]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Remove misleading CSR firmware loading docs
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
c13d87ea 32#include "i915_gem_dmabuf.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
0ccdacf6 36#include "intel_mocs.h"
c13d87ea 37#include <linux/reservation.h>
5949eac4 38#include <linux/shmem_fs.h>
5a0e3ad6 39#include <linux/slab.h>
673a394b 40#include <linux/swap.h>
79e53945 41#include <linux/pci.h>
1286ff73 42#include <linux/dma-buf.h>
673a394b 43
05394f39 44static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 45static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 46static void
b4716185
CW
47i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
48static void
49i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 50
c76ce038
CW
51static bool cpu_cache_is_coherent(struct drm_device *dev,
52 enum i915_cache_level level)
53{
54 return HAS_LLC(dev) || level != I915_CACHE_NONE;
55}
56
2c22569b
CW
57static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
58{
b50a5371
AS
59 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
60 return false;
61
2c22569b
CW
62 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
63 return true;
64
65 return obj->pin_display;
66}
67
4f1959ee
AS
68static int
69insert_mappable_node(struct drm_i915_private *i915,
70 struct drm_mm_node *node, u32 size)
71{
72 memset(node, 0, sizeof(*node));
73 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
74 size, 0, 0, 0,
75 i915->ggtt.mappable_end,
76 DRM_MM_SEARCH_DEFAULT,
77 DRM_MM_CREATE_DEFAULT);
78}
79
80static void
81remove_mappable_node(struct drm_mm_node *node)
82{
83 drm_mm_remove_node(node);
84}
85
73aa808f
CW
86/* some bookkeeping */
87static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
88 size_t size)
89{
c20e8355 90 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
91 dev_priv->mm.object_count++;
92 dev_priv->mm.object_memory += size;
c20e8355 93 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
94}
95
96static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
97 size_t size)
98{
c20e8355 99 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100 dev_priv->mm.object_count--;
101 dev_priv->mm.object_memory -= size;
c20e8355 102 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
103}
104
21dd3734 105static int
33196ded 106i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 107{
30dbf0c0
CW
108 int ret;
109
d98c52cf 110 if (!i915_reset_in_progress(error))
30dbf0c0
CW
111 return 0;
112
0a6759c6
DV
113 /*
114 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115 * userspace. If it takes that long something really bad is going on and
116 * we should simply try to bail out and fail as gracefully as possible.
117 */
1f83fee0 118 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 119 !i915_reset_in_progress(error),
1f83fee0 120 10*HZ);
0a6759c6
DV
121 if (ret == 0) {
122 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123 return -EIO;
124 } else if (ret < 0) {
30dbf0c0 125 return ret;
d98c52cf
CW
126 } else {
127 return 0;
0a6759c6 128 }
30dbf0c0
CW
129}
130
54cf91dc 131int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 132{
fac5e23e 133 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
134 int ret;
135
33196ded 136 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
137 if (ret)
138 return ret;
139
140 ret = mutex_lock_interruptible(&dev->struct_mutex);
141 if (ret)
142 return ret;
143
23bc5982 144 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
145 return 0;
146}
30dbf0c0 147
5a125c3c
EA
148int
149i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 150 struct drm_file *file)
5a125c3c 151{
72e96d64 152 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 153 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 154 struct drm_i915_gem_get_aperture *args = data;
ca1543be 155 struct i915_vma *vma;
6299f992 156 size_t pinned;
5a125c3c 157
6299f992 158 pinned = 0;
73aa808f 159 mutex_lock(&dev->struct_mutex);
1c7f4bca 160 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
ca1543be
TU
161 if (vma->pin_count)
162 pinned += vma->node.size;
1c7f4bca 163 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
ca1543be
TU
164 if (vma->pin_count)
165 pinned += vma->node.size;
73aa808f 166 mutex_unlock(&dev->struct_mutex);
5a125c3c 167
72e96d64 168 args->aper_size = ggtt->base.total;
0206e353 169 args->aper_available_size = args->aper_size - pinned;
6299f992 170
5a125c3c
EA
171 return 0;
172}
173
6a2c4232
CW
174static int
175i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 176{
6a2c4232
CW
177 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
178 char *vaddr = obj->phys_handle->vaddr;
179 struct sg_table *st;
180 struct scatterlist *sg;
181 int i;
00731155 182
6a2c4232
CW
183 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184 return -EINVAL;
185
186 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
187 struct page *page;
188 char *src;
189
190 page = shmem_read_mapping_page(mapping, i);
191 if (IS_ERR(page))
192 return PTR_ERR(page);
193
194 src = kmap_atomic(page);
195 memcpy(vaddr, src, PAGE_SIZE);
196 drm_clflush_virt_range(vaddr, PAGE_SIZE);
197 kunmap_atomic(src);
198
09cbfeaf 199 put_page(page);
6a2c4232
CW
200 vaddr += PAGE_SIZE;
201 }
202
c033666a 203 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
204
205 st = kmalloc(sizeof(*st), GFP_KERNEL);
206 if (st == NULL)
207 return -ENOMEM;
208
209 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
210 kfree(st);
211 return -ENOMEM;
212 }
213
214 sg = st->sgl;
215 sg->offset = 0;
216 sg->length = obj->base.size;
00731155 217
6a2c4232
CW
218 sg_dma_address(sg) = obj->phys_handle->busaddr;
219 sg_dma_len(sg) = obj->base.size;
220
221 obj->pages = st;
6a2c4232
CW
222 return 0;
223}
224
225static void
226i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
227{
228 int ret;
229
230 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 231
6a2c4232 232 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 233 if (WARN_ON(ret)) {
6a2c4232
CW
234 /* In the event of a disaster, abandon all caches and
235 * hope for the best.
236 */
6a2c4232
CW
237 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
238 }
239
240 if (obj->madv == I915_MADV_DONTNEED)
241 obj->dirty = 0;
242
243 if (obj->dirty) {
00731155 244 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 245 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
246 int i;
247
248 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
249 struct page *page;
250 char *dst;
251
252 page = shmem_read_mapping_page(mapping, i);
253 if (IS_ERR(page))
254 continue;
255
256 dst = kmap_atomic(page);
257 drm_clflush_virt_range(vaddr, PAGE_SIZE);
258 memcpy(dst, vaddr, PAGE_SIZE);
259 kunmap_atomic(dst);
260
261 set_page_dirty(page);
262 if (obj->madv == I915_MADV_WILLNEED)
00731155 263 mark_page_accessed(page);
09cbfeaf 264 put_page(page);
00731155
CW
265 vaddr += PAGE_SIZE;
266 }
6a2c4232 267 obj->dirty = 0;
00731155
CW
268 }
269
6a2c4232
CW
270 sg_free_table(obj->pages);
271 kfree(obj->pages);
6a2c4232
CW
272}
273
274static void
275i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
276{
277 drm_pci_free(obj->base.dev, obj->phys_handle);
278}
279
280static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
281 .get_pages = i915_gem_object_get_pages_phys,
282 .put_pages = i915_gem_object_put_pages_phys,
283 .release = i915_gem_object_release_phys,
284};
285
286static int
287drop_pages(struct drm_i915_gem_object *obj)
288{
289 struct i915_vma *vma, *next;
290 int ret;
291
25dc556a 292 i915_gem_object_get(obj);
1c7f4bca 293 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
6a2c4232
CW
294 if (i915_vma_unbind(vma))
295 break;
296
297 ret = i915_gem_object_put_pages(obj);
f8c417cd 298 i915_gem_object_put(obj);
6a2c4232
CW
299
300 return ret;
00731155
CW
301}
302
303int
304i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
305 int align)
306{
307 drm_dma_handle_t *phys;
6a2c4232 308 int ret;
00731155
CW
309
310 if (obj->phys_handle) {
311 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
312 return -EBUSY;
313
314 return 0;
315 }
316
317 if (obj->madv != I915_MADV_WILLNEED)
318 return -EFAULT;
319
320 if (obj->base.filp == NULL)
321 return -EINVAL;
322
6a2c4232
CW
323 ret = drop_pages(obj);
324 if (ret)
325 return ret;
326
00731155
CW
327 /* create a new object */
328 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
329 if (!phys)
330 return -ENOMEM;
331
00731155 332 obj->phys_handle = phys;
6a2c4232
CW
333 obj->ops = &i915_gem_phys_ops;
334
335 return i915_gem_object_get_pages(obj);
00731155
CW
336}
337
338static int
339i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
340 struct drm_i915_gem_pwrite *args,
341 struct drm_file *file_priv)
342{
343 struct drm_device *dev = obj->base.dev;
344 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 345 char __user *user_data = u64_to_user_ptr(args->data_ptr);
063e4e6b 346 int ret = 0;
6a2c4232
CW
347
348 /* We manually control the domain here and pretend that it
349 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
350 */
351 ret = i915_gem_object_wait_rendering(obj, false);
352 if (ret)
353 return ret;
00731155 354
77a0d1ca 355 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
356 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
357 unsigned long unwritten;
358
359 /* The physical object once assigned is fixed for the lifetime
360 * of the obj, so we can safely drop the lock and continue
361 * to access vaddr.
362 */
363 mutex_unlock(&dev->struct_mutex);
364 unwritten = copy_from_user(vaddr, user_data, args->size);
365 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
366 if (unwritten) {
367 ret = -EFAULT;
368 goto out;
369 }
00731155
CW
370 }
371
6a2c4232 372 drm_clflush_virt_range(vaddr, args->size);
c033666a 373 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
374
375out:
de152b62 376 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 377 return ret;
00731155
CW
378}
379
42dcedd4
CW
380void *i915_gem_object_alloc(struct drm_device *dev)
381{
fac5e23e 382 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 383 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
384}
385
386void i915_gem_object_free(struct drm_i915_gem_object *obj)
387{
fac5e23e 388 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 389 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
390}
391
ff72145b
DA
392static int
393i915_gem_create(struct drm_file *file,
394 struct drm_device *dev,
395 uint64_t size,
396 uint32_t *handle_p)
673a394b 397{
05394f39 398 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
399 int ret;
400 u32 handle;
673a394b 401
ff72145b 402 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
403 if (size == 0)
404 return -EINVAL;
673a394b
EA
405
406 /* Allocate the new object */
d37cd8a8 407 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
408 if (IS_ERR(obj))
409 return PTR_ERR(obj);
673a394b 410
05394f39 411 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 412 /* drop reference from allocate - handle holds it now */
34911fd3 413 i915_gem_object_put_unlocked(obj);
d861e338
DV
414 if (ret)
415 return ret;
202f2fef 416
ff72145b 417 *handle_p = handle;
673a394b
EA
418 return 0;
419}
420
ff72145b
DA
421int
422i915_gem_dumb_create(struct drm_file *file,
423 struct drm_device *dev,
424 struct drm_mode_create_dumb *args)
425{
426 /* have to work out size/pitch and return them */
de45eaf7 427 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
428 args->size = args->pitch * args->height;
429 return i915_gem_create(file, dev,
da6b51d0 430 args->size, &args->handle);
ff72145b
DA
431}
432
ff72145b
DA
433/**
434 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
435 * @dev: drm device pointer
436 * @data: ioctl data blob
437 * @file: drm file pointer
ff72145b
DA
438 */
439int
440i915_gem_create_ioctl(struct drm_device *dev, void *data,
441 struct drm_file *file)
442{
443 struct drm_i915_gem_create *args = data;
63ed2cb2 444
ff72145b 445 return i915_gem_create(file, dev,
da6b51d0 446 args->size, &args->handle);
ff72145b
DA
447}
448
8461d226
DV
449static inline int
450__copy_to_user_swizzled(char __user *cpu_vaddr,
451 const char *gpu_vaddr, int gpu_offset,
452 int length)
453{
454 int ret, cpu_offset = 0;
455
456 while (length > 0) {
457 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458 int this_length = min(cacheline_end - gpu_offset, length);
459 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461 ret = __copy_to_user(cpu_vaddr + cpu_offset,
462 gpu_vaddr + swizzled_gpu_offset,
463 this_length);
464 if (ret)
465 return ret + length;
466
467 cpu_offset += this_length;
468 gpu_offset += this_length;
469 length -= this_length;
470 }
471
472 return 0;
473}
474
8c59967c 475static inline int
4f0c7cfb
BW
476__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
477 const char __user *cpu_vaddr,
8c59967c
DV
478 int length)
479{
480 int ret, cpu_offset = 0;
481
482 while (length > 0) {
483 int cacheline_end = ALIGN(gpu_offset + 1, 64);
484 int this_length = min(cacheline_end - gpu_offset, length);
485 int swizzled_gpu_offset = gpu_offset ^ 64;
486
487 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
488 cpu_vaddr + cpu_offset,
489 this_length);
490 if (ret)
491 return ret + length;
492
493 cpu_offset += this_length;
494 gpu_offset += this_length;
495 length -= this_length;
496 }
497
498 return 0;
499}
500
4c914c0c
BV
501/*
502 * Pins the specified object's pages and synchronizes the object with
503 * GPU accesses. Sets needs_clflush to non-zero if the caller should
504 * flush the object from the CPU cache.
505 */
506int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
507 int *needs_clflush)
508{
509 int ret;
510
511 *needs_clflush = 0;
512
b9bcd14a 513 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4c914c0c
BV
514 return -EINVAL;
515
c13d87ea
CW
516 ret = i915_gem_object_wait_rendering(obj, true);
517 if (ret)
518 return ret;
519
4c914c0c
BV
520 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
521 /* If we're not in the cpu read domain, set ourself into the gtt
522 * read domain and manually flush cachelines (if required). This
523 * optimizes for the case when the gpu will dirty the data
524 * anyway again before the next pread happens. */
525 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
526 obj->cache_level);
4c914c0c
BV
527 }
528
529 ret = i915_gem_object_get_pages(obj);
530 if (ret)
531 return ret;
532
533 i915_gem_object_pin_pages(obj);
534
535 return ret;
536}
537
d174bd64
DV
538/* Per-page copy function for the shmem pread fastpath.
539 * Flushes invalid cachelines before reading the target if
540 * needs_clflush is set. */
eb01459f 541static int
d174bd64
DV
542shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
543 char __user *user_data,
544 bool page_do_bit17_swizzling, bool needs_clflush)
545{
546 char *vaddr;
547 int ret;
548
e7e58eb5 549 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
550 return -EINVAL;
551
552 vaddr = kmap_atomic(page);
553 if (needs_clflush)
554 drm_clflush_virt_range(vaddr + shmem_page_offset,
555 page_length);
556 ret = __copy_to_user_inatomic(user_data,
557 vaddr + shmem_page_offset,
558 page_length);
559 kunmap_atomic(vaddr);
560
f60d7f0c 561 return ret ? -EFAULT : 0;
d174bd64
DV
562}
563
23c18c71
DV
564static void
565shmem_clflush_swizzled_range(char *addr, unsigned long length,
566 bool swizzled)
567{
e7e58eb5 568 if (unlikely(swizzled)) {
23c18c71
DV
569 unsigned long start = (unsigned long) addr;
570 unsigned long end = (unsigned long) addr + length;
571
572 /* For swizzling simply ensure that we always flush both
573 * channels. Lame, but simple and it works. Swizzled
574 * pwrite/pread is far from a hotpath - current userspace
575 * doesn't use it at all. */
576 start = round_down(start, 128);
577 end = round_up(end, 128);
578
579 drm_clflush_virt_range((void *)start, end - start);
580 } else {
581 drm_clflush_virt_range(addr, length);
582 }
583
584}
585
d174bd64
DV
586/* Only difference to the fast-path function is that this can handle bit17
587 * and uses non-atomic copy and kmap functions. */
588static int
589shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
590 char __user *user_data,
591 bool page_do_bit17_swizzling, bool needs_clflush)
592{
593 char *vaddr;
594 int ret;
595
596 vaddr = kmap(page);
597 if (needs_clflush)
23c18c71
DV
598 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
599 page_length,
600 page_do_bit17_swizzling);
d174bd64
DV
601
602 if (page_do_bit17_swizzling)
603 ret = __copy_to_user_swizzled(user_data,
604 vaddr, shmem_page_offset,
605 page_length);
606 else
607 ret = __copy_to_user(user_data,
608 vaddr + shmem_page_offset,
609 page_length);
610 kunmap(page);
611
f60d7f0c 612 return ret ? - EFAULT : 0;
d174bd64
DV
613}
614
b50a5371
AS
615static inline unsigned long
616slow_user_access(struct io_mapping *mapping,
617 uint64_t page_base, int page_offset,
618 char __user *user_data,
619 unsigned long length, bool pwrite)
620{
621 void __iomem *ioaddr;
622 void *vaddr;
623 uint64_t unwritten;
624
625 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
626 /* We can use the cpu mem copy function because this is X86. */
627 vaddr = (void __force *)ioaddr + page_offset;
628 if (pwrite)
629 unwritten = __copy_from_user(vaddr, user_data, length);
630 else
631 unwritten = __copy_to_user(user_data, vaddr, length);
632
633 io_mapping_unmap(ioaddr);
634 return unwritten;
635}
636
637static int
638i915_gem_gtt_pread(struct drm_device *dev,
639 struct drm_i915_gem_object *obj, uint64_t size,
640 uint64_t data_offset, uint64_t data_ptr)
641{
fac5e23e 642 struct drm_i915_private *dev_priv = to_i915(dev);
b50a5371
AS
643 struct i915_ggtt *ggtt = &dev_priv->ggtt;
644 struct drm_mm_node node;
645 char __user *user_data;
646 uint64_t remain;
647 uint64_t offset;
648 int ret;
649
650 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
651 if (ret) {
652 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
653 if (ret)
654 goto out;
655
656 ret = i915_gem_object_get_pages(obj);
657 if (ret) {
658 remove_mappable_node(&node);
659 goto out;
660 }
661
662 i915_gem_object_pin_pages(obj);
663 } else {
664 node.start = i915_gem_obj_ggtt_offset(obj);
665 node.allocated = false;
666 ret = i915_gem_object_put_fence(obj);
667 if (ret)
668 goto out_unpin;
669 }
670
671 ret = i915_gem_object_set_to_gtt_domain(obj, false);
672 if (ret)
673 goto out_unpin;
674
675 user_data = u64_to_user_ptr(data_ptr);
676 remain = size;
677 offset = data_offset;
678
679 mutex_unlock(&dev->struct_mutex);
680 if (likely(!i915.prefault_disable)) {
681 ret = fault_in_multipages_writeable(user_data, remain);
682 if (ret) {
683 mutex_lock(&dev->struct_mutex);
684 goto out_unpin;
685 }
686 }
687
688 while (remain > 0) {
689 /* Operation in this page
690 *
691 * page_base = page offset within aperture
692 * page_offset = offset within page
693 * page_length = bytes to copy for this page
694 */
695 u32 page_base = node.start;
696 unsigned page_offset = offset_in_page(offset);
697 unsigned page_length = PAGE_SIZE - page_offset;
698 page_length = remain < page_length ? remain : page_length;
699 if (node.allocated) {
700 wmb();
701 ggtt->base.insert_page(&ggtt->base,
702 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
703 node.start,
704 I915_CACHE_NONE, 0);
705 wmb();
706 } else {
707 page_base += offset & PAGE_MASK;
708 }
709 /* This is a slow read/write as it tries to read from
710 * and write to user memory which may result into page
711 * faults, and so we cannot perform this under struct_mutex.
712 */
713 if (slow_user_access(ggtt->mappable, page_base,
714 page_offset, user_data,
715 page_length, false)) {
716 ret = -EFAULT;
717 break;
718 }
719
720 remain -= page_length;
721 user_data += page_length;
722 offset += page_length;
723 }
724
725 mutex_lock(&dev->struct_mutex);
726 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
727 /* The user has modified the object whilst we tried
728 * reading from it, and we now have no idea what domain
729 * the pages should be in. As we have just been touching
730 * them directly, flush everything back to the GTT
731 * domain.
732 */
733 ret = i915_gem_object_set_to_gtt_domain(obj, false);
734 }
735
736out_unpin:
737 if (node.allocated) {
738 wmb();
739 ggtt->base.clear_range(&ggtt->base,
740 node.start, node.size,
741 true);
742 i915_gem_object_unpin_pages(obj);
743 remove_mappable_node(&node);
744 } else {
745 i915_gem_object_ggtt_unpin(obj);
746 }
747out:
748 return ret;
749}
750
eb01459f 751static int
dbf7bff0
DV
752i915_gem_shmem_pread(struct drm_device *dev,
753 struct drm_i915_gem_object *obj,
754 struct drm_i915_gem_pread *args,
755 struct drm_file *file)
eb01459f 756{
8461d226 757 char __user *user_data;
eb01459f 758 ssize_t remain;
8461d226 759 loff_t offset;
eb2c0c81 760 int shmem_page_offset, page_length, ret = 0;
8461d226 761 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 762 int prefaulted = 0;
8489731c 763 int needs_clflush = 0;
67d5a50c 764 struct sg_page_iter sg_iter;
eb01459f 765
6eae0059 766 if (!i915_gem_object_has_struct_page(obj))
b50a5371
AS
767 return -ENODEV;
768
3ed605bc 769 user_data = u64_to_user_ptr(args->data_ptr);
eb01459f
EA
770 remain = args->size;
771
8461d226 772 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 773
4c914c0c 774 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
775 if (ret)
776 return ret;
777
8461d226 778 offset = args->offset;
eb01459f 779
67d5a50c
ID
780 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
781 offset >> PAGE_SHIFT) {
2db76d7c 782 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
783
784 if (remain <= 0)
785 break;
786
eb01459f
EA
787 /* Operation in this page
788 *
eb01459f 789 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
790 * page_length = bytes to copy for this page
791 */
c8cbbb8b 792 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
793 page_length = remain;
794 if ((shmem_page_offset + page_length) > PAGE_SIZE)
795 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 796
8461d226
DV
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
d174bd64
DV
800 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 needs_clflush);
803 if (ret == 0)
804 goto next_page;
dbf7bff0 805
dbf7bff0
DV
806 mutex_unlock(&dev->struct_mutex);
807
d330a953 808 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 809 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
810 /* Userspace is tricking us, but we've already clobbered
811 * its pages with the prefault and promised to write the
812 * data up to the first fault. Hence ignore any errors
813 * and just continue. */
814 (void)ret;
815 prefaulted = 1;
816 }
eb01459f 817
d174bd64
DV
818 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
819 user_data, page_do_bit17_swizzling,
820 needs_clflush);
eb01459f 821
dbf7bff0 822 mutex_lock(&dev->struct_mutex);
f60d7f0c 823
f60d7f0c 824 if (ret)
8461d226 825 goto out;
8461d226 826
17793c9a 827next_page:
eb01459f 828 remain -= page_length;
8461d226 829 user_data += page_length;
eb01459f
EA
830 offset += page_length;
831 }
832
4f27b75d 833out:
f60d7f0c
CW
834 i915_gem_object_unpin_pages(obj);
835
eb01459f
EA
836 return ret;
837}
838
673a394b
EA
839/**
840 * Reads data from the object referenced by handle.
14bb2c11
TU
841 * @dev: drm device pointer
842 * @data: ioctl data blob
843 * @file: drm file pointer
673a394b
EA
844 *
845 * On error, the contents of *data are undefined.
846 */
847int
848i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 849 struct drm_file *file)
673a394b
EA
850{
851 struct drm_i915_gem_pread *args = data;
05394f39 852 struct drm_i915_gem_object *obj;
35b62a89 853 int ret = 0;
673a394b 854
51311d0a
CW
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_WRITE,
3ed605bc 859 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
860 args->size))
861 return -EFAULT;
862
4f27b75d 863 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 864 if (ret)
4f27b75d 865 return ret;
673a394b 866
03ac0642
CW
867 obj = i915_gem_object_lookup(file, args->handle);
868 if (!obj) {
1d7cfea1
CW
869 ret = -ENOENT;
870 goto unlock;
4f27b75d 871 }
673a394b 872
7dcd2499 873 /* Bounds check source. */
05394f39
CW
874 if (args->offset > obj->base.size ||
875 args->size > obj->base.size - args->offset) {
ce9d419d 876 ret = -EINVAL;
35b62a89 877 goto out;
ce9d419d
CW
878 }
879
db53a302
CW
880 trace_i915_gem_object_pread(obj, args->offset, args->size);
881
dbf7bff0 882 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 883
b50a5371
AS
884 /* pread for non shmem backed objects */
885 if (ret == -EFAULT || ret == -ENODEV)
886 ret = i915_gem_gtt_pread(dev, obj, args->size,
887 args->offset, args->data_ptr);
888
35b62a89 889out:
f8c417cd 890 i915_gem_object_put(obj);
1d7cfea1 891unlock:
4f27b75d 892 mutex_unlock(&dev->struct_mutex);
eb01459f 893 return ret;
673a394b
EA
894}
895
0839ccb8
KP
896/* This is the fast write path which cannot handle
897 * page faults in the source data
9b7530cc 898 */
0839ccb8
KP
899
900static inline int
901fast_user_write(struct io_mapping *mapping,
902 loff_t page_base, int page_offset,
903 char __user *user_data,
904 int length)
9b7530cc 905{
4f0c7cfb
BW
906 void __iomem *vaddr_atomic;
907 void *vaddr;
0839ccb8 908 unsigned long unwritten;
9b7530cc 909
3e4d3af5 910 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
911 /* We can use the cpu mem copy function because this is X86. */
912 vaddr = (void __force*)vaddr_atomic + page_offset;
913 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 914 user_data, length);
3e4d3af5 915 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 916 return unwritten;
0839ccb8
KP
917}
918
3de09aa3
EA
919/**
920 * This is the fast pwrite path, where we copy the data directly from the
921 * user into the GTT, uncached.
62f90b38 922 * @i915: i915 device private data
14bb2c11
TU
923 * @obj: i915 gem object
924 * @args: pwrite arguments structure
925 * @file: drm file pointer
3de09aa3 926 */
673a394b 927static int
4f1959ee 928i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
05394f39 929 struct drm_i915_gem_object *obj,
3de09aa3 930 struct drm_i915_gem_pwrite *args,
05394f39 931 struct drm_file *file)
673a394b 932{
4f1959ee 933 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 934 struct drm_device *dev = obj->base.dev;
4f1959ee
AS
935 struct drm_mm_node node;
936 uint64_t remain, offset;
673a394b 937 char __user *user_data;
4f1959ee 938 int ret;
b50a5371
AS
939 bool hit_slow_path = false;
940
941 if (obj->tiling_mode != I915_TILING_NONE)
942 return -EFAULT;
935aaa69 943
1ec9e26d 944 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
4f1959ee
AS
945 if (ret) {
946 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
947 if (ret)
948 goto out;
949
950 ret = i915_gem_object_get_pages(obj);
951 if (ret) {
952 remove_mappable_node(&node);
953 goto out;
954 }
955
956 i915_gem_object_pin_pages(obj);
957 } else {
958 node.start = i915_gem_obj_ggtt_offset(obj);
959 node.allocated = false;
b50a5371
AS
960 ret = i915_gem_object_put_fence(obj);
961 if (ret)
962 goto out_unpin;
4f1959ee 963 }
935aaa69
DV
964
965 ret = i915_gem_object_set_to_gtt_domain(obj, true);
966 if (ret)
967 goto out_unpin;
968
77a0d1ca 969 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
4f1959ee 970 obj->dirty = true;
063e4e6b 971
4f1959ee
AS
972 user_data = u64_to_user_ptr(args->data_ptr);
973 offset = args->offset;
974 remain = args->size;
975 while (remain) {
673a394b
EA
976 /* Operation in this page
977 *
0839ccb8
KP
978 * page_base = page offset within aperture
979 * page_offset = offset within page
980 * page_length = bytes to copy for this page
673a394b 981 */
4f1959ee
AS
982 u32 page_base = node.start;
983 unsigned page_offset = offset_in_page(offset);
984 unsigned page_length = PAGE_SIZE - page_offset;
985 page_length = remain < page_length ? remain : page_length;
986 if (node.allocated) {
987 wmb(); /* flush the write before we modify the GGTT */
988 ggtt->base.insert_page(&ggtt->base,
989 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
990 node.start, I915_CACHE_NONE, 0);
991 wmb(); /* flush modifications to the GGTT (insert_page) */
992 } else {
993 page_base += offset & PAGE_MASK;
994 }
0839ccb8 995 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
996 * source page isn't available. Return the error and we'll
997 * retry in the slow path.
b50a5371
AS
998 * If the object is non-shmem backed, we retry again with the
999 * path that handles page fault.
0839ccb8 1000 */
72e96d64 1001 if (fast_user_write(ggtt->mappable, page_base,
935aaa69 1002 page_offset, user_data, page_length)) {
b50a5371
AS
1003 hit_slow_path = true;
1004 mutex_unlock(&dev->struct_mutex);
1005 if (slow_user_access(ggtt->mappable,
1006 page_base,
1007 page_offset, user_data,
1008 page_length, true)) {
1009 ret = -EFAULT;
1010 mutex_lock(&dev->struct_mutex);
1011 goto out_flush;
1012 }
1013
1014 mutex_lock(&dev->struct_mutex);
935aaa69 1015 }
673a394b 1016
0839ccb8
KP
1017 remain -= page_length;
1018 user_data += page_length;
1019 offset += page_length;
673a394b 1020 }
673a394b 1021
063e4e6b 1022out_flush:
b50a5371
AS
1023 if (hit_slow_path) {
1024 if (ret == 0 &&
1025 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1026 /* The user has modified the object whilst we tried
1027 * reading from it, and we now have no idea what domain
1028 * the pages should be in. As we have just been touching
1029 * them directly, flush everything back to the GTT
1030 * domain.
1031 */
1032 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1033 }
1034 }
1035
de152b62 1036 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 1037out_unpin:
4f1959ee
AS
1038 if (node.allocated) {
1039 wmb();
1040 ggtt->base.clear_range(&ggtt->base,
1041 node.start, node.size,
1042 true);
1043 i915_gem_object_unpin_pages(obj);
1044 remove_mappable_node(&node);
1045 } else {
1046 i915_gem_object_ggtt_unpin(obj);
1047 }
935aaa69 1048out:
3de09aa3 1049 return ret;
673a394b
EA
1050}
1051
d174bd64
DV
1052/* Per-page copy function for the shmem pwrite fastpath.
1053 * Flushes invalid cachelines before writing to the target if
1054 * needs_clflush_before is set and flushes out any written cachelines after
1055 * writing if needs_clflush is set. */
3043c60c 1056static int
d174bd64
DV
1057shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1058 char __user *user_data,
1059 bool page_do_bit17_swizzling,
1060 bool needs_clflush_before,
1061 bool needs_clflush_after)
673a394b 1062{
d174bd64 1063 char *vaddr;
673a394b 1064 int ret;
3de09aa3 1065
e7e58eb5 1066 if (unlikely(page_do_bit17_swizzling))
d174bd64 1067 return -EINVAL;
3de09aa3 1068
d174bd64
DV
1069 vaddr = kmap_atomic(page);
1070 if (needs_clflush_before)
1071 drm_clflush_virt_range(vaddr + shmem_page_offset,
1072 page_length);
c2831a94
CW
1073 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1074 user_data, page_length);
d174bd64
DV
1075 if (needs_clflush_after)
1076 drm_clflush_virt_range(vaddr + shmem_page_offset,
1077 page_length);
1078 kunmap_atomic(vaddr);
3de09aa3 1079
755d2218 1080 return ret ? -EFAULT : 0;
3de09aa3
EA
1081}
1082
d174bd64
DV
1083/* Only difference to the fast-path function is that this can handle bit17
1084 * and uses non-atomic copy and kmap functions. */
3043c60c 1085static int
d174bd64
DV
1086shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1087 char __user *user_data,
1088 bool page_do_bit17_swizzling,
1089 bool needs_clflush_before,
1090 bool needs_clflush_after)
673a394b 1091{
d174bd64
DV
1092 char *vaddr;
1093 int ret;
e5281ccd 1094
d174bd64 1095 vaddr = kmap(page);
e7e58eb5 1096 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
1097 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1098 page_length,
1099 page_do_bit17_swizzling);
d174bd64
DV
1100 if (page_do_bit17_swizzling)
1101 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
1102 user_data,
1103 page_length);
d174bd64
DV
1104 else
1105 ret = __copy_from_user(vaddr + shmem_page_offset,
1106 user_data,
1107 page_length);
1108 if (needs_clflush_after)
23c18c71
DV
1109 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1110 page_length,
1111 page_do_bit17_swizzling);
d174bd64 1112 kunmap(page);
40123c1f 1113
755d2218 1114 return ret ? -EFAULT : 0;
40123c1f
EA
1115}
1116
40123c1f 1117static int
e244a443
DV
1118i915_gem_shmem_pwrite(struct drm_device *dev,
1119 struct drm_i915_gem_object *obj,
1120 struct drm_i915_gem_pwrite *args,
1121 struct drm_file *file)
40123c1f 1122{
40123c1f 1123 ssize_t remain;
8c59967c
DV
1124 loff_t offset;
1125 char __user *user_data;
eb2c0c81 1126 int shmem_page_offset, page_length, ret = 0;
8c59967c 1127 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 1128 int hit_slowpath = 0;
58642885
DV
1129 int needs_clflush_after = 0;
1130 int needs_clflush_before = 0;
67d5a50c 1131 struct sg_page_iter sg_iter;
40123c1f 1132
3ed605bc 1133 user_data = u64_to_user_ptr(args->data_ptr);
40123c1f
EA
1134 remain = args->size;
1135
8c59967c 1136 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 1137
c13d87ea
CW
1138 ret = i915_gem_object_wait_rendering(obj, false);
1139 if (ret)
1140 return ret;
1141
58642885
DV
1142 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1143 /* If we're not in the cpu write domain, set ourself into the gtt
1144 * write domain and manually flush cachelines (if required). This
1145 * optimizes for the case when the gpu will use the data
1146 * right away and we therefore have to clflush anyway. */
2c22569b 1147 needs_clflush_after = cpu_write_needs_clflush(obj);
58642885 1148 }
c76ce038
CW
1149 /* Same trick applies to invalidate partially written cachelines read
1150 * before writing. */
1151 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1152 needs_clflush_before =
1153 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 1154
755d2218
CW
1155 ret = i915_gem_object_get_pages(obj);
1156 if (ret)
1157 return ret;
1158
77a0d1ca 1159 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1160
755d2218
CW
1161 i915_gem_object_pin_pages(obj);
1162
673a394b 1163 offset = args->offset;
05394f39 1164 obj->dirty = 1;
673a394b 1165
67d5a50c
ID
1166 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1167 offset >> PAGE_SHIFT) {
2db76d7c 1168 struct page *page = sg_page_iter_page(&sg_iter);
58642885 1169 int partial_cacheline_write;
e5281ccd 1170
9da3da66
CW
1171 if (remain <= 0)
1172 break;
1173
40123c1f
EA
1174 /* Operation in this page
1175 *
40123c1f 1176 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
1177 * page_length = bytes to copy for this page
1178 */
c8cbbb8b 1179 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
1180
1181 page_length = remain;
1182 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1183 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 1184
58642885
DV
1185 /* If we don't overwrite a cacheline completely we need to be
1186 * careful to have up-to-date data by first clflushing. Don't
1187 * overcomplicate things and flush the entire patch. */
1188 partial_cacheline_write = needs_clflush_before &&
1189 ((shmem_page_offset | page_length)
1190 & (boot_cpu_data.x86_clflush_size - 1));
1191
8c59967c
DV
1192 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1193 (page_to_phys(page) & (1 << 17)) != 0;
1194
d174bd64
DV
1195 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1196 user_data, page_do_bit17_swizzling,
1197 partial_cacheline_write,
1198 needs_clflush_after);
1199 if (ret == 0)
1200 goto next_page;
e244a443
DV
1201
1202 hit_slowpath = 1;
e244a443 1203 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1204 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1205 user_data, page_do_bit17_swizzling,
1206 partial_cacheline_write,
1207 needs_clflush_after);
40123c1f 1208
e244a443 1209 mutex_lock(&dev->struct_mutex);
755d2218 1210
755d2218 1211 if (ret)
8c59967c 1212 goto out;
8c59967c 1213
17793c9a 1214next_page:
40123c1f 1215 remain -= page_length;
8c59967c 1216 user_data += page_length;
40123c1f 1217 offset += page_length;
673a394b
EA
1218 }
1219
fbd5a26d 1220out:
755d2218
CW
1221 i915_gem_object_unpin_pages(obj);
1222
e244a443 1223 if (hit_slowpath) {
8dcf015e
DV
1224 /*
1225 * Fixup: Flush cpu caches in case we didn't flush the dirty
1226 * cachelines in-line while writing and the object moved
1227 * out of the cpu write domain while we've dropped the lock.
1228 */
1229 if (!needs_clflush_after &&
1230 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1231 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1232 needs_clflush_after = true;
e244a443 1233 }
8c59967c 1234 }
673a394b 1235
58642885 1236 if (needs_clflush_after)
c033666a 1237 i915_gem_chipset_flush(to_i915(dev));
ed75a55b
VS
1238 else
1239 obj->cache_dirty = true;
58642885 1240
de152b62 1241 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1242 return ret;
673a394b
EA
1243}
1244
1245/**
1246 * Writes data to the object referenced by handle.
14bb2c11
TU
1247 * @dev: drm device
1248 * @data: ioctl data blob
1249 * @file: drm file
673a394b
EA
1250 *
1251 * On error, the contents of the buffer that were to be modified are undefined.
1252 */
1253int
1254i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1255 struct drm_file *file)
673a394b 1256{
fac5e23e 1257 struct drm_i915_private *dev_priv = to_i915(dev);
673a394b 1258 struct drm_i915_gem_pwrite *args = data;
05394f39 1259 struct drm_i915_gem_object *obj;
51311d0a
CW
1260 int ret;
1261
1262 if (args->size == 0)
1263 return 0;
1264
1265 if (!access_ok(VERIFY_READ,
3ed605bc 1266 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1267 args->size))
1268 return -EFAULT;
1269
d330a953 1270 if (likely(!i915.prefault_disable)) {
3ed605bc 1271 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
0b74b508
XZ
1272 args->size);
1273 if (ret)
1274 return -EFAULT;
1275 }
673a394b 1276
5d77d9c5
ID
1277 intel_runtime_pm_get(dev_priv);
1278
fbd5a26d 1279 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1280 if (ret)
5d77d9c5 1281 goto put_rpm;
1d7cfea1 1282
03ac0642
CW
1283 obj = i915_gem_object_lookup(file, args->handle);
1284 if (!obj) {
1d7cfea1
CW
1285 ret = -ENOENT;
1286 goto unlock;
fbd5a26d 1287 }
673a394b 1288
7dcd2499 1289 /* Bounds check destination. */
05394f39
CW
1290 if (args->offset > obj->base.size ||
1291 args->size > obj->base.size - args->offset) {
ce9d419d 1292 ret = -EINVAL;
35b62a89 1293 goto out;
ce9d419d
CW
1294 }
1295
db53a302
CW
1296 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1297
935aaa69 1298 ret = -EFAULT;
673a394b
EA
1299 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1300 * it would end up going through the fenced access, and we'll get
1301 * different detiling behavior between reading and writing.
1302 * pread/pwrite currently are reading and writing from the CPU
1303 * perspective, requiring manual detiling by the client.
1304 */
6eae0059
CW
1305 if (!i915_gem_object_has_struct_page(obj) ||
1306 cpu_write_needs_clflush(obj)) {
4f1959ee 1307 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
935aaa69
DV
1308 /* Note that the gtt paths might fail with non-page-backed user
1309 * pointers (e.g. gtt mappings when moving data between
1310 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1311 }
673a394b 1312
d1054ee4 1313 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1314 if (obj->phys_handle)
1315 ret = i915_gem_phys_pwrite(obj, args, file);
6eae0059 1316 else if (i915_gem_object_has_struct_page(obj))
6a2c4232 1317 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
b50a5371
AS
1318 else
1319 ret = -ENODEV;
6a2c4232 1320 }
5c0480f2 1321
35b62a89 1322out:
f8c417cd 1323 i915_gem_object_put(obj);
1d7cfea1 1324unlock:
fbd5a26d 1325 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1326put_rpm:
1327 intel_runtime_pm_put(dev_priv);
1328
673a394b
EA
1329 return ret;
1330}
1331
b361237b
CW
1332/**
1333 * Ensures that all rendering to the object has completed and the object is
1334 * safe to unbind from the GTT or access from the CPU.
14bb2c11
TU
1335 * @obj: i915 gem object
1336 * @readonly: waiting for read access or write
b361237b 1337 */
2e2f351d 1338int
b361237b
CW
1339i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1340 bool readonly)
1341{
c13d87ea 1342 struct reservation_object *resv;
b4716185 1343 int ret, i;
b361237b 1344
b4716185
CW
1345 if (readonly) {
1346 if (obj->last_write_req != NULL) {
1347 ret = i915_wait_request(obj->last_write_req);
1348 if (ret)
1349 return ret;
b361237b 1350
4a570db5 1351 i = obj->last_write_req->engine->id;
b4716185
CW
1352 if (obj->last_read_req[i] == obj->last_write_req)
1353 i915_gem_object_retire__read(obj, i);
1354 else
1355 i915_gem_object_retire__write(obj);
1356 }
1357 } else {
666796da 1358 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1359 if (obj->last_read_req[i] == NULL)
1360 continue;
1361
1362 ret = i915_wait_request(obj->last_read_req[i]);
1363 if (ret)
1364 return ret;
1365
1366 i915_gem_object_retire__read(obj, i);
1367 }
d501b1d2 1368 GEM_BUG_ON(obj->active);
b4716185
CW
1369 }
1370
c13d87ea
CW
1371 resv = i915_gem_object_get_dmabuf_resv(obj);
1372 if (resv) {
1373 long err;
1374
1375 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
1376 MAX_SCHEDULE_TIMEOUT);
1377 if (err < 0)
1378 return err;
1379 }
1380
b4716185
CW
1381 return 0;
1382}
1383
1384static void
1385i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1386 struct drm_i915_gem_request *req)
1387{
4a570db5 1388 int ring = req->engine->id;
b4716185
CW
1389
1390 if (obj->last_read_req[ring] == req)
1391 i915_gem_object_retire__read(obj, ring);
1392 else if (obj->last_write_req == req)
1393 i915_gem_object_retire__write(obj);
1394
0c5eed65 1395 if (!i915_reset_in_progress(&req->i915->gpu_error))
05235c53 1396 i915_gem_request_retire_upto(req);
b361237b
CW
1397}
1398
3236f57a
CW
1399/* A nonblocking variant of the above wait. This is a highly dangerous routine
1400 * as the object state may change during this call.
1401 */
1402static __must_check int
1403i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1404 struct intel_rps_client *rps,
3236f57a
CW
1405 bool readonly)
1406{
1407 struct drm_device *dev = obj->base.dev;
fac5e23e 1408 struct drm_i915_private *dev_priv = to_i915(dev);
666796da 1409 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
b4716185 1410 int ret, i, n = 0;
3236f57a
CW
1411
1412 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1413 BUG_ON(!dev_priv->mm.interruptible);
1414
b4716185 1415 if (!obj->active)
3236f57a
CW
1416 return 0;
1417
b4716185
CW
1418 if (readonly) {
1419 struct drm_i915_gem_request *req;
1420
1421 req = obj->last_write_req;
1422 if (req == NULL)
1423 return 0;
1424
e8a261ea 1425 requests[n++] = i915_gem_request_get(req);
b4716185 1426 } else {
666796da 1427 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1428 struct drm_i915_gem_request *req;
1429
1430 req = obj->last_read_req[i];
1431 if (req == NULL)
1432 continue;
1433
e8a261ea 1434 requests[n++] = i915_gem_request_get(req);
b4716185
CW
1435 }
1436 }
1437
3236f57a 1438 mutex_unlock(&dev->struct_mutex);
299259a3 1439 ret = 0;
b4716185 1440 for (i = 0; ret == 0 && i < n; i++)
299259a3 1441 ret = __i915_wait_request(requests[i], true, NULL, rps);
3236f57a
CW
1442 mutex_lock(&dev->struct_mutex);
1443
b4716185
CW
1444 for (i = 0; i < n; i++) {
1445 if (ret == 0)
1446 i915_gem_object_retire_request(obj, requests[i]);
e8a261ea 1447 i915_gem_request_put(requests[i]);
b4716185
CW
1448 }
1449
1450 return ret;
3236f57a
CW
1451}
1452
2e1b8730
CW
1453static struct intel_rps_client *to_rps_client(struct drm_file *file)
1454{
1455 struct drm_i915_file_private *fpriv = file->driver_priv;
1456 return &fpriv->rps;
1457}
1458
aeecc969
CW
1459static enum fb_op_origin
1460write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1461{
1462 return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1463 ORIGIN_GTT : ORIGIN_CPU;
1464}
1465
673a394b 1466/**
2ef7eeaa
EA
1467 * Called when user space prepares to use an object with the CPU, either
1468 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1469 * @dev: drm device
1470 * @data: ioctl data blob
1471 * @file: drm file
673a394b
EA
1472 */
1473int
1474i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1475 struct drm_file *file)
673a394b
EA
1476{
1477 struct drm_i915_gem_set_domain *args = data;
05394f39 1478 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1479 uint32_t read_domains = args->read_domains;
1480 uint32_t write_domain = args->write_domain;
673a394b
EA
1481 int ret;
1482
2ef7eeaa 1483 /* Only handle setting domains to types used by the CPU. */
21d509e3 1484 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1485 return -EINVAL;
1486
21d509e3 1487 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1488 return -EINVAL;
1489
1490 /* Having something in the write domain implies it's in the read
1491 * domain, and only that read domain. Enforce that in the request.
1492 */
1493 if (write_domain != 0 && read_domains != write_domain)
1494 return -EINVAL;
1495
76c1dec1 1496 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1497 if (ret)
76c1dec1 1498 return ret;
1d7cfea1 1499
03ac0642
CW
1500 obj = i915_gem_object_lookup(file, args->handle);
1501 if (!obj) {
1d7cfea1
CW
1502 ret = -ENOENT;
1503 goto unlock;
76c1dec1 1504 }
673a394b 1505
3236f57a
CW
1506 /* Try to flush the object off the GPU without holding the lock.
1507 * We will repeat the flush holding the lock in the normal manner
1508 * to catch cases where we are gazumped.
1509 */
6e4930f6 1510 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1511 to_rps_client(file),
6e4930f6 1512 !write_domain);
3236f57a
CW
1513 if (ret)
1514 goto unref;
1515
43566ded 1516 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1517 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1518 else
e47c68e9 1519 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1520
031b698a 1521 if (write_domain != 0)
aeecc969 1522 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
031b698a 1523
3236f57a 1524unref:
f8c417cd 1525 i915_gem_object_put(obj);
1d7cfea1 1526unlock:
673a394b
EA
1527 mutex_unlock(&dev->struct_mutex);
1528 return ret;
1529}
1530
1531/**
1532 * Called when user space has done writes to this buffer
14bb2c11
TU
1533 * @dev: drm device
1534 * @data: ioctl data blob
1535 * @file: drm file
673a394b
EA
1536 */
1537int
1538i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1539 struct drm_file *file)
673a394b
EA
1540{
1541 struct drm_i915_gem_sw_finish *args = data;
05394f39 1542 struct drm_i915_gem_object *obj;
673a394b
EA
1543 int ret = 0;
1544
76c1dec1 1545 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1546 if (ret)
76c1dec1 1547 return ret;
1d7cfea1 1548
03ac0642
CW
1549 obj = i915_gem_object_lookup(file, args->handle);
1550 if (!obj) {
1d7cfea1
CW
1551 ret = -ENOENT;
1552 goto unlock;
673a394b
EA
1553 }
1554
673a394b 1555 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1556 if (obj->pin_display)
e62b59e4 1557 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1558
f8c417cd 1559 i915_gem_object_put(obj);
1d7cfea1 1560unlock:
673a394b
EA
1561 mutex_unlock(&dev->struct_mutex);
1562 return ret;
1563}
1564
1565/**
14bb2c11
TU
1566 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1567 * it is mapped to.
1568 * @dev: drm device
1569 * @data: ioctl data blob
1570 * @file: drm file
673a394b
EA
1571 *
1572 * While the mapping holds a reference on the contents of the object, it doesn't
1573 * imply a ref on the object itself.
34367381
DV
1574 *
1575 * IMPORTANT:
1576 *
1577 * DRM driver writers who look a this function as an example for how to do GEM
1578 * mmap support, please don't implement mmap support like here. The modern way
1579 * to implement DRM mmap support is with an mmap offset ioctl (like
1580 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1581 * That way debug tooling like valgrind will understand what's going on, hiding
1582 * the mmap call in a driver private ioctl will break that. The i915 driver only
1583 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1584 */
1585int
1586i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1587 struct drm_file *file)
673a394b
EA
1588{
1589 struct drm_i915_gem_mmap *args = data;
03ac0642 1590 struct drm_i915_gem_object *obj;
673a394b
EA
1591 unsigned long addr;
1592
1816f923
AG
1593 if (args->flags & ~(I915_MMAP_WC))
1594 return -EINVAL;
1595
568a58e5 1596 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1597 return -ENODEV;
1598
03ac0642
CW
1599 obj = i915_gem_object_lookup(file, args->handle);
1600 if (!obj)
bf79cb91 1601 return -ENOENT;
673a394b 1602
1286ff73
DV
1603 /* prime objects have no backing filp to GEM mmap
1604 * pages from.
1605 */
03ac0642 1606 if (!obj->base.filp) {
34911fd3 1607 i915_gem_object_put_unlocked(obj);
1286ff73
DV
1608 return -EINVAL;
1609 }
1610
03ac0642 1611 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1612 PROT_READ | PROT_WRITE, MAP_SHARED,
1613 args->offset);
1816f923
AG
1614 if (args->flags & I915_MMAP_WC) {
1615 struct mm_struct *mm = current->mm;
1616 struct vm_area_struct *vma;
1617
80a89a5e 1618 if (down_write_killable(&mm->mmap_sem)) {
34911fd3 1619 i915_gem_object_put_unlocked(obj);
80a89a5e
MH
1620 return -EINTR;
1621 }
1816f923
AG
1622 vma = find_vma(mm, addr);
1623 if (vma)
1624 vma->vm_page_prot =
1625 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1626 else
1627 addr = -ENOMEM;
1628 up_write(&mm->mmap_sem);
aeecc969
CW
1629
1630 /* This may race, but that's ok, it only gets set */
03ac0642 1631 WRITE_ONCE(obj->has_wc_mmap, true);
1816f923 1632 }
34911fd3 1633 i915_gem_object_put_unlocked(obj);
673a394b
EA
1634 if (IS_ERR((void *)addr))
1635 return addr;
1636
1637 args->addr_ptr = (uint64_t) addr;
1638
1639 return 0;
1640}
1641
de151cf6
JB
1642/**
1643 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1644 * @vma: VMA in question
1645 * @vmf: fault info
de151cf6
JB
1646 *
1647 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1648 * from userspace. The fault handler takes care of binding the object to
1649 * the GTT (if needed), allocating and programming a fence register (again,
1650 * only if needed based on whether the old reg is still valid or the object
1651 * is tiled) and inserting a new PTE into the faulting process.
1652 *
1653 * Note that the faulting process may involve evicting existing objects
1654 * from the GTT and/or fence registers to make room. So performance may
1655 * suffer if the GTT working set is large or there are few fence registers
1656 * left.
1657 */
1658int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1659{
05394f39
CW
1660 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1661 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1662 struct drm_i915_private *dev_priv = to_i915(dev);
1663 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 1664 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1665 pgoff_t page_offset;
1666 unsigned long pfn;
1667 int ret = 0;
0f973f27 1668 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1669
f65c9168
PZ
1670 intel_runtime_pm_get(dev_priv);
1671
de151cf6
JB
1672 /* We don't use vmf->pgoff since that has the fake offset */
1673 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1674 PAGE_SHIFT;
1675
d9bc7e9f
CW
1676 ret = i915_mutex_lock_interruptible(dev);
1677 if (ret)
1678 goto out;
a00b10c3 1679
db53a302
CW
1680 trace_i915_gem_object_fault(obj, page_offset, true, write);
1681
6e4930f6
CW
1682 /* Try to flush the object off the GPU first without holding the lock.
1683 * Upon reacquiring the lock, we will perform our sanity checks and then
1684 * repeat the flush holding the lock in the normal manner to catch cases
1685 * where we are gazumped.
1686 */
1687 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1688 if (ret)
1689 goto unlock;
1690
eb119bd6
CW
1691 /* Access to snoopable pages through the GTT is incoherent. */
1692 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1693 ret = -EFAULT;
eb119bd6
CW
1694 goto unlock;
1695 }
1696
c5ad54cf 1697 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 1698 if (obj->base.size >= ggtt->mappable_end &&
e7ded2d7 1699 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1700 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1701
c5ad54cf
JL
1702 memset(&view, 0, sizeof(view));
1703 view.type = I915_GGTT_VIEW_PARTIAL;
1704 view.params.partial.offset = rounddown(page_offset, chunk_size);
1705 view.params.partial.size =
1706 min_t(unsigned int,
1707 chunk_size,
1708 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1709 view.params.partial.offset);
1710 }
1711
1712 /* Now pin it into the GTT if needed */
1713 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1714 if (ret)
1715 goto unlock;
4a684a41 1716
c9839303
CW
1717 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1718 if (ret)
1719 goto unpin;
74898d7e 1720
06d98131 1721 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1722 if (ret)
c9839303 1723 goto unpin;
7d1c4804 1724
b90b91d8 1725 /* Finally, remap it using the new GTT offset */
72e96d64 1726 pfn = ggtt->mappable_base +
c5ad54cf 1727 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1728 pfn >>= PAGE_SHIFT;
de151cf6 1729
c5ad54cf
JL
1730 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1731 /* Overriding existing pages in partial view does not cause
1732 * us any trouble as TLBs are still valid because the fault
1733 * is due to userspace losing part of the mapping or never
1734 * having accessed it before (at this partials' range).
1735 */
1736 unsigned long base = vma->vm_start +
1737 (view.params.partial.offset << PAGE_SHIFT);
1738 unsigned int i;
b90b91d8 1739
c5ad54cf
JL
1740 for (i = 0; i < view.params.partial.size; i++) {
1741 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1742 if (ret)
1743 break;
1744 }
1745
1746 obj->fault_mappable = true;
c5ad54cf
JL
1747 } else {
1748 if (!obj->fault_mappable) {
1749 unsigned long size = min_t(unsigned long,
1750 vma->vm_end - vma->vm_start,
1751 obj->base.size);
1752 int i;
1753
1754 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1755 ret = vm_insert_pfn(vma,
1756 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1757 pfn + i);
1758 if (ret)
1759 break;
1760 }
1761
1762 obj->fault_mappable = true;
1763 } else
1764 ret = vm_insert_pfn(vma,
1765 (unsigned long)vmf->virtual_address,
1766 pfn + page_offset);
1767 }
c9839303 1768unpin:
c5ad54cf 1769 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1770unlock:
de151cf6 1771 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1772out:
de151cf6 1773 switch (ret) {
d9bc7e9f 1774 case -EIO:
2232f031
DV
1775 /*
1776 * We eat errors when the gpu is terminally wedged to avoid
1777 * userspace unduly crashing (gl has no provisions for mmaps to
1778 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1779 * and so needs to be reported.
1780 */
1781 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1782 ret = VM_FAULT_SIGBUS;
1783 break;
1784 }
045e769a 1785 case -EAGAIN:
571c608d
DV
1786 /*
1787 * EAGAIN means the gpu is hung and we'll wait for the error
1788 * handler to reset everything when re-faulting in
1789 * i915_mutex_lock_interruptible.
d9bc7e9f 1790 */
c715089f
CW
1791 case 0:
1792 case -ERESTARTSYS:
bed636ab 1793 case -EINTR:
e79e0fe3
DR
1794 case -EBUSY:
1795 /*
1796 * EBUSY is ok: this just means that another thread
1797 * already did the job.
1798 */
f65c9168
PZ
1799 ret = VM_FAULT_NOPAGE;
1800 break;
de151cf6 1801 case -ENOMEM:
f65c9168
PZ
1802 ret = VM_FAULT_OOM;
1803 break;
a7c2e1aa 1804 case -ENOSPC:
45d67817 1805 case -EFAULT:
f65c9168
PZ
1806 ret = VM_FAULT_SIGBUS;
1807 break;
de151cf6 1808 default:
a7c2e1aa 1809 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1810 ret = VM_FAULT_SIGBUS;
1811 break;
de151cf6 1812 }
f65c9168
PZ
1813
1814 intel_runtime_pm_put(dev_priv);
1815 return ret;
de151cf6
JB
1816}
1817
901782b2
CW
1818/**
1819 * i915_gem_release_mmap - remove physical page mappings
1820 * @obj: obj in question
1821 *
af901ca1 1822 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1823 * relinquish ownership of the pages back to the system.
1824 *
1825 * It is vital that we remove the page mapping if we have mapped a tiled
1826 * object through the GTT and then lose the fence register due to
1827 * resource pressure. Similarly if the object has been moved out of the
1828 * aperture, than pages mapped into userspace must be revoked. Removing the
1829 * mapping will then trigger a page fault on the next user access, allowing
1830 * fixup by i915_gem_fault().
1831 */
d05ca301 1832void
05394f39 1833i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1834{
349f2ccf
CW
1835 /* Serialisation between user GTT access and our code depends upon
1836 * revoking the CPU's PTE whilst the mutex is held. The next user
1837 * pagefault then has to wait until we release the mutex.
1838 */
1839 lockdep_assert_held(&obj->base.dev->struct_mutex);
1840
6299f992
CW
1841 if (!obj->fault_mappable)
1842 return;
901782b2 1843
6796cb16
DH
1844 drm_vma_node_unmap(&obj->base.vma_node,
1845 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1846
1847 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1848 * memory transactions from userspace before we return. The TLB
1849 * flushing implied above by changing the PTE above *should* be
1850 * sufficient, an extra barrier here just provides us with a bit
1851 * of paranoid documentation about our requirement to serialise
1852 * memory writes before touching registers / GSM.
1853 */
1854 wmb();
1855
6299f992 1856 obj->fault_mappable = false;
901782b2
CW
1857}
1858
eedd10f4
CW
1859void
1860i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1861{
1862 struct drm_i915_gem_object *obj;
1863
1864 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1865 i915_gem_release_mmap(obj);
1866}
1867
0fa87796 1868uint32_t
e28f8711 1869i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1870{
e28f8711 1871 uint32_t gtt_size;
92b88aeb
CW
1872
1873 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1874 tiling_mode == I915_TILING_NONE)
1875 return size;
92b88aeb
CW
1876
1877 /* Previous chips need a power-of-two fence region when tiling */
7e22dbbb 1878 if (IS_GEN3(dev))
e28f8711 1879 gtt_size = 1024*1024;
92b88aeb 1880 else
e28f8711 1881 gtt_size = 512*1024;
92b88aeb 1882
e28f8711
CW
1883 while (gtt_size < size)
1884 gtt_size <<= 1;
92b88aeb 1885
e28f8711 1886 return gtt_size;
92b88aeb
CW
1887}
1888
de151cf6
JB
1889/**
1890 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
14bb2c11
TU
1891 * @dev: drm device
1892 * @size: object size
1893 * @tiling_mode: tiling mode
1894 * @fenced: is fenced alignemned required or not
de151cf6
JB
1895 *
1896 * Return the required GTT alignment for an object, taking into account
5e783301 1897 * potential fence register mapping.
de151cf6 1898 */
d865110c
ID
1899uint32_t
1900i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1901 int tiling_mode, bool fenced)
de151cf6 1902{
de151cf6
JB
1903 /*
1904 * Minimum alignment is 4k (GTT page size), but might be greater
1905 * if a fence register is needed for the object.
1906 */
d865110c 1907 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1908 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1909 return 4096;
1910
a00b10c3
CW
1911 /*
1912 * Previous chips need to be aligned to the size of the smallest
1913 * fence register that can contain the object.
1914 */
e28f8711 1915 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1916}
1917
d8cb5086
CW
1918static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1919{
fac5e23e 1920 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d8cb5086
CW
1921 int ret;
1922
da494d7c
DV
1923 dev_priv->mm.shrinker_no_lock_stealing = true;
1924
d8cb5086
CW
1925 ret = drm_gem_create_mmap_offset(&obj->base);
1926 if (ret != -ENOSPC)
da494d7c 1927 goto out;
d8cb5086
CW
1928
1929 /* Badly fragmented mmap space? The only way we can recover
1930 * space is by destroying unwanted objects. We can't randomly release
1931 * mmap_offsets as userspace expects them to be persistent for the
1932 * lifetime of the objects. The closest we can is to release the
1933 * offsets on purgeable objects by truncating it and marking it purged,
1934 * which prevents userspace from ever using that object again.
1935 */
21ab4e74
CW
1936 i915_gem_shrink(dev_priv,
1937 obj->base.size >> PAGE_SHIFT,
1938 I915_SHRINK_BOUND |
1939 I915_SHRINK_UNBOUND |
1940 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1941 ret = drm_gem_create_mmap_offset(&obj->base);
1942 if (ret != -ENOSPC)
da494d7c 1943 goto out;
d8cb5086
CW
1944
1945 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1946 ret = drm_gem_create_mmap_offset(&obj->base);
1947out:
1948 dev_priv->mm.shrinker_no_lock_stealing = false;
1949
1950 return ret;
d8cb5086
CW
1951}
1952
1953static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1954{
d8cb5086
CW
1955 drm_gem_free_mmap_offset(&obj->base);
1956}
1957
da6b51d0 1958int
ff72145b
DA
1959i915_gem_mmap_gtt(struct drm_file *file,
1960 struct drm_device *dev,
da6b51d0 1961 uint32_t handle,
ff72145b 1962 uint64_t *offset)
de151cf6 1963{
05394f39 1964 struct drm_i915_gem_object *obj;
de151cf6
JB
1965 int ret;
1966
76c1dec1 1967 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1968 if (ret)
76c1dec1 1969 return ret;
de151cf6 1970
03ac0642
CW
1971 obj = i915_gem_object_lookup(file, handle);
1972 if (!obj) {
1d7cfea1
CW
1973 ret = -ENOENT;
1974 goto unlock;
1975 }
de151cf6 1976
05394f39 1977 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1978 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1979 ret = -EFAULT;
1d7cfea1 1980 goto out;
ab18282d
CW
1981 }
1982
d8cb5086
CW
1983 ret = i915_gem_object_create_mmap_offset(obj);
1984 if (ret)
1985 goto out;
de151cf6 1986
0de23977 1987 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1988
1d7cfea1 1989out:
f8c417cd 1990 i915_gem_object_put(obj);
1d7cfea1 1991unlock:
de151cf6 1992 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1993 return ret;
de151cf6
JB
1994}
1995
ff72145b
DA
1996/**
1997 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1998 * @dev: DRM device
1999 * @data: GTT mapping ioctl data
2000 * @file: GEM object info
2001 *
2002 * Simply returns the fake offset to userspace so it can mmap it.
2003 * The mmap call will end up in drm_gem_mmap(), which will set things
2004 * up so we can get faults in the handler above.
2005 *
2006 * The fault handler will take care of binding the object into the GTT
2007 * (since it may have been evicted to make room for something), allocating
2008 * a fence register, and mapping the appropriate aperture address into
2009 * userspace.
2010 */
2011int
2012i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2013 struct drm_file *file)
2014{
2015 struct drm_i915_gem_mmap_gtt *args = data;
2016
da6b51d0 2017 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2018}
2019
225067ee
DV
2020/* Immediately discard the backing storage */
2021static void
2022i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2023{
4d6294bf 2024 i915_gem_object_free_mmap_offset(obj);
1286ff73 2025
4d6294bf
CW
2026 if (obj->base.filp == NULL)
2027 return;
e5281ccd 2028
225067ee
DV
2029 /* Our goal here is to return as much of the memory as
2030 * is possible back to the system as we are called from OOM.
2031 * To do this we must instruct the shmfs to drop all of its
2032 * backing pages, *now*.
2033 */
5537252b 2034 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2035 obj->madv = __I915_MADV_PURGED;
2036}
e5281ccd 2037
5537252b
CW
2038/* Try to discard unwanted pages */
2039static void
2040i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2041{
5537252b
CW
2042 struct address_space *mapping;
2043
2044 switch (obj->madv) {
2045 case I915_MADV_DONTNEED:
2046 i915_gem_object_truncate(obj);
2047 case __I915_MADV_PURGED:
2048 return;
2049 }
2050
2051 if (obj->base.filp == NULL)
2052 return;
2053
2054 mapping = file_inode(obj->base.filp)->i_mapping,
2055 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2056}
2057
5cdf5881 2058static void
05394f39 2059i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2060{
85d1225e
DG
2061 struct sgt_iter sgt_iter;
2062 struct page *page;
90797e6d 2063 int ret;
1286ff73 2064
05394f39 2065 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2066
6c085a72 2067 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2068 if (WARN_ON(ret)) {
6c085a72
CW
2069 /* In the event of a disaster, abandon all caches and
2070 * hope for the best.
2071 */
2c22569b 2072 i915_gem_clflush_object(obj, true);
6c085a72
CW
2073 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2074 }
2075
e2273302
ID
2076 i915_gem_gtt_finish_object(obj);
2077
6dacfd2f 2078 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2079 i915_gem_object_save_bit_17_swizzle(obj);
2080
05394f39
CW
2081 if (obj->madv == I915_MADV_DONTNEED)
2082 obj->dirty = 0;
3ef94daa 2083
85d1225e 2084 for_each_sgt_page(page, sgt_iter, obj->pages) {
05394f39 2085 if (obj->dirty)
9da3da66 2086 set_page_dirty(page);
3ef94daa 2087
05394f39 2088 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2089 mark_page_accessed(page);
3ef94daa 2090
09cbfeaf 2091 put_page(page);
3ef94daa 2092 }
05394f39 2093 obj->dirty = 0;
673a394b 2094
9da3da66
CW
2095 sg_free_table(obj->pages);
2096 kfree(obj->pages);
37e680a1 2097}
6c085a72 2098
dd624afd 2099int
37e680a1
CW
2100i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2101{
2102 const struct drm_i915_gem_object_ops *ops = obj->ops;
2103
2f745ad3 2104 if (obj->pages == NULL)
37e680a1
CW
2105 return 0;
2106
a5570178
CW
2107 if (obj->pages_pin_count)
2108 return -EBUSY;
2109
9843877d 2110 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2111
a2165e31
CW
2112 /* ->put_pages might need to allocate memory for the bit17 swizzle
2113 * array, hence protect them from being reaped by removing them from gtt
2114 * lists early. */
35c20a60 2115 list_del(&obj->global_list);
a2165e31 2116
0a798eb9 2117 if (obj->mapping) {
fb8621d3
CW
2118 if (is_vmalloc_addr(obj->mapping))
2119 vunmap(obj->mapping);
2120 else
2121 kunmap(kmap_to_page(obj->mapping));
0a798eb9
CW
2122 obj->mapping = NULL;
2123 }
2124
37e680a1 2125 ops->put_pages(obj);
05394f39 2126 obj->pages = NULL;
37e680a1 2127
5537252b 2128 i915_gem_object_invalidate(obj);
6c085a72
CW
2129
2130 return 0;
2131}
2132
37e680a1 2133static int
6c085a72 2134i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2135{
fac5e23e 2136 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2137 int page_count, i;
2138 struct address_space *mapping;
9da3da66
CW
2139 struct sg_table *st;
2140 struct scatterlist *sg;
85d1225e 2141 struct sgt_iter sgt_iter;
e5281ccd 2142 struct page *page;
90797e6d 2143 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2144 int ret;
6c085a72 2145 gfp_t gfp;
e5281ccd 2146
6c085a72
CW
2147 /* Assert that the object is not currently in any GPU domain. As it
2148 * wasn't in the GTT, there shouldn't be any way it could have been in
2149 * a GPU cache
2150 */
2151 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2152 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2153
9da3da66
CW
2154 st = kmalloc(sizeof(*st), GFP_KERNEL);
2155 if (st == NULL)
2156 return -ENOMEM;
2157
05394f39 2158 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2159 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2160 kfree(st);
e5281ccd 2161 return -ENOMEM;
9da3da66 2162 }
e5281ccd 2163
9da3da66
CW
2164 /* Get the list of pages out of our struct file. They'll be pinned
2165 * at this point until we release them.
2166 *
2167 * Fail silently without starting the shrinker
2168 */
496ad9aa 2169 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2170 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2171 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2172 sg = st->sgl;
2173 st->nents = 0;
2174 for (i = 0; i < page_count; i++) {
6c085a72
CW
2175 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2176 if (IS_ERR(page)) {
21ab4e74
CW
2177 i915_gem_shrink(dev_priv,
2178 page_count,
2179 I915_SHRINK_BOUND |
2180 I915_SHRINK_UNBOUND |
2181 I915_SHRINK_PURGEABLE);
6c085a72
CW
2182 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2183 }
2184 if (IS_ERR(page)) {
2185 /* We've tried hard to allocate the memory by reaping
2186 * our own buffer, now let the real VM do its job and
2187 * go down in flames if truly OOM.
2188 */
6c085a72 2189 i915_gem_shrink_all(dev_priv);
f461d1be 2190 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2191 if (IS_ERR(page)) {
2192 ret = PTR_ERR(page);
6c085a72 2193 goto err_pages;
e2273302 2194 }
6c085a72 2195 }
426729dc
KRW
2196#ifdef CONFIG_SWIOTLB
2197 if (swiotlb_nr_tbl()) {
2198 st->nents++;
2199 sg_set_page(sg, page, PAGE_SIZE, 0);
2200 sg = sg_next(sg);
2201 continue;
2202 }
2203#endif
90797e6d
ID
2204 if (!i || page_to_pfn(page) != last_pfn + 1) {
2205 if (i)
2206 sg = sg_next(sg);
2207 st->nents++;
2208 sg_set_page(sg, page, PAGE_SIZE, 0);
2209 } else {
2210 sg->length += PAGE_SIZE;
2211 }
2212 last_pfn = page_to_pfn(page);
3bbbe706
DV
2213
2214 /* Check that the i965g/gm workaround works. */
2215 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2216 }
426729dc
KRW
2217#ifdef CONFIG_SWIOTLB
2218 if (!swiotlb_nr_tbl())
2219#endif
2220 sg_mark_end(sg);
74ce6b6c
CW
2221 obj->pages = st;
2222
e2273302
ID
2223 ret = i915_gem_gtt_prepare_object(obj);
2224 if (ret)
2225 goto err_pages;
2226
6dacfd2f 2227 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2228 i915_gem_object_do_bit_17_swizzle(obj);
2229
656bfa3a
DV
2230 if (obj->tiling_mode != I915_TILING_NONE &&
2231 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2232 i915_gem_object_pin_pages(obj);
2233
e5281ccd
CW
2234 return 0;
2235
2236err_pages:
90797e6d 2237 sg_mark_end(sg);
85d1225e
DG
2238 for_each_sgt_page(page, sgt_iter, st)
2239 put_page(page);
9da3da66
CW
2240 sg_free_table(st);
2241 kfree(st);
0820baf3
CW
2242
2243 /* shmemfs first checks if there is enough memory to allocate the page
2244 * and reports ENOSPC should there be insufficient, along with the usual
2245 * ENOMEM for a genuine allocation failure.
2246 *
2247 * We use ENOSPC in our driver to mean that we have run out of aperture
2248 * space and so want to translate the error from shmemfs back to our
2249 * usual understanding of ENOMEM.
2250 */
e2273302
ID
2251 if (ret == -ENOSPC)
2252 ret = -ENOMEM;
2253
2254 return ret;
673a394b
EA
2255}
2256
37e680a1
CW
2257/* Ensure that the associated pages are gathered from the backing storage
2258 * and pinned into our object. i915_gem_object_get_pages() may be called
2259 * multiple times before they are released by a single call to
2260 * i915_gem_object_put_pages() - once the pages are no longer referenced
2261 * either as a result of memory pressure (reaping pages under the shrinker)
2262 * or as the object is itself released.
2263 */
2264int
2265i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2266{
fac5e23e 2267 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
37e680a1
CW
2268 const struct drm_i915_gem_object_ops *ops = obj->ops;
2269 int ret;
2270
2f745ad3 2271 if (obj->pages)
37e680a1
CW
2272 return 0;
2273
43e28f09 2274 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2275 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2276 return -EFAULT;
43e28f09
CW
2277 }
2278
a5570178
CW
2279 BUG_ON(obj->pages_pin_count);
2280
37e680a1
CW
2281 ret = ops->get_pages(obj);
2282 if (ret)
2283 return ret;
2284
35c20a60 2285 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2286
2287 obj->get_page.sg = obj->pages->sgl;
2288 obj->get_page.last = 0;
2289
37e680a1 2290 return 0;
673a394b
EA
2291}
2292
dd6034c6
DG
2293/* The 'mapping' part of i915_gem_object_pin_map() below */
2294static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2295{
2296 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2297 struct sg_table *sgt = obj->pages;
85d1225e
DG
2298 struct sgt_iter sgt_iter;
2299 struct page *page;
b338fa47
DG
2300 struct page *stack_pages[32];
2301 struct page **pages = stack_pages;
dd6034c6
DG
2302 unsigned long i = 0;
2303 void *addr;
2304
2305 /* A single page can always be kmapped */
2306 if (n_pages == 1)
2307 return kmap(sg_page(sgt->sgl));
2308
b338fa47
DG
2309 if (n_pages > ARRAY_SIZE(stack_pages)) {
2310 /* Too big for stack -- allocate temporary array instead */
2311 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2312 if (!pages)
2313 return NULL;
2314 }
dd6034c6 2315
85d1225e
DG
2316 for_each_sgt_page(page, sgt_iter, sgt)
2317 pages[i++] = page;
dd6034c6
DG
2318
2319 /* Check that we have the expected number of pages */
2320 GEM_BUG_ON(i != n_pages);
2321
2322 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2323
b338fa47
DG
2324 if (pages != stack_pages)
2325 drm_free_large(pages);
dd6034c6
DG
2326
2327 return addr;
2328}
2329
2330/* get, pin, and map the pages of the object into kernel space */
0a798eb9
CW
2331void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2332{
2333 int ret;
2334
2335 lockdep_assert_held(&obj->base.dev->struct_mutex);
2336
2337 ret = i915_gem_object_get_pages(obj);
2338 if (ret)
2339 return ERR_PTR(ret);
2340
2341 i915_gem_object_pin_pages(obj);
2342
dd6034c6
DG
2343 if (!obj->mapping) {
2344 obj->mapping = i915_gem_object_map(obj);
2345 if (!obj->mapping) {
0a798eb9
CW
2346 i915_gem_object_unpin_pages(obj);
2347 return ERR_PTR(-ENOMEM);
2348 }
2349 }
2350
2351 return obj->mapping;
2352}
2353
b4716185 2354void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2355 struct drm_i915_gem_request *req)
673a394b 2356{
b4716185 2357 struct drm_i915_gem_object *obj = vma->obj;
e2f80391 2358 struct intel_engine_cs *engine;
b2af0376 2359
666796da 2360 engine = i915_gem_request_get_engine(req);
673a394b
EA
2361
2362 /* Add a reference if we're newly entering the active list. */
b4716185 2363 if (obj->active == 0)
25dc556a 2364 i915_gem_object_get(obj);
666796da 2365 obj->active |= intel_engine_flag(engine);
e35a41de 2366
117897f4 2367 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
e2f80391 2368 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
caea7476 2369
1c7f4bca 2370 list_move_tail(&vma->vm_link, &vma->vm->active_list);
caea7476
CW
2371}
2372
b4716185
CW
2373static void
2374i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2375{
d501b1d2
CW
2376 GEM_BUG_ON(obj->last_write_req == NULL);
2377 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
b4716185
CW
2378
2379 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2380 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2381}
2382
caea7476 2383static void
b4716185 2384i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2385{
feb822cf 2386 struct i915_vma *vma;
ce44b0ea 2387
d501b1d2
CW
2388 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2389 GEM_BUG_ON(!(obj->active & (1 << ring)));
b4716185 2390
117897f4 2391 list_del_init(&obj->engine_list[ring]);
b4716185
CW
2392 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2393
4a570db5 2394 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
b4716185
CW
2395 i915_gem_object_retire__write(obj);
2396
2397 obj->active &= ~(1 << ring);
2398 if (obj->active)
2399 return;
caea7476 2400
6c246959
CW
2401 /* Bump our place on the bound list to keep it roughly in LRU order
2402 * so that we don't steal from recently used but inactive objects
2403 * (unless we are forced to ofc!)
2404 */
2405 list_move_tail(&obj->global_list,
2406 &to_i915(obj->base.dev)->mm.bound_list);
2407
1c7f4bca
CW
2408 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2409 if (!list_empty(&vma->vm_link))
2410 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
feb822cf 2411 }
caea7476 2412
97b2a6a1 2413 i915_gem_request_assign(&obj->last_fenced_req, NULL);
f8c417cd 2414 i915_gem_object_put(obj);
c8725f3d
CW
2415}
2416
7b4d3a16 2417static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2418{
44e2c070 2419 unsigned long elapsed;
be62acb4 2420
44e2c070 2421 if (ctx->hang_stats.banned)
be62acb4
MK
2422 return true;
2423
7b4d3a16 2424 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2425 if (ctx->hang_stats.ban_period_seconds &&
2426 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2427 DRM_DEBUG("context hanging too fast, banning!\n");
2428 return true;
be62acb4
MK
2429 }
2430
2431 return false;
2432}
2433
7b4d3a16 2434static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2435 const bool guilty)
aa60c664 2436{
7b4d3a16 2437 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2438
2439 if (guilty) {
7b4d3a16 2440 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2441 hs->batch_active++;
2442 hs->guilty_ts = get_seconds();
2443 } else {
2444 hs->batch_pending++;
aa60c664
MK
2445 }
2446}
2447
8d9fc7fd 2448struct drm_i915_gem_request *
0bc40be8 2449i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2450{
4db080f9
CW
2451 struct drm_i915_gem_request *request;
2452
f69a02c9
CW
2453 /* We are called by the error capture and reset at a random
2454 * point in time. In particular, note that neither is crucially
2455 * ordered with an interrupt. After a hang, the GPU is dead and we
2456 * assume that no more writes can happen (we waited long enough for
2457 * all writes that were in transaction to be flushed) - adding an
2458 * extra delay for a recent interrupt is pointless. Hence, we do
2459 * not need an engine->irq_seqno_barrier() before the seqno reads.
2460 */
0bc40be8 2461 list_for_each_entry(request, &engine->request_list, list) {
f69a02c9 2462 if (i915_gem_request_completed(request))
4db080f9 2463 continue;
aa60c664 2464
b6b0fac0 2465 return request;
4db080f9 2466 }
b6b0fac0
MK
2467
2468 return NULL;
2469}
2470
7b4d3a16 2471static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
b6b0fac0
MK
2472{
2473 struct drm_i915_gem_request *request;
2474 bool ring_hung;
2475
0bc40be8 2476 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2477 if (request == NULL)
2478 return;
2479
0bc40be8 2480 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2481
7b4d3a16 2482 i915_set_reset_status(request->ctx, ring_hung);
0bc40be8 2483 list_for_each_entry_continue(request, &engine->request_list, list)
7b4d3a16 2484 i915_set_reset_status(request->ctx, false);
4db080f9 2485}
aa60c664 2486
7b4d3a16 2487static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
4db080f9 2488{
608c1a52
CW
2489 struct intel_ringbuffer *buffer;
2490
0bc40be8 2491 while (!list_empty(&engine->active_list)) {
05394f39 2492 struct drm_i915_gem_object *obj;
9375e446 2493
0bc40be8 2494 obj = list_first_entry(&engine->active_list,
05394f39 2495 struct drm_i915_gem_object,
117897f4 2496 engine_list[engine->id]);
9375e446 2497
0bc40be8 2498 i915_gem_object_retire__read(obj, engine->id);
673a394b 2499 }
1d62beea 2500
c4b0930b
CW
2501 /* Mark all pending requests as complete so that any concurrent
2502 * (lockless) lookup doesn't try and wait upon the request as we
2503 * reset it.
2504 */
2505 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2506
dcb4c12a
OM
2507 /*
2508 * Clear the execlists queue up before freeing the requests, as those
2509 * are the ones that keep the context and ringbuffer backing objects
2510 * pinned in place.
2511 */
dcb4c12a 2512
7de1691a 2513 if (i915.enable_execlists) {
27af5eea
TU
2514 /* Ensure irq handler finishes or is cancelled. */
2515 tasklet_kill(&engine->irq_tasklet);
1197b4f2 2516
e39d42fa 2517 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
2518 }
2519
1d62beea
BW
2520 /*
2521 * We must free the requests after all the corresponding objects have
2522 * been moved off active lists. Which is the same order as the normal
2523 * retire_requests function does. This is important if object hold
2524 * implicit references on things like e.g. ppgtt address spaces through
2525 * the request.
2526 */
05235c53 2527 if (!list_empty(&engine->request_list)) {
1d62beea
BW
2528 struct drm_i915_gem_request *request;
2529
05235c53
CW
2530 request = list_last_entry(&engine->request_list,
2531 struct drm_i915_gem_request,
2532 list);
1d62beea 2533
05235c53 2534 i915_gem_request_retire_upto(request);
1d62beea 2535 }
608c1a52
CW
2536
2537 /* Having flushed all requests from all queues, we know that all
2538 * ringbuffers must now be empty. However, since we do not reclaim
2539 * all space when retiring the request (to prevent HEADs colliding
2540 * with rapid ringbuffer wraparound) the amount of available space
2541 * upon reset is less than when we start. Do one more pass over
2542 * all the ringbuffers to reset last_retired_head.
2543 */
0bc40be8 2544 list_for_each_entry(buffer, &engine->buffers, link) {
608c1a52
CW
2545 buffer->last_retired_head = buffer->tail;
2546 intel_ring_update_space(buffer);
2547 }
2ed53a94 2548
b913b33c 2549 engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
673a394b
EA
2550}
2551
069efc1d 2552void i915_gem_reset(struct drm_device *dev)
673a394b 2553{
fac5e23e 2554 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 2555 struct intel_engine_cs *engine;
673a394b 2556
4db080f9
CW
2557 /*
2558 * Before we free the objects from the requests, we need to inspect
2559 * them for finding the guilty party. As the requests only borrow
2560 * their reference to the objects, the inspection must be done first.
2561 */
b4ac5afc 2562 for_each_engine(engine, dev_priv)
7b4d3a16 2563 i915_gem_reset_engine_status(engine);
4db080f9 2564
b4ac5afc 2565 for_each_engine(engine, dev_priv)
7b4d3a16 2566 i915_gem_reset_engine_cleanup(engine);
b913b33c 2567 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2568
acce9ffa
BW
2569 i915_gem_context_reset(dev);
2570
19b2dbde 2571 i915_gem_restore_fences(dev);
b4716185
CW
2572
2573 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2574}
2575
2576/**
2577 * This function clears the request list as sequence numbers are passed.
14bb2c11 2578 * @engine: engine to retire requests on
673a394b 2579 */
1cf0ba14 2580void
0bc40be8 2581i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
673a394b 2582{
0bc40be8 2583 WARN_ON(i915_verify_lists(engine->dev));
673a394b 2584
832a3aad
CW
2585 /* Retire requests first as we use it above for the early return.
2586 * If we retire requests last, we may use a later seqno and so clear
2587 * the requests lists without clearing the active list, leading to
2588 * confusion.
e9103038 2589 */
0bc40be8 2590 while (!list_empty(&engine->request_list)) {
673a394b 2591 struct drm_i915_gem_request *request;
673a394b 2592
0bc40be8 2593 request = list_first_entry(&engine->request_list,
673a394b
EA
2594 struct drm_i915_gem_request,
2595 list);
673a394b 2596
f69a02c9 2597 if (!i915_gem_request_completed(request))
b84d5f0c
CW
2598 break;
2599
05235c53 2600 i915_gem_request_retire_upto(request);
b84d5f0c 2601 }
673a394b 2602
832a3aad
CW
2603 /* Move any buffers on the active list that are no longer referenced
2604 * by the ringbuffer to the flushing/inactive lists as appropriate,
2605 * before we free the context associated with the requests.
2606 */
0bc40be8 2607 while (!list_empty(&engine->active_list)) {
832a3aad
CW
2608 struct drm_i915_gem_object *obj;
2609
0bc40be8
TU
2610 obj = list_first_entry(&engine->active_list,
2611 struct drm_i915_gem_object,
117897f4 2612 engine_list[engine->id]);
832a3aad 2613
0bc40be8 2614 if (!list_empty(&obj->last_read_req[engine->id]->list))
832a3aad
CW
2615 break;
2616
0bc40be8 2617 i915_gem_object_retire__read(obj, engine->id);
832a3aad
CW
2618 }
2619
0bc40be8 2620 WARN_ON(i915_verify_lists(engine->dev));
673a394b
EA
2621}
2622
67d97da3 2623void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
b09a1fec 2624{
e2f80391 2625 struct intel_engine_cs *engine;
67d97da3 2626
91c8a326 2627 lockdep_assert_held(&dev_priv->drm.struct_mutex);
67d97da3
CW
2628
2629 if (dev_priv->gt.active_engines == 0)
2630 return;
2631
2632 GEM_BUG_ON(!dev_priv->gt.awake);
b09a1fec 2633
b4ac5afc 2634 for_each_engine(engine, dev_priv) {
e2f80391 2635 i915_gem_retire_requests_ring(engine);
67d97da3
CW
2636 if (list_empty(&engine->request_list))
2637 dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
b29c19b6
CW
2638 }
2639
67d97da3 2640 if (dev_priv->gt.active_engines == 0)
1b51bce2
CW
2641 queue_delayed_work(dev_priv->wq,
2642 &dev_priv->gt.idle_work,
2643 msecs_to_jiffies(100));
b09a1fec
CW
2644}
2645
75ef9da2 2646static void
673a394b
EA
2647i915_gem_retire_work_handler(struct work_struct *work)
2648{
b29c19b6 2649 struct drm_i915_private *dev_priv =
67d97da3 2650 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2651 struct drm_device *dev = &dev_priv->drm;
673a394b 2652
891b48cf 2653 /* Come back later if the device is busy... */
b29c19b6 2654 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2655 i915_gem_retire_requests(dev_priv);
b29c19b6 2656 mutex_unlock(&dev->struct_mutex);
673a394b 2657 }
67d97da3
CW
2658
2659 /* Keep the retire handler running until we are finally idle.
2660 * We do not need to do this test under locking as in the worst-case
2661 * we queue the retire worker once too often.
2662 */
c9615613
CW
2663 if (READ_ONCE(dev_priv->gt.awake)) {
2664 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2665 queue_delayed_work(dev_priv->wq,
2666 &dev_priv->gt.retire_work,
bcb45086 2667 round_jiffies_up_relative(HZ));
c9615613 2668 }
b29c19b6 2669}
0a58705b 2670
b29c19b6
CW
2671static void
2672i915_gem_idle_work_handler(struct work_struct *work)
2673{
2674 struct drm_i915_private *dev_priv =
67d97da3 2675 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2676 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2677 struct intel_engine_cs *engine;
67d97da3
CW
2678 unsigned int stuck_engines;
2679 bool rearm_hangcheck;
2680
2681 if (!READ_ONCE(dev_priv->gt.awake))
2682 return;
2683
2684 if (READ_ONCE(dev_priv->gt.active_engines))
2685 return;
2686
2687 rearm_hangcheck =
2688 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2689
2690 if (!mutex_trylock(&dev->struct_mutex)) {
2691 /* Currently busy, come back later */
2692 mod_delayed_work(dev_priv->wq,
2693 &dev_priv->gt.idle_work,
2694 msecs_to_jiffies(50));
2695 goto out_rearm;
2696 }
2697
2698 if (dev_priv->gt.active_engines)
2699 goto out_unlock;
b29c19b6 2700
b4ac5afc 2701 for_each_engine(engine, dev_priv)
67d97da3 2702 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2703
67d97da3
CW
2704 GEM_BUG_ON(!dev_priv->gt.awake);
2705 dev_priv->gt.awake = false;
2706 rearm_hangcheck = false;
30ecad77 2707
67d97da3
CW
2708 stuck_engines = intel_kick_waiters(dev_priv);
2709 if (unlikely(stuck_engines)) {
2710 DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
2711 dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
2712 }
35c94185 2713
67d97da3
CW
2714 if (INTEL_GEN(dev_priv) >= 6)
2715 gen6_rps_idle(dev_priv);
2716 intel_runtime_pm_put(dev_priv);
2717out_unlock:
2718 mutex_unlock(&dev->struct_mutex);
b29c19b6 2719
67d97da3
CW
2720out_rearm:
2721 if (rearm_hangcheck) {
2722 GEM_BUG_ON(!dev_priv->gt.awake);
2723 i915_queue_hangcheck(dev_priv);
35c94185 2724 }
673a394b
EA
2725}
2726
30dfebf3
DV
2727/**
2728 * Ensures that an object will eventually get non-busy by flushing any required
2729 * write domains, emitting any outstanding lazy request and retiring and
2730 * completed requests.
14bb2c11 2731 * @obj: object to flush
30dfebf3
DV
2732 */
2733static int
2734i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2735{
a5ac0f90 2736 int i;
b4716185
CW
2737
2738 if (!obj->active)
2739 return 0;
30dfebf3 2740
666796da 2741 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185 2742 struct drm_i915_gem_request *req;
41c52415 2743
b4716185
CW
2744 req = obj->last_read_req[i];
2745 if (req == NULL)
2746 continue;
2747
f69a02c9 2748 if (i915_gem_request_completed(req))
b4716185 2749 i915_gem_object_retire__read(obj, i);
30dfebf3
DV
2750 }
2751
2752 return 0;
2753}
2754
23ba4fd0
BW
2755/**
2756 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2757 * @dev: drm device pointer
2758 * @data: ioctl data blob
2759 * @file: drm file pointer
23ba4fd0
BW
2760 *
2761 * Returns 0 if successful, else an error is returned with the remaining time in
2762 * the timeout parameter.
2763 * -ETIME: object is still busy after timeout
2764 * -ERESTARTSYS: signal interrupted the wait
2765 * -ENONENT: object doesn't exist
2766 * Also possible, but rare:
2767 * -EAGAIN: GPU wedged
2768 * -ENOMEM: damn
2769 * -ENODEV: Internal IRQ fail
2770 * -E?: The add request failed
2771 *
2772 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2773 * non-zero timeout parameter the wait ioctl will wait for the given number of
2774 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2775 * without holding struct_mutex the object may become re-busied before this
2776 * function completes. A similar but shorter * race condition exists in the busy
2777 * ioctl
2778 */
2779int
2780i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2781{
2782 struct drm_i915_gem_wait *args = data;
2783 struct drm_i915_gem_object *obj;
666796da 2784 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185
CW
2785 int i, n = 0;
2786 int ret;
23ba4fd0 2787
11b5d511
DV
2788 if (args->flags != 0)
2789 return -EINVAL;
2790
23ba4fd0
BW
2791 ret = i915_mutex_lock_interruptible(dev);
2792 if (ret)
2793 return ret;
2794
03ac0642
CW
2795 obj = i915_gem_object_lookup(file, args->bo_handle);
2796 if (!obj) {
23ba4fd0
BW
2797 mutex_unlock(&dev->struct_mutex);
2798 return -ENOENT;
2799 }
2800
30dfebf3
DV
2801 /* Need to make sure the object gets inactive eventually. */
2802 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2803 if (ret)
2804 goto out;
2805
b4716185 2806 if (!obj->active)
97b2a6a1 2807 goto out;
23ba4fd0 2808
23ba4fd0 2809 /* Do this after OLR check to make sure we make forward progress polling
762e4583 2810 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 2811 */
762e4583 2812 if (args->timeout_ns == 0) {
23ba4fd0
BW
2813 ret = -ETIME;
2814 goto out;
2815 }
2816
f8c417cd 2817 i915_gem_object_put(obj);
b4716185 2818
666796da 2819 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
2820 if (obj->last_read_req[i] == NULL)
2821 continue;
2822
e8a261ea 2823 req[n++] = i915_gem_request_get(obj->last_read_req[i]);
b4716185
CW
2824 }
2825
23ba4fd0
BW
2826 mutex_unlock(&dev->struct_mutex);
2827
b4716185
CW
2828 for (i = 0; i < n; i++) {
2829 if (ret == 0)
299259a3 2830 ret = __i915_wait_request(req[i], true,
b4716185 2831 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 2832 to_rps_client(file));
e8a261ea 2833 i915_gem_request_put(req[i]);
b4716185 2834 }
ff865885 2835 return ret;
23ba4fd0
BW
2836
2837out:
f8c417cd 2838 i915_gem_object_put(obj);
23ba4fd0
BW
2839 mutex_unlock(&dev->struct_mutex);
2840 return ret;
2841}
2842
b4716185
CW
2843static int
2844__i915_gem_object_sync(struct drm_i915_gem_object *obj,
2845 struct intel_engine_cs *to,
91af127f
JH
2846 struct drm_i915_gem_request *from_req,
2847 struct drm_i915_gem_request **to_req)
b4716185
CW
2848{
2849 struct intel_engine_cs *from;
2850 int ret;
2851
666796da 2852 from = i915_gem_request_get_engine(from_req);
b4716185
CW
2853 if (to == from)
2854 return 0;
2855
f69a02c9 2856 if (i915_gem_request_completed(from_req))
b4716185
CW
2857 return 0;
2858
39df9190 2859 if (!i915.semaphores) {
a6f766f3 2860 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 2861 ret = __i915_wait_request(from_req,
a6f766f3
CW
2862 i915->mm.interruptible,
2863 NULL,
197be2ae 2864 NO_WAITBOOST);
b4716185
CW
2865 if (ret)
2866 return ret;
2867
91af127f 2868 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
2869 } else {
2870 int idx = intel_ring_sync_index(from, to);
91af127f
JH
2871 u32 seqno = i915_gem_request_get_seqno(from_req);
2872
2873 WARN_ON(!to_req);
b4716185
CW
2874
2875 if (seqno <= from->semaphore.sync_seqno[idx])
2876 return 0;
2877
91af127f 2878 if (*to_req == NULL) {
26827088
DG
2879 struct drm_i915_gem_request *req;
2880
2881 req = i915_gem_request_alloc(to, NULL);
2882 if (IS_ERR(req))
2883 return PTR_ERR(req);
2884
2885 *to_req = req;
91af127f
JH
2886 }
2887
599d924c
JH
2888 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
2889 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
2890 if (ret)
2891 return ret;
2892
2893 /* We use last_read_req because sync_to()
2894 * might have just caused seqno wrap under
2895 * the radar.
2896 */
2897 from->semaphore.sync_seqno[idx] =
2898 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
2899 }
2900
2901 return 0;
2902}
2903
5816d648
BW
2904/**
2905 * i915_gem_object_sync - sync an object to a ring.
2906 *
2907 * @obj: object which may be in use on another ring.
2908 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
2909 * @to_req: request we wish to use the object for. See below.
2910 * This will be allocated and returned if a request is
2911 * required but not passed in.
5816d648
BW
2912 *
2913 * This code is meant to abstract object synchronization with the GPU.
2914 * Calling with NULL implies synchronizing the object with the CPU
b4716185 2915 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 2916 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
2917 * into a buffer at any time, but multiple readers. To ensure each has
2918 * a coherent view of memory, we must:
2919 *
2920 * - If there is an outstanding write request to the object, the new
2921 * request must wait for it to complete (either CPU or in hw, requests
2922 * on the same ring will be naturally ordered).
2923 *
2924 * - If we are a write request (pending_write_domain is set), the new
2925 * request must wait for outstanding read requests to complete.
5816d648 2926 *
91af127f
JH
2927 * For CPU synchronisation (NULL to) no request is required. For syncing with
2928 * rings to_req must be non-NULL. However, a request does not have to be
2929 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
2930 * request will be allocated automatically and returned through *to_req. Note
2931 * that it is not guaranteed that commands will be emitted (because the system
2932 * might already be idle). Hence there is no need to create a request that
2933 * might never have any work submitted. Note further that if a request is
2934 * returned in *to_req, it is the responsibility of the caller to submit
2935 * that request (after potentially adding more work to it).
2936 *
5816d648
BW
2937 * Returns 0 if successful, else propagates up the lower layer error.
2938 */
2911a35b
BW
2939int
2940i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
2941 struct intel_engine_cs *to,
2942 struct drm_i915_gem_request **to_req)
2911a35b 2943{
b4716185 2944 const bool readonly = obj->base.pending_write_domain == 0;
666796da 2945 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185 2946 int ret, i, n;
41c52415 2947
b4716185 2948 if (!obj->active)
2911a35b
BW
2949 return 0;
2950
b4716185
CW
2951 if (to == NULL)
2952 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 2953
b4716185
CW
2954 n = 0;
2955 if (readonly) {
2956 if (obj->last_write_req)
2957 req[n++] = obj->last_write_req;
2958 } else {
666796da 2959 for (i = 0; i < I915_NUM_ENGINES; i++)
b4716185
CW
2960 if (obj->last_read_req[i])
2961 req[n++] = obj->last_read_req[i];
2962 }
2963 for (i = 0; i < n; i++) {
91af127f 2964 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
2965 if (ret)
2966 return ret;
2967 }
2911a35b 2968
b4716185 2969 return 0;
2911a35b
BW
2970}
2971
b5ffc9bc
CW
2972static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2973{
2974 u32 old_write_domain, old_read_domains;
2975
b5ffc9bc
CW
2976 /* Force a pagefault for domain tracking on next user access */
2977 i915_gem_release_mmap(obj);
2978
b97c3d9c
KP
2979 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2980 return;
2981
b5ffc9bc
CW
2982 old_read_domains = obj->base.read_domains;
2983 old_write_domain = obj->base.write_domain;
2984
2985 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2986 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2987
2988 trace_i915_gem_object_change_domain(obj,
2989 old_read_domains,
2990 old_write_domain);
2991}
2992
8ef8561f
CW
2993static void __i915_vma_iounmap(struct i915_vma *vma)
2994{
2995 GEM_BUG_ON(vma->pin_count);
2996
2997 if (vma->iomap == NULL)
2998 return;
2999
3000 io_mapping_unmap(vma->iomap);
3001 vma->iomap = NULL;
3002}
3003
e9f24d5f 3004static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3005{
07fe0b12 3006 struct drm_i915_gem_object *obj = vma->obj;
fac5e23e 3007 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
43e28f09 3008 int ret;
673a394b 3009
1c7f4bca 3010 if (list_empty(&vma->obj_link))
673a394b
EA
3011 return 0;
3012
0ff501cb
DV
3013 if (!drm_mm_node_allocated(&vma->node)) {
3014 i915_gem_vma_destroy(vma);
0ff501cb
DV
3015 return 0;
3016 }
433544bd 3017
d7f46fc4 3018 if (vma->pin_count)
31d8d651 3019 return -EBUSY;
673a394b 3020
c4670ad0
CW
3021 BUG_ON(obj->pages == NULL);
3022
e9f24d5f
TU
3023 if (wait) {
3024 ret = i915_gem_object_wait_rendering(obj, false);
3025 if (ret)
3026 return ret;
3027 }
a8198eea 3028
596c5923 3029 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3030 i915_gem_object_finish_gtt(obj);
5323fd04 3031
8b1bc9b4
DV
3032 /* release the fence reg _after_ flushing */
3033 ret = i915_gem_object_put_fence(obj);
3034 if (ret)
3035 return ret;
8ef8561f
CW
3036
3037 __i915_vma_iounmap(vma);
8b1bc9b4 3038 }
96b47b65 3039
07fe0b12 3040 trace_i915_vma_unbind(vma);
db53a302 3041
777dc5bb 3042 vma->vm->unbind_vma(vma);
5e562f1d 3043 vma->bound = 0;
6f65e29a 3044
1c7f4bca 3045 list_del_init(&vma->vm_link);
596c5923 3046 if (vma->is_ggtt) {
fe14d5f4
TU
3047 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3048 obj->map_and_fenceable = false;
3049 } else if (vma->ggtt_view.pages) {
3050 sg_free_table(vma->ggtt_view.pages);
3051 kfree(vma->ggtt_view.pages);
fe14d5f4 3052 }
016a65a3 3053 vma->ggtt_view.pages = NULL;
fe14d5f4 3054 }
673a394b 3055
2f633156
BW
3056 drm_mm_remove_node(&vma->node);
3057 i915_gem_vma_destroy(vma);
3058
3059 /* Since the unbound list is global, only move to that list if
b93dab6e 3060 * no more VMAs exist. */
e2273302 3061 if (list_empty(&obj->vma_list))
2f633156 3062 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3063
70903c3b
CW
3064 /* And finally now the object is completely decoupled from this vma,
3065 * we can drop its hold on the backing storage and allow it to be
3066 * reaped by the shrinker.
3067 */
3068 i915_gem_object_unpin_pages(obj);
3069
88241785 3070 return 0;
54cf91dc
CW
3071}
3072
e9f24d5f
TU
3073int i915_vma_unbind(struct i915_vma *vma)
3074{
3075 return __i915_vma_unbind(vma, true);
3076}
3077
3078int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3079{
3080 return __i915_vma_unbind(vma, false);
3081}
3082
6e5a5beb 3083int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
4df2faf4 3084{
e2f80391 3085 struct intel_engine_cs *engine;
b4ac5afc 3086 int ret;
4df2faf4 3087
91c8a326 3088 lockdep_assert_held(&dev_priv->drm.struct_mutex);
6e5a5beb 3089
b4ac5afc 3090 for_each_engine(engine, dev_priv) {
62e63007
CW
3091 if (engine->last_context == NULL)
3092 continue;
3093
666796da 3094 ret = intel_engine_idle(engine);
1ec14ad3
CW
3095 if (ret)
3096 return ret;
3097 }
4df2faf4 3098
b4716185 3099 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3100 return 0;
4df2faf4
DV
3101}
3102
4144f9b5 3103static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3104 unsigned long cache_level)
3105{
4144f9b5 3106 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3107 struct drm_mm_node *other;
3108
4144f9b5
CW
3109 /*
3110 * On some machines we have to be careful when putting differing types
3111 * of snoopable memory together to avoid the prefetcher crossing memory
3112 * domains and dying. During vm initialisation, we decide whether or not
3113 * these constraints apply and set the drm_mm.color_adjust
3114 * appropriately.
42d6ab48 3115 */
4144f9b5 3116 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3117 return true;
3118
c6cfb325 3119 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3120 return true;
3121
3122 if (list_empty(&gtt_space->node_list))
3123 return true;
3124
3125 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3126 if (other->allocated && !other->hole_follows && other->color != cache_level)
3127 return false;
3128
3129 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3130 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3131 return false;
3132
3133 return true;
3134}
3135
673a394b 3136/**
91e6711e
JL
3137 * Finds free space in the GTT aperture and binds the object or a view of it
3138 * there.
14bb2c11
TU
3139 * @obj: object to bind
3140 * @vm: address space to bind into
3141 * @ggtt_view: global gtt view if applicable
3142 * @alignment: requested alignment
3143 * @flags: mask of PIN_* flags to use
673a394b 3144 */
262de145 3145static struct i915_vma *
07fe0b12
BW
3146i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3147 struct i915_address_space *vm,
ec7adb6e 3148 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3149 unsigned alignment,
ec7adb6e 3150 uint64_t flags)
673a394b 3151{
05394f39 3152 struct drm_device *dev = obj->base.dev;
72e96d64
JL
3153 struct drm_i915_private *dev_priv = to_i915(dev);
3154 struct i915_ggtt *ggtt = &dev_priv->ggtt;
65bd342f 3155 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3156 u32 search_flag, alloc_flag;
3157 u64 start, end;
65bd342f 3158 u64 size, fence_size;
2f633156 3159 struct i915_vma *vma;
07f73f69 3160 int ret;
673a394b 3161
91e6711e
JL
3162 if (i915_is_ggtt(vm)) {
3163 u32 view_size;
3164
3165 if (WARN_ON(!ggtt_view))
3166 return ERR_PTR(-EINVAL);
ec7adb6e 3167
91e6711e
JL
3168 view_size = i915_ggtt_view_size(obj, ggtt_view);
3169
3170 fence_size = i915_gem_get_gtt_size(dev,
3171 view_size,
3172 obj->tiling_mode);
3173 fence_alignment = i915_gem_get_gtt_alignment(dev,
3174 view_size,
3175 obj->tiling_mode,
3176 true);
3177 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3178 view_size,
3179 obj->tiling_mode,
3180 false);
3181 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3182 } else {
3183 fence_size = i915_gem_get_gtt_size(dev,
3184 obj->base.size,
3185 obj->tiling_mode);
3186 fence_alignment = i915_gem_get_gtt_alignment(dev,
3187 obj->base.size,
3188 obj->tiling_mode,
3189 true);
3190 unfenced_alignment =
3191 i915_gem_get_gtt_alignment(dev,
3192 obj->base.size,
3193 obj->tiling_mode,
3194 false);
3195 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3196 }
a00b10c3 3197
101b506a
MT
3198 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3199 end = vm->total;
3200 if (flags & PIN_MAPPABLE)
72e96d64 3201 end = min_t(u64, end, ggtt->mappable_end);
101b506a 3202 if (flags & PIN_ZONE_4G)
48ea1e32 3203 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3204
673a394b 3205 if (alignment == 0)
1ec9e26d 3206 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3207 unfenced_alignment;
1ec9e26d 3208 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3209 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3210 ggtt_view ? ggtt_view->type : 0,
3211 alignment);
262de145 3212 return ERR_PTR(-EINVAL);
673a394b
EA
3213 }
3214
91e6711e
JL
3215 /* If binding the object/GGTT view requires more space than the entire
3216 * aperture has, reject it early before evicting everything in a vain
3217 * attempt to find space.
654fc607 3218 */
91e6711e 3219 if (size > end) {
65bd342f 3220 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3221 ggtt_view ? ggtt_view->type : 0,
3222 size,
1ec9e26d 3223 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3224 end);
262de145 3225 return ERR_PTR(-E2BIG);
654fc607
CW
3226 }
3227
37e680a1 3228 ret = i915_gem_object_get_pages(obj);
6c085a72 3229 if (ret)
262de145 3230 return ERR_PTR(ret);
6c085a72 3231
fbdda6fb
CW
3232 i915_gem_object_pin_pages(obj);
3233
ec7adb6e
JL
3234 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3235 i915_gem_obj_lookup_or_create_vma(obj, vm);
3236
262de145 3237 if (IS_ERR(vma))
bc6bc15b 3238 goto err_unpin;
2f633156 3239
506a8e87
CW
3240 if (flags & PIN_OFFSET_FIXED) {
3241 uint64_t offset = flags & PIN_OFFSET_MASK;
3242
3243 if (offset & (alignment - 1) || offset + size > end) {
3244 ret = -EINVAL;
3245 goto err_free_vma;
3246 }
3247 vma->node.start = offset;
3248 vma->node.size = size;
3249 vma->node.color = obj->cache_level;
3250 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3251 if (ret) {
3252 ret = i915_gem_evict_for_vma(vma);
3253 if (ret == 0)
3254 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3255 }
3256 if (ret)
3257 goto err_free_vma;
101b506a 3258 } else {
506a8e87
CW
3259 if (flags & PIN_HIGH) {
3260 search_flag = DRM_MM_SEARCH_BELOW;
3261 alloc_flag = DRM_MM_CREATE_TOP;
3262 } else {
3263 search_flag = DRM_MM_SEARCH_DEFAULT;
3264 alloc_flag = DRM_MM_CREATE_DEFAULT;
3265 }
101b506a 3266
0a9ae0d7 3267search_free:
506a8e87
CW
3268 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3269 size, alignment,
3270 obj->cache_level,
3271 start, end,
3272 search_flag,
3273 alloc_flag);
3274 if (ret) {
3275 ret = i915_gem_evict_something(dev, vm, size, alignment,
3276 obj->cache_level,
3277 start, end,
3278 flags);
3279 if (ret == 0)
3280 goto search_free;
9731129c 3281
506a8e87
CW
3282 goto err_free_vma;
3283 }
673a394b 3284 }
4144f9b5 3285 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3286 ret = -EINVAL;
bc6bc15b 3287 goto err_remove_node;
673a394b
EA
3288 }
3289
fe14d5f4 3290 trace_i915_vma_bind(vma, flags);
0875546c 3291 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3292 if (ret)
e2273302 3293 goto err_remove_node;
fe14d5f4 3294
35c20a60 3295 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
1c7f4bca 3296 list_add_tail(&vma->vm_link, &vm->inactive_list);
bf1a1092 3297
262de145 3298 return vma;
2f633156 3299
bc6bc15b 3300err_remove_node:
6286ef9b 3301 drm_mm_remove_node(&vma->node);
bc6bc15b 3302err_free_vma:
2f633156 3303 i915_gem_vma_destroy(vma);
262de145 3304 vma = ERR_PTR(ret);
bc6bc15b 3305err_unpin:
2f633156 3306 i915_gem_object_unpin_pages(obj);
262de145 3307 return vma;
673a394b
EA
3308}
3309
000433b6 3310bool
2c22569b
CW
3311i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3312 bool force)
673a394b 3313{
673a394b
EA
3314 /* If we don't have a page list set up, then we're not pinned
3315 * to GPU, and we can ignore the cache flush because it'll happen
3316 * again at bind time.
3317 */
05394f39 3318 if (obj->pages == NULL)
000433b6 3319 return false;
673a394b 3320
769ce464
ID
3321 /*
3322 * Stolen memory is always coherent with the GPU as it is explicitly
3323 * marked as wc by the system, or the system is cache-coherent.
3324 */
6a2c4232 3325 if (obj->stolen || obj->phys_handle)
000433b6 3326 return false;
769ce464 3327
9c23f7fc
CW
3328 /* If the GPU is snooping the contents of the CPU cache,
3329 * we do not need to manually clear the CPU cache lines. However,
3330 * the caches are only snooped when the render cache is
3331 * flushed/invalidated. As we always have to emit invalidations
3332 * and flushes when moving into and out of the RENDER domain, correct
3333 * snooping behaviour occurs naturally as the result of our domain
3334 * tracking.
3335 */
0f71979a
CW
3336 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3337 obj->cache_dirty = true;
000433b6 3338 return false;
0f71979a 3339 }
9c23f7fc 3340
1c5d22f7 3341 trace_i915_gem_object_clflush(obj);
9da3da66 3342 drm_clflush_sg(obj->pages);
0f71979a 3343 obj->cache_dirty = false;
000433b6
CW
3344
3345 return true;
e47c68e9
EA
3346}
3347
3348/** Flushes the GTT write domain for the object if it's dirty. */
3349static void
05394f39 3350i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3351{
1c5d22f7
CW
3352 uint32_t old_write_domain;
3353
05394f39 3354 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3355 return;
3356
63256ec5 3357 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3358 * to it immediately go to main memory as far as we know, so there's
3359 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3360 *
3361 * However, we do have to enforce the order so that all writes through
3362 * the GTT land before any writes to the device, such as updates to
3363 * the GATT itself.
e47c68e9 3364 */
63256ec5
CW
3365 wmb();
3366
05394f39
CW
3367 old_write_domain = obj->base.write_domain;
3368 obj->base.write_domain = 0;
1c5d22f7 3369
de152b62 3370 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3371
1c5d22f7 3372 trace_i915_gem_object_change_domain(obj,
05394f39 3373 obj->base.read_domains,
1c5d22f7 3374 old_write_domain);
e47c68e9
EA
3375}
3376
3377/** Flushes the CPU write domain for the object if it's dirty. */
3378static void
e62b59e4 3379i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3380{
1c5d22f7 3381 uint32_t old_write_domain;
e47c68e9 3382
05394f39 3383 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3384 return;
3385
e62b59e4 3386 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3387 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3388
05394f39
CW
3389 old_write_domain = obj->base.write_domain;
3390 obj->base.write_domain = 0;
1c5d22f7 3391
de152b62 3392 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3393
1c5d22f7 3394 trace_i915_gem_object_change_domain(obj,
05394f39 3395 obj->base.read_domains,
1c5d22f7 3396 old_write_domain);
e47c68e9
EA
3397}
3398
2ef7eeaa
EA
3399/**
3400 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3401 * @obj: object to act on
3402 * @write: ask for write access or read only
2ef7eeaa
EA
3403 *
3404 * This function returns when the move is complete, including waiting on
3405 * flushes to occur.
3406 */
79e53945 3407int
2021746e 3408i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3409{
72e96d64
JL
3410 struct drm_device *dev = obj->base.dev;
3411 struct drm_i915_private *dev_priv = to_i915(dev);
3412 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1c5d22f7 3413 uint32_t old_write_domain, old_read_domains;
43566ded 3414 struct i915_vma *vma;
e47c68e9 3415 int ret;
2ef7eeaa 3416
0201f1ec 3417 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3418 if (ret)
3419 return ret;
3420
c13d87ea
CW
3421 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3422 return 0;
3423
43566ded
CW
3424 /* Flush and acquire obj->pages so that we are coherent through
3425 * direct access in memory with previous cached writes through
3426 * shmemfs and that our cache domain tracking remains valid.
3427 * For example, if the obj->filp was moved to swap without us
3428 * being notified and releasing the pages, we would mistakenly
3429 * continue to assume that the obj remained out of the CPU cached
3430 * domain.
3431 */
3432 ret = i915_gem_object_get_pages(obj);
3433 if (ret)
3434 return ret;
3435
e62b59e4 3436 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3437
d0a57789
CW
3438 /* Serialise direct access to this object with the barriers for
3439 * coherent writes from the GPU, by effectively invalidating the
3440 * GTT domain upon first access.
3441 */
3442 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3443 mb();
3444
05394f39
CW
3445 old_write_domain = obj->base.write_domain;
3446 old_read_domains = obj->base.read_domains;
1c5d22f7 3447
e47c68e9
EA
3448 /* It should now be out of any other write domains, and we can update
3449 * the domain values for our changes.
3450 */
05394f39
CW
3451 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3452 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3453 if (write) {
05394f39
CW
3454 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3455 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3456 obj->dirty = 1;
2ef7eeaa
EA
3457 }
3458
1c5d22f7
CW
3459 trace_i915_gem_object_change_domain(obj,
3460 old_read_domains,
3461 old_write_domain);
3462
8325a09d 3463 /* And bump the LRU for this access */
43566ded
CW
3464 vma = i915_gem_obj_to_ggtt(obj);
3465 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
1c7f4bca 3466 list_move_tail(&vma->vm_link,
72e96d64 3467 &ggtt->base.inactive_list);
8325a09d 3468
e47c68e9
EA
3469 return 0;
3470}
3471
ef55f92a
CW
3472/**
3473 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3474 * @obj: object to act on
3475 * @cache_level: new cache level to set for the object
ef55f92a
CW
3476 *
3477 * After this function returns, the object will be in the new cache-level
3478 * across all GTT and the contents of the backing storage will be coherent,
3479 * with respect to the new cache-level. In order to keep the backing storage
3480 * coherent for all users, we only allow a single cache level to be set
3481 * globally on the object and prevent it from being changed whilst the
3482 * hardware is reading from the object. That is if the object is currently
3483 * on the scanout it will be set to uncached (or equivalent display
3484 * cache coherency) and all non-MOCS GPU access will also be uncached so
3485 * that all direct access to the scanout remains coherent.
3486 */
e4ffd173
CW
3487int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3488 enum i915_cache_level cache_level)
3489{
7bddb01f 3490 struct drm_device *dev = obj->base.dev;
df6f783a 3491 struct i915_vma *vma, *next;
ef55f92a 3492 bool bound = false;
ed75a55b 3493 int ret = 0;
e4ffd173
CW
3494
3495 if (obj->cache_level == cache_level)
ed75a55b 3496 goto out;
e4ffd173 3497
ef55f92a
CW
3498 /* Inspect the list of currently bound VMA and unbind any that would
3499 * be invalid given the new cache-level. This is principally to
3500 * catch the issue of the CS prefetch crossing page boundaries and
3501 * reading an invalid PTE on older architectures.
3502 */
1c7f4bca 3503 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
ef55f92a
CW
3504 if (!drm_mm_node_allocated(&vma->node))
3505 continue;
3506
3507 if (vma->pin_count) {
3508 DRM_DEBUG("can not change the cache level of pinned objects\n");
3509 return -EBUSY;
3510 }
3511
4144f9b5 3512 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3513 ret = i915_vma_unbind(vma);
3089c6f2
BW
3514 if (ret)
3515 return ret;
ef55f92a
CW
3516 } else
3517 bound = true;
42d6ab48
CW
3518 }
3519
ef55f92a
CW
3520 /* We can reuse the existing drm_mm nodes but need to change the
3521 * cache-level on the PTE. We could simply unbind them all and
3522 * rebind with the correct cache-level on next use. However since
3523 * we already have a valid slot, dma mapping, pages etc, we may as
3524 * rewrite the PTE in the belief that doing so tramples upon less
3525 * state and so involves less work.
3526 */
3527 if (bound) {
3528 /* Before we change the PTE, the GPU must not be accessing it.
3529 * If we wait upon the object, we know that all the bound
3530 * VMA are no longer active.
3531 */
2e2f351d 3532 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3533 if (ret)
3534 return ret;
3535
ef55f92a
CW
3536 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3537 /* Access to snoopable pages through the GTT is
3538 * incoherent and on some machines causes a hard
3539 * lockup. Relinquish the CPU mmaping to force
3540 * userspace to refault in the pages and we can
3541 * then double check if the GTT mapping is still
3542 * valid for that pointer access.
3543 */
3544 i915_gem_release_mmap(obj);
3545
3546 /* As we no longer need a fence for GTT access,
3547 * we can relinquish it now (and so prevent having
3548 * to steal a fence from someone else on the next
3549 * fence request). Note GPU activity would have
3550 * dropped the fence as all snoopable access is
3551 * supposed to be linear.
3552 */
e4ffd173
CW
3553 ret = i915_gem_object_put_fence(obj);
3554 if (ret)
3555 return ret;
ef55f92a
CW
3556 } else {
3557 /* We either have incoherent backing store and
3558 * so no GTT access or the architecture is fully
3559 * coherent. In such cases, existing GTT mmaps
3560 * ignore the cache bit in the PTE and we can
3561 * rewrite it without confusing the GPU or having
3562 * to force userspace to fault back in its mmaps.
3563 */
e4ffd173
CW
3564 }
3565
1c7f4bca 3566 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3567 if (!drm_mm_node_allocated(&vma->node))
3568 continue;
3569
3570 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3571 if (ret)
3572 return ret;
3573 }
e4ffd173
CW
3574 }
3575
1c7f4bca 3576 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3577 vma->node.color = cache_level;
3578 obj->cache_level = cache_level;
3579
ed75a55b 3580out:
ef55f92a
CW
3581 /* Flush the dirty CPU caches to the backing storage so that the
3582 * object is now coherent at its new cache level (with respect
3583 * to the access domain).
3584 */
b50a5371 3585 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 3586 if (i915_gem_clflush_object(obj, true))
c033666a 3587 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3588 }
3589
e4ffd173
CW
3590 return 0;
3591}
3592
199adf40
BW
3593int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3594 struct drm_file *file)
e6994aee 3595{
199adf40 3596 struct drm_i915_gem_caching *args = data;
e6994aee 3597 struct drm_i915_gem_object *obj;
e6994aee 3598
03ac0642
CW
3599 obj = i915_gem_object_lookup(file, args->handle);
3600 if (!obj)
432be69d 3601 return -ENOENT;
e6994aee 3602
651d794f
CW
3603 switch (obj->cache_level) {
3604 case I915_CACHE_LLC:
3605 case I915_CACHE_L3_LLC:
3606 args->caching = I915_CACHING_CACHED;
3607 break;
3608
4257d3ba
CW
3609 case I915_CACHE_WT:
3610 args->caching = I915_CACHING_DISPLAY;
3611 break;
3612
651d794f
CW
3613 default:
3614 args->caching = I915_CACHING_NONE;
3615 break;
3616 }
e6994aee 3617
34911fd3 3618 i915_gem_object_put_unlocked(obj);
432be69d 3619 return 0;
e6994aee
CW
3620}
3621
199adf40
BW
3622int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3623 struct drm_file *file)
e6994aee 3624{
fac5e23e 3625 struct drm_i915_private *dev_priv = to_i915(dev);
199adf40 3626 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3627 struct drm_i915_gem_object *obj;
3628 enum i915_cache_level level;
3629 int ret;
3630
199adf40
BW
3631 switch (args->caching) {
3632 case I915_CACHING_NONE:
e6994aee
CW
3633 level = I915_CACHE_NONE;
3634 break;
199adf40 3635 case I915_CACHING_CACHED:
e5756c10
ID
3636 /*
3637 * Due to a HW issue on BXT A stepping, GPU stores via a
3638 * snooped mapping may leave stale data in a corresponding CPU
3639 * cacheline, whereas normally such cachelines would get
3640 * invalidated.
3641 */
ca377809 3642 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3643 return -ENODEV;
3644
e6994aee
CW
3645 level = I915_CACHE_LLC;
3646 break;
4257d3ba
CW
3647 case I915_CACHING_DISPLAY:
3648 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3649 break;
e6994aee
CW
3650 default:
3651 return -EINVAL;
3652 }
3653
fd0fe6ac
ID
3654 intel_runtime_pm_get(dev_priv);
3655
3bc2913e
BW
3656 ret = i915_mutex_lock_interruptible(dev);
3657 if (ret)
fd0fe6ac 3658 goto rpm_put;
3bc2913e 3659
03ac0642
CW
3660 obj = i915_gem_object_lookup(file, args->handle);
3661 if (!obj) {
e6994aee
CW
3662 ret = -ENOENT;
3663 goto unlock;
3664 }
3665
3666 ret = i915_gem_object_set_cache_level(obj, level);
3667
f8c417cd 3668 i915_gem_object_put(obj);
e6994aee
CW
3669unlock:
3670 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3671rpm_put:
3672 intel_runtime_pm_put(dev_priv);
3673
e6994aee
CW
3674 return ret;
3675}
3676
b9241ea3 3677/*
2da3b9b9
CW
3678 * Prepare buffer for display plane (scanout, cursors, etc).
3679 * Can be called from an uninterruptible phase (modesetting) and allows
3680 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3681 */
3682int
2da3b9b9
CW
3683i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3684 u32 alignment,
e6617330 3685 const struct i915_ggtt_view *view)
b9241ea3 3686{
2da3b9b9 3687 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3688 int ret;
3689
cc98b413
CW
3690 /* Mark the pin_display early so that we account for the
3691 * display coherency whilst setting up the cache domains.
3692 */
8a0c39b1 3693 obj->pin_display++;
cc98b413 3694
a7ef0640
EA
3695 /* The display engine is not coherent with the LLC cache on gen6. As
3696 * a result, we make sure that the pinning that is about to occur is
3697 * done with uncached PTEs. This is lowest common denominator for all
3698 * chipsets.
3699 *
3700 * However for gen6+, we could do better by using the GFDT bit instead
3701 * of uncaching, which would allow us to flush all the LLC-cached data
3702 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3703 */
651d794f
CW
3704 ret = i915_gem_object_set_cache_level(obj,
3705 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3706 if (ret)
cc98b413 3707 goto err_unpin_display;
a7ef0640 3708
2da3b9b9
CW
3709 /* As the user may map the buffer once pinned in the display plane
3710 * (e.g. libkms for the bootup splash), we have to ensure that we
3711 * always use map_and_fenceable for all scanout buffers.
3712 */
50470bb0
TU
3713 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3714 view->type == I915_GGTT_VIEW_NORMAL ?
3715 PIN_MAPPABLE : 0);
2da3b9b9 3716 if (ret)
cc98b413 3717 goto err_unpin_display;
2da3b9b9 3718
e62b59e4 3719 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3720
2da3b9b9 3721 old_write_domain = obj->base.write_domain;
05394f39 3722 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3723
3724 /* It should now be out of any other write domains, and we can update
3725 * the domain values for our changes.
3726 */
e5f1d962 3727 obj->base.write_domain = 0;
05394f39 3728 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3729
3730 trace_i915_gem_object_change_domain(obj,
3731 old_read_domains,
2da3b9b9 3732 old_write_domain);
b9241ea3
ZW
3733
3734 return 0;
cc98b413
CW
3735
3736err_unpin_display:
8a0c39b1 3737 obj->pin_display--;
cc98b413
CW
3738 return ret;
3739}
3740
3741void
e6617330
TU
3742i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3743 const struct i915_ggtt_view *view)
cc98b413 3744{
8a0c39b1
TU
3745 if (WARN_ON(obj->pin_display == 0))
3746 return;
3747
e6617330
TU
3748 i915_gem_object_ggtt_unpin_view(obj, view);
3749
8a0c39b1 3750 obj->pin_display--;
b9241ea3
ZW
3751}
3752
e47c68e9
EA
3753/**
3754 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3755 * @obj: object to act on
3756 * @write: requesting write or read-only access
e47c68e9
EA
3757 *
3758 * This function returns when the move is complete, including waiting on
3759 * flushes to occur.
3760 */
dabdfe02 3761int
919926ae 3762i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3763{
1c5d22f7 3764 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3765 int ret;
3766
0201f1ec 3767 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3768 if (ret)
3769 return ret;
3770
c13d87ea
CW
3771 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3772 return 0;
3773
e47c68e9 3774 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3775
05394f39
CW
3776 old_write_domain = obj->base.write_domain;
3777 old_read_domains = obj->base.read_domains;
1c5d22f7 3778
e47c68e9 3779 /* Flush the CPU cache if it's still invalid. */
05394f39 3780 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3781 i915_gem_clflush_object(obj, false);
2ef7eeaa 3782
05394f39 3783 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3784 }
3785
3786 /* It should now be out of any other write domains, and we can update
3787 * the domain values for our changes.
3788 */
05394f39 3789 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3790
3791 /* If we're writing through the CPU, then the GPU read domains will
3792 * need to be invalidated at next use.
3793 */
3794 if (write) {
05394f39
CW
3795 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3796 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3797 }
2ef7eeaa 3798
1c5d22f7
CW
3799 trace_i915_gem_object_change_domain(obj,
3800 old_read_domains,
3801 old_write_domain);
3802
2ef7eeaa
EA
3803 return 0;
3804}
3805
673a394b
EA
3806/* Throttle our rendering by waiting until the ring has completed our requests
3807 * emitted over 20 msec ago.
3808 *
b962442e
EA
3809 * Note that if we were to use the current jiffies each time around the loop,
3810 * we wouldn't escape the function with any frames outstanding if the time to
3811 * render a frame was over 20ms.
3812 *
673a394b
EA
3813 * This should get us reasonable parallelism between CPU and GPU but also
3814 * relatively low latency when blocking on a particular request to finish.
3815 */
40a5f0de 3816static int
f787a5f5 3817i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3818{
fac5e23e 3819 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3820 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3821 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3822 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 3823 int ret;
93533c29 3824
308887aa
DV
3825 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3826 if (ret)
3827 return ret;
3828
f4457ae7
CW
3829 /* ABI: return -EIO if already wedged */
3830 if (i915_terminally_wedged(&dev_priv->gpu_error))
3831 return -EIO;
e110e8d6 3832
1c25595f 3833 spin_lock(&file_priv->mm.lock);
f787a5f5 3834 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3835 if (time_after_eq(request->emitted_jiffies, recent_enough))
3836 break;
40a5f0de 3837
fcfa423c
JH
3838 /*
3839 * Note that the request might not have been submitted yet.
3840 * In which case emitted_jiffies will be zero.
3841 */
3842 if (!request->emitted_jiffies)
3843 continue;
3844
54fb2411 3845 target = request;
b962442e 3846 }
ff865885 3847 if (target)
e8a261ea 3848 i915_gem_request_get(target);
1c25595f 3849 spin_unlock(&file_priv->mm.lock);
40a5f0de 3850
54fb2411 3851 if (target == NULL)
f787a5f5 3852 return 0;
2bc43b5c 3853
299259a3 3854 ret = __i915_wait_request(target, true, NULL, NULL);
e8a261ea 3855 i915_gem_request_put(target);
ff865885 3856
40a5f0de
EA
3857 return ret;
3858}
3859
d23db88c
CW
3860static bool
3861i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
3862{
3863 struct drm_i915_gem_object *obj = vma->obj;
3864
3865 if (alignment &&
3866 vma->node.start & (alignment - 1))
3867 return true;
3868
3869 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3870 return true;
3871
3872 if (flags & PIN_OFFSET_BIAS &&
3873 vma->node.start < (flags & PIN_OFFSET_MASK))
3874 return true;
3875
506a8e87
CW
3876 if (flags & PIN_OFFSET_FIXED &&
3877 vma->node.start != (flags & PIN_OFFSET_MASK))
3878 return true;
3879
d23db88c
CW
3880 return false;
3881}
3882
d0710abb
CW
3883void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3884{
3885 struct drm_i915_gem_object *obj = vma->obj;
3886 bool mappable, fenceable;
3887 u32 fence_size, fence_alignment;
3888
3889 fence_size = i915_gem_get_gtt_size(obj->base.dev,
3890 obj->base.size,
3891 obj->tiling_mode);
3892 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
3893 obj->base.size,
3894 obj->tiling_mode,
3895 true);
3896
3897 fenceable = (vma->node.size == fence_size &&
3898 (vma->node.start & (fence_alignment - 1)) == 0);
3899
3900 mappable = (vma->node.start + fence_size <=
62106b4f 3901 to_i915(obj->base.dev)->ggtt.mappable_end);
d0710abb
CW
3902
3903 obj->map_and_fenceable = mappable && fenceable;
3904}
3905
ec7adb6e
JL
3906static int
3907i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
3908 struct i915_address_space *vm,
3909 const struct i915_ggtt_view *ggtt_view,
3910 uint32_t alignment,
3911 uint64_t flags)
673a394b 3912{
fac5e23e 3913 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
07fe0b12 3914 struct i915_vma *vma;
ef79e17c 3915 unsigned bound;
673a394b
EA
3916 int ret;
3917
6e7186af
BW
3918 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3919 return -ENODEV;
3920
bf3d149b 3921 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 3922 return -EINVAL;
07fe0b12 3923
c826c449
CW
3924 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
3925 return -EINVAL;
3926
ec7adb6e
JL
3927 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3928 return -EINVAL;
3929
3930 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
3931 i915_gem_obj_to_vma(obj, vm);
3932
07fe0b12 3933 if (vma) {
d7f46fc4
BW
3934 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3935 return -EBUSY;
3936
d23db88c 3937 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 3938 WARN(vma->pin_count,
ec7adb6e 3939 "bo is already pinned in %s with incorrect alignment:"
088e0df4 3940 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3941 " obj->map_and_fenceable=%d\n",
ec7adb6e 3942 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
3943 upper_32_bits(vma->node.start),
3944 lower_32_bits(vma->node.start),
fe14d5f4 3945 alignment,
d23db88c 3946 !!(flags & PIN_MAPPABLE),
05394f39 3947 obj->map_and_fenceable);
07fe0b12 3948 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3949 if (ret)
3950 return ret;
8ea99c92
DV
3951
3952 vma = NULL;
ac0c6b5a
CW
3953 }
3954 }
3955
ef79e17c 3956 bound = vma ? vma->bound : 0;
8ea99c92 3957 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
3958 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
3959 flags);
262de145
DV
3960 if (IS_ERR(vma))
3961 return PTR_ERR(vma);
0875546c
DV
3962 } else {
3963 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
3964 if (ret)
3965 return ret;
3966 }
74898d7e 3967
91e6711e
JL
3968 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
3969 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 3970 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
3971 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3972 }
ef79e17c 3973
8ea99c92 3974 vma->pin_count++;
673a394b
EA
3975 return 0;
3976}
3977
ec7adb6e
JL
3978int
3979i915_gem_object_pin(struct drm_i915_gem_object *obj,
3980 struct i915_address_space *vm,
3981 uint32_t alignment,
3982 uint64_t flags)
3983{
3984 return i915_gem_object_do_pin(obj, vm,
3985 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
3986 alignment, flags);
3987}
3988
3989int
3990i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3991 const struct i915_ggtt_view *view,
3992 uint32_t alignment,
3993 uint64_t flags)
3994{
72e96d64
JL
3995 struct drm_device *dev = obj->base.dev;
3996 struct drm_i915_private *dev_priv = to_i915(dev);
3997 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3998
ade7daa1 3999 BUG_ON(!view);
ec7adb6e 4000
72e96d64 4001 return i915_gem_object_do_pin(obj, &ggtt->base, view,
6fafab76 4002 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4003}
4004
673a394b 4005void
e6617330
TU
4006i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4007 const struct i915_ggtt_view *view)
673a394b 4008{
e6617330 4009 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4010
e6617330 4011 WARN_ON(vma->pin_count == 0);
9abc4648 4012 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4013
30154650 4014 --vma->pin_count;
673a394b
EA
4015}
4016
673a394b
EA
4017int
4018i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4019 struct drm_file *file)
673a394b
EA
4020{
4021 struct drm_i915_gem_busy *args = data;
05394f39 4022 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4023 int ret;
4024
76c1dec1 4025 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4026 if (ret)
76c1dec1 4027 return ret;
673a394b 4028
03ac0642
CW
4029 obj = i915_gem_object_lookup(file, args->handle);
4030 if (!obj) {
1d7cfea1
CW
4031 ret = -ENOENT;
4032 goto unlock;
673a394b 4033 }
d1b851fc 4034
0be555b6
CW
4035 /* Count all active objects as busy, even if they are currently not used
4036 * by the gpu. Users of this interface expect objects to eventually
4037 * become non-busy without any further actions, therefore emit any
4038 * necessary flushes here.
c4de0a5d 4039 */
30dfebf3 4040 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4041 if (ret)
4042 goto unref;
0be555b6 4043
426960be
CW
4044 args->busy = 0;
4045 if (obj->active) {
4046 int i;
4047
666796da 4048 for (i = 0; i < I915_NUM_ENGINES; i++) {
426960be
CW
4049 struct drm_i915_gem_request *req;
4050
4051 req = obj->last_read_req[i];
4052 if (req)
4a570db5 4053 args->busy |= 1 << (16 + req->engine->exec_id);
426960be
CW
4054 }
4055 if (obj->last_write_req)
4a570db5 4056 args->busy |= obj->last_write_req->engine->exec_id;
426960be 4057 }
673a394b 4058
b4716185 4059unref:
f8c417cd 4060 i915_gem_object_put(obj);
1d7cfea1 4061unlock:
673a394b 4062 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4063 return ret;
673a394b
EA
4064}
4065
4066int
4067i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4068 struct drm_file *file_priv)
4069{
0206e353 4070 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4071}
4072
3ef94daa
CW
4073int
4074i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4075 struct drm_file *file_priv)
4076{
fac5e23e 4077 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4078 struct drm_i915_gem_madvise *args = data;
05394f39 4079 struct drm_i915_gem_object *obj;
76c1dec1 4080 int ret;
3ef94daa
CW
4081
4082 switch (args->madv) {
4083 case I915_MADV_DONTNEED:
4084 case I915_MADV_WILLNEED:
4085 break;
4086 default:
4087 return -EINVAL;
4088 }
4089
1d7cfea1
CW
4090 ret = i915_mutex_lock_interruptible(dev);
4091 if (ret)
4092 return ret;
4093
03ac0642
CW
4094 obj = i915_gem_object_lookup(file_priv, args->handle);
4095 if (!obj) {
1d7cfea1
CW
4096 ret = -ENOENT;
4097 goto unlock;
3ef94daa 4098 }
3ef94daa 4099
d7f46fc4 4100 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4101 ret = -EINVAL;
4102 goto out;
3ef94daa
CW
4103 }
4104
656bfa3a
DV
4105 if (obj->pages &&
4106 obj->tiling_mode != I915_TILING_NONE &&
4107 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4108 if (obj->madv == I915_MADV_WILLNEED)
4109 i915_gem_object_unpin_pages(obj);
4110 if (args->madv == I915_MADV_WILLNEED)
4111 i915_gem_object_pin_pages(obj);
4112 }
4113
05394f39
CW
4114 if (obj->madv != __I915_MADV_PURGED)
4115 obj->madv = args->madv;
3ef94daa 4116
6c085a72 4117 /* if the object is no longer attached, discard its backing storage */
be6a0376 4118 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4119 i915_gem_object_truncate(obj);
4120
05394f39 4121 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4122
1d7cfea1 4123out:
f8c417cd 4124 i915_gem_object_put(obj);
1d7cfea1 4125unlock:
3ef94daa 4126 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4127 return ret;
3ef94daa
CW
4128}
4129
37e680a1
CW
4130void i915_gem_object_init(struct drm_i915_gem_object *obj,
4131 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4132{
b4716185
CW
4133 int i;
4134
35c20a60 4135 INIT_LIST_HEAD(&obj->global_list);
666796da 4136 for (i = 0; i < I915_NUM_ENGINES; i++)
117897f4 4137 INIT_LIST_HEAD(&obj->engine_list[i]);
b25cb2f8 4138 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4139 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4140 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4141
37e680a1
CW
4142 obj->ops = ops;
4143
0327d6ba
CW
4144 obj->fence_reg = I915_FENCE_REG_NONE;
4145 obj->madv = I915_MADV_WILLNEED;
0327d6ba 4146
f19ec8cb 4147 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4148}
4149
37e680a1 4150static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4151 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4152 .get_pages = i915_gem_object_get_pages_gtt,
4153 .put_pages = i915_gem_object_put_pages_gtt,
4154};
4155
d37cd8a8 4156struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 4157 size_t size)
ac52bc56 4158{
c397b908 4159 struct drm_i915_gem_object *obj;
5949eac4 4160 struct address_space *mapping;
1a240d4d 4161 gfp_t mask;
fe3db79b 4162 int ret;
ac52bc56 4163
42dcedd4 4164 obj = i915_gem_object_alloc(dev);
c397b908 4165 if (obj == NULL)
fe3db79b 4166 return ERR_PTR(-ENOMEM);
673a394b 4167
fe3db79b
CW
4168 ret = drm_gem_object_init(dev, &obj->base, size);
4169 if (ret)
4170 goto fail;
673a394b 4171
bed1ea95
CW
4172 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4173 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4174 /* 965gm cannot relocate objects above 4GiB. */
4175 mask &= ~__GFP_HIGHMEM;
4176 mask |= __GFP_DMA32;
4177 }
4178
496ad9aa 4179 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4180 mapping_set_gfp_mask(mapping, mask);
5949eac4 4181
37e680a1 4182 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4183
c397b908
DV
4184 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4185 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4186
3d29b842
ED
4187 if (HAS_LLC(dev)) {
4188 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4189 * cache) for about a 10% performance improvement
4190 * compared to uncached. Graphics requests other than
4191 * display scanout are coherent with the CPU in
4192 * accessing this cache. This means in this mode we
4193 * don't need to clflush on the CPU side, and on the
4194 * GPU side we only need to flush internal caches to
4195 * get data visible to the CPU.
4196 *
4197 * However, we maintain the display planes as UC, and so
4198 * need to rebind when first used as such.
4199 */
4200 obj->cache_level = I915_CACHE_LLC;
4201 } else
4202 obj->cache_level = I915_CACHE_NONE;
4203
d861e338
DV
4204 trace_i915_gem_object_create(obj);
4205
05394f39 4206 return obj;
fe3db79b
CW
4207
4208fail:
4209 i915_gem_object_free(obj);
4210
4211 return ERR_PTR(ret);
c397b908
DV
4212}
4213
340fbd8c
CW
4214static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4215{
4216 /* If we are the last user of the backing storage (be it shmemfs
4217 * pages or stolen etc), we know that the pages are going to be
4218 * immediately released. In this case, we can then skip copying
4219 * back the contents from the GPU.
4220 */
4221
4222 if (obj->madv != I915_MADV_WILLNEED)
4223 return false;
4224
4225 if (obj->base.filp == NULL)
4226 return true;
4227
4228 /* At first glance, this looks racy, but then again so would be
4229 * userspace racing mmap against close. However, the first external
4230 * reference to the filp can only be obtained through the
4231 * i915_gem_mmap_ioctl() which safeguards us against the user
4232 * acquiring such a reference whilst we are in the middle of
4233 * freeing the object.
4234 */
4235 return atomic_long_read(&obj->base.filp->f_count) == 1;
4236}
4237
1488fc08 4238void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4239{
1488fc08 4240 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4241 struct drm_device *dev = obj->base.dev;
fac5e23e 4242 struct drm_i915_private *dev_priv = to_i915(dev);
07fe0b12 4243 struct i915_vma *vma, *next;
673a394b 4244
f65c9168
PZ
4245 intel_runtime_pm_get(dev_priv);
4246
26e12f89
CW
4247 trace_i915_gem_object_destroy(obj);
4248
1c7f4bca 4249 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
d7f46fc4
BW
4250 int ret;
4251
4252 vma->pin_count = 0;
c13d87ea 4253 ret = __i915_vma_unbind_no_wait(vma);
07fe0b12
BW
4254 if (WARN_ON(ret == -ERESTARTSYS)) {
4255 bool was_interruptible;
1488fc08 4256
07fe0b12
BW
4257 was_interruptible = dev_priv->mm.interruptible;
4258 dev_priv->mm.interruptible = false;
1488fc08 4259
07fe0b12 4260 WARN_ON(i915_vma_unbind(vma));
1488fc08 4261
07fe0b12
BW
4262 dev_priv->mm.interruptible = was_interruptible;
4263 }
1488fc08
CW
4264 }
4265
1d64ae71
BW
4266 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4267 * before progressing. */
4268 if (obj->stolen)
4269 i915_gem_object_unpin_pages(obj);
4270
a071fa00
DV
4271 WARN_ON(obj->frontbuffer_bits);
4272
656bfa3a
DV
4273 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4274 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4275 obj->tiling_mode != I915_TILING_NONE)
4276 i915_gem_object_unpin_pages(obj);
4277
401c29f6
BW
4278 if (WARN_ON(obj->pages_pin_count))
4279 obj->pages_pin_count = 0;
340fbd8c 4280 if (discard_backing_storage(obj))
5537252b 4281 obj->madv = I915_MADV_DONTNEED;
37e680a1 4282 i915_gem_object_put_pages(obj);
de151cf6 4283
9da3da66
CW
4284 BUG_ON(obj->pages);
4285
2f745ad3
CW
4286 if (obj->base.import_attach)
4287 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4288
5cc9ed4b
CW
4289 if (obj->ops->release)
4290 obj->ops->release(obj);
4291
05394f39
CW
4292 drm_gem_object_release(&obj->base);
4293 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4294
05394f39 4295 kfree(obj->bit_17);
42dcedd4 4296 i915_gem_object_free(obj);
f65c9168
PZ
4297
4298 intel_runtime_pm_put(dev_priv);
673a394b
EA
4299}
4300
ec7adb6e
JL
4301struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4302 struct i915_address_space *vm)
e656a6cb
DV
4303{
4304 struct i915_vma *vma;
1c7f4bca 4305 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4306 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4307 vma->vm == vm)
e656a6cb 4308 return vma;
ec7adb6e
JL
4309 }
4310 return NULL;
4311}
4312
4313struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4314 const struct i915_ggtt_view *view)
4315{
ec7adb6e 4316 struct i915_vma *vma;
e656a6cb 4317
598b9ec8 4318 GEM_BUG_ON(!view);
ec7adb6e 4319
1c7f4bca 4320 list_for_each_entry(vma, &obj->vma_list, obj_link)
598b9ec8 4321 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4322 return vma;
e656a6cb
DV
4323 return NULL;
4324}
4325
2f633156
BW
4326void i915_gem_vma_destroy(struct i915_vma *vma)
4327{
4328 WARN_ON(vma->node.allocated);
aaa05667
CW
4329
4330 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4331 if (!list_empty(&vma->exec_list))
4332 return;
4333
596c5923
CW
4334 if (!vma->is_ggtt)
4335 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
b9d06dd9 4336
1c7f4bca 4337 list_del(&vma->obj_link);
b93dab6e 4338
e20d2ab7 4339 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4340}
4341
e3efda49 4342static void
117897f4 4343i915_gem_stop_engines(struct drm_device *dev)
e3efda49 4344{
fac5e23e 4345 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4346 struct intel_engine_cs *engine;
e3efda49 4347
b4ac5afc 4348 for_each_engine(engine, dev_priv)
117897f4 4349 dev_priv->gt.stop_engine(engine);
e3efda49
CW
4350}
4351
29105ccc 4352int
45c5f202 4353i915_gem_suspend(struct drm_device *dev)
29105ccc 4354{
fac5e23e 4355 struct drm_i915_private *dev_priv = to_i915(dev);
45c5f202 4356 int ret = 0;
28dfe52a 4357
45c5f202 4358 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4359
4360 /* We have to flush all the executing contexts to main memory so
4361 * that they can saved in the hibernation image. To ensure the last
4362 * context image is coherent, we have to switch away from it. That
4363 * leaves the dev_priv->kernel_context still active when
4364 * we actually suspend, and its image in memory may not match the GPU
4365 * state. Fortunately, the kernel_context is disposable and we do
4366 * not rely on its state.
4367 */
4368 ret = i915_gem_switch_to_kernel_context(dev_priv);
4369 if (ret)
4370 goto err;
4371
6e5a5beb 4372 ret = i915_gem_wait_for_idle(dev_priv);
f7403347 4373 if (ret)
45c5f202 4374 goto err;
f7403347 4375
c033666a 4376 i915_gem_retire_requests(dev_priv);
673a394b 4377
5ab57c70
CW
4378 /* Note that rather than stopping the engines, all we have to do
4379 * is assert that every RING_HEAD == RING_TAIL (all execution complete)
4380 * and similar for all logical context images (to ensure they are
4381 * all ready for hibernation).
4382 */
117897f4 4383 i915_gem_stop_engines(dev);
b2e862d0 4384 i915_gem_context_lost(dev_priv);
45c5f202
CW
4385 mutex_unlock(&dev->struct_mutex);
4386
737b1506 4387 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4388 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4389 flush_delayed_work(&dev_priv->gt.idle_work);
29105ccc 4390
bdcf120b
CW
4391 /* Assert that we sucessfully flushed all the work and
4392 * reset the GPU back to its idle, low power state.
4393 */
67d97da3 4394 WARN_ON(dev_priv->gt.awake);
bdcf120b 4395
673a394b 4396 return 0;
45c5f202
CW
4397
4398err:
4399 mutex_unlock(&dev->struct_mutex);
4400 return ret;
673a394b
EA
4401}
4402
5ab57c70
CW
4403void i915_gem_resume(struct drm_device *dev)
4404{
4405 struct drm_i915_private *dev_priv = to_i915(dev);
4406
4407 mutex_lock(&dev->struct_mutex);
4408 i915_gem_restore_gtt_mappings(dev);
4409
4410 /* As we didn't flush the kernel context before suspend, we cannot
4411 * guarantee that the context image is complete. So let's just reset
4412 * it and start again.
4413 */
4414 if (i915.enable_execlists)
4415 intel_lr_context_reset(dev_priv, dev_priv->kernel_context);
4416
4417 mutex_unlock(&dev->struct_mutex);
4418}
4419
f691e2f4
DV
4420void i915_gem_init_swizzling(struct drm_device *dev)
4421{
fac5e23e 4422 struct drm_i915_private *dev_priv = to_i915(dev);
f691e2f4 4423
11782b02 4424 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4425 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4426 return;
4427
4428 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4429 DISP_TILE_SURFACE_SWIZZLING);
4430
11782b02
DV
4431 if (IS_GEN5(dev))
4432 return;
4433
f691e2f4
DV
4434 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4435 if (IS_GEN6(dev))
6b26c86d 4436 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4437 else if (IS_GEN7(dev))
6b26c86d 4438 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4439 else if (IS_GEN8(dev))
4440 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4441 else
4442 BUG();
f691e2f4 4443}
e21af88d 4444
81e7f200
VS
4445static void init_unused_ring(struct drm_device *dev, u32 base)
4446{
fac5e23e 4447 struct drm_i915_private *dev_priv = to_i915(dev);
81e7f200
VS
4448
4449 I915_WRITE(RING_CTL(base), 0);
4450 I915_WRITE(RING_HEAD(base), 0);
4451 I915_WRITE(RING_TAIL(base), 0);
4452 I915_WRITE(RING_START(base), 0);
4453}
4454
4455static void init_unused_rings(struct drm_device *dev)
4456{
4457 if (IS_I830(dev)) {
4458 init_unused_ring(dev, PRB1_BASE);
4459 init_unused_ring(dev, SRB0_BASE);
4460 init_unused_ring(dev, SRB1_BASE);
4461 init_unused_ring(dev, SRB2_BASE);
4462 init_unused_ring(dev, SRB3_BASE);
4463 } else if (IS_GEN2(dev)) {
4464 init_unused_ring(dev, SRB0_BASE);
4465 init_unused_ring(dev, SRB1_BASE);
4466 } else if (IS_GEN3(dev)) {
4467 init_unused_ring(dev, PRB1_BASE);
4468 init_unused_ring(dev, PRB2_BASE);
4469 }
4470}
4471
4fc7c971
BW
4472int
4473i915_gem_init_hw(struct drm_device *dev)
4474{
fac5e23e 4475 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4476 struct intel_engine_cs *engine;
d200cda6 4477 int ret;
4fc7c971 4478
5e4f5189
CW
4479 /* Double layer security blanket, see i915_gem_init() */
4480 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4481
3accaf7e 4482 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4483 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4484
0bf21347
VS
4485 if (IS_HASWELL(dev))
4486 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4487 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4488
88a2b2a3 4489 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4490 if (IS_IVYBRIDGE(dev)) {
4491 u32 temp = I915_READ(GEN7_MSG_CTL);
4492 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4493 I915_WRITE(GEN7_MSG_CTL, temp);
4494 } else if (INTEL_INFO(dev)->gen >= 7) {
4495 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4496 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4497 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4498 }
88a2b2a3
BW
4499 }
4500
4fc7c971
BW
4501 i915_gem_init_swizzling(dev);
4502
d5abdfda
DV
4503 /*
4504 * At least 830 can leave some of the unused rings
4505 * "active" (ie. head != tail) after resume which
4506 * will prevent c3 entry. Makes sure all unused rings
4507 * are totally idle.
4508 */
4509 init_unused_rings(dev);
4510
ed54c1a1 4511 BUG_ON(!dev_priv->kernel_context);
90638cc1 4512
4ad2fd88
JH
4513 ret = i915_ppgtt_init_hw(dev);
4514 if (ret) {
4515 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4516 goto out;
4517 }
4518
4519 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4520 for_each_engine(engine, dev_priv) {
e2f80391 4521 ret = engine->init_hw(engine);
35a57ffb 4522 if (ret)
5e4f5189 4523 goto out;
35a57ffb 4524 }
99433931 4525
0ccdacf6
PA
4526 intel_mocs_init_l3cc_table(dev);
4527
33a732f4 4528 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4529 ret = intel_guc_setup(dev);
4530 if (ret)
4531 goto out;
33a732f4 4532
5e4f5189
CW
4533out:
4534 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4535 return ret;
8187a2b7
ZN
4536}
4537
39df9190
CW
4538bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4539{
4540 if (INTEL_INFO(dev_priv)->gen < 6)
4541 return false;
4542
4543 /* TODO: make semaphores and Execlists play nicely together */
4544 if (i915.enable_execlists)
4545 return false;
4546
4547 if (value >= 0)
4548 return value;
4549
4550#ifdef CONFIG_INTEL_IOMMU
4551 /* Enable semaphores on SNB when IO remapping is off */
4552 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4553 return false;
4554#endif
4555
4556 return true;
4557}
4558
1070a42b
CW
4559int i915_gem_init(struct drm_device *dev)
4560{
fac5e23e 4561 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4562 int ret;
4563
1070a42b 4564 mutex_lock(&dev->struct_mutex);
d62b4892 4565
a83014d3 4566 if (!i915.enable_execlists) {
f3dc74c0 4567 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
117897f4
TU
4568 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4569 dev_priv->gt.stop_engine = intel_stop_engine;
454afebd 4570 } else {
f3dc74c0 4571 dev_priv->gt.execbuf_submit = intel_execlists_submission;
117897f4
TU
4572 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4573 dev_priv->gt.stop_engine = intel_logical_ring_stop;
a83014d3
OM
4574 }
4575
5e4f5189
CW
4576 /* This is just a security blanket to placate dragons.
4577 * On some systems, we very sporadically observe that the first TLBs
4578 * used by the CS may be stale, despite us poking the TLB reset. If
4579 * we hold the forcewake during initialisation these problems
4580 * just magically go away.
4581 */
4582 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4583
72778cb2 4584 i915_gem_init_userptr(dev_priv);
d85489d3 4585 i915_gem_init_ggtt(dev);
d62b4892 4586
2fa48d8d 4587 ret = i915_gem_context_init(dev);
7bcc3777
JN
4588 if (ret)
4589 goto out_unlock;
2fa48d8d 4590
8b3e2d36 4591 ret = intel_engines_init(dev);
35a57ffb 4592 if (ret)
7bcc3777 4593 goto out_unlock;
2fa48d8d 4594
1070a42b 4595 ret = i915_gem_init_hw(dev);
60990320
CW
4596 if (ret == -EIO) {
4597 /* Allow ring initialisation to fail by marking the GPU as
4598 * wedged. But we only want to do this where the GPU is angry,
4599 * for all other failure, such as an allocation failure, bail.
4600 */
4601 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4602 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4603 ret = 0;
1070a42b 4604 }
7bcc3777
JN
4605
4606out_unlock:
5e4f5189 4607 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4608 mutex_unlock(&dev->struct_mutex);
1070a42b 4609
60990320 4610 return ret;
1070a42b
CW
4611}
4612
8187a2b7 4613void
117897f4 4614i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4615{
fac5e23e 4616 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4617 struct intel_engine_cs *engine;
8187a2b7 4618
b4ac5afc 4619 for_each_engine(engine, dev_priv)
117897f4 4620 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4621}
4622
64193406 4623static void
666796da 4624init_engine_lists(struct intel_engine_cs *engine)
64193406 4625{
0bc40be8
TU
4626 INIT_LIST_HEAD(&engine->active_list);
4627 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
4628}
4629
40ae4e16
ID
4630void
4631i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4632{
91c8a326 4633 struct drm_device *dev = &dev_priv->drm;
40ae4e16
ID
4634
4635 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4636 !IS_CHERRYVIEW(dev_priv))
4637 dev_priv->num_fence_regs = 32;
4638 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4639 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4640 dev_priv->num_fence_regs = 16;
4641 else
4642 dev_priv->num_fence_regs = 8;
4643
c033666a 4644 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4645 dev_priv->num_fence_regs =
4646 I915_READ(vgtif_reg(avail_rs.fence_num));
4647
4648 /* Initialize fence registers to zero */
4649 i915_gem_restore_fences(dev);
4650
4651 i915_gem_detect_bit_6_swizzle(dev);
4652}
4653
673a394b 4654void
d64aa096 4655i915_gem_load_init(struct drm_device *dev)
673a394b 4656{
fac5e23e 4657 struct drm_i915_private *dev_priv = to_i915(dev);
42dcedd4
CW
4658 int i;
4659
efab6d8d 4660 dev_priv->objects =
42dcedd4
CW
4661 kmem_cache_create("i915_gem_object",
4662 sizeof(struct drm_i915_gem_object), 0,
4663 SLAB_HWCACHE_ALIGN,
4664 NULL);
e20d2ab7
CW
4665 dev_priv->vmas =
4666 kmem_cache_create("i915_gem_vma",
4667 sizeof(struct i915_vma), 0,
4668 SLAB_HWCACHE_ALIGN,
4669 NULL);
efab6d8d
CW
4670 dev_priv->requests =
4671 kmem_cache_create("i915_gem_request",
4672 sizeof(struct drm_i915_gem_request), 0,
4673 SLAB_HWCACHE_ALIGN,
4674 NULL);
673a394b 4675
fc8c067e 4676 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 4677 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4678 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4679 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4680 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
4681 for (i = 0; i < I915_NUM_ENGINES; i++)
4682 init_engine_lists(&dev_priv->engine[i]);
4b9de737 4683 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4684 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
67d97da3 4685 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4686 i915_gem_retire_work_handler);
67d97da3 4687 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4688 i915_gem_idle_work_handler);
1f15b76f 4689 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4690 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4691
72bfa19c
CW
4692 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4693
19b2dbde 4694 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 4695
6b95a207 4696 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4697
ce453d81
CW
4698 dev_priv->mm.interruptible = true;
4699
f99d7069 4700 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 4701}
71acb5eb 4702
d64aa096
ID
4703void i915_gem_load_cleanup(struct drm_device *dev)
4704{
4705 struct drm_i915_private *dev_priv = to_i915(dev);
4706
4707 kmem_cache_destroy(dev_priv->requests);
4708 kmem_cache_destroy(dev_priv->vmas);
4709 kmem_cache_destroy(dev_priv->objects);
4710}
4711
461fb99c
CW
4712int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4713{
4714 struct drm_i915_gem_object *obj;
4715
4716 /* Called just before we write the hibernation image.
4717 *
4718 * We need to update the domain tracking to reflect that the CPU
4719 * will be accessing all the pages to create and restore from the
4720 * hibernation, and so upon restoration those pages will be in the
4721 * CPU domain.
4722 *
4723 * To make sure the hibernation image contains the latest state,
4724 * we update that state just before writing out the image.
4725 */
4726
4727 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
4728 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4729 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4730 }
4731
4732 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4733 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4734 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4735 }
4736
4737 return 0;
4738}
4739
f787a5f5 4740void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4741{
f787a5f5 4742 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4743
4744 /* Clean up our request list when the client is going away, so that
4745 * later retire_requests won't dereference our soon-to-be-gone
4746 * file_priv.
4747 */
1c25595f 4748 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4749 while (!list_empty(&file_priv->mm.request_list)) {
4750 struct drm_i915_gem_request *request;
4751
4752 request = list_first_entry(&file_priv->mm.request_list,
4753 struct drm_i915_gem_request,
4754 client_list);
4755 list_del(&request->client_list);
4756 request->file_priv = NULL;
4757 }
1c25595f 4758 spin_unlock(&file_priv->mm.lock);
b29c19b6 4759
2e1b8730 4760 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4761 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4762 list_del(&file_priv->rps.link);
8d3afd7d 4763 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4764 }
b29c19b6
CW
4765}
4766
4767int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4768{
4769 struct drm_i915_file_private *file_priv;
e422b888 4770 int ret;
b29c19b6
CW
4771
4772 DRM_DEBUG_DRIVER("\n");
4773
4774 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4775 if (!file_priv)
4776 return -ENOMEM;
4777
4778 file->driver_priv = file_priv;
f19ec8cb 4779 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4780 file_priv->file = file;
2e1b8730 4781 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4782
4783 spin_lock_init(&file_priv->mm.lock);
4784 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4785
de1add36
TU
4786 file_priv->bsd_ring = -1;
4787
e422b888
BW
4788 ret = i915_gem_context_open(dev, file);
4789 if (ret)
4790 kfree(file_priv);
b29c19b6 4791
e422b888 4792 return ret;
b29c19b6
CW
4793}
4794
b680c37a
DV
4795/**
4796 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4797 * @old: current GEM buffer for the frontbuffer slots
4798 * @new: new GEM buffer for the frontbuffer slots
4799 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4800 *
4801 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4802 * from @old and setting them in @new. Both @old and @new can be NULL.
4803 */
a071fa00
DV
4804void i915_gem_track_fb(struct drm_i915_gem_object *old,
4805 struct drm_i915_gem_object *new,
4806 unsigned frontbuffer_bits)
4807{
4808 if (old) {
4809 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
4810 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
4811 old->frontbuffer_bits &= ~frontbuffer_bits;
4812 }
4813
4814 if (new) {
4815 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
4816 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
4817 new->frontbuffer_bits |= frontbuffer_bits;
4818 }
4819}
4820
a70a3148 4821/* All the new VM stuff */
088e0df4
MT
4822u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
4823 struct i915_address_space *vm)
a70a3148 4824{
fac5e23e 4825 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
a70a3148
BW
4826 struct i915_vma *vma;
4827
896ab1a5 4828 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 4829
1c7f4bca 4830 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 4831 if (vma->is_ggtt &&
ec7adb6e
JL
4832 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4833 continue;
4834 if (vma->vm == vm)
a70a3148 4835 return vma->node.start;
a70a3148 4836 }
ec7adb6e 4837
f25748ea
DV
4838 WARN(1, "%s vma for this object not found.\n",
4839 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
4840 return -1;
4841}
4842
088e0df4
MT
4843u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
4844 const struct i915_ggtt_view *view)
a70a3148
BW
4845{
4846 struct i915_vma *vma;
4847
1c7f4bca 4848 list_for_each_entry(vma, &o->vma_list, obj_link)
8aac2220 4849 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
4850 return vma->node.start;
4851
5678ad73 4852 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
4853 return -1;
4854}
4855
4856bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4857 struct i915_address_space *vm)
4858{
4859 struct i915_vma *vma;
4860
1c7f4bca 4861 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 4862 if (vma->is_ggtt &&
ec7adb6e
JL
4863 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4864 continue;
4865 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4866 return true;
4867 }
4868
4869 return false;
4870}
4871
4872bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 4873 const struct i915_ggtt_view *view)
ec7adb6e 4874{
ec7adb6e
JL
4875 struct i915_vma *vma;
4876
1c7f4bca 4877 list_for_each_entry(vma, &o->vma_list, obj_link)
ff5ec22d 4878 if (vma->is_ggtt &&
9abc4648 4879 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 4880 drm_mm_node_allocated(&vma->node))
a70a3148
BW
4881 return true;
4882
4883 return false;
4884}
4885
4886bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4887{
5a1d5eb0 4888 struct i915_vma *vma;
a70a3148 4889
1c7f4bca 4890 list_for_each_entry(vma, &o->vma_list, obj_link)
5a1d5eb0 4891 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
4892 return true;
4893
4894 return false;
4895}
4896
8da32727 4897unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
a70a3148 4898{
a70a3148
BW
4899 struct i915_vma *vma;
4900
8da32727 4901 GEM_BUG_ON(list_empty(&o->vma_list));
a70a3148 4902
1c7f4bca 4903 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 4904 if (vma->is_ggtt &&
8da32727 4905 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
a70a3148 4906 return vma->node.size;
ec7adb6e 4907 }
8da32727 4908
a70a3148
BW
4909 return 0;
4910}
4911
ec7adb6e 4912bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
4913{
4914 struct i915_vma *vma;
1c7f4bca 4915 list_for_each_entry(vma, &obj->vma_list, obj_link)
ec7adb6e
JL
4916 if (vma->pin_count > 0)
4917 return true;
a6631ae1 4918
ec7adb6e 4919 return false;
5c2abbea 4920}
ea70299d 4921
033908ae
DG
4922/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4923struct page *
4924i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4925{
4926 struct page *page;
4927
4928 /* Only default objects have per-page dirty tracking */
b9bcd14a 4929 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
033908ae
DG
4930 return NULL;
4931
4932 page = i915_gem_object_get_page(obj, n);
4933 set_page_dirty(page);
4934 return page;
4935}
4936
ea70299d
DG
4937/* Allocate a new GEM object and fill it with the supplied data */
4938struct drm_i915_gem_object *
4939i915_gem_object_create_from_data(struct drm_device *dev,
4940 const void *data, size_t size)
4941{
4942 struct drm_i915_gem_object *obj;
4943 struct sg_table *sg;
4944 size_t bytes;
4945 int ret;
4946
d37cd8a8 4947 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4948 if (IS_ERR(obj))
ea70299d
DG
4949 return obj;
4950
4951 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4952 if (ret)
4953 goto fail;
4954
4955 ret = i915_gem_object_get_pages(obj);
4956 if (ret)
4957 goto fail;
4958
4959 i915_gem_object_pin_pages(obj);
4960 sg = obj->pages;
4961 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 4962 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
4963 i915_gem_object_unpin_pages(obj);
4964
4965 if (WARN_ON(bytes != size)) {
4966 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4967 ret = -EFAULT;
4968 goto fail;
4969 }
4970
4971 return obj;
4972
4973fail:
f8c417cd 4974 i915_gem_object_put(obj);
ea70299d
DG
4975 return ERR_PTR(ret);
4976}