_object_put(obj);
e6994aee
CW
3539unlock:
3540 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3541rpm_put:
3542 intel_runtime_pm_put(dev_priv);
3543
e6994aee
CW
3544 return ret;
3545}
3546
b9241ea3 3547/*
2da3b9b9
CW
3548 * Prepare buffer for display plane (scanout, cursors, etc).
3549 * Can be called from an uninterruptible phase (modesetting) and allows
3550 * any flushes to be pipelined (for pageflips).
b9241ea3 3551 */
058d88c4 3552struct i915_vma *
2da3b9b9
CW
3553i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3554 u32 alignment,
e6617330 3555 const struct i915_ggtt_view *view)
b9241ea3 3556{
058d88c4 3557 struct i915_vma *vma;
2da3b9b9 3558 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3559 int ret;
3560
cc98b413
CW
3561 /* Mark the pin_display early so that we account for the
3562 * display coherency whilst setting up the cache domains.
3563 */
8a0c39b1 3564 obj->pin_display++;
cc98b413 3565
a7ef0640
EA
3566 /* The display engine is not coherent with the LLC cache on gen6. As
3567 * a result, we make sure that the pinning that is about to occur is
3568 * done with uncached PTEs. This is lowest common denominator for all
3569 * chipsets.
3570 *
3571 * However for gen6+, we could do better by using the GFDT bit instead
3572 * of uncaching, which would allow us to flush all the LLC-cached data
3573 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3574 */
651d794f
CW
3575 ret = i915_gem_object_set_cache_level(obj,
3576 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3577 if (ret) {
3578 vma = ERR_PTR(ret);
cc98b413 3579 goto err_unpin_display;
058d88c4 3580 }
a7ef0640 3581
2da3b9b9
CW
3582 /* As the user may map the buffer once pinned in the display plane
3583 * (e.g. libkms for the bootup splash), we have to ensure that we
3584 * always use map_and_fenceable for all scanout buffers.
3585 */
058d88c4 3586 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
50470bb0
TU
3587 view->type == I915_GGTT_VIEW_NORMAL ?
3588 PIN_MAPPABLE : 0);
058d88c4 3589 if (IS_ERR(vma))
cc98b413 3590 goto err_unpin_display;
2da3b9b9 3591
058d88c4
CW
3592 WARN_ON(obj->pin_display > i915_vma_pin_count(vma));
3593
e62b59e4 3594 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3595
2da3b9b9 3596 old_write_domain = obj->base.write_domain;
05394f39 3597 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3598
3599 /* It should now be out of any other write domains, and we can update
3600 * the domain values for our changes.
3601 */
e5f1d962 3602 obj->base.write_domain = 0;
05394f39 3603 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3604
3605 trace_i915_gem_object_change_domain(obj,
3606 old_read_domains,
2da3b9b9 3607 old_write_domain);
b9241ea3 3608
058d88c4 3609 return vma;
cc98b413
CW
3610
3611err_unpin_display:
8a0c39b1 3612 obj->pin_display--;
058d88c4 3613 return vma;
cc98b413
CW
3614}
3615
3616void
058d88c4 3617i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3618{
058d88c4 3619 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3620 return;
3621
058d88c4 3622 vma->obj->pin_display--;
e6617330 3623
058d88c4
CW
3624 i915_vma_unpin(vma);
3625 WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
b9241ea3
ZW
3626}
3627
e47c68e9
EA
3628/**
3629 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3630 * @obj: object to act on
3631 * @write: requesting write or read-only access
e47c68e9
EA
3632 *
3633 * This function returns when the move is complete, including waiting on
3634 * flushes to occur.
3635 */
dabdfe02 3636int
919926ae 3637i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3638{
1c5d22f7 3639 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3640 int ret;
3641
0201f1ec 3642 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3643 if (ret)
3644 return ret;
3645
c13d87ea
CW
3646 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3647 return 0;
3648
e47c68e9 3649 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3650
05394f39
CW
3651 old_write_domain = obj->base.write_domain;
3652 old_read_domains = obj->base.read_domains;
1c5d22f7 3653
e47c68e9 3654 /* Flush the CPU cache if it's still invalid. */
05394f39 3655 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3656 i915_gem_clflush_object(obj, false);
2ef7eeaa 3657
05394f39 3658 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3659 }
3660
3661 /* It should now be out of any other write domains, and we can update
3662 * the domain values for our changes.
3663 */
05394f39 3664 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3665
3666 /* If we're writing through the CPU, then the GPU read domains will
3667 * need to be invalidated at next use.
3668 */
3669 if (write) {
05394f39
CW
3670 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3671 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3672 }
2ef7eeaa 3673
1c5d22f7
CW
3674 trace_i915_gem_object_change_domain(obj,
3675 old_read_domains,
3676 old_write_domain);
3677
2ef7eeaa
EA
3678 return 0;
3679}
3680
673a394b
EA
3681/* Throttle our rendering by waiting until the ring has completed our requests
3682 * emitted over 20 msec ago.
3683 *
b962442e
EA
3684 * Note that if we were to use the current jiffies each time around the loop,
3685 * we wouldn't escape the function with any frames outstanding if the time to
3686 * render a frame was over 20ms.
3687 *
673a394b
EA
3688 * This should get us reasonable parallelism between CPU and GPU but also
3689 * relatively low latency when blocking on a particular request to finish.
3690 */
40a5f0de 3691static int
f787a5f5 3692i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3693{
fac5e23e 3694 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3695 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3696 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3697 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 3698 int ret;
93533c29 3699
308887aa
DV
3700 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3701 if (ret)
3702 return ret;
3703
f4457ae7
CW
3704 /* ABI: return -EIO if already wedged */
3705 if (i915_terminally_wedged(&dev_priv->gpu_error))
3706 return -EIO;
e110e8d6 3707
1c25595f 3708 spin_lock(&file_priv->mm.lock);
f787a5f5 3709 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3710 if (time_after_eq(request->emitted_jiffies, recent_enough))
3711 break;
40a5f0de 3712
fcfa423c
JH
3713 /*
3714 * Note that the request might not have been submitted yet.
3715 * In which case emitted_jiffies will be zero.
3716 */
3717 if (!request->emitted_jiffies)
3718 continue;
3719
54fb2411 3720 target = request;
b962442e 3721 }
ff865885 3722 if (target)
e8a261ea 3723 i915_gem_request_get(target);
1c25595f 3724 spin_unlock(&file_priv->mm.lock);
40a5f0de 3725
54fb2411 3726 if (target == NULL)
f787a5f5 3727 return 0;
2bc43b5c 3728
776f3236 3729 ret = i915_wait_request(target, true, NULL, NULL);
e8a261ea 3730 i915_gem_request_put(target);
ff865885 3731
40a5f0de
EA
3732 return ret;
3733}
3734
d23db88c 3735static bool
91b2db6f 3736i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
d23db88c 3737{
59bfa124
CW
3738 if (!drm_mm_node_allocated(&vma->node))
3739 return false;
3740
91b2db6f
CW
3741 if (vma->node.size < size)
3742 return true;
3743
3744 if (alignment && vma->node.start & (alignment - 1))
d23db88c
CW
3745 return true;
3746
05a20d09 3747 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
d23db88c
CW
3748 return true;
3749
3750 if (flags & PIN_OFFSET_BIAS &&
3751 vma->node.start < (flags & PIN_OFFSET_MASK))
3752 return true;
3753
506a8e87
CW
3754 if (flags & PIN_OFFSET_FIXED &&
3755 vma->node.start != (flags & PIN_OFFSET_MASK))
3756 return true;
3757
d23db88c
CW
3758 return false;
3759}
3760
d0710abb
CW
3761void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3762{
3763 struct drm_i915_gem_object *obj = vma->obj;
a9f1481f 3764 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d0710abb
CW
3765 bool mappable, fenceable;
3766 u32 fence_size, fence_alignment;
3767
a9f1481f 3768 fence_size = i915_gem_get_ggtt_size(dev_priv,
05a20d09 3769 vma->size,
3e510a8e 3770 i915_gem_object_get_tiling(obj));
a9f1481f 3771 fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
05a20d09 3772 vma->size,
3e510a8e 3773 i915_gem_object_get_tiling(obj),
ad1a7d20 3774 true);
d0710abb
CW
3775
3776 fenceable = (vma->node.size == fence_size &&
3777 (vma->node.start & (fence_alignment - 1)) == 0);
3778
3779 mappable = (vma->node.start + fence_size <=
a9f1481f 3780 dev_priv->ggtt.mappable_end);
d0710abb 3781
05a20d09
CW
3782 if (mappable && fenceable)
3783 vma->flags |= I915_VMA_CAN_FENCE;
3784 else
3785 vma->flags &= ~I915_VMA_CAN_FENCE;
d0710abb
CW
3786}
3787
305bc234
CW
3788int __i915_vma_do_pin(struct i915_vma *vma,
3789 u64 size, u64 alignment, u64 flags)
673a394b 3790{
305bc234 3791 unsigned int bound = vma->flags;
673a394b
EA
3792 int ret;
3793
59bfa124 3794 GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3272db53 3795 GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
d7f46fc4 3796
305bc234
CW
3797 if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3798 ret = -EBUSY;
3799 goto err;
3800 }
ac0c6b5a 3801
de895082 3802 if ((bound & I915_VMA_BIND_MASK) == 0) {
59bfa124
CW
3803 ret = i915_vma_insert(vma, size, alignment, flags);
3804 if (ret)
3805 goto err;
fe14d5f4 3806 }
74898d7e 3807
59bfa124 3808 ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3b16525c 3809 if (ret)
59bfa124 3810 goto err;
3b16525c 3811
3272db53 3812 if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
d0710abb 3813 __i915_vma_set_map_and_fenceable(vma);
ef79e17c 3814
3b16525c 3815 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
673a394b 3816 return 0;
673a394b 3817
59bfa124
CW
3818err:
3819 __i915_vma_unpin(vma);
3820 return ret;
ec7adb6e
JL
3821}
3822
058d88c4 3823struct i915_vma *
ec7adb6e
JL
3824i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3825 const struct i915_ggtt_view *view,
91b2db6f 3826 u64 size,
2ffffd0f
CW
3827 u64 alignment,
3828 u64 flags)
ec7adb6e 3829{
058d88c4 3830 struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
59bfa124
CW
3831 struct i915_vma *vma;
3832 int ret;
72e96d64 3833
058d88c4 3834 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
59bfa124 3835 if (IS_ERR(vma))
058d88c4 3836 return vma;
59bfa124
CW
3837
3838 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3839 if (flags & PIN_NONBLOCK &&
3840 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 3841 return ERR_PTR(-ENOSPC);
59bfa124
CW
3842
3843 WARN(i915_vma_is_pinned(vma),
3844 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
3845 " offset=%08x, req.alignment=%llx,"
3846 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3847 i915_ggtt_offset(vma), alignment,
59bfa124 3848 !!(flags & PIN_MAPPABLE),
05a20d09 3849 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
3850 ret = i915_vma_unbind(vma);
3851 if (ret)
058d88c4 3852 return ERR_PTR(ret);
59bfa124
CW
3853 }
3854
058d88c4
CW
3855 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3856 if (ret)
3857 return ERR_PTR(ret);
ec7adb6e 3858
058d88c4 3859 return vma;
673a394b
EA
3860}
3861
edf6b76f 3862static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
3863{
3864 /* Note that we could alias engines in the execbuf API, but
3865 * that would be very unwise as it prevents userspace from
3866 * fine control over engine selection. Ahem.
3867 *
3868 * This should be something like EXEC_MAX_ENGINE instead of
3869 * I915_NUM_ENGINES.
3870 */
3871 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3872 return 0x10000 << id;
3873}
3874
3875static __always_inline unsigned int __busy_write_id(unsigned int id)
3876{
70cb472c
CW
3877 /* The uABI guarantees an active writer is also amongst the read
3878 * engines. This would be true if we accessed the activity tracking
3879 * under the lock, but as we perform the lookup of the object and
3880 * its activity locklessly we can not guarantee that the last_write
3881 * being active implies that we have set the same engine flag from
3882 * last_read - hence we always set both read and write busy for
3883 * last_write.
3884 */
3885 return id | __busy_read_flag(id);
3fdc13c7
CW
3886}
3887
edf6b76f 3888static __always_inline unsigned int
3fdc13c7
CW
3889__busy_set_if_active(const struct i915_gem_active *active,
3890 unsigned int (*flag)(unsigned int id))
3891{
1255501d 3892 struct drm_i915_gem_request *request;
3fdc13c7 3893
1255501d
CW
3894 request = rcu_dereference(active->request);
3895 if (!request || i915_gem_request_completed(request))
3896 return 0;
3fdc13c7 3897
1255501d
CW
3898 /* This is racy. See __i915_gem_active_get_rcu() for an in detail
3899 * discussion of how to handle the race correctly, but for reporting
3900 * the busy state we err on the side of potentially reporting the
3901 * wrong engine as being busy (but we guarantee that the result
3902 * is at least self-consistent).
3903 *
3904 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
3905 * whilst we are inspecting it, even under the RCU read lock as we are.
3906 * This means that there is a small window for the engine and/or the
3907 * seqno to have been overwritten. The seqno will always be in the
3908 * future compared to the intended, and so we know that if that
3909 * seqno is idle (on whatever engine) our request is idle and the
3910 * return 0 above is correct.
3911 *
3912 * The issue is that if the engine is switched, it is just as likely
3913 * to report that it is busy (but since the switch happened, we know
3914 * the request should be idle). So there is a small chance that a busy
3915 * result is actually the wrong engine.
3916 *
3917 * So why don't we care?
3918 *
3919 * For starters, the busy ioctl is a heuristic that is by definition
3920 * racy. Even with perfect serialisation in the driver, the hardware
3921 * state is constantly advancing - the state we report to the user
3922 * is stale.
3923 *
3924 * The critical information for the busy-ioctl is whether the object
3925 * is idle as userspace relies on that to detect whether its next
3926 * access will stall, or if it has missed submitting commands to
3927 * the hardware allowing the GPU to stall. We never generate a
3928 * false-positive for idleness, thus busy-ioctl is reliable at the
3929 * most fundamental level, and we maintain the guarantee that a
3930 * busy object left to itself will eventually become idle (and stay
3931 * idle!).
3932 *
3933 * We allow ourselves the leeway of potentially misreporting the busy
3934 * state because that is an optimisation heuristic that is constantly
3935 * in flux. Being quickly able to detect the busy/idle state is much
3936 * more important than accurate logging of exactly which engines were
3937 * busy.
3938 *
3939 * For accuracy in reporting the engine, we could use
3940 *
3941 * result = 0;
3942 * request = __i915_gem_active_get_rcu(active);
3943 * if (request) {
3944 * if (!i915_gem_request_completed(request))
3945 * result = flag(request->engine->exec_id);
3946 * i915_gem_request_put(request);
3947 * }
3948 *
3949 * but that still remains susceptible to both hardware and userspace
3950 * races. So we accept making the result of that race slightly worse,
3951 * given the rarity of the race and its low impact on the result.
3952 */
3953 return flag(READ_ONCE(request->engine->exec_id));
3fdc13c7
CW
3954}
3955
edf6b76f 3956static __always_inline unsigned int
3fdc13c7
CW
3957busy_check_reader(const struct i915_gem_active *active)
3958{
3959 return __busy_set_if_active(active, __busy_read_flag);
3960}
3961
edf6b76f 3962static __always_inline unsigned int
3fdc13c7
CW
3963busy_check_writer(const struct i915_gem_active *active)
3964{
3965 return __busy_set_if_active(active, __busy_write_id);
3966}
3967
673a394b
EA
3968int
3969i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3970 struct drm_file *file)
673a394b
EA
3971{
3972 struct drm_i915_gem_busy *args = data;
05394f39 3973 struct drm_i915_gem_object *obj;
3fdc13c7 3974 unsigned long active;
673a394b 3975
03ac0642 3976 obj = i915_gem_object_lookup(file, args->handle);
3fdc13c7
CW
3977 if (!obj)
3978 return -ENOENT;
d1b851fc 3979
426960be 3980 args->busy = 0;
3fdc13c7
CW
3981 active = __I915_BO_ACTIVE(obj);
3982 if (active) {
3983 int idx;
426960be 3984
3fdc13c7
CW
3985 /* Yes, the lookups are intentionally racy.
3986 *
3987 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
3988 * to regard the value as stale and as our ABI guarantees
3989 * forward progress, we confirm the status of each active
3990 * request with the hardware.
3991 *
3992 * Even though we guard the pointer lookup by RCU, that only
3993 * guarantees that the pointer and its contents remain
3994 * dereferencable and does *not* mean that the request we
3995 * have is the same as the one being tracked by the object.
3996 *
3997 * Consider that we lookup the request just as it is being
3998 * retired and freed. We take a local copy of the pointer,
3999 * but before we add its engine into the busy set, the other
4000 * thread reallocates it and assigns it to a task on another
1255501d
CW
4001 * engine with a fresh and incomplete seqno. Guarding against
4002 * that requires careful serialisation and reference counting,
4003 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
4004 * instead we expect that if the result is busy, which engines
4005 * are busy is not completely reliable - we only guarantee
4006 * that the object was busy.
3fdc13c7
CW
4007 */
4008 rcu_read_lock();
4009
4010 for_each_active(active, idx)
4011 args->busy |= busy_check_reader(&obj->last_read[idx]);
4012
4013 /* For ABI sanity, we only care that the write engine is in
70cb472c
CW
4014 * the set of read engines. This should be ensured by the
4015 * ordering of setting last_read/last_write in
4016 * i915_vma_move_to_active(), and then in reverse in retire.
4017 * However, for good measure, we always report the last_write
4018 * request as a busy read as well as being a busy write.
3fdc13c7
CW
4019 *
4020 * We don't care that the set of active read/write engines
4021 * may change during construction of the result, as it is
4022 * equally liable to change before userspace can inspect
4023 * the result.
4024 */
4025 args->busy |= busy_check_writer(&obj->last_write);
4026
4027 rcu_read_unlock();
426960be 4028 }
673a394b 4029
3fdc13c7
CW
4030 i915_gem_object_put_unlocked(obj);
4031 return 0;
673a394b
EA
4032}
4033
4034int
4035i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4036 struct drm_file *file_priv)
4037{
0206e353 4038 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4039}
4040
3ef94daa
CW
4041int
4042i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4043 struct drm_file *file_priv)
4044{
fac5e23e 4045 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4046 struct drm_i915_gem_madvise *args = data;
05394f39 4047 struct drm_i915_gem_object *obj;
76c1dec1 4048 int ret;
3ef94daa
CW
4049
4050 switch (args->madv) {
4051 case I915_MADV_DONTNEED:
4052 case I915_MADV_WILLNEED:
4053 break;
4054 default:
4055 return -EINVAL;
4056 }
4057
1d7cfea1
CW
4058 ret = i915_mutex_lock_interruptible(dev);
4059 if (ret)
4060 return ret;
4061
03ac0642
CW
4062 obj = i915_gem_object_lookup(file_priv, args->handle);
4063 if (!obj) {
1d7cfea1
CW
4064 ret = -ENOENT;
4065 goto unlock;
3ef94daa 4066 }
3ef94daa 4067
656bfa3a 4068 if (obj->pages &&
3e510a8e 4069 i915_gem_object_is_tiled(obj) &&
656bfa3a
DV
4070 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4071 if (obj->madv == I915_MADV_WILLNEED)
4072 i915_gem_object_unpin_pages(obj);
4073 if (args->madv == I915_MADV_WILLNEED)
4074 i915_gem_object_pin_pages(obj);
4075 }
4076
05394f39
CW
4077 if (obj->madv != __I915_MADV_PURGED)
4078 obj->madv = args->madv;
3ef94daa 4079
6c085a72 4080 /* if the object is no longer attached, discard its backing storage */
be6a0376 4081 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4082 i915_gem_object_truncate(obj);
4083
05394f39 4084 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4085
f8c417cd 4086 i915_gem_object_put(obj);
1d7cfea1 4087unlock:
3ef94daa 4088 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4089 return ret;
3ef94daa
CW
4090}
4091
37e680a1
CW
4092void i915_gem_object_init(struct drm_i915_gem_object *obj,
4093 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4094{
b4716185
CW
4095 int i;
4096
35c20a60 4097 INIT_LIST_HEAD(&obj->global_list);
666796da 4098 for (i = 0; i < I915_NUM_ENGINES; i++)
fa545cbf
CW
4099 init_request_active(&obj->last_read[i],
4100 i915_gem_object_retire__read);
4101 init_request_active(&obj->last_write,
4102 i915_gem_object_retire__write);
b25cb2f8 4103 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4104 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4105 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4106
37e680a1
CW
4107 obj->ops = ops;
4108
50349247 4109 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
0327d6ba 4110 obj->madv = I915_MADV_WILLNEED;
0327d6ba 4111
f19ec8cb 4112 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4113}
4114
37e680a1 4115static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4116 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4117 .get_pages = i915_gem_object_get_pages_gtt,
4118 .put_pages = i915_gem_object_put_pages_gtt,
4119};
4120
d37cd8a8 4121struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 4122 size_t size)
ac52bc56 4123{
c397b908 4124 struct drm_i915_gem_object *obj;
5949eac4 4125 struct address_space *mapping;
1a240d4d 4126 gfp_t mask;
fe3db79b 4127 int ret;
ac52bc56 4128
42dcedd4 4129 obj = i915_gem_object_alloc(dev);
c397b908 4130 if (obj == NULL)
fe3db79b 4131 return ERR_PTR(-ENOMEM);
673a394b 4132
fe3db79b
CW
4133 ret = drm_gem_object_init(dev, &obj->base, size);
4134 if (ret)
4135 goto fail;
673a394b 4136
bed1ea95
CW
4137 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4138 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4139 /* 965gm cannot relocate objects above 4GiB. */
4140 mask &= ~__GFP_HIGHMEM;
4141 mask |= __GFP_DMA32;
4142 }
4143
93c76a3d 4144 mapping = obj->base.filp->f_mapping;
bed1ea95 4145 mapping_set_gfp_mask(mapping, mask);
5949eac4 4146
37e680a1 4147 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4148
c397b908
DV
4149 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4150 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4151
3d29b842
ED
4152 if (HAS_LLC(dev)) {
4153 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4154 * cache) for about a 10% performance improvement
4155 * compared to uncached. Graphics requests other than
4156 * display scanout are coherent with the CPU in
4157 * accessing this cache. This means in this mode we
4158 * don't need to clflush on the CPU side, and on the
4159 * GPU side we only need to flush internal caches to
4160 * get data visible to the CPU.
4161 *
4162 * However, we maintain the display planes as UC, and so
4163 * need to rebind when first used as such.
4164 */
4165 obj->cache_level = I915_CACHE_LLC;
4166 } else
4167 obj->cache_level = I915_CACHE_NONE;
4168
d861e338
DV
4169 trace_i915_gem_object_create(obj);
4170
05394f39 4171 return obj;
fe3db79b
CW
4172
4173fail:
4174 i915_gem_object_free(obj);
4175
4176 return ERR_PTR(ret);
c397b908
DV
4177}
4178
340fbd8c
CW
4179static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4180{
4181 /* If we are the last user of the backing storage (be it shmemfs
4182 * pages or stolen etc), we know that the pages are going to be
4183 * immediately released. In this case, we can then skip copying
4184 * back the contents from the GPU.
4185 */
4186
4187 if (obj->madv != I915_MADV_WILLNEED)
4188 return false;
4189
4190 if (obj->base.filp == NULL)
4191 return true;
4192
4193 /* At first glance, this looks racy, but then again so would be
4194 * userspace racing mmap against close. However, the first external
4195 * reference to the filp can only be obtained through the
4196 * i915_gem_mmap_ioctl() which safeguards us against the user
4197 * acquiring such a reference whilst we are in the middle of
4198 * freeing the object.
4199 */
4200 return atomic_long_read(&obj->base.filp->f_count) == 1;
4201}
4202
1488fc08 4203void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4204{
1488fc08 4205 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4206 struct drm_device *dev = obj->base.dev;
fac5e23e 4207 struct drm_i915_private *dev_priv = to_i915(dev);
07fe0b12 4208 struct i915_vma *vma, *next;
673a394b 4209
f65c9168
PZ
4210 intel_runtime_pm_get(dev_priv);
4211
26e12f89
CW
4212 trace_i915_gem_object_destroy(obj);
4213
b1f788c6
CW
4214 /* All file-owned VMA should have been released by this point through
4215 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4216 * However, the object may also be bound into the global GTT (e.g.
4217 * older GPUs without per-process support, or for direct access through
4218 * the GTT either for the user or for scanout). Those VMA still need to
4219 * unbound now.
4220 */
1c7f4bca 4221 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3272db53 4222 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
b1f788c6 4223 GEM_BUG_ON(i915_vma_is_active(vma));
3272db53 4224 vma->flags &= ~I915_VMA_PIN_MASK;
b1f788c6 4225 i915_vma_close(vma);
1488fc08 4226 }
15717de2 4227 GEM_BUG_ON(obj->bind_count);
1488fc08 4228
1d64ae71
BW
4229 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4230 * before progressing. */
4231 if (obj->stolen)
4232 i915_gem_object_unpin_pages(obj);
4233
faf5bf0a 4234 WARN_ON(atomic_read(&obj->frontbuffer_bits));
a071fa00 4235
656bfa3a
DV
4236 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4237 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
3e510a8e 4238 i915_gem_object_is_tiled(obj))
656bfa3a
DV
4239 i915_gem_object_unpin_pages(obj);
4240
401c29f6
BW
4241 if (WARN_ON(obj->pages_pin_count))
4242 obj->pages_pin_count = 0;
340fbd8c 4243 if (discard_backing_storage(obj))
5537252b 4244 obj->madv = I915_MADV_DONTNEED;
37e680a1 4245 i915_gem_object_put_pages(obj);
de151cf6 4246
9da3da66
CW
4247 BUG_ON(obj->pages);
4248
2f745ad3
CW
4249 if (obj->base.import_attach)
4250 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4251
5cc9ed4b
CW
4252 if (obj->ops->release)
4253 obj->ops->release(obj);
4254
05394f39
CW
4255 drm_gem_object_release(&obj->base);
4256 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4257
05394f39 4258 kfree(obj->bit_17);
42dcedd4 4259 i915_gem_object_free(obj);
f65c9168
PZ
4260
4261 intel_runtime_pm_put(dev_priv);
673a394b
EA
4262}
4263
dcff85c8 4264int i915_gem_suspend(struct drm_device *dev)
29105ccc 4265{
fac5e23e 4266 struct drm_i915_private *dev_priv = to_i915(dev);
dcff85c8 4267 int ret;
28dfe52a 4268
54b4f68f
CW
4269 intel_suspend_gt_powersave(dev_priv);
4270
45c5f202 4271 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4272
4273 /* We have to flush all the executing contexts to main memory so
4274 * that they can saved in the hibernation image. To ensure the last
4275 * context image is coherent, we have to switch away from it. That
4276 * leaves the dev_priv->kernel_context still active when
4277 * we actually suspend, and its image in memory may not match the GPU
4278 * state. Fortunately, the kernel_context is disposable and we do
4279 * not rely on its state.
4280 */
4281 ret = i915_gem_switch_to_kernel_context(dev_priv);
4282 if (ret)
4283 goto err;
4284
dcff85c8 4285 ret = i915_gem_wait_for_idle(dev_priv, true);
f7403347 4286 if (ret)
45c5f202 4287 goto err;
f7403347 4288
c033666a 4289 i915_gem_retire_requests(dev_priv);
673a394b 4290
b2e862d0 4291 i915_gem_context_lost(dev_priv);
45c5f202
CW
4292 mutex_unlock(&dev->struct_mutex);
4293
737b1506 4294 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4295 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4296 flush_delayed_work(&dev_priv->gt.idle_work);
29105ccc 4297
bdcf120b
CW
4298 /* Assert that we sucessfully flushed all the work and
4299 * reset the GPU back to its idle, low power state.
4300 */
67d97da3 4301 WARN_ON(dev_priv->gt.awake);
bdcf120b 4302
673a394b 4303 return 0;
45c5f202
CW
4304
4305err:
4306 mutex_unlock(&dev->struct_mutex);
4307 return ret;
673a394b
EA
4308}
4309
5ab57c70
CW
4310void i915_gem_resume(struct drm_device *dev)
4311{
4312 struct drm_i915_private *dev_priv = to_i915(dev);
4313
4314 mutex_lock(&dev->struct_mutex);
4315 i915_gem_restore_gtt_mappings(dev);
4316
4317 /* As we didn't flush the kernel context before suspend, we cannot
4318 * guarantee that the context image is complete. So let's just reset
4319 * it and start again.
4320 */
4321 if (i915.enable_execlists)
4322 intel_lr_context_reset(dev_priv, dev_priv->kernel_context);
4323
4324 mutex_unlock(&dev->struct_mutex);
4325}
4326
f691e2f4
DV
4327void i915_gem_init_swizzling(struct drm_device *dev)
4328{
fac5e23e 4329 struct drm_i915_private *dev_priv = to_i915(dev);
f691e2f4 4330
11782b02 4331 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4332 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4333 return;
4334
4335 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4336 DISP_TILE_SURFACE_SWIZZLING);
4337
11782b02
DV
4338 if (IS_GEN5(dev))
4339 return;
4340
f691e2f4
DV
4341 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4342 if (IS_GEN6(dev))
6b26c86d 4343 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4344 else if (IS_GEN7(dev))
6b26c86d 4345 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4346 else if (IS_GEN8(dev))
4347 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4348 else
4349 BUG();
f691e2f4 4350}
e21af88d 4351
81e7f200
VS
4352static void init_unused_ring(struct drm_device *dev, u32 base)
4353{
fac5e23e 4354 struct drm_i915_private *dev_priv = to_i915(dev);
81e7f200
VS
4355
4356 I915_WRITE(RING_CTL(base), 0);
4357 I915_WRITE(RING_HEAD(base), 0);
4358 I915_WRITE(RING_TAIL(base), 0);
4359 I915_WRITE(RING_START(base), 0);
4360}
4361
4362static void init_unused_rings(struct drm_device *dev)
4363{
4364 if (IS_I830(dev)) {
4365 init_unused_ring(dev, PRB1_BASE);
4366 init_unused_ring(dev, SRB0_BASE);
4367 init_unused_ring(dev, SRB1_BASE);
4368 init_unused_ring(dev, SRB2_BASE);
4369 init_unused_ring(dev, SRB3_BASE);
4370 } else if (IS_GEN2(dev)) {
4371 init_unused_ring(dev, SRB0_BASE);
4372 init_unused_ring(dev, SRB1_BASE);
4373 } else if (IS_GEN3(dev)) {
4374 init_unused_ring(dev, PRB1_BASE);
4375 init_unused_ring(dev, PRB2_BASE);
4376 }
4377}
4378
4fc7c971
BW
4379int
4380i915_gem_init_hw(struct drm_device *dev)
4381{
fac5e23e 4382 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4383 struct intel_engine_cs *engine;
d200cda6 4384 int ret;
4fc7c971 4385
5e4f5189
CW
4386 /* Double layer security blanket, see i915_gem_init() */
4387 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4388
3accaf7e 4389 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4390 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4391
0bf21347
VS
4392 if (IS_HASWELL(dev))
4393 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4394 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4395
88a2b2a3 4396 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4397 if (IS_IVYBRIDGE(dev)) {
4398 u32 temp = I915_READ(GEN7_MSG_CTL);
4399 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4400 I915_WRITE(GEN7_MSG_CTL, temp);
4401 } else if (INTEL_INFO(dev)->gen >= 7) {
4402 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4403 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4404 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4405 }
88a2b2a3
BW
4406 }
4407
4fc7c971
BW
4408 i915_gem_init_swizzling(dev);
4409
d5abdfda
DV
4410 /*
4411 * At least 830 can leave some of the unused rings
4412 * "active" (ie. head != tail) after resume which
4413 * will prevent c3 entry. Makes sure all unused rings
4414 * are totally idle.
4415 */
4416 init_unused_rings(dev);
4417
ed54c1a1 4418 BUG_ON(!dev_priv->kernel_context);
90638cc1 4419
4ad2fd88
JH
4420 ret = i915_ppgtt_init_hw(dev);
4421 if (ret) {
4422 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4423 goto out;
4424 }
4425
4426 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4427 for_each_engine(engine, dev_priv) {
e2f80391 4428 ret = engine->init_hw(engine);
35a57ffb 4429 if (ret)
5e4f5189 4430 goto out;
35a57ffb 4431 }
99433931 4432
0ccdacf6
PA
4433 intel_mocs_init_l3cc_table(dev);
4434
33a732f4 4435 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4436 ret = intel_guc_setup(dev);
4437 if (ret)
4438 goto out;
33a732f4 4439
5e4f5189
CW
4440out:
4441 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4442 return ret;
8187a2b7
ZN
4443}
4444
39df9190
CW
4445bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4446{
4447 if (INTEL_INFO(dev_priv)->gen < 6)
4448 return false;
4449
4450 /* TODO: make semaphores and Execlists play nicely together */
4451 if (i915.enable_execlists)
4452 return false;
4453
4454 if (value >= 0)
4455 return value;
4456
4457#ifdef CONFIG_INTEL_IOMMU
4458 /* Enable semaphores on SNB when IO remapping is off */
4459 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4460 return false;
4461#endif
4462
4463 return true;
4464}
4465
1070a42b
CW
4466int i915_gem_init(struct drm_device *dev)
4467{
fac5e23e 4468 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4469 int ret;
4470
1070a42b 4471 mutex_lock(&dev->struct_mutex);
d62b4892 4472
a83014d3 4473 if (!i915.enable_execlists) {
7e37f889 4474 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4475 } else {
117897f4 4476 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4477 }
4478
5e4f5189
CW
4479 /* This is just a security blanket to placate dragons.
4480 * On some systems, we very sporadically observe that the first TLBs
4481 * used by the CS may be stale, despite us poking the TLB reset. If
4482 * we hold the forcewake during initialisation these problems
4483 * just magically go away.
4484 */
4485 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4486
72778cb2 4487 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4488
4489 ret = i915_gem_init_ggtt(dev_priv);
4490 if (ret)
4491 goto out_unlock;
d62b4892 4492
2fa48d8d 4493 ret = i915_gem_context_init(dev);
7bcc3777
JN
4494 if (ret)
4495 goto out_unlock;
2fa48d8d 4496
8b3e2d36 4497 ret = intel_engines_init(dev);
35a57ffb 4498 if (ret)
7bcc3777 4499 goto out_unlock;
2fa48d8d 4500
1070a42b 4501 ret = i915_gem_init_hw(dev);
60990320 4502 if (ret == -EIO) {
7e21d648 4503 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4504 * wedged. But we only want to do this where the GPU is angry,
4505 * for all other failure, such as an allocation failure, bail.
4506 */
4507 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4508 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4509 ret = 0;
1070a42b 4510 }
7bcc3777
JN
4511
4512out_unlock:
5e4f5189 4513 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4514 mutex_unlock(&dev->struct_mutex);
1070a42b 4515
60990320 4516 return ret;
1070a42b
CW
4517}
4518
8187a2b7 4519void
117897f4 4520i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4521{
fac5e23e 4522 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4523 struct intel_engine_cs *engine;
8187a2b7 4524
b4ac5afc 4525 for_each_engine(engine, dev_priv)
117897f4 4526 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4527}
4528
64193406 4529static void
666796da 4530init_engine_lists(struct intel_engine_cs *engine)
64193406 4531{
0bc40be8 4532 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
4533}
4534
40ae4e16
ID
4535void
4536i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4537{
91c8a326 4538 struct drm_device *dev = &dev_priv->drm;
49ef5294 4539 int i;
40ae4e16
ID
4540
4541 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4542 !IS_CHERRYVIEW(dev_priv))
4543 dev_priv->num_fence_regs = 32;
4544 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4545 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4546 dev_priv->num_fence_regs = 16;
4547 else
4548 dev_priv->num_fence_regs = 8;
4549
c033666a 4550 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4551 dev_priv->num_fence_regs =
4552 I915_READ(vgtif_reg(avail_rs.fence_num));
4553
4554 /* Initialize fence registers to zero */
49ef5294
CW
4555 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4556 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4557
4558 fence->i915 = dev_priv;
4559 fence->id = i;
4560 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4561 }
40ae4e16
ID
4562 i915_gem_restore_fences(dev);
4563
4564 i915_gem_detect_bit_6_swizzle(dev);
4565}
4566
673a394b 4567void
d64aa096 4568i915_gem_load_init(struct drm_device *dev)
673a394b 4569{
fac5e23e 4570 struct drm_i915_private *dev_priv = to_i915(dev);
42dcedd4
CW
4571 int i;
4572
efab6d8d 4573 dev_priv->objects =
42dcedd4
CW
4574 kmem_cache_create("i915_gem_object",
4575 sizeof(struct drm_i915_gem_object), 0,
4576 SLAB_HWCACHE_ALIGN,
4577 NULL);
e20d2ab7
CW
4578 dev_priv->vmas =
4579 kmem_cache_create("i915_gem_vma",
4580 sizeof(struct i915_vma), 0,
4581 SLAB_HWCACHE_ALIGN,
4582 NULL);
efab6d8d
CW
4583 dev_priv->requests =
4584 kmem_cache_create("i915_gem_request",
4585 sizeof(struct drm_i915_gem_request), 0,
0eafec6d
CW
4586 SLAB_HWCACHE_ALIGN |
4587 SLAB_RECLAIM_ACCOUNT |
4588 SLAB_DESTROY_BY_RCU,
efab6d8d 4589 NULL);
673a394b 4590
a33afea5 4591 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4592 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4593 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4594 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
4595 for (i = 0; i < I915_NUM_ENGINES; i++)
4596 init_engine_lists(&dev_priv->engine[i]);
67d97da3 4597 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4598 i915_gem_retire_work_handler);
67d97da3 4599 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4600 i915_gem_idle_work_handler);
1f15b76f 4601 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4602 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4603
72bfa19c
CW
4604 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4605
6b95a207 4606 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4607
ce453d81
CW
4608 dev_priv->mm.interruptible = true;
4609
b5add959 4610 spin_lock_init(&dev_priv->fb_tracking.lock);
673a394b 4611}
71acb5eb 4612
d64aa096
ID
4613void i915_gem_load_cleanup(struct drm_device *dev)
4614{
4615 struct drm_i915_private *dev_priv = to_i915(dev);
4616
4617 kmem_cache_destroy(dev_priv->requests);
4618 kmem_cache_destroy(dev_priv->vmas);
4619 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4620
4621 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4622 rcu_barrier();
d64aa096
ID
4623}
4624
461fb99c
CW
4625int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4626{
4627 struct drm_i915_gem_object *obj;
4628
4629 /* Called just before we write the hibernation image.
4630 *
4631 * We need to update the domain tracking to reflect that the CPU
4632 * will be accessing all the pages to create and restore from the
4633 * hibernation, and so upon restoration those pages will be in the
4634 * CPU domain.
4635 *
4636 * To make sure the hibernation image contains the latest state,
4637 * we update that state just before writing out the image.
4638 */
4639
4640 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
4641 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4642 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4643 }
4644
4645 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4646 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4647 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4648 }
4649
4650 return 0;
4651}
4652
f787a5f5 4653void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4654{
f787a5f5 4655 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4656 struct drm_i915_gem_request *request;
b962442e
EA
4657
4658 /* Clean up our request list when the client is going away, so that
4659 * later retire_requests won't dereference our soon-to-be-gone
4660 * file_priv.
4661 */
1c25595f 4662 spin_lock(&file_priv->mm.lock);
15f7bbc7 4663 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4664 request->file_priv = NULL;
1c25595f 4665 spin_unlock(&file_priv->mm.lock);
b29c19b6 4666
2e1b8730 4667 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4668 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4669 list_del(&file_priv->rps.link);
8d3afd7d 4670 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4671 }
b29c19b6
CW
4672}
4673
4674int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4675{
4676 struct drm_i915_file_private *file_priv;
e422b888 4677 int ret;
b29c19b6
CW
4678
4679 DRM_DEBUG_DRIVER("\n");
4680
4681 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4682 if (!file_priv)
4683 return -ENOMEM;
4684
4685 file->driver_priv = file_priv;
f19ec8cb 4686 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4687 file_priv->file = file;
2e1b8730 4688 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4689
4690 spin_lock_init(&file_priv->mm.lock);
4691 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4692
c80ff16e 4693 file_priv->bsd_engine = -1;
de1add36 4694
e422b888
BW
4695 ret = i915_gem_context_open(dev, file);
4696 if (ret)
4697 kfree(file_priv);
b29c19b6 4698
e422b888 4699 return ret;
b29c19b6
CW
4700}
4701
b680c37a
DV
4702/**
4703 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4704 * @old: current GEM buffer for the frontbuffer slots
4705 * @new: new GEM buffer for the frontbuffer slots
4706 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4707 *
4708 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4709 * from @old and setting them in @new. Both @old and @new can be NULL.
4710 */
a071fa00
DV
4711void i915_gem_track_fb(struct drm_i915_gem_object *old,
4712 struct drm_i915_gem_object *new,
4713 unsigned frontbuffer_bits)
4714{
faf5bf0a
CW
4715 /* Control of individual bits within the mask are guarded by
4716 * the owning plane->mutex, i.e. we can never see concurrent
4717 * manipulation of individual bits. But since the bitfield as a whole
4718 * is updated using RMW, we need to use atomics in order to update
4719 * the bits.
4720 */
4721 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4722 sizeof(atomic_t) * BITS_PER_BYTE);
4723
a071fa00 4724 if (old) {
faf5bf0a
CW
4725 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4726 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4727 }
4728
4729 if (new) {
faf5bf0a
CW
4730 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4731 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4732 }
4733}
4734
033908ae
DG
4735/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4736struct page *
4737i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4738{
4739 struct page *page;
4740
4741 /* Only default objects have per-page dirty tracking */
b9bcd14a 4742 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
033908ae
DG
4743 return NULL;
4744
4745 page = i915_gem_object_get_page(obj, n);
4746 set_page_dirty(page);
4747 return page;
4748}
4749
ea70299d
DG
4750/* Allocate a new GEM object and fill it with the supplied data */
4751struct drm_i915_gem_object *
4752i915_gem_object_create_from_data(struct drm_device *dev,
4753 const void *data, size_t size)
4754{
4755 struct drm_i915_gem_object *obj;
4756 struct sg_table *sg;
4757 size_t bytes;
4758 int ret;
4759
d37cd8a8 4760 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4761 if (IS_ERR(obj))
ea70299d
DG
4762 return obj;
4763
4764 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4765 if (ret)
4766 goto fail;
4767
4768 ret = i915_gem_object_get_pages(obj);
4769 if (ret)
4770 goto fail;
4771
4772 i915_gem_object_pin_pages(obj);
4773 sg = obj->pages;
4774 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 4775 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
4776 i915_gem_object_unpin_pages(obj);
4777
4778 if (WARN_ON(bytes != size)) {
4779 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4780 ret = -EFAULT;
4781 goto fail;
4782 }
4783
4784 return obj;
4785
4786fail:
f8c417cd 4787 i915_gem_object_put(obj);
ea70299d
DG
4788 return ERR_PTR(ret);
4789}