]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Bump the inactive LRU on set-to-GTT-domain
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39
CW
48 struct drm_file *file);
49static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 50
61050808
CW
51static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
17250b71 57static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 58 struct shrink_control *sc);
8c59967c 59static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 60
61050808
CW
61static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
62{
63 if (obj->tiling_mode)
64 i915_gem_release_mmap(obj);
65
66 /* As we do not have an associated fence register, we will force
67 * a tiling change if we ever need to acquire one.
68 */
5d82e3e6 69 obj->fence_dirty = false;
61050808
CW
70 obj->fence_reg = I915_FENCE_REG_NONE;
71}
72
73aa808f
CW
73/* some bookkeeping */
74static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
77 dev_priv->mm.object_count++;
78 dev_priv->mm.object_memory += size;
79}
80
81static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82 size_t size)
83{
84 dev_priv->mm.object_count--;
85 dev_priv->mm.object_memory -= size;
86}
87
21dd3734
CW
88static int
89i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
90{
91 struct drm_i915_private *dev_priv = dev->dev_private;
92 struct completion *x = &dev_priv->error_completion;
93 unsigned long flags;
94 int ret;
95
96 if (!atomic_read(&dev_priv->mm.wedged))
97 return 0;
98
99 ret = wait_for_completion_interruptible(x);
100 if (ret)
101 return ret;
102
21dd3734
CW
103 if (atomic_read(&dev_priv->mm.wedged)) {
104 /* GPU is hung, bump the completion count to account for
105 * the token we just consumed so that we never hit zero and
106 * end up waiting upon a subsequent completion event that
107 * will never happen.
108 */
109 spin_lock_irqsave(&x->wait.lock, flags);
110 x->done++;
111 spin_unlock_irqrestore(&x->wait.lock, flags);
112 }
113 return 0;
30dbf0c0
CW
114}
115
54cf91dc 116int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 117{
76c1dec1
CW
118 int ret;
119
21dd3734 120 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
121 if (ret)
122 return ret;
123
124 ret = mutex_lock_interruptible(&dev->struct_mutex);
125 if (ret)
126 return ret;
127
23bc5982 128 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
129 return 0;
130}
30dbf0c0 131
7d1c4804 132static inline bool
05394f39 133i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 134{
8325a09d 135 return !obj->active && obj->pin_count == 0;
7d1c4804
CW
136}
137
79e53945
JB
138int
139i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 140 struct drm_file *file)
79e53945
JB
141{
142 struct drm_i915_gem_init *args = data;
2021746e
CW
143
144 if (args->gtt_start >= args->gtt_end ||
145 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
146 return -EINVAL;
79e53945 147
f534bc0b
DV
148 /* GEM with user mode setting was never supported on ilk and later. */
149 if (INTEL_INFO(dev)->gen >= 5)
150 return -ENODEV;
151
79e53945 152 mutex_lock(&dev->struct_mutex);
644ec02b
DV
153 i915_gem_init_global_gtt(dev, args->gtt_start,
154 args->gtt_end, args->gtt_end);
673a394b
EA
155 mutex_unlock(&dev->struct_mutex);
156
2021746e 157 return 0;
673a394b
EA
158}
159
5a125c3c
EA
160int
161i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 162 struct drm_file *file)
5a125c3c 163{
73aa808f 164 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 165 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
166 struct drm_i915_gem_object *obj;
167 size_t pinned;
5a125c3c
EA
168
169 if (!(dev->driver->driver_features & DRIVER_GEM))
170 return -ENODEV;
171
6299f992 172 pinned = 0;
73aa808f 173 mutex_lock(&dev->struct_mutex);
6299f992
CW
174 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
175 pinned += obj->gtt_space->size;
73aa808f 176 mutex_unlock(&dev->struct_mutex);
5a125c3c 177
6299f992 178 args->aper_size = dev_priv->mm.gtt_total;
0206e353 179 args->aper_available_size = args->aper_size - pinned;
6299f992 180
5a125c3c
EA
181 return 0;
182}
183
ff72145b
DA
184static int
185i915_gem_create(struct drm_file *file,
186 struct drm_device *dev,
187 uint64_t size,
188 uint32_t *handle_p)
673a394b 189{
05394f39 190 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
191 int ret;
192 u32 handle;
673a394b 193
ff72145b 194 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
195 if (size == 0)
196 return -EINVAL;
673a394b
EA
197
198 /* Allocate the new object */
ff72145b 199 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
200 if (obj == NULL)
201 return -ENOMEM;
202
05394f39 203 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 204 if (ret) {
05394f39
CW
205 drm_gem_object_release(&obj->base);
206 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 207 kfree(obj);
673a394b 208 return ret;
1dfd9754 209 }
673a394b 210
202f2fef 211 /* drop reference from allocate - handle holds it now */
05394f39 212 drm_gem_object_unreference(&obj->base);
202f2fef
CW
213 trace_i915_gem_object_create(obj);
214
ff72145b 215 *handle_p = handle;
673a394b
EA
216 return 0;
217}
218
ff72145b
DA
219int
220i915_gem_dumb_create(struct drm_file *file,
221 struct drm_device *dev,
222 struct drm_mode_create_dumb *args)
223{
224 /* have to work out size/pitch and return them */
ed0291fd 225 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
226 args->size = args->pitch * args->height;
227 return i915_gem_create(file, dev,
228 args->size, &args->handle);
229}
230
231int i915_gem_dumb_destroy(struct drm_file *file,
232 struct drm_device *dev,
233 uint32_t handle)
234{
235 return drm_gem_handle_delete(file, handle);
236}
237
238/**
239 * Creates a new mm object and returns a handle to it.
240 */
241int
242i915_gem_create_ioctl(struct drm_device *dev, void *data,
243 struct drm_file *file)
244{
245 struct drm_i915_gem_create *args = data;
246 return i915_gem_create(file, dev,
247 args->size, &args->handle);
248}
249
05394f39 250static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 251{
05394f39 252 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
253
254 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 255 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
256}
257
8461d226
DV
258static inline int
259__copy_to_user_swizzled(char __user *cpu_vaddr,
260 const char *gpu_vaddr, int gpu_offset,
261 int length)
262{
263 int ret, cpu_offset = 0;
264
265 while (length > 0) {
266 int cacheline_end = ALIGN(gpu_offset + 1, 64);
267 int this_length = min(cacheline_end - gpu_offset, length);
268 int swizzled_gpu_offset = gpu_offset ^ 64;
269
270 ret = __copy_to_user(cpu_vaddr + cpu_offset,
271 gpu_vaddr + swizzled_gpu_offset,
272 this_length);
273 if (ret)
274 return ret + length;
275
276 cpu_offset += this_length;
277 gpu_offset += this_length;
278 length -= this_length;
279 }
280
281 return 0;
282}
283
8c59967c 284static inline int
4f0c7cfb
BW
285__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
286 const char __user *cpu_vaddr,
8c59967c
DV
287 int length)
288{
289 int ret, cpu_offset = 0;
290
291 while (length > 0) {
292 int cacheline_end = ALIGN(gpu_offset + 1, 64);
293 int this_length = min(cacheline_end - gpu_offset, length);
294 int swizzled_gpu_offset = gpu_offset ^ 64;
295
296 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
297 cpu_vaddr + cpu_offset,
298 this_length);
299 if (ret)
300 return ret + length;
301
302 cpu_offset += this_length;
303 gpu_offset += this_length;
304 length -= this_length;
305 }
306
307 return 0;
308}
309
d174bd64
DV
310/* Per-page copy function for the shmem pread fastpath.
311 * Flushes invalid cachelines before reading the target if
312 * needs_clflush is set. */
eb01459f 313static int
d174bd64
DV
314shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
315 char __user *user_data,
316 bool page_do_bit17_swizzling, bool needs_clflush)
317{
318 char *vaddr;
319 int ret;
320
e7e58eb5 321 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
322 return -EINVAL;
323
324 vaddr = kmap_atomic(page);
325 if (needs_clflush)
326 drm_clflush_virt_range(vaddr + shmem_page_offset,
327 page_length);
328 ret = __copy_to_user_inatomic(user_data,
329 vaddr + shmem_page_offset,
330 page_length);
331 kunmap_atomic(vaddr);
332
333 return ret;
334}
335
23c18c71
DV
336static void
337shmem_clflush_swizzled_range(char *addr, unsigned long length,
338 bool swizzled)
339{
e7e58eb5 340 if (unlikely(swizzled)) {
23c18c71
DV
341 unsigned long start = (unsigned long) addr;
342 unsigned long end = (unsigned long) addr + length;
343
344 /* For swizzling simply ensure that we always flush both
345 * channels. Lame, but simple and it works. Swizzled
346 * pwrite/pread is far from a hotpath - current userspace
347 * doesn't use it at all. */
348 start = round_down(start, 128);
349 end = round_up(end, 128);
350
351 drm_clflush_virt_range((void *)start, end - start);
352 } else {
353 drm_clflush_virt_range(addr, length);
354 }
355
356}
357
d174bd64
DV
358/* Only difference to the fast-path function is that this can handle bit17
359 * and uses non-atomic copy and kmap functions. */
360static int
361shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
362 char __user *user_data,
363 bool page_do_bit17_swizzling, bool needs_clflush)
364{
365 char *vaddr;
366 int ret;
367
368 vaddr = kmap(page);
369 if (needs_clflush)
23c18c71
DV
370 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
371 page_length,
372 page_do_bit17_swizzling);
d174bd64
DV
373
374 if (page_do_bit17_swizzling)
375 ret = __copy_to_user_swizzled(user_data,
376 vaddr, shmem_page_offset,
377 page_length);
378 else
379 ret = __copy_to_user(user_data,
380 vaddr + shmem_page_offset,
381 page_length);
382 kunmap(page);
383
384 return ret;
385}
386
eb01459f 387static int
dbf7bff0
DV
388i915_gem_shmem_pread(struct drm_device *dev,
389 struct drm_i915_gem_object *obj,
390 struct drm_i915_gem_pread *args,
391 struct drm_file *file)
eb01459f 392{
05394f39 393 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 394 char __user *user_data;
eb01459f 395 ssize_t remain;
8461d226 396 loff_t offset;
eb2c0c81 397 int shmem_page_offset, page_length, ret = 0;
8461d226 398 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 399 int hit_slowpath = 0;
96d79b52 400 int prefaulted = 0;
8489731c 401 int needs_clflush = 0;
692a576b 402 int release_page;
eb01459f 403
8461d226 404 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
405 remain = args->size;
406
8461d226 407 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 408
8489731c
DV
409 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
410 /* If we're not in the cpu read domain, set ourself into the gtt
411 * read domain and manually flush cachelines (if required). This
412 * optimizes for the case when the gpu will dirty the data
413 * anyway again before the next pread happens. */
414 if (obj->cache_level == I915_CACHE_NONE)
415 needs_clflush = 1;
416 ret = i915_gem_object_set_to_gtt_domain(obj, false);
417 if (ret)
418 return ret;
419 }
eb01459f 420
8461d226 421 offset = args->offset;
eb01459f
EA
422
423 while (remain > 0) {
e5281ccd
CW
424 struct page *page;
425
eb01459f
EA
426 /* Operation in this page
427 *
eb01459f 428 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
429 * page_length = bytes to copy for this page
430 */
c8cbbb8b 431 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
432 page_length = remain;
433 if ((shmem_page_offset + page_length) > PAGE_SIZE)
434 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 435
692a576b
DV
436 if (obj->pages) {
437 page = obj->pages[offset >> PAGE_SHIFT];
438 release_page = 0;
439 } else {
440 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
441 if (IS_ERR(page)) {
442 ret = PTR_ERR(page);
443 goto out;
444 }
445 release_page = 1;
b65552f0 446 }
e5281ccd 447
8461d226
DV
448 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
449 (page_to_phys(page) & (1 << 17)) != 0;
450
d174bd64
DV
451 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
452 user_data, page_do_bit17_swizzling,
453 needs_clflush);
454 if (ret == 0)
455 goto next_page;
dbf7bff0
DV
456
457 hit_slowpath = 1;
692a576b 458 page_cache_get(page);
dbf7bff0
DV
459 mutex_unlock(&dev->struct_mutex);
460
96d79b52 461 if (!prefaulted) {
f56f821f 462 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
463 /* Userspace is tricking us, but we've already clobbered
464 * its pages with the prefault and promised to write the
465 * data up to the first fault. Hence ignore any errors
466 * and just continue. */
467 (void)ret;
468 prefaulted = 1;
469 }
eb01459f 470
d174bd64
DV
471 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
eb01459f 474
dbf7bff0 475 mutex_lock(&dev->struct_mutex);
e5281ccd 476 page_cache_release(page);
dbf7bff0 477next_page:
e5281ccd 478 mark_page_accessed(page);
692a576b
DV
479 if (release_page)
480 page_cache_release(page);
e5281ccd 481
8461d226
DV
482 if (ret) {
483 ret = -EFAULT;
484 goto out;
485 }
486
eb01459f 487 remain -= page_length;
8461d226 488 user_data += page_length;
eb01459f
EA
489 offset += page_length;
490 }
491
4f27b75d 492out:
dbf7bff0
DV
493 if (hit_slowpath) {
494 /* Fixup: Kill any reinstated backing storage pages */
495 if (obj->madv == __I915_MADV_PURGED)
496 i915_gem_object_truncate(obj);
497 }
eb01459f
EA
498
499 return ret;
500}
501
673a394b
EA
502/**
503 * Reads data from the object referenced by handle.
504 *
505 * On error, the contents of *data are undefined.
506 */
507int
508i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 509 struct drm_file *file)
673a394b
EA
510{
511 struct drm_i915_gem_pread *args = data;
05394f39 512 struct drm_i915_gem_object *obj;
35b62a89 513 int ret = 0;
673a394b 514
51311d0a
CW
515 if (args->size == 0)
516 return 0;
517
518 if (!access_ok(VERIFY_WRITE,
519 (char __user *)(uintptr_t)args->data_ptr,
520 args->size))
521 return -EFAULT;
522
4f27b75d 523 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 524 if (ret)
4f27b75d 525 return ret;
673a394b 526
05394f39 527 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 528 if (&obj->base == NULL) {
1d7cfea1
CW
529 ret = -ENOENT;
530 goto unlock;
4f27b75d 531 }
673a394b 532
7dcd2499 533 /* Bounds check source. */
05394f39
CW
534 if (args->offset > obj->base.size ||
535 args->size > obj->base.size - args->offset) {
ce9d419d 536 ret = -EINVAL;
35b62a89 537 goto out;
ce9d419d
CW
538 }
539
db53a302
CW
540 trace_i915_gem_object_pread(obj, args->offset, args->size);
541
dbf7bff0 542 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 543
35b62a89 544out:
05394f39 545 drm_gem_object_unreference(&obj->base);
1d7cfea1 546unlock:
4f27b75d 547 mutex_unlock(&dev->struct_mutex);
eb01459f 548 return ret;
673a394b
EA
549}
550
0839ccb8
KP
551/* This is the fast write path which cannot handle
552 * page faults in the source data
9b7530cc 553 */
0839ccb8
KP
554
555static inline int
556fast_user_write(struct io_mapping *mapping,
557 loff_t page_base, int page_offset,
558 char __user *user_data,
559 int length)
9b7530cc 560{
4f0c7cfb
BW
561 void __iomem *vaddr_atomic;
562 void *vaddr;
0839ccb8 563 unsigned long unwritten;
9b7530cc 564
3e4d3af5 565 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
566 /* We can use the cpu mem copy function because this is X86. */
567 vaddr = (void __force*)vaddr_atomic + page_offset;
568 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 569 user_data, length);
3e4d3af5 570 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 571 return unwritten;
0839ccb8
KP
572}
573
3de09aa3
EA
574/**
575 * This is the fast pwrite path, where we copy the data directly from the
576 * user into the GTT, uncached.
577 */
673a394b 578static int
05394f39
CW
579i915_gem_gtt_pwrite_fast(struct drm_device *dev,
580 struct drm_i915_gem_object *obj,
3de09aa3 581 struct drm_i915_gem_pwrite *args,
05394f39 582 struct drm_file *file)
673a394b 583{
0839ccb8 584 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 585 ssize_t remain;
0839ccb8 586 loff_t offset, page_base;
673a394b 587 char __user *user_data;
935aaa69
DV
588 int page_offset, page_length, ret;
589
590 ret = i915_gem_object_pin(obj, 0, true);
591 if (ret)
592 goto out;
593
594 ret = i915_gem_object_set_to_gtt_domain(obj, true);
595 if (ret)
596 goto out_unpin;
597
598 ret = i915_gem_object_put_fence(obj);
599 if (ret)
600 goto out_unpin;
673a394b
EA
601
602 user_data = (char __user *) (uintptr_t) args->data_ptr;
603 remain = args->size;
673a394b 604
05394f39 605 offset = obj->gtt_offset + args->offset;
673a394b
EA
606
607 while (remain > 0) {
608 /* Operation in this page
609 *
0839ccb8
KP
610 * page_base = page offset within aperture
611 * page_offset = offset within page
612 * page_length = bytes to copy for this page
673a394b 613 */
c8cbbb8b
CW
614 page_base = offset & PAGE_MASK;
615 page_offset = offset_in_page(offset);
0839ccb8
KP
616 page_length = remain;
617 if ((page_offset + remain) > PAGE_SIZE)
618 page_length = PAGE_SIZE - page_offset;
619
0839ccb8 620 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
621 * source page isn't available. Return the error and we'll
622 * retry in the slow path.
0839ccb8 623 */
fbd5a26d 624 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
625 page_offset, user_data, page_length)) {
626 ret = -EFAULT;
627 goto out_unpin;
628 }
673a394b 629
0839ccb8
KP
630 remain -= page_length;
631 user_data += page_length;
632 offset += page_length;
673a394b 633 }
673a394b 634
935aaa69
DV
635out_unpin:
636 i915_gem_object_unpin(obj);
637out:
3de09aa3 638 return ret;
673a394b
EA
639}
640
d174bd64
DV
641/* Per-page copy function for the shmem pwrite fastpath.
642 * Flushes invalid cachelines before writing to the target if
643 * needs_clflush_before is set and flushes out any written cachelines after
644 * writing if needs_clflush is set. */
3043c60c 645static int
d174bd64
DV
646shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
647 char __user *user_data,
648 bool page_do_bit17_swizzling,
649 bool needs_clflush_before,
650 bool needs_clflush_after)
673a394b 651{
d174bd64 652 char *vaddr;
673a394b 653 int ret;
3de09aa3 654
e7e58eb5 655 if (unlikely(page_do_bit17_swizzling))
d174bd64 656 return -EINVAL;
3de09aa3 657
d174bd64
DV
658 vaddr = kmap_atomic(page);
659 if (needs_clflush_before)
660 drm_clflush_virt_range(vaddr + shmem_page_offset,
661 page_length);
662 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
663 user_data,
664 page_length);
665 if (needs_clflush_after)
666 drm_clflush_virt_range(vaddr + shmem_page_offset,
667 page_length);
668 kunmap_atomic(vaddr);
3de09aa3
EA
669
670 return ret;
671}
672
d174bd64
DV
673/* Only difference to the fast-path function is that this can handle bit17
674 * and uses non-atomic copy and kmap functions. */
3043c60c 675static int
d174bd64
DV
676shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
677 char __user *user_data,
678 bool page_do_bit17_swizzling,
679 bool needs_clflush_before,
680 bool needs_clflush_after)
673a394b 681{
d174bd64
DV
682 char *vaddr;
683 int ret;
e5281ccd 684
d174bd64 685 vaddr = kmap(page);
e7e58eb5 686 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
687 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
688 page_length,
689 page_do_bit17_swizzling);
d174bd64
DV
690 if (page_do_bit17_swizzling)
691 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
692 user_data,
693 page_length);
d174bd64
DV
694 else
695 ret = __copy_from_user(vaddr + shmem_page_offset,
696 user_data,
697 page_length);
698 if (needs_clflush_after)
23c18c71
DV
699 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
700 page_length,
701 page_do_bit17_swizzling);
d174bd64 702 kunmap(page);
40123c1f 703
d174bd64 704 return ret;
40123c1f
EA
705}
706
40123c1f 707static int
e244a443
DV
708i915_gem_shmem_pwrite(struct drm_device *dev,
709 struct drm_i915_gem_object *obj,
710 struct drm_i915_gem_pwrite *args,
711 struct drm_file *file)
40123c1f 712{
05394f39 713 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 714 ssize_t remain;
8c59967c
DV
715 loff_t offset;
716 char __user *user_data;
eb2c0c81 717 int shmem_page_offset, page_length, ret = 0;
8c59967c 718 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 719 int hit_slowpath = 0;
58642885
DV
720 int needs_clflush_after = 0;
721 int needs_clflush_before = 0;
692a576b 722 int release_page;
40123c1f 723
8c59967c 724 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
725 remain = args->size;
726
8c59967c 727 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 728
58642885
DV
729 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
730 /* If we're not in the cpu write domain, set ourself into the gtt
731 * write domain and manually flush cachelines (if required). This
732 * optimizes for the case when the gpu will use the data
733 * right away and we therefore have to clflush anyway. */
734 if (obj->cache_level == I915_CACHE_NONE)
735 needs_clflush_after = 1;
736 ret = i915_gem_object_set_to_gtt_domain(obj, true);
737 if (ret)
738 return ret;
739 }
740 /* Same trick applies for invalidate partially written cachelines before
741 * writing. */
742 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
743 && obj->cache_level == I915_CACHE_NONE)
744 needs_clflush_before = 1;
745
673a394b 746 offset = args->offset;
05394f39 747 obj->dirty = 1;
673a394b 748
40123c1f 749 while (remain > 0) {
e5281ccd 750 struct page *page;
58642885 751 int partial_cacheline_write;
e5281ccd 752
40123c1f
EA
753 /* Operation in this page
754 *
40123c1f 755 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
756 * page_length = bytes to copy for this page
757 */
c8cbbb8b 758 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
759
760 page_length = remain;
761 if ((shmem_page_offset + page_length) > PAGE_SIZE)
762 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 763
58642885
DV
764 /* If we don't overwrite a cacheline completely we need to be
765 * careful to have up-to-date data by first clflushing. Don't
766 * overcomplicate things and flush the entire patch. */
767 partial_cacheline_write = needs_clflush_before &&
768 ((shmem_page_offset | page_length)
769 & (boot_cpu_data.x86_clflush_size - 1));
770
692a576b
DV
771 if (obj->pages) {
772 page = obj->pages[offset >> PAGE_SHIFT];
773 release_page = 0;
774 } else {
775 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
776 if (IS_ERR(page)) {
777 ret = PTR_ERR(page);
778 goto out;
779 }
780 release_page = 1;
e5281ccd
CW
781 }
782
8c59967c
DV
783 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
784 (page_to_phys(page) & (1 << 17)) != 0;
785
d174bd64
DV
786 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
787 user_data, page_do_bit17_swizzling,
788 partial_cacheline_write,
789 needs_clflush_after);
790 if (ret == 0)
791 goto next_page;
e244a443
DV
792
793 hit_slowpath = 1;
692a576b 794 page_cache_get(page);
e244a443
DV
795 mutex_unlock(&dev->struct_mutex);
796
d174bd64
DV
797 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
798 user_data, page_do_bit17_swizzling,
799 partial_cacheline_write,
800 needs_clflush_after);
40123c1f 801
e244a443 802 mutex_lock(&dev->struct_mutex);
692a576b 803 page_cache_release(page);
e244a443 804next_page:
e5281ccd
CW
805 set_page_dirty(page);
806 mark_page_accessed(page);
692a576b
DV
807 if (release_page)
808 page_cache_release(page);
e5281ccd 809
8c59967c
DV
810 if (ret) {
811 ret = -EFAULT;
812 goto out;
813 }
814
40123c1f 815 remain -= page_length;
8c59967c 816 user_data += page_length;
40123c1f 817 offset += page_length;
673a394b
EA
818 }
819
fbd5a26d 820out:
e244a443
DV
821 if (hit_slowpath) {
822 /* Fixup: Kill any reinstated backing storage pages */
823 if (obj->madv == __I915_MADV_PURGED)
824 i915_gem_object_truncate(obj);
825 /* and flush dirty cachelines in case the object isn't in the cpu write
826 * domain anymore. */
827 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
828 i915_gem_clflush_object(obj);
829 intel_gtt_chipset_flush();
830 }
8c59967c 831 }
673a394b 832
58642885
DV
833 if (needs_clflush_after)
834 intel_gtt_chipset_flush();
835
40123c1f 836 return ret;
673a394b
EA
837}
838
839/**
840 * Writes data to the object referenced by handle.
841 *
842 * On error, the contents of the buffer that were to be modified are undefined.
843 */
844int
845i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 846 struct drm_file *file)
673a394b
EA
847{
848 struct drm_i915_gem_pwrite *args = data;
05394f39 849 struct drm_i915_gem_object *obj;
51311d0a
CW
850 int ret;
851
852 if (args->size == 0)
853 return 0;
854
855 if (!access_ok(VERIFY_READ,
856 (char __user *)(uintptr_t)args->data_ptr,
857 args->size))
858 return -EFAULT;
859
f56f821f
DV
860 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
861 args->size);
51311d0a
CW
862 if (ret)
863 return -EFAULT;
673a394b 864
fbd5a26d 865 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 866 if (ret)
fbd5a26d 867 return ret;
1d7cfea1 868
05394f39 869 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 870 if (&obj->base == NULL) {
1d7cfea1
CW
871 ret = -ENOENT;
872 goto unlock;
fbd5a26d 873 }
673a394b 874
7dcd2499 875 /* Bounds check destination. */
05394f39
CW
876 if (args->offset > obj->base.size ||
877 args->size > obj->base.size - args->offset) {
ce9d419d 878 ret = -EINVAL;
35b62a89 879 goto out;
ce9d419d
CW
880 }
881
db53a302
CW
882 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
883
935aaa69 884 ret = -EFAULT;
673a394b
EA
885 /* We can only do the GTT pwrite on untiled buffers, as otherwise
886 * it would end up going through the fenced access, and we'll get
887 * different detiling behavior between reading and writing.
888 * pread/pwrite currently are reading and writing from the CPU
889 * perspective, requiring manual detiling by the client.
890 */
5c0480f2 891 if (obj->phys_obj) {
fbd5a26d 892 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
893 goto out;
894 }
895
896 if (obj->gtt_space &&
3ae53783 897 obj->cache_level == I915_CACHE_NONE &&
c07496fa 898 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 899 obj->map_and_fenceable &&
5c0480f2 900 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 901 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
902 /* Note that the gtt paths might fail with non-page-backed user
903 * pointers (e.g. gtt mappings when moving data between
904 * textures). Fallback to the shmem path in that case. */
fbd5a26d 905 }
673a394b 906
5c0480f2 907 if (ret == -EFAULT)
935aaa69 908 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 909
35b62a89 910out:
05394f39 911 drm_gem_object_unreference(&obj->base);
1d7cfea1 912unlock:
fbd5a26d 913 mutex_unlock(&dev->struct_mutex);
673a394b
EA
914 return ret;
915}
916
917/**
2ef7eeaa
EA
918 * Called when user space prepares to use an object with the CPU, either
919 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
920 */
921int
922i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 923 struct drm_file *file)
673a394b
EA
924{
925 struct drm_i915_gem_set_domain *args = data;
05394f39 926 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
927 uint32_t read_domains = args->read_domains;
928 uint32_t write_domain = args->write_domain;
673a394b
EA
929 int ret;
930
931 if (!(dev->driver->driver_features & DRIVER_GEM))
932 return -ENODEV;
933
2ef7eeaa 934 /* Only handle setting domains to types used by the CPU. */
21d509e3 935 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
936 return -EINVAL;
937
21d509e3 938 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
939 return -EINVAL;
940
941 /* Having something in the write domain implies it's in the read
942 * domain, and only that read domain. Enforce that in the request.
943 */
944 if (write_domain != 0 && read_domains != write_domain)
945 return -EINVAL;
946
76c1dec1 947 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 948 if (ret)
76c1dec1 949 return ret;
1d7cfea1 950
05394f39 951 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 952 if (&obj->base == NULL) {
1d7cfea1
CW
953 ret = -ENOENT;
954 goto unlock;
76c1dec1 955 }
673a394b 956
2ef7eeaa
EA
957 if (read_domains & I915_GEM_DOMAIN_GTT) {
958 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
959
960 /* Silently promote "you're not bound, there was nothing to do"
961 * to success, since the client was just asking us to
962 * make sure everything was done.
963 */
964 if (ret == -EINVAL)
965 ret = 0;
2ef7eeaa 966 } else {
e47c68e9 967 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
968 }
969
05394f39 970 drm_gem_object_unreference(&obj->base);
1d7cfea1 971unlock:
673a394b
EA
972 mutex_unlock(&dev->struct_mutex);
973 return ret;
974}
975
976/**
977 * Called when user space has done writes to this buffer
978 */
979int
980i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 981 struct drm_file *file)
673a394b
EA
982{
983 struct drm_i915_gem_sw_finish *args = data;
05394f39 984 struct drm_i915_gem_object *obj;
673a394b
EA
985 int ret = 0;
986
987 if (!(dev->driver->driver_features & DRIVER_GEM))
988 return -ENODEV;
989
76c1dec1 990 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 991 if (ret)
76c1dec1 992 return ret;
1d7cfea1 993
05394f39 994 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 995 if (&obj->base == NULL) {
1d7cfea1
CW
996 ret = -ENOENT;
997 goto unlock;
673a394b
EA
998 }
999
673a394b 1000 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1001 if (obj->pin_count)
e47c68e9
EA
1002 i915_gem_object_flush_cpu_write_domain(obj);
1003
05394f39 1004 drm_gem_object_unreference(&obj->base);
1d7cfea1 1005unlock:
673a394b
EA
1006 mutex_unlock(&dev->struct_mutex);
1007 return ret;
1008}
1009
1010/**
1011 * Maps the contents of an object, returning the address it is mapped
1012 * into.
1013 *
1014 * While the mapping holds a reference on the contents of the object, it doesn't
1015 * imply a ref on the object itself.
1016 */
1017int
1018i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1019 struct drm_file *file)
673a394b
EA
1020{
1021 struct drm_i915_gem_mmap *args = data;
1022 struct drm_gem_object *obj;
673a394b
EA
1023 unsigned long addr;
1024
1025 if (!(dev->driver->driver_features & DRIVER_GEM))
1026 return -ENODEV;
1027
05394f39 1028 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1029 if (obj == NULL)
bf79cb91 1030 return -ENOENT;
673a394b 1031
673a394b
EA
1032 down_write(&current->mm->mmap_sem);
1033 addr = do_mmap(obj->filp, 0, args->size,
1034 PROT_READ | PROT_WRITE, MAP_SHARED,
1035 args->offset);
1036 up_write(&current->mm->mmap_sem);
bc9025bd 1037 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1038 if (IS_ERR((void *)addr))
1039 return addr;
1040
1041 args->addr_ptr = (uint64_t) addr;
1042
1043 return 0;
1044}
1045
de151cf6
JB
1046/**
1047 * i915_gem_fault - fault a page into the GTT
1048 * vma: VMA in question
1049 * vmf: fault info
1050 *
1051 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1052 * from userspace. The fault handler takes care of binding the object to
1053 * the GTT (if needed), allocating and programming a fence register (again,
1054 * only if needed based on whether the old reg is still valid or the object
1055 * is tiled) and inserting a new PTE into the faulting process.
1056 *
1057 * Note that the faulting process may involve evicting existing objects
1058 * from the GTT and/or fence registers to make room. So performance may
1059 * suffer if the GTT working set is large or there are few fence registers
1060 * left.
1061 */
1062int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1063{
05394f39
CW
1064 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1065 struct drm_device *dev = obj->base.dev;
7d1c4804 1066 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1067 pgoff_t page_offset;
1068 unsigned long pfn;
1069 int ret = 0;
0f973f27 1070 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1071
1072 /* We don't use vmf->pgoff since that has the fake offset */
1073 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1074 PAGE_SHIFT;
1075
d9bc7e9f
CW
1076 ret = i915_mutex_lock_interruptible(dev);
1077 if (ret)
1078 goto out;
a00b10c3 1079
db53a302
CW
1080 trace_i915_gem_object_fault(obj, page_offset, true, write);
1081
d9bc7e9f 1082 /* Now bind it into the GTT if needed */
919926ae
CW
1083 if (!obj->map_and_fenceable) {
1084 ret = i915_gem_object_unbind(obj);
1085 if (ret)
1086 goto unlock;
a00b10c3 1087 }
05394f39 1088 if (!obj->gtt_space) {
75e9e915 1089 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1090 if (ret)
1091 goto unlock;
de151cf6 1092
e92d03bf
EA
1093 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1094 if (ret)
1095 goto unlock;
1096 }
4a684a41 1097
74898d7e
DV
1098 if (!obj->has_global_gtt_mapping)
1099 i915_gem_gtt_bind_object(obj, obj->cache_level);
1100
06d98131 1101 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1102 if (ret)
1103 goto unlock;
de151cf6 1104
05394f39
CW
1105 if (i915_gem_object_is_inactive(obj))
1106 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1107
6299f992
CW
1108 obj->fault_mappable = true;
1109
05394f39 1110 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1111 page_offset;
1112
1113 /* Finally, remap it using the new GTT offset */
1114 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1115unlock:
de151cf6 1116 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1117out:
de151cf6 1118 switch (ret) {
d9bc7e9f 1119 case -EIO:
045e769a 1120 case -EAGAIN:
d9bc7e9f
CW
1121 /* Give the error handler a chance to run and move the
1122 * objects off the GPU active list. Next time we service the
1123 * fault, we should be able to transition the page into the
1124 * GTT without touching the GPU (and so avoid further
1125 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1126 * with coherency, just lost writes.
1127 */
045e769a 1128 set_need_resched();
c715089f
CW
1129 case 0:
1130 case -ERESTARTSYS:
bed636ab 1131 case -EINTR:
c715089f 1132 return VM_FAULT_NOPAGE;
de151cf6 1133 case -ENOMEM:
de151cf6 1134 return VM_FAULT_OOM;
de151cf6 1135 default:
c715089f 1136 return VM_FAULT_SIGBUS;
de151cf6
JB
1137 }
1138}
1139
901782b2
CW
1140/**
1141 * i915_gem_release_mmap - remove physical page mappings
1142 * @obj: obj in question
1143 *
af901ca1 1144 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1145 * relinquish ownership of the pages back to the system.
1146 *
1147 * It is vital that we remove the page mapping if we have mapped a tiled
1148 * object through the GTT and then lose the fence register due to
1149 * resource pressure. Similarly if the object has been moved out of the
1150 * aperture, than pages mapped into userspace must be revoked. Removing the
1151 * mapping will then trigger a page fault on the next user access, allowing
1152 * fixup by i915_gem_fault().
1153 */
d05ca301 1154void
05394f39 1155i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1156{
6299f992
CW
1157 if (!obj->fault_mappable)
1158 return;
901782b2 1159
f6e47884
CW
1160 if (obj->base.dev->dev_mapping)
1161 unmap_mapping_range(obj->base.dev->dev_mapping,
1162 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1163 obj->base.size, 1);
fb7d516a 1164
6299f992 1165 obj->fault_mappable = false;
901782b2
CW
1166}
1167
92b88aeb 1168static uint32_t
e28f8711 1169i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1170{
e28f8711 1171 uint32_t gtt_size;
92b88aeb
CW
1172
1173 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1174 tiling_mode == I915_TILING_NONE)
1175 return size;
92b88aeb
CW
1176
1177 /* Previous chips need a power-of-two fence region when tiling */
1178 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1179 gtt_size = 1024*1024;
92b88aeb 1180 else
e28f8711 1181 gtt_size = 512*1024;
92b88aeb 1182
e28f8711
CW
1183 while (gtt_size < size)
1184 gtt_size <<= 1;
92b88aeb 1185
e28f8711 1186 return gtt_size;
92b88aeb
CW
1187}
1188
de151cf6
JB
1189/**
1190 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1191 * @obj: object to check
1192 *
1193 * Return the required GTT alignment for an object, taking into account
5e783301 1194 * potential fence register mapping.
de151cf6
JB
1195 */
1196static uint32_t
e28f8711
CW
1197i915_gem_get_gtt_alignment(struct drm_device *dev,
1198 uint32_t size,
1199 int tiling_mode)
de151cf6 1200{
de151cf6
JB
1201 /*
1202 * Minimum alignment is 4k (GTT page size), but might be greater
1203 * if a fence register is needed for the object.
1204 */
a00b10c3 1205 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1206 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1207 return 4096;
1208
a00b10c3
CW
1209 /*
1210 * Previous chips need to be aligned to the size of the smallest
1211 * fence register that can contain the object.
1212 */
e28f8711 1213 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1214}
1215
5e783301
DV
1216/**
1217 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1218 * unfenced object
e28f8711
CW
1219 * @dev: the device
1220 * @size: size of the object
1221 * @tiling_mode: tiling mode of the object
5e783301
DV
1222 *
1223 * Return the required GTT alignment for an object, only taking into account
1224 * unfenced tiled surface requirements.
1225 */
467cffba 1226uint32_t
e28f8711
CW
1227i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1228 uint32_t size,
1229 int tiling_mode)
5e783301 1230{
5e783301
DV
1231 /*
1232 * Minimum alignment is 4k (GTT page size) for sane hw.
1233 */
1234 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1235 tiling_mode == I915_TILING_NONE)
5e783301
DV
1236 return 4096;
1237
e28f8711
CW
1238 /* Previous hardware however needs to be aligned to a power-of-two
1239 * tile height. The simplest method for determining this is to reuse
1240 * the power-of-tile object size.
5e783301 1241 */
e28f8711 1242 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1243}
1244
de151cf6 1245int
ff72145b
DA
1246i915_gem_mmap_gtt(struct drm_file *file,
1247 struct drm_device *dev,
1248 uint32_t handle,
1249 uint64_t *offset)
de151cf6 1250{
da761a6e 1251 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1252 struct drm_i915_gem_object *obj;
de151cf6
JB
1253 int ret;
1254
1255 if (!(dev->driver->driver_features & DRIVER_GEM))
1256 return -ENODEV;
1257
76c1dec1 1258 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1259 if (ret)
76c1dec1 1260 return ret;
de151cf6 1261
ff72145b 1262 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1263 if (&obj->base == NULL) {
1d7cfea1
CW
1264 ret = -ENOENT;
1265 goto unlock;
1266 }
de151cf6 1267
05394f39 1268 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1269 ret = -E2BIG;
ff56b0bc 1270 goto out;
da761a6e
CW
1271 }
1272
05394f39 1273 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1274 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1275 ret = -EINVAL;
1276 goto out;
ab18282d
CW
1277 }
1278
05394f39 1279 if (!obj->base.map_list.map) {
b464e9a2 1280 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1281 if (ret)
1282 goto out;
de151cf6
JB
1283 }
1284
ff72145b 1285 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1286
1d7cfea1 1287out:
05394f39 1288 drm_gem_object_unreference(&obj->base);
1d7cfea1 1289unlock:
de151cf6 1290 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1291 return ret;
de151cf6
JB
1292}
1293
ff72145b
DA
1294/**
1295 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1296 * @dev: DRM device
1297 * @data: GTT mapping ioctl data
1298 * @file: GEM object info
1299 *
1300 * Simply returns the fake offset to userspace so it can mmap it.
1301 * The mmap call will end up in drm_gem_mmap(), which will set things
1302 * up so we can get faults in the handler above.
1303 *
1304 * The fault handler will take care of binding the object into the GTT
1305 * (since it may have been evicted to make room for something), allocating
1306 * a fence register, and mapping the appropriate aperture address into
1307 * userspace.
1308 */
1309int
1310i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1311 struct drm_file *file)
1312{
1313 struct drm_i915_gem_mmap_gtt *args = data;
1314
1315 if (!(dev->driver->driver_features & DRIVER_GEM))
1316 return -ENODEV;
1317
1318 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1319}
1320
1321
e5281ccd 1322static int
05394f39 1323i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1324 gfp_t gfpmask)
1325{
e5281ccd
CW
1326 int page_count, i;
1327 struct address_space *mapping;
1328 struct inode *inode;
1329 struct page *page;
1330
1331 /* Get the list of pages out of our struct file. They'll be pinned
1332 * at this point until we release them.
1333 */
05394f39
CW
1334 page_count = obj->base.size / PAGE_SIZE;
1335 BUG_ON(obj->pages != NULL);
1336 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1337 if (obj->pages == NULL)
e5281ccd
CW
1338 return -ENOMEM;
1339
05394f39 1340 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1341 mapping = inode->i_mapping;
5949eac4
HD
1342 gfpmask |= mapping_gfp_mask(mapping);
1343
e5281ccd 1344 for (i = 0; i < page_count; i++) {
5949eac4 1345 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1346 if (IS_ERR(page))
1347 goto err_pages;
1348
05394f39 1349 obj->pages[i] = page;
e5281ccd
CW
1350 }
1351
6dacfd2f 1352 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1353 i915_gem_object_do_bit_17_swizzle(obj);
1354
1355 return 0;
1356
1357err_pages:
1358 while (i--)
05394f39 1359 page_cache_release(obj->pages[i]);
e5281ccd 1360
05394f39
CW
1361 drm_free_large(obj->pages);
1362 obj->pages = NULL;
e5281ccd
CW
1363 return PTR_ERR(page);
1364}
1365
5cdf5881 1366static void
05394f39 1367i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1368{
05394f39 1369 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1370 int i;
1371
05394f39 1372 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1373
6dacfd2f 1374 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1375 i915_gem_object_save_bit_17_swizzle(obj);
1376
05394f39
CW
1377 if (obj->madv == I915_MADV_DONTNEED)
1378 obj->dirty = 0;
3ef94daa
CW
1379
1380 for (i = 0; i < page_count; i++) {
05394f39
CW
1381 if (obj->dirty)
1382 set_page_dirty(obj->pages[i]);
3ef94daa 1383
05394f39
CW
1384 if (obj->madv == I915_MADV_WILLNEED)
1385 mark_page_accessed(obj->pages[i]);
3ef94daa 1386
05394f39 1387 page_cache_release(obj->pages[i]);
3ef94daa 1388 }
05394f39 1389 obj->dirty = 0;
673a394b 1390
05394f39
CW
1391 drm_free_large(obj->pages);
1392 obj->pages = NULL;
673a394b
EA
1393}
1394
54cf91dc 1395void
05394f39 1396i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1397 struct intel_ring_buffer *ring,
1398 u32 seqno)
673a394b 1399{
05394f39 1400 struct drm_device *dev = obj->base.dev;
69dc4987 1401 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1402
852835f3 1403 BUG_ON(ring == NULL);
05394f39 1404 obj->ring = ring;
673a394b
EA
1405
1406 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1407 if (!obj->active) {
1408 drm_gem_object_reference(&obj->base);
1409 obj->active = 1;
673a394b 1410 }
e35a41de 1411
673a394b 1412 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1413 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1414 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1415
05394f39 1416 obj->last_rendering_seqno = seqno;
caea7476 1417
7dd49065 1418 if (obj->fenced_gpu_access) {
caea7476 1419 obj->last_fenced_seqno = seqno;
caea7476 1420
7dd49065
CW
1421 /* Bump MRU to take account of the delayed flush */
1422 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1423 struct drm_i915_fence_reg *reg;
1424
1425 reg = &dev_priv->fence_regs[obj->fence_reg];
1426 list_move_tail(&reg->lru_list,
1427 &dev_priv->mm.fence_list);
1428 }
caea7476
CW
1429 }
1430}
1431
1432static void
1433i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1434{
1435 list_del_init(&obj->ring_list);
1436 obj->last_rendering_seqno = 0;
15a13bbd 1437 obj->last_fenced_seqno = 0;
673a394b
EA
1438}
1439
ce44b0ea 1440static void
05394f39 1441i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1442{
05394f39 1443 struct drm_device *dev = obj->base.dev;
ce44b0ea 1444 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1445
05394f39
CW
1446 BUG_ON(!obj->active);
1447 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1448
1449 i915_gem_object_move_off_active(obj);
1450}
1451
1452static void
1453i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1454{
1455 struct drm_device *dev = obj->base.dev;
1456 struct drm_i915_private *dev_priv = dev->dev_private;
1457
1458 if (obj->pin_count != 0)
1459 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1460 else
1461 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1462
1463 BUG_ON(!list_empty(&obj->gpu_write_list));
1464 BUG_ON(!obj->active);
1465 obj->ring = NULL;
1466
1467 i915_gem_object_move_off_active(obj);
1468 obj->fenced_gpu_access = false;
caea7476
CW
1469
1470 obj->active = 0;
87ca9c8a 1471 obj->pending_gpu_write = false;
caea7476
CW
1472 drm_gem_object_unreference(&obj->base);
1473
1474 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1475}
673a394b 1476
963b4836
CW
1477/* Immediately discard the backing storage */
1478static void
05394f39 1479i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1480{
bb6baf76 1481 struct inode *inode;
963b4836 1482
ae9fed6b
CW
1483 /* Our goal here is to return as much of the memory as
1484 * is possible back to the system as we are called from OOM.
1485 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1486 * backing pages, *now*.
ae9fed6b 1487 */
05394f39 1488 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1489 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1490
a14917ee
CW
1491 if (obj->base.map_list.map)
1492 drm_gem_free_mmap_offset(&obj->base);
1493
05394f39 1494 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1495}
1496
1497static inline int
05394f39 1498i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1499{
05394f39 1500 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1501}
1502
63560396 1503static void
db53a302
CW
1504i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1505 uint32_t flush_domains)
63560396 1506{
05394f39 1507 struct drm_i915_gem_object *obj, *next;
63560396 1508
05394f39 1509 list_for_each_entry_safe(obj, next,
64193406 1510 &ring->gpu_write_list,
63560396 1511 gpu_write_list) {
05394f39
CW
1512 if (obj->base.write_domain & flush_domains) {
1513 uint32_t old_write_domain = obj->base.write_domain;
63560396 1514
05394f39
CW
1515 obj->base.write_domain = 0;
1516 list_del_init(&obj->gpu_write_list);
1ec14ad3 1517 i915_gem_object_move_to_active(obj, ring,
db53a302 1518 i915_gem_next_request_seqno(ring));
63560396 1519
63560396 1520 trace_i915_gem_object_change_domain(obj,
05394f39 1521 obj->base.read_domains,
63560396
DV
1522 old_write_domain);
1523 }
1524 }
1525}
8187a2b7 1526
53d227f2
DV
1527static u32
1528i915_gem_get_seqno(struct drm_device *dev)
1529{
1530 drm_i915_private_t *dev_priv = dev->dev_private;
1531 u32 seqno = dev_priv->next_seqno;
1532
1533 /* reserve 0 for non-seqno */
1534 if (++dev_priv->next_seqno == 0)
1535 dev_priv->next_seqno = 1;
1536
1537 return seqno;
1538}
1539
1540u32
1541i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1542{
1543 if (ring->outstanding_lazy_request == 0)
1544 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1545
1546 return ring->outstanding_lazy_request;
1547}
1548
3cce469c 1549int
db53a302 1550i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1551 struct drm_file *file,
db53a302 1552 struct drm_i915_gem_request *request)
673a394b 1553{
db53a302 1554 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1555 uint32_t seqno;
a71d8d94 1556 u32 request_ring_position;
673a394b 1557 int was_empty;
3cce469c
CW
1558 int ret;
1559
1560 BUG_ON(request == NULL);
53d227f2 1561 seqno = i915_gem_next_request_seqno(ring);
673a394b 1562
a71d8d94
CW
1563 /* Record the position of the start of the request so that
1564 * should we detect the updated seqno part-way through the
1565 * GPU processing the request, we never over-estimate the
1566 * position of the head.
1567 */
1568 request_ring_position = intel_ring_get_tail(ring);
1569
3cce469c
CW
1570 ret = ring->add_request(ring, &seqno);
1571 if (ret)
1572 return ret;
673a394b 1573
db53a302 1574 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1575
1576 request->seqno = seqno;
852835f3 1577 request->ring = ring;
a71d8d94 1578 request->tail = request_ring_position;
673a394b 1579 request->emitted_jiffies = jiffies;
852835f3
ZN
1580 was_empty = list_empty(&ring->request_list);
1581 list_add_tail(&request->list, &ring->request_list);
1582
db53a302
CW
1583 if (file) {
1584 struct drm_i915_file_private *file_priv = file->driver_priv;
1585
1c25595f 1586 spin_lock(&file_priv->mm.lock);
f787a5f5 1587 request->file_priv = file_priv;
b962442e 1588 list_add_tail(&request->client_list,
f787a5f5 1589 &file_priv->mm.request_list);
1c25595f 1590 spin_unlock(&file_priv->mm.lock);
b962442e 1591 }
673a394b 1592
5391d0cf 1593 ring->outstanding_lazy_request = 0;
db53a302 1594
f65d9421 1595 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1596 if (i915_enable_hangcheck) {
1597 mod_timer(&dev_priv->hangcheck_timer,
1598 jiffies +
1599 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1600 }
f65d9421 1601 if (was_empty)
b3b079db
CW
1602 queue_delayed_work(dev_priv->wq,
1603 &dev_priv->mm.retire_work, HZ);
f65d9421 1604 }
3cce469c 1605 return 0;
673a394b
EA
1606}
1607
f787a5f5
CW
1608static inline void
1609i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1610{
1c25595f 1611 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1612
1c25595f
CW
1613 if (!file_priv)
1614 return;
1c5d22f7 1615
1c25595f 1616 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1617 if (request->file_priv) {
1618 list_del(&request->client_list);
1619 request->file_priv = NULL;
1620 }
1c25595f 1621 spin_unlock(&file_priv->mm.lock);
673a394b 1622}
673a394b 1623
dfaae392
CW
1624static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1625 struct intel_ring_buffer *ring)
9375e446 1626{
dfaae392
CW
1627 while (!list_empty(&ring->request_list)) {
1628 struct drm_i915_gem_request *request;
673a394b 1629
dfaae392
CW
1630 request = list_first_entry(&ring->request_list,
1631 struct drm_i915_gem_request,
1632 list);
de151cf6 1633
dfaae392 1634 list_del(&request->list);
f787a5f5 1635 i915_gem_request_remove_from_client(request);
dfaae392
CW
1636 kfree(request);
1637 }
673a394b 1638
dfaae392 1639 while (!list_empty(&ring->active_list)) {
05394f39 1640 struct drm_i915_gem_object *obj;
9375e446 1641
05394f39
CW
1642 obj = list_first_entry(&ring->active_list,
1643 struct drm_i915_gem_object,
1644 ring_list);
9375e446 1645
05394f39
CW
1646 obj->base.write_domain = 0;
1647 list_del_init(&obj->gpu_write_list);
1648 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1649 }
1650}
1651
312817a3
CW
1652static void i915_gem_reset_fences(struct drm_device *dev)
1653{
1654 struct drm_i915_private *dev_priv = dev->dev_private;
1655 int i;
1656
4b9de737 1657 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1658 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 1659
ada726c7 1660 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 1661
ada726c7
CW
1662 if (reg->obj)
1663 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 1664
ada726c7
CW
1665 reg->pin_count = 0;
1666 reg->obj = NULL;
1667 INIT_LIST_HEAD(&reg->lru_list);
312817a3 1668 }
ada726c7
CW
1669
1670 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
1671}
1672
069efc1d 1673void i915_gem_reset(struct drm_device *dev)
673a394b 1674{
77f01230 1675 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1676 struct drm_i915_gem_object *obj;
1ec14ad3 1677 int i;
673a394b 1678
1ec14ad3
CW
1679 for (i = 0; i < I915_NUM_RINGS; i++)
1680 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1681
1682 /* Remove anything from the flushing lists. The GPU cache is likely
1683 * to be lost on reset along with the data, so simply move the
1684 * lost bo to the inactive list.
1685 */
1686 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1687 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1688 struct drm_i915_gem_object,
1689 mm_list);
dfaae392 1690
05394f39
CW
1691 obj->base.write_domain = 0;
1692 list_del_init(&obj->gpu_write_list);
1693 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1694 }
1695
1696 /* Move everything out of the GPU domains to ensure we do any
1697 * necessary invalidation upon reuse.
1698 */
05394f39 1699 list_for_each_entry(obj,
77f01230 1700 &dev_priv->mm.inactive_list,
69dc4987 1701 mm_list)
77f01230 1702 {
05394f39 1703 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1704 }
069efc1d
CW
1705
1706 /* The fence registers are invalidated so clear them out */
312817a3 1707 i915_gem_reset_fences(dev);
673a394b
EA
1708}
1709
1710/**
1711 * This function clears the request list as sequence numbers are passed.
1712 */
a71d8d94 1713void
db53a302 1714i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1715{
673a394b 1716 uint32_t seqno;
1ec14ad3 1717 int i;
673a394b 1718
db53a302 1719 if (list_empty(&ring->request_list))
6c0594a3
KW
1720 return;
1721
db53a302 1722 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1723
78501eac 1724 seqno = ring->get_seqno(ring);
1ec14ad3 1725
076e2c0e 1726 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1727 if (seqno >= ring->sync_seqno[i])
1728 ring->sync_seqno[i] = 0;
1729
852835f3 1730 while (!list_empty(&ring->request_list)) {
673a394b 1731 struct drm_i915_gem_request *request;
673a394b 1732
852835f3 1733 request = list_first_entry(&ring->request_list,
673a394b
EA
1734 struct drm_i915_gem_request,
1735 list);
673a394b 1736
dfaae392 1737 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1738 break;
1739
db53a302 1740 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1741 /* We know the GPU must have read the request to have
1742 * sent us the seqno + interrupt, so use the position
1743 * of tail of the request to update the last known position
1744 * of the GPU head.
1745 */
1746 ring->last_retired_head = request->tail;
b84d5f0c
CW
1747
1748 list_del(&request->list);
f787a5f5 1749 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1750 kfree(request);
1751 }
673a394b 1752
b84d5f0c
CW
1753 /* Move any buffers on the active list that are no longer referenced
1754 * by the ringbuffer to the flushing/inactive lists as appropriate.
1755 */
1756 while (!list_empty(&ring->active_list)) {
05394f39 1757 struct drm_i915_gem_object *obj;
b84d5f0c 1758
0206e353 1759 obj = list_first_entry(&ring->active_list,
05394f39
CW
1760 struct drm_i915_gem_object,
1761 ring_list);
673a394b 1762
05394f39 1763 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1764 break;
b84d5f0c 1765
05394f39 1766 if (obj->base.write_domain != 0)
b84d5f0c
CW
1767 i915_gem_object_move_to_flushing(obj);
1768 else
1769 i915_gem_object_move_to_inactive(obj);
673a394b 1770 }
9d34e5db 1771
db53a302
CW
1772 if (unlikely(ring->trace_irq_seqno &&
1773 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1774 ring->irq_put(ring);
db53a302 1775 ring->trace_irq_seqno = 0;
9d34e5db 1776 }
23bc5982 1777
db53a302 1778 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1779}
1780
b09a1fec
CW
1781void
1782i915_gem_retire_requests(struct drm_device *dev)
1783{
1784 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1785 int i;
b09a1fec 1786
be72615b 1787 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1788 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1789
1790 /* We must be careful that during unbind() we do not
1791 * accidentally infinitely recurse into retire requests.
1792 * Currently:
1793 * retire -> free -> unbind -> wait -> retire_ring
1794 */
05394f39 1795 list_for_each_entry_safe(obj, next,
be72615b 1796 &dev_priv->mm.deferred_free_list,
69dc4987 1797 mm_list)
05394f39 1798 i915_gem_free_object_tail(obj);
be72615b
CW
1799 }
1800
1ec14ad3 1801 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1802 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1803}
1804
75ef9da2 1805static void
673a394b
EA
1806i915_gem_retire_work_handler(struct work_struct *work)
1807{
1808 drm_i915_private_t *dev_priv;
1809 struct drm_device *dev;
0a58705b
CW
1810 bool idle;
1811 int i;
673a394b
EA
1812
1813 dev_priv = container_of(work, drm_i915_private_t,
1814 mm.retire_work.work);
1815 dev = dev_priv->dev;
1816
891b48cf
CW
1817 /* Come back later if the device is busy... */
1818 if (!mutex_trylock(&dev->struct_mutex)) {
1819 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1820 return;
1821 }
1822
b09a1fec 1823 i915_gem_retire_requests(dev);
d1b851fc 1824
0a58705b
CW
1825 /* Send a periodic flush down the ring so we don't hold onto GEM
1826 * objects indefinitely.
1827 */
1828 idle = true;
1829 for (i = 0; i < I915_NUM_RINGS; i++) {
1830 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1831
1832 if (!list_empty(&ring->gpu_write_list)) {
1833 struct drm_i915_gem_request *request;
1834 int ret;
1835
db53a302
CW
1836 ret = i915_gem_flush_ring(ring,
1837 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1838 request = kzalloc(sizeof(*request), GFP_KERNEL);
1839 if (ret || request == NULL ||
db53a302 1840 i915_add_request(ring, NULL, request))
0a58705b
CW
1841 kfree(request);
1842 }
1843
1844 idle &= list_empty(&ring->request_list);
1845 }
1846
1847 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1848 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1849
673a394b
EA
1850 mutex_unlock(&dev->struct_mutex);
1851}
1852
db53a302
CW
1853/**
1854 * Waits for a sequence number to be signaled, and cleans up the
1855 * request and object lists appropriately for that event.
1856 */
5a5a0c64 1857int
db53a302 1858i915_wait_request(struct intel_ring_buffer *ring,
b93f9cf1
BW
1859 uint32_t seqno,
1860 bool do_retire)
673a394b 1861{
db53a302 1862 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1863 u32 ier;
673a394b
EA
1864 int ret = 0;
1865
1866 BUG_ON(seqno == 0);
1867
d9bc7e9f
CW
1868 if (atomic_read(&dev_priv->mm.wedged)) {
1869 struct completion *x = &dev_priv->error_completion;
1870 bool recovery_complete;
1871 unsigned long flags;
1872
1873 /* Give the error handler a chance to run. */
1874 spin_lock_irqsave(&x->wait.lock, flags);
1875 recovery_complete = x->done > 0;
1876 spin_unlock_irqrestore(&x->wait.lock, flags);
1877
1878 return recovery_complete ? -EIO : -EAGAIN;
1879 }
30dbf0c0 1880
5d97eb69 1881 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1882 struct drm_i915_gem_request *request;
1883
1884 request = kzalloc(sizeof(*request), GFP_KERNEL);
1885 if (request == NULL)
e35a41de 1886 return -ENOMEM;
3cce469c 1887
db53a302 1888 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
1889 if (ret) {
1890 kfree(request);
1891 return ret;
1892 }
1893
1894 seqno = request->seqno;
e35a41de 1895 }
ffed1d09 1896
78501eac 1897 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 1898 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d 1899 ier = I915_READ(DEIER) | I915_READ(GTIER);
23e3f9b3
JB
1900 else if (IS_VALLEYVIEW(ring->dev))
1901 ier = I915_READ(GTIER) | I915_READ(VLV_IER);
036a4a7d
ZW
1902 else
1903 ier = I915_READ(IER);
802c7eb6
JB
1904 if (!ier) {
1905 DRM_ERROR("something (likely vbetool) disabled "
1906 "interrupts, re-enabling\n");
f01c22fd
CW
1907 ring->dev->driver->irq_preinstall(ring->dev);
1908 ring->dev->driver->irq_postinstall(ring->dev);
802c7eb6
JB
1909 }
1910
db53a302 1911 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 1912
b2223497 1913 ring->waiting_seqno = seqno;
b13c2b96 1914 if (ring->irq_get(ring)) {
ce453d81 1915 if (dev_priv->mm.interruptible)
b13c2b96
CW
1916 ret = wait_event_interruptible(ring->irq_queue,
1917 i915_seqno_passed(ring->get_seqno(ring), seqno)
1918 || atomic_read(&dev_priv->mm.wedged));
1919 else
1920 wait_event(ring->irq_queue,
1921 i915_seqno_passed(ring->get_seqno(ring), seqno)
1922 || atomic_read(&dev_priv->mm.wedged));
1923
1924 ring->irq_put(ring);
e959b5db
EA
1925 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1926 seqno) ||
1927 atomic_read(&dev_priv->mm.wedged), 3000))
b5ba177d 1928 ret = -EBUSY;
b2223497 1929 ring->waiting_seqno = 0;
1c5d22f7 1930
db53a302 1931 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 1932 }
ba1234d1 1933 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1934 ret = -EAGAIN;
673a394b 1935
673a394b
EA
1936 /* Directly dispatch request retiring. While we have the work queue
1937 * to handle this, the waiter on a request often wants an associated
1938 * buffer to have made it to the inactive list, and we would need
1939 * a separate wait queue to handle that.
1940 */
b93f9cf1 1941 if (ret == 0 && do_retire)
db53a302 1942 i915_gem_retire_requests_ring(ring);
673a394b
EA
1943
1944 return ret;
1945}
1946
673a394b
EA
1947/**
1948 * Ensures that all rendering to the object has completed and the object is
1949 * safe to unbind from the GTT or access from the CPU.
1950 */
54cf91dc 1951int
ce453d81 1952i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 1953{
673a394b
EA
1954 int ret;
1955
e47c68e9
EA
1956 /* This function only exists to support waiting for existing rendering,
1957 * not for emitting required flushes.
673a394b 1958 */
05394f39 1959 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1960
1961 /* If there is rendering queued on the buffer being evicted, wait for
1962 * it.
1963 */
05394f39 1964 if (obj->active) {
b93f9cf1
BW
1965 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
1966 true);
2cf34d7b 1967 if (ret)
673a394b
EA
1968 return ret;
1969 }
1970
1971 return 0;
1972}
1973
5816d648
BW
1974/**
1975 * i915_gem_object_sync - sync an object to a ring.
1976 *
1977 * @obj: object which may be in use on another ring.
1978 * @to: ring we wish to use the object on. May be NULL.
1979 *
1980 * This code is meant to abstract object synchronization with the GPU.
1981 * Calling with NULL implies synchronizing the object with the CPU
1982 * rather than a particular GPU ring.
1983 *
1984 * Returns 0 if successful, else propagates up the lower layer error.
1985 */
2911a35b
BW
1986int
1987i915_gem_object_sync(struct drm_i915_gem_object *obj,
1988 struct intel_ring_buffer *to)
1989{
1990 struct intel_ring_buffer *from = obj->ring;
1991 u32 seqno;
1992 int ret, idx;
1993
1994 if (from == NULL || to == from)
1995 return 0;
1996
5816d648 1997 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2911a35b
BW
1998 return i915_gem_object_wait_rendering(obj);
1999
2000 idx = intel_ring_sync_index(from, to);
2001
2002 seqno = obj->last_rendering_seqno;
2003 if (seqno <= from->sync_seqno[idx])
2004 return 0;
2005
2006 if (seqno == from->outstanding_lazy_request) {
2007 struct drm_i915_gem_request *request;
2008
2009 request = kzalloc(sizeof(*request), GFP_KERNEL);
2010 if (request == NULL)
2011 return -ENOMEM;
2012
2013 ret = i915_add_request(from, NULL, request);
2014 if (ret) {
2015 kfree(request);
2016 return ret;
2017 }
2018
2019 seqno = request->seqno;
2020 }
2021
2911a35b 2022
1500f7ea 2023 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2024 if (!ret)
2025 from->sync_seqno[idx] = seqno;
2911a35b 2026
e3a5a225 2027 return ret;
2911a35b
BW
2028}
2029
b5ffc9bc
CW
2030static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2031{
2032 u32 old_write_domain, old_read_domains;
2033
b5ffc9bc
CW
2034 /* Act a barrier for all accesses through the GTT */
2035 mb();
2036
2037 /* Force a pagefault for domain tracking on next user access */
2038 i915_gem_release_mmap(obj);
2039
b97c3d9c
KP
2040 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2041 return;
2042
b5ffc9bc
CW
2043 old_read_domains = obj->base.read_domains;
2044 old_write_domain = obj->base.write_domain;
2045
2046 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2047 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2048
2049 trace_i915_gem_object_change_domain(obj,
2050 old_read_domains,
2051 old_write_domain);
2052}
2053
673a394b
EA
2054/**
2055 * Unbinds an object from the GTT aperture.
2056 */
0f973f27 2057int
05394f39 2058i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2059{
7bddb01f 2060 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2061 int ret = 0;
2062
05394f39 2063 if (obj->gtt_space == NULL)
673a394b
EA
2064 return 0;
2065
05394f39 2066 if (obj->pin_count != 0) {
673a394b
EA
2067 DRM_ERROR("Attempting to unbind pinned buffer\n");
2068 return -EINVAL;
2069 }
2070
a8198eea
CW
2071 ret = i915_gem_object_finish_gpu(obj);
2072 if (ret == -ERESTARTSYS)
2073 return ret;
2074 /* Continue on if we fail due to EIO, the GPU is hung so we
2075 * should be safe and we need to cleanup or else we might
2076 * cause memory corruption through use-after-free.
2077 */
2078
b5ffc9bc 2079 i915_gem_object_finish_gtt(obj);
5323fd04 2080
673a394b
EA
2081 /* Move the object to the CPU domain to ensure that
2082 * any possible CPU writes while it's not in the GTT
a8198eea 2083 * are flushed when we go to remap it.
673a394b 2084 */
a8198eea
CW
2085 if (ret == 0)
2086 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2087 if (ret == -ERESTARTSYS)
673a394b 2088 return ret;
812ed492 2089 if (ret) {
a8198eea
CW
2090 /* In the event of a disaster, abandon all caches and
2091 * hope for the best.
2092 */
812ed492 2093 i915_gem_clflush_object(obj);
05394f39 2094 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2095 }
673a394b 2096
96b47b65 2097 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2098 ret = i915_gem_object_put_fence(obj);
2099 if (ret == -ERESTARTSYS)
2100 return ret;
96b47b65 2101
db53a302
CW
2102 trace_i915_gem_object_unbind(obj);
2103
74898d7e
DV
2104 if (obj->has_global_gtt_mapping)
2105 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2106 if (obj->has_aliasing_ppgtt_mapping) {
2107 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2108 obj->has_aliasing_ppgtt_mapping = 0;
2109 }
74163907 2110 i915_gem_gtt_finish_object(obj);
7bddb01f 2111
e5281ccd 2112 i915_gem_object_put_pages_gtt(obj);
673a394b 2113
6299f992 2114 list_del_init(&obj->gtt_list);
05394f39 2115 list_del_init(&obj->mm_list);
75e9e915 2116 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2117 obj->map_and_fenceable = true;
673a394b 2118
05394f39
CW
2119 drm_mm_put_block(obj->gtt_space);
2120 obj->gtt_space = NULL;
2121 obj->gtt_offset = 0;
673a394b 2122
05394f39 2123 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2124 i915_gem_object_truncate(obj);
2125
8dc1775d 2126 return ret;
673a394b
EA
2127}
2128
88241785 2129int
db53a302 2130i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2131 uint32_t invalidate_domains,
2132 uint32_t flush_domains)
2133{
88241785
CW
2134 int ret;
2135
36d527de
CW
2136 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2137 return 0;
2138
db53a302
CW
2139 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2140
88241785
CW
2141 ret = ring->flush(ring, invalidate_domains, flush_domains);
2142 if (ret)
2143 return ret;
2144
36d527de
CW
2145 if (flush_domains & I915_GEM_GPU_DOMAINS)
2146 i915_gem_process_flushing_list(ring, flush_domains);
2147
88241785 2148 return 0;
54cf91dc
CW
2149}
2150
b93f9cf1 2151static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
a56ba56c 2152{
88241785
CW
2153 int ret;
2154
395b70be 2155 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2156 return 0;
2157
88241785 2158 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2159 ret = i915_gem_flush_ring(ring,
0ac74c6b 2160 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2161 if (ret)
2162 return ret;
2163 }
2164
b93f9cf1
BW
2165 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2166 do_retire);
a56ba56c
CW
2167}
2168
b93f9cf1 2169int i915_gpu_idle(struct drm_device *dev, bool do_retire)
4df2faf4
DV
2170{
2171 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 2172 int ret, i;
4df2faf4 2173
4df2faf4 2174 /* Flush everything onto the inactive list. */
1ec14ad3 2175 for (i = 0; i < I915_NUM_RINGS; i++) {
b93f9cf1 2176 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
1ec14ad3
CW
2177 if (ret)
2178 return ret;
2179 }
4df2faf4 2180
8a1a49f9 2181 return 0;
4df2faf4
DV
2182}
2183
9ce079e4
CW
2184static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2185 struct drm_i915_gem_object *obj)
4e901fdc 2186{
4e901fdc 2187 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2188 uint64_t val;
2189
9ce079e4
CW
2190 if (obj) {
2191 u32 size = obj->gtt_space->size;
4e901fdc 2192
9ce079e4
CW
2193 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2194 0xfffff000) << 32;
2195 val |= obj->gtt_offset & 0xfffff000;
2196 val |= (uint64_t)((obj->stride / 128) - 1) <<
2197 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2198
9ce079e4
CW
2199 if (obj->tiling_mode == I915_TILING_Y)
2200 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2201 val |= I965_FENCE_REG_VALID;
2202 } else
2203 val = 0;
c6642782 2204
9ce079e4
CW
2205 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2206 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2207}
2208
9ce079e4
CW
2209static void i965_write_fence_reg(struct drm_device *dev, int reg,
2210 struct drm_i915_gem_object *obj)
de151cf6 2211{
de151cf6 2212 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2213 uint64_t val;
2214
9ce079e4
CW
2215 if (obj) {
2216 u32 size = obj->gtt_space->size;
de151cf6 2217
9ce079e4
CW
2218 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2219 0xfffff000) << 32;
2220 val |= obj->gtt_offset & 0xfffff000;
2221 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2222 if (obj->tiling_mode == I915_TILING_Y)
2223 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2224 val |= I965_FENCE_REG_VALID;
2225 } else
2226 val = 0;
c6642782 2227
9ce079e4
CW
2228 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2229 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2230}
2231
9ce079e4
CW
2232static void i915_write_fence_reg(struct drm_device *dev, int reg,
2233 struct drm_i915_gem_object *obj)
de151cf6 2234{
de151cf6 2235 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2236 u32 val;
de151cf6 2237
9ce079e4
CW
2238 if (obj) {
2239 u32 size = obj->gtt_space->size;
2240 int pitch_val;
2241 int tile_width;
c6642782 2242
9ce079e4
CW
2243 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2244 (size & -size) != size ||
2245 (obj->gtt_offset & (size - 1)),
2246 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2247 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2248
9ce079e4
CW
2249 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2250 tile_width = 128;
2251 else
2252 tile_width = 512;
2253
2254 /* Note: pitch better be a power of two tile widths */
2255 pitch_val = obj->stride / tile_width;
2256 pitch_val = ffs(pitch_val) - 1;
2257
2258 val = obj->gtt_offset;
2259 if (obj->tiling_mode == I915_TILING_Y)
2260 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2261 val |= I915_FENCE_SIZE_BITS(size);
2262 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2263 val |= I830_FENCE_REG_VALID;
2264 } else
2265 val = 0;
2266
2267 if (reg < 8)
2268 reg = FENCE_REG_830_0 + reg * 4;
2269 else
2270 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2271
2272 I915_WRITE(reg, val);
2273 POSTING_READ(reg);
de151cf6
JB
2274}
2275
9ce079e4
CW
2276static void i830_write_fence_reg(struct drm_device *dev, int reg,
2277 struct drm_i915_gem_object *obj)
de151cf6 2278{
de151cf6 2279 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2280 uint32_t val;
de151cf6 2281
9ce079e4
CW
2282 if (obj) {
2283 u32 size = obj->gtt_space->size;
2284 uint32_t pitch_val;
de151cf6 2285
9ce079e4
CW
2286 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2287 (size & -size) != size ||
2288 (obj->gtt_offset & (size - 1)),
2289 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2290 obj->gtt_offset, size);
e76a16de 2291
9ce079e4
CW
2292 pitch_val = obj->stride / 128;
2293 pitch_val = ffs(pitch_val) - 1;
de151cf6 2294
9ce079e4
CW
2295 val = obj->gtt_offset;
2296 if (obj->tiling_mode == I915_TILING_Y)
2297 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2298 val |= I830_FENCE_SIZE_BITS(size);
2299 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2300 val |= I830_FENCE_REG_VALID;
2301 } else
2302 val = 0;
c6642782 2303
9ce079e4
CW
2304 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2305 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2306}
2307
2308static void i915_gem_write_fence(struct drm_device *dev, int reg,
2309 struct drm_i915_gem_object *obj)
2310{
2311 switch (INTEL_INFO(dev)->gen) {
2312 case 7:
2313 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2314 case 5:
2315 case 4: i965_write_fence_reg(dev, reg, obj); break;
2316 case 3: i915_write_fence_reg(dev, reg, obj); break;
2317 case 2: i830_write_fence_reg(dev, reg, obj); break;
2318 default: break;
2319 }
de151cf6
JB
2320}
2321
61050808
CW
2322static inline int fence_number(struct drm_i915_private *dev_priv,
2323 struct drm_i915_fence_reg *fence)
2324{
2325 return fence - dev_priv->fence_regs;
2326}
2327
2328static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2329 struct drm_i915_fence_reg *fence,
2330 bool enable)
2331{
2332 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2333 int reg = fence_number(dev_priv, fence);
2334
2335 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2336
2337 if (enable) {
2338 obj->fence_reg = reg;
2339 fence->obj = obj;
2340 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2341 } else {
2342 obj->fence_reg = I915_FENCE_REG_NONE;
2343 fence->obj = NULL;
2344 list_del_init(&fence->lru_list);
2345 }
2346}
2347
d9e86c0e 2348static int
a360bb1a 2349i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e
CW
2350{
2351 int ret;
2352
2353 if (obj->fenced_gpu_access) {
88241785 2354 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
1c293ea3 2355 ret = i915_gem_flush_ring(obj->ring,
88241785
CW
2356 0, obj->base.write_domain);
2357 if (ret)
2358 return ret;
2359 }
d9e86c0e
CW
2360
2361 obj->fenced_gpu_access = false;
2362 }
2363
1c293ea3 2364 if (obj->last_fenced_seqno) {
18991845
CW
2365 ret = i915_wait_request(obj->ring,
2366 obj->last_fenced_seqno,
14415745 2367 false);
18991845
CW
2368 if (ret)
2369 return ret;
d9e86c0e
CW
2370
2371 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2372 }
2373
63256ec5
CW
2374 /* Ensure that all CPU reads are completed before installing a fence
2375 * and all writes before removing the fence.
2376 */
2377 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2378 mb();
2379
d9e86c0e
CW
2380 return 0;
2381}
2382
2383int
2384i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2385{
61050808 2386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2387 int ret;
2388
a360bb1a 2389 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2390 if (ret)
2391 return ret;
2392
61050808
CW
2393 if (obj->fence_reg == I915_FENCE_REG_NONE)
2394 return 0;
d9e86c0e 2395
61050808
CW
2396 i915_gem_object_update_fence(obj,
2397 &dev_priv->fence_regs[obj->fence_reg],
2398 false);
2399 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2400
2401 return 0;
2402}
2403
2404static struct drm_i915_fence_reg *
a360bb1a 2405i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2406{
ae3db24a 2407 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2408 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2409 int i;
ae3db24a
DV
2410
2411 /* First try to find a free reg */
d9e86c0e 2412 avail = NULL;
ae3db24a
DV
2413 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2414 reg = &dev_priv->fence_regs[i];
2415 if (!reg->obj)
d9e86c0e 2416 return reg;
ae3db24a 2417
1690e1eb 2418 if (!reg->pin_count)
d9e86c0e 2419 avail = reg;
ae3db24a
DV
2420 }
2421
d9e86c0e
CW
2422 if (avail == NULL)
2423 return NULL;
ae3db24a
DV
2424
2425 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2426 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2427 if (reg->pin_count)
ae3db24a
DV
2428 continue;
2429
8fe301ad 2430 return reg;
ae3db24a
DV
2431 }
2432
8fe301ad 2433 return NULL;
ae3db24a
DV
2434}
2435
de151cf6 2436/**
9a5a53b3 2437 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2438 * @obj: object to map through a fence reg
2439 *
2440 * When mapping objects through the GTT, userspace wants to be able to write
2441 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2442 * This function walks the fence regs looking for a free one for @obj,
2443 * stealing one if it can't find any.
2444 *
2445 * It then sets up the reg based on the object's properties: address, pitch
2446 * and tiling format.
9a5a53b3
CW
2447 *
2448 * For an untiled surface, this removes any existing fence.
de151cf6 2449 */
8c4b8c3f 2450int
06d98131 2451i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2452{
05394f39 2453 struct drm_device *dev = obj->base.dev;
79e53945 2454 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2455 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2456 struct drm_i915_fence_reg *reg;
ae3db24a 2457 int ret;
de151cf6 2458
14415745
CW
2459 /* Have we updated the tiling parameters upon the object and so
2460 * will need to serialise the write to the associated fence register?
2461 */
5d82e3e6 2462 if (obj->fence_dirty) {
14415745
CW
2463 ret = i915_gem_object_flush_fence(obj);
2464 if (ret)
2465 return ret;
2466 }
9a5a53b3 2467
d9e86c0e 2468 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2469 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2470 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2471 if (!obj->fence_dirty) {
14415745
CW
2472 list_move_tail(&reg->lru_list,
2473 &dev_priv->mm.fence_list);
2474 return 0;
2475 }
2476 } else if (enable) {
2477 reg = i915_find_fence_reg(dev);
2478 if (reg == NULL)
2479 return -EDEADLK;
d9e86c0e 2480
14415745
CW
2481 if (reg->obj) {
2482 struct drm_i915_gem_object *old = reg->obj;
2483
2484 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2485 if (ret)
2486 return ret;
2487
14415745 2488 i915_gem_object_fence_lost(old);
29c5a587 2489 }
14415745 2490 } else
a09ba7fa 2491 return 0;
a09ba7fa 2492
14415745 2493 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2494 obj->fence_dirty = false;
14415745 2495
9ce079e4 2496 return 0;
de151cf6
JB
2497}
2498
673a394b
EA
2499/**
2500 * Finds free space in the GTT aperture and binds the object there.
2501 */
2502static int
05394f39 2503i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2504 unsigned alignment,
75e9e915 2505 bool map_and_fenceable)
673a394b 2506{
05394f39 2507 struct drm_device *dev = obj->base.dev;
673a394b 2508 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2509 struct drm_mm_node *free_space;
a00b10c3 2510 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2511 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2512 bool mappable, fenceable;
07f73f69 2513 int ret;
673a394b 2514
05394f39 2515 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2516 DRM_ERROR("Attempting to bind a purgeable object\n");
2517 return -EINVAL;
2518 }
2519
e28f8711
CW
2520 fence_size = i915_gem_get_gtt_size(dev,
2521 obj->base.size,
2522 obj->tiling_mode);
2523 fence_alignment = i915_gem_get_gtt_alignment(dev,
2524 obj->base.size,
2525 obj->tiling_mode);
2526 unfenced_alignment =
2527 i915_gem_get_unfenced_gtt_alignment(dev,
2528 obj->base.size,
2529 obj->tiling_mode);
a00b10c3 2530
673a394b 2531 if (alignment == 0)
5e783301
DV
2532 alignment = map_and_fenceable ? fence_alignment :
2533 unfenced_alignment;
75e9e915 2534 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2535 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2536 return -EINVAL;
2537 }
2538
05394f39 2539 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2540
654fc607
CW
2541 /* If the object is bigger than the entire aperture, reject it early
2542 * before evicting everything in a vain attempt to find space.
2543 */
05394f39 2544 if (obj->base.size >
75e9e915 2545 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2546 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2547 return -E2BIG;
2548 }
2549
673a394b 2550 search_free:
75e9e915 2551 if (map_and_fenceable)
920afa77
DV
2552 free_space =
2553 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2554 size, alignment, 0,
920afa77
DV
2555 dev_priv->mm.gtt_mappable_end,
2556 0);
2557 else
2558 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2559 size, alignment, 0);
920afa77
DV
2560
2561 if (free_space != NULL) {
75e9e915 2562 if (map_and_fenceable)
05394f39 2563 obj->gtt_space =
920afa77 2564 drm_mm_get_block_range_generic(free_space,
a00b10c3 2565 size, alignment, 0,
920afa77
DV
2566 dev_priv->mm.gtt_mappable_end,
2567 0);
2568 else
05394f39 2569 obj->gtt_space =
a00b10c3 2570 drm_mm_get_block(free_space, size, alignment);
920afa77 2571 }
05394f39 2572 if (obj->gtt_space == NULL) {
673a394b
EA
2573 /* If the gtt is empty and we're still having trouble
2574 * fitting our object in, we're out of memory.
2575 */
75e9e915
DV
2576 ret = i915_gem_evict_something(dev, size, alignment,
2577 map_and_fenceable);
9731129c 2578 if (ret)
673a394b 2579 return ret;
9731129c 2580
673a394b
EA
2581 goto search_free;
2582 }
2583
e5281ccd 2584 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2585 if (ret) {
05394f39
CW
2586 drm_mm_put_block(obj->gtt_space);
2587 obj->gtt_space = NULL;
07f73f69
CW
2588
2589 if (ret == -ENOMEM) {
809b6334
CW
2590 /* first try to reclaim some memory by clearing the GTT */
2591 ret = i915_gem_evict_everything(dev, false);
07f73f69 2592 if (ret) {
07f73f69 2593 /* now try to shrink everyone else */
4bdadb97
CW
2594 if (gfpmask) {
2595 gfpmask = 0;
2596 goto search_free;
07f73f69
CW
2597 }
2598
809b6334 2599 return -ENOMEM;
07f73f69
CW
2600 }
2601
2602 goto search_free;
2603 }
2604
673a394b
EA
2605 return ret;
2606 }
2607
74163907 2608 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2609 if (ret) {
e5281ccd 2610 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2611 drm_mm_put_block(obj->gtt_space);
2612 obj->gtt_space = NULL;
07f73f69 2613
809b6334 2614 if (i915_gem_evict_everything(dev, false))
07f73f69 2615 return ret;
07f73f69
CW
2616
2617 goto search_free;
673a394b 2618 }
673a394b 2619
0ebb9829
DV
2620 if (!dev_priv->mm.aliasing_ppgtt)
2621 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2622
6299f992 2623 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2624 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2625
673a394b
EA
2626 /* Assert that the object is not currently in any GPU domain. As it
2627 * wasn't in the GTT, there shouldn't be any way it could have been in
2628 * a GPU cache
2629 */
05394f39
CW
2630 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2631 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2632
6299f992 2633 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2634
75e9e915 2635 fenceable =
05394f39 2636 obj->gtt_space->size == fence_size &&
0206e353 2637 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2638
75e9e915 2639 mappable =
05394f39 2640 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2641
05394f39 2642 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2643
db53a302 2644 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2645 return 0;
2646}
2647
2648void
05394f39 2649i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2650{
673a394b
EA
2651 /* If we don't have a page list set up, then we're not pinned
2652 * to GPU, and we can ignore the cache flush because it'll happen
2653 * again at bind time.
2654 */
05394f39 2655 if (obj->pages == NULL)
673a394b
EA
2656 return;
2657
9c23f7fc
CW
2658 /* If the GPU is snooping the contents of the CPU cache,
2659 * we do not need to manually clear the CPU cache lines. However,
2660 * the caches are only snooped when the render cache is
2661 * flushed/invalidated. As we always have to emit invalidations
2662 * and flushes when moving into and out of the RENDER domain, correct
2663 * snooping behaviour occurs naturally as the result of our domain
2664 * tracking.
2665 */
2666 if (obj->cache_level != I915_CACHE_NONE)
2667 return;
2668
1c5d22f7 2669 trace_i915_gem_object_clflush(obj);
cfa16a0d 2670
05394f39 2671 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2672}
2673
e47c68e9 2674/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2675static int
3619df03 2676i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2677{
05394f39 2678 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2679 return 0;
e47c68e9
EA
2680
2681 /* Queue the GPU write cache flushing we need. */
db53a302 2682 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2683}
2684
2685/** Flushes the GTT write domain for the object if it's dirty. */
2686static void
05394f39 2687i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2688{
1c5d22f7
CW
2689 uint32_t old_write_domain;
2690
05394f39 2691 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2692 return;
2693
63256ec5 2694 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2695 * to it immediately go to main memory as far as we know, so there's
2696 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2697 *
2698 * However, we do have to enforce the order so that all writes through
2699 * the GTT land before any writes to the device, such as updates to
2700 * the GATT itself.
e47c68e9 2701 */
63256ec5
CW
2702 wmb();
2703
05394f39
CW
2704 old_write_domain = obj->base.write_domain;
2705 obj->base.write_domain = 0;
1c5d22f7
CW
2706
2707 trace_i915_gem_object_change_domain(obj,
05394f39 2708 obj->base.read_domains,
1c5d22f7 2709 old_write_domain);
e47c68e9
EA
2710}
2711
2712/** Flushes the CPU write domain for the object if it's dirty. */
2713static void
05394f39 2714i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2715{
1c5d22f7 2716 uint32_t old_write_domain;
e47c68e9 2717
05394f39 2718 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2719 return;
2720
2721 i915_gem_clflush_object(obj);
40ce6575 2722 intel_gtt_chipset_flush();
05394f39
CW
2723 old_write_domain = obj->base.write_domain;
2724 obj->base.write_domain = 0;
1c5d22f7
CW
2725
2726 trace_i915_gem_object_change_domain(obj,
05394f39 2727 obj->base.read_domains,
1c5d22f7 2728 old_write_domain);
e47c68e9
EA
2729}
2730
2ef7eeaa
EA
2731/**
2732 * Moves a single object to the GTT read, and possibly write domain.
2733 *
2734 * This function returns when the move is complete, including waiting on
2735 * flushes to occur.
2736 */
79e53945 2737int
2021746e 2738i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2739{
8325a09d 2740 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 2741 uint32_t old_write_domain, old_read_domains;
e47c68e9 2742 int ret;
2ef7eeaa 2743
02354392 2744 /* Not valid to be called on unbound objects. */
05394f39 2745 if (obj->gtt_space == NULL)
02354392
EA
2746 return -EINVAL;
2747
8d7e3de1
CW
2748 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2749 return 0;
2750
88241785
CW
2751 ret = i915_gem_object_flush_gpu_write_domain(obj);
2752 if (ret)
2753 return ret;
2754
87ca9c8a 2755 if (obj->pending_gpu_write || write) {
ce453d81 2756 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2757 if (ret)
2758 return ret;
2759 }
2dafb1e0 2760
7213342d 2761 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2762
05394f39
CW
2763 old_write_domain = obj->base.write_domain;
2764 old_read_domains = obj->base.read_domains;
1c5d22f7 2765
e47c68e9
EA
2766 /* It should now be out of any other write domains, and we can update
2767 * the domain values for our changes.
2768 */
05394f39
CW
2769 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2770 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2771 if (write) {
05394f39
CW
2772 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2773 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2774 obj->dirty = 1;
2ef7eeaa
EA
2775 }
2776
1c5d22f7
CW
2777 trace_i915_gem_object_change_domain(obj,
2778 old_read_domains,
2779 old_write_domain);
2780
8325a09d
CW
2781 /* And bump the LRU for this access */
2782 if (i915_gem_object_is_inactive(obj))
2783 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2784
e47c68e9
EA
2785 return 0;
2786}
2787
e4ffd173
CW
2788int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2789 enum i915_cache_level cache_level)
2790{
7bddb01f
DV
2791 struct drm_device *dev = obj->base.dev;
2792 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2793 int ret;
2794
2795 if (obj->cache_level == cache_level)
2796 return 0;
2797
2798 if (obj->pin_count) {
2799 DRM_DEBUG("can not change the cache level of pinned objects\n");
2800 return -EBUSY;
2801 }
2802
2803 if (obj->gtt_space) {
2804 ret = i915_gem_object_finish_gpu(obj);
2805 if (ret)
2806 return ret;
2807
2808 i915_gem_object_finish_gtt(obj);
2809
2810 /* Before SandyBridge, you could not use tiling or fence
2811 * registers with snooped memory, so relinquish any fences
2812 * currently pointing to our region in the aperture.
2813 */
2814 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2815 ret = i915_gem_object_put_fence(obj);
2816 if (ret)
2817 return ret;
2818 }
2819
74898d7e
DV
2820 if (obj->has_global_gtt_mapping)
2821 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2822 if (obj->has_aliasing_ppgtt_mapping)
2823 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2824 obj, cache_level);
e4ffd173
CW
2825 }
2826
2827 if (cache_level == I915_CACHE_NONE) {
2828 u32 old_read_domains, old_write_domain;
2829
2830 /* If we're coming from LLC cached, then we haven't
2831 * actually been tracking whether the data is in the
2832 * CPU cache or not, since we only allow one bit set
2833 * in obj->write_domain and have been skipping the clflushes.
2834 * Just set it to the CPU cache for now.
2835 */
2836 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2837 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2838
2839 old_read_domains = obj->base.read_domains;
2840 old_write_domain = obj->base.write_domain;
2841
2842 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2843 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2844
2845 trace_i915_gem_object_change_domain(obj,
2846 old_read_domains,
2847 old_write_domain);
2848 }
2849
2850 obj->cache_level = cache_level;
2851 return 0;
2852}
2853
b9241ea3 2854/*
2da3b9b9
CW
2855 * Prepare buffer for display plane (scanout, cursors, etc).
2856 * Can be called from an uninterruptible phase (modesetting) and allows
2857 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
2858 */
2859int
2da3b9b9
CW
2860i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2861 u32 alignment,
919926ae 2862 struct intel_ring_buffer *pipelined)
b9241ea3 2863{
2da3b9b9 2864 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2865 int ret;
2866
88241785
CW
2867 ret = i915_gem_object_flush_gpu_write_domain(obj);
2868 if (ret)
2869 return ret;
2870
0be73284 2871 if (pipelined != obj->ring) {
2911a35b
BW
2872 ret = i915_gem_object_sync(obj, pipelined);
2873 if (ret)
b9241ea3
ZW
2874 return ret;
2875 }
2876
a7ef0640
EA
2877 /* The display engine is not coherent with the LLC cache on gen6. As
2878 * a result, we make sure that the pinning that is about to occur is
2879 * done with uncached PTEs. This is lowest common denominator for all
2880 * chipsets.
2881 *
2882 * However for gen6+, we could do better by using the GFDT bit instead
2883 * of uncaching, which would allow us to flush all the LLC-cached data
2884 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2885 */
2886 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2887 if (ret)
2888 return ret;
2889
2da3b9b9
CW
2890 /* As the user may map the buffer once pinned in the display plane
2891 * (e.g. libkms for the bootup splash), we have to ensure that we
2892 * always use map_and_fenceable for all scanout buffers.
2893 */
2894 ret = i915_gem_object_pin(obj, alignment, true);
2895 if (ret)
2896 return ret;
2897
b118c1e3
CW
2898 i915_gem_object_flush_cpu_write_domain(obj);
2899
2da3b9b9 2900 old_write_domain = obj->base.write_domain;
05394f39 2901 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
2902
2903 /* It should now be out of any other write domains, and we can update
2904 * the domain values for our changes.
2905 */
2906 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 2907 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2908
2909 trace_i915_gem_object_change_domain(obj,
2910 old_read_domains,
2da3b9b9 2911 old_write_domain);
b9241ea3
ZW
2912
2913 return 0;
2914}
2915
85345517 2916int
a8198eea 2917i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 2918{
88241785
CW
2919 int ret;
2920
a8198eea 2921 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
2922 return 0;
2923
88241785 2924 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2925 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
2926 if (ret)
2927 return ret;
2928 }
85345517 2929
c501ae7f
CW
2930 ret = i915_gem_object_wait_rendering(obj);
2931 if (ret)
2932 return ret;
2933
a8198eea
CW
2934 /* Ensure that we invalidate the GPU's caches and TLBs. */
2935 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 2936 return 0;
85345517
CW
2937}
2938
e47c68e9
EA
2939/**
2940 * Moves a single object to the CPU read, and possibly write domain.
2941 *
2942 * This function returns when the move is complete, including waiting on
2943 * flushes to occur.
2944 */
dabdfe02 2945int
919926ae 2946i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 2947{
1c5d22f7 2948 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2949 int ret;
2950
8d7e3de1
CW
2951 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
2952 return 0;
2953
88241785
CW
2954 ret = i915_gem_object_flush_gpu_write_domain(obj);
2955 if (ret)
2956 return ret;
2957
f8413190
CW
2958 if (write || obj->pending_gpu_write) {
2959 ret = i915_gem_object_wait_rendering(obj);
2960 if (ret)
2961 return ret;
2962 }
2ef7eeaa 2963
e47c68e9 2964 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2965
05394f39
CW
2966 old_write_domain = obj->base.write_domain;
2967 old_read_domains = obj->base.read_domains;
1c5d22f7 2968
e47c68e9 2969 /* Flush the CPU cache if it's still invalid. */
05394f39 2970 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2971 i915_gem_clflush_object(obj);
2ef7eeaa 2972
05394f39 2973 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2974 }
2975
2976 /* It should now be out of any other write domains, and we can update
2977 * the domain values for our changes.
2978 */
05394f39 2979 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
2980
2981 /* If we're writing through the CPU, then the GPU read domains will
2982 * need to be invalidated at next use.
2983 */
2984 if (write) {
05394f39
CW
2985 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2986 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 2987 }
2ef7eeaa 2988
1c5d22f7
CW
2989 trace_i915_gem_object_change_domain(obj,
2990 old_read_domains,
2991 old_write_domain);
2992
2ef7eeaa
EA
2993 return 0;
2994}
2995
673a394b
EA
2996/* Throttle our rendering by waiting until the ring has completed our requests
2997 * emitted over 20 msec ago.
2998 *
b962442e
EA
2999 * Note that if we were to use the current jiffies each time around the loop,
3000 * we wouldn't escape the function with any frames outstanding if the time to
3001 * render a frame was over 20ms.
3002 *
673a394b
EA
3003 * This should get us reasonable parallelism between CPU and GPU but also
3004 * relatively low latency when blocking on a particular request to finish.
3005 */
40a5f0de 3006static int
f787a5f5 3007i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3008{
f787a5f5
CW
3009 struct drm_i915_private *dev_priv = dev->dev_private;
3010 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3011 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3012 struct drm_i915_gem_request *request;
3013 struct intel_ring_buffer *ring = NULL;
3014 u32 seqno = 0;
3015 int ret;
93533c29 3016
e110e8d6
CW
3017 if (atomic_read(&dev_priv->mm.wedged))
3018 return -EIO;
3019
1c25595f 3020 spin_lock(&file_priv->mm.lock);
f787a5f5 3021 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3022 if (time_after_eq(request->emitted_jiffies, recent_enough))
3023 break;
40a5f0de 3024
f787a5f5
CW
3025 ring = request->ring;
3026 seqno = request->seqno;
b962442e 3027 }
1c25595f 3028 spin_unlock(&file_priv->mm.lock);
40a5f0de 3029
f787a5f5
CW
3030 if (seqno == 0)
3031 return 0;
2bc43b5c 3032
f787a5f5 3033 ret = 0;
78501eac 3034 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3035 /* And wait for the seqno passing without holding any locks and
3036 * causing extra latency for others. This is safe as the irq
3037 * generation is designed to be run atomically and so is
3038 * lockless.
3039 */
b13c2b96
CW
3040 if (ring->irq_get(ring)) {
3041 ret = wait_event_interruptible(ring->irq_queue,
3042 i915_seqno_passed(ring->get_seqno(ring), seqno)
3043 || atomic_read(&dev_priv->mm.wedged));
3044 ring->irq_put(ring);
40a5f0de 3045
b13c2b96
CW
3046 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3047 ret = -EIO;
e959b5db
EA
3048 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3049 seqno) ||
7ea29b13
EA
3050 atomic_read(&dev_priv->mm.wedged), 3000)) {
3051 ret = -EBUSY;
b13c2b96 3052 }
40a5f0de
EA
3053 }
3054
f787a5f5
CW
3055 if (ret == 0)
3056 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3057
3058 return ret;
3059}
3060
673a394b 3061int
05394f39
CW
3062i915_gem_object_pin(struct drm_i915_gem_object *obj,
3063 uint32_t alignment,
75e9e915 3064 bool map_and_fenceable)
673a394b 3065{
05394f39 3066 struct drm_device *dev = obj->base.dev;
f13d3f73 3067 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3068 int ret;
3069
05394f39 3070 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3071 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3072
05394f39
CW
3073 if (obj->gtt_space != NULL) {
3074 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3075 (map_and_fenceable && !obj->map_and_fenceable)) {
3076 WARN(obj->pin_count,
ae7d49d8 3077 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3078 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3079 " obj->map_and_fenceable=%d\n",
05394f39 3080 obj->gtt_offset, alignment,
75e9e915 3081 map_and_fenceable,
05394f39 3082 obj->map_and_fenceable);
ac0c6b5a
CW
3083 ret = i915_gem_object_unbind(obj);
3084 if (ret)
3085 return ret;
3086 }
3087 }
3088
05394f39 3089 if (obj->gtt_space == NULL) {
a00b10c3 3090 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3091 map_and_fenceable);
9731129c 3092 if (ret)
673a394b 3093 return ret;
22c344e9 3094 }
76446cac 3095
74898d7e
DV
3096 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3097 i915_gem_gtt_bind_object(obj, obj->cache_level);
3098
05394f39 3099 if (obj->pin_count++ == 0) {
05394f39
CW
3100 if (!obj->active)
3101 list_move_tail(&obj->mm_list,
f13d3f73 3102 &dev_priv->mm.pinned_list);
673a394b 3103 }
6299f992 3104 obj->pin_mappable |= map_and_fenceable;
673a394b 3105
23bc5982 3106 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3107 return 0;
3108}
3109
3110void
05394f39 3111i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3112{
05394f39 3113 struct drm_device *dev = obj->base.dev;
673a394b 3114 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3115
23bc5982 3116 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3117 BUG_ON(obj->pin_count == 0);
3118 BUG_ON(obj->gtt_space == NULL);
673a394b 3119
05394f39
CW
3120 if (--obj->pin_count == 0) {
3121 if (!obj->active)
3122 list_move_tail(&obj->mm_list,
673a394b 3123 &dev_priv->mm.inactive_list);
6299f992 3124 obj->pin_mappable = false;
673a394b 3125 }
23bc5982 3126 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3127}
3128
3129int
3130i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3131 struct drm_file *file)
673a394b
EA
3132{
3133 struct drm_i915_gem_pin *args = data;
05394f39 3134 struct drm_i915_gem_object *obj;
673a394b
EA
3135 int ret;
3136
1d7cfea1
CW
3137 ret = i915_mutex_lock_interruptible(dev);
3138 if (ret)
3139 return ret;
673a394b 3140
05394f39 3141 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3142 if (&obj->base == NULL) {
1d7cfea1
CW
3143 ret = -ENOENT;
3144 goto unlock;
673a394b 3145 }
673a394b 3146
05394f39 3147 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3148 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3149 ret = -EINVAL;
3150 goto out;
3ef94daa
CW
3151 }
3152
05394f39 3153 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3154 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3155 args->handle);
1d7cfea1
CW
3156 ret = -EINVAL;
3157 goto out;
79e53945
JB
3158 }
3159
05394f39
CW
3160 obj->user_pin_count++;
3161 obj->pin_filp = file;
3162 if (obj->user_pin_count == 1) {
75e9e915 3163 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3164 if (ret)
3165 goto out;
673a394b
EA
3166 }
3167
3168 /* XXX - flush the CPU caches for pinned objects
3169 * as the X server doesn't manage domains yet
3170 */
e47c68e9 3171 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3172 args->offset = obj->gtt_offset;
1d7cfea1 3173out:
05394f39 3174 drm_gem_object_unreference(&obj->base);
1d7cfea1 3175unlock:
673a394b 3176 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3177 return ret;
673a394b
EA
3178}
3179
3180int
3181i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3182 struct drm_file *file)
673a394b
EA
3183{
3184 struct drm_i915_gem_pin *args = data;
05394f39 3185 struct drm_i915_gem_object *obj;
76c1dec1 3186 int ret;
673a394b 3187
1d7cfea1
CW
3188 ret = i915_mutex_lock_interruptible(dev);
3189 if (ret)
3190 return ret;
673a394b 3191
05394f39 3192 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3193 if (&obj->base == NULL) {
1d7cfea1
CW
3194 ret = -ENOENT;
3195 goto unlock;
673a394b 3196 }
76c1dec1 3197
05394f39 3198 if (obj->pin_filp != file) {
79e53945
JB
3199 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3200 args->handle);
1d7cfea1
CW
3201 ret = -EINVAL;
3202 goto out;
79e53945 3203 }
05394f39
CW
3204 obj->user_pin_count--;
3205 if (obj->user_pin_count == 0) {
3206 obj->pin_filp = NULL;
79e53945
JB
3207 i915_gem_object_unpin(obj);
3208 }
673a394b 3209
1d7cfea1 3210out:
05394f39 3211 drm_gem_object_unreference(&obj->base);
1d7cfea1 3212unlock:
673a394b 3213 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3214 return ret;
673a394b
EA
3215}
3216
3217int
3218i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3219 struct drm_file *file)
673a394b
EA
3220{
3221 struct drm_i915_gem_busy *args = data;
05394f39 3222 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3223 int ret;
3224
76c1dec1 3225 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3226 if (ret)
76c1dec1 3227 return ret;
673a394b 3228
05394f39 3229 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3230 if (&obj->base == NULL) {
1d7cfea1
CW
3231 ret = -ENOENT;
3232 goto unlock;
673a394b 3233 }
d1b851fc 3234
0be555b6
CW
3235 /* Count all active objects as busy, even if they are currently not used
3236 * by the gpu. Users of this interface expect objects to eventually
3237 * become non-busy without any further actions, therefore emit any
3238 * necessary flushes here.
c4de0a5d 3239 */
05394f39 3240 args->busy = obj->active;
0be555b6
CW
3241 if (args->busy) {
3242 /* Unconditionally flush objects, even when the gpu still uses this
3243 * object. Userspace calling this function indicates that it wants to
3244 * use this buffer rather sooner than later, so issuing the required
3245 * flush earlier is beneficial.
3246 */
1a1c6976 3247 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3248 ret = i915_gem_flush_ring(obj->ring,
88241785 3249 0, obj->base.write_domain);
1a1c6976
CW
3250 } else if (obj->ring->outstanding_lazy_request ==
3251 obj->last_rendering_seqno) {
3252 struct drm_i915_gem_request *request;
3253
7a194876
CW
3254 /* This ring is not being cleared by active usage,
3255 * so emit a request to do so.
3256 */
1a1c6976 3257 request = kzalloc(sizeof(*request), GFP_KERNEL);
457eafce 3258 if (request) {
0206e353 3259 ret = i915_add_request(obj->ring, NULL, request);
457eafce
RM
3260 if (ret)
3261 kfree(request);
3262 } else
7a194876
CW
3263 ret = -ENOMEM;
3264 }
0be555b6
CW
3265
3266 /* Update the active list for the hardware's current position.
3267 * Otherwise this only updates on a delayed timer or when irqs
3268 * are actually unmasked, and our working set ends up being
3269 * larger than required.
3270 */
db53a302 3271 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3272
05394f39 3273 args->busy = obj->active;
0be555b6 3274 }
673a394b 3275
05394f39 3276 drm_gem_object_unreference(&obj->base);
1d7cfea1 3277unlock:
673a394b 3278 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3279 return ret;
673a394b
EA
3280}
3281
3282int
3283i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3284 struct drm_file *file_priv)
3285{
0206e353 3286 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3287}
3288
3ef94daa
CW
3289int
3290i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3291 struct drm_file *file_priv)
3292{
3293 struct drm_i915_gem_madvise *args = data;
05394f39 3294 struct drm_i915_gem_object *obj;
76c1dec1 3295 int ret;
3ef94daa
CW
3296
3297 switch (args->madv) {
3298 case I915_MADV_DONTNEED:
3299 case I915_MADV_WILLNEED:
3300 break;
3301 default:
3302 return -EINVAL;
3303 }
3304
1d7cfea1
CW
3305 ret = i915_mutex_lock_interruptible(dev);
3306 if (ret)
3307 return ret;
3308
05394f39 3309 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3310 if (&obj->base == NULL) {
1d7cfea1
CW
3311 ret = -ENOENT;
3312 goto unlock;
3ef94daa 3313 }
3ef94daa 3314
05394f39 3315 if (obj->pin_count) {
1d7cfea1
CW
3316 ret = -EINVAL;
3317 goto out;
3ef94daa
CW
3318 }
3319
05394f39
CW
3320 if (obj->madv != __I915_MADV_PURGED)
3321 obj->madv = args->madv;
3ef94daa 3322
2d7ef395 3323 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3324 if (i915_gem_object_is_purgeable(obj) &&
3325 obj->gtt_space == NULL)
2d7ef395
CW
3326 i915_gem_object_truncate(obj);
3327
05394f39 3328 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3329
1d7cfea1 3330out:
05394f39 3331 drm_gem_object_unreference(&obj->base);
1d7cfea1 3332unlock:
3ef94daa 3333 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3334 return ret;
3ef94daa
CW
3335}
3336
05394f39
CW
3337struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3338 size_t size)
ac52bc56 3339{
73aa808f 3340 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3341 struct drm_i915_gem_object *obj;
5949eac4 3342 struct address_space *mapping;
ac52bc56 3343
c397b908
DV
3344 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3345 if (obj == NULL)
3346 return NULL;
673a394b 3347
c397b908
DV
3348 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3349 kfree(obj);
3350 return NULL;
3351 }
673a394b 3352
5949eac4
HD
3353 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3354 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3355
73aa808f
CW
3356 i915_gem_info_add_obj(dev_priv, size);
3357
c397b908
DV
3358 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3359 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3360
3d29b842
ED
3361 if (HAS_LLC(dev)) {
3362 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3363 * cache) for about a 10% performance improvement
3364 * compared to uncached. Graphics requests other than
3365 * display scanout are coherent with the CPU in
3366 * accessing this cache. This means in this mode we
3367 * don't need to clflush on the CPU side, and on the
3368 * GPU side we only need to flush internal caches to
3369 * get data visible to the CPU.
3370 *
3371 * However, we maintain the display planes as UC, and so
3372 * need to rebind when first used as such.
3373 */
3374 obj->cache_level = I915_CACHE_LLC;
3375 } else
3376 obj->cache_level = I915_CACHE_NONE;
3377
62b8b215 3378 obj->base.driver_private = NULL;
c397b908 3379 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3380 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3381 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3382 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3383 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3384 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3385 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3386 /* Avoid an unnecessary call to unbind on the first bind. */
3387 obj->map_and_fenceable = true;
de151cf6 3388
05394f39 3389 return obj;
c397b908
DV
3390}
3391
3392int i915_gem_init_object(struct drm_gem_object *obj)
3393{
3394 BUG();
de151cf6 3395
673a394b
EA
3396 return 0;
3397}
3398
05394f39 3399static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3400{
05394f39 3401 struct drm_device *dev = obj->base.dev;
be72615b 3402 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3403 int ret;
673a394b 3404
be72615b
CW
3405 ret = i915_gem_object_unbind(obj);
3406 if (ret == -ERESTARTSYS) {
05394f39 3407 list_move(&obj->mm_list,
be72615b
CW
3408 &dev_priv->mm.deferred_free_list);
3409 return;
3410 }
673a394b 3411
26e12f89
CW
3412 trace_i915_gem_object_destroy(obj);
3413
05394f39 3414 if (obj->base.map_list.map)
b464e9a2 3415 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3416
05394f39
CW
3417 drm_gem_object_release(&obj->base);
3418 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3419
05394f39
CW
3420 kfree(obj->bit_17);
3421 kfree(obj);
673a394b
EA
3422}
3423
05394f39 3424void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3425{
05394f39
CW
3426 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3427 struct drm_device *dev = obj->base.dev;
be72615b 3428
05394f39 3429 while (obj->pin_count > 0)
be72615b
CW
3430 i915_gem_object_unpin(obj);
3431
05394f39 3432 if (obj->phys_obj)
be72615b
CW
3433 i915_gem_detach_phys_object(dev, obj);
3434
3435 i915_gem_free_object_tail(obj);
3436}
3437
29105ccc
CW
3438int
3439i915_gem_idle(struct drm_device *dev)
3440{
3441 drm_i915_private_t *dev_priv = dev->dev_private;
3442 int ret;
28dfe52a 3443
29105ccc 3444 mutex_lock(&dev->struct_mutex);
1c5d22f7 3445
87acb0a5 3446 if (dev_priv->mm.suspended) {
29105ccc
CW
3447 mutex_unlock(&dev->struct_mutex);
3448 return 0;
28dfe52a
EA
3449 }
3450
b93f9cf1 3451 ret = i915_gpu_idle(dev, true);
6dbe2772
KP
3452 if (ret) {
3453 mutex_unlock(&dev->struct_mutex);
673a394b 3454 return ret;
6dbe2772 3455 }
673a394b 3456
29105ccc
CW
3457 /* Under UMS, be paranoid and evict. */
3458 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3459 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3460 if (ret) {
3461 mutex_unlock(&dev->struct_mutex);
3462 return ret;
3463 }
3464 }
3465
312817a3
CW
3466 i915_gem_reset_fences(dev);
3467
29105ccc
CW
3468 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3469 * We need to replace this with a semaphore, or something.
3470 * And not confound mm.suspended!
3471 */
3472 dev_priv->mm.suspended = 1;
bc0c7f14 3473 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3474
3475 i915_kernel_lost_context(dev);
6dbe2772 3476 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3477
6dbe2772
KP
3478 mutex_unlock(&dev->struct_mutex);
3479
29105ccc
CW
3480 /* Cancel the retire work handler, which should be idle now. */
3481 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3482
673a394b
EA
3483 return 0;
3484}
3485
f691e2f4
DV
3486void i915_gem_init_swizzling(struct drm_device *dev)
3487{
3488 drm_i915_private_t *dev_priv = dev->dev_private;
3489
11782b02 3490 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3491 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3492 return;
3493
3494 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3495 DISP_TILE_SURFACE_SWIZZLING);
3496
11782b02
DV
3497 if (IS_GEN5(dev))
3498 return;
3499
f691e2f4
DV
3500 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3501 if (IS_GEN6(dev))
6b26c86d 3502 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3503 else
6b26c86d 3504 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3505}
e21af88d
DV
3506
3507void i915_gem_init_ppgtt(struct drm_device *dev)
3508{
3509 drm_i915_private_t *dev_priv = dev->dev_private;
3510 uint32_t pd_offset;
3511 struct intel_ring_buffer *ring;
55a254ac
DV
3512 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3513 uint32_t __iomem *pd_addr;
3514 uint32_t pd_entry;
e21af88d
DV
3515 int i;
3516
3517 if (!dev_priv->mm.aliasing_ppgtt)
3518 return;
3519
55a254ac
DV
3520
3521 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3522 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3523 dma_addr_t pt_addr;
3524
3525 if (dev_priv->mm.gtt->needs_dmar)
3526 pt_addr = ppgtt->pt_dma_addr[i];
3527 else
3528 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3529
3530 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3531 pd_entry |= GEN6_PDE_VALID;
3532
3533 writel(pd_entry, pd_addr + i);
3534 }
3535 readl(pd_addr);
3536
3537 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3538 pd_offset /= 64; /* in cachelines, */
3539 pd_offset <<= 16;
3540
3541 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3542 uint32_t ecochk, gab_ctl, ecobits;
3543
3544 ecobits = I915_READ(GAC_ECO_BITS);
3545 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3546
3547 gab_ctl = I915_READ(GAB_CTL);
3548 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3549
3550 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3551 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3552 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3553 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3554 } else if (INTEL_INFO(dev)->gen >= 7) {
3555 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3556 /* GFX_MODE is per-ring on gen7+ */
3557 }
3558
3559 for (i = 0; i < I915_NUM_RINGS; i++) {
3560 ring = &dev_priv->ring[i];
3561
3562 if (INTEL_INFO(dev)->gen >= 7)
3563 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3564 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3565
3566 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3567 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3568 }
3569}
3570
8187a2b7 3571int
f691e2f4 3572i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3573{
3574 drm_i915_private_t *dev_priv = dev->dev_private;
3575 int ret;
68f95ba9 3576
f691e2f4
DV
3577 i915_gem_init_swizzling(dev);
3578
5c1143bb 3579 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3580 if (ret)
b6913e4b 3581 return ret;
68f95ba9
CW
3582
3583 if (HAS_BSD(dev)) {
5c1143bb 3584 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3585 if (ret)
3586 goto cleanup_render_ring;
d1b851fc 3587 }
68f95ba9 3588
549f7365
CW
3589 if (HAS_BLT(dev)) {
3590 ret = intel_init_blt_ring_buffer(dev);
3591 if (ret)
3592 goto cleanup_bsd_ring;
3593 }
3594
6f392d54
CW
3595 dev_priv->next_seqno = 1;
3596
e21af88d
DV
3597 i915_gem_init_ppgtt(dev);
3598
68f95ba9
CW
3599 return 0;
3600
549f7365 3601cleanup_bsd_ring:
1ec14ad3 3602 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3603cleanup_render_ring:
1ec14ad3 3604 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3605 return ret;
3606}
3607
3608void
3609i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3610{
3611 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3612 int i;
8187a2b7 3613
1ec14ad3
CW
3614 for (i = 0; i < I915_NUM_RINGS; i++)
3615 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3616}
3617
673a394b
EA
3618int
3619i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3620 struct drm_file *file_priv)
3621{
3622 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3623 int ret, i;
673a394b 3624
79e53945
JB
3625 if (drm_core_check_feature(dev, DRIVER_MODESET))
3626 return 0;
3627
ba1234d1 3628 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3629 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3630 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3631 }
3632
673a394b 3633 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3634 dev_priv->mm.suspended = 0;
3635
f691e2f4 3636 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3637 if (ret != 0) {
3638 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3639 return ret;
d816f6ac 3640 }
9bb2d6f9 3641
69dc4987 3642 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3643 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3644 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3645 for (i = 0; i < I915_NUM_RINGS; i++) {
3646 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3647 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3648 }
673a394b 3649 mutex_unlock(&dev->struct_mutex);
dbb19d30 3650
5f35308b
CW
3651 ret = drm_irq_install(dev);
3652 if (ret)
3653 goto cleanup_ringbuffer;
dbb19d30 3654
673a394b 3655 return 0;
5f35308b
CW
3656
3657cleanup_ringbuffer:
3658 mutex_lock(&dev->struct_mutex);
3659 i915_gem_cleanup_ringbuffer(dev);
3660 dev_priv->mm.suspended = 1;
3661 mutex_unlock(&dev->struct_mutex);
3662
3663 return ret;
673a394b
EA
3664}
3665
3666int
3667i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3668 struct drm_file *file_priv)
3669{
79e53945
JB
3670 if (drm_core_check_feature(dev, DRIVER_MODESET))
3671 return 0;
3672
dbb19d30 3673 drm_irq_uninstall(dev);
e6890f6f 3674 return i915_gem_idle(dev);
673a394b
EA
3675}
3676
3677void
3678i915_gem_lastclose(struct drm_device *dev)
3679{
3680 int ret;
673a394b 3681
e806b495
EA
3682 if (drm_core_check_feature(dev, DRIVER_MODESET))
3683 return;
3684
6dbe2772
KP
3685 ret = i915_gem_idle(dev);
3686 if (ret)
3687 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3688}
3689
64193406
CW
3690static void
3691init_ring_lists(struct intel_ring_buffer *ring)
3692{
3693 INIT_LIST_HEAD(&ring->active_list);
3694 INIT_LIST_HEAD(&ring->request_list);
3695 INIT_LIST_HEAD(&ring->gpu_write_list);
3696}
3697
673a394b
EA
3698void
3699i915_gem_load(struct drm_device *dev)
3700{
b5aa8a0f 3701 int i;
673a394b
EA
3702 drm_i915_private_t *dev_priv = dev->dev_private;
3703
69dc4987 3704 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3705 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3706 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3707 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3708 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3709 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3710 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3711 for (i = 0; i < I915_NUM_RINGS; i++)
3712 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3713 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3714 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3715 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3716 i915_gem_retire_work_handler);
30dbf0c0 3717 init_completion(&dev_priv->error_completion);
31169714 3718
94400120
DA
3719 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3720 if (IS_GEN3(dev)) {
3721 u32 tmp = I915_READ(MI_ARB_STATE);
3722 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3723 /* arb state is a masked write, so set bit + bit in mask */
3724 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3725 I915_WRITE(MI_ARB_STATE, tmp);
3726 }
3727 }
3728
72bfa19c
CW
3729 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3730
de151cf6 3731 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3732 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3733 dev_priv->fence_reg_start = 3;
de151cf6 3734
a6c45cf0 3735 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3736 dev_priv->num_fence_regs = 16;
3737 else
3738 dev_priv->num_fence_regs = 8;
3739
b5aa8a0f 3740 /* Initialize fence registers to zero */
ada726c7 3741 i915_gem_reset_fences(dev);
10ed13e4 3742
673a394b 3743 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3744 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3745
ce453d81
CW
3746 dev_priv->mm.interruptible = true;
3747
17250b71
CW
3748 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3749 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3750 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3751}
71acb5eb
DA
3752
3753/*
3754 * Create a physically contiguous memory object for this object
3755 * e.g. for cursor + overlay regs
3756 */
995b6762
CW
3757static int i915_gem_init_phys_object(struct drm_device *dev,
3758 int id, int size, int align)
71acb5eb
DA
3759{
3760 drm_i915_private_t *dev_priv = dev->dev_private;
3761 struct drm_i915_gem_phys_object *phys_obj;
3762 int ret;
3763
3764 if (dev_priv->mm.phys_objs[id - 1] || !size)
3765 return 0;
3766
9a298b2a 3767 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3768 if (!phys_obj)
3769 return -ENOMEM;
3770
3771 phys_obj->id = id;
3772
6eeefaf3 3773 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3774 if (!phys_obj->handle) {
3775 ret = -ENOMEM;
3776 goto kfree_obj;
3777 }
3778#ifdef CONFIG_X86
3779 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3780#endif
3781
3782 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3783
3784 return 0;
3785kfree_obj:
9a298b2a 3786 kfree(phys_obj);
71acb5eb
DA
3787 return ret;
3788}
3789
995b6762 3790static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3791{
3792 drm_i915_private_t *dev_priv = dev->dev_private;
3793 struct drm_i915_gem_phys_object *phys_obj;
3794
3795 if (!dev_priv->mm.phys_objs[id - 1])
3796 return;
3797
3798 phys_obj = dev_priv->mm.phys_objs[id - 1];
3799 if (phys_obj->cur_obj) {
3800 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3801 }
3802
3803#ifdef CONFIG_X86
3804 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3805#endif
3806 drm_pci_free(dev, phys_obj->handle);
3807 kfree(phys_obj);
3808 dev_priv->mm.phys_objs[id - 1] = NULL;
3809}
3810
3811void i915_gem_free_all_phys_object(struct drm_device *dev)
3812{
3813 int i;
3814
260883c8 3815 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3816 i915_gem_free_phys_object(dev, i);
3817}
3818
3819void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3820 struct drm_i915_gem_object *obj)
71acb5eb 3821{
05394f39 3822 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3823 char *vaddr;
71acb5eb 3824 int i;
71acb5eb
DA
3825 int page_count;
3826
05394f39 3827 if (!obj->phys_obj)
71acb5eb 3828 return;
05394f39 3829 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3830
05394f39 3831 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3832 for (i = 0; i < page_count; i++) {
5949eac4 3833 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3834 if (!IS_ERR(page)) {
3835 char *dst = kmap_atomic(page);
3836 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3837 kunmap_atomic(dst);
3838
3839 drm_clflush_pages(&page, 1);
3840
3841 set_page_dirty(page);
3842 mark_page_accessed(page);
3843 page_cache_release(page);
3844 }
71acb5eb 3845 }
40ce6575 3846 intel_gtt_chipset_flush();
d78b47b9 3847
05394f39
CW
3848 obj->phys_obj->cur_obj = NULL;
3849 obj->phys_obj = NULL;
71acb5eb
DA
3850}
3851
3852int
3853i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3854 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3855 int id,
3856 int align)
71acb5eb 3857{
05394f39 3858 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3859 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3860 int ret = 0;
3861 int page_count;
3862 int i;
3863
3864 if (id > I915_MAX_PHYS_OBJECT)
3865 return -EINVAL;
3866
05394f39
CW
3867 if (obj->phys_obj) {
3868 if (obj->phys_obj->id == id)
71acb5eb
DA
3869 return 0;
3870 i915_gem_detach_phys_object(dev, obj);
3871 }
3872
71acb5eb
DA
3873 /* create a new object */
3874 if (!dev_priv->mm.phys_objs[id - 1]) {
3875 ret = i915_gem_init_phys_object(dev, id,
05394f39 3876 obj->base.size, align);
71acb5eb 3877 if (ret) {
05394f39
CW
3878 DRM_ERROR("failed to init phys object %d size: %zu\n",
3879 id, obj->base.size);
e5281ccd 3880 return ret;
71acb5eb
DA
3881 }
3882 }
3883
3884 /* bind to the object */
05394f39
CW
3885 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3886 obj->phys_obj->cur_obj = obj;
71acb5eb 3887
05394f39 3888 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
3889
3890 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3891 struct page *page;
3892 char *dst, *src;
3893
5949eac4 3894 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3895 if (IS_ERR(page))
3896 return PTR_ERR(page);
71acb5eb 3897
ff75b9bc 3898 src = kmap_atomic(page);
05394f39 3899 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 3900 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 3901 kunmap_atomic(src);
71acb5eb 3902
e5281ccd
CW
3903 mark_page_accessed(page);
3904 page_cache_release(page);
3905 }
d78b47b9 3906
71acb5eb 3907 return 0;
71acb5eb
DA
3908}
3909
3910static int
05394f39
CW
3911i915_gem_phys_pwrite(struct drm_device *dev,
3912 struct drm_i915_gem_object *obj,
71acb5eb
DA
3913 struct drm_i915_gem_pwrite *args,
3914 struct drm_file *file_priv)
3915{
05394f39 3916 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 3917 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 3918
b47b30cc
CW
3919 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3920 unsigned long unwritten;
3921
3922 /* The physical object once assigned is fixed for the lifetime
3923 * of the obj, so we can safely drop the lock and continue
3924 * to access vaddr.
3925 */
3926 mutex_unlock(&dev->struct_mutex);
3927 unwritten = copy_from_user(vaddr, user_data, args->size);
3928 mutex_lock(&dev->struct_mutex);
3929 if (unwritten)
3930 return -EFAULT;
3931 }
71acb5eb 3932
40ce6575 3933 intel_gtt_chipset_flush();
71acb5eb
DA
3934 return 0;
3935}
b962442e 3936
f787a5f5 3937void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 3938{
f787a5f5 3939 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
3940
3941 /* Clean up our request list when the client is going away, so that
3942 * later retire_requests won't dereference our soon-to-be-gone
3943 * file_priv.
3944 */
1c25595f 3945 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
3946 while (!list_empty(&file_priv->mm.request_list)) {
3947 struct drm_i915_gem_request *request;
3948
3949 request = list_first_entry(&file_priv->mm.request_list,
3950 struct drm_i915_gem_request,
3951 client_list);
3952 list_del(&request->client_list);
3953 request->file_priv = NULL;
3954 }
1c25595f 3955 spin_unlock(&file_priv->mm.lock);
b962442e 3956}
31169714 3957
1637ef41
CW
3958static int
3959i915_gpu_is_active(struct drm_device *dev)
3960{
3961 drm_i915_private_t *dev_priv = dev->dev_private;
3962 int lists_empty;
3963
1637ef41 3964 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 3965 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
3966
3967 return !lists_empty;
3968}
3969
31169714 3970static int
1495f230 3971i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 3972{
17250b71
CW
3973 struct drm_i915_private *dev_priv =
3974 container_of(shrinker,
3975 struct drm_i915_private,
3976 mm.inactive_shrinker);
3977 struct drm_device *dev = dev_priv->dev;
3978 struct drm_i915_gem_object *obj, *next;
1495f230 3979 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
3980 int cnt;
3981
3982 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 3983 return 0;
31169714
CW
3984
3985 /* "fast-path" to count number of available objects */
3986 if (nr_to_scan == 0) {
17250b71
CW
3987 cnt = 0;
3988 list_for_each_entry(obj,
3989 &dev_priv->mm.inactive_list,
3990 mm_list)
3991 cnt++;
3992 mutex_unlock(&dev->struct_mutex);
3993 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
3994 }
3995
1637ef41 3996rescan:
31169714 3997 /* first scan for clean buffers */
17250b71 3998 i915_gem_retire_requests(dev);
31169714 3999
17250b71
CW
4000 list_for_each_entry_safe(obj, next,
4001 &dev_priv->mm.inactive_list,
4002 mm_list) {
4003 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4004 if (i915_gem_object_unbind(obj) == 0 &&
4005 --nr_to_scan == 0)
17250b71 4006 break;
31169714 4007 }
31169714
CW
4008 }
4009
4010 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4011 cnt = 0;
4012 list_for_each_entry_safe(obj, next,
4013 &dev_priv->mm.inactive_list,
4014 mm_list) {
2021746e
CW
4015 if (nr_to_scan &&
4016 i915_gem_object_unbind(obj) == 0)
17250b71 4017 nr_to_scan--;
2021746e 4018 else
17250b71
CW
4019 cnt++;
4020 }
4021
4022 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4023 /*
4024 * We are desperate for pages, so as a last resort, wait
4025 * for the GPU to finish and discard whatever we can.
4026 * This has a dramatic impact to reduce the number of
4027 * OOM-killer events whilst running the GPU aggressively.
4028 */
b93f9cf1 4029 if (i915_gpu_idle(dev, true) == 0)
1637ef41
CW
4030 goto rescan;
4031 }
17250b71
CW
4032 mutex_unlock(&dev->struct_mutex);
4033 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4034}