]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Only pwrite through the GTT if there is space in the aperture
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
86a1ee26
CW
44 bool map_and_fenceable,
45 bool nonblocking);
05394f39
CW
46static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
71acb5eb 48 struct drm_i915_gem_pwrite *args,
05394f39 49 struct drm_file *file);
673a394b 50
61050808
CW
51static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
17250b71 57static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 58 struct shrink_control *sc);
6c085a72
CW
59static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
60static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 61static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 62
61050808
CW
63static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
64{
65 if (obj->tiling_mode)
66 i915_gem_release_mmap(obj);
67
68 /* As we do not have an associated fence register, we will force
69 * a tiling change if we ever need to acquire one.
70 */
5d82e3e6 71 obj->fence_dirty = false;
61050808
CW
72 obj->fence_reg = I915_FENCE_REG_NONE;
73}
74
73aa808f
CW
75/* some bookkeeping */
76static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77 size_t size)
78{
79 dev_priv->mm.object_count++;
80 dev_priv->mm.object_memory += size;
81}
82
83static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84 size_t size)
85{
86 dev_priv->mm.object_count--;
87 dev_priv->mm.object_memory -= size;
88}
89
21dd3734
CW
90static int
91i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
92{
93 struct drm_i915_private *dev_priv = dev->dev_private;
94 struct completion *x = &dev_priv->error_completion;
95 unsigned long flags;
96 int ret;
97
98 if (!atomic_read(&dev_priv->mm.wedged))
99 return 0;
100
0a6759c6
DV
101 /*
102 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
103 * userspace. If it takes that long something really bad is going on and
104 * we should simply try to bail out and fail as gracefully as possible.
105 */
106 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
30dbf0c0 111 return ret;
0a6759c6 112 }
30dbf0c0 113
21dd3734
CW
114 if (atomic_read(&dev_priv->mm.wedged)) {
115 /* GPU is hung, bump the completion count to account for
116 * the token we just consumed so that we never hit zero and
117 * end up waiting upon a subsequent completion event that
118 * will never happen.
119 */
120 spin_lock_irqsave(&x->wait.lock, flags);
121 x->done++;
122 spin_unlock_irqrestore(&x->wait.lock, flags);
123 }
124 return 0;
30dbf0c0
CW
125}
126
54cf91dc 127int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 128{
76c1dec1
CW
129 int ret;
130
21dd3734 131 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
132 if (ret)
133 return ret;
134
135 ret = mutex_lock_interruptible(&dev->struct_mutex);
136 if (ret)
137 return ret;
138
23bc5982 139 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
140 return 0;
141}
30dbf0c0 142
7d1c4804 143static inline bool
05394f39 144i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 145{
6c085a72 146 return obj->gtt_space && !obj->active;
7d1c4804
CW
147}
148
79e53945
JB
149int
150i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 151 struct drm_file *file)
79e53945
JB
152{
153 struct drm_i915_gem_init *args = data;
2021746e 154
7bb6fb8d
DV
155 if (drm_core_check_feature(dev, DRIVER_MODESET))
156 return -ENODEV;
157
2021746e
CW
158 if (args->gtt_start >= args->gtt_end ||
159 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
160 return -EINVAL;
79e53945 161
f534bc0b
DV
162 /* GEM with user mode setting was never supported on ilk and later. */
163 if (INTEL_INFO(dev)->gen >= 5)
164 return -ENODEV;
165
79e53945 166 mutex_lock(&dev->struct_mutex);
644ec02b
DV
167 i915_gem_init_global_gtt(dev, args->gtt_start,
168 args->gtt_end, args->gtt_end);
673a394b
EA
169 mutex_unlock(&dev->struct_mutex);
170
2021746e 171 return 0;
673a394b
EA
172}
173
5a125c3c
EA
174int
175i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 176 struct drm_file *file)
5a125c3c 177{
73aa808f 178 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 179 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
180 struct drm_i915_gem_object *obj;
181 size_t pinned;
5a125c3c 182
6299f992 183 pinned = 0;
73aa808f 184 mutex_lock(&dev->struct_mutex);
6c085a72 185 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
186 if (obj->pin_count)
187 pinned += obj->gtt_space->size;
73aa808f 188 mutex_unlock(&dev->struct_mutex);
5a125c3c 189
6299f992 190 args->aper_size = dev_priv->mm.gtt_total;
0206e353 191 args->aper_available_size = args->aper_size - pinned;
6299f992 192
5a125c3c
EA
193 return 0;
194}
195
ff72145b
DA
196static int
197i915_gem_create(struct drm_file *file,
198 struct drm_device *dev,
199 uint64_t size,
200 uint32_t *handle_p)
673a394b 201{
05394f39 202 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
203 int ret;
204 u32 handle;
673a394b 205
ff72145b 206 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
207 if (size == 0)
208 return -EINVAL;
673a394b
EA
209
210 /* Allocate the new object */
ff72145b 211 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
212 if (obj == NULL)
213 return -ENOMEM;
214
05394f39 215 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 216 if (ret) {
05394f39
CW
217 drm_gem_object_release(&obj->base);
218 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 219 kfree(obj);
673a394b 220 return ret;
1dfd9754 221 }
673a394b 222
202f2fef 223 /* drop reference from allocate - handle holds it now */
05394f39 224 drm_gem_object_unreference(&obj->base);
202f2fef
CW
225 trace_i915_gem_object_create(obj);
226
ff72145b 227 *handle_p = handle;
673a394b
EA
228 return 0;
229}
230
ff72145b
DA
231int
232i915_gem_dumb_create(struct drm_file *file,
233 struct drm_device *dev,
234 struct drm_mode_create_dumb *args)
235{
236 /* have to work out size/pitch and return them */
ed0291fd 237 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
238 args->size = args->pitch * args->height;
239 return i915_gem_create(file, dev,
240 args->size, &args->handle);
241}
242
243int i915_gem_dumb_destroy(struct drm_file *file,
244 struct drm_device *dev,
245 uint32_t handle)
246{
247 return drm_gem_handle_delete(file, handle);
248}
249
250/**
251 * Creates a new mm object and returns a handle to it.
252 */
253int
254i915_gem_create_ioctl(struct drm_device *dev, void *data,
255 struct drm_file *file)
256{
257 struct drm_i915_gem_create *args = data;
63ed2cb2 258
ff72145b
DA
259 return i915_gem_create(file, dev,
260 args->size, &args->handle);
261}
262
05394f39 263static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 264{
05394f39 265 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
266
267 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 268 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
269}
270
8461d226
DV
271static inline int
272__copy_to_user_swizzled(char __user *cpu_vaddr,
273 const char *gpu_vaddr, int gpu_offset,
274 int length)
275{
276 int ret, cpu_offset = 0;
277
278 while (length > 0) {
279 int cacheline_end = ALIGN(gpu_offset + 1, 64);
280 int this_length = min(cacheline_end - gpu_offset, length);
281 int swizzled_gpu_offset = gpu_offset ^ 64;
282
283 ret = __copy_to_user(cpu_vaddr + cpu_offset,
284 gpu_vaddr + swizzled_gpu_offset,
285 this_length);
286 if (ret)
287 return ret + length;
288
289 cpu_offset += this_length;
290 gpu_offset += this_length;
291 length -= this_length;
292 }
293
294 return 0;
295}
296
8c59967c 297static inline int
4f0c7cfb
BW
298__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
299 const char __user *cpu_vaddr,
8c59967c
DV
300 int length)
301{
302 int ret, cpu_offset = 0;
303
304 while (length > 0) {
305 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306 int this_length = min(cacheline_end - gpu_offset, length);
307 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
310 cpu_vaddr + cpu_offset,
311 this_length);
312 if (ret)
313 return ret + length;
314
315 cpu_offset += this_length;
316 gpu_offset += this_length;
317 length -= this_length;
318 }
319
320 return 0;
321}
322
d174bd64
DV
323/* Per-page copy function for the shmem pread fastpath.
324 * Flushes invalid cachelines before reading the target if
325 * needs_clflush is set. */
eb01459f 326static int
d174bd64
DV
327shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
328 char __user *user_data,
329 bool page_do_bit17_swizzling, bool needs_clflush)
330{
331 char *vaddr;
332 int ret;
333
e7e58eb5 334 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
335 return -EINVAL;
336
337 vaddr = kmap_atomic(page);
338 if (needs_clflush)
339 drm_clflush_virt_range(vaddr + shmem_page_offset,
340 page_length);
341 ret = __copy_to_user_inatomic(user_data,
342 vaddr + shmem_page_offset,
343 page_length);
344 kunmap_atomic(vaddr);
345
346 return ret;
347}
348
23c18c71
DV
349static void
350shmem_clflush_swizzled_range(char *addr, unsigned long length,
351 bool swizzled)
352{
e7e58eb5 353 if (unlikely(swizzled)) {
23c18c71
DV
354 unsigned long start = (unsigned long) addr;
355 unsigned long end = (unsigned long) addr + length;
356
357 /* For swizzling simply ensure that we always flush both
358 * channels. Lame, but simple and it works. Swizzled
359 * pwrite/pread is far from a hotpath - current userspace
360 * doesn't use it at all. */
361 start = round_down(start, 128);
362 end = round_up(end, 128);
363
364 drm_clflush_virt_range((void *)start, end - start);
365 } else {
366 drm_clflush_virt_range(addr, length);
367 }
368
369}
370
d174bd64
DV
371/* Only difference to the fast-path function is that this can handle bit17
372 * and uses non-atomic copy and kmap functions. */
373static int
374shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
375 char __user *user_data,
376 bool page_do_bit17_swizzling, bool needs_clflush)
377{
378 char *vaddr;
379 int ret;
380
381 vaddr = kmap(page);
382 if (needs_clflush)
23c18c71
DV
383 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
384 page_length,
385 page_do_bit17_swizzling);
d174bd64
DV
386
387 if (page_do_bit17_swizzling)
388 ret = __copy_to_user_swizzled(user_data,
389 vaddr, shmem_page_offset,
390 page_length);
391 else
392 ret = __copy_to_user(user_data,
393 vaddr + shmem_page_offset,
394 page_length);
395 kunmap(page);
396
397 return ret;
398}
399
eb01459f 400static int
dbf7bff0
DV
401i915_gem_shmem_pread(struct drm_device *dev,
402 struct drm_i915_gem_object *obj,
403 struct drm_i915_gem_pread *args,
404 struct drm_file *file)
eb01459f 405{
05394f39 406 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 407 char __user *user_data;
eb01459f 408 ssize_t remain;
8461d226 409 loff_t offset;
eb2c0c81 410 int shmem_page_offset, page_length, ret = 0;
8461d226 411 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 412 int hit_slowpath = 0;
96d79b52 413 int prefaulted = 0;
8489731c 414 int needs_clflush = 0;
692a576b 415 int release_page;
eb01459f 416
8461d226 417 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
418 remain = args->size;
419
8461d226 420 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 421
8489731c
DV
422 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
423 /* If we're not in the cpu read domain, set ourself into the gtt
424 * read domain and manually flush cachelines (if required). This
425 * optimizes for the case when the gpu will dirty the data
426 * anyway again before the next pread happens. */
427 if (obj->cache_level == I915_CACHE_NONE)
428 needs_clflush = 1;
6c085a72
CW
429 if (obj->gtt_space) {
430 ret = i915_gem_object_set_to_gtt_domain(obj, false);
431 if (ret)
432 return ret;
433 }
8489731c 434 }
eb01459f 435
8461d226 436 offset = args->offset;
eb01459f
EA
437
438 while (remain > 0) {
e5281ccd
CW
439 struct page *page;
440
eb01459f
EA
441 /* Operation in this page
442 *
eb01459f 443 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
444 * page_length = bytes to copy for this page
445 */
c8cbbb8b 446 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
447 page_length = remain;
448 if ((shmem_page_offset + page_length) > PAGE_SIZE)
449 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 450
692a576b
DV
451 if (obj->pages) {
452 page = obj->pages[offset >> PAGE_SHIFT];
453 release_page = 0;
454 } else {
455 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
456 if (IS_ERR(page)) {
457 ret = PTR_ERR(page);
458 goto out;
459 }
460 release_page = 1;
b65552f0 461 }
e5281ccd 462
8461d226
DV
463 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 (page_to_phys(page) & (1 << 17)) != 0;
465
d174bd64
DV
466 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 user_data, page_do_bit17_swizzling,
468 needs_clflush);
469 if (ret == 0)
470 goto next_page;
dbf7bff0
DV
471
472 hit_slowpath = 1;
692a576b 473 page_cache_get(page);
dbf7bff0
DV
474 mutex_unlock(&dev->struct_mutex);
475
96d79b52 476 if (!prefaulted) {
f56f821f 477 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
478 /* Userspace is tricking us, but we've already clobbered
479 * its pages with the prefault and promised to write the
480 * data up to the first fault. Hence ignore any errors
481 * and just continue. */
482 (void)ret;
483 prefaulted = 1;
484 }
eb01459f 485
d174bd64
DV
486 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487 user_data, page_do_bit17_swizzling,
488 needs_clflush);
eb01459f 489
dbf7bff0 490 mutex_lock(&dev->struct_mutex);
e5281ccd 491 page_cache_release(page);
dbf7bff0 492next_page:
e5281ccd 493 mark_page_accessed(page);
692a576b
DV
494 if (release_page)
495 page_cache_release(page);
e5281ccd 496
8461d226
DV
497 if (ret) {
498 ret = -EFAULT;
499 goto out;
500 }
501
eb01459f 502 remain -= page_length;
8461d226 503 user_data += page_length;
eb01459f
EA
504 offset += page_length;
505 }
506
4f27b75d 507out:
dbf7bff0
DV
508 if (hit_slowpath) {
509 /* Fixup: Kill any reinstated backing storage pages */
510 if (obj->madv == __I915_MADV_PURGED)
511 i915_gem_object_truncate(obj);
512 }
eb01459f
EA
513
514 return ret;
515}
516
673a394b
EA
517/**
518 * Reads data from the object referenced by handle.
519 *
520 * On error, the contents of *data are undefined.
521 */
522int
523i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 524 struct drm_file *file)
673a394b
EA
525{
526 struct drm_i915_gem_pread *args = data;
05394f39 527 struct drm_i915_gem_object *obj;
35b62a89 528 int ret = 0;
673a394b 529
51311d0a
CW
530 if (args->size == 0)
531 return 0;
532
533 if (!access_ok(VERIFY_WRITE,
534 (char __user *)(uintptr_t)args->data_ptr,
535 args->size))
536 return -EFAULT;
537
4f27b75d 538 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 539 if (ret)
4f27b75d 540 return ret;
673a394b 541
05394f39 542 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 543 if (&obj->base == NULL) {
1d7cfea1
CW
544 ret = -ENOENT;
545 goto unlock;
4f27b75d 546 }
673a394b 547
7dcd2499 548 /* Bounds check source. */
05394f39
CW
549 if (args->offset > obj->base.size ||
550 args->size > obj->base.size - args->offset) {
ce9d419d 551 ret = -EINVAL;
35b62a89 552 goto out;
ce9d419d
CW
553 }
554
1286ff73
DV
555 /* prime objects have no backing filp to GEM pread/pwrite
556 * pages from.
557 */
558 if (!obj->base.filp) {
559 ret = -EINVAL;
560 goto out;
561 }
562
db53a302
CW
563 trace_i915_gem_object_pread(obj, args->offset, args->size);
564
dbf7bff0 565 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 566
35b62a89 567out:
05394f39 568 drm_gem_object_unreference(&obj->base);
1d7cfea1 569unlock:
4f27b75d 570 mutex_unlock(&dev->struct_mutex);
eb01459f 571 return ret;
673a394b
EA
572}
573
0839ccb8
KP
574/* This is the fast write path which cannot handle
575 * page faults in the source data
9b7530cc 576 */
0839ccb8
KP
577
578static inline int
579fast_user_write(struct io_mapping *mapping,
580 loff_t page_base, int page_offset,
581 char __user *user_data,
582 int length)
9b7530cc 583{
4f0c7cfb
BW
584 void __iomem *vaddr_atomic;
585 void *vaddr;
0839ccb8 586 unsigned long unwritten;
9b7530cc 587
3e4d3af5 588 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
589 /* We can use the cpu mem copy function because this is X86. */
590 vaddr = (void __force*)vaddr_atomic + page_offset;
591 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 592 user_data, length);
3e4d3af5 593 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 594 return unwritten;
0839ccb8
KP
595}
596
3de09aa3
EA
597/**
598 * This is the fast pwrite path, where we copy the data directly from the
599 * user into the GTT, uncached.
600 */
673a394b 601static int
05394f39
CW
602i915_gem_gtt_pwrite_fast(struct drm_device *dev,
603 struct drm_i915_gem_object *obj,
3de09aa3 604 struct drm_i915_gem_pwrite *args,
05394f39 605 struct drm_file *file)
673a394b 606{
0839ccb8 607 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 608 ssize_t remain;
0839ccb8 609 loff_t offset, page_base;
673a394b 610 char __user *user_data;
935aaa69
DV
611 int page_offset, page_length, ret;
612
86a1ee26 613 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
614 if (ret)
615 goto out;
616
617 ret = i915_gem_object_set_to_gtt_domain(obj, true);
618 if (ret)
619 goto out_unpin;
620
621 ret = i915_gem_object_put_fence(obj);
622 if (ret)
623 goto out_unpin;
673a394b
EA
624
625 user_data = (char __user *) (uintptr_t) args->data_ptr;
626 remain = args->size;
673a394b 627
05394f39 628 offset = obj->gtt_offset + args->offset;
673a394b
EA
629
630 while (remain > 0) {
631 /* Operation in this page
632 *
0839ccb8
KP
633 * page_base = page offset within aperture
634 * page_offset = offset within page
635 * page_length = bytes to copy for this page
673a394b 636 */
c8cbbb8b
CW
637 page_base = offset & PAGE_MASK;
638 page_offset = offset_in_page(offset);
0839ccb8
KP
639 page_length = remain;
640 if ((page_offset + remain) > PAGE_SIZE)
641 page_length = PAGE_SIZE - page_offset;
642
0839ccb8 643 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
644 * source page isn't available. Return the error and we'll
645 * retry in the slow path.
0839ccb8 646 */
fbd5a26d 647 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
648 page_offset, user_data, page_length)) {
649 ret = -EFAULT;
650 goto out_unpin;
651 }
673a394b 652
0839ccb8
KP
653 remain -= page_length;
654 user_data += page_length;
655 offset += page_length;
673a394b 656 }
673a394b 657
935aaa69
DV
658out_unpin:
659 i915_gem_object_unpin(obj);
660out:
3de09aa3 661 return ret;
673a394b
EA
662}
663
d174bd64
DV
664/* Per-page copy function for the shmem pwrite fastpath.
665 * Flushes invalid cachelines before writing to the target if
666 * needs_clflush_before is set and flushes out any written cachelines after
667 * writing if needs_clflush is set. */
3043c60c 668static int
d174bd64
DV
669shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
670 char __user *user_data,
671 bool page_do_bit17_swizzling,
672 bool needs_clflush_before,
673 bool needs_clflush_after)
673a394b 674{
d174bd64 675 char *vaddr;
673a394b 676 int ret;
3de09aa3 677
e7e58eb5 678 if (unlikely(page_do_bit17_swizzling))
d174bd64 679 return -EINVAL;
3de09aa3 680
d174bd64
DV
681 vaddr = kmap_atomic(page);
682 if (needs_clflush_before)
683 drm_clflush_virt_range(vaddr + shmem_page_offset,
684 page_length);
685 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
686 user_data,
687 page_length);
688 if (needs_clflush_after)
689 drm_clflush_virt_range(vaddr + shmem_page_offset,
690 page_length);
691 kunmap_atomic(vaddr);
3de09aa3
EA
692
693 return ret;
694}
695
d174bd64
DV
696/* Only difference to the fast-path function is that this can handle bit17
697 * and uses non-atomic copy and kmap functions. */
3043c60c 698static int
d174bd64
DV
699shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
700 char __user *user_data,
701 bool page_do_bit17_swizzling,
702 bool needs_clflush_before,
703 bool needs_clflush_after)
673a394b 704{
d174bd64
DV
705 char *vaddr;
706 int ret;
e5281ccd 707
d174bd64 708 vaddr = kmap(page);
e7e58eb5 709 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
710 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
711 page_length,
712 page_do_bit17_swizzling);
d174bd64
DV
713 if (page_do_bit17_swizzling)
714 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
715 user_data,
716 page_length);
d174bd64
DV
717 else
718 ret = __copy_from_user(vaddr + shmem_page_offset,
719 user_data,
720 page_length);
721 if (needs_clflush_after)
23c18c71
DV
722 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
723 page_length,
724 page_do_bit17_swizzling);
d174bd64 725 kunmap(page);
40123c1f 726
d174bd64 727 return ret;
40123c1f
EA
728}
729
40123c1f 730static int
e244a443
DV
731i915_gem_shmem_pwrite(struct drm_device *dev,
732 struct drm_i915_gem_object *obj,
733 struct drm_i915_gem_pwrite *args,
734 struct drm_file *file)
40123c1f 735{
05394f39 736 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 737 ssize_t remain;
8c59967c
DV
738 loff_t offset;
739 char __user *user_data;
eb2c0c81 740 int shmem_page_offset, page_length, ret = 0;
8c59967c 741 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 742 int hit_slowpath = 0;
58642885
DV
743 int needs_clflush_after = 0;
744 int needs_clflush_before = 0;
692a576b 745 int release_page;
40123c1f 746
8c59967c 747 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
748 remain = args->size;
749
8c59967c 750 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 751
58642885
DV
752 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
753 /* If we're not in the cpu write domain, set ourself into the gtt
754 * write domain and manually flush cachelines (if required). This
755 * optimizes for the case when the gpu will use the data
756 * right away and we therefore have to clflush anyway. */
757 if (obj->cache_level == I915_CACHE_NONE)
758 needs_clflush_after = 1;
6c085a72
CW
759 if (obj->gtt_space) {
760 ret = i915_gem_object_set_to_gtt_domain(obj, true);
761 if (ret)
762 return ret;
763 }
58642885
DV
764 }
765 /* Same trick applies for invalidate partially written cachelines before
766 * writing. */
767 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
768 && obj->cache_level == I915_CACHE_NONE)
769 needs_clflush_before = 1;
770
673a394b 771 offset = args->offset;
05394f39 772 obj->dirty = 1;
673a394b 773
40123c1f 774 while (remain > 0) {
e5281ccd 775 struct page *page;
58642885 776 int partial_cacheline_write;
e5281ccd 777
40123c1f
EA
778 /* Operation in this page
779 *
40123c1f 780 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
781 * page_length = bytes to copy for this page
782 */
c8cbbb8b 783 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
784
785 page_length = remain;
786 if ((shmem_page_offset + page_length) > PAGE_SIZE)
787 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 788
58642885
DV
789 /* If we don't overwrite a cacheline completely we need to be
790 * careful to have up-to-date data by first clflushing. Don't
791 * overcomplicate things and flush the entire patch. */
792 partial_cacheline_write = needs_clflush_before &&
793 ((shmem_page_offset | page_length)
794 & (boot_cpu_data.x86_clflush_size - 1));
795
692a576b
DV
796 if (obj->pages) {
797 page = obj->pages[offset >> PAGE_SHIFT];
798 release_page = 0;
799 } else {
800 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
801 if (IS_ERR(page)) {
802 ret = PTR_ERR(page);
803 goto out;
804 }
805 release_page = 1;
e5281ccd
CW
806 }
807
8c59967c
DV
808 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
809 (page_to_phys(page) & (1 << 17)) != 0;
810
d174bd64
DV
811 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
812 user_data, page_do_bit17_swizzling,
813 partial_cacheline_write,
814 needs_clflush_after);
815 if (ret == 0)
816 goto next_page;
e244a443
DV
817
818 hit_slowpath = 1;
692a576b 819 page_cache_get(page);
e244a443
DV
820 mutex_unlock(&dev->struct_mutex);
821
d174bd64
DV
822 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
823 user_data, page_do_bit17_swizzling,
824 partial_cacheline_write,
825 needs_clflush_after);
40123c1f 826
e244a443 827 mutex_lock(&dev->struct_mutex);
692a576b 828 page_cache_release(page);
e244a443 829next_page:
e5281ccd
CW
830 set_page_dirty(page);
831 mark_page_accessed(page);
692a576b
DV
832 if (release_page)
833 page_cache_release(page);
e5281ccd 834
8c59967c
DV
835 if (ret) {
836 ret = -EFAULT;
837 goto out;
838 }
839
40123c1f 840 remain -= page_length;
8c59967c 841 user_data += page_length;
40123c1f 842 offset += page_length;
673a394b
EA
843 }
844
fbd5a26d 845out:
e244a443
DV
846 if (hit_slowpath) {
847 /* Fixup: Kill any reinstated backing storage pages */
848 if (obj->madv == __I915_MADV_PURGED)
849 i915_gem_object_truncate(obj);
850 /* and flush dirty cachelines in case the object isn't in the cpu write
851 * domain anymore. */
852 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
853 i915_gem_clflush_object(obj);
854 intel_gtt_chipset_flush();
855 }
8c59967c 856 }
673a394b 857
58642885
DV
858 if (needs_clflush_after)
859 intel_gtt_chipset_flush();
860
40123c1f 861 return ret;
673a394b
EA
862}
863
864/**
865 * Writes data to the object referenced by handle.
866 *
867 * On error, the contents of the buffer that were to be modified are undefined.
868 */
869int
870i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 871 struct drm_file *file)
673a394b
EA
872{
873 struct drm_i915_gem_pwrite *args = data;
05394f39 874 struct drm_i915_gem_object *obj;
51311d0a
CW
875 int ret;
876
877 if (args->size == 0)
878 return 0;
879
880 if (!access_ok(VERIFY_READ,
881 (char __user *)(uintptr_t)args->data_ptr,
882 args->size))
883 return -EFAULT;
884
f56f821f
DV
885 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
886 args->size);
51311d0a
CW
887 if (ret)
888 return -EFAULT;
673a394b 889
fbd5a26d 890 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 891 if (ret)
fbd5a26d 892 return ret;
1d7cfea1 893
05394f39 894 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 895 if (&obj->base == NULL) {
1d7cfea1
CW
896 ret = -ENOENT;
897 goto unlock;
fbd5a26d 898 }
673a394b 899
7dcd2499 900 /* Bounds check destination. */
05394f39
CW
901 if (args->offset > obj->base.size ||
902 args->size > obj->base.size - args->offset) {
ce9d419d 903 ret = -EINVAL;
35b62a89 904 goto out;
ce9d419d
CW
905 }
906
1286ff73
DV
907 /* prime objects have no backing filp to GEM pread/pwrite
908 * pages from.
909 */
910 if (!obj->base.filp) {
911 ret = -EINVAL;
912 goto out;
913 }
914
db53a302
CW
915 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
916
935aaa69 917 ret = -EFAULT;
673a394b
EA
918 /* We can only do the GTT pwrite on untiled buffers, as otherwise
919 * it would end up going through the fenced access, and we'll get
920 * different detiling behavior between reading and writing.
921 * pread/pwrite currently are reading and writing from the CPU
922 * perspective, requiring manual detiling by the client.
923 */
5c0480f2 924 if (obj->phys_obj) {
fbd5a26d 925 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
926 goto out;
927 }
928
86a1ee26 929 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 930 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 931 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 932 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
933 /* Note that the gtt paths might fail with non-page-backed user
934 * pointers (e.g. gtt mappings when moving data between
935 * textures). Fallback to the shmem path in that case. */
fbd5a26d 936 }
673a394b 937
86a1ee26 938 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 939 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 940
35b62a89 941out:
05394f39 942 drm_gem_object_unreference(&obj->base);
1d7cfea1 943unlock:
fbd5a26d 944 mutex_unlock(&dev->struct_mutex);
673a394b
EA
945 return ret;
946}
947
948/**
2ef7eeaa
EA
949 * Called when user space prepares to use an object with the CPU, either
950 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
951 */
952int
953i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 954 struct drm_file *file)
673a394b
EA
955{
956 struct drm_i915_gem_set_domain *args = data;
05394f39 957 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
958 uint32_t read_domains = args->read_domains;
959 uint32_t write_domain = args->write_domain;
673a394b
EA
960 int ret;
961
2ef7eeaa 962 /* Only handle setting domains to types used by the CPU. */
21d509e3 963 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
964 return -EINVAL;
965
21d509e3 966 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
967 return -EINVAL;
968
969 /* Having something in the write domain implies it's in the read
970 * domain, and only that read domain. Enforce that in the request.
971 */
972 if (write_domain != 0 && read_domains != write_domain)
973 return -EINVAL;
974
76c1dec1 975 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 976 if (ret)
76c1dec1 977 return ret;
1d7cfea1 978
05394f39 979 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 980 if (&obj->base == NULL) {
1d7cfea1
CW
981 ret = -ENOENT;
982 goto unlock;
76c1dec1 983 }
673a394b 984
2ef7eeaa
EA
985 if (read_domains & I915_GEM_DOMAIN_GTT) {
986 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
987
988 /* Silently promote "you're not bound, there was nothing to do"
989 * to success, since the client was just asking us to
990 * make sure everything was done.
991 */
992 if (ret == -EINVAL)
993 ret = 0;
2ef7eeaa 994 } else {
e47c68e9 995 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
996 }
997
05394f39 998 drm_gem_object_unreference(&obj->base);
1d7cfea1 999unlock:
673a394b
EA
1000 mutex_unlock(&dev->struct_mutex);
1001 return ret;
1002}
1003
1004/**
1005 * Called when user space has done writes to this buffer
1006 */
1007int
1008i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1009 struct drm_file *file)
673a394b
EA
1010{
1011 struct drm_i915_gem_sw_finish *args = data;
05394f39 1012 struct drm_i915_gem_object *obj;
673a394b
EA
1013 int ret = 0;
1014
76c1dec1 1015 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1016 if (ret)
76c1dec1 1017 return ret;
1d7cfea1 1018
05394f39 1019 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1020 if (&obj->base == NULL) {
1d7cfea1
CW
1021 ret = -ENOENT;
1022 goto unlock;
673a394b
EA
1023 }
1024
673a394b 1025 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1026 if (obj->pin_count)
e47c68e9
EA
1027 i915_gem_object_flush_cpu_write_domain(obj);
1028
05394f39 1029 drm_gem_object_unreference(&obj->base);
1d7cfea1 1030unlock:
673a394b
EA
1031 mutex_unlock(&dev->struct_mutex);
1032 return ret;
1033}
1034
1035/**
1036 * Maps the contents of an object, returning the address it is mapped
1037 * into.
1038 *
1039 * While the mapping holds a reference on the contents of the object, it doesn't
1040 * imply a ref on the object itself.
1041 */
1042int
1043i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1044 struct drm_file *file)
673a394b
EA
1045{
1046 struct drm_i915_gem_mmap *args = data;
1047 struct drm_gem_object *obj;
673a394b
EA
1048 unsigned long addr;
1049
05394f39 1050 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1051 if (obj == NULL)
bf79cb91 1052 return -ENOENT;
673a394b 1053
1286ff73
DV
1054 /* prime objects have no backing filp to GEM mmap
1055 * pages from.
1056 */
1057 if (!obj->filp) {
1058 drm_gem_object_unreference_unlocked(obj);
1059 return -EINVAL;
1060 }
1061
6be5ceb0 1062 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1063 PROT_READ | PROT_WRITE, MAP_SHARED,
1064 args->offset);
bc9025bd 1065 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1066 if (IS_ERR((void *)addr))
1067 return addr;
1068
1069 args->addr_ptr = (uint64_t) addr;
1070
1071 return 0;
1072}
1073
de151cf6
JB
1074/**
1075 * i915_gem_fault - fault a page into the GTT
1076 * vma: VMA in question
1077 * vmf: fault info
1078 *
1079 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1080 * from userspace. The fault handler takes care of binding the object to
1081 * the GTT (if needed), allocating and programming a fence register (again,
1082 * only if needed based on whether the old reg is still valid or the object
1083 * is tiled) and inserting a new PTE into the faulting process.
1084 *
1085 * Note that the faulting process may involve evicting existing objects
1086 * from the GTT and/or fence registers to make room. So performance may
1087 * suffer if the GTT working set is large or there are few fence registers
1088 * left.
1089 */
1090int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1091{
05394f39
CW
1092 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1093 struct drm_device *dev = obj->base.dev;
7d1c4804 1094 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1095 pgoff_t page_offset;
1096 unsigned long pfn;
1097 int ret = 0;
0f973f27 1098 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1099
1100 /* We don't use vmf->pgoff since that has the fake offset */
1101 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1102 PAGE_SHIFT;
1103
d9bc7e9f
CW
1104 ret = i915_mutex_lock_interruptible(dev);
1105 if (ret)
1106 goto out;
a00b10c3 1107
db53a302
CW
1108 trace_i915_gem_object_fault(obj, page_offset, true, write);
1109
d9bc7e9f 1110 /* Now bind it into the GTT if needed */
919926ae
CW
1111 if (!obj->map_and_fenceable) {
1112 ret = i915_gem_object_unbind(obj);
1113 if (ret)
1114 goto unlock;
a00b10c3 1115 }
05394f39 1116 if (!obj->gtt_space) {
86a1ee26 1117 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
c715089f
CW
1118 if (ret)
1119 goto unlock;
de151cf6 1120
e92d03bf
EA
1121 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1122 if (ret)
1123 goto unlock;
1124 }
4a684a41 1125
74898d7e
DV
1126 if (!obj->has_global_gtt_mapping)
1127 i915_gem_gtt_bind_object(obj, obj->cache_level);
1128
06d98131 1129 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1130 if (ret)
1131 goto unlock;
de151cf6 1132
05394f39
CW
1133 if (i915_gem_object_is_inactive(obj))
1134 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1135
6299f992
CW
1136 obj->fault_mappable = true;
1137
dd2757f8 1138 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1139 page_offset;
1140
1141 /* Finally, remap it using the new GTT offset */
1142 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1143unlock:
de151cf6 1144 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1145out:
de151cf6 1146 switch (ret) {
d9bc7e9f 1147 case -EIO:
a9340cca
DV
1148 /* If this -EIO is due to a gpu hang, give the reset code a
1149 * chance to clean up the mess. Otherwise return the proper
1150 * SIGBUS. */
1151 if (!atomic_read(&dev_priv->mm.wedged))
1152 return VM_FAULT_SIGBUS;
045e769a 1153 case -EAGAIN:
d9bc7e9f
CW
1154 /* Give the error handler a chance to run and move the
1155 * objects off the GPU active list. Next time we service the
1156 * fault, we should be able to transition the page into the
1157 * GTT without touching the GPU (and so avoid further
1158 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1159 * with coherency, just lost writes.
1160 */
045e769a 1161 set_need_resched();
c715089f
CW
1162 case 0:
1163 case -ERESTARTSYS:
bed636ab 1164 case -EINTR:
c715089f 1165 return VM_FAULT_NOPAGE;
de151cf6 1166 case -ENOMEM:
de151cf6 1167 return VM_FAULT_OOM;
de151cf6 1168 default:
c715089f 1169 return VM_FAULT_SIGBUS;
de151cf6
JB
1170 }
1171}
1172
901782b2
CW
1173/**
1174 * i915_gem_release_mmap - remove physical page mappings
1175 * @obj: obj in question
1176 *
af901ca1 1177 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1178 * relinquish ownership of the pages back to the system.
1179 *
1180 * It is vital that we remove the page mapping if we have mapped a tiled
1181 * object through the GTT and then lose the fence register due to
1182 * resource pressure. Similarly if the object has been moved out of the
1183 * aperture, than pages mapped into userspace must be revoked. Removing the
1184 * mapping will then trigger a page fault on the next user access, allowing
1185 * fixup by i915_gem_fault().
1186 */
d05ca301 1187void
05394f39 1188i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1189{
6299f992
CW
1190 if (!obj->fault_mappable)
1191 return;
901782b2 1192
f6e47884
CW
1193 if (obj->base.dev->dev_mapping)
1194 unmap_mapping_range(obj->base.dev->dev_mapping,
1195 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1196 obj->base.size, 1);
fb7d516a 1197
6299f992 1198 obj->fault_mappable = false;
901782b2
CW
1199}
1200
92b88aeb 1201static uint32_t
e28f8711 1202i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1203{
e28f8711 1204 uint32_t gtt_size;
92b88aeb
CW
1205
1206 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1207 tiling_mode == I915_TILING_NONE)
1208 return size;
92b88aeb
CW
1209
1210 /* Previous chips need a power-of-two fence region when tiling */
1211 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1212 gtt_size = 1024*1024;
92b88aeb 1213 else
e28f8711 1214 gtt_size = 512*1024;
92b88aeb 1215
e28f8711
CW
1216 while (gtt_size < size)
1217 gtt_size <<= 1;
92b88aeb 1218
e28f8711 1219 return gtt_size;
92b88aeb
CW
1220}
1221
de151cf6
JB
1222/**
1223 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1224 * @obj: object to check
1225 *
1226 * Return the required GTT alignment for an object, taking into account
5e783301 1227 * potential fence register mapping.
de151cf6
JB
1228 */
1229static uint32_t
e28f8711
CW
1230i915_gem_get_gtt_alignment(struct drm_device *dev,
1231 uint32_t size,
1232 int tiling_mode)
de151cf6 1233{
de151cf6
JB
1234 /*
1235 * Minimum alignment is 4k (GTT page size), but might be greater
1236 * if a fence register is needed for the object.
1237 */
a00b10c3 1238 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1239 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1240 return 4096;
1241
a00b10c3
CW
1242 /*
1243 * Previous chips need to be aligned to the size of the smallest
1244 * fence register that can contain the object.
1245 */
e28f8711 1246 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1247}
1248
5e783301
DV
1249/**
1250 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1251 * unfenced object
e28f8711
CW
1252 * @dev: the device
1253 * @size: size of the object
1254 * @tiling_mode: tiling mode of the object
5e783301
DV
1255 *
1256 * Return the required GTT alignment for an object, only taking into account
1257 * unfenced tiled surface requirements.
1258 */
467cffba 1259uint32_t
e28f8711
CW
1260i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1261 uint32_t size,
1262 int tiling_mode)
5e783301 1263{
5e783301
DV
1264 /*
1265 * Minimum alignment is 4k (GTT page size) for sane hw.
1266 */
1267 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1268 tiling_mode == I915_TILING_NONE)
5e783301
DV
1269 return 4096;
1270
e28f8711
CW
1271 /* Previous hardware however needs to be aligned to a power-of-two
1272 * tile height. The simplest method for determining this is to reuse
1273 * the power-of-tile object size.
5e783301 1274 */
e28f8711 1275 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1276}
1277
d8cb5086
CW
1278static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1279{
1280 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1281 int ret;
1282
1283 if (obj->base.map_list.map)
1284 return 0;
1285
1286 ret = drm_gem_create_mmap_offset(&obj->base);
1287 if (ret != -ENOSPC)
1288 return ret;
1289
1290 /* Badly fragmented mmap space? The only way we can recover
1291 * space is by destroying unwanted objects. We can't randomly release
1292 * mmap_offsets as userspace expects them to be persistent for the
1293 * lifetime of the objects. The closest we can is to release the
1294 * offsets on purgeable objects by truncating it and marking it purged,
1295 * which prevents userspace from ever using that object again.
1296 */
1297 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1298 ret = drm_gem_create_mmap_offset(&obj->base);
1299 if (ret != -ENOSPC)
1300 return ret;
1301
1302 i915_gem_shrink_all(dev_priv);
1303 return drm_gem_create_mmap_offset(&obj->base);
1304}
1305
1306static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1307{
1308 if (!obj->base.map_list.map)
1309 return;
1310
1311 drm_gem_free_mmap_offset(&obj->base);
1312}
1313
de151cf6 1314int
ff72145b
DA
1315i915_gem_mmap_gtt(struct drm_file *file,
1316 struct drm_device *dev,
1317 uint32_t handle,
1318 uint64_t *offset)
de151cf6 1319{
da761a6e 1320 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1321 struct drm_i915_gem_object *obj;
de151cf6
JB
1322 int ret;
1323
76c1dec1 1324 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1325 if (ret)
76c1dec1 1326 return ret;
de151cf6 1327
ff72145b 1328 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1329 if (&obj->base == NULL) {
1d7cfea1
CW
1330 ret = -ENOENT;
1331 goto unlock;
1332 }
de151cf6 1333
05394f39 1334 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1335 ret = -E2BIG;
ff56b0bc 1336 goto out;
da761a6e
CW
1337 }
1338
05394f39 1339 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1340 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1341 ret = -EINVAL;
1342 goto out;
ab18282d
CW
1343 }
1344
d8cb5086
CW
1345 ret = i915_gem_object_create_mmap_offset(obj);
1346 if (ret)
1347 goto out;
de151cf6 1348
ff72145b 1349 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1350
1d7cfea1 1351out:
05394f39 1352 drm_gem_object_unreference(&obj->base);
1d7cfea1 1353unlock:
de151cf6 1354 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1355 return ret;
de151cf6
JB
1356}
1357
ff72145b
DA
1358/**
1359 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1360 * @dev: DRM device
1361 * @data: GTT mapping ioctl data
1362 * @file: GEM object info
1363 *
1364 * Simply returns the fake offset to userspace so it can mmap it.
1365 * The mmap call will end up in drm_gem_mmap(), which will set things
1366 * up so we can get faults in the handler above.
1367 *
1368 * The fault handler will take care of binding the object into the GTT
1369 * (since it may have been evicted to make room for something), allocating
1370 * a fence register, and mapping the appropriate aperture address into
1371 * userspace.
1372 */
1373int
1374i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1375 struct drm_file *file)
1376{
1377 struct drm_i915_gem_mmap_gtt *args = data;
1378
ff72145b
DA
1379 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1380}
1381
225067ee
DV
1382/* Immediately discard the backing storage */
1383static void
1384i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1385{
1386 struct inode *inode;
1387
1388 /* Our goal here is to return as much of the memory as
1389 * is possible back to the system as we are called from OOM.
1390 * To do this we must instruct the shmfs to drop all of its
1391 * backing pages, *now*.
1392 */
1393 inode = obj->base.filp->f_path.dentry->d_inode;
1394 shmem_truncate_range(inode, 0, (loff_t)-1);
1395
d8cb5086 1396 i915_gem_object_free_mmap_offset(obj);
225067ee
DV
1397
1398 obj->madv = __I915_MADV_PURGED;
1399}
1400
1401static inline int
1402i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1403{
1404 return obj->madv == I915_MADV_DONTNEED;
1405}
1406
6c085a72 1407static int
225067ee
DV
1408i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1409{
1410 int page_count = obj->base.size / PAGE_SIZE;
6c085a72 1411 int ret, i;
225067ee 1412
c4670ad0
CW
1413 BUG_ON(obj->gtt_space);
1414
6c085a72
CW
1415 if (obj->pages == NULL)
1416 return 0;
225067ee 1417
6c085a72 1418 BUG_ON(obj->gtt_space);
225067ee
DV
1419 BUG_ON(obj->madv == __I915_MADV_PURGED);
1420
6c085a72
CW
1421 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1422 if (ret) {
1423 /* In the event of a disaster, abandon all caches and
1424 * hope for the best.
1425 */
1426 WARN_ON(ret != -EIO);
1427 i915_gem_clflush_object(obj);
1428 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1429 }
1430
225067ee
DV
1431 if (i915_gem_object_needs_bit17_swizzle(obj))
1432 i915_gem_object_save_bit_17_swizzle(obj);
1433
1434 if (obj->madv == I915_MADV_DONTNEED)
1435 obj->dirty = 0;
1436
1437 for (i = 0; i < page_count; i++) {
1438 if (obj->dirty)
1439 set_page_dirty(obj->pages[i]);
1440
1441 if (obj->madv == I915_MADV_WILLNEED)
1442 mark_page_accessed(obj->pages[i]);
1443
1444 page_cache_release(obj->pages[i]);
1445 }
1446 obj->dirty = 0;
1447
1448 drm_free_large(obj->pages);
1449 obj->pages = NULL;
6c085a72
CW
1450
1451 list_del(&obj->gtt_list);
1452
1453 if (i915_gem_object_is_purgeable(obj))
1454 i915_gem_object_truncate(obj);
1455
1456 return 0;
1457}
1458
1459static long
1460i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1461{
1462 struct drm_i915_gem_object *obj, *next;
1463 long count = 0;
1464
1465 list_for_each_entry_safe(obj, next,
1466 &dev_priv->mm.unbound_list,
1467 gtt_list) {
1468 if (i915_gem_object_is_purgeable(obj) &&
1469 i915_gem_object_put_pages_gtt(obj) == 0) {
1470 count += obj->base.size >> PAGE_SHIFT;
1471 if (count >= target)
1472 return count;
1473 }
1474 }
1475
1476 list_for_each_entry_safe(obj, next,
1477 &dev_priv->mm.inactive_list,
1478 mm_list) {
1479 if (i915_gem_object_is_purgeable(obj) &&
1480 i915_gem_object_unbind(obj) == 0 &&
1481 i915_gem_object_put_pages_gtt(obj) == 0) {
1482 count += obj->base.size >> PAGE_SHIFT;
1483 if (count >= target)
1484 return count;
1485 }
1486 }
1487
1488 return count;
1489}
1490
1491static void
1492i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1493{
1494 struct drm_i915_gem_object *obj, *next;
1495
1496 i915_gem_evict_everything(dev_priv->dev);
1497
1498 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1499 i915_gem_object_put_pages_gtt(obj);
225067ee
DV
1500}
1501
1286ff73 1502int
6c085a72 1503i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1504{
6c085a72 1505 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1506 int page_count, i;
1507 struct address_space *mapping;
e5281ccd 1508 struct page *page;
6c085a72 1509 gfp_t gfp;
e5281ccd 1510
1286ff73
DV
1511 if (obj->pages || obj->sg_table)
1512 return 0;
1513
6c085a72
CW
1514 /* Assert that the object is not currently in any GPU domain. As it
1515 * wasn't in the GTT, there shouldn't be any way it could have been in
1516 * a GPU cache
1517 */
1518 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1519 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1520
e5281ccd
CW
1521 /* Get the list of pages out of our struct file. They'll be pinned
1522 * at this point until we release them.
1523 */
05394f39 1524 page_count = obj->base.size / PAGE_SIZE;
05394f39
CW
1525 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1526 if (obj->pages == NULL)
e5281ccd
CW
1527 return -ENOMEM;
1528
6c085a72
CW
1529 /* Fail silently without starting the shrinker */
1530 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1531 gfp = mapping_gfp_mask(mapping);
1532 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1533 gfp &= ~(__GFP_IO | __GFP_WAIT);
e5281ccd 1534 for (i = 0; i < page_count; i++) {
6c085a72
CW
1535 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1536 if (IS_ERR(page)) {
1537 i915_gem_purge(dev_priv, page_count);
1538 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1539 }
1540 if (IS_ERR(page)) {
1541 /* We've tried hard to allocate the memory by reaping
1542 * our own buffer, now let the real VM do its job and
1543 * go down in flames if truly OOM.
1544 */
1545 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1546 gfp |= __GFP_IO | __GFP_WAIT;
1547
1548 i915_gem_shrink_all(dev_priv);
1549 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1550 if (IS_ERR(page))
1551 goto err_pages;
1552
1553 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1554 gfp &= ~(__GFP_IO | __GFP_WAIT);
1555 }
e5281ccd 1556
05394f39 1557 obj->pages[i] = page;
e5281ccd
CW
1558 }
1559
6dacfd2f 1560 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1561 i915_gem_object_do_bit_17_swizzle(obj);
1562
6c085a72 1563 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
e5281ccd
CW
1564 return 0;
1565
1566err_pages:
1567 while (i--)
05394f39 1568 page_cache_release(obj->pages[i]);
e5281ccd 1569
05394f39
CW
1570 drm_free_large(obj->pages);
1571 obj->pages = NULL;
e5281ccd
CW
1572 return PTR_ERR(page);
1573}
1574
54cf91dc 1575void
05394f39 1576i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1577 struct intel_ring_buffer *ring,
1578 u32 seqno)
673a394b 1579{
05394f39 1580 struct drm_device *dev = obj->base.dev;
69dc4987 1581 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1582
852835f3 1583 BUG_ON(ring == NULL);
05394f39 1584 obj->ring = ring;
673a394b
EA
1585
1586 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1587 if (!obj->active) {
1588 drm_gem_object_reference(&obj->base);
1589 obj->active = 1;
673a394b 1590 }
e35a41de 1591
673a394b 1592 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1593 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1594 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1595
0201f1ec 1596 obj->last_read_seqno = seqno;
caea7476 1597
7dd49065 1598 if (obj->fenced_gpu_access) {
caea7476 1599 obj->last_fenced_seqno = seqno;
caea7476 1600
7dd49065
CW
1601 /* Bump MRU to take account of the delayed flush */
1602 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1603 struct drm_i915_fence_reg *reg;
1604
1605 reg = &dev_priv->fence_regs[obj->fence_reg];
1606 list_move_tail(&reg->lru_list,
1607 &dev_priv->mm.fence_list);
1608 }
caea7476
CW
1609 }
1610}
1611
caea7476
CW
1612static void
1613i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1614{
1615 struct drm_device *dev = obj->base.dev;
1616 struct drm_i915_private *dev_priv = dev->dev_private;
1617
65ce3027 1618 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
caea7476 1619 BUG_ON(!obj->active);
65ce3027 1620
f047e395
CW
1621 if (obj->pin_count) /* are we a framebuffer? */
1622 intel_mark_fb_idle(obj);
1623
1624 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1625
65ce3027 1626 list_del_init(&obj->ring_list);
caea7476
CW
1627 obj->ring = NULL;
1628
65ce3027
CW
1629 obj->last_read_seqno = 0;
1630 obj->last_write_seqno = 0;
1631 obj->base.write_domain = 0;
1632
1633 obj->last_fenced_seqno = 0;
caea7476 1634 obj->fenced_gpu_access = false;
caea7476
CW
1635
1636 obj->active = 0;
1637 drm_gem_object_unreference(&obj->base);
1638
1639 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1640}
673a394b 1641
53d227f2
DV
1642static u32
1643i915_gem_get_seqno(struct drm_device *dev)
1644{
1645 drm_i915_private_t *dev_priv = dev->dev_private;
1646 u32 seqno = dev_priv->next_seqno;
1647
1648 /* reserve 0 for non-seqno */
1649 if (++dev_priv->next_seqno == 0)
1650 dev_priv->next_seqno = 1;
1651
1652 return seqno;
1653}
1654
1655u32
1656i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1657{
1658 if (ring->outstanding_lazy_request == 0)
1659 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1660
1661 return ring->outstanding_lazy_request;
1662}
1663
3cce469c 1664int
db53a302 1665i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1666 struct drm_file *file,
db53a302 1667 struct drm_i915_gem_request *request)
673a394b 1668{
db53a302 1669 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1670 uint32_t seqno;
a71d8d94 1671 u32 request_ring_position;
673a394b 1672 int was_empty;
3cce469c
CW
1673 int ret;
1674
cc889e0f
DV
1675 /*
1676 * Emit any outstanding flushes - execbuf can fail to emit the flush
1677 * after having emitted the batchbuffer command. Hence we need to fix
1678 * things up similar to emitting the lazy request. The difference here
1679 * is that the flush _must_ happen before the next request, no matter
1680 * what.
1681 */
a7b9761d
CW
1682 ret = intel_ring_flush_all_caches(ring);
1683 if (ret)
1684 return ret;
cc889e0f 1685
3bb73aba
CW
1686 if (request == NULL) {
1687 request = kmalloc(sizeof(*request), GFP_KERNEL);
1688 if (request == NULL)
1689 return -ENOMEM;
1690 }
1691
53d227f2 1692 seqno = i915_gem_next_request_seqno(ring);
673a394b 1693
a71d8d94
CW
1694 /* Record the position of the start of the request so that
1695 * should we detect the updated seqno part-way through the
1696 * GPU processing the request, we never over-estimate the
1697 * position of the head.
1698 */
1699 request_ring_position = intel_ring_get_tail(ring);
1700
3cce469c 1701 ret = ring->add_request(ring, &seqno);
3bb73aba
CW
1702 if (ret) {
1703 kfree(request);
1704 return ret;
1705 }
673a394b 1706
db53a302 1707 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1708
1709 request->seqno = seqno;
852835f3 1710 request->ring = ring;
a71d8d94 1711 request->tail = request_ring_position;
673a394b 1712 request->emitted_jiffies = jiffies;
852835f3
ZN
1713 was_empty = list_empty(&ring->request_list);
1714 list_add_tail(&request->list, &ring->request_list);
3bb73aba 1715 request->file_priv = NULL;
852835f3 1716
db53a302
CW
1717 if (file) {
1718 struct drm_i915_file_private *file_priv = file->driver_priv;
1719
1c25595f 1720 spin_lock(&file_priv->mm.lock);
f787a5f5 1721 request->file_priv = file_priv;
b962442e 1722 list_add_tail(&request->client_list,
f787a5f5 1723 &file_priv->mm.request_list);
1c25595f 1724 spin_unlock(&file_priv->mm.lock);
b962442e 1725 }
673a394b 1726
5391d0cf 1727 ring->outstanding_lazy_request = 0;
db53a302 1728
f65d9421 1729 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1730 if (i915_enable_hangcheck) {
1731 mod_timer(&dev_priv->hangcheck_timer,
1732 jiffies +
1733 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1734 }
f047e395 1735 if (was_empty) {
b3b079db
CW
1736 queue_delayed_work(dev_priv->wq,
1737 &dev_priv->mm.retire_work, HZ);
f047e395
CW
1738 intel_mark_busy(dev_priv->dev);
1739 }
f65d9421 1740 }
cc889e0f 1741
3cce469c 1742 return 0;
673a394b
EA
1743}
1744
f787a5f5
CW
1745static inline void
1746i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1747{
1c25595f 1748 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1749
1c25595f
CW
1750 if (!file_priv)
1751 return;
1c5d22f7 1752
1c25595f 1753 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1754 if (request->file_priv) {
1755 list_del(&request->client_list);
1756 request->file_priv = NULL;
1757 }
1c25595f 1758 spin_unlock(&file_priv->mm.lock);
673a394b 1759}
673a394b 1760
dfaae392
CW
1761static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1762 struct intel_ring_buffer *ring)
9375e446 1763{
dfaae392
CW
1764 while (!list_empty(&ring->request_list)) {
1765 struct drm_i915_gem_request *request;
673a394b 1766
dfaae392
CW
1767 request = list_first_entry(&ring->request_list,
1768 struct drm_i915_gem_request,
1769 list);
de151cf6 1770
dfaae392 1771 list_del(&request->list);
f787a5f5 1772 i915_gem_request_remove_from_client(request);
dfaae392
CW
1773 kfree(request);
1774 }
673a394b 1775
dfaae392 1776 while (!list_empty(&ring->active_list)) {
05394f39 1777 struct drm_i915_gem_object *obj;
9375e446 1778
05394f39
CW
1779 obj = list_first_entry(&ring->active_list,
1780 struct drm_i915_gem_object,
1781 ring_list);
9375e446 1782
05394f39 1783 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1784 }
1785}
1786
312817a3
CW
1787static void i915_gem_reset_fences(struct drm_device *dev)
1788{
1789 struct drm_i915_private *dev_priv = dev->dev_private;
1790 int i;
1791
4b9de737 1792 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1793 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 1794
ada726c7 1795 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 1796
ada726c7
CW
1797 if (reg->obj)
1798 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 1799
ada726c7
CW
1800 reg->pin_count = 0;
1801 reg->obj = NULL;
1802 INIT_LIST_HEAD(&reg->lru_list);
312817a3 1803 }
ada726c7
CW
1804
1805 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
1806}
1807
069efc1d 1808void i915_gem_reset(struct drm_device *dev)
673a394b 1809{
77f01230 1810 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1811 struct drm_i915_gem_object *obj;
b4519513 1812 struct intel_ring_buffer *ring;
1ec14ad3 1813 int i;
673a394b 1814
b4519513
CW
1815 for_each_ring(ring, dev_priv, i)
1816 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 1817
dfaae392
CW
1818 /* Move everything out of the GPU domains to ensure we do any
1819 * necessary invalidation upon reuse.
1820 */
05394f39 1821 list_for_each_entry(obj,
77f01230 1822 &dev_priv->mm.inactive_list,
69dc4987 1823 mm_list)
77f01230 1824 {
05394f39 1825 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1826 }
069efc1d 1827
6c085a72 1828
069efc1d 1829 /* The fence registers are invalidated so clear them out */
312817a3 1830 i915_gem_reset_fences(dev);
673a394b
EA
1831}
1832
1833/**
1834 * This function clears the request list as sequence numbers are passed.
1835 */
a71d8d94 1836void
db53a302 1837i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1838{
673a394b 1839 uint32_t seqno;
1ec14ad3 1840 int i;
673a394b 1841
db53a302 1842 if (list_empty(&ring->request_list))
6c0594a3
KW
1843 return;
1844
db53a302 1845 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1846
b2eadbc8 1847 seqno = ring->get_seqno(ring, true);
1ec14ad3 1848
076e2c0e 1849 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1850 if (seqno >= ring->sync_seqno[i])
1851 ring->sync_seqno[i] = 0;
1852
852835f3 1853 while (!list_empty(&ring->request_list)) {
673a394b 1854 struct drm_i915_gem_request *request;
673a394b 1855
852835f3 1856 request = list_first_entry(&ring->request_list,
673a394b
EA
1857 struct drm_i915_gem_request,
1858 list);
673a394b 1859
dfaae392 1860 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1861 break;
1862
db53a302 1863 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1864 /* We know the GPU must have read the request to have
1865 * sent us the seqno + interrupt, so use the position
1866 * of tail of the request to update the last known position
1867 * of the GPU head.
1868 */
1869 ring->last_retired_head = request->tail;
b84d5f0c
CW
1870
1871 list_del(&request->list);
f787a5f5 1872 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1873 kfree(request);
1874 }
673a394b 1875
b84d5f0c
CW
1876 /* Move any buffers on the active list that are no longer referenced
1877 * by the ringbuffer to the flushing/inactive lists as appropriate.
1878 */
1879 while (!list_empty(&ring->active_list)) {
05394f39 1880 struct drm_i915_gem_object *obj;
b84d5f0c 1881
0206e353 1882 obj = list_first_entry(&ring->active_list,
05394f39
CW
1883 struct drm_i915_gem_object,
1884 ring_list);
673a394b 1885
0201f1ec 1886 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 1887 break;
b84d5f0c 1888
65ce3027 1889 i915_gem_object_move_to_inactive(obj);
673a394b 1890 }
9d34e5db 1891
db53a302
CW
1892 if (unlikely(ring->trace_irq_seqno &&
1893 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1894 ring->irq_put(ring);
db53a302 1895 ring->trace_irq_seqno = 0;
9d34e5db 1896 }
23bc5982 1897
db53a302 1898 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1899}
1900
b09a1fec
CW
1901void
1902i915_gem_retire_requests(struct drm_device *dev)
1903{
1904 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 1905 struct intel_ring_buffer *ring;
1ec14ad3 1906 int i;
b09a1fec 1907
b4519513
CW
1908 for_each_ring(ring, dev_priv, i)
1909 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
1910}
1911
75ef9da2 1912static void
673a394b
EA
1913i915_gem_retire_work_handler(struct work_struct *work)
1914{
1915 drm_i915_private_t *dev_priv;
1916 struct drm_device *dev;
b4519513 1917 struct intel_ring_buffer *ring;
0a58705b
CW
1918 bool idle;
1919 int i;
673a394b
EA
1920
1921 dev_priv = container_of(work, drm_i915_private_t,
1922 mm.retire_work.work);
1923 dev = dev_priv->dev;
1924
891b48cf
CW
1925 /* Come back later if the device is busy... */
1926 if (!mutex_trylock(&dev->struct_mutex)) {
1927 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1928 return;
1929 }
1930
b09a1fec 1931 i915_gem_retire_requests(dev);
d1b851fc 1932
0a58705b
CW
1933 /* Send a periodic flush down the ring so we don't hold onto GEM
1934 * objects indefinitely.
1935 */
1936 idle = true;
b4519513 1937 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
1938 if (ring->gpu_caches_dirty)
1939 i915_add_request(ring, NULL, NULL);
0a58705b
CW
1940
1941 idle &= list_empty(&ring->request_list);
1942 }
1943
1944 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1945 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
f047e395
CW
1946 if (idle)
1947 intel_mark_idle(dev);
0a58705b 1948
673a394b
EA
1949 mutex_unlock(&dev->struct_mutex);
1950}
1951
d6b2c790
DV
1952int
1953i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1954 bool interruptible)
b4aca010 1955{
b4aca010
BW
1956 if (atomic_read(&dev_priv->mm.wedged)) {
1957 struct completion *x = &dev_priv->error_completion;
1958 bool recovery_complete;
1959 unsigned long flags;
1960
1961 /* Give the error handler a chance to run. */
1962 spin_lock_irqsave(&x->wait.lock, flags);
1963 recovery_complete = x->done > 0;
1964 spin_unlock_irqrestore(&x->wait.lock, flags);
1965
d6b2c790
DV
1966 /* Non-interruptible callers can't handle -EAGAIN, hence return
1967 * -EIO unconditionally for these. */
1968 if (!interruptible)
1969 return -EIO;
1970
1971 /* Recovery complete, but still wedged means reset failure. */
1972 if (recovery_complete)
1973 return -EIO;
1974
1975 return -EAGAIN;
b4aca010
BW
1976 }
1977
1978 return 0;
1979}
1980
1981/*
1982 * Compare seqno against outstanding lazy request. Emit a request if they are
1983 * equal.
1984 */
1985static int
1986i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1987{
3bb73aba 1988 int ret;
b4aca010
BW
1989
1990 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1991
3bb73aba
CW
1992 ret = 0;
1993 if (seqno == ring->outstanding_lazy_request)
1994 ret = i915_add_request(ring, NULL, NULL);
b4aca010
BW
1995
1996 return ret;
1997}
1998
5c81fe85
BW
1999/**
2000 * __wait_seqno - wait until execution of seqno has finished
2001 * @ring: the ring expected to report seqno
2002 * @seqno: duh!
2003 * @interruptible: do an interruptible wait (normally yes)
2004 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
2005 *
2006 * Returns 0 if the seqno was found within the alloted time. Else returns the
2007 * errno with remaining time filled in timeout argument.
2008 */
604dd3ec 2009static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
5c81fe85 2010 bool interruptible, struct timespec *timeout)
604dd3ec
BW
2011{
2012 drm_i915_private_t *dev_priv = ring->dev->dev_private;
5c81fe85
BW
2013 struct timespec before, now, wait_time={1,0};
2014 unsigned long timeout_jiffies;
2015 long end;
2016 bool wait_forever = true;
d6b2c790 2017 int ret;
604dd3ec 2018
b2eadbc8 2019 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
604dd3ec
BW
2020 return 0;
2021
2022 trace_i915_gem_request_wait_begin(ring, seqno);
5c81fe85
BW
2023
2024 if (timeout != NULL) {
2025 wait_time = *timeout;
2026 wait_forever = false;
2027 }
2028
2029 timeout_jiffies = timespec_to_jiffies(&wait_time);
2030
604dd3ec
BW
2031 if (WARN_ON(!ring->irq_get(ring)))
2032 return -ENODEV;
2033
5c81fe85
BW
2034 /* Record current time in case interrupted by signal, or wedged * */
2035 getrawmonotonic(&before);
2036
604dd3ec 2037#define EXIT_COND \
b2eadbc8 2038 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
604dd3ec 2039 atomic_read(&dev_priv->mm.wedged))
5c81fe85
BW
2040 do {
2041 if (interruptible)
2042 end = wait_event_interruptible_timeout(ring->irq_queue,
2043 EXIT_COND,
2044 timeout_jiffies);
2045 else
2046 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
2047 timeout_jiffies);
604dd3ec 2048
d6b2c790
DV
2049 ret = i915_gem_check_wedge(dev_priv, interruptible);
2050 if (ret)
2051 end = ret;
5c81fe85
BW
2052 } while (end == 0 && wait_forever);
2053
2054 getrawmonotonic(&now);
604dd3ec
BW
2055
2056 ring->irq_put(ring);
2057 trace_i915_gem_request_wait_end(ring, seqno);
2058#undef EXIT_COND
2059
5c81fe85
BW
2060 if (timeout) {
2061 struct timespec sleep_time = timespec_sub(now, before);
2062 *timeout = timespec_sub(*timeout, sleep_time);
2063 }
2064
2065 switch (end) {
eeef9b38 2066 case -EIO:
5c81fe85
BW
2067 case -EAGAIN: /* Wedged */
2068 case -ERESTARTSYS: /* Signal */
2069 return (int)end;
2070 case 0: /* Timeout */
2071 if (timeout)
2072 set_normalized_timespec(timeout, 0, 0);
2073 return -ETIME;
2074 default: /* Completed */
2075 WARN_ON(end < 0); /* We're not aware of other errors */
2076 return 0;
2077 }
604dd3ec
BW
2078}
2079
db53a302
CW
2080/**
2081 * Waits for a sequence number to be signaled, and cleans up the
2082 * request and object lists appropriately for that event.
2083 */
5a5a0c64 2084int
199b2bc2 2085i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
673a394b 2086{
db53a302 2087 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
2088 int ret = 0;
2089
2090 BUG_ON(seqno == 0);
2091
d6b2c790 2092 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
b4aca010
BW
2093 if (ret)
2094 return ret;
3cce469c 2095
b4aca010
BW
2096 ret = i915_gem_check_olr(ring, seqno);
2097 if (ret)
2098 return ret;
ffed1d09 2099
5c81fe85 2100 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
673a394b 2101
673a394b
EA
2102 return ret;
2103}
2104
673a394b
EA
2105/**
2106 * Ensures that all rendering to the object has completed and the object is
2107 * safe to unbind from the GTT or access from the CPU.
2108 */
0201f1ec
CW
2109static __must_check int
2110i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2111 bool readonly)
673a394b 2112{
0201f1ec 2113 u32 seqno;
673a394b
EA
2114 int ret;
2115
673a394b
EA
2116 /* If there is rendering queued on the buffer being evicted, wait for
2117 * it.
2118 */
0201f1ec
CW
2119 if (readonly)
2120 seqno = obj->last_write_seqno;
2121 else
2122 seqno = obj->last_read_seqno;
2123 if (seqno == 0)
2124 return 0;
2125
2126 ret = i915_wait_seqno(obj->ring, seqno);
2127 if (ret)
2128 return ret;
2129
2130 /* Manually manage the write flush as we may have not yet retired
2131 * the buffer.
2132 */
2133 if (obj->last_write_seqno &&
2134 i915_seqno_passed(seqno, obj->last_write_seqno)) {
2135 obj->last_write_seqno = 0;
2136 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
673a394b
EA
2137 }
2138
0201f1ec 2139 i915_gem_retire_requests_ring(obj->ring);
673a394b
EA
2140 return 0;
2141}
2142
30dfebf3
DV
2143/**
2144 * Ensures that an object will eventually get non-busy by flushing any required
2145 * write domains, emitting any outstanding lazy request and retiring and
2146 * completed requests.
2147 */
2148static int
2149i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2150{
2151 int ret;
2152
2153 if (obj->active) {
0201f1ec 2154 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2155 if (ret)
2156 return ret;
0201f1ec 2157
30dfebf3
DV
2158 i915_gem_retire_requests_ring(obj->ring);
2159 }
2160
2161 return 0;
2162}
2163
23ba4fd0
BW
2164/**
2165 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2166 * @DRM_IOCTL_ARGS: standard ioctl arguments
2167 *
2168 * Returns 0 if successful, else an error is returned with the remaining time in
2169 * the timeout parameter.
2170 * -ETIME: object is still busy after timeout
2171 * -ERESTARTSYS: signal interrupted the wait
2172 * -ENONENT: object doesn't exist
2173 * Also possible, but rare:
2174 * -EAGAIN: GPU wedged
2175 * -ENOMEM: damn
2176 * -ENODEV: Internal IRQ fail
2177 * -E?: The add request failed
2178 *
2179 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2180 * non-zero timeout parameter the wait ioctl will wait for the given number of
2181 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2182 * without holding struct_mutex the object may become re-busied before this
2183 * function completes. A similar but shorter * race condition exists in the busy
2184 * ioctl
2185 */
2186int
2187i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2188{
2189 struct drm_i915_gem_wait *args = data;
2190 struct drm_i915_gem_object *obj;
2191 struct intel_ring_buffer *ring = NULL;
eac1f14f 2192 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2193 u32 seqno = 0;
2194 int ret = 0;
2195
eac1f14f
BW
2196 if (args->timeout_ns >= 0) {
2197 timeout_stack = ns_to_timespec(args->timeout_ns);
2198 timeout = &timeout_stack;
2199 }
23ba4fd0
BW
2200
2201 ret = i915_mutex_lock_interruptible(dev);
2202 if (ret)
2203 return ret;
2204
2205 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2206 if (&obj->base == NULL) {
2207 mutex_unlock(&dev->struct_mutex);
2208 return -ENOENT;
2209 }
2210
30dfebf3
DV
2211 /* Need to make sure the object gets inactive eventually. */
2212 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2213 if (ret)
2214 goto out;
2215
2216 if (obj->active) {
0201f1ec 2217 seqno = obj->last_read_seqno;
23ba4fd0
BW
2218 ring = obj->ring;
2219 }
2220
2221 if (seqno == 0)
2222 goto out;
2223
23ba4fd0
BW
2224 /* Do this after OLR check to make sure we make forward progress polling
2225 * on this IOCTL with a 0 timeout (like busy ioctl)
2226 */
2227 if (!args->timeout_ns) {
2228 ret = -ETIME;
2229 goto out;
2230 }
2231
2232 drm_gem_object_unreference(&obj->base);
2233 mutex_unlock(&dev->struct_mutex);
2234
eac1f14f
BW
2235 ret = __wait_seqno(ring, seqno, true, timeout);
2236 if (timeout) {
2237 WARN_ON(!timespec_valid(timeout));
2238 args->timeout_ns = timespec_to_ns(timeout);
2239 }
23ba4fd0
BW
2240 return ret;
2241
2242out:
2243 drm_gem_object_unreference(&obj->base);
2244 mutex_unlock(&dev->struct_mutex);
2245 return ret;
2246}
2247
5816d648
BW
2248/**
2249 * i915_gem_object_sync - sync an object to a ring.
2250 *
2251 * @obj: object which may be in use on another ring.
2252 * @to: ring we wish to use the object on. May be NULL.
2253 *
2254 * This code is meant to abstract object synchronization with the GPU.
2255 * Calling with NULL implies synchronizing the object with the CPU
2256 * rather than a particular GPU ring.
2257 *
2258 * Returns 0 if successful, else propagates up the lower layer error.
2259 */
2911a35b
BW
2260int
2261i915_gem_object_sync(struct drm_i915_gem_object *obj,
2262 struct intel_ring_buffer *to)
2263{
2264 struct intel_ring_buffer *from = obj->ring;
2265 u32 seqno;
2266 int ret, idx;
2267
2268 if (from == NULL || to == from)
2269 return 0;
2270
5816d648 2271 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2272 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2273
2274 idx = intel_ring_sync_index(from, to);
2275
0201f1ec 2276 seqno = obj->last_read_seqno;
2911a35b
BW
2277 if (seqno <= from->sync_seqno[idx])
2278 return 0;
2279
b4aca010
BW
2280 ret = i915_gem_check_olr(obj->ring, seqno);
2281 if (ret)
2282 return ret;
2911a35b 2283
1500f7ea 2284 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2285 if (!ret)
2286 from->sync_seqno[idx] = seqno;
2911a35b 2287
e3a5a225 2288 return ret;
2911a35b
BW
2289}
2290
b5ffc9bc
CW
2291static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2292{
2293 u32 old_write_domain, old_read_domains;
2294
b5ffc9bc
CW
2295 /* Act a barrier for all accesses through the GTT */
2296 mb();
2297
2298 /* Force a pagefault for domain tracking on next user access */
2299 i915_gem_release_mmap(obj);
2300
b97c3d9c
KP
2301 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2302 return;
2303
b5ffc9bc
CW
2304 old_read_domains = obj->base.read_domains;
2305 old_write_domain = obj->base.write_domain;
2306
2307 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2308 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2309
2310 trace_i915_gem_object_change_domain(obj,
2311 old_read_domains,
2312 old_write_domain);
2313}
2314
673a394b
EA
2315/**
2316 * Unbinds an object from the GTT aperture.
2317 */
0f973f27 2318int
05394f39 2319i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2320{
7bddb01f 2321 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2322 int ret = 0;
2323
05394f39 2324 if (obj->gtt_space == NULL)
673a394b
EA
2325 return 0;
2326
31d8d651
CW
2327 if (obj->pin_count)
2328 return -EBUSY;
673a394b 2329
c4670ad0
CW
2330 BUG_ON(obj->pages == NULL);
2331
a8198eea 2332 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2333 if (ret)
a8198eea
CW
2334 return ret;
2335 /* Continue on if we fail due to EIO, the GPU is hung so we
2336 * should be safe and we need to cleanup or else we might
2337 * cause memory corruption through use-after-free.
2338 */
2339
b5ffc9bc 2340 i915_gem_object_finish_gtt(obj);
5323fd04 2341
96b47b65 2342 /* release the fence reg _after_ flushing */
d9e86c0e 2343 ret = i915_gem_object_put_fence(obj);
1488fc08 2344 if (ret)
d9e86c0e 2345 return ret;
96b47b65 2346
db53a302
CW
2347 trace_i915_gem_object_unbind(obj);
2348
74898d7e
DV
2349 if (obj->has_global_gtt_mapping)
2350 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2351 if (obj->has_aliasing_ppgtt_mapping) {
2352 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2353 obj->has_aliasing_ppgtt_mapping = 0;
2354 }
74163907 2355 i915_gem_gtt_finish_object(obj);
7bddb01f 2356
6c085a72
CW
2357 list_del(&obj->mm_list);
2358 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2359 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2360 obj->map_and_fenceable = true;
673a394b 2361
05394f39
CW
2362 drm_mm_put_block(obj->gtt_space);
2363 obj->gtt_space = NULL;
2364 obj->gtt_offset = 0;
673a394b 2365
6c085a72 2366 return 0;
673a394b
EA
2367}
2368
b2da9fe5 2369static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2370{
69c2fc89 2371 if (list_empty(&ring->active_list))
64193406
CW
2372 return 0;
2373
199b2bc2 2374 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2375}
2376
b2da9fe5 2377int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2378{
2379 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2380 struct intel_ring_buffer *ring;
1ec14ad3 2381 int ret, i;
4df2faf4 2382
4df2faf4 2383 /* Flush everything onto the inactive list. */
b4519513
CW
2384 for_each_ring(ring, dev_priv, i) {
2385 ret = i915_ring_idle(ring);
1ec14ad3
CW
2386 if (ret)
2387 return ret;
b4519513 2388
f2ef6eb1
BW
2389 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2390 if (ret)
2391 return ret;
1ec14ad3 2392 }
4df2faf4 2393
8a1a49f9 2394 return 0;
4df2faf4
DV
2395}
2396
9ce079e4
CW
2397static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2398 struct drm_i915_gem_object *obj)
4e901fdc 2399{
4e901fdc 2400 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2401 uint64_t val;
2402
9ce079e4
CW
2403 if (obj) {
2404 u32 size = obj->gtt_space->size;
4e901fdc 2405
9ce079e4
CW
2406 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2407 0xfffff000) << 32;
2408 val |= obj->gtt_offset & 0xfffff000;
2409 val |= (uint64_t)((obj->stride / 128) - 1) <<
2410 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2411
9ce079e4
CW
2412 if (obj->tiling_mode == I915_TILING_Y)
2413 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2414 val |= I965_FENCE_REG_VALID;
2415 } else
2416 val = 0;
c6642782 2417
9ce079e4
CW
2418 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2419 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2420}
2421
9ce079e4
CW
2422static void i965_write_fence_reg(struct drm_device *dev, int reg,
2423 struct drm_i915_gem_object *obj)
de151cf6 2424{
de151cf6 2425 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2426 uint64_t val;
2427
9ce079e4
CW
2428 if (obj) {
2429 u32 size = obj->gtt_space->size;
de151cf6 2430
9ce079e4
CW
2431 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2432 0xfffff000) << 32;
2433 val |= obj->gtt_offset & 0xfffff000;
2434 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2435 if (obj->tiling_mode == I915_TILING_Y)
2436 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2437 val |= I965_FENCE_REG_VALID;
2438 } else
2439 val = 0;
c6642782 2440
9ce079e4
CW
2441 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2442 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2443}
2444
9ce079e4
CW
2445static void i915_write_fence_reg(struct drm_device *dev, int reg,
2446 struct drm_i915_gem_object *obj)
de151cf6 2447{
de151cf6 2448 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2449 u32 val;
de151cf6 2450
9ce079e4
CW
2451 if (obj) {
2452 u32 size = obj->gtt_space->size;
2453 int pitch_val;
2454 int tile_width;
c6642782 2455
9ce079e4
CW
2456 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2457 (size & -size) != size ||
2458 (obj->gtt_offset & (size - 1)),
2459 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2460 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2461
9ce079e4
CW
2462 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2463 tile_width = 128;
2464 else
2465 tile_width = 512;
2466
2467 /* Note: pitch better be a power of two tile widths */
2468 pitch_val = obj->stride / tile_width;
2469 pitch_val = ffs(pitch_val) - 1;
2470
2471 val = obj->gtt_offset;
2472 if (obj->tiling_mode == I915_TILING_Y)
2473 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2474 val |= I915_FENCE_SIZE_BITS(size);
2475 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2476 val |= I830_FENCE_REG_VALID;
2477 } else
2478 val = 0;
2479
2480 if (reg < 8)
2481 reg = FENCE_REG_830_0 + reg * 4;
2482 else
2483 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2484
2485 I915_WRITE(reg, val);
2486 POSTING_READ(reg);
de151cf6
JB
2487}
2488
9ce079e4
CW
2489static void i830_write_fence_reg(struct drm_device *dev, int reg,
2490 struct drm_i915_gem_object *obj)
de151cf6 2491{
de151cf6 2492 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2493 uint32_t val;
de151cf6 2494
9ce079e4
CW
2495 if (obj) {
2496 u32 size = obj->gtt_space->size;
2497 uint32_t pitch_val;
de151cf6 2498
9ce079e4
CW
2499 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2500 (size & -size) != size ||
2501 (obj->gtt_offset & (size - 1)),
2502 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2503 obj->gtt_offset, size);
e76a16de 2504
9ce079e4
CW
2505 pitch_val = obj->stride / 128;
2506 pitch_val = ffs(pitch_val) - 1;
de151cf6 2507
9ce079e4
CW
2508 val = obj->gtt_offset;
2509 if (obj->tiling_mode == I915_TILING_Y)
2510 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2511 val |= I830_FENCE_SIZE_BITS(size);
2512 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2513 val |= I830_FENCE_REG_VALID;
2514 } else
2515 val = 0;
c6642782 2516
9ce079e4
CW
2517 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2518 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2519}
2520
2521static void i915_gem_write_fence(struct drm_device *dev, int reg,
2522 struct drm_i915_gem_object *obj)
2523{
2524 switch (INTEL_INFO(dev)->gen) {
2525 case 7:
2526 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2527 case 5:
2528 case 4: i965_write_fence_reg(dev, reg, obj); break;
2529 case 3: i915_write_fence_reg(dev, reg, obj); break;
2530 case 2: i830_write_fence_reg(dev, reg, obj); break;
2531 default: break;
2532 }
de151cf6
JB
2533}
2534
61050808
CW
2535static inline int fence_number(struct drm_i915_private *dev_priv,
2536 struct drm_i915_fence_reg *fence)
2537{
2538 return fence - dev_priv->fence_regs;
2539}
2540
2541static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2542 struct drm_i915_fence_reg *fence,
2543 bool enable)
2544{
2545 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2546 int reg = fence_number(dev_priv, fence);
2547
2548 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2549
2550 if (enable) {
2551 obj->fence_reg = reg;
2552 fence->obj = obj;
2553 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2554 } else {
2555 obj->fence_reg = I915_FENCE_REG_NONE;
2556 fence->obj = NULL;
2557 list_del_init(&fence->lru_list);
2558 }
2559}
2560
d9e86c0e 2561static int
a360bb1a 2562i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2563{
1c293ea3 2564 if (obj->last_fenced_seqno) {
86d5bc37 2565 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2566 if (ret)
2567 return ret;
d9e86c0e
CW
2568
2569 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2570 }
2571
63256ec5
CW
2572 /* Ensure that all CPU reads are completed before installing a fence
2573 * and all writes before removing the fence.
2574 */
2575 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2576 mb();
2577
86d5bc37 2578 obj->fenced_gpu_access = false;
d9e86c0e
CW
2579 return 0;
2580}
2581
2582int
2583i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2584{
61050808 2585 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2586 int ret;
2587
a360bb1a 2588 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2589 if (ret)
2590 return ret;
2591
61050808
CW
2592 if (obj->fence_reg == I915_FENCE_REG_NONE)
2593 return 0;
d9e86c0e 2594
61050808
CW
2595 i915_gem_object_update_fence(obj,
2596 &dev_priv->fence_regs[obj->fence_reg],
2597 false);
2598 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2599
2600 return 0;
2601}
2602
2603static struct drm_i915_fence_reg *
a360bb1a 2604i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2605{
ae3db24a 2606 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2607 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2608 int i;
ae3db24a
DV
2609
2610 /* First try to find a free reg */
d9e86c0e 2611 avail = NULL;
ae3db24a
DV
2612 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2613 reg = &dev_priv->fence_regs[i];
2614 if (!reg->obj)
d9e86c0e 2615 return reg;
ae3db24a 2616
1690e1eb 2617 if (!reg->pin_count)
d9e86c0e 2618 avail = reg;
ae3db24a
DV
2619 }
2620
d9e86c0e
CW
2621 if (avail == NULL)
2622 return NULL;
ae3db24a
DV
2623
2624 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2625 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2626 if (reg->pin_count)
ae3db24a
DV
2627 continue;
2628
8fe301ad 2629 return reg;
ae3db24a
DV
2630 }
2631
8fe301ad 2632 return NULL;
ae3db24a
DV
2633}
2634
de151cf6 2635/**
9a5a53b3 2636 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2637 * @obj: object to map through a fence reg
2638 *
2639 * When mapping objects through the GTT, userspace wants to be able to write
2640 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2641 * This function walks the fence regs looking for a free one for @obj,
2642 * stealing one if it can't find any.
2643 *
2644 * It then sets up the reg based on the object's properties: address, pitch
2645 * and tiling format.
9a5a53b3
CW
2646 *
2647 * For an untiled surface, this removes any existing fence.
de151cf6 2648 */
8c4b8c3f 2649int
06d98131 2650i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2651{
05394f39 2652 struct drm_device *dev = obj->base.dev;
79e53945 2653 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2654 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2655 struct drm_i915_fence_reg *reg;
ae3db24a 2656 int ret;
de151cf6 2657
14415745
CW
2658 /* Have we updated the tiling parameters upon the object and so
2659 * will need to serialise the write to the associated fence register?
2660 */
5d82e3e6 2661 if (obj->fence_dirty) {
14415745
CW
2662 ret = i915_gem_object_flush_fence(obj);
2663 if (ret)
2664 return ret;
2665 }
9a5a53b3 2666
d9e86c0e 2667 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2668 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2669 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2670 if (!obj->fence_dirty) {
14415745
CW
2671 list_move_tail(&reg->lru_list,
2672 &dev_priv->mm.fence_list);
2673 return 0;
2674 }
2675 } else if (enable) {
2676 reg = i915_find_fence_reg(dev);
2677 if (reg == NULL)
2678 return -EDEADLK;
d9e86c0e 2679
14415745
CW
2680 if (reg->obj) {
2681 struct drm_i915_gem_object *old = reg->obj;
2682
2683 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2684 if (ret)
2685 return ret;
2686
14415745 2687 i915_gem_object_fence_lost(old);
29c5a587 2688 }
14415745 2689 } else
a09ba7fa 2690 return 0;
a09ba7fa 2691
14415745 2692 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2693 obj->fence_dirty = false;
14415745 2694
9ce079e4 2695 return 0;
de151cf6
JB
2696}
2697
42d6ab48
CW
2698static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2699 struct drm_mm_node *gtt_space,
2700 unsigned long cache_level)
2701{
2702 struct drm_mm_node *other;
2703
2704 /* On non-LLC machines we have to be careful when putting differing
2705 * types of snoopable memory together to avoid the prefetcher
2706 * crossing memory domains and dieing.
2707 */
2708 if (HAS_LLC(dev))
2709 return true;
2710
2711 if (gtt_space == NULL)
2712 return true;
2713
2714 if (list_empty(&gtt_space->node_list))
2715 return true;
2716
2717 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2718 if (other->allocated && !other->hole_follows && other->color != cache_level)
2719 return false;
2720
2721 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2722 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2723 return false;
2724
2725 return true;
2726}
2727
2728static void i915_gem_verify_gtt(struct drm_device *dev)
2729{
2730#if WATCH_GTT
2731 struct drm_i915_private *dev_priv = dev->dev_private;
2732 struct drm_i915_gem_object *obj;
2733 int err = 0;
2734
2735 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2736 if (obj->gtt_space == NULL) {
2737 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2738 err++;
2739 continue;
2740 }
2741
2742 if (obj->cache_level != obj->gtt_space->color) {
2743 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2744 obj->gtt_space->start,
2745 obj->gtt_space->start + obj->gtt_space->size,
2746 obj->cache_level,
2747 obj->gtt_space->color);
2748 err++;
2749 continue;
2750 }
2751
2752 if (!i915_gem_valid_gtt_space(dev,
2753 obj->gtt_space,
2754 obj->cache_level)) {
2755 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2756 obj->gtt_space->start,
2757 obj->gtt_space->start + obj->gtt_space->size,
2758 obj->cache_level);
2759 err++;
2760 continue;
2761 }
2762 }
2763
2764 WARN_ON(err);
2765#endif
2766}
2767
673a394b
EA
2768/**
2769 * Finds free space in the GTT aperture and binds the object there.
2770 */
2771static int
05394f39 2772i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2773 unsigned alignment,
86a1ee26
CW
2774 bool map_and_fenceable,
2775 bool nonblocking)
673a394b 2776{
05394f39 2777 struct drm_device *dev = obj->base.dev;
673a394b 2778 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2779 struct drm_mm_node *free_space;
5e783301 2780 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2781 bool mappable, fenceable;
07f73f69 2782 int ret;
673a394b 2783
05394f39 2784 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2785 DRM_ERROR("Attempting to bind a purgeable object\n");
2786 return -EINVAL;
2787 }
2788
e28f8711
CW
2789 fence_size = i915_gem_get_gtt_size(dev,
2790 obj->base.size,
2791 obj->tiling_mode);
2792 fence_alignment = i915_gem_get_gtt_alignment(dev,
2793 obj->base.size,
2794 obj->tiling_mode);
2795 unfenced_alignment =
2796 i915_gem_get_unfenced_gtt_alignment(dev,
2797 obj->base.size,
2798 obj->tiling_mode);
a00b10c3 2799
673a394b 2800 if (alignment == 0)
5e783301
DV
2801 alignment = map_and_fenceable ? fence_alignment :
2802 unfenced_alignment;
75e9e915 2803 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2804 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2805 return -EINVAL;
2806 }
2807
05394f39 2808 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2809
654fc607
CW
2810 /* If the object is bigger than the entire aperture, reject it early
2811 * before evicting everything in a vain attempt to find space.
2812 */
05394f39 2813 if (obj->base.size >
75e9e915 2814 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2815 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2816 return -E2BIG;
2817 }
2818
6c085a72
CW
2819 ret = i915_gem_object_get_pages_gtt(obj);
2820 if (ret)
2821 return ret;
2822
673a394b 2823 search_free:
75e9e915 2824 if (map_and_fenceable)
920afa77 2825 free_space =
42d6ab48
CW
2826 drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2827 size, alignment, obj->cache_level,
2828 0, dev_priv->mm.gtt_mappable_end,
2829 false);
920afa77 2830 else
42d6ab48
CW
2831 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2832 size, alignment, obj->cache_level,
2833 false);
920afa77
DV
2834
2835 if (free_space != NULL) {
75e9e915 2836 if (map_and_fenceable)
05394f39 2837 obj->gtt_space =
920afa77 2838 drm_mm_get_block_range_generic(free_space,
42d6ab48 2839 size, alignment, obj->cache_level,
6b9d89b4 2840 0, dev_priv->mm.gtt_mappable_end,
42d6ab48 2841 false);
920afa77 2842 else
05394f39 2843 obj->gtt_space =
42d6ab48
CW
2844 drm_mm_get_block_generic(free_space,
2845 size, alignment, obj->cache_level,
2846 false);
920afa77 2847 }
05394f39 2848 if (obj->gtt_space == NULL) {
75e9e915 2849 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 2850 obj->cache_level,
86a1ee26
CW
2851 map_and_fenceable,
2852 nonblocking);
9731129c 2853 if (ret)
673a394b 2854 return ret;
9731129c 2855
673a394b
EA
2856 goto search_free;
2857 }
42d6ab48
CW
2858 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2859 obj->gtt_space,
2860 obj->cache_level))) {
2861 drm_mm_put_block(obj->gtt_space);
2862 obj->gtt_space = NULL;
2863 return -EINVAL;
2864 }
673a394b 2865
673a394b 2866
74163907 2867 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2868 if (ret) {
05394f39
CW
2869 drm_mm_put_block(obj->gtt_space);
2870 obj->gtt_space = NULL;
6c085a72 2871 return ret;
673a394b 2872 }
673a394b 2873
0ebb9829
DV
2874 if (!dev_priv->mm.aliasing_ppgtt)
2875 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2876
6c085a72 2877 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 2878 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2879
6299f992 2880 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2881
75e9e915 2882 fenceable =
05394f39 2883 obj->gtt_space->size == fence_size &&
0206e353 2884 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2885
75e9e915 2886 mappable =
05394f39 2887 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2888
05394f39 2889 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2890
db53a302 2891 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 2892 i915_gem_verify_gtt(dev);
673a394b
EA
2893 return 0;
2894}
2895
2896void
05394f39 2897i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2898{
673a394b
EA
2899 /* If we don't have a page list set up, then we're not pinned
2900 * to GPU, and we can ignore the cache flush because it'll happen
2901 * again at bind time.
2902 */
05394f39 2903 if (obj->pages == NULL)
673a394b
EA
2904 return;
2905
9c23f7fc
CW
2906 /* If the GPU is snooping the contents of the CPU cache,
2907 * we do not need to manually clear the CPU cache lines. However,
2908 * the caches are only snooped when the render cache is
2909 * flushed/invalidated. As we always have to emit invalidations
2910 * and flushes when moving into and out of the RENDER domain, correct
2911 * snooping behaviour occurs naturally as the result of our domain
2912 * tracking.
2913 */
2914 if (obj->cache_level != I915_CACHE_NONE)
2915 return;
2916
1c5d22f7 2917 trace_i915_gem_object_clflush(obj);
cfa16a0d 2918
05394f39 2919 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2920}
2921
e47c68e9
EA
2922/** Flushes the GTT write domain for the object if it's dirty. */
2923static void
05394f39 2924i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2925{
1c5d22f7
CW
2926 uint32_t old_write_domain;
2927
05394f39 2928 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2929 return;
2930
63256ec5 2931 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2932 * to it immediately go to main memory as far as we know, so there's
2933 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2934 *
2935 * However, we do have to enforce the order so that all writes through
2936 * the GTT land before any writes to the device, such as updates to
2937 * the GATT itself.
e47c68e9 2938 */
63256ec5
CW
2939 wmb();
2940
05394f39
CW
2941 old_write_domain = obj->base.write_domain;
2942 obj->base.write_domain = 0;
1c5d22f7
CW
2943
2944 trace_i915_gem_object_change_domain(obj,
05394f39 2945 obj->base.read_domains,
1c5d22f7 2946 old_write_domain);
e47c68e9
EA
2947}
2948
2949/** Flushes the CPU write domain for the object if it's dirty. */
2950static void
05394f39 2951i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2952{
1c5d22f7 2953 uint32_t old_write_domain;
e47c68e9 2954
05394f39 2955 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2956 return;
2957
2958 i915_gem_clflush_object(obj);
40ce6575 2959 intel_gtt_chipset_flush();
05394f39
CW
2960 old_write_domain = obj->base.write_domain;
2961 obj->base.write_domain = 0;
1c5d22f7
CW
2962
2963 trace_i915_gem_object_change_domain(obj,
05394f39 2964 obj->base.read_domains,
1c5d22f7 2965 old_write_domain);
e47c68e9
EA
2966}
2967
2ef7eeaa
EA
2968/**
2969 * Moves a single object to the GTT read, and possibly write domain.
2970 *
2971 * This function returns when the move is complete, including waiting on
2972 * flushes to occur.
2973 */
79e53945 2974int
2021746e 2975i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2976{
8325a09d 2977 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 2978 uint32_t old_write_domain, old_read_domains;
e47c68e9 2979 int ret;
2ef7eeaa 2980
02354392 2981 /* Not valid to be called on unbound objects. */
05394f39 2982 if (obj->gtt_space == NULL)
02354392
EA
2983 return -EINVAL;
2984
8d7e3de1
CW
2985 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2986 return 0;
2987
0201f1ec
CW
2988 ret = i915_gem_object_wait_rendering(obj, !write);
2989 if (ret)
2990 return ret;
2dafb1e0 2991
7213342d 2992 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2993
05394f39
CW
2994 old_write_domain = obj->base.write_domain;
2995 old_read_domains = obj->base.read_domains;
1c5d22f7 2996
e47c68e9
EA
2997 /* It should now be out of any other write domains, and we can update
2998 * the domain values for our changes.
2999 */
05394f39
CW
3000 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3001 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3002 if (write) {
05394f39
CW
3003 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3004 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3005 obj->dirty = 1;
2ef7eeaa
EA
3006 }
3007
1c5d22f7
CW
3008 trace_i915_gem_object_change_domain(obj,
3009 old_read_domains,
3010 old_write_domain);
3011
8325a09d
CW
3012 /* And bump the LRU for this access */
3013 if (i915_gem_object_is_inactive(obj))
3014 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3015
e47c68e9
EA
3016 return 0;
3017}
3018
e4ffd173
CW
3019int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3020 enum i915_cache_level cache_level)
3021{
7bddb01f
DV
3022 struct drm_device *dev = obj->base.dev;
3023 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3024 int ret;
3025
3026 if (obj->cache_level == cache_level)
3027 return 0;
3028
3029 if (obj->pin_count) {
3030 DRM_DEBUG("can not change the cache level of pinned objects\n");
3031 return -EBUSY;
3032 }
3033
42d6ab48
CW
3034 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3035 ret = i915_gem_object_unbind(obj);
3036 if (ret)
3037 return ret;
3038 }
3039
e4ffd173
CW
3040 if (obj->gtt_space) {
3041 ret = i915_gem_object_finish_gpu(obj);
3042 if (ret)
3043 return ret;
3044
3045 i915_gem_object_finish_gtt(obj);
3046
3047 /* Before SandyBridge, you could not use tiling or fence
3048 * registers with snooped memory, so relinquish any fences
3049 * currently pointing to our region in the aperture.
3050 */
42d6ab48 3051 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3052 ret = i915_gem_object_put_fence(obj);
3053 if (ret)
3054 return ret;
3055 }
3056
74898d7e
DV
3057 if (obj->has_global_gtt_mapping)
3058 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3059 if (obj->has_aliasing_ppgtt_mapping)
3060 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3061 obj, cache_level);
42d6ab48
CW
3062
3063 obj->gtt_space->color = cache_level;
e4ffd173
CW
3064 }
3065
3066 if (cache_level == I915_CACHE_NONE) {
3067 u32 old_read_domains, old_write_domain;
3068
3069 /* If we're coming from LLC cached, then we haven't
3070 * actually been tracking whether the data is in the
3071 * CPU cache or not, since we only allow one bit set
3072 * in obj->write_domain and have been skipping the clflushes.
3073 * Just set it to the CPU cache for now.
3074 */
3075 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3076 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3077
3078 old_read_domains = obj->base.read_domains;
3079 old_write_domain = obj->base.write_domain;
3080
3081 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3082 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3083
3084 trace_i915_gem_object_change_domain(obj,
3085 old_read_domains,
3086 old_write_domain);
3087 }
3088
3089 obj->cache_level = cache_level;
42d6ab48 3090 i915_gem_verify_gtt(dev);
e4ffd173
CW
3091 return 0;
3092}
3093
e6994aee
CW
3094int i915_gem_get_cacheing_ioctl(struct drm_device *dev, void *data,
3095 struct drm_file *file)
3096{
3097 struct drm_i915_gem_cacheing *args = data;
3098 struct drm_i915_gem_object *obj;
3099 int ret;
3100
3101 ret = i915_mutex_lock_interruptible(dev);
3102 if (ret)
3103 return ret;
3104
3105 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3106 if (&obj->base == NULL) {
3107 ret = -ENOENT;
3108 goto unlock;
3109 }
3110
3111 args->cacheing = obj->cache_level != I915_CACHE_NONE;
3112
3113 drm_gem_object_unreference(&obj->base);
3114unlock:
3115 mutex_unlock(&dev->struct_mutex);
3116 return ret;
3117}
3118
3119int i915_gem_set_cacheing_ioctl(struct drm_device *dev, void *data,
3120 struct drm_file *file)
3121{
3122 struct drm_i915_gem_cacheing *args = data;
3123 struct drm_i915_gem_object *obj;
3124 enum i915_cache_level level;
3125 int ret;
3126
3127 ret = i915_mutex_lock_interruptible(dev);
3128 if (ret)
3129 return ret;
3130
3131 switch (args->cacheing) {
3132 case I915_CACHEING_NONE:
3133 level = I915_CACHE_NONE;
3134 break;
3135 case I915_CACHEING_CACHED:
3136 level = I915_CACHE_LLC;
3137 break;
3138 default:
3139 return -EINVAL;
3140 }
3141
3142 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3143 if (&obj->base == NULL) {
3144 ret = -ENOENT;
3145 goto unlock;
3146 }
3147
3148 ret = i915_gem_object_set_cache_level(obj, level);
3149
3150 drm_gem_object_unreference(&obj->base);
3151unlock:
3152 mutex_unlock(&dev->struct_mutex);
3153 return ret;
3154}
3155
b9241ea3 3156/*
2da3b9b9
CW
3157 * Prepare buffer for display plane (scanout, cursors, etc).
3158 * Can be called from an uninterruptible phase (modesetting) and allows
3159 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3160 */
3161int
2da3b9b9
CW
3162i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3163 u32 alignment,
919926ae 3164 struct intel_ring_buffer *pipelined)
b9241ea3 3165{
2da3b9b9 3166 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3167 int ret;
3168
0be73284 3169 if (pipelined != obj->ring) {
2911a35b
BW
3170 ret = i915_gem_object_sync(obj, pipelined);
3171 if (ret)
b9241ea3
ZW
3172 return ret;
3173 }
3174
a7ef0640
EA
3175 /* The display engine is not coherent with the LLC cache on gen6. As
3176 * a result, we make sure that the pinning that is about to occur is
3177 * done with uncached PTEs. This is lowest common denominator for all
3178 * chipsets.
3179 *
3180 * However for gen6+, we could do better by using the GFDT bit instead
3181 * of uncaching, which would allow us to flush all the LLC-cached data
3182 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3183 */
3184 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3185 if (ret)
3186 return ret;
3187
2da3b9b9
CW
3188 /* As the user may map the buffer once pinned in the display plane
3189 * (e.g. libkms for the bootup splash), we have to ensure that we
3190 * always use map_and_fenceable for all scanout buffers.
3191 */
86a1ee26 3192 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3193 if (ret)
3194 return ret;
3195
b118c1e3
CW
3196 i915_gem_object_flush_cpu_write_domain(obj);
3197
2da3b9b9 3198 old_write_domain = obj->base.write_domain;
05394f39 3199 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3200
3201 /* It should now be out of any other write domains, and we can update
3202 * the domain values for our changes.
3203 */
e5f1d962 3204 obj->base.write_domain = 0;
05394f39 3205 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3206
3207 trace_i915_gem_object_change_domain(obj,
3208 old_read_domains,
2da3b9b9 3209 old_write_domain);
b9241ea3
ZW
3210
3211 return 0;
3212}
3213
85345517 3214int
a8198eea 3215i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3216{
88241785
CW
3217 int ret;
3218
a8198eea 3219 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3220 return 0;
3221
0201f1ec 3222 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3223 if (ret)
3224 return ret;
3225
a8198eea
CW
3226 /* Ensure that we invalidate the GPU's caches and TLBs. */
3227 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3228 return 0;
85345517
CW
3229}
3230
e47c68e9
EA
3231/**
3232 * Moves a single object to the CPU read, and possibly write domain.
3233 *
3234 * This function returns when the move is complete, including waiting on
3235 * flushes to occur.
3236 */
dabdfe02 3237int
919926ae 3238i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3239{
1c5d22f7 3240 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3241 int ret;
3242
8d7e3de1
CW
3243 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3244 return 0;
3245
0201f1ec
CW
3246 ret = i915_gem_object_wait_rendering(obj, !write);
3247 if (ret)
3248 return ret;
2ef7eeaa 3249
e47c68e9 3250 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3251
05394f39
CW
3252 old_write_domain = obj->base.write_domain;
3253 old_read_domains = obj->base.read_domains;
1c5d22f7 3254
e47c68e9 3255 /* Flush the CPU cache if it's still invalid. */
05394f39 3256 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3257 i915_gem_clflush_object(obj);
2ef7eeaa 3258
05394f39 3259 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3260 }
3261
3262 /* It should now be out of any other write domains, and we can update
3263 * the domain values for our changes.
3264 */
05394f39 3265 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3266
3267 /* If we're writing through the CPU, then the GPU read domains will
3268 * need to be invalidated at next use.
3269 */
3270 if (write) {
05394f39
CW
3271 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3272 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3273 }
2ef7eeaa 3274
1c5d22f7
CW
3275 trace_i915_gem_object_change_domain(obj,
3276 old_read_domains,
3277 old_write_domain);
3278
2ef7eeaa
EA
3279 return 0;
3280}
3281
673a394b
EA
3282/* Throttle our rendering by waiting until the ring has completed our requests
3283 * emitted over 20 msec ago.
3284 *
b962442e
EA
3285 * Note that if we were to use the current jiffies each time around the loop,
3286 * we wouldn't escape the function with any frames outstanding if the time to
3287 * render a frame was over 20ms.
3288 *
673a394b
EA
3289 * This should get us reasonable parallelism between CPU and GPU but also
3290 * relatively low latency when blocking on a particular request to finish.
3291 */
40a5f0de 3292static int
f787a5f5 3293i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3294{
f787a5f5
CW
3295 struct drm_i915_private *dev_priv = dev->dev_private;
3296 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3297 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3298 struct drm_i915_gem_request *request;
3299 struct intel_ring_buffer *ring = NULL;
3300 u32 seqno = 0;
3301 int ret;
93533c29 3302
e110e8d6
CW
3303 if (atomic_read(&dev_priv->mm.wedged))
3304 return -EIO;
3305
1c25595f 3306 spin_lock(&file_priv->mm.lock);
f787a5f5 3307 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3308 if (time_after_eq(request->emitted_jiffies, recent_enough))
3309 break;
40a5f0de 3310
f787a5f5
CW
3311 ring = request->ring;
3312 seqno = request->seqno;
b962442e 3313 }
1c25595f 3314 spin_unlock(&file_priv->mm.lock);
40a5f0de 3315
f787a5f5
CW
3316 if (seqno == 0)
3317 return 0;
2bc43b5c 3318
5c81fe85 3319 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3320 if (ret == 0)
3321 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3322
3323 return ret;
3324}
3325
673a394b 3326int
05394f39
CW
3327i915_gem_object_pin(struct drm_i915_gem_object *obj,
3328 uint32_t alignment,
86a1ee26
CW
3329 bool map_and_fenceable,
3330 bool nonblocking)
673a394b 3331{
673a394b
EA
3332 int ret;
3333
05394f39 3334 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
ac0c6b5a 3335
05394f39
CW
3336 if (obj->gtt_space != NULL) {
3337 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3338 (map_and_fenceable && !obj->map_and_fenceable)) {
3339 WARN(obj->pin_count,
ae7d49d8 3340 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3341 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3342 " obj->map_and_fenceable=%d\n",
05394f39 3343 obj->gtt_offset, alignment,
75e9e915 3344 map_and_fenceable,
05394f39 3345 obj->map_and_fenceable);
ac0c6b5a
CW
3346 ret = i915_gem_object_unbind(obj);
3347 if (ret)
3348 return ret;
3349 }
3350 }
3351
05394f39 3352 if (obj->gtt_space == NULL) {
a00b10c3 3353 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3354 map_and_fenceable,
3355 nonblocking);
9731129c 3356 if (ret)
673a394b 3357 return ret;
22c344e9 3358 }
76446cac 3359
74898d7e
DV
3360 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3361 i915_gem_gtt_bind_object(obj, obj->cache_level);
3362
1b50247a 3363 obj->pin_count++;
6299f992 3364 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3365
3366 return 0;
3367}
3368
3369void
05394f39 3370i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3371{
05394f39
CW
3372 BUG_ON(obj->pin_count == 0);
3373 BUG_ON(obj->gtt_space == NULL);
673a394b 3374
1b50247a 3375 if (--obj->pin_count == 0)
6299f992 3376 obj->pin_mappable = false;
673a394b
EA
3377}
3378
3379int
3380i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3381 struct drm_file *file)
673a394b
EA
3382{
3383 struct drm_i915_gem_pin *args = data;
05394f39 3384 struct drm_i915_gem_object *obj;
673a394b
EA
3385 int ret;
3386
1d7cfea1
CW
3387 ret = i915_mutex_lock_interruptible(dev);
3388 if (ret)
3389 return ret;
673a394b 3390
05394f39 3391 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3392 if (&obj->base == NULL) {
1d7cfea1
CW
3393 ret = -ENOENT;
3394 goto unlock;
673a394b 3395 }
673a394b 3396
05394f39 3397 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3398 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3399 ret = -EINVAL;
3400 goto out;
3ef94daa
CW
3401 }
3402
05394f39 3403 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3404 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3405 args->handle);
1d7cfea1
CW
3406 ret = -EINVAL;
3407 goto out;
79e53945
JB
3408 }
3409
05394f39
CW
3410 obj->user_pin_count++;
3411 obj->pin_filp = file;
3412 if (obj->user_pin_count == 1) {
86a1ee26 3413 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3414 if (ret)
3415 goto out;
673a394b
EA
3416 }
3417
3418 /* XXX - flush the CPU caches for pinned objects
3419 * as the X server doesn't manage domains yet
3420 */
e47c68e9 3421 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3422 args->offset = obj->gtt_offset;
1d7cfea1 3423out:
05394f39 3424 drm_gem_object_unreference(&obj->base);
1d7cfea1 3425unlock:
673a394b 3426 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3427 return ret;
673a394b
EA
3428}
3429
3430int
3431i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3432 struct drm_file *file)
673a394b
EA
3433{
3434 struct drm_i915_gem_pin *args = data;
05394f39 3435 struct drm_i915_gem_object *obj;
76c1dec1 3436 int ret;
673a394b 3437
1d7cfea1
CW
3438 ret = i915_mutex_lock_interruptible(dev);
3439 if (ret)
3440 return ret;
673a394b 3441
05394f39 3442 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3443 if (&obj->base == NULL) {
1d7cfea1
CW
3444 ret = -ENOENT;
3445 goto unlock;
673a394b 3446 }
76c1dec1 3447
05394f39 3448 if (obj->pin_filp != file) {
79e53945
JB
3449 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3450 args->handle);
1d7cfea1
CW
3451 ret = -EINVAL;
3452 goto out;
79e53945 3453 }
05394f39
CW
3454 obj->user_pin_count--;
3455 if (obj->user_pin_count == 0) {
3456 obj->pin_filp = NULL;
79e53945
JB
3457 i915_gem_object_unpin(obj);
3458 }
673a394b 3459
1d7cfea1 3460out:
05394f39 3461 drm_gem_object_unreference(&obj->base);
1d7cfea1 3462unlock:
673a394b 3463 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3464 return ret;
673a394b
EA
3465}
3466
3467int
3468i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3469 struct drm_file *file)
673a394b
EA
3470{
3471 struct drm_i915_gem_busy *args = data;
05394f39 3472 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3473 int ret;
3474
76c1dec1 3475 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3476 if (ret)
76c1dec1 3477 return ret;
673a394b 3478
05394f39 3479 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3480 if (&obj->base == NULL) {
1d7cfea1
CW
3481 ret = -ENOENT;
3482 goto unlock;
673a394b 3483 }
d1b851fc 3484
0be555b6
CW
3485 /* Count all active objects as busy, even if they are currently not used
3486 * by the gpu. Users of this interface expect objects to eventually
3487 * become non-busy without any further actions, therefore emit any
3488 * necessary flushes here.
c4de0a5d 3489 */
30dfebf3 3490 ret = i915_gem_object_flush_active(obj);
0be555b6 3491
30dfebf3 3492 args->busy = obj->active;
e9808edd
CW
3493 if (obj->ring) {
3494 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3495 args->busy |= intel_ring_flag(obj->ring) << 16;
3496 }
673a394b 3497
05394f39 3498 drm_gem_object_unreference(&obj->base);
1d7cfea1 3499unlock:
673a394b 3500 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3501 return ret;
673a394b
EA
3502}
3503
3504int
3505i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3506 struct drm_file *file_priv)
3507{
0206e353 3508 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3509}
3510
3ef94daa
CW
3511int
3512i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3513 struct drm_file *file_priv)
3514{
3515 struct drm_i915_gem_madvise *args = data;
05394f39 3516 struct drm_i915_gem_object *obj;
76c1dec1 3517 int ret;
3ef94daa
CW
3518
3519 switch (args->madv) {
3520 case I915_MADV_DONTNEED:
3521 case I915_MADV_WILLNEED:
3522 break;
3523 default:
3524 return -EINVAL;
3525 }
3526
1d7cfea1
CW
3527 ret = i915_mutex_lock_interruptible(dev);
3528 if (ret)
3529 return ret;
3530
05394f39 3531 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3532 if (&obj->base == NULL) {
1d7cfea1
CW
3533 ret = -ENOENT;
3534 goto unlock;
3ef94daa 3535 }
3ef94daa 3536
05394f39 3537 if (obj->pin_count) {
1d7cfea1
CW
3538 ret = -EINVAL;
3539 goto out;
3ef94daa
CW
3540 }
3541
05394f39
CW
3542 if (obj->madv != __I915_MADV_PURGED)
3543 obj->madv = args->madv;
3ef94daa 3544
6c085a72
CW
3545 /* if the object is no longer attached, discard its backing storage */
3546 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3547 i915_gem_object_truncate(obj);
3548
05394f39 3549 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3550
1d7cfea1 3551out:
05394f39 3552 drm_gem_object_unreference(&obj->base);
1d7cfea1 3553unlock:
3ef94daa 3554 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3555 return ret;
3ef94daa
CW
3556}
3557
05394f39
CW
3558struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3559 size_t size)
ac52bc56 3560{
73aa808f 3561 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3562 struct drm_i915_gem_object *obj;
5949eac4 3563 struct address_space *mapping;
bed1ea95 3564 u32 mask;
ac52bc56 3565
c397b908
DV
3566 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3567 if (obj == NULL)
3568 return NULL;
673a394b 3569
c397b908
DV
3570 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3571 kfree(obj);
3572 return NULL;
3573 }
673a394b 3574
bed1ea95
CW
3575 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3576 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3577 /* 965gm cannot relocate objects above 4GiB. */
3578 mask &= ~__GFP_HIGHMEM;
3579 mask |= __GFP_DMA32;
3580 }
3581
5949eac4 3582 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3583 mapping_set_gfp_mask(mapping, mask);
5949eac4 3584
73aa808f
CW
3585 i915_gem_info_add_obj(dev_priv, size);
3586
c397b908
DV
3587 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3588 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3589
3d29b842
ED
3590 if (HAS_LLC(dev)) {
3591 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3592 * cache) for about a 10% performance improvement
3593 * compared to uncached. Graphics requests other than
3594 * display scanout are coherent with the CPU in
3595 * accessing this cache. This means in this mode we
3596 * don't need to clflush on the CPU side, and on the
3597 * GPU side we only need to flush internal caches to
3598 * get data visible to the CPU.
3599 *
3600 * However, we maintain the display planes as UC, and so
3601 * need to rebind when first used as such.
3602 */
3603 obj->cache_level = I915_CACHE_LLC;
3604 } else
3605 obj->cache_level = I915_CACHE_NONE;
3606
62b8b215 3607 obj->base.driver_private = NULL;
c397b908 3608 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3609 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3610 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3611 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3612 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3613 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3614 /* Avoid an unnecessary call to unbind on the first bind. */
3615 obj->map_and_fenceable = true;
de151cf6 3616
05394f39 3617 return obj;
c397b908
DV
3618}
3619
3620int i915_gem_init_object(struct drm_gem_object *obj)
3621{
3622 BUG();
de151cf6 3623
673a394b
EA
3624 return 0;
3625}
3626
1488fc08 3627void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3628{
1488fc08 3629 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3630 struct drm_device *dev = obj->base.dev;
be72615b 3631 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3632
26e12f89
CW
3633 trace_i915_gem_object_destroy(obj);
3634
1286ff73
DV
3635 if (gem_obj->import_attach)
3636 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3637
1488fc08
CW
3638 if (obj->phys_obj)
3639 i915_gem_detach_phys_object(dev, obj);
3640
3641 obj->pin_count = 0;
3642 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3643 bool was_interruptible;
3644
3645 was_interruptible = dev_priv->mm.interruptible;
3646 dev_priv->mm.interruptible = false;
3647
3648 WARN_ON(i915_gem_object_unbind(obj));
3649
3650 dev_priv->mm.interruptible = was_interruptible;
3651 }
3652
6c085a72 3653 i915_gem_object_put_pages_gtt(obj);
d8cb5086 3654 i915_gem_object_free_mmap_offset(obj);
de151cf6 3655
05394f39
CW
3656 drm_gem_object_release(&obj->base);
3657 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3658
05394f39
CW
3659 kfree(obj->bit_17);
3660 kfree(obj);
673a394b
EA
3661}
3662
29105ccc
CW
3663int
3664i915_gem_idle(struct drm_device *dev)
3665{
3666 drm_i915_private_t *dev_priv = dev->dev_private;
3667 int ret;
28dfe52a 3668
29105ccc 3669 mutex_lock(&dev->struct_mutex);
1c5d22f7 3670
87acb0a5 3671 if (dev_priv->mm.suspended) {
29105ccc
CW
3672 mutex_unlock(&dev->struct_mutex);
3673 return 0;
28dfe52a
EA
3674 }
3675
b2da9fe5 3676 ret = i915_gpu_idle(dev);
6dbe2772
KP
3677 if (ret) {
3678 mutex_unlock(&dev->struct_mutex);
673a394b 3679 return ret;
6dbe2772 3680 }
b2da9fe5 3681 i915_gem_retire_requests(dev);
673a394b 3682
29105ccc 3683 /* Under UMS, be paranoid and evict. */
a39d7efc 3684 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3685 i915_gem_evict_everything(dev);
29105ccc 3686
312817a3
CW
3687 i915_gem_reset_fences(dev);
3688
29105ccc
CW
3689 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3690 * We need to replace this with a semaphore, or something.
3691 * And not confound mm.suspended!
3692 */
3693 dev_priv->mm.suspended = 1;
bc0c7f14 3694 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3695
3696 i915_kernel_lost_context(dev);
6dbe2772 3697 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3698
6dbe2772
KP
3699 mutex_unlock(&dev->struct_mutex);
3700
29105ccc
CW
3701 /* Cancel the retire work handler, which should be idle now. */
3702 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3703
673a394b
EA
3704 return 0;
3705}
3706
b9524a1e
BW
3707void i915_gem_l3_remap(struct drm_device *dev)
3708{
3709 drm_i915_private_t *dev_priv = dev->dev_private;
3710 u32 misccpctl;
3711 int i;
3712
3713 if (!IS_IVYBRIDGE(dev))
3714 return;
3715
3716 if (!dev_priv->mm.l3_remap_info)
3717 return;
3718
3719 misccpctl = I915_READ(GEN7_MISCCPCTL);
3720 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3721 POSTING_READ(GEN7_MISCCPCTL);
3722
3723 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3724 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3725 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3726 DRM_DEBUG("0x%x was already programmed to %x\n",
3727 GEN7_L3LOG_BASE + i, remap);
3728 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3729 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3730 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3731 }
3732
3733 /* Make sure all the writes land before disabling dop clock gating */
3734 POSTING_READ(GEN7_L3LOG_BASE);
3735
3736 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3737}
3738
f691e2f4
DV
3739void i915_gem_init_swizzling(struct drm_device *dev)
3740{
3741 drm_i915_private_t *dev_priv = dev->dev_private;
3742
11782b02 3743 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3744 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3745 return;
3746
3747 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3748 DISP_TILE_SURFACE_SWIZZLING);
3749
11782b02
DV
3750 if (IS_GEN5(dev))
3751 return;
3752
f691e2f4
DV
3753 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3754 if (IS_GEN6(dev))
6b26c86d 3755 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3756 else
6b26c86d 3757 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3758}
e21af88d
DV
3759
3760void i915_gem_init_ppgtt(struct drm_device *dev)
3761{
3762 drm_i915_private_t *dev_priv = dev->dev_private;
3763 uint32_t pd_offset;
3764 struct intel_ring_buffer *ring;
55a254ac
DV
3765 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3766 uint32_t __iomem *pd_addr;
3767 uint32_t pd_entry;
e21af88d
DV
3768 int i;
3769
3770 if (!dev_priv->mm.aliasing_ppgtt)
3771 return;
3772
55a254ac
DV
3773
3774 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3775 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3776 dma_addr_t pt_addr;
3777
3778 if (dev_priv->mm.gtt->needs_dmar)
3779 pt_addr = ppgtt->pt_dma_addr[i];
3780 else
3781 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3782
3783 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3784 pd_entry |= GEN6_PDE_VALID;
3785
3786 writel(pd_entry, pd_addr + i);
3787 }
3788 readl(pd_addr);
3789
3790 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3791 pd_offset /= 64; /* in cachelines, */
3792 pd_offset <<= 16;
3793
3794 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3795 uint32_t ecochk, gab_ctl, ecobits;
3796
3797 ecobits = I915_READ(GAC_ECO_BITS);
3798 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3799
3800 gab_ctl = I915_READ(GAB_CTL);
3801 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3802
3803 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3804 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3805 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3806 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3807 } else if (INTEL_INFO(dev)->gen >= 7) {
3808 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3809 /* GFX_MODE is per-ring on gen7+ */
3810 }
3811
b4519513 3812 for_each_ring(ring, dev_priv, i) {
e21af88d
DV
3813 if (INTEL_INFO(dev)->gen >= 7)
3814 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3815 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3816
3817 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3818 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3819 }
3820}
3821
67b1b571
CW
3822static bool
3823intel_enable_blt(struct drm_device *dev)
3824{
3825 if (!HAS_BLT(dev))
3826 return false;
3827
3828 /* The blitter was dysfunctional on early prototypes */
3829 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3830 DRM_INFO("BLT not supported on this pre-production hardware;"
3831 " graphics performance will be degraded.\n");
3832 return false;
3833 }
3834
3835 return true;
3836}
3837
8187a2b7 3838int
f691e2f4 3839i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3840{
3841 drm_i915_private_t *dev_priv = dev->dev_private;
3842 int ret;
68f95ba9 3843
8ecd1a66
DV
3844 if (!intel_enable_gtt())
3845 return -EIO;
3846
b9524a1e
BW
3847 i915_gem_l3_remap(dev);
3848
f691e2f4
DV
3849 i915_gem_init_swizzling(dev);
3850
5c1143bb 3851 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3852 if (ret)
b6913e4b 3853 return ret;
68f95ba9
CW
3854
3855 if (HAS_BSD(dev)) {
5c1143bb 3856 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3857 if (ret)
3858 goto cleanup_render_ring;
d1b851fc 3859 }
68f95ba9 3860
67b1b571 3861 if (intel_enable_blt(dev)) {
549f7365
CW
3862 ret = intel_init_blt_ring_buffer(dev);
3863 if (ret)
3864 goto cleanup_bsd_ring;
3865 }
3866
6f392d54
CW
3867 dev_priv->next_seqno = 1;
3868
254f965c
BW
3869 /*
3870 * XXX: There was some w/a described somewhere suggesting loading
3871 * contexts before PPGTT.
3872 */
3873 i915_gem_context_init(dev);
e21af88d
DV
3874 i915_gem_init_ppgtt(dev);
3875
68f95ba9
CW
3876 return 0;
3877
549f7365 3878cleanup_bsd_ring:
1ec14ad3 3879 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3880cleanup_render_ring:
1ec14ad3 3881 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3882 return ret;
3883}
3884
1070a42b
CW
3885static bool
3886intel_enable_ppgtt(struct drm_device *dev)
3887{
3888 if (i915_enable_ppgtt >= 0)
3889 return i915_enable_ppgtt;
3890
3891#ifdef CONFIG_INTEL_IOMMU
3892 /* Disable ppgtt on SNB if VT-d is on. */
3893 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3894 return false;
3895#endif
3896
3897 return true;
3898}
3899
3900int i915_gem_init(struct drm_device *dev)
3901{
3902 struct drm_i915_private *dev_priv = dev->dev_private;
3903 unsigned long gtt_size, mappable_size;
3904 int ret;
3905
3906 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3907 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3908
3909 mutex_lock(&dev->struct_mutex);
3910 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3911 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3912 * aperture accordingly when using aliasing ppgtt. */
3913 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3914
3915 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3916
3917 ret = i915_gem_init_aliasing_ppgtt(dev);
3918 if (ret) {
3919 mutex_unlock(&dev->struct_mutex);
3920 return ret;
3921 }
3922 } else {
3923 /* Let GEM Manage all of the aperture.
3924 *
3925 * However, leave one page at the end still bound to the scratch
3926 * page. There are a number of places where the hardware
3927 * apparently prefetches past the end of the object, and we've
3928 * seen multiple hangs with the GPU head pointer stuck in a
3929 * batchbuffer bound at the last page of the aperture. One page
3930 * should be enough to keep any prefetching inside of the
3931 * aperture.
3932 */
3933 i915_gem_init_global_gtt(dev, 0, mappable_size,
3934 gtt_size);
3935 }
3936
3937 ret = i915_gem_init_hw(dev);
3938 mutex_unlock(&dev->struct_mutex);
3939 if (ret) {
3940 i915_gem_cleanup_aliasing_ppgtt(dev);
3941 return ret;
3942 }
3943
53ca26ca
DV
3944 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3945 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3946 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
3947 return 0;
3948}
3949
8187a2b7
ZN
3950void
3951i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3952{
3953 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3954 struct intel_ring_buffer *ring;
1ec14ad3 3955 int i;
8187a2b7 3956
b4519513
CW
3957 for_each_ring(ring, dev_priv, i)
3958 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
3959}
3960
673a394b
EA
3961int
3962i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3963 struct drm_file *file_priv)
3964{
3965 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3966 int ret;
673a394b 3967
79e53945
JB
3968 if (drm_core_check_feature(dev, DRIVER_MODESET))
3969 return 0;
3970
ba1234d1 3971 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3972 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3973 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3974 }
3975
673a394b 3976 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3977 dev_priv->mm.suspended = 0;
3978
f691e2f4 3979 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3980 if (ret != 0) {
3981 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3982 return ret;
d816f6ac 3983 }
9bb2d6f9 3984
69dc4987 3985 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 3986 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
673a394b 3987 mutex_unlock(&dev->struct_mutex);
dbb19d30 3988
5f35308b
CW
3989 ret = drm_irq_install(dev);
3990 if (ret)
3991 goto cleanup_ringbuffer;
dbb19d30 3992
673a394b 3993 return 0;
5f35308b
CW
3994
3995cleanup_ringbuffer:
3996 mutex_lock(&dev->struct_mutex);
3997 i915_gem_cleanup_ringbuffer(dev);
3998 dev_priv->mm.suspended = 1;
3999 mutex_unlock(&dev->struct_mutex);
4000
4001 return ret;
673a394b
EA
4002}
4003
4004int
4005i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4006 struct drm_file *file_priv)
4007{
79e53945
JB
4008 if (drm_core_check_feature(dev, DRIVER_MODESET))
4009 return 0;
4010
dbb19d30 4011 drm_irq_uninstall(dev);
e6890f6f 4012 return i915_gem_idle(dev);
673a394b
EA
4013}
4014
4015void
4016i915_gem_lastclose(struct drm_device *dev)
4017{
4018 int ret;
673a394b 4019
e806b495
EA
4020 if (drm_core_check_feature(dev, DRIVER_MODESET))
4021 return;
4022
6dbe2772
KP
4023 ret = i915_gem_idle(dev);
4024 if (ret)
4025 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4026}
4027
64193406
CW
4028static void
4029init_ring_lists(struct intel_ring_buffer *ring)
4030{
4031 INIT_LIST_HEAD(&ring->active_list);
4032 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4033}
4034
673a394b
EA
4035void
4036i915_gem_load(struct drm_device *dev)
4037{
b5aa8a0f 4038 int i;
673a394b
EA
4039 drm_i915_private_t *dev_priv = dev->dev_private;
4040
69dc4987 4041 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4042 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4043 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4044 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4045 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4046 for (i = 0; i < I915_NUM_RINGS; i++)
4047 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4048 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4049 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4050 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4051 i915_gem_retire_work_handler);
30dbf0c0 4052 init_completion(&dev_priv->error_completion);
31169714 4053
94400120
DA
4054 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4055 if (IS_GEN3(dev)) {
50743298
DV
4056 I915_WRITE(MI_ARB_STATE,
4057 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4058 }
4059
72bfa19c
CW
4060 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4061
de151cf6 4062 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4063 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4064 dev_priv->fence_reg_start = 3;
de151cf6 4065
a6c45cf0 4066 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4067 dev_priv->num_fence_regs = 16;
4068 else
4069 dev_priv->num_fence_regs = 8;
4070
b5aa8a0f 4071 /* Initialize fence registers to zero */
ada726c7 4072 i915_gem_reset_fences(dev);
10ed13e4 4073
673a394b 4074 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4075 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4076
ce453d81
CW
4077 dev_priv->mm.interruptible = true;
4078
17250b71
CW
4079 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4080 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4081 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4082}
71acb5eb
DA
4083
4084/*
4085 * Create a physically contiguous memory object for this object
4086 * e.g. for cursor + overlay regs
4087 */
995b6762
CW
4088static int i915_gem_init_phys_object(struct drm_device *dev,
4089 int id, int size, int align)
71acb5eb
DA
4090{
4091 drm_i915_private_t *dev_priv = dev->dev_private;
4092 struct drm_i915_gem_phys_object *phys_obj;
4093 int ret;
4094
4095 if (dev_priv->mm.phys_objs[id - 1] || !size)
4096 return 0;
4097
9a298b2a 4098 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4099 if (!phys_obj)
4100 return -ENOMEM;
4101
4102 phys_obj->id = id;
4103
6eeefaf3 4104 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4105 if (!phys_obj->handle) {
4106 ret = -ENOMEM;
4107 goto kfree_obj;
4108 }
4109#ifdef CONFIG_X86
4110 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4111#endif
4112
4113 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4114
4115 return 0;
4116kfree_obj:
9a298b2a 4117 kfree(phys_obj);
71acb5eb
DA
4118 return ret;
4119}
4120
995b6762 4121static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4122{
4123 drm_i915_private_t *dev_priv = dev->dev_private;
4124 struct drm_i915_gem_phys_object *phys_obj;
4125
4126 if (!dev_priv->mm.phys_objs[id - 1])
4127 return;
4128
4129 phys_obj = dev_priv->mm.phys_objs[id - 1];
4130 if (phys_obj->cur_obj) {
4131 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4132 }
4133
4134#ifdef CONFIG_X86
4135 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4136#endif
4137 drm_pci_free(dev, phys_obj->handle);
4138 kfree(phys_obj);
4139 dev_priv->mm.phys_objs[id - 1] = NULL;
4140}
4141
4142void i915_gem_free_all_phys_object(struct drm_device *dev)
4143{
4144 int i;
4145
260883c8 4146 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4147 i915_gem_free_phys_object(dev, i);
4148}
4149
4150void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4151 struct drm_i915_gem_object *obj)
71acb5eb 4152{
05394f39 4153 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4154 char *vaddr;
71acb5eb 4155 int i;
71acb5eb
DA
4156 int page_count;
4157
05394f39 4158 if (!obj->phys_obj)
71acb5eb 4159 return;
05394f39 4160 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4161
05394f39 4162 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4163 for (i = 0; i < page_count; i++) {
5949eac4 4164 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4165 if (!IS_ERR(page)) {
4166 char *dst = kmap_atomic(page);
4167 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4168 kunmap_atomic(dst);
4169
4170 drm_clflush_pages(&page, 1);
4171
4172 set_page_dirty(page);
4173 mark_page_accessed(page);
4174 page_cache_release(page);
4175 }
71acb5eb 4176 }
40ce6575 4177 intel_gtt_chipset_flush();
d78b47b9 4178
05394f39
CW
4179 obj->phys_obj->cur_obj = NULL;
4180 obj->phys_obj = NULL;
71acb5eb
DA
4181}
4182
4183int
4184i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4185 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4186 int id,
4187 int align)
71acb5eb 4188{
05394f39 4189 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4190 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4191 int ret = 0;
4192 int page_count;
4193 int i;
4194
4195 if (id > I915_MAX_PHYS_OBJECT)
4196 return -EINVAL;
4197
05394f39
CW
4198 if (obj->phys_obj) {
4199 if (obj->phys_obj->id == id)
71acb5eb
DA
4200 return 0;
4201 i915_gem_detach_phys_object(dev, obj);
4202 }
4203
71acb5eb
DA
4204 /* create a new object */
4205 if (!dev_priv->mm.phys_objs[id - 1]) {
4206 ret = i915_gem_init_phys_object(dev, id,
05394f39 4207 obj->base.size, align);
71acb5eb 4208 if (ret) {
05394f39
CW
4209 DRM_ERROR("failed to init phys object %d size: %zu\n",
4210 id, obj->base.size);
e5281ccd 4211 return ret;
71acb5eb
DA
4212 }
4213 }
4214
4215 /* bind to the object */
05394f39
CW
4216 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4217 obj->phys_obj->cur_obj = obj;
71acb5eb 4218
05394f39 4219 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4220
4221 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4222 struct page *page;
4223 char *dst, *src;
4224
5949eac4 4225 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4226 if (IS_ERR(page))
4227 return PTR_ERR(page);
71acb5eb 4228
ff75b9bc 4229 src = kmap_atomic(page);
05394f39 4230 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4231 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4232 kunmap_atomic(src);
71acb5eb 4233
e5281ccd
CW
4234 mark_page_accessed(page);
4235 page_cache_release(page);
4236 }
d78b47b9 4237
71acb5eb 4238 return 0;
71acb5eb
DA
4239}
4240
4241static int
05394f39
CW
4242i915_gem_phys_pwrite(struct drm_device *dev,
4243 struct drm_i915_gem_object *obj,
71acb5eb
DA
4244 struct drm_i915_gem_pwrite *args,
4245 struct drm_file *file_priv)
4246{
05394f39 4247 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4248 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4249
b47b30cc
CW
4250 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4251 unsigned long unwritten;
4252
4253 /* The physical object once assigned is fixed for the lifetime
4254 * of the obj, so we can safely drop the lock and continue
4255 * to access vaddr.
4256 */
4257 mutex_unlock(&dev->struct_mutex);
4258 unwritten = copy_from_user(vaddr, user_data, args->size);
4259 mutex_lock(&dev->struct_mutex);
4260 if (unwritten)
4261 return -EFAULT;
4262 }
71acb5eb 4263
40ce6575 4264 intel_gtt_chipset_flush();
71acb5eb
DA
4265 return 0;
4266}
b962442e 4267
f787a5f5 4268void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4269{
f787a5f5 4270 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4271
4272 /* Clean up our request list when the client is going away, so that
4273 * later retire_requests won't dereference our soon-to-be-gone
4274 * file_priv.
4275 */
1c25595f 4276 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4277 while (!list_empty(&file_priv->mm.request_list)) {
4278 struct drm_i915_gem_request *request;
4279
4280 request = list_first_entry(&file_priv->mm.request_list,
4281 struct drm_i915_gem_request,
4282 client_list);
4283 list_del(&request->client_list);
4284 request->file_priv = NULL;
4285 }
1c25595f 4286 spin_unlock(&file_priv->mm.lock);
b962442e 4287}
31169714 4288
31169714 4289static int
1495f230 4290i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4291{
17250b71
CW
4292 struct drm_i915_private *dev_priv =
4293 container_of(shrinker,
4294 struct drm_i915_private,
4295 mm.inactive_shrinker);
4296 struct drm_device *dev = dev_priv->dev;
6c085a72 4297 struct drm_i915_gem_object *obj;
1495f230 4298 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4299 int cnt;
4300
4301 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4302 return 0;
31169714 4303
6c085a72
CW
4304 if (nr_to_scan) {
4305 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4306 if (nr_to_scan > 0)
4307 i915_gem_shrink_all(dev_priv);
31169714
CW
4308 }
4309
17250b71 4310 cnt = 0;
6c085a72
CW
4311 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4312 cnt += obj->base.size >> PAGE_SHIFT;
4313 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4314 if (obj->pin_count == 0)
4315 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4316
17250b71 4317 mutex_unlock(&dev->struct_mutex);
6c085a72 4318 return cnt;
31169714 4319}