]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: First try a normal large kmalloc for the temporary exec buffers
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
88241785 38static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 bool write);
43static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
05394f39 46static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
88241785
CW
47static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 unsigned alignment,
49 bool map_and_fenceable);
d9e86c0e
CW
50static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 struct drm_i915_fence_reg *reg);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39
CW
55 struct drm_file *file);
56static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 57
17250b71
CW
58static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 int nr_to_scan,
60 gfp_t gfp_mask);
61
31169714 62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69}
70
71static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73{
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
76}
77
21dd3734
CW
78static int
79i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
80{
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
85
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
88
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
92
21dd3734
CW
93 if (atomic_read(&dev_priv->mm.wedged)) {
94 /* GPU is hung, bump the completion count to account for
95 * the token we just consumed so that we never hit zero and
96 * end up waiting upon a subsequent completion event that
97 * will never happen.
98 */
99 spin_lock_irqsave(&x->wait.lock, flags);
100 x->done++;
101 spin_unlock_irqrestore(&x->wait.lock, flags);
102 }
103 return 0;
30dbf0c0
CW
104}
105
54cf91dc 106int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 107{
76c1dec1
CW
108 int ret;
109
21dd3734 110 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
111 if (ret)
112 return ret;
113
114 ret = mutex_lock_interruptible(&dev->struct_mutex);
115 if (ret)
116 return ret;
117
23bc5982 118 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
119 return 0;
120}
30dbf0c0 121
7d1c4804 122static inline bool
05394f39 123i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 124{
05394f39 125 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
126}
127
2021746e
CW
128void i915_gem_do_init(struct drm_device *dev,
129 unsigned long start,
130 unsigned long mappable_end,
131 unsigned long end)
673a394b
EA
132{
133 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 134
bee4a186 135 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
673a394b 136
bee4a186
CW
137 dev_priv->mm.gtt_start = start;
138 dev_priv->mm.gtt_mappable_end = mappable_end;
139 dev_priv->mm.gtt_end = end;
73aa808f 140 dev_priv->mm.gtt_total = end - start;
fb7d516a 141 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
bee4a186
CW
142
143 /* Take over this portion of the GTT */
144 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
79e53945 145}
673a394b 146
79e53945
JB
147int
148i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 149 struct drm_file *file)
79e53945
JB
150{
151 struct drm_i915_gem_init *args = data;
2021746e
CW
152
153 if (args->gtt_start >= args->gtt_end ||
154 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
155 return -EINVAL;
79e53945
JB
156
157 mutex_lock(&dev->struct_mutex);
2021746e 158 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
159 mutex_unlock(&dev->struct_mutex);
160
2021746e 161 return 0;
673a394b
EA
162}
163
5a125c3c
EA
164int
165i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 166 struct drm_file *file)
5a125c3c 167{
73aa808f 168 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 169 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
170 struct drm_i915_gem_object *obj;
171 size_t pinned;
5a125c3c
EA
172
173 if (!(dev->driver->driver_features & DRIVER_GEM))
174 return -ENODEV;
175
6299f992 176 pinned = 0;
73aa808f 177 mutex_lock(&dev->struct_mutex);
6299f992
CW
178 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
179 pinned += obj->gtt_space->size;
73aa808f 180 mutex_unlock(&dev->struct_mutex);
5a125c3c 181
6299f992
CW
182 args->aper_size = dev_priv->mm.gtt_total;
183 args->aper_available_size = args->aper_size -pinned;
184
5a125c3c
EA
185 return 0;
186}
187
673a394b
EA
188/**
189 * Creates a new mm object and returns a handle to it.
190 */
191int
192i915_gem_create_ioctl(struct drm_device *dev, void *data,
05394f39 193 struct drm_file *file)
673a394b
EA
194{
195 struct drm_i915_gem_create *args = data;
05394f39 196 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
197 int ret;
198 u32 handle;
673a394b
EA
199
200 args->size = roundup(args->size, PAGE_SIZE);
201
202 /* Allocate the new object */
ac52bc56 203 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
204 if (obj == NULL)
205 return -ENOMEM;
206
05394f39 207 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 208 if (ret) {
05394f39
CW
209 drm_gem_object_release(&obj->base);
210 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 211 kfree(obj);
673a394b 212 return ret;
1dfd9754 213 }
673a394b 214
202f2fef 215 /* drop reference from allocate - handle holds it now */
05394f39 216 drm_gem_object_unreference(&obj->base);
202f2fef
CW
217 trace_i915_gem_object_create(obj);
218
1dfd9754 219 args->handle = handle;
673a394b
EA
220 return 0;
221}
222
05394f39 223static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 224{
05394f39 225 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
226
227 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 228 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
229}
230
99a03df5 231static inline void
40123c1f
EA
232slow_shmem_copy(struct page *dst_page,
233 int dst_offset,
234 struct page *src_page,
235 int src_offset,
236 int length)
237{
238 char *dst_vaddr, *src_vaddr;
239
99a03df5
CW
240 dst_vaddr = kmap(dst_page);
241 src_vaddr = kmap(src_page);
40123c1f
EA
242
243 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
244
99a03df5
CW
245 kunmap(src_page);
246 kunmap(dst_page);
40123c1f
EA
247}
248
99a03df5 249static inline void
280b713b
EA
250slow_shmem_bit17_copy(struct page *gpu_page,
251 int gpu_offset,
252 struct page *cpu_page,
253 int cpu_offset,
254 int length,
255 int is_read)
256{
257 char *gpu_vaddr, *cpu_vaddr;
258
259 /* Use the unswizzled path if this page isn't affected. */
260 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
261 if (is_read)
262 return slow_shmem_copy(cpu_page, cpu_offset,
263 gpu_page, gpu_offset, length);
264 else
265 return slow_shmem_copy(gpu_page, gpu_offset,
266 cpu_page, cpu_offset, length);
267 }
268
99a03df5
CW
269 gpu_vaddr = kmap(gpu_page);
270 cpu_vaddr = kmap(cpu_page);
280b713b
EA
271
272 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
273 * XORing with the other bits (A9 for Y, A9 and A10 for X)
274 */
275 while (length > 0) {
276 int cacheline_end = ALIGN(gpu_offset + 1, 64);
277 int this_length = min(cacheline_end - gpu_offset, length);
278 int swizzled_gpu_offset = gpu_offset ^ 64;
279
280 if (is_read) {
281 memcpy(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 } else {
285 memcpy(gpu_vaddr + swizzled_gpu_offset,
286 cpu_vaddr + cpu_offset,
287 this_length);
288 }
289 cpu_offset += this_length;
290 gpu_offset += this_length;
291 length -= this_length;
292 }
293
99a03df5
CW
294 kunmap(cpu_page);
295 kunmap(gpu_page);
280b713b
EA
296}
297
eb01459f
EA
298/**
299 * This is the fast shmem pread path, which attempts to copy_from_user directly
300 * from the backing pages of the object to the user's address space. On a
301 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
302 */
303static int
05394f39
CW
304i915_gem_shmem_pread_fast(struct drm_device *dev,
305 struct drm_i915_gem_object *obj,
eb01459f 306 struct drm_i915_gem_pread *args,
05394f39 307 struct drm_file *file)
eb01459f 308{
05394f39 309 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 310 ssize_t remain;
e5281ccd 311 loff_t offset;
eb01459f
EA
312 char __user *user_data;
313 int page_offset, page_length;
eb01459f
EA
314
315 user_data = (char __user *) (uintptr_t) args->data_ptr;
316 remain = args->size;
317
eb01459f
EA
318 offset = args->offset;
319
320 while (remain > 0) {
e5281ccd
CW
321 struct page *page;
322 char *vaddr;
323 int ret;
324
eb01459f
EA
325 /* Operation in this page
326 *
eb01459f
EA
327 * page_offset = offset within page
328 * page_length = bytes to copy for this page
329 */
eb01459f
EA
330 page_offset = offset & (PAGE_SIZE-1);
331 page_length = remain;
332 if ((page_offset + remain) > PAGE_SIZE)
333 page_length = PAGE_SIZE - page_offset;
334
e5281ccd
CW
335 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
336 GFP_HIGHUSER | __GFP_RECLAIMABLE);
337 if (IS_ERR(page))
338 return PTR_ERR(page);
339
340 vaddr = kmap_atomic(page);
341 ret = __copy_to_user_inatomic(user_data,
342 vaddr + page_offset,
343 page_length);
344 kunmap_atomic(vaddr);
345
346 mark_page_accessed(page);
347 page_cache_release(page);
348 if (ret)
4f27b75d 349 return -EFAULT;
eb01459f
EA
350
351 remain -= page_length;
352 user_data += page_length;
353 offset += page_length;
354 }
355
4f27b75d 356 return 0;
eb01459f
EA
357}
358
359/**
360 * This is the fallback shmem pread path, which allocates temporary storage
361 * in kernel space to copy_to_user into outside of the struct_mutex, so we
362 * can copy out of the object's backing pages while holding the struct mutex
363 * and not take page faults.
364 */
365static int
05394f39
CW
366i915_gem_shmem_pread_slow(struct drm_device *dev,
367 struct drm_i915_gem_object *obj,
eb01459f 368 struct drm_i915_gem_pread *args,
05394f39 369 struct drm_file *file)
eb01459f 370{
05394f39 371 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f
EA
372 struct mm_struct *mm = current->mm;
373 struct page **user_pages;
374 ssize_t remain;
375 loff_t offset, pinned_pages, i;
376 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
377 int shmem_page_offset;
378 int data_page_index, data_page_offset;
eb01459f
EA
379 int page_length;
380 int ret;
381 uint64_t data_ptr = args->data_ptr;
280b713b 382 int do_bit17_swizzling;
eb01459f
EA
383
384 remain = args->size;
385
386 /* Pin the user pages containing the data. We can't fault while
387 * holding the struct mutex, yet we want to hold it while
388 * dereferencing the user data.
389 */
390 first_data_page = data_ptr / PAGE_SIZE;
391 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
392 num_pages = last_data_page - first_data_page + 1;
393
4f27b75d 394 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
395 if (user_pages == NULL)
396 return -ENOMEM;
397
4f27b75d 398 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
399 down_read(&mm->mmap_sem);
400 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 401 num_pages, 1, 0, user_pages, NULL);
eb01459f 402 up_read(&mm->mmap_sem);
4f27b75d 403 mutex_lock(&dev->struct_mutex);
eb01459f
EA
404 if (pinned_pages < num_pages) {
405 ret = -EFAULT;
4f27b75d 406 goto out;
eb01459f
EA
407 }
408
4f27b75d
CW
409 ret = i915_gem_object_set_cpu_read_domain_range(obj,
410 args->offset,
411 args->size);
07f73f69 412 if (ret)
4f27b75d 413 goto out;
eb01459f 414
4f27b75d 415 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 416
eb01459f
EA
417 offset = args->offset;
418
419 while (remain > 0) {
e5281ccd
CW
420 struct page *page;
421
eb01459f
EA
422 /* Operation in this page
423 *
eb01459f
EA
424 * shmem_page_offset = offset within page in shmem file
425 * data_page_index = page number in get_user_pages return
426 * data_page_offset = offset with data_page_index page.
427 * page_length = bytes to copy for this page
428 */
eb01459f
EA
429 shmem_page_offset = offset & ~PAGE_MASK;
430 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
431 data_page_offset = data_ptr & ~PAGE_MASK;
432
433 page_length = remain;
434 if ((shmem_page_offset + page_length) > PAGE_SIZE)
435 page_length = PAGE_SIZE - shmem_page_offset;
436 if ((data_page_offset + page_length) > PAGE_SIZE)
437 page_length = PAGE_SIZE - data_page_offset;
438
e5281ccd
CW
439 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
440 GFP_HIGHUSER | __GFP_RECLAIMABLE);
441 if (IS_ERR(page))
442 return PTR_ERR(page);
443
280b713b 444 if (do_bit17_swizzling) {
e5281ccd 445 slow_shmem_bit17_copy(page,
280b713b 446 shmem_page_offset,
99a03df5
CW
447 user_pages[data_page_index],
448 data_page_offset,
449 page_length,
450 1);
451 } else {
452 slow_shmem_copy(user_pages[data_page_index],
453 data_page_offset,
e5281ccd 454 page,
99a03df5
CW
455 shmem_page_offset,
456 page_length);
280b713b 457 }
eb01459f 458
e5281ccd
CW
459 mark_page_accessed(page);
460 page_cache_release(page);
461
eb01459f
EA
462 remain -= page_length;
463 data_ptr += page_length;
464 offset += page_length;
465 }
466
4f27b75d 467out:
eb01459f
EA
468 for (i = 0; i < pinned_pages; i++) {
469 SetPageDirty(user_pages[i]);
e5281ccd 470 mark_page_accessed(user_pages[i]);
eb01459f
EA
471 page_cache_release(user_pages[i]);
472 }
8e7d2b2c 473 drm_free_large(user_pages);
eb01459f
EA
474
475 return ret;
476}
477
673a394b
EA
478/**
479 * Reads data from the object referenced by handle.
480 *
481 * On error, the contents of *data are undefined.
482 */
483int
484i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 485 struct drm_file *file)
673a394b
EA
486{
487 struct drm_i915_gem_pread *args = data;
05394f39 488 struct drm_i915_gem_object *obj;
35b62a89 489 int ret = 0;
673a394b 490
51311d0a
CW
491 if (args->size == 0)
492 return 0;
493
494 if (!access_ok(VERIFY_WRITE,
495 (char __user *)(uintptr_t)args->data_ptr,
496 args->size))
497 return -EFAULT;
498
499 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
500 args->size);
501 if (ret)
502 return -EFAULT;
503
4f27b75d 504 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 505 if (ret)
4f27b75d 506 return ret;
673a394b 507
05394f39 508 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 509 if (&obj->base == NULL) {
1d7cfea1
CW
510 ret = -ENOENT;
511 goto unlock;
4f27b75d 512 }
673a394b 513
7dcd2499 514 /* Bounds check source. */
05394f39
CW
515 if (args->offset > obj->base.size ||
516 args->size > obj->base.size - args->offset) {
ce9d419d 517 ret = -EINVAL;
35b62a89 518 goto out;
ce9d419d
CW
519 }
520
db53a302
CW
521 trace_i915_gem_object_pread(obj, args->offset, args->size);
522
4f27b75d
CW
523 ret = i915_gem_object_set_cpu_read_domain_range(obj,
524 args->offset,
525 args->size);
526 if (ret)
e5281ccd 527 goto out;
4f27b75d
CW
528
529 ret = -EFAULT;
530 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 531 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 532 if (ret == -EFAULT)
05394f39 533 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 534
35b62a89 535out:
05394f39 536 drm_gem_object_unreference(&obj->base);
1d7cfea1 537unlock:
4f27b75d 538 mutex_unlock(&dev->struct_mutex);
eb01459f 539 return ret;
673a394b
EA
540}
541
0839ccb8
KP
542/* This is the fast write path which cannot handle
543 * page faults in the source data
9b7530cc 544 */
0839ccb8
KP
545
546static inline int
547fast_user_write(struct io_mapping *mapping,
548 loff_t page_base, int page_offset,
549 char __user *user_data,
550 int length)
9b7530cc 551{
9b7530cc 552 char *vaddr_atomic;
0839ccb8 553 unsigned long unwritten;
9b7530cc 554
3e4d3af5 555 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
556 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
557 user_data, length);
3e4d3af5 558 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 559 return unwritten;
0839ccb8
KP
560}
561
562/* Here's the write path which can sleep for
563 * page faults
564 */
565
ab34c226 566static inline void
3de09aa3
EA
567slow_kernel_write(struct io_mapping *mapping,
568 loff_t gtt_base, int gtt_offset,
569 struct page *user_page, int user_offset,
570 int length)
0839ccb8 571{
ab34c226
CW
572 char __iomem *dst_vaddr;
573 char *src_vaddr;
0839ccb8 574
ab34c226
CW
575 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
576 src_vaddr = kmap(user_page);
577
578 memcpy_toio(dst_vaddr + gtt_offset,
579 src_vaddr + user_offset,
580 length);
581
582 kunmap(user_page);
583 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
584}
585
3de09aa3
EA
586/**
587 * This is the fast pwrite path, where we copy the data directly from the
588 * user into the GTT, uncached.
589 */
673a394b 590static int
05394f39
CW
591i915_gem_gtt_pwrite_fast(struct drm_device *dev,
592 struct drm_i915_gem_object *obj,
3de09aa3 593 struct drm_i915_gem_pwrite *args,
05394f39 594 struct drm_file *file)
673a394b 595{
0839ccb8 596 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 597 ssize_t remain;
0839ccb8 598 loff_t offset, page_base;
673a394b 599 char __user *user_data;
0839ccb8 600 int page_offset, page_length;
673a394b
EA
601
602 user_data = (char __user *) (uintptr_t) args->data_ptr;
603 remain = args->size;
673a394b 604
05394f39 605 offset = obj->gtt_offset + args->offset;
673a394b
EA
606
607 while (remain > 0) {
608 /* Operation in this page
609 *
0839ccb8
KP
610 * page_base = page offset within aperture
611 * page_offset = offset within page
612 * page_length = bytes to copy for this page
673a394b 613 */
0839ccb8
KP
614 page_base = (offset & ~(PAGE_SIZE-1));
615 page_offset = offset & (PAGE_SIZE-1);
616 page_length = remain;
617 if ((page_offset + remain) > PAGE_SIZE)
618 page_length = PAGE_SIZE - page_offset;
619
0839ccb8 620 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
621 * source page isn't available. Return the error and we'll
622 * retry in the slow path.
0839ccb8 623 */
fbd5a26d
CW
624 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
625 page_offset, user_data, page_length))
626
627 return -EFAULT;
673a394b 628
0839ccb8
KP
629 remain -= page_length;
630 user_data += page_length;
631 offset += page_length;
673a394b 632 }
673a394b 633
fbd5a26d 634 return 0;
673a394b
EA
635}
636
3de09aa3
EA
637/**
638 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
639 * the memory and maps it using kmap_atomic for copying.
640 *
641 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
642 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
643 */
3043c60c 644static int
05394f39
CW
645i915_gem_gtt_pwrite_slow(struct drm_device *dev,
646 struct drm_i915_gem_object *obj,
3de09aa3 647 struct drm_i915_gem_pwrite *args,
05394f39 648 struct drm_file *file)
673a394b 649{
3de09aa3
EA
650 drm_i915_private_t *dev_priv = dev->dev_private;
651 ssize_t remain;
652 loff_t gtt_page_base, offset;
653 loff_t first_data_page, last_data_page, num_pages;
654 loff_t pinned_pages, i;
655 struct page **user_pages;
656 struct mm_struct *mm = current->mm;
657 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 658 int ret;
3de09aa3
EA
659 uint64_t data_ptr = args->data_ptr;
660
661 remain = args->size;
662
663 /* Pin the user pages containing the data. We can't fault while
664 * holding the struct mutex, and all of the pwrite implementations
665 * want to hold it while dereferencing the user data.
666 */
667 first_data_page = data_ptr / PAGE_SIZE;
668 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
669 num_pages = last_data_page - first_data_page + 1;
670
fbd5a26d 671 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
672 if (user_pages == NULL)
673 return -ENOMEM;
674
fbd5a26d 675 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
676 down_read(&mm->mmap_sem);
677 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
678 num_pages, 0, 0, user_pages, NULL);
679 up_read(&mm->mmap_sem);
fbd5a26d 680 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
681 if (pinned_pages < num_pages) {
682 ret = -EFAULT;
683 goto out_unpin_pages;
684 }
673a394b 685
d9e86c0e
CW
686 ret = i915_gem_object_set_to_gtt_domain(obj, true);
687 if (ret)
688 goto out_unpin_pages;
689
690 ret = i915_gem_object_put_fence(obj);
3de09aa3 691 if (ret)
fbd5a26d 692 goto out_unpin_pages;
3de09aa3 693
05394f39 694 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
695
696 while (remain > 0) {
697 /* Operation in this page
698 *
699 * gtt_page_base = page offset within aperture
700 * gtt_page_offset = offset within page in aperture
701 * data_page_index = page number in get_user_pages return
702 * data_page_offset = offset with data_page_index page.
703 * page_length = bytes to copy for this page
704 */
705 gtt_page_base = offset & PAGE_MASK;
706 gtt_page_offset = offset & ~PAGE_MASK;
707 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
708 data_page_offset = data_ptr & ~PAGE_MASK;
709
710 page_length = remain;
711 if ((gtt_page_offset + page_length) > PAGE_SIZE)
712 page_length = PAGE_SIZE - gtt_page_offset;
713 if ((data_page_offset + page_length) > PAGE_SIZE)
714 page_length = PAGE_SIZE - data_page_offset;
715
ab34c226
CW
716 slow_kernel_write(dev_priv->mm.gtt_mapping,
717 gtt_page_base, gtt_page_offset,
718 user_pages[data_page_index],
719 data_page_offset,
720 page_length);
3de09aa3
EA
721
722 remain -= page_length;
723 offset += page_length;
724 data_ptr += page_length;
725 }
726
3de09aa3
EA
727out_unpin_pages:
728 for (i = 0; i < pinned_pages; i++)
729 page_cache_release(user_pages[i]);
8e7d2b2c 730 drm_free_large(user_pages);
3de09aa3
EA
731
732 return ret;
733}
734
40123c1f
EA
735/**
736 * This is the fast shmem pwrite path, which attempts to directly
737 * copy_from_user into the kmapped pages backing the object.
738 */
3043c60c 739static int
05394f39
CW
740i915_gem_shmem_pwrite_fast(struct drm_device *dev,
741 struct drm_i915_gem_object *obj,
40123c1f 742 struct drm_i915_gem_pwrite *args,
05394f39 743 struct drm_file *file)
673a394b 744{
05394f39 745 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 746 ssize_t remain;
e5281ccd 747 loff_t offset;
40123c1f
EA
748 char __user *user_data;
749 int page_offset, page_length;
40123c1f
EA
750
751 user_data = (char __user *) (uintptr_t) args->data_ptr;
752 remain = args->size;
673a394b 753
40123c1f 754 offset = args->offset;
05394f39 755 obj->dirty = 1;
40123c1f
EA
756
757 while (remain > 0) {
e5281ccd
CW
758 struct page *page;
759 char *vaddr;
760 int ret;
761
40123c1f
EA
762 /* Operation in this page
763 *
40123c1f
EA
764 * page_offset = offset within page
765 * page_length = bytes to copy for this page
766 */
40123c1f
EA
767 page_offset = offset & (PAGE_SIZE-1);
768 page_length = remain;
769 if ((page_offset + remain) > PAGE_SIZE)
770 page_length = PAGE_SIZE - page_offset;
771
e5281ccd
CW
772 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
773 GFP_HIGHUSER | __GFP_RECLAIMABLE);
774 if (IS_ERR(page))
775 return PTR_ERR(page);
776
777 vaddr = kmap_atomic(page, KM_USER0);
778 ret = __copy_from_user_inatomic(vaddr + page_offset,
779 user_data,
780 page_length);
781 kunmap_atomic(vaddr, KM_USER0);
782
783 set_page_dirty(page);
784 mark_page_accessed(page);
785 page_cache_release(page);
786
787 /* If we get a fault while copying data, then (presumably) our
788 * source page isn't available. Return the error and we'll
789 * retry in the slow path.
790 */
791 if (ret)
fbd5a26d 792 return -EFAULT;
40123c1f
EA
793
794 remain -= page_length;
795 user_data += page_length;
796 offset += page_length;
797 }
798
fbd5a26d 799 return 0;
40123c1f
EA
800}
801
802/**
803 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
804 * the memory and maps it using kmap_atomic for copying.
805 *
806 * This avoids taking mmap_sem for faulting on the user's address while the
807 * struct_mutex is held.
808 */
809static int
05394f39
CW
810i915_gem_shmem_pwrite_slow(struct drm_device *dev,
811 struct drm_i915_gem_object *obj,
40123c1f 812 struct drm_i915_gem_pwrite *args,
05394f39 813 struct drm_file *file)
40123c1f 814{
05394f39 815 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f
EA
816 struct mm_struct *mm = current->mm;
817 struct page **user_pages;
818 ssize_t remain;
819 loff_t offset, pinned_pages, i;
820 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 821 int shmem_page_offset;
40123c1f
EA
822 int data_page_index, data_page_offset;
823 int page_length;
824 int ret;
825 uint64_t data_ptr = args->data_ptr;
280b713b 826 int do_bit17_swizzling;
40123c1f
EA
827
828 remain = args->size;
829
830 /* Pin the user pages containing the data. We can't fault while
831 * holding the struct mutex, and all of the pwrite implementations
832 * want to hold it while dereferencing the user data.
833 */
834 first_data_page = data_ptr / PAGE_SIZE;
835 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
836 num_pages = last_data_page - first_data_page + 1;
837
4f27b75d 838 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
839 if (user_pages == NULL)
840 return -ENOMEM;
841
fbd5a26d 842 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
843 down_read(&mm->mmap_sem);
844 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
845 num_pages, 0, 0, user_pages, NULL);
846 up_read(&mm->mmap_sem);
fbd5a26d 847 mutex_lock(&dev->struct_mutex);
40123c1f
EA
848 if (pinned_pages < num_pages) {
849 ret = -EFAULT;
fbd5a26d 850 goto out;
673a394b
EA
851 }
852
fbd5a26d 853 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 854 if (ret)
fbd5a26d 855 goto out;
40123c1f 856
fbd5a26d 857 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 858
673a394b 859 offset = args->offset;
05394f39 860 obj->dirty = 1;
673a394b 861
40123c1f 862 while (remain > 0) {
e5281ccd
CW
863 struct page *page;
864
40123c1f
EA
865 /* Operation in this page
866 *
40123c1f
EA
867 * shmem_page_offset = offset within page in shmem file
868 * data_page_index = page number in get_user_pages return
869 * data_page_offset = offset with data_page_index page.
870 * page_length = bytes to copy for this page
871 */
40123c1f
EA
872 shmem_page_offset = offset & ~PAGE_MASK;
873 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
874 data_page_offset = data_ptr & ~PAGE_MASK;
875
876 page_length = remain;
877 if ((shmem_page_offset + page_length) > PAGE_SIZE)
878 page_length = PAGE_SIZE - shmem_page_offset;
879 if ((data_page_offset + page_length) > PAGE_SIZE)
880 page_length = PAGE_SIZE - data_page_offset;
881
e5281ccd
CW
882 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
883 GFP_HIGHUSER | __GFP_RECLAIMABLE);
884 if (IS_ERR(page)) {
885 ret = PTR_ERR(page);
886 goto out;
887 }
888
280b713b 889 if (do_bit17_swizzling) {
e5281ccd 890 slow_shmem_bit17_copy(page,
280b713b
EA
891 shmem_page_offset,
892 user_pages[data_page_index],
893 data_page_offset,
99a03df5
CW
894 page_length,
895 0);
896 } else {
e5281ccd 897 slow_shmem_copy(page,
99a03df5
CW
898 shmem_page_offset,
899 user_pages[data_page_index],
900 data_page_offset,
901 page_length);
280b713b 902 }
40123c1f 903
e5281ccd
CW
904 set_page_dirty(page);
905 mark_page_accessed(page);
906 page_cache_release(page);
907
40123c1f
EA
908 remain -= page_length;
909 data_ptr += page_length;
910 offset += page_length;
673a394b
EA
911 }
912
fbd5a26d 913out:
40123c1f
EA
914 for (i = 0; i < pinned_pages; i++)
915 page_cache_release(user_pages[i]);
8e7d2b2c 916 drm_free_large(user_pages);
673a394b 917
40123c1f 918 return ret;
673a394b
EA
919}
920
921/**
922 * Writes data to the object referenced by handle.
923 *
924 * On error, the contents of the buffer that were to be modified are undefined.
925 */
926int
927i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 928 struct drm_file *file)
673a394b
EA
929{
930 struct drm_i915_gem_pwrite *args = data;
05394f39 931 struct drm_i915_gem_object *obj;
51311d0a
CW
932 int ret;
933
934 if (args->size == 0)
935 return 0;
936
937 if (!access_ok(VERIFY_READ,
938 (char __user *)(uintptr_t)args->data_ptr,
939 args->size))
940 return -EFAULT;
941
942 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
943 args->size);
944 if (ret)
945 return -EFAULT;
673a394b 946
fbd5a26d 947 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 948 if (ret)
fbd5a26d 949 return ret;
1d7cfea1 950
05394f39 951 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 952 if (&obj->base == NULL) {
1d7cfea1
CW
953 ret = -ENOENT;
954 goto unlock;
fbd5a26d 955 }
673a394b 956
7dcd2499 957 /* Bounds check destination. */
05394f39
CW
958 if (args->offset > obj->base.size ||
959 args->size > obj->base.size - args->offset) {
ce9d419d 960 ret = -EINVAL;
35b62a89 961 goto out;
ce9d419d
CW
962 }
963
db53a302
CW
964 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
965
673a394b
EA
966 /* We can only do the GTT pwrite on untiled buffers, as otherwise
967 * it would end up going through the fenced access, and we'll get
968 * different detiling behavior between reading and writing.
969 * pread/pwrite currently are reading and writing from the CPU
970 * perspective, requiring manual detiling by the client.
971 */
05394f39 972 if (obj->phys_obj)
fbd5a26d 973 ret = i915_gem_phys_pwrite(dev, obj, args, file);
d9e86c0e 974 else if (obj->gtt_space &&
05394f39 975 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 976 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
977 if (ret)
978 goto out;
979
d9e86c0e
CW
980 ret = i915_gem_object_set_to_gtt_domain(obj, true);
981 if (ret)
982 goto out_unpin;
983
984 ret = i915_gem_object_put_fence(obj);
fbd5a26d
CW
985 if (ret)
986 goto out_unpin;
987
988 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
989 if (ret == -EFAULT)
990 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
991
992out_unpin:
993 i915_gem_object_unpin(obj);
40123c1f 994 } else {
fbd5a26d
CW
995 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
996 if (ret)
e5281ccd 997 goto out;
673a394b 998
fbd5a26d
CW
999 ret = -EFAULT;
1000 if (!i915_gem_object_needs_bit17_swizzle(obj))
1001 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1002 if (ret == -EFAULT)
1003 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1004 }
673a394b 1005
35b62a89 1006out:
05394f39 1007 drm_gem_object_unreference(&obj->base);
1d7cfea1 1008unlock:
fbd5a26d 1009 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1010 return ret;
1011}
1012
1013/**
2ef7eeaa
EA
1014 * Called when user space prepares to use an object with the CPU, either
1015 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1016 */
1017int
1018i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1019 struct drm_file *file)
673a394b
EA
1020{
1021 struct drm_i915_gem_set_domain *args = data;
05394f39 1022 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1023 uint32_t read_domains = args->read_domains;
1024 uint32_t write_domain = args->write_domain;
673a394b
EA
1025 int ret;
1026
1027 if (!(dev->driver->driver_features & DRIVER_GEM))
1028 return -ENODEV;
1029
2ef7eeaa 1030 /* Only handle setting domains to types used by the CPU. */
21d509e3 1031 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1032 return -EINVAL;
1033
21d509e3 1034 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1035 return -EINVAL;
1036
1037 /* Having something in the write domain implies it's in the read
1038 * domain, and only that read domain. Enforce that in the request.
1039 */
1040 if (write_domain != 0 && read_domains != write_domain)
1041 return -EINVAL;
1042
76c1dec1 1043 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1044 if (ret)
76c1dec1 1045 return ret;
1d7cfea1 1046
05394f39 1047 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1048 if (&obj->base == NULL) {
1d7cfea1
CW
1049 ret = -ENOENT;
1050 goto unlock;
76c1dec1 1051 }
673a394b 1052
2ef7eeaa
EA
1053 if (read_domains & I915_GEM_DOMAIN_GTT) {
1054 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1055
1056 /* Silently promote "you're not bound, there was nothing to do"
1057 * to success, since the client was just asking us to
1058 * make sure everything was done.
1059 */
1060 if (ret == -EINVAL)
1061 ret = 0;
2ef7eeaa 1062 } else {
e47c68e9 1063 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1064 }
1065
05394f39 1066 drm_gem_object_unreference(&obj->base);
1d7cfea1 1067unlock:
673a394b
EA
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1070}
1071
1072/**
1073 * Called when user space has done writes to this buffer
1074 */
1075int
1076i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1077 struct drm_file *file)
673a394b
EA
1078{
1079 struct drm_i915_gem_sw_finish *args = data;
05394f39 1080 struct drm_i915_gem_object *obj;
673a394b
EA
1081 int ret = 0;
1082
1083 if (!(dev->driver->driver_features & DRIVER_GEM))
1084 return -ENODEV;
1085
76c1dec1 1086 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1087 if (ret)
76c1dec1 1088 return ret;
1d7cfea1 1089
05394f39 1090 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1091 if (&obj->base == NULL) {
1d7cfea1
CW
1092 ret = -ENOENT;
1093 goto unlock;
673a394b
EA
1094 }
1095
673a394b 1096 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1097 if (obj->pin_count)
e47c68e9
EA
1098 i915_gem_object_flush_cpu_write_domain(obj);
1099
05394f39 1100 drm_gem_object_unreference(&obj->base);
1d7cfea1 1101unlock:
673a394b
EA
1102 mutex_unlock(&dev->struct_mutex);
1103 return ret;
1104}
1105
1106/**
1107 * Maps the contents of an object, returning the address it is mapped
1108 * into.
1109 *
1110 * While the mapping holds a reference on the contents of the object, it doesn't
1111 * imply a ref on the object itself.
1112 */
1113int
1114i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1115 struct drm_file *file)
673a394b 1116{
da761a6e 1117 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1118 struct drm_i915_gem_mmap *args = data;
1119 struct drm_gem_object *obj;
673a394b
EA
1120 unsigned long addr;
1121
1122 if (!(dev->driver->driver_features & DRIVER_GEM))
1123 return -ENODEV;
1124
05394f39 1125 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1126 if (obj == NULL)
bf79cb91 1127 return -ENOENT;
673a394b 1128
da761a6e
CW
1129 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1130 drm_gem_object_unreference_unlocked(obj);
1131 return -E2BIG;
1132 }
1133
673a394b
EA
1134 down_write(&current->mm->mmap_sem);
1135 addr = do_mmap(obj->filp, 0, args->size,
1136 PROT_READ | PROT_WRITE, MAP_SHARED,
1137 args->offset);
1138 up_write(&current->mm->mmap_sem);
bc9025bd 1139 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1140 if (IS_ERR((void *)addr))
1141 return addr;
1142
1143 args->addr_ptr = (uint64_t) addr;
1144
1145 return 0;
1146}
1147
de151cf6
JB
1148/**
1149 * i915_gem_fault - fault a page into the GTT
1150 * vma: VMA in question
1151 * vmf: fault info
1152 *
1153 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1154 * from userspace. The fault handler takes care of binding the object to
1155 * the GTT (if needed), allocating and programming a fence register (again,
1156 * only if needed based on whether the old reg is still valid or the object
1157 * is tiled) and inserting a new PTE into the faulting process.
1158 *
1159 * Note that the faulting process may involve evicting existing objects
1160 * from the GTT and/or fence registers to make room. So performance may
1161 * suffer if the GTT working set is large or there are few fence registers
1162 * left.
1163 */
1164int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1165{
05394f39
CW
1166 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1167 struct drm_device *dev = obj->base.dev;
7d1c4804 1168 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1169 pgoff_t page_offset;
1170 unsigned long pfn;
1171 int ret = 0;
0f973f27 1172 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1173
1174 /* We don't use vmf->pgoff since that has the fake offset */
1175 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1176 PAGE_SHIFT;
1177
d9bc7e9f
CW
1178 ret = i915_mutex_lock_interruptible(dev);
1179 if (ret)
1180 goto out;
a00b10c3 1181
db53a302
CW
1182 trace_i915_gem_object_fault(obj, page_offset, true, write);
1183
d9bc7e9f 1184 /* Now bind it into the GTT if needed */
919926ae
CW
1185 if (!obj->map_and_fenceable) {
1186 ret = i915_gem_object_unbind(obj);
1187 if (ret)
1188 goto unlock;
a00b10c3 1189 }
05394f39 1190 if (!obj->gtt_space) {
75e9e915 1191 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1192 if (ret)
1193 goto unlock;
de151cf6
JB
1194 }
1195
4a684a41
CW
1196 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1197 if (ret)
1198 goto unlock;
1199
d9e86c0e
CW
1200 if (obj->tiling_mode == I915_TILING_NONE)
1201 ret = i915_gem_object_put_fence(obj);
1202 else
1203 ret = i915_gem_object_get_fence(obj, NULL, true);
1204 if (ret)
1205 goto unlock;
de151cf6 1206
05394f39
CW
1207 if (i915_gem_object_is_inactive(obj))
1208 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1209
6299f992
CW
1210 obj->fault_mappable = true;
1211
05394f39 1212 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1213 page_offset;
1214
1215 /* Finally, remap it using the new GTT offset */
1216 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1217unlock:
de151cf6 1218 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1219out:
de151cf6 1220 switch (ret) {
d9bc7e9f 1221 case -EIO:
045e769a 1222 case -EAGAIN:
d9bc7e9f
CW
1223 /* Give the error handler a chance to run and move the
1224 * objects off the GPU active list. Next time we service the
1225 * fault, we should be able to transition the page into the
1226 * GTT without touching the GPU (and so avoid further
1227 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1228 * with coherency, just lost writes.
1229 */
045e769a 1230 set_need_resched();
c715089f
CW
1231 case 0:
1232 case -ERESTARTSYS:
bed636ab 1233 case -EINTR:
c715089f 1234 return VM_FAULT_NOPAGE;
de151cf6 1235 case -ENOMEM:
de151cf6 1236 return VM_FAULT_OOM;
de151cf6 1237 default:
c715089f 1238 return VM_FAULT_SIGBUS;
de151cf6
JB
1239 }
1240}
1241
1242/**
1243 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1244 * @obj: obj in question
1245 *
1246 * GEM memory mapping works by handing back to userspace a fake mmap offset
1247 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1248 * up the object based on the offset and sets up the various memory mapping
1249 * structures.
1250 *
1251 * This routine allocates and attaches a fake offset for @obj.
1252 */
1253static int
05394f39 1254i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
de151cf6 1255{
05394f39 1256 struct drm_device *dev = obj->base.dev;
de151cf6 1257 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1258 struct drm_map_list *list;
f77d390c 1259 struct drm_local_map *map;
de151cf6
JB
1260 int ret = 0;
1261
1262 /* Set the object up for mmap'ing */
05394f39 1263 list = &obj->base.map_list;
9a298b2a 1264 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1265 if (!list->map)
1266 return -ENOMEM;
1267
1268 map = list->map;
1269 map->type = _DRM_GEM;
05394f39 1270 map->size = obj->base.size;
de151cf6
JB
1271 map->handle = obj;
1272
1273 /* Get a DRM GEM mmap offset allocated... */
1274 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
05394f39
CW
1275 obj->base.size / PAGE_SIZE,
1276 0, 0);
de151cf6 1277 if (!list->file_offset_node) {
05394f39
CW
1278 DRM_ERROR("failed to allocate offset for bo %d\n",
1279 obj->base.name);
9e0ae534 1280 ret = -ENOSPC;
de151cf6
JB
1281 goto out_free_list;
1282 }
1283
1284 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
05394f39
CW
1285 obj->base.size / PAGE_SIZE,
1286 0);
de151cf6
JB
1287 if (!list->file_offset_node) {
1288 ret = -ENOMEM;
1289 goto out_free_list;
1290 }
1291
1292 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1293 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1294 if (ret) {
de151cf6
JB
1295 DRM_ERROR("failed to add to map hash\n");
1296 goto out_free_mm;
1297 }
1298
de151cf6
JB
1299 return 0;
1300
1301out_free_mm:
1302 drm_mm_put_block(list->file_offset_node);
1303out_free_list:
9a298b2a 1304 kfree(list->map);
39a01d1f 1305 list->map = NULL;
de151cf6
JB
1306
1307 return ret;
1308}
1309
901782b2
CW
1310/**
1311 * i915_gem_release_mmap - remove physical page mappings
1312 * @obj: obj in question
1313 *
af901ca1 1314 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1315 * relinquish ownership of the pages back to the system.
1316 *
1317 * It is vital that we remove the page mapping if we have mapped a tiled
1318 * object through the GTT and then lose the fence register due to
1319 * resource pressure. Similarly if the object has been moved out of the
1320 * aperture, than pages mapped into userspace must be revoked. Removing the
1321 * mapping will then trigger a page fault on the next user access, allowing
1322 * fixup by i915_gem_fault().
1323 */
d05ca301 1324void
05394f39 1325i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1326{
6299f992
CW
1327 if (!obj->fault_mappable)
1328 return;
901782b2 1329
6299f992
CW
1330 unmap_mapping_range(obj->base.dev->dev_mapping,
1331 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1332 obj->base.size, 1);
fb7d516a 1333
6299f992 1334 obj->fault_mappable = false;
901782b2
CW
1335}
1336
ab00b3e5 1337static void
05394f39 1338i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
ab00b3e5 1339{
05394f39 1340 struct drm_device *dev = obj->base.dev;
ab00b3e5 1341 struct drm_gem_mm *mm = dev->mm_private;
05394f39 1342 struct drm_map_list *list = &obj->base.map_list;
ab00b3e5 1343
ab00b3e5 1344 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1345 drm_mm_put_block(list->file_offset_node);
1346 kfree(list->map);
1347 list->map = NULL;
ab00b3e5
JB
1348}
1349
92b88aeb
CW
1350static uint32_t
1351i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1352{
1353 struct drm_device *dev = obj->base.dev;
1354 uint32_t size;
1355
1356 if (INTEL_INFO(dev)->gen >= 4 ||
1357 obj->tiling_mode == I915_TILING_NONE)
1358 return obj->base.size;
1359
1360 /* Previous chips need a power-of-two fence region when tiling */
1361 if (INTEL_INFO(dev)->gen == 3)
1362 size = 1024*1024;
1363 else
1364 size = 512*1024;
1365
1366 while (size < obj->base.size)
1367 size <<= 1;
1368
1369 return size;
1370}
1371
de151cf6
JB
1372/**
1373 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1374 * @obj: object to check
1375 *
1376 * Return the required GTT alignment for an object, taking into account
5e783301 1377 * potential fence register mapping.
de151cf6
JB
1378 */
1379static uint32_t
05394f39 1380i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
de151cf6 1381{
05394f39 1382 struct drm_device *dev = obj->base.dev;
de151cf6
JB
1383
1384 /*
1385 * Minimum alignment is 4k (GTT page size), but might be greater
1386 * if a fence register is needed for the object.
1387 */
a00b10c3 1388 if (INTEL_INFO(dev)->gen >= 4 ||
05394f39 1389 obj->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1390 return 4096;
1391
a00b10c3
CW
1392 /*
1393 * Previous chips need to be aligned to the size of the smallest
1394 * fence register that can contain the object.
1395 */
05394f39 1396 return i915_gem_get_gtt_size(obj);
a00b10c3
CW
1397}
1398
5e783301
DV
1399/**
1400 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1401 * unfenced object
1402 * @obj: object to check
1403 *
1404 * Return the required GTT alignment for an object, only taking into account
1405 * unfenced tiled surface requirements.
1406 */
1407static uint32_t
05394f39 1408i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
5e783301 1409{
05394f39 1410 struct drm_device *dev = obj->base.dev;
5e783301
DV
1411 int tile_height;
1412
1413 /*
1414 * Minimum alignment is 4k (GTT page size) for sane hw.
1415 */
1416 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
05394f39 1417 obj->tiling_mode == I915_TILING_NONE)
5e783301
DV
1418 return 4096;
1419
1420 /*
1421 * Older chips need unfenced tiled buffers to be aligned to the left
1422 * edge of an even tile row (where tile rows are counted as if the bo is
1423 * placed in a fenced gtt region).
1424 */
1425 if (IS_GEN2(dev) ||
05394f39 1426 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
5e783301
DV
1427 tile_height = 32;
1428 else
1429 tile_height = 8;
1430
05394f39 1431 return tile_height * obj->stride * 2;
5e783301
DV
1432}
1433
de151cf6
JB
1434/**
1435 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1436 * @dev: DRM device
1437 * @data: GTT mapping ioctl data
05394f39 1438 * @file: GEM object info
de151cf6
JB
1439 *
1440 * Simply returns the fake offset to userspace so it can mmap it.
1441 * The mmap call will end up in drm_gem_mmap(), which will set things
1442 * up so we can get faults in the handler above.
1443 *
1444 * The fault handler will take care of binding the object into the GTT
1445 * (since it may have been evicted to make room for something), allocating
1446 * a fence register, and mapping the appropriate aperture address into
1447 * userspace.
1448 */
1449int
1450i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
05394f39 1451 struct drm_file *file)
de151cf6 1452{
da761a6e 1453 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 1454 struct drm_i915_gem_mmap_gtt *args = data;
05394f39 1455 struct drm_i915_gem_object *obj;
de151cf6
JB
1456 int ret;
1457
1458 if (!(dev->driver->driver_features & DRIVER_GEM))
1459 return -ENODEV;
1460
76c1dec1 1461 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1462 if (ret)
76c1dec1 1463 return ret;
de151cf6 1464
05394f39 1465 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1466 if (&obj->base == NULL) {
1d7cfea1
CW
1467 ret = -ENOENT;
1468 goto unlock;
1469 }
de151cf6 1470
05394f39 1471 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e
CW
1472 ret = -E2BIG;
1473 goto unlock;
1474 }
1475
05394f39 1476 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1477 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1478 ret = -EINVAL;
1479 goto out;
ab18282d
CW
1480 }
1481
05394f39 1482 if (!obj->base.map_list.map) {
de151cf6 1483 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1484 if (ret)
1485 goto out;
de151cf6
JB
1486 }
1487
05394f39 1488 args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1489
1d7cfea1 1490out:
05394f39 1491 drm_gem_object_unreference(&obj->base);
1d7cfea1 1492unlock:
de151cf6 1493 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1494 return ret;
de151cf6
JB
1495}
1496
e5281ccd 1497static int
05394f39 1498i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1499 gfp_t gfpmask)
1500{
e5281ccd
CW
1501 int page_count, i;
1502 struct address_space *mapping;
1503 struct inode *inode;
1504 struct page *page;
1505
1506 /* Get the list of pages out of our struct file. They'll be pinned
1507 * at this point until we release them.
1508 */
05394f39
CW
1509 page_count = obj->base.size / PAGE_SIZE;
1510 BUG_ON(obj->pages != NULL);
1511 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1512 if (obj->pages == NULL)
e5281ccd
CW
1513 return -ENOMEM;
1514
05394f39 1515 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd
CW
1516 mapping = inode->i_mapping;
1517 for (i = 0; i < page_count; i++) {
1518 page = read_cache_page_gfp(mapping, i,
1519 GFP_HIGHUSER |
1520 __GFP_COLD |
1521 __GFP_RECLAIMABLE |
1522 gfpmask);
1523 if (IS_ERR(page))
1524 goto err_pages;
1525
05394f39 1526 obj->pages[i] = page;
e5281ccd
CW
1527 }
1528
05394f39 1529 if (obj->tiling_mode != I915_TILING_NONE)
e5281ccd
CW
1530 i915_gem_object_do_bit_17_swizzle(obj);
1531
1532 return 0;
1533
1534err_pages:
1535 while (i--)
05394f39 1536 page_cache_release(obj->pages[i]);
e5281ccd 1537
05394f39
CW
1538 drm_free_large(obj->pages);
1539 obj->pages = NULL;
e5281ccd
CW
1540 return PTR_ERR(page);
1541}
1542
5cdf5881 1543static void
05394f39 1544i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1545{
05394f39 1546 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1547 int i;
1548
05394f39 1549 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1550
05394f39 1551 if (obj->tiling_mode != I915_TILING_NONE)
280b713b
EA
1552 i915_gem_object_save_bit_17_swizzle(obj);
1553
05394f39
CW
1554 if (obj->madv == I915_MADV_DONTNEED)
1555 obj->dirty = 0;
3ef94daa
CW
1556
1557 for (i = 0; i < page_count; i++) {
05394f39
CW
1558 if (obj->dirty)
1559 set_page_dirty(obj->pages[i]);
3ef94daa 1560
05394f39
CW
1561 if (obj->madv == I915_MADV_WILLNEED)
1562 mark_page_accessed(obj->pages[i]);
3ef94daa 1563
05394f39 1564 page_cache_release(obj->pages[i]);
3ef94daa 1565 }
05394f39 1566 obj->dirty = 0;
673a394b 1567
05394f39
CW
1568 drm_free_large(obj->pages);
1569 obj->pages = NULL;
673a394b
EA
1570}
1571
54cf91dc 1572void
05394f39 1573i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1574 struct intel_ring_buffer *ring,
1575 u32 seqno)
673a394b 1576{
05394f39 1577 struct drm_device *dev = obj->base.dev;
69dc4987 1578 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1579
852835f3 1580 BUG_ON(ring == NULL);
05394f39 1581 obj->ring = ring;
673a394b
EA
1582
1583 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1584 if (!obj->active) {
1585 drm_gem_object_reference(&obj->base);
1586 obj->active = 1;
673a394b 1587 }
e35a41de 1588
673a394b 1589 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1590 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1591 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1592
05394f39 1593 obj->last_rendering_seqno = seqno;
caea7476
CW
1594 if (obj->fenced_gpu_access) {
1595 struct drm_i915_fence_reg *reg;
1596
1597 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1598
1599 obj->last_fenced_seqno = seqno;
1600 obj->last_fenced_ring = ring;
1601
1602 reg = &dev_priv->fence_regs[obj->fence_reg];
1603 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1604 }
1605}
1606
1607static void
1608i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1609{
1610 list_del_init(&obj->ring_list);
1611 obj->last_rendering_seqno = 0;
673a394b
EA
1612}
1613
ce44b0ea 1614static void
05394f39 1615i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1616{
05394f39 1617 struct drm_device *dev = obj->base.dev;
ce44b0ea 1618 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1619
05394f39
CW
1620 BUG_ON(!obj->active);
1621 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1622
1623 i915_gem_object_move_off_active(obj);
1624}
1625
1626static void
1627i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1628{
1629 struct drm_device *dev = obj->base.dev;
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1631
1632 if (obj->pin_count != 0)
1633 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1634 else
1635 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1636
1637 BUG_ON(!list_empty(&obj->gpu_write_list));
1638 BUG_ON(!obj->active);
1639 obj->ring = NULL;
1640
1641 i915_gem_object_move_off_active(obj);
1642 obj->fenced_gpu_access = false;
caea7476
CW
1643
1644 obj->active = 0;
87ca9c8a 1645 obj->pending_gpu_write = false;
caea7476
CW
1646 drm_gem_object_unreference(&obj->base);
1647
1648 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1649}
673a394b 1650
963b4836
CW
1651/* Immediately discard the backing storage */
1652static void
05394f39 1653i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1654{
bb6baf76 1655 struct inode *inode;
963b4836 1656
ae9fed6b
CW
1657 /* Our goal here is to return as much of the memory as
1658 * is possible back to the system as we are called from OOM.
1659 * To do this we must instruct the shmfs to drop all of its
1660 * backing pages, *now*. Here we mirror the actions taken
1661 * when by shmem_delete_inode() to release the backing store.
1662 */
05394f39 1663 inode = obj->base.filp->f_path.dentry->d_inode;
ae9fed6b
CW
1664 truncate_inode_pages(inode->i_mapping, 0);
1665 if (inode->i_op->truncate_range)
1666 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1667
05394f39 1668 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1669}
1670
1671static inline int
05394f39 1672i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1673{
05394f39 1674 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1675}
1676
63560396 1677static void
db53a302
CW
1678i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1679 uint32_t flush_domains)
63560396 1680{
05394f39 1681 struct drm_i915_gem_object *obj, *next;
63560396 1682
05394f39 1683 list_for_each_entry_safe(obj, next,
64193406 1684 &ring->gpu_write_list,
63560396 1685 gpu_write_list) {
05394f39
CW
1686 if (obj->base.write_domain & flush_domains) {
1687 uint32_t old_write_domain = obj->base.write_domain;
63560396 1688
05394f39
CW
1689 obj->base.write_domain = 0;
1690 list_del_init(&obj->gpu_write_list);
1ec14ad3 1691 i915_gem_object_move_to_active(obj, ring,
db53a302 1692 i915_gem_next_request_seqno(ring));
63560396 1693
63560396 1694 trace_i915_gem_object_change_domain(obj,
05394f39 1695 obj->base.read_domains,
63560396
DV
1696 old_write_domain);
1697 }
1698 }
1699}
8187a2b7 1700
3cce469c 1701int
db53a302 1702i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1703 struct drm_file *file,
db53a302 1704 struct drm_i915_gem_request *request)
673a394b 1705{
db53a302 1706 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
1707 uint32_t seqno;
1708 int was_empty;
3cce469c
CW
1709 int ret;
1710
1711 BUG_ON(request == NULL);
673a394b 1712
3cce469c
CW
1713 ret = ring->add_request(ring, &seqno);
1714 if (ret)
1715 return ret;
673a394b 1716
db53a302 1717 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1718
1719 request->seqno = seqno;
852835f3 1720 request->ring = ring;
673a394b 1721 request->emitted_jiffies = jiffies;
852835f3
ZN
1722 was_empty = list_empty(&ring->request_list);
1723 list_add_tail(&request->list, &ring->request_list);
1724
db53a302
CW
1725 if (file) {
1726 struct drm_i915_file_private *file_priv = file->driver_priv;
1727
1c25595f 1728 spin_lock(&file_priv->mm.lock);
f787a5f5 1729 request->file_priv = file_priv;
b962442e 1730 list_add_tail(&request->client_list,
f787a5f5 1731 &file_priv->mm.request_list);
1c25595f 1732 spin_unlock(&file_priv->mm.lock);
b962442e 1733 }
673a394b 1734
db53a302
CW
1735 ring->outstanding_lazy_request = false;
1736
f65d9421 1737 if (!dev_priv->mm.suspended) {
b3b079db
CW
1738 mod_timer(&dev_priv->hangcheck_timer,
1739 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1740 if (was_empty)
b3b079db
CW
1741 queue_delayed_work(dev_priv->wq,
1742 &dev_priv->mm.retire_work, HZ);
f65d9421 1743 }
3cce469c 1744 return 0;
673a394b
EA
1745}
1746
f787a5f5
CW
1747static inline void
1748i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1749{
1c25595f 1750 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1751
1c25595f
CW
1752 if (!file_priv)
1753 return;
1c5d22f7 1754
1c25595f
CW
1755 spin_lock(&file_priv->mm.lock);
1756 list_del(&request->client_list);
1757 request->file_priv = NULL;
1758 spin_unlock(&file_priv->mm.lock);
673a394b 1759}
673a394b 1760
dfaae392
CW
1761static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1762 struct intel_ring_buffer *ring)
9375e446 1763{
dfaae392
CW
1764 while (!list_empty(&ring->request_list)) {
1765 struct drm_i915_gem_request *request;
673a394b 1766
dfaae392
CW
1767 request = list_first_entry(&ring->request_list,
1768 struct drm_i915_gem_request,
1769 list);
de151cf6 1770
dfaae392 1771 list_del(&request->list);
f787a5f5 1772 i915_gem_request_remove_from_client(request);
dfaae392
CW
1773 kfree(request);
1774 }
673a394b 1775
dfaae392 1776 while (!list_empty(&ring->active_list)) {
05394f39 1777 struct drm_i915_gem_object *obj;
9375e446 1778
05394f39
CW
1779 obj = list_first_entry(&ring->active_list,
1780 struct drm_i915_gem_object,
1781 ring_list);
9375e446 1782
05394f39
CW
1783 obj->base.write_domain = 0;
1784 list_del_init(&obj->gpu_write_list);
1785 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1786 }
1787}
1788
312817a3
CW
1789static void i915_gem_reset_fences(struct drm_device *dev)
1790{
1791 struct drm_i915_private *dev_priv = dev->dev_private;
1792 int i;
1793
1794 for (i = 0; i < 16; i++) {
1795 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1796 struct drm_i915_gem_object *obj = reg->obj;
1797
1798 if (!obj)
1799 continue;
1800
1801 if (obj->tiling_mode)
1802 i915_gem_release_mmap(obj);
1803
d9e86c0e
CW
1804 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1805 reg->obj->fenced_gpu_access = false;
1806 reg->obj->last_fenced_seqno = 0;
1807 reg->obj->last_fenced_ring = NULL;
1808 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1809 }
1810}
1811
069efc1d 1812void i915_gem_reset(struct drm_device *dev)
673a394b 1813{
77f01230 1814 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1815 struct drm_i915_gem_object *obj;
1ec14ad3 1816 int i;
673a394b 1817
1ec14ad3
CW
1818 for (i = 0; i < I915_NUM_RINGS; i++)
1819 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1820
1821 /* Remove anything from the flushing lists. The GPU cache is likely
1822 * to be lost on reset along with the data, so simply move the
1823 * lost bo to the inactive list.
1824 */
1825 while (!list_empty(&dev_priv->mm.flushing_list)) {
05394f39
CW
1826 obj= list_first_entry(&dev_priv->mm.flushing_list,
1827 struct drm_i915_gem_object,
1828 mm_list);
dfaae392 1829
05394f39
CW
1830 obj->base.write_domain = 0;
1831 list_del_init(&obj->gpu_write_list);
1832 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1833 }
1834
1835 /* Move everything out of the GPU domains to ensure we do any
1836 * necessary invalidation upon reuse.
1837 */
05394f39 1838 list_for_each_entry(obj,
77f01230 1839 &dev_priv->mm.inactive_list,
69dc4987 1840 mm_list)
77f01230 1841 {
05394f39 1842 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1843 }
069efc1d
CW
1844
1845 /* The fence registers are invalidated so clear them out */
312817a3 1846 i915_gem_reset_fences(dev);
673a394b
EA
1847}
1848
1849/**
1850 * This function clears the request list as sequence numbers are passed.
1851 */
b09a1fec 1852static void
db53a302 1853i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1854{
673a394b 1855 uint32_t seqno;
1ec14ad3 1856 int i;
673a394b 1857
db53a302 1858 if (list_empty(&ring->request_list))
6c0594a3
KW
1859 return;
1860
db53a302 1861 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1862
78501eac 1863 seqno = ring->get_seqno(ring);
1ec14ad3 1864
076e2c0e 1865 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1866 if (seqno >= ring->sync_seqno[i])
1867 ring->sync_seqno[i] = 0;
1868
852835f3 1869 while (!list_empty(&ring->request_list)) {
673a394b 1870 struct drm_i915_gem_request *request;
673a394b 1871
852835f3 1872 request = list_first_entry(&ring->request_list,
673a394b
EA
1873 struct drm_i915_gem_request,
1874 list);
673a394b 1875
dfaae392 1876 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1877 break;
1878
db53a302 1879 trace_i915_gem_request_retire(ring, request->seqno);
b84d5f0c
CW
1880
1881 list_del(&request->list);
f787a5f5 1882 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1883 kfree(request);
1884 }
673a394b 1885
b84d5f0c
CW
1886 /* Move any buffers on the active list that are no longer referenced
1887 * by the ringbuffer to the flushing/inactive lists as appropriate.
1888 */
1889 while (!list_empty(&ring->active_list)) {
05394f39 1890 struct drm_i915_gem_object *obj;
b84d5f0c 1891
05394f39
CW
1892 obj= list_first_entry(&ring->active_list,
1893 struct drm_i915_gem_object,
1894 ring_list);
673a394b 1895
05394f39 1896 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1897 break;
b84d5f0c 1898
05394f39 1899 if (obj->base.write_domain != 0)
b84d5f0c
CW
1900 i915_gem_object_move_to_flushing(obj);
1901 else
1902 i915_gem_object_move_to_inactive(obj);
673a394b 1903 }
9d34e5db 1904
db53a302
CW
1905 if (unlikely(ring->trace_irq_seqno &&
1906 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1907 ring->irq_put(ring);
db53a302 1908 ring->trace_irq_seqno = 0;
9d34e5db 1909 }
23bc5982 1910
db53a302 1911 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1912}
1913
b09a1fec
CW
1914void
1915i915_gem_retire_requests(struct drm_device *dev)
1916{
1917 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1918 int i;
b09a1fec 1919
be72615b 1920 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1921 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1922
1923 /* We must be careful that during unbind() we do not
1924 * accidentally infinitely recurse into retire requests.
1925 * Currently:
1926 * retire -> free -> unbind -> wait -> retire_ring
1927 */
05394f39 1928 list_for_each_entry_safe(obj, next,
be72615b 1929 &dev_priv->mm.deferred_free_list,
69dc4987 1930 mm_list)
05394f39 1931 i915_gem_free_object_tail(obj);
be72615b
CW
1932 }
1933
1ec14ad3 1934 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1935 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1936}
1937
75ef9da2 1938static void
673a394b
EA
1939i915_gem_retire_work_handler(struct work_struct *work)
1940{
1941 drm_i915_private_t *dev_priv;
1942 struct drm_device *dev;
0a58705b
CW
1943 bool idle;
1944 int i;
673a394b
EA
1945
1946 dev_priv = container_of(work, drm_i915_private_t,
1947 mm.retire_work.work);
1948 dev = dev_priv->dev;
1949
891b48cf
CW
1950 /* Come back later if the device is busy... */
1951 if (!mutex_trylock(&dev->struct_mutex)) {
1952 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1953 return;
1954 }
1955
b09a1fec 1956 i915_gem_retire_requests(dev);
d1b851fc 1957
0a58705b
CW
1958 /* Send a periodic flush down the ring so we don't hold onto GEM
1959 * objects indefinitely.
1960 */
1961 idle = true;
1962 for (i = 0; i < I915_NUM_RINGS; i++) {
1963 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1964
1965 if (!list_empty(&ring->gpu_write_list)) {
1966 struct drm_i915_gem_request *request;
1967 int ret;
1968
db53a302
CW
1969 ret = i915_gem_flush_ring(ring,
1970 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1971 request = kzalloc(sizeof(*request), GFP_KERNEL);
1972 if (ret || request == NULL ||
db53a302 1973 i915_add_request(ring, NULL, request))
0a58705b
CW
1974 kfree(request);
1975 }
1976
1977 idle &= list_empty(&ring->request_list);
1978 }
1979
1980 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1981 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1982
673a394b
EA
1983 mutex_unlock(&dev->struct_mutex);
1984}
1985
db53a302
CW
1986/**
1987 * Waits for a sequence number to be signaled, and cleans up the
1988 * request and object lists appropriately for that event.
1989 */
5a5a0c64 1990int
db53a302
CW
1991i915_wait_request(struct intel_ring_buffer *ring,
1992 uint32_t seqno,
1993 bool interruptible)
673a394b 1994{
db53a302 1995 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1996 u32 ier;
673a394b
EA
1997 int ret = 0;
1998
1999 BUG_ON(seqno == 0);
2000
d9bc7e9f
CW
2001 if (atomic_read(&dev_priv->mm.wedged)) {
2002 struct completion *x = &dev_priv->error_completion;
2003 bool recovery_complete;
2004 unsigned long flags;
2005
2006 /* Give the error handler a chance to run. */
2007 spin_lock_irqsave(&x->wait.lock, flags);
2008 recovery_complete = x->done > 0;
2009 spin_unlock_irqrestore(&x->wait.lock, flags);
2010
2011 return recovery_complete ? -EIO : -EAGAIN;
2012 }
30dbf0c0 2013
5d97eb69 2014 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
2015 struct drm_i915_gem_request *request;
2016
2017 request = kzalloc(sizeof(*request), GFP_KERNEL);
2018 if (request == NULL)
e35a41de 2019 return -ENOMEM;
3cce469c 2020
db53a302 2021 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
2022 if (ret) {
2023 kfree(request);
2024 return ret;
2025 }
2026
2027 seqno = request->seqno;
e35a41de 2028 }
ffed1d09 2029
78501eac 2030 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 2031 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d
ZW
2032 ier = I915_READ(DEIER) | I915_READ(GTIER);
2033 else
2034 ier = I915_READ(IER);
802c7eb6
JB
2035 if (!ier) {
2036 DRM_ERROR("something (likely vbetool) disabled "
2037 "interrupts, re-enabling\n");
db53a302
CW
2038 i915_driver_irq_preinstall(ring->dev);
2039 i915_driver_irq_postinstall(ring->dev);
802c7eb6
JB
2040 }
2041
db53a302 2042 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 2043
b2223497 2044 ring->waiting_seqno = seqno;
b13c2b96
CW
2045 if (ring->irq_get(ring)) {
2046 if (interruptible)
2047 ret = wait_event_interruptible(ring->irq_queue,
2048 i915_seqno_passed(ring->get_seqno(ring), seqno)
2049 || atomic_read(&dev_priv->mm.wedged));
2050 else
2051 wait_event(ring->irq_queue,
2052 i915_seqno_passed(ring->get_seqno(ring), seqno)
2053 || atomic_read(&dev_priv->mm.wedged));
2054
2055 ring->irq_put(ring);
b5ba177d
CW
2056 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2057 seqno) ||
2058 atomic_read(&dev_priv->mm.wedged), 3000))
2059 ret = -EBUSY;
b2223497 2060 ring->waiting_seqno = 0;
1c5d22f7 2061
db53a302 2062 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 2063 }
ba1234d1 2064 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2065 ret = -EAGAIN;
673a394b
EA
2066
2067 if (ret && ret != -ERESTARTSYS)
8bff917c 2068 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2069 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2070 dev_priv->next_seqno);
673a394b
EA
2071
2072 /* Directly dispatch request retiring. While we have the work queue
2073 * to handle this, the waiter on a request often wants an associated
2074 * buffer to have made it to the inactive list, and we would need
2075 * a separate wait queue to handle that.
2076 */
2077 if (ret == 0)
db53a302 2078 i915_gem_retire_requests_ring(ring);
673a394b
EA
2079
2080 return ret;
2081}
2082
673a394b
EA
2083/**
2084 * Ensures that all rendering to the object has completed and the object is
2085 * safe to unbind from the GTT or access from the CPU.
2086 */
54cf91dc 2087int
05394f39 2088i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2cf34d7b 2089 bool interruptible)
673a394b 2090{
673a394b
EA
2091 int ret;
2092
e47c68e9
EA
2093 /* This function only exists to support waiting for existing rendering,
2094 * not for emitting required flushes.
673a394b 2095 */
05394f39 2096 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2097
2098 /* If there is rendering queued on the buffer being evicted, wait for
2099 * it.
2100 */
05394f39 2101 if (obj->active) {
db53a302
CW
2102 ret = i915_wait_request(obj->ring,
2103 obj->last_rendering_seqno,
2104 interruptible);
2cf34d7b 2105 if (ret)
673a394b
EA
2106 return ret;
2107 }
2108
2109 return 0;
2110}
2111
2112/**
2113 * Unbinds an object from the GTT aperture.
2114 */
0f973f27 2115int
05394f39 2116i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2117{
673a394b
EA
2118 int ret = 0;
2119
05394f39 2120 if (obj->gtt_space == NULL)
673a394b
EA
2121 return 0;
2122
05394f39 2123 if (obj->pin_count != 0) {
673a394b
EA
2124 DRM_ERROR("Attempting to unbind pinned buffer\n");
2125 return -EINVAL;
2126 }
2127
5323fd04
EA
2128 /* blow away mappings if mapped through GTT */
2129 i915_gem_release_mmap(obj);
2130
673a394b
EA
2131 /* Move the object to the CPU domain to ensure that
2132 * any possible CPU writes while it's not in the GTT
2133 * are flushed when we go to remap it. This will
2134 * also ensure that all pending GPU writes are finished
2135 * before we unbind.
2136 */
e47c68e9 2137 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2138 if (ret == -ERESTARTSYS)
673a394b 2139 return ret;
8dc1775d
CW
2140 /* Continue on if we fail due to EIO, the GPU is hung so we
2141 * should be safe and we need to cleanup or else we might
2142 * cause memory corruption through use-after-free.
2143 */
812ed492
CW
2144 if (ret) {
2145 i915_gem_clflush_object(obj);
05394f39 2146 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2147 }
673a394b 2148
96b47b65 2149 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2150 ret = i915_gem_object_put_fence(obj);
2151 if (ret == -ERESTARTSYS)
2152 return ret;
96b47b65 2153
db53a302
CW
2154 trace_i915_gem_object_unbind(obj);
2155
7c2e6fdf 2156 i915_gem_gtt_unbind_object(obj);
e5281ccd 2157 i915_gem_object_put_pages_gtt(obj);
673a394b 2158
6299f992 2159 list_del_init(&obj->gtt_list);
05394f39 2160 list_del_init(&obj->mm_list);
75e9e915 2161 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2162 obj->map_and_fenceable = true;
673a394b 2163
05394f39
CW
2164 drm_mm_put_block(obj->gtt_space);
2165 obj->gtt_space = NULL;
2166 obj->gtt_offset = 0;
673a394b 2167
05394f39 2168 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2169 i915_gem_object_truncate(obj);
2170
8dc1775d 2171 return ret;
673a394b
EA
2172}
2173
88241785 2174int
db53a302 2175i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2176 uint32_t invalidate_domains,
2177 uint32_t flush_domains)
2178{
88241785
CW
2179 int ret;
2180
db53a302
CW
2181 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2182
88241785
CW
2183 ret = ring->flush(ring, invalidate_domains, flush_domains);
2184 if (ret)
2185 return ret;
2186
db53a302 2187 i915_gem_process_flushing_list(ring, flush_domains);
88241785 2188 return 0;
54cf91dc
CW
2189}
2190
db53a302 2191static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2192{
88241785
CW
2193 int ret;
2194
395b70be 2195 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2196 return 0;
2197
88241785 2198 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2199 ret = i915_gem_flush_ring(ring,
0ac74c6b 2200 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2201 if (ret)
2202 return ret;
2203 }
2204
db53a302
CW
2205 return i915_wait_request(ring,
2206 i915_gem_next_request_seqno(ring),
2207 true);
a56ba56c
CW
2208}
2209
b47eb4a2 2210int
4df2faf4
DV
2211i915_gpu_idle(struct drm_device *dev)
2212{
2213 drm_i915_private_t *dev_priv = dev->dev_private;
2214 bool lists_empty;
1ec14ad3 2215 int ret, i;
4df2faf4 2216
d1b851fc 2217 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2218 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2219 if (lists_empty)
2220 return 0;
2221
2222 /* Flush everything onto the inactive list. */
1ec14ad3 2223 for (i = 0; i < I915_NUM_RINGS; i++) {
db53a302 2224 ret = i915_ring_idle(&dev_priv->ring[i]);
1ec14ad3
CW
2225 if (ret)
2226 return ret;
2227 }
4df2faf4 2228
8a1a49f9 2229 return 0;
4df2faf4
DV
2230}
2231
c6642782
DV
2232static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2233 struct intel_ring_buffer *pipelined)
4e901fdc 2234{
05394f39 2235 struct drm_device *dev = obj->base.dev;
4e901fdc 2236 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2237 u32 size = obj->gtt_space->size;
2238 int regnum = obj->fence_reg;
4e901fdc
EA
2239 uint64_t val;
2240
05394f39 2241 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2242 0xfffff000) << 32;
05394f39
CW
2243 val |= obj->gtt_offset & 0xfffff000;
2244 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2245 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2246
05394f39 2247 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2248 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2249 val |= I965_FENCE_REG_VALID;
2250
c6642782
DV
2251 if (pipelined) {
2252 int ret = intel_ring_begin(pipelined, 6);
2253 if (ret)
2254 return ret;
2255
2256 intel_ring_emit(pipelined, MI_NOOP);
2257 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2258 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2259 intel_ring_emit(pipelined, (u32)val);
2260 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2261 intel_ring_emit(pipelined, (u32)(val >> 32));
2262 intel_ring_advance(pipelined);
2263 } else
2264 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2265
2266 return 0;
4e901fdc
EA
2267}
2268
c6642782
DV
2269static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2270 struct intel_ring_buffer *pipelined)
de151cf6 2271{
05394f39 2272 struct drm_device *dev = obj->base.dev;
de151cf6 2273 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2274 u32 size = obj->gtt_space->size;
2275 int regnum = obj->fence_reg;
de151cf6
JB
2276 uint64_t val;
2277
05394f39 2278 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2279 0xfffff000) << 32;
05394f39
CW
2280 val |= obj->gtt_offset & 0xfffff000;
2281 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2282 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2283 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2284 val |= I965_FENCE_REG_VALID;
2285
c6642782
DV
2286 if (pipelined) {
2287 int ret = intel_ring_begin(pipelined, 6);
2288 if (ret)
2289 return ret;
2290
2291 intel_ring_emit(pipelined, MI_NOOP);
2292 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2293 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2294 intel_ring_emit(pipelined, (u32)val);
2295 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2296 intel_ring_emit(pipelined, (u32)(val >> 32));
2297 intel_ring_advance(pipelined);
2298 } else
2299 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2300
2301 return 0;
de151cf6
JB
2302}
2303
c6642782
DV
2304static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2305 struct intel_ring_buffer *pipelined)
de151cf6 2306{
05394f39 2307 struct drm_device *dev = obj->base.dev;
de151cf6 2308 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2309 u32 size = obj->gtt_space->size;
c6642782 2310 u32 fence_reg, val, pitch_val;
0f973f27 2311 int tile_width;
de151cf6 2312
c6642782
DV
2313 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2314 (size & -size) != size ||
2315 (obj->gtt_offset & (size - 1)),
2316 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2317 obj->gtt_offset, obj->map_and_fenceable, size))
2318 return -EINVAL;
de151cf6 2319
c6642782 2320 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2321 tile_width = 128;
de151cf6 2322 else
0f973f27
JB
2323 tile_width = 512;
2324
2325 /* Note: pitch better be a power of two tile widths */
05394f39 2326 pitch_val = obj->stride / tile_width;
0f973f27 2327 pitch_val = ffs(pitch_val) - 1;
de151cf6 2328
05394f39
CW
2329 val = obj->gtt_offset;
2330 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2331 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2332 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2333 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2334 val |= I830_FENCE_REG_VALID;
2335
05394f39 2336 fence_reg = obj->fence_reg;
a00b10c3
CW
2337 if (fence_reg < 8)
2338 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2339 else
a00b10c3 2340 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2341
2342 if (pipelined) {
2343 int ret = intel_ring_begin(pipelined, 4);
2344 if (ret)
2345 return ret;
2346
2347 intel_ring_emit(pipelined, MI_NOOP);
2348 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2349 intel_ring_emit(pipelined, fence_reg);
2350 intel_ring_emit(pipelined, val);
2351 intel_ring_advance(pipelined);
2352 } else
2353 I915_WRITE(fence_reg, val);
2354
2355 return 0;
de151cf6
JB
2356}
2357
c6642782
DV
2358static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2359 struct intel_ring_buffer *pipelined)
de151cf6 2360{
05394f39 2361 struct drm_device *dev = obj->base.dev;
de151cf6 2362 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2363 u32 size = obj->gtt_space->size;
2364 int regnum = obj->fence_reg;
de151cf6
JB
2365 uint32_t val;
2366 uint32_t pitch_val;
2367
c6642782
DV
2368 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2369 (size & -size) != size ||
2370 (obj->gtt_offset & (size - 1)),
2371 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2372 obj->gtt_offset, size))
2373 return -EINVAL;
de151cf6 2374
05394f39 2375 pitch_val = obj->stride / 128;
e76a16de 2376 pitch_val = ffs(pitch_val) - 1;
e76a16de 2377
05394f39
CW
2378 val = obj->gtt_offset;
2379 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2380 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2381 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2382 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2383 val |= I830_FENCE_REG_VALID;
2384
c6642782
DV
2385 if (pipelined) {
2386 int ret = intel_ring_begin(pipelined, 4);
2387 if (ret)
2388 return ret;
2389
2390 intel_ring_emit(pipelined, MI_NOOP);
2391 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2392 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2393 intel_ring_emit(pipelined, val);
2394 intel_ring_advance(pipelined);
2395 } else
2396 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2397
2398 return 0;
de151cf6
JB
2399}
2400
d9e86c0e
CW
2401static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2402{
2403 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2404}
2405
2406static int
2407i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2408 struct intel_ring_buffer *pipelined,
2409 bool interruptible)
2410{
2411 int ret;
2412
2413 if (obj->fenced_gpu_access) {
88241785 2414 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2415 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2416 0, obj->base.write_domain);
2417 if (ret)
2418 return ret;
2419 }
d9e86c0e
CW
2420
2421 obj->fenced_gpu_access = false;
2422 }
2423
2424 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2425 if (!ring_passed_seqno(obj->last_fenced_ring,
2426 obj->last_fenced_seqno)) {
db53a302
CW
2427 ret = i915_wait_request(obj->last_fenced_ring,
2428 obj->last_fenced_seqno,
2429 interruptible);
2430
d9e86c0e
CW
2431 if (ret)
2432 return ret;
2433 }
2434
2435 obj->last_fenced_seqno = 0;
2436 obj->last_fenced_ring = NULL;
2437 }
2438
63256ec5
CW
2439 /* Ensure that all CPU reads are completed before installing a fence
2440 * and all writes before removing the fence.
2441 */
2442 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2443 mb();
2444
d9e86c0e
CW
2445 return 0;
2446}
2447
2448int
2449i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2450{
2451 int ret;
2452
2453 if (obj->tiling_mode)
2454 i915_gem_release_mmap(obj);
2455
2456 ret = i915_gem_object_flush_fence(obj, NULL, true);
2457 if (ret)
2458 return ret;
2459
2460 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2461 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2462 i915_gem_clear_fence_reg(obj->base.dev,
2463 &dev_priv->fence_regs[obj->fence_reg]);
2464
2465 obj->fence_reg = I915_FENCE_REG_NONE;
2466 }
2467
2468 return 0;
2469}
2470
2471static struct drm_i915_fence_reg *
2472i915_find_fence_reg(struct drm_device *dev,
2473 struct intel_ring_buffer *pipelined)
ae3db24a 2474{
ae3db24a 2475 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2476 struct drm_i915_fence_reg *reg, *first, *avail;
2477 int i;
ae3db24a
DV
2478
2479 /* First try to find a free reg */
d9e86c0e 2480 avail = NULL;
ae3db24a
DV
2481 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2482 reg = &dev_priv->fence_regs[i];
2483 if (!reg->obj)
d9e86c0e 2484 return reg;
ae3db24a 2485
05394f39 2486 if (!reg->obj->pin_count)
d9e86c0e 2487 avail = reg;
ae3db24a
DV
2488 }
2489
d9e86c0e
CW
2490 if (avail == NULL)
2491 return NULL;
ae3db24a
DV
2492
2493 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2494 avail = first = NULL;
2495 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2496 if (reg->obj->pin_count)
ae3db24a
DV
2497 continue;
2498
d9e86c0e
CW
2499 if (first == NULL)
2500 first = reg;
2501
2502 if (!pipelined ||
2503 !reg->obj->last_fenced_ring ||
2504 reg->obj->last_fenced_ring == pipelined) {
2505 avail = reg;
2506 break;
2507 }
ae3db24a
DV
2508 }
2509
d9e86c0e
CW
2510 if (avail == NULL)
2511 avail = first;
ae3db24a 2512
a00b10c3 2513 return avail;
ae3db24a
DV
2514}
2515
de151cf6 2516/**
d9e86c0e 2517 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2518 * @obj: object to map through a fence reg
d9e86c0e
CW
2519 * @pipelined: ring on which to queue the change, or NULL for CPU access
2520 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2521 *
2522 * When mapping objects through the GTT, userspace wants to be able to write
2523 * to them without having to worry about swizzling if the object is tiled.
2524 *
2525 * This function walks the fence regs looking for a free one for @obj,
2526 * stealing one if it can't find any.
2527 *
2528 * It then sets up the reg based on the object's properties: address, pitch
2529 * and tiling format.
2530 */
8c4b8c3f 2531int
d9e86c0e
CW
2532i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2533 struct intel_ring_buffer *pipelined,
2534 bool interruptible)
de151cf6 2535{
05394f39 2536 struct drm_device *dev = obj->base.dev;
79e53945 2537 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2538 struct drm_i915_fence_reg *reg;
ae3db24a 2539 int ret;
de151cf6 2540
6bda10d1
CW
2541 /* XXX disable pipelining. There are bugs. Shocking. */
2542 pipelined = NULL;
2543
d9e86c0e 2544 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2545 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2546 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2547 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e
CW
2548
2549 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2550 pipelined = NULL;
2551
2552 if (!pipelined) {
2553 if (reg->setup_seqno) {
2554 if (!ring_passed_seqno(obj->last_fenced_ring,
2555 reg->setup_seqno)) {
db53a302
CW
2556 ret = i915_wait_request(obj->last_fenced_ring,
2557 reg->setup_seqno,
2558 interruptible);
d9e86c0e
CW
2559 if (ret)
2560 return ret;
2561 }
2562
2563 reg->setup_seqno = 0;
2564 }
2565 } else if (obj->last_fenced_ring &&
2566 obj->last_fenced_ring != pipelined) {
2567 ret = i915_gem_object_flush_fence(obj,
2568 pipelined,
2569 interruptible);
2570 if (ret)
2571 return ret;
2572 } else if (obj->tiling_changed) {
2573 if (obj->fenced_gpu_access) {
88241785 2574 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2575 ret = i915_gem_flush_ring(obj->ring,
88241785
CW
2576 0, obj->base.write_domain);
2577 if (ret)
2578 return ret;
2579 }
d9e86c0e
CW
2580
2581 obj->fenced_gpu_access = false;
2582 }
2583 }
2584
2585 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2586 pipelined = NULL;
2587 BUG_ON(!pipelined && reg->setup_seqno);
2588
2589 if (obj->tiling_changed) {
2590 if (pipelined) {
2591 reg->setup_seqno =
db53a302 2592 i915_gem_next_request_seqno(pipelined);
d9e86c0e
CW
2593 obj->last_fenced_seqno = reg->setup_seqno;
2594 obj->last_fenced_ring = pipelined;
2595 }
2596 goto update;
2597 }
2598
a09ba7fa
EA
2599 return 0;
2600 }
2601
d9e86c0e
CW
2602 reg = i915_find_fence_reg(dev, pipelined);
2603 if (reg == NULL)
2604 return -ENOSPC;
de151cf6 2605
d9e86c0e
CW
2606 ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
2607 if (ret)
ae3db24a 2608 return ret;
de151cf6 2609
d9e86c0e
CW
2610 if (reg->obj) {
2611 struct drm_i915_gem_object *old = reg->obj;
2612
2613 drm_gem_object_reference(&old->base);
2614
2615 if (old->tiling_mode)
2616 i915_gem_release_mmap(old);
2617
d9e86c0e 2618 ret = i915_gem_object_flush_fence(old,
6bda10d1 2619 pipelined,
d9e86c0e
CW
2620 interruptible);
2621 if (ret) {
2622 drm_gem_object_unreference(&old->base);
2623 return ret;
2624 }
2625
2626 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2627 pipelined = NULL;
2628
2629 old->fence_reg = I915_FENCE_REG_NONE;
2630 old->last_fenced_ring = pipelined;
2631 old->last_fenced_seqno =
db53a302 2632 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2633
2634 drm_gem_object_unreference(&old->base);
2635 } else if (obj->last_fenced_seqno == 0)
2636 pipelined = NULL;
a09ba7fa 2637
de151cf6 2638 reg->obj = obj;
d9e86c0e
CW
2639 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2640 obj->fence_reg = reg - dev_priv->fence_regs;
2641 obj->last_fenced_ring = pipelined;
de151cf6 2642
d9e86c0e 2643 reg->setup_seqno =
db53a302 2644 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2645 obj->last_fenced_seqno = reg->setup_seqno;
2646
2647update:
2648 obj->tiling_changed = false;
e259befd
CW
2649 switch (INTEL_INFO(dev)->gen) {
2650 case 6:
c6642782 2651 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2652 break;
2653 case 5:
2654 case 4:
c6642782 2655 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2656 break;
2657 case 3:
c6642782 2658 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2659 break;
2660 case 2:
c6642782 2661 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2662 break;
2663 }
d9ddcb96 2664
c6642782 2665 return ret;
de151cf6
JB
2666}
2667
2668/**
2669 * i915_gem_clear_fence_reg - clear out fence register info
2670 * @obj: object to clear
2671 *
2672 * Zeroes out the fence register itself and clears out the associated
05394f39 2673 * data structures in dev_priv and obj.
de151cf6
JB
2674 */
2675static void
d9e86c0e
CW
2676i915_gem_clear_fence_reg(struct drm_device *dev,
2677 struct drm_i915_fence_reg *reg)
de151cf6 2678{
79e53945 2679 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2680 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2681
e259befd
CW
2682 switch (INTEL_INFO(dev)->gen) {
2683 case 6:
d9e86c0e 2684 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2685 break;
2686 case 5:
2687 case 4:
d9e86c0e 2688 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2689 break;
2690 case 3:
d9e86c0e
CW
2691 if (fence_reg >= 8)
2692 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2693 else
e259befd 2694 case 2:
d9e86c0e 2695 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2696
2697 I915_WRITE(fence_reg, 0);
e259befd 2698 break;
dc529a4f 2699 }
de151cf6 2700
007cc8ac 2701 list_del_init(&reg->lru_list);
d9e86c0e
CW
2702 reg->obj = NULL;
2703 reg->setup_seqno = 0;
52dc7d32
CW
2704}
2705
673a394b
EA
2706/**
2707 * Finds free space in the GTT aperture and binds the object there.
2708 */
2709static int
05394f39 2710i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2711 unsigned alignment,
75e9e915 2712 bool map_and_fenceable)
673a394b 2713{
05394f39 2714 struct drm_device *dev = obj->base.dev;
673a394b 2715 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2716 struct drm_mm_node *free_space;
a00b10c3 2717 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2718 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2719 bool mappable, fenceable;
07f73f69 2720 int ret;
673a394b 2721
05394f39 2722 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2723 DRM_ERROR("Attempting to bind a purgeable object\n");
2724 return -EINVAL;
2725 }
2726
05394f39
CW
2727 fence_size = i915_gem_get_gtt_size(obj);
2728 fence_alignment = i915_gem_get_gtt_alignment(obj);
2729 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
a00b10c3 2730
673a394b 2731 if (alignment == 0)
5e783301
DV
2732 alignment = map_and_fenceable ? fence_alignment :
2733 unfenced_alignment;
75e9e915 2734 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2735 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2736 return -EINVAL;
2737 }
2738
05394f39 2739 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2740
654fc607
CW
2741 /* If the object is bigger than the entire aperture, reject it early
2742 * before evicting everything in a vain attempt to find space.
2743 */
05394f39 2744 if (obj->base.size >
75e9e915 2745 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2746 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2747 return -E2BIG;
2748 }
2749
673a394b 2750 search_free:
75e9e915 2751 if (map_and_fenceable)
920afa77
DV
2752 free_space =
2753 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2754 size, alignment, 0,
920afa77
DV
2755 dev_priv->mm.gtt_mappable_end,
2756 0);
2757 else
2758 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2759 size, alignment, 0);
920afa77
DV
2760
2761 if (free_space != NULL) {
75e9e915 2762 if (map_and_fenceable)
05394f39 2763 obj->gtt_space =
920afa77 2764 drm_mm_get_block_range_generic(free_space,
a00b10c3 2765 size, alignment, 0,
920afa77
DV
2766 dev_priv->mm.gtt_mappable_end,
2767 0);
2768 else
05394f39 2769 obj->gtt_space =
a00b10c3 2770 drm_mm_get_block(free_space, size, alignment);
920afa77 2771 }
05394f39 2772 if (obj->gtt_space == NULL) {
673a394b
EA
2773 /* If the gtt is empty and we're still having trouble
2774 * fitting our object in, we're out of memory.
2775 */
75e9e915
DV
2776 ret = i915_gem_evict_something(dev, size, alignment,
2777 map_and_fenceable);
9731129c 2778 if (ret)
673a394b 2779 return ret;
9731129c 2780
673a394b
EA
2781 goto search_free;
2782 }
2783
e5281ccd 2784 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2785 if (ret) {
05394f39
CW
2786 drm_mm_put_block(obj->gtt_space);
2787 obj->gtt_space = NULL;
07f73f69
CW
2788
2789 if (ret == -ENOMEM) {
809b6334
CW
2790 /* first try to reclaim some memory by clearing the GTT */
2791 ret = i915_gem_evict_everything(dev, false);
07f73f69 2792 if (ret) {
07f73f69 2793 /* now try to shrink everyone else */
4bdadb97
CW
2794 if (gfpmask) {
2795 gfpmask = 0;
2796 goto search_free;
07f73f69
CW
2797 }
2798
809b6334 2799 return -ENOMEM;
07f73f69
CW
2800 }
2801
2802 goto search_free;
2803 }
2804
673a394b
EA
2805 return ret;
2806 }
2807
7c2e6fdf
DV
2808 ret = i915_gem_gtt_bind_object(obj);
2809 if (ret) {
e5281ccd 2810 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2811 drm_mm_put_block(obj->gtt_space);
2812 obj->gtt_space = NULL;
07f73f69 2813
809b6334 2814 if (i915_gem_evict_everything(dev, false))
07f73f69 2815 return ret;
07f73f69
CW
2816
2817 goto search_free;
673a394b 2818 }
673a394b 2819
6299f992 2820 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2821 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2822
673a394b
EA
2823 /* Assert that the object is not currently in any GPU domain. As it
2824 * wasn't in the GTT, there shouldn't be any way it could have been in
2825 * a GPU cache
2826 */
05394f39
CW
2827 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2828 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2829
6299f992 2830 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2831
75e9e915 2832 fenceable =
05394f39
CW
2833 obj->gtt_space->size == fence_size &&
2834 (obj->gtt_space->start & (fence_alignment -1)) == 0;
a00b10c3 2835
75e9e915 2836 mappable =
05394f39 2837 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2838
05394f39 2839 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2840
db53a302 2841 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2842 return 0;
2843}
2844
2845void
05394f39 2846i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2847{
673a394b
EA
2848 /* If we don't have a page list set up, then we're not pinned
2849 * to GPU, and we can ignore the cache flush because it'll happen
2850 * again at bind time.
2851 */
05394f39 2852 if (obj->pages == NULL)
673a394b
EA
2853 return;
2854
1c5d22f7 2855 trace_i915_gem_object_clflush(obj);
cfa16a0d 2856
05394f39 2857 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2858}
2859
e47c68e9 2860/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2861static int
3619df03 2862i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2863{
05394f39 2864 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2865 return 0;
e47c68e9
EA
2866
2867 /* Queue the GPU write cache flushing we need. */
db53a302 2868 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2869}
2870
2871/** Flushes the GTT write domain for the object if it's dirty. */
2872static void
05394f39 2873i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2874{
1c5d22f7
CW
2875 uint32_t old_write_domain;
2876
05394f39 2877 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2878 return;
2879
63256ec5 2880 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2881 * to it immediately go to main memory as far as we know, so there's
2882 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2883 *
2884 * However, we do have to enforce the order so that all writes through
2885 * the GTT land before any writes to the device, such as updates to
2886 * the GATT itself.
e47c68e9 2887 */
63256ec5
CW
2888 wmb();
2889
4a684a41
CW
2890 i915_gem_release_mmap(obj);
2891
05394f39
CW
2892 old_write_domain = obj->base.write_domain;
2893 obj->base.write_domain = 0;
1c5d22f7
CW
2894
2895 trace_i915_gem_object_change_domain(obj,
05394f39 2896 obj->base.read_domains,
1c5d22f7 2897 old_write_domain);
e47c68e9
EA
2898}
2899
2900/** Flushes the CPU write domain for the object if it's dirty. */
2901static void
05394f39 2902i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2903{
1c5d22f7 2904 uint32_t old_write_domain;
e47c68e9 2905
05394f39 2906 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2907 return;
2908
2909 i915_gem_clflush_object(obj);
40ce6575 2910 intel_gtt_chipset_flush();
05394f39
CW
2911 old_write_domain = obj->base.write_domain;
2912 obj->base.write_domain = 0;
1c5d22f7
CW
2913
2914 trace_i915_gem_object_change_domain(obj,
05394f39 2915 obj->base.read_domains,
1c5d22f7 2916 old_write_domain);
e47c68e9
EA
2917}
2918
2ef7eeaa
EA
2919/**
2920 * Moves a single object to the GTT read, and possibly write domain.
2921 *
2922 * This function returns when the move is complete, including waiting on
2923 * flushes to occur.
2924 */
79e53945 2925int
2021746e 2926i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2927{
1c5d22f7 2928 uint32_t old_write_domain, old_read_domains;
e47c68e9 2929 int ret;
2ef7eeaa 2930
02354392 2931 /* Not valid to be called on unbound objects. */
05394f39 2932 if (obj->gtt_space == NULL)
02354392
EA
2933 return -EINVAL;
2934
8d7e3de1
CW
2935 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2936 return 0;
2937
88241785
CW
2938 ret = i915_gem_object_flush_gpu_write_domain(obj);
2939 if (ret)
2940 return ret;
2941
87ca9c8a
CW
2942 if (obj->pending_gpu_write || write) {
2943 ret = i915_gem_object_wait_rendering(obj, true);
2944 if (ret)
2945 return ret;
2946 }
2dafb1e0 2947
7213342d 2948 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2949
05394f39
CW
2950 old_write_domain = obj->base.write_domain;
2951 old_read_domains = obj->base.read_domains;
1c5d22f7 2952
e47c68e9
EA
2953 /* It should now be out of any other write domains, and we can update
2954 * the domain values for our changes.
2955 */
05394f39
CW
2956 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2957 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2958 if (write) {
05394f39
CW
2959 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2960 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2961 obj->dirty = 1;
2ef7eeaa
EA
2962 }
2963
1c5d22f7
CW
2964 trace_i915_gem_object_change_domain(obj,
2965 old_read_domains,
2966 old_write_domain);
2967
e47c68e9
EA
2968 return 0;
2969}
2970
b9241ea3
ZW
2971/*
2972 * Prepare buffer for display plane. Use uninterruptible for possible flush
2973 * wait, as in modesetting process we're not supposed to be interrupted.
2974 */
2975int
05394f39 2976i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
919926ae 2977 struct intel_ring_buffer *pipelined)
b9241ea3 2978{
ba3d8d74 2979 uint32_t old_read_domains;
b9241ea3
ZW
2980 int ret;
2981
2982 /* Not valid to be called on unbound objects. */
05394f39 2983 if (obj->gtt_space == NULL)
b9241ea3
ZW
2984 return -EINVAL;
2985
88241785
CW
2986 ret = i915_gem_object_flush_gpu_write_domain(obj);
2987 if (ret)
2988 return ret;
2989
b9241ea3 2990
ced270fa 2991 /* Currently, we are always called from an non-interruptible context. */
0be73284 2992 if (pipelined != obj->ring) {
ced270fa
CW
2993 ret = i915_gem_object_wait_rendering(obj, false);
2994 if (ret)
b9241ea3
ZW
2995 return ret;
2996 }
2997
b118c1e3
CW
2998 i915_gem_object_flush_cpu_write_domain(obj);
2999
05394f39
CW
3000 old_read_domains = obj->base.read_domains;
3001 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3002
3003 trace_i915_gem_object_change_domain(obj,
3004 old_read_domains,
05394f39 3005 obj->base.write_domain);
b9241ea3
ZW
3006
3007 return 0;
3008}
3009
85345517
CW
3010int
3011i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
3012 bool interruptible)
3013{
88241785
CW
3014 int ret;
3015
85345517
CW
3016 if (!obj->active)
3017 return 0;
3018
88241785 3019 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3020 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3021 if (ret)
3022 return ret;
3023 }
85345517 3024
05394f39 3025 return i915_gem_object_wait_rendering(obj, interruptible);
85345517
CW
3026}
3027
e47c68e9
EA
3028/**
3029 * Moves a single object to the CPU read, and possibly write domain.
3030 *
3031 * This function returns when the move is complete, including waiting on
3032 * flushes to occur.
3033 */
3034static int
919926ae 3035i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3036{
1c5d22f7 3037 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3038 int ret;
3039
8d7e3de1
CW
3040 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3041 return 0;
3042
88241785
CW
3043 ret = i915_gem_object_flush_gpu_write_domain(obj);
3044 if (ret)
3045 return ret;
3046
de18a29e
DV
3047 ret = i915_gem_object_wait_rendering(obj, true);
3048 if (ret)
e47c68e9 3049 return ret;
2ef7eeaa 3050
e47c68e9 3051 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3052
e47c68e9
EA
3053 /* If we have a partially-valid cache of the object in the CPU,
3054 * finish invalidating it and free the per-page flags.
2ef7eeaa 3055 */
e47c68e9 3056 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3057
05394f39
CW
3058 old_write_domain = obj->base.write_domain;
3059 old_read_domains = obj->base.read_domains;
1c5d22f7 3060
e47c68e9 3061 /* Flush the CPU cache if it's still invalid. */
05394f39 3062 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3063 i915_gem_clflush_object(obj);
2ef7eeaa 3064
05394f39 3065 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3066 }
3067
3068 /* It should now be out of any other write domains, and we can update
3069 * the domain values for our changes.
3070 */
05394f39 3071 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3072
3073 /* If we're writing through the CPU, then the GPU read domains will
3074 * need to be invalidated at next use.
3075 */
3076 if (write) {
05394f39
CW
3077 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3078 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3079 }
2ef7eeaa 3080
1c5d22f7
CW
3081 trace_i915_gem_object_change_domain(obj,
3082 old_read_domains,
3083 old_write_domain);
3084
2ef7eeaa
EA
3085 return 0;
3086}
3087
673a394b 3088/**
e47c68e9 3089 * Moves the object from a partially CPU read to a full one.
673a394b 3090 *
e47c68e9
EA
3091 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3092 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3093 */
e47c68e9 3094static void
05394f39 3095i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3096{
05394f39 3097 if (!obj->page_cpu_valid)
e47c68e9
EA
3098 return;
3099
3100 /* If we're partially in the CPU read domain, finish moving it in.
3101 */
05394f39 3102 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3103 int i;
3104
05394f39
CW
3105 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3106 if (obj->page_cpu_valid[i])
e47c68e9 3107 continue;
05394f39 3108 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3109 }
e47c68e9
EA
3110 }
3111
3112 /* Free the page_cpu_valid mappings which are now stale, whether
3113 * or not we've got I915_GEM_DOMAIN_CPU.
3114 */
05394f39
CW
3115 kfree(obj->page_cpu_valid);
3116 obj->page_cpu_valid = NULL;
e47c68e9
EA
3117}
3118
3119/**
3120 * Set the CPU read domain on a range of the object.
3121 *
3122 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3123 * not entirely valid. The page_cpu_valid member of the object flags which
3124 * pages have been flushed, and will be respected by
3125 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3126 * of the whole object.
3127 *
3128 * This function returns when the move is complete, including waiting on
3129 * flushes to occur.
3130 */
3131static int
05394f39 3132i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3133 uint64_t offset, uint64_t size)
3134{
1c5d22f7 3135 uint32_t old_read_domains;
e47c68e9 3136 int i, ret;
673a394b 3137
05394f39 3138 if (offset == 0 && size == obj->base.size)
e47c68e9 3139 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3140
88241785
CW
3141 ret = i915_gem_object_flush_gpu_write_domain(obj);
3142 if (ret)
3143 return ret;
3144
de18a29e
DV
3145 ret = i915_gem_object_wait_rendering(obj, true);
3146 if (ret)
6a47baa6 3147 return ret;
de18a29e 3148
e47c68e9
EA
3149 i915_gem_object_flush_gtt_write_domain(obj);
3150
3151 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3152 if (obj->page_cpu_valid == NULL &&
3153 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3154 return 0;
673a394b 3155
e47c68e9
EA
3156 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3157 * newly adding I915_GEM_DOMAIN_CPU
3158 */
05394f39
CW
3159 if (obj->page_cpu_valid == NULL) {
3160 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3161 GFP_KERNEL);
3162 if (obj->page_cpu_valid == NULL)
e47c68e9 3163 return -ENOMEM;
05394f39
CW
3164 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3165 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3166
3167 /* Flush the cache on any pages that are still invalid from the CPU's
3168 * perspective.
3169 */
e47c68e9
EA
3170 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3171 i++) {
05394f39 3172 if (obj->page_cpu_valid[i])
673a394b
EA
3173 continue;
3174
05394f39 3175 drm_clflush_pages(obj->pages + i, 1);
673a394b 3176
05394f39 3177 obj->page_cpu_valid[i] = 1;
673a394b
EA
3178 }
3179
e47c68e9
EA
3180 /* It should now be out of any other write domains, and we can update
3181 * the domain values for our changes.
3182 */
05394f39 3183 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3184
05394f39
CW
3185 old_read_domains = obj->base.read_domains;
3186 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3187
1c5d22f7
CW
3188 trace_i915_gem_object_change_domain(obj,
3189 old_read_domains,
05394f39 3190 obj->base.write_domain);
1c5d22f7 3191
673a394b
EA
3192 return 0;
3193}
3194
673a394b
EA
3195/* Throttle our rendering by waiting until the ring has completed our requests
3196 * emitted over 20 msec ago.
3197 *
b962442e
EA
3198 * Note that if we were to use the current jiffies each time around the loop,
3199 * we wouldn't escape the function with any frames outstanding if the time to
3200 * render a frame was over 20ms.
3201 *
673a394b
EA
3202 * This should get us reasonable parallelism between CPU and GPU but also
3203 * relatively low latency when blocking on a particular request to finish.
3204 */
40a5f0de 3205static int
f787a5f5 3206i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3207{
f787a5f5
CW
3208 struct drm_i915_private *dev_priv = dev->dev_private;
3209 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3210 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3211 struct drm_i915_gem_request *request;
3212 struct intel_ring_buffer *ring = NULL;
3213 u32 seqno = 0;
3214 int ret;
93533c29 3215
e110e8d6
CW
3216 if (atomic_read(&dev_priv->mm.wedged))
3217 return -EIO;
3218
1c25595f 3219 spin_lock(&file_priv->mm.lock);
f787a5f5 3220 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3221 if (time_after_eq(request->emitted_jiffies, recent_enough))
3222 break;
40a5f0de 3223
f787a5f5
CW
3224 ring = request->ring;
3225 seqno = request->seqno;
b962442e 3226 }
1c25595f 3227 spin_unlock(&file_priv->mm.lock);
40a5f0de 3228
f787a5f5
CW
3229 if (seqno == 0)
3230 return 0;
2bc43b5c 3231
f787a5f5 3232 ret = 0;
78501eac 3233 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3234 /* And wait for the seqno passing without holding any locks and
3235 * causing extra latency for others. This is safe as the irq
3236 * generation is designed to be run atomically and so is
3237 * lockless.
3238 */
b13c2b96
CW
3239 if (ring->irq_get(ring)) {
3240 ret = wait_event_interruptible(ring->irq_queue,
3241 i915_seqno_passed(ring->get_seqno(ring), seqno)
3242 || atomic_read(&dev_priv->mm.wedged));
3243 ring->irq_put(ring);
40a5f0de 3244
b13c2b96
CW
3245 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3246 ret = -EIO;
3247 }
40a5f0de
EA
3248 }
3249
f787a5f5
CW
3250 if (ret == 0)
3251 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3252
3253 return ret;
3254}
3255
673a394b 3256int
05394f39
CW
3257i915_gem_object_pin(struct drm_i915_gem_object *obj,
3258 uint32_t alignment,
75e9e915 3259 bool map_and_fenceable)
673a394b 3260{
05394f39 3261 struct drm_device *dev = obj->base.dev;
f13d3f73 3262 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3263 int ret;
3264
05394f39 3265 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3266 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3267
05394f39
CW
3268 if (obj->gtt_space != NULL) {
3269 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3270 (map_and_fenceable && !obj->map_and_fenceable)) {
3271 WARN(obj->pin_count,
ae7d49d8 3272 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3273 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3274 " obj->map_and_fenceable=%d\n",
05394f39 3275 obj->gtt_offset, alignment,
75e9e915 3276 map_and_fenceable,
05394f39 3277 obj->map_and_fenceable);
ac0c6b5a
CW
3278 ret = i915_gem_object_unbind(obj);
3279 if (ret)
3280 return ret;
3281 }
3282 }
3283
05394f39 3284 if (obj->gtt_space == NULL) {
a00b10c3 3285 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3286 map_and_fenceable);
9731129c 3287 if (ret)
673a394b 3288 return ret;
22c344e9 3289 }
76446cac 3290
05394f39 3291 if (obj->pin_count++ == 0) {
05394f39
CW
3292 if (!obj->active)
3293 list_move_tail(&obj->mm_list,
f13d3f73 3294 &dev_priv->mm.pinned_list);
673a394b 3295 }
6299f992 3296 obj->pin_mappable |= map_and_fenceable;
673a394b 3297
23bc5982 3298 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3299 return 0;
3300}
3301
3302void
05394f39 3303i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3304{
05394f39 3305 struct drm_device *dev = obj->base.dev;
673a394b 3306 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3307
23bc5982 3308 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3309 BUG_ON(obj->pin_count == 0);
3310 BUG_ON(obj->gtt_space == NULL);
673a394b 3311
05394f39
CW
3312 if (--obj->pin_count == 0) {
3313 if (!obj->active)
3314 list_move_tail(&obj->mm_list,
673a394b 3315 &dev_priv->mm.inactive_list);
6299f992 3316 obj->pin_mappable = false;
673a394b 3317 }
23bc5982 3318 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3319}
3320
3321int
3322i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3323 struct drm_file *file)
673a394b
EA
3324{
3325 struct drm_i915_gem_pin *args = data;
05394f39 3326 struct drm_i915_gem_object *obj;
673a394b
EA
3327 int ret;
3328
1d7cfea1
CW
3329 ret = i915_mutex_lock_interruptible(dev);
3330 if (ret)
3331 return ret;
673a394b 3332
05394f39 3333 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3334 if (&obj->base == NULL) {
1d7cfea1
CW
3335 ret = -ENOENT;
3336 goto unlock;
673a394b 3337 }
673a394b 3338
05394f39 3339 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3340 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3341 ret = -EINVAL;
3342 goto out;
3ef94daa
CW
3343 }
3344
05394f39 3345 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3346 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3347 args->handle);
1d7cfea1
CW
3348 ret = -EINVAL;
3349 goto out;
79e53945
JB
3350 }
3351
05394f39
CW
3352 obj->user_pin_count++;
3353 obj->pin_filp = file;
3354 if (obj->user_pin_count == 1) {
75e9e915 3355 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3356 if (ret)
3357 goto out;
673a394b
EA
3358 }
3359
3360 /* XXX - flush the CPU caches for pinned objects
3361 * as the X server doesn't manage domains yet
3362 */
e47c68e9 3363 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3364 args->offset = obj->gtt_offset;
1d7cfea1 3365out:
05394f39 3366 drm_gem_object_unreference(&obj->base);
1d7cfea1 3367unlock:
673a394b 3368 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3369 return ret;
673a394b
EA
3370}
3371
3372int
3373i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3374 struct drm_file *file)
673a394b
EA
3375{
3376 struct drm_i915_gem_pin *args = data;
05394f39 3377 struct drm_i915_gem_object *obj;
76c1dec1 3378 int ret;
673a394b 3379
1d7cfea1
CW
3380 ret = i915_mutex_lock_interruptible(dev);
3381 if (ret)
3382 return ret;
673a394b 3383
05394f39 3384 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3385 if (&obj->base == NULL) {
1d7cfea1
CW
3386 ret = -ENOENT;
3387 goto unlock;
673a394b 3388 }
76c1dec1 3389
05394f39 3390 if (obj->pin_filp != file) {
79e53945
JB
3391 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3392 args->handle);
1d7cfea1
CW
3393 ret = -EINVAL;
3394 goto out;
79e53945 3395 }
05394f39
CW
3396 obj->user_pin_count--;
3397 if (obj->user_pin_count == 0) {
3398 obj->pin_filp = NULL;
79e53945
JB
3399 i915_gem_object_unpin(obj);
3400 }
673a394b 3401
1d7cfea1 3402out:
05394f39 3403 drm_gem_object_unreference(&obj->base);
1d7cfea1 3404unlock:
673a394b 3405 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3406 return ret;
673a394b
EA
3407}
3408
3409int
3410i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3411 struct drm_file *file)
673a394b
EA
3412{
3413 struct drm_i915_gem_busy *args = data;
05394f39 3414 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3415 int ret;
3416
76c1dec1 3417 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3418 if (ret)
76c1dec1 3419 return ret;
673a394b 3420
05394f39 3421 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3422 if (&obj->base == NULL) {
1d7cfea1
CW
3423 ret = -ENOENT;
3424 goto unlock;
673a394b 3425 }
d1b851fc 3426
0be555b6
CW
3427 /* Count all active objects as busy, even if they are currently not used
3428 * by the gpu. Users of this interface expect objects to eventually
3429 * become non-busy without any further actions, therefore emit any
3430 * necessary flushes here.
c4de0a5d 3431 */
05394f39 3432 args->busy = obj->active;
0be555b6
CW
3433 if (args->busy) {
3434 /* Unconditionally flush objects, even when the gpu still uses this
3435 * object. Userspace calling this function indicates that it wants to
3436 * use this buffer rather sooner than later, so issuing the required
3437 * flush earlier is beneficial.
3438 */
1a1c6976 3439 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3440 ret = i915_gem_flush_ring(obj->ring,
88241785 3441 0, obj->base.write_domain);
1a1c6976
CW
3442 } else if (obj->ring->outstanding_lazy_request ==
3443 obj->last_rendering_seqno) {
3444 struct drm_i915_gem_request *request;
3445
7a194876
CW
3446 /* This ring is not being cleared by active usage,
3447 * so emit a request to do so.
3448 */
1a1c6976
CW
3449 request = kzalloc(sizeof(*request), GFP_KERNEL);
3450 if (request)
db53a302 3451 ret = i915_add_request(obj->ring, NULL,request);
1a1c6976 3452 else
7a194876
CW
3453 ret = -ENOMEM;
3454 }
0be555b6
CW
3455
3456 /* Update the active list for the hardware's current position.
3457 * Otherwise this only updates on a delayed timer or when irqs
3458 * are actually unmasked, and our working set ends up being
3459 * larger than required.
3460 */
db53a302 3461 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3462
05394f39 3463 args->busy = obj->active;
0be555b6 3464 }
673a394b 3465
05394f39 3466 drm_gem_object_unreference(&obj->base);
1d7cfea1 3467unlock:
673a394b 3468 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3469 return ret;
673a394b
EA
3470}
3471
3472int
3473i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3474 struct drm_file *file_priv)
3475{
3476 return i915_gem_ring_throttle(dev, file_priv);
3477}
3478
3ef94daa
CW
3479int
3480i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3481 struct drm_file *file_priv)
3482{
3483 struct drm_i915_gem_madvise *args = data;
05394f39 3484 struct drm_i915_gem_object *obj;
76c1dec1 3485 int ret;
3ef94daa
CW
3486
3487 switch (args->madv) {
3488 case I915_MADV_DONTNEED:
3489 case I915_MADV_WILLNEED:
3490 break;
3491 default:
3492 return -EINVAL;
3493 }
3494
1d7cfea1
CW
3495 ret = i915_mutex_lock_interruptible(dev);
3496 if (ret)
3497 return ret;
3498
05394f39 3499 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3500 if (&obj->base == NULL) {
1d7cfea1
CW
3501 ret = -ENOENT;
3502 goto unlock;
3ef94daa 3503 }
3ef94daa 3504
05394f39 3505 if (obj->pin_count) {
1d7cfea1
CW
3506 ret = -EINVAL;
3507 goto out;
3ef94daa
CW
3508 }
3509
05394f39
CW
3510 if (obj->madv != __I915_MADV_PURGED)
3511 obj->madv = args->madv;
3ef94daa 3512
2d7ef395 3513 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3514 if (i915_gem_object_is_purgeable(obj) &&
3515 obj->gtt_space == NULL)
2d7ef395
CW
3516 i915_gem_object_truncate(obj);
3517
05394f39 3518 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3519
1d7cfea1 3520out:
05394f39 3521 drm_gem_object_unreference(&obj->base);
1d7cfea1 3522unlock:
3ef94daa 3523 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3524 return ret;
3ef94daa
CW
3525}
3526
05394f39
CW
3527struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3528 size_t size)
ac52bc56 3529{
73aa808f 3530 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3531 struct drm_i915_gem_object *obj;
ac52bc56 3532
c397b908
DV
3533 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3534 if (obj == NULL)
3535 return NULL;
673a394b 3536
c397b908
DV
3537 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3538 kfree(obj);
3539 return NULL;
3540 }
673a394b 3541
73aa808f
CW
3542 i915_gem_info_add_obj(dev_priv, size);
3543
c397b908
DV
3544 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3545 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3546
c397b908 3547 obj->agp_type = AGP_USER_MEMORY;
62b8b215 3548 obj->base.driver_private = NULL;
c397b908 3549 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3550 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3551 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3552 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3553 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3554 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3555 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3556 /* Avoid an unnecessary call to unbind on the first bind. */
3557 obj->map_and_fenceable = true;
de151cf6 3558
05394f39 3559 return obj;
c397b908
DV
3560}
3561
3562int i915_gem_init_object(struct drm_gem_object *obj)
3563{
3564 BUG();
de151cf6 3565
673a394b
EA
3566 return 0;
3567}
3568
05394f39 3569static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3570{
05394f39 3571 struct drm_device *dev = obj->base.dev;
be72615b 3572 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3573 int ret;
673a394b 3574
be72615b
CW
3575 ret = i915_gem_object_unbind(obj);
3576 if (ret == -ERESTARTSYS) {
05394f39 3577 list_move(&obj->mm_list,
be72615b
CW
3578 &dev_priv->mm.deferred_free_list);
3579 return;
3580 }
673a394b 3581
05394f39 3582 if (obj->base.map_list.map)
7e616158 3583 i915_gem_free_mmap_offset(obj);
de151cf6 3584
05394f39
CW
3585 drm_gem_object_release(&obj->base);
3586 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3587
05394f39
CW
3588 kfree(obj->page_cpu_valid);
3589 kfree(obj->bit_17);
3590 kfree(obj);
db53a302
CW
3591
3592 trace_i915_gem_object_destroy(obj);
673a394b
EA
3593}
3594
05394f39 3595void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3596{
05394f39
CW
3597 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3598 struct drm_device *dev = obj->base.dev;
be72615b 3599
05394f39 3600 while (obj->pin_count > 0)
be72615b
CW
3601 i915_gem_object_unpin(obj);
3602
05394f39 3603 if (obj->phys_obj)
be72615b
CW
3604 i915_gem_detach_phys_object(dev, obj);
3605
3606 i915_gem_free_object_tail(obj);
3607}
3608
29105ccc
CW
3609int
3610i915_gem_idle(struct drm_device *dev)
3611{
3612 drm_i915_private_t *dev_priv = dev->dev_private;
3613 int ret;
28dfe52a 3614
29105ccc 3615 mutex_lock(&dev->struct_mutex);
1c5d22f7 3616
87acb0a5 3617 if (dev_priv->mm.suspended) {
29105ccc
CW
3618 mutex_unlock(&dev->struct_mutex);
3619 return 0;
28dfe52a
EA
3620 }
3621
29105ccc 3622 ret = i915_gpu_idle(dev);
6dbe2772
KP
3623 if (ret) {
3624 mutex_unlock(&dev->struct_mutex);
673a394b 3625 return ret;
6dbe2772 3626 }
673a394b 3627
29105ccc
CW
3628 /* Under UMS, be paranoid and evict. */
3629 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3630 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3631 if (ret) {
3632 mutex_unlock(&dev->struct_mutex);
3633 return ret;
3634 }
3635 }
3636
312817a3
CW
3637 i915_gem_reset_fences(dev);
3638
29105ccc
CW
3639 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3640 * We need to replace this with a semaphore, or something.
3641 * And not confound mm.suspended!
3642 */
3643 dev_priv->mm.suspended = 1;
bc0c7f14 3644 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3645
3646 i915_kernel_lost_context(dev);
6dbe2772 3647 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3648
6dbe2772
KP
3649 mutex_unlock(&dev->struct_mutex);
3650
29105ccc
CW
3651 /* Cancel the retire work handler, which should be idle now. */
3652 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3653
673a394b
EA
3654 return 0;
3655}
3656
8187a2b7
ZN
3657int
3658i915_gem_init_ringbuffer(struct drm_device *dev)
3659{
3660 drm_i915_private_t *dev_priv = dev->dev_private;
3661 int ret;
68f95ba9 3662
5c1143bb 3663 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3664 if (ret)
b6913e4b 3665 return ret;
68f95ba9
CW
3666
3667 if (HAS_BSD(dev)) {
5c1143bb 3668 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3669 if (ret)
3670 goto cleanup_render_ring;
d1b851fc 3671 }
68f95ba9 3672
549f7365
CW
3673 if (HAS_BLT(dev)) {
3674 ret = intel_init_blt_ring_buffer(dev);
3675 if (ret)
3676 goto cleanup_bsd_ring;
3677 }
3678
6f392d54
CW
3679 dev_priv->next_seqno = 1;
3680
68f95ba9
CW
3681 return 0;
3682
549f7365 3683cleanup_bsd_ring:
1ec14ad3 3684 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3685cleanup_render_ring:
1ec14ad3 3686 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3687 return ret;
3688}
3689
3690void
3691i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3692{
3693 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3694 int i;
8187a2b7 3695
1ec14ad3
CW
3696 for (i = 0; i < I915_NUM_RINGS; i++)
3697 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3698}
3699
673a394b
EA
3700int
3701i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3702 struct drm_file *file_priv)
3703{
3704 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3705 int ret, i;
673a394b 3706
79e53945
JB
3707 if (drm_core_check_feature(dev, DRIVER_MODESET))
3708 return 0;
3709
ba1234d1 3710 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3711 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3712 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3713 }
3714
673a394b 3715 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3716 dev_priv->mm.suspended = 0;
3717
3718 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
3719 if (ret != 0) {
3720 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3721 return ret;
d816f6ac 3722 }
9bb2d6f9 3723
69dc4987 3724 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3725 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3726 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3727 for (i = 0; i < I915_NUM_RINGS; i++) {
3728 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3729 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3730 }
673a394b 3731 mutex_unlock(&dev->struct_mutex);
dbb19d30 3732
5f35308b
CW
3733 ret = drm_irq_install(dev);
3734 if (ret)
3735 goto cleanup_ringbuffer;
dbb19d30 3736
673a394b 3737 return 0;
5f35308b
CW
3738
3739cleanup_ringbuffer:
3740 mutex_lock(&dev->struct_mutex);
3741 i915_gem_cleanup_ringbuffer(dev);
3742 dev_priv->mm.suspended = 1;
3743 mutex_unlock(&dev->struct_mutex);
3744
3745 return ret;
673a394b
EA
3746}
3747
3748int
3749i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3750 struct drm_file *file_priv)
3751{
79e53945
JB
3752 if (drm_core_check_feature(dev, DRIVER_MODESET))
3753 return 0;
3754
dbb19d30 3755 drm_irq_uninstall(dev);
e6890f6f 3756 return i915_gem_idle(dev);
673a394b
EA
3757}
3758
3759void
3760i915_gem_lastclose(struct drm_device *dev)
3761{
3762 int ret;
673a394b 3763
e806b495
EA
3764 if (drm_core_check_feature(dev, DRIVER_MODESET))
3765 return;
3766
6dbe2772
KP
3767 ret = i915_gem_idle(dev);
3768 if (ret)
3769 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3770}
3771
64193406
CW
3772static void
3773init_ring_lists(struct intel_ring_buffer *ring)
3774{
3775 INIT_LIST_HEAD(&ring->active_list);
3776 INIT_LIST_HEAD(&ring->request_list);
3777 INIT_LIST_HEAD(&ring->gpu_write_list);
3778}
3779
673a394b
EA
3780void
3781i915_gem_load(struct drm_device *dev)
3782{
b5aa8a0f 3783 int i;
673a394b
EA
3784 drm_i915_private_t *dev_priv = dev->dev_private;
3785
69dc4987 3786 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3787 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3788 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3789 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3790 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3791 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3792 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3793 for (i = 0; i < I915_NUM_RINGS; i++)
3794 init_ring_lists(&dev_priv->ring[i]);
007cc8ac
DV
3795 for (i = 0; i < 16; i++)
3796 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3797 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3798 i915_gem_retire_work_handler);
30dbf0c0 3799 init_completion(&dev_priv->error_completion);
31169714 3800
94400120
DA
3801 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3802 if (IS_GEN3(dev)) {
3803 u32 tmp = I915_READ(MI_ARB_STATE);
3804 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3805 /* arb state is a masked write, so set bit + bit in mask */
3806 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3807 I915_WRITE(MI_ARB_STATE, tmp);
3808 }
3809 }
3810
72bfa19c
CW
3811 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3812
de151cf6 3813 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3814 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3815 dev_priv->fence_reg_start = 3;
de151cf6 3816
a6c45cf0 3817 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3818 dev_priv->num_fence_regs = 16;
3819 else
3820 dev_priv->num_fence_regs = 8;
3821
b5aa8a0f 3822 /* Initialize fence registers to zero */
a6c45cf0
CW
3823 switch (INTEL_INFO(dev)->gen) {
3824 case 6:
3825 for (i = 0; i < 16; i++)
3826 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
3827 break;
3828 case 5:
3829 case 4:
b5aa8a0f
GH
3830 for (i = 0; i < 16; i++)
3831 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
3832 break;
3833 case 3:
b5aa8a0f
GH
3834 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3835 for (i = 0; i < 8; i++)
3836 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
3837 case 2:
3838 for (i = 0; i < 8; i++)
3839 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
3840 break;
b5aa8a0f 3841 }
673a394b 3842 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3843 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71
CW
3844
3845 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3846 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3847 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3848}
71acb5eb
DA
3849
3850/*
3851 * Create a physically contiguous memory object for this object
3852 * e.g. for cursor + overlay regs
3853 */
995b6762
CW
3854static int i915_gem_init_phys_object(struct drm_device *dev,
3855 int id, int size, int align)
71acb5eb
DA
3856{
3857 drm_i915_private_t *dev_priv = dev->dev_private;
3858 struct drm_i915_gem_phys_object *phys_obj;
3859 int ret;
3860
3861 if (dev_priv->mm.phys_objs[id - 1] || !size)
3862 return 0;
3863
9a298b2a 3864 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3865 if (!phys_obj)
3866 return -ENOMEM;
3867
3868 phys_obj->id = id;
3869
6eeefaf3 3870 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3871 if (!phys_obj->handle) {
3872 ret = -ENOMEM;
3873 goto kfree_obj;
3874 }
3875#ifdef CONFIG_X86
3876 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3877#endif
3878
3879 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3880
3881 return 0;
3882kfree_obj:
9a298b2a 3883 kfree(phys_obj);
71acb5eb
DA
3884 return ret;
3885}
3886
995b6762 3887static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3888{
3889 drm_i915_private_t *dev_priv = dev->dev_private;
3890 struct drm_i915_gem_phys_object *phys_obj;
3891
3892 if (!dev_priv->mm.phys_objs[id - 1])
3893 return;
3894
3895 phys_obj = dev_priv->mm.phys_objs[id - 1];
3896 if (phys_obj->cur_obj) {
3897 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3898 }
3899
3900#ifdef CONFIG_X86
3901 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3902#endif
3903 drm_pci_free(dev, phys_obj->handle);
3904 kfree(phys_obj);
3905 dev_priv->mm.phys_objs[id - 1] = NULL;
3906}
3907
3908void i915_gem_free_all_phys_object(struct drm_device *dev)
3909{
3910 int i;
3911
260883c8 3912 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3913 i915_gem_free_phys_object(dev, i);
3914}
3915
3916void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3917 struct drm_i915_gem_object *obj)
71acb5eb 3918{
05394f39 3919 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3920 char *vaddr;
71acb5eb 3921 int i;
71acb5eb
DA
3922 int page_count;
3923
05394f39 3924 if (!obj->phys_obj)
71acb5eb 3925 return;
05394f39 3926 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3927
05394f39 3928 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3929 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3930 struct page *page = read_cache_page_gfp(mapping, i,
3931 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3932 if (!IS_ERR(page)) {
3933 char *dst = kmap_atomic(page);
3934 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3935 kunmap_atomic(dst);
3936
3937 drm_clflush_pages(&page, 1);
3938
3939 set_page_dirty(page);
3940 mark_page_accessed(page);
3941 page_cache_release(page);
3942 }
71acb5eb 3943 }
40ce6575 3944 intel_gtt_chipset_flush();
d78b47b9 3945
05394f39
CW
3946 obj->phys_obj->cur_obj = NULL;
3947 obj->phys_obj = NULL;
71acb5eb
DA
3948}
3949
3950int
3951i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3952 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3953 int id,
3954 int align)
71acb5eb 3955{
05394f39 3956 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3957 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3958 int ret = 0;
3959 int page_count;
3960 int i;
3961
3962 if (id > I915_MAX_PHYS_OBJECT)
3963 return -EINVAL;
3964
05394f39
CW
3965 if (obj->phys_obj) {
3966 if (obj->phys_obj->id == id)
71acb5eb
DA
3967 return 0;
3968 i915_gem_detach_phys_object(dev, obj);
3969 }
3970
71acb5eb
DA
3971 /* create a new object */
3972 if (!dev_priv->mm.phys_objs[id - 1]) {
3973 ret = i915_gem_init_phys_object(dev, id,
05394f39 3974 obj->base.size, align);
71acb5eb 3975 if (ret) {
05394f39
CW
3976 DRM_ERROR("failed to init phys object %d size: %zu\n",
3977 id, obj->base.size);
e5281ccd 3978 return ret;
71acb5eb
DA
3979 }
3980 }
3981
3982 /* bind to the object */
05394f39
CW
3983 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3984 obj->phys_obj->cur_obj = obj;
71acb5eb 3985
05394f39 3986 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
3987
3988 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3989 struct page *page;
3990 char *dst, *src;
3991
3992 page = read_cache_page_gfp(mapping, i,
3993 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3994 if (IS_ERR(page))
3995 return PTR_ERR(page);
71acb5eb 3996
ff75b9bc 3997 src = kmap_atomic(page);
05394f39 3998 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 3999 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4000 kunmap_atomic(src);
71acb5eb 4001
e5281ccd
CW
4002 mark_page_accessed(page);
4003 page_cache_release(page);
4004 }
d78b47b9 4005
71acb5eb 4006 return 0;
71acb5eb
DA
4007}
4008
4009static int
05394f39
CW
4010i915_gem_phys_pwrite(struct drm_device *dev,
4011 struct drm_i915_gem_object *obj,
71acb5eb
DA
4012 struct drm_i915_gem_pwrite *args,
4013 struct drm_file *file_priv)
4014{
05394f39 4015 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4016 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4017
b47b30cc
CW
4018 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4019 unsigned long unwritten;
4020
4021 /* The physical object once assigned is fixed for the lifetime
4022 * of the obj, so we can safely drop the lock and continue
4023 * to access vaddr.
4024 */
4025 mutex_unlock(&dev->struct_mutex);
4026 unwritten = copy_from_user(vaddr, user_data, args->size);
4027 mutex_lock(&dev->struct_mutex);
4028 if (unwritten)
4029 return -EFAULT;
4030 }
71acb5eb 4031
40ce6575 4032 intel_gtt_chipset_flush();
71acb5eb
DA
4033 return 0;
4034}
b962442e 4035
f787a5f5 4036void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4037{
f787a5f5 4038 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4039
4040 /* Clean up our request list when the client is going away, so that
4041 * later retire_requests won't dereference our soon-to-be-gone
4042 * file_priv.
4043 */
1c25595f 4044 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4045 while (!list_empty(&file_priv->mm.request_list)) {
4046 struct drm_i915_gem_request *request;
4047
4048 request = list_first_entry(&file_priv->mm.request_list,
4049 struct drm_i915_gem_request,
4050 client_list);
4051 list_del(&request->client_list);
4052 request->file_priv = NULL;
4053 }
1c25595f 4054 spin_unlock(&file_priv->mm.lock);
b962442e 4055}
31169714 4056
1637ef41
CW
4057static int
4058i915_gpu_is_active(struct drm_device *dev)
4059{
4060 drm_i915_private_t *dev_priv = dev->dev_private;
4061 int lists_empty;
4062
1637ef41 4063 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4064 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4065
4066 return !lists_empty;
4067}
4068
31169714 4069static int
17250b71
CW
4070i915_gem_inactive_shrink(struct shrinker *shrinker,
4071 int nr_to_scan,
4072 gfp_t gfp_mask)
31169714 4073{
17250b71
CW
4074 struct drm_i915_private *dev_priv =
4075 container_of(shrinker,
4076 struct drm_i915_private,
4077 mm.inactive_shrinker);
4078 struct drm_device *dev = dev_priv->dev;
4079 struct drm_i915_gem_object *obj, *next;
4080 int cnt;
4081
4082 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4083 return 0;
31169714
CW
4084
4085 /* "fast-path" to count number of available objects */
4086 if (nr_to_scan == 0) {
17250b71
CW
4087 cnt = 0;
4088 list_for_each_entry(obj,
4089 &dev_priv->mm.inactive_list,
4090 mm_list)
4091 cnt++;
4092 mutex_unlock(&dev->struct_mutex);
4093 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4094 }
4095
1637ef41 4096rescan:
31169714 4097 /* first scan for clean buffers */
17250b71 4098 i915_gem_retire_requests(dev);
31169714 4099
17250b71
CW
4100 list_for_each_entry_safe(obj, next,
4101 &dev_priv->mm.inactive_list,
4102 mm_list) {
4103 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4104 if (i915_gem_object_unbind(obj) == 0 &&
4105 --nr_to_scan == 0)
17250b71 4106 break;
31169714 4107 }
31169714
CW
4108 }
4109
4110 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4111 cnt = 0;
4112 list_for_each_entry_safe(obj, next,
4113 &dev_priv->mm.inactive_list,
4114 mm_list) {
2021746e
CW
4115 if (nr_to_scan &&
4116 i915_gem_object_unbind(obj) == 0)
17250b71 4117 nr_to_scan--;
2021746e 4118 else
17250b71
CW
4119 cnt++;
4120 }
4121
4122 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4123 /*
4124 * We are desperate for pages, so as a last resort, wait
4125 * for the GPU to finish and discard whatever we can.
4126 * This has a dramatic impact to reduce the number of
4127 * OOM-killer events whilst running the GPU aggressively.
4128 */
17250b71 4129 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4130 goto rescan;
4131 }
17250b71
CW
4132 mutex_unlock(&dev->struct_mutex);
4133 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4134}