]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Prevent stalling for a GTT read back from a read-only GPU target
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
3619df03 38static void i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41static int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
919926ae 42 bool write);
05394f39 43static int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
44 uint64_t offset,
45 uint64_t size);
05394f39 46static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
05394f39 47static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
a00b10c3 48 unsigned alignment,
75e9e915 49 bool map_and_fenceable);
05394f39
CW
50static void i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj);
51static int i915_gem_phys_pwrite(struct drm_device *dev,
52 struct drm_i915_gem_object *obj,
71acb5eb 53 struct drm_i915_gem_pwrite *args,
05394f39
CW
54 struct drm_file *file);
55static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 56
17250b71
CW
57static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58 int nr_to_scan,
59 gfp_t gfp_mask);
60
31169714 61
73aa808f
CW
62/* some bookkeeping */
63static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
64 size_t size)
65{
66 dev_priv->mm.object_count++;
67 dev_priv->mm.object_memory += size;
68}
69
70static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
71 size_t size)
72{
73 dev_priv->mm.object_count--;
74 dev_priv->mm.object_memory -= size;
75}
76
30dbf0c0
CW
77int
78i915_gem_check_is_wedged(struct drm_device *dev)
79{
80 struct drm_i915_private *dev_priv = dev->dev_private;
81 struct completion *x = &dev_priv->error_completion;
82 unsigned long flags;
83 int ret;
84
85 if (!atomic_read(&dev_priv->mm.wedged))
86 return 0;
87
88 ret = wait_for_completion_interruptible(x);
89 if (ret)
90 return ret;
91
92 /* Success, we reset the GPU! */
93 if (!atomic_read(&dev_priv->mm.wedged))
94 return 0;
95
96 /* GPU is hung, bump the completion count to account for
97 * the token we just consumed so that we never hit zero and
98 * end up waiting upon a subsequent completion event that
99 * will never happen.
100 */
101 spin_lock_irqsave(&x->wait.lock, flags);
102 x->done++;
103 spin_unlock_irqrestore(&x->wait.lock, flags);
104 return -EIO;
105}
106
54cf91dc 107int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1
CW
108{
109 struct drm_i915_private *dev_priv = dev->dev_private;
110 int ret;
111
112 ret = i915_gem_check_is_wedged(dev);
113 if (ret)
114 return ret;
115
116 ret = mutex_lock_interruptible(&dev->struct_mutex);
117 if (ret)
118 return ret;
119
120 if (atomic_read(&dev_priv->mm.wedged)) {
121 mutex_unlock(&dev->struct_mutex);
122 return -EAGAIN;
123 }
124
23bc5982 125 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
126 return 0;
127}
30dbf0c0 128
7d1c4804 129static inline bool
05394f39 130i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 131{
05394f39 132 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
133}
134
2021746e
CW
135void i915_gem_do_init(struct drm_device *dev,
136 unsigned long start,
137 unsigned long mappable_end,
138 unsigned long end)
673a394b
EA
139{
140 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 141
79e53945
JB
142 drm_mm_init(&dev_priv->mm.gtt_space, start,
143 end - start);
673a394b 144
73aa808f 145 dev_priv->mm.gtt_total = end - start;
fb7d516a 146 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
53984635 147 dev_priv->mm.gtt_mappable_end = mappable_end;
79e53945 148}
673a394b 149
79e53945
JB
150int
151i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 152 struct drm_file *file)
79e53945
JB
153{
154 struct drm_i915_gem_init *args = data;
2021746e
CW
155
156 if (args->gtt_start >= args->gtt_end ||
157 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
158 return -EINVAL;
79e53945
JB
159
160 mutex_lock(&dev->struct_mutex);
2021746e 161 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
162 mutex_unlock(&dev->struct_mutex);
163
2021746e 164 return 0;
673a394b
EA
165}
166
5a125c3c
EA
167int
168i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 169 struct drm_file *file)
5a125c3c 170{
73aa808f 171 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 172 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
173 struct drm_i915_gem_object *obj;
174 size_t pinned;
5a125c3c
EA
175
176 if (!(dev->driver->driver_features & DRIVER_GEM))
177 return -ENODEV;
178
6299f992 179 pinned = 0;
73aa808f 180 mutex_lock(&dev->struct_mutex);
6299f992
CW
181 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
182 pinned += obj->gtt_space->size;
73aa808f 183 mutex_unlock(&dev->struct_mutex);
5a125c3c 184
6299f992
CW
185 args->aper_size = dev_priv->mm.gtt_total;
186 args->aper_available_size = args->aper_size -pinned;
187
5a125c3c
EA
188 return 0;
189}
190
673a394b
EA
191/**
192 * Creates a new mm object and returns a handle to it.
193 */
194int
195i915_gem_create_ioctl(struct drm_device *dev, void *data,
05394f39 196 struct drm_file *file)
673a394b
EA
197{
198 struct drm_i915_gem_create *args = data;
05394f39 199 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
200 int ret;
201 u32 handle;
673a394b
EA
202
203 args->size = roundup(args->size, PAGE_SIZE);
204
205 /* Allocate the new object */
ac52bc56 206 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
207 if (obj == NULL)
208 return -ENOMEM;
209
05394f39 210 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 211 if (ret) {
05394f39
CW
212 drm_gem_object_release(&obj->base);
213 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 214 kfree(obj);
673a394b 215 return ret;
1dfd9754 216 }
673a394b 217
202f2fef 218 /* drop reference from allocate - handle holds it now */
05394f39 219 drm_gem_object_unreference(&obj->base);
202f2fef
CW
220 trace_i915_gem_object_create(obj);
221
1dfd9754 222 args->handle = handle;
673a394b
EA
223 return 0;
224}
225
05394f39 226static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 227{
05394f39 228 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
229
230 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 231 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
232}
233
99a03df5 234static inline void
40123c1f
EA
235slow_shmem_copy(struct page *dst_page,
236 int dst_offset,
237 struct page *src_page,
238 int src_offset,
239 int length)
240{
241 char *dst_vaddr, *src_vaddr;
242
99a03df5
CW
243 dst_vaddr = kmap(dst_page);
244 src_vaddr = kmap(src_page);
40123c1f
EA
245
246 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
247
99a03df5
CW
248 kunmap(src_page);
249 kunmap(dst_page);
40123c1f
EA
250}
251
99a03df5 252static inline void
280b713b
EA
253slow_shmem_bit17_copy(struct page *gpu_page,
254 int gpu_offset,
255 struct page *cpu_page,
256 int cpu_offset,
257 int length,
258 int is_read)
259{
260 char *gpu_vaddr, *cpu_vaddr;
261
262 /* Use the unswizzled path if this page isn't affected. */
263 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
264 if (is_read)
265 return slow_shmem_copy(cpu_page, cpu_offset,
266 gpu_page, gpu_offset, length);
267 else
268 return slow_shmem_copy(gpu_page, gpu_offset,
269 cpu_page, cpu_offset, length);
270 }
271
99a03df5
CW
272 gpu_vaddr = kmap(gpu_page);
273 cpu_vaddr = kmap(cpu_page);
280b713b
EA
274
275 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
276 * XORing with the other bits (A9 for Y, A9 and A10 for X)
277 */
278 while (length > 0) {
279 int cacheline_end = ALIGN(gpu_offset + 1, 64);
280 int this_length = min(cacheline_end - gpu_offset, length);
281 int swizzled_gpu_offset = gpu_offset ^ 64;
282
283 if (is_read) {
284 memcpy(cpu_vaddr + cpu_offset,
285 gpu_vaddr + swizzled_gpu_offset,
286 this_length);
287 } else {
288 memcpy(gpu_vaddr + swizzled_gpu_offset,
289 cpu_vaddr + cpu_offset,
290 this_length);
291 }
292 cpu_offset += this_length;
293 gpu_offset += this_length;
294 length -= this_length;
295 }
296
99a03df5
CW
297 kunmap(cpu_page);
298 kunmap(gpu_page);
280b713b
EA
299}
300
eb01459f
EA
301/**
302 * This is the fast shmem pread path, which attempts to copy_from_user directly
303 * from the backing pages of the object to the user's address space. On a
304 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
305 */
306static int
05394f39
CW
307i915_gem_shmem_pread_fast(struct drm_device *dev,
308 struct drm_i915_gem_object *obj,
eb01459f 309 struct drm_i915_gem_pread *args,
05394f39 310 struct drm_file *file)
eb01459f 311{
05394f39 312 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 313 ssize_t remain;
e5281ccd 314 loff_t offset;
eb01459f
EA
315 char __user *user_data;
316 int page_offset, page_length;
eb01459f
EA
317
318 user_data = (char __user *) (uintptr_t) args->data_ptr;
319 remain = args->size;
320
eb01459f
EA
321 offset = args->offset;
322
323 while (remain > 0) {
e5281ccd
CW
324 struct page *page;
325 char *vaddr;
326 int ret;
327
eb01459f
EA
328 /* Operation in this page
329 *
eb01459f
EA
330 * page_offset = offset within page
331 * page_length = bytes to copy for this page
332 */
eb01459f
EA
333 page_offset = offset & (PAGE_SIZE-1);
334 page_length = remain;
335 if ((page_offset + remain) > PAGE_SIZE)
336 page_length = PAGE_SIZE - page_offset;
337
e5281ccd
CW
338 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
339 GFP_HIGHUSER | __GFP_RECLAIMABLE);
340 if (IS_ERR(page))
341 return PTR_ERR(page);
342
343 vaddr = kmap_atomic(page);
344 ret = __copy_to_user_inatomic(user_data,
345 vaddr + page_offset,
346 page_length);
347 kunmap_atomic(vaddr);
348
349 mark_page_accessed(page);
350 page_cache_release(page);
351 if (ret)
4f27b75d 352 return -EFAULT;
eb01459f
EA
353
354 remain -= page_length;
355 user_data += page_length;
356 offset += page_length;
357 }
358
4f27b75d 359 return 0;
eb01459f
EA
360}
361
362/**
363 * This is the fallback shmem pread path, which allocates temporary storage
364 * in kernel space to copy_to_user into outside of the struct_mutex, so we
365 * can copy out of the object's backing pages while holding the struct mutex
366 * and not take page faults.
367 */
368static int
05394f39
CW
369i915_gem_shmem_pread_slow(struct drm_device *dev,
370 struct drm_i915_gem_object *obj,
eb01459f 371 struct drm_i915_gem_pread *args,
05394f39 372 struct drm_file *file)
eb01459f 373{
05394f39 374 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f
EA
375 struct mm_struct *mm = current->mm;
376 struct page **user_pages;
377 ssize_t remain;
378 loff_t offset, pinned_pages, i;
379 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
380 int shmem_page_offset;
381 int data_page_index, data_page_offset;
eb01459f
EA
382 int page_length;
383 int ret;
384 uint64_t data_ptr = args->data_ptr;
280b713b 385 int do_bit17_swizzling;
eb01459f
EA
386
387 remain = args->size;
388
389 /* Pin the user pages containing the data. We can't fault while
390 * holding the struct mutex, yet we want to hold it while
391 * dereferencing the user data.
392 */
393 first_data_page = data_ptr / PAGE_SIZE;
394 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
395 num_pages = last_data_page - first_data_page + 1;
396
4f27b75d 397 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
398 if (user_pages == NULL)
399 return -ENOMEM;
400
4f27b75d 401 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
402 down_read(&mm->mmap_sem);
403 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 404 num_pages, 1, 0, user_pages, NULL);
eb01459f 405 up_read(&mm->mmap_sem);
4f27b75d 406 mutex_lock(&dev->struct_mutex);
eb01459f
EA
407 if (pinned_pages < num_pages) {
408 ret = -EFAULT;
4f27b75d 409 goto out;
eb01459f
EA
410 }
411
4f27b75d
CW
412 ret = i915_gem_object_set_cpu_read_domain_range(obj,
413 args->offset,
414 args->size);
07f73f69 415 if (ret)
4f27b75d 416 goto out;
eb01459f 417
4f27b75d 418 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 419
eb01459f
EA
420 offset = args->offset;
421
422 while (remain > 0) {
e5281ccd
CW
423 struct page *page;
424
eb01459f
EA
425 /* Operation in this page
426 *
eb01459f
EA
427 * shmem_page_offset = offset within page in shmem file
428 * data_page_index = page number in get_user_pages return
429 * data_page_offset = offset with data_page_index page.
430 * page_length = bytes to copy for this page
431 */
eb01459f
EA
432 shmem_page_offset = offset & ~PAGE_MASK;
433 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
434 data_page_offset = data_ptr & ~PAGE_MASK;
435
436 page_length = remain;
437 if ((shmem_page_offset + page_length) > PAGE_SIZE)
438 page_length = PAGE_SIZE - shmem_page_offset;
439 if ((data_page_offset + page_length) > PAGE_SIZE)
440 page_length = PAGE_SIZE - data_page_offset;
441
e5281ccd
CW
442 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
443 GFP_HIGHUSER | __GFP_RECLAIMABLE);
444 if (IS_ERR(page))
445 return PTR_ERR(page);
446
280b713b 447 if (do_bit17_swizzling) {
e5281ccd 448 slow_shmem_bit17_copy(page,
280b713b 449 shmem_page_offset,
99a03df5
CW
450 user_pages[data_page_index],
451 data_page_offset,
452 page_length,
453 1);
454 } else {
455 slow_shmem_copy(user_pages[data_page_index],
456 data_page_offset,
e5281ccd 457 page,
99a03df5
CW
458 shmem_page_offset,
459 page_length);
280b713b 460 }
eb01459f 461
e5281ccd
CW
462 mark_page_accessed(page);
463 page_cache_release(page);
464
eb01459f
EA
465 remain -= page_length;
466 data_ptr += page_length;
467 offset += page_length;
468 }
469
4f27b75d 470out:
eb01459f
EA
471 for (i = 0; i < pinned_pages; i++) {
472 SetPageDirty(user_pages[i]);
e5281ccd 473 mark_page_accessed(user_pages[i]);
eb01459f
EA
474 page_cache_release(user_pages[i]);
475 }
8e7d2b2c 476 drm_free_large(user_pages);
eb01459f
EA
477
478 return ret;
479}
480
673a394b
EA
481/**
482 * Reads data from the object referenced by handle.
483 *
484 * On error, the contents of *data are undefined.
485 */
486int
487i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 488 struct drm_file *file)
673a394b
EA
489{
490 struct drm_i915_gem_pread *args = data;
05394f39 491 struct drm_i915_gem_object *obj;
35b62a89 492 int ret = 0;
673a394b 493
51311d0a
CW
494 if (args->size == 0)
495 return 0;
496
497 if (!access_ok(VERIFY_WRITE,
498 (char __user *)(uintptr_t)args->data_ptr,
499 args->size))
500 return -EFAULT;
501
502 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
503 args->size);
504 if (ret)
505 return -EFAULT;
506
4f27b75d 507 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 508 if (ret)
4f27b75d 509 return ret;
673a394b 510
05394f39 511 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
512 if (obj == NULL) {
513 ret = -ENOENT;
514 goto unlock;
4f27b75d 515 }
673a394b 516
7dcd2499 517 /* Bounds check source. */
05394f39
CW
518 if (args->offset > obj->base.size ||
519 args->size > obj->base.size - args->offset) {
ce9d419d 520 ret = -EINVAL;
35b62a89 521 goto out;
ce9d419d
CW
522 }
523
4f27b75d
CW
524 ret = i915_gem_object_set_cpu_read_domain_range(obj,
525 args->offset,
526 args->size);
527 if (ret)
e5281ccd 528 goto out;
4f27b75d
CW
529
530 ret = -EFAULT;
531 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 532 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 533 if (ret == -EFAULT)
05394f39 534 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 535
35b62a89 536out:
05394f39 537 drm_gem_object_unreference(&obj->base);
1d7cfea1 538unlock:
4f27b75d 539 mutex_unlock(&dev->struct_mutex);
eb01459f 540 return ret;
673a394b
EA
541}
542
0839ccb8
KP
543/* This is the fast write path which cannot handle
544 * page faults in the source data
9b7530cc 545 */
0839ccb8
KP
546
547static inline int
548fast_user_write(struct io_mapping *mapping,
549 loff_t page_base, int page_offset,
550 char __user *user_data,
551 int length)
9b7530cc 552{
9b7530cc 553 char *vaddr_atomic;
0839ccb8 554 unsigned long unwritten;
9b7530cc 555
3e4d3af5 556 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
557 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
558 user_data, length);
3e4d3af5 559 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 560 return unwritten;
0839ccb8
KP
561}
562
563/* Here's the write path which can sleep for
564 * page faults
565 */
566
ab34c226 567static inline void
3de09aa3
EA
568slow_kernel_write(struct io_mapping *mapping,
569 loff_t gtt_base, int gtt_offset,
570 struct page *user_page, int user_offset,
571 int length)
0839ccb8 572{
ab34c226
CW
573 char __iomem *dst_vaddr;
574 char *src_vaddr;
0839ccb8 575
ab34c226
CW
576 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
577 src_vaddr = kmap(user_page);
578
579 memcpy_toio(dst_vaddr + gtt_offset,
580 src_vaddr + user_offset,
581 length);
582
583 kunmap(user_page);
584 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
585}
586
3de09aa3
EA
587/**
588 * This is the fast pwrite path, where we copy the data directly from the
589 * user into the GTT, uncached.
590 */
673a394b 591static int
05394f39
CW
592i915_gem_gtt_pwrite_fast(struct drm_device *dev,
593 struct drm_i915_gem_object *obj,
3de09aa3 594 struct drm_i915_gem_pwrite *args,
05394f39 595 struct drm_file *file)
673a394b 596{
0839ccb8 597 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 598 ssize_t remain;
0839ccb8 599 loff_t offset, page_base;
673a394b 600 char __user *user_data;
0839ccb8 601 int page_offset, page_length;
673a394b
EA
602
603 user_data = (char __user *) (uintptr_t) args->data_ptr;
604 remain = args->size;
673a394b 605
05394f39 606 offset = obj->gtt_offset + args->offset;
673a394b
EA
607
608 while (remain > 0) {
609 /* Operation in this page
610 *
0839ccb8
KP
611 * page_base = page offset within aperture
612 * page_offset = offset within page
613 * page_length = bytes to copy for this page
673a394b 614 */
0839ccb8
KP
615 page_base = (offset & ~(PAGE_SIZE-1));
616 page_offset = offset & (PAGE_SIZE-1);
617 page_length = remain;
618 if ((page_offset + remain) > PAGE_SIZE)
619 page_length = PAGE_SIZE - page_offset;
620
0839ccb8 621 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
622 * source page isn't available. Return the error and we'll
623 * retry in the slow path.
0839ccb8 624 */
fbd5a26d
CW
625 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
626 page_offset, user_data, page_length))
627
628 return -EFAULT;
673a394b 629
0839ccb8
KP
630 remain -= page_length;
631 user_data += page_length;
632 offset += page_length;
673a394b 633 }
673a394b 634
fbd5a26d 635 return 0;
673a394b
EA
636}
637
3de09aa3
EA
638/**
639 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
640 * the memory and maps it using kmap_atomic for copying.
641 *
642 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
643 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
644 */
3043c60c 645static int
05394f39
CW
646i915_gem_gtt_pwrite_slow(struct drm_device *dev,
647 struct drm_i915_gem_object *obj,
3de09aa3 648 struct drm_i915_gem_pwrite *args,
05394f39 649 struct drm_file *file)
673a394b 650{
3de09aa3
EA
651 drm_i915_private_t *dev_priv = dev->dev_private;
652 ssize_t remain;
653 loff_t gtt_page_base, offset;
654 loff_t first_data_page, last_data_page, num_pages;
655 loff_t pinned_pages, i;
656 struct page **user_pages;
657 struct mm_struct *mm = current->mm;
658 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 659 int ret;
3de09aa3
EA
660 uint64_t data_ptr = args->data_ptr;
661
662 remain = args->size;
663
664 /* Pin the user pages containing the data. We can't fault while
665 * holding the struct mutex, and all of the pwrite implementations
666 * want to hold it while dereferencing the user data.
667 */
668 first_data_page = data_ptr / PAGE_SIZE;
669 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
670 num_pages = last_data_page - first_data_page + 1;
671
fbd5a26d 672 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
673 if (user_pages == NULL)
674 return -ENOMEM;
675
fbd5a26d 676 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
677 down_read(&mm->mmap_sem);
678 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
679 num_pages, 0, 0, user_pages, NULL);
680 up_read(&mm->mmap_sem);
fbd5a26d 681 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
682 if (pinned_pages < num_pages) {
683 ret = -EFAULT;
684 goto out_unpin_pages;
685 }
673a394b 686
3de09aa3
EA
687 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
688 if (ret)
fbd5a26d 689 goto out_unpin_pages;
3de09aa3 690
05394f39 691 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
692
693 while (remain > 0) {
694 /* Operation in this page
695 *
696 * gtt_page_base = page offset within aperture
697 * gtt_page_offset = offset within page in aperture
698 * data_page_index = page number in get_user_pages return
699 * data_page_offset = offset with data_page_index page.
700 * page_length = bytes to copy for this page
701 */
702 gtt_page_base = offset & PAGE_MASK;
703 gtt_page_offset = offset & ~PAGE_MASK;
704 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
705 data_page_offset = data_ptr & ~PAGE_MASK;
706
707 page_length = remain;
708 if ((gtt_page_offset + page_length) > PAGE_SIZE)
709 page_length = PAGE_SIZE - gtt_page_offset;
710 if ((data_page_offset + page_length) > PAGE_SIZE)
711 page_length = PAGE_SIZE - data_page_offset;
712
ab34c226
CW
713 slow_kernel_write(dev_priv->mm.gtt_mapping,
714 gtt_page_base, gtt_page_offset,
715 user_pages[data_page_index],
716 data_page_offset,
717 page_length);
3de09aa3
EA
718
719 remain -= page_length;
720 offset += page_length;
721 data_ptr += page_length;
722 }
723
3de09aa3
EA
724out_unpin_pages:
725 for (i = 0; i < pinned_pages; i++)
726 page_cache_release(user_pages[i]);
8e7d2b2c 727 drm_free_large(user_pages);
3de09aa3
EA
728
729 return ret;
730}
731
40123c1f
EA
732/**
733 * This is the fast shmem pwrite path, which attempts to directly
734 * copy_from_user into the kmapped pages backing the object.
735 */
3043c60c 736static int
05394f39
CW
737i915_gem_shmem_pwrite_fast(struct drm_device *dev,
738 struct drm_i915_gem_object *obj,
40123c1f 739 struct drm_i915_gem_pwrite *args,
05394f39 740 struct drm_file *file)
673a394b 741{
05394f39 742 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 743 ssize_t remain;
e5281ccd 744 loff_t offset;
40123c1f
EA
745 char __user *user_data;
746 int page_offset, page_length;
40123c1f
EA
747
748 user_data = (char __user *) (uintptr_t) args->data_ptr;
749 remain = args->size;
673a394b 750
40123c1f 751 offset = args->offset;
05394f39 752 obj->dirty = 1;
40123c1f
EA
753
754 while (remain > 0) {
e5281ccd
CW
755 struct page *page;
756 char *vaddr;
757 int ret;
758
40123c1f
EA
759 /* Operation in this page
760 *
40123c1f
EA
761 * page_offset = offset within page
762 * page_length = bytes to copy for this page
763 */
40123c1f
EA
764 page_offset = offset & (PAGE_SIZE-1);
765 page_length = remain;
766 if ((page_offset + remain) > PAGE_SIZE)
767 page_length = PAGE_SIZE - page_offset;
768
e5281ccd
CW
769 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
770 GFP_HIGHUSER | __GFP_RECLAIMABLE);
771 if (IS_ERR(page))
772 return PTR_ERR(page);
773
774 vaddr = kmap_atomic(page, KM_USER0);
775 ret = __copy_from_user_inatomic(vaddr + page_offset,
776 user_data,
777 page_length);
778 kunmap_atomic(vaddr, KM_USER0);
779
780 set_page_dirty(page);
781 mark_page_accessed(page);
782 page_cache_release(page);
783
784 /* If we get a fault while copying data, then (presumably) our
785 * source page isn't available. Return the error and we'll
786 * retry in the slow path.
787 */
788 if (ret)
fbd5a26d 789 return -EFAULT;
40123c1f
EA
790
791 remain -= page_length;
792 user_data += page_length;
793 offset += page_length;
794 }
795
fbd5a26d 796 return 0;
40123c1f
EA
797}
798
799/**
800 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
801 * the memory and maps it using kmap_atomic for copying.
802 *
803 * This avoids taking mmap_sem for faulting on the user's address while the
804 * struct_mutex is held.
805 */
806static int
05394f39
CW
807i915_gem_shmem_pwrite_slow(struct drm_device *dev,
808 struct drm_i915_gem_object *obj,
40123c1f 809 struct drm_i915_gem_pwrite *args,
05394f39 810 struct drm_file *file)
40123c1f 811{
05394f39 812 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f
EA
813 struct mm_struct *mm = current->mm;
814 struct page **user_pages;
815 ssize_t remain;
816 loff_t offset, pinned_pages, i;
817 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 818 int shmem_page_offset;
40123c1f
EA
819 int data_page_index, data_page_offset;
820 int page_length;
821 int ret;
822 uint64_t data_ptr = args->data_ptr;
280b713b 823 int do_bit17_swizzling;
40123c1f
EA
824
825 remain = args->size;
826
827 /* Pin the user pages containing the data. We can't fault while
828 * holding the struct mutex, and all of the pwrite implementations
829 * want to hold it while dereferencing the user data.
830 */
831 first_data_page = data_ptr / PAGE_SIZE;
832 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
833 num_pages = last_data_page - first_data_page + 1;
834
4f27b75d 835 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
836 if (user_pages == NULL)
837 return -ENOMEM;
838
fbd5a26d 839 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
840 down_read(&mm->mmap_sem);
841 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
842 num_pages, 0, 0, user_pages, NULL);
843 up_read(&mm->mmap_sem);
fbd5a26d 844 mutex_lock(&dev->struct_mutex);
40123c1f
EA
845 if (pinned_pages < num_pages) {
846 ret = -EFAULT;
fbd5a26d 847 goto out;
673a394b
EA
848 }
849
fbd5a26d 850 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 851 if (ret)
fbd5a26d 852 goto out;
40123c1f 853
fbd5a26d 854 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 855
673a394b 856 offset = args->offset;
05394f39 857 obj->dirty = 1;
673a394b 858
40123c1f 859 while (remain > 0) {
e5281ccd
CW
860 struct page *page;
861
40123c1f
EA
862 /* Operation in this page
863 *
40123c1f
EA
864 * shmem_page_offset = offset within page in shmem file
865 * data_page_index = page number in get_user_pages return
866 * data_page_offset = offset with data_page_index page.
867 * page_length = bytes to copy for this page
868 */
40123c1f
EA
869 shmem_page_offset = offset & ~PAGE_MASK;
870 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
871 data_page_offset = data_ptr & ~PAGE_MASK;
872
873 page_length = remain;
874 if ((shmem_page_offset + page_length) > PAGE_SIZE)
875 page_length = PAGE_SIZE - shmem_page_offset;
876 if ((data_page_offset + page_length) > PAGE_SIZE)
877 page_length = PAGE_SIZE - data_page_offset;
878
e5281ccd
CW
879 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
880 GFP_HIGHUSER | __GFP_RECLAIMABLE);
881 if (IS_ERR(page)) {
882 ret = PTR_ERR(page);
883 goto out;
884 }
885
280b713b 886 if (do_bit17_swizzling) {
e5281ccd 887 slow_shmem_bit17_copy(page,
280b713b
EA
888 shmem_page_offset,
889 user_pages[data_page_index],
890 data_page_offset,
99a03df5
CW
891 page_length,
892 0);
893 } else {
e5281ccd 894 slow_shmem_copy(page,
99a03df5
CW
895 shmem_page_offset,
896 user_pages[data_page_index],
897 data_page_offset,
898 page_length);
280b713b 899 }
40123c1f 900
e5281ccd
CW
901 set_page_dirty(page);
902 mark_page_accessed(page);
903 page_cache_release(page);
904
40123c1f
EA
905 remain -= page_length;
906 data_ptr += page_length;
907 offset += page_length;
673a394b
EA
908 }
909
fbd5a26d 910out:
40123c1f
EA
911 for (i = 0; i < pinned_pages; i++)
912 page_cache_release(user_pages[i]);
8e7d2b2c 913 drm_free_large(user_pages);
673a394b 914
40123c1f 915 return ret;
673a394b
EA
916}
917
918/**
919 * Writes data to the object referenced by handle.
920 *
921 * On error, the contents of the buffer that were to be modified are undefined.
922 */
923int
924i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 925 struct drm_file *file)
673a394b
EA
926{
927 struct drm_i915_gem_pwrite *args = data;
05394f39 928 struct drm_i915_gem_object *obj;
51311d0a
CW
929 int ret;
930
931 if (args->size == 0)
932 return 0;
933
934 if (!access_ok(VERIFY_READ,
935 (char __user *)(uintptr_t)args->data_ptr,
936 args->size))
937 return -EFAULT;
938
939 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
940 args->size);
941 if (ret)
942 return -EFAULT;
673a394b 943
fbd5a26d 944 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 945 if (ret)
fbd5a26d 946 return ret;
1d7cfea1 947
05394f39 948 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
949 if (obj == NULL) {
950 ret = -ENOENT;
951 goto unlock;
fbd5a26d 952 }
673a394b 953
7dcd2499 954 /* Bounds check destination. */
05394f39
CW
955 if (args->offset > obj->base.size ||
956 args->size > obj->base.size - args->offset) {
ce9d419d 957 ret = -EINVAL;
35b62a89 958 goto out;
ce9d419d
CW
959 }
960
673a394b
EA
961 /* We can only do the GTT pwrite on untiled buffers, as otherwise
962 * it would end up going through the fenced access, and we'll get
963 * different detiling behavior between reading and writing.
964 * pread/pwrite currently are reading and writing from the CPU
965 * perspective, requiring manual detiling by the client.
966 */
05394f39 967 if (obj->phys_obj)
fbd5a26d 968 ret = i915_gem_phys_pwrite(dev, obj, args, file);
05394f39
CW
969 else if (obj->tiling_mode == I915_TILING_NONE &&
970 obj->gtt_space &&
971 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 972 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
973 if (ret)
974 goto out;
975
976 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
977 if (ret)
978 goto out_unpin;
979
980 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
981 if (ret == -EFAULT)
982 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
983
984out_unpin:
985 i915_gem_object_unpin(obj);
40123c1f 986 } else {
fbd5a26d
CW
987 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
988 if (ret)
e5281ccd 989 goto out;
673a394b 990
fbd5a26d
CW
991 ret = -EFAULT;
992 if (!i915_gem_object_needs_bit17_swizzle(obj))
993 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
994 if (ret == -EFAULT)
995 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 996 }
673a394b 997
35b62a89 998out:
05394f39 999 drm_gem_object_unreference(&obj->base);
1d7cfea1 1000unlock:
fbd5a26d 1001 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1002 return ret;
1003}
1004
1005/**
2ef7eeaa
EA
1006 * Called when user space prepares to use an object with the CPU, either
1007 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1008 */
1009int
1010i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1011 struct drm_file *file)
673a394b 1012{
a09ba7fa 1013 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1014 struct drm_i915_gem_set_domain *args = data;
05394f39 1015 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1016 uint32_t read_domains = args->read_domains;
1017 uint32_t write_domain = args->write_domain;
673a394b
EA
1018 int ret;
1019
1020 if (!(dev->driver->driver_features & DRIVER_GEM))
1021 return -ENODEV;
1022
2ef7eeaa 1023 /* Only handle setting domains to types used by the CPU. */
21d509e3 1024 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1025 return -EINVAL;
1026
21d509e3 1027 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1028 return -EINVAL;
1029
1030 /* Having something in the write domain implies it's in the read
1031 * domain, and only that read domain. Enforce that in the request.
1032 */
1033 if (write_domain != 0 && read_domains != write_domain)
1034 return -EINVAL;
1035
76c1dec1 1036 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1037 if (ret)
76c1dec1 1038 return ret;
1d7cfea1 1039
05394f39 1040 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
1041 if (obj == NULL) {
1042 ret = -ENOENT;
1043 goto unlock;
76c1dec1 1044 }
673a394b 1045
652c393a
JB
1046 intel_mark_busy(dev, obj);
1047
2ef7eeaa
EA
1048 if (read_domains & I915_GEM_DOMAIN_GTT) {
1049 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1050
a09ba7fa
EA
1051 /* Update the LRU on the fence for the CPU access that's
1052 * about to occur.
1053 */
05394f39 1054 if (obj->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac 1055 struct drm_i915_fence_reg *reg =
05394f39 1056 &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 1057 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1058 &dev_priv->mm.fence_list);
1059 }
1060
02354392
EA
1061 /* Silently promote "you're not bound, there was nothing to do"
1062 * to success, since the client was just asking us to
1063 * make sure everything was done.
1064 */
1065 if (ret == -EINVAL)
1066 ret = 0;
2ef7eeaa 1067 } else {
e47c68e9 1068 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1069 }
1070
7d1c4804 1071 /* Maintain LRU order of "inactive" objects */
05394f39
CW
1072 if (ret == 0 && i915_gem_object_is_inactive(obj))
1073 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1074
05394f39 1075 drm_gem_object_unreference(&obj->base);
1d7cfea1 1076unlock:
673a394b
EA
1077 mutex_unlock(&dev->struct_mutex);
1078 return ret;
1079}
1080
1081/**
1082 * Called when user space has done writes to this buffer
1083 */
1084int
1085i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1086 struct drm_file *file)
673a394b
EA
1087{
1088 struct drm_i915_gem_sw_finish *args = data;
05394f39 1089 struct drm_i915_gem_object *obj;
673a394b
EA
1090 int ret = 0;
1091
1092 if (!(dev->driver->driver_features & DRIVER_GEM))
1093 return -ENODEV;
1094
76c1dec1 1095 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1096 if (ret)
76c1dec1 1097 return ret;
1d7cfea1 1098
05394f39 1099 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 1100 if (obj == NULL) {
1d7cfea1
CW
1101 ret = -ENOENT;
1102 goto unlock;
673a394b
EA
1103 }
1104
673a394b 1105 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1106 if (obj->pin_count)
e47c68e9
EA
1107 i915_gem_object_flush_cpu_write_domain(obj);
1108
05394f39 1109 drm_gem_object_unreference(&obj->base);
1d7cfea1 1110unlock:
673a394b
EA
1111 mutex_unlock(&dev->struct_mutex);
1112 return ret;
1113}
1114
1115/**
1116 * Maps the contents of an object, returning the address it is mapped
1117 * into.
1118 *
1119 * While the mapping holds a reference on the contents of the object, it doesn't
1120 * imply a ref on the object itself.
1121 */
1122int
1123i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1124 struct drm_file *file)
673a394b 1125{
da761a6e 1126 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1127 struct drm_i915_gem_mmap *args = data;
1128 struct drm_gem_object *obj;
1129 loff_t offset;
1130 unsigned long addr;
1131
1132 if (!(dev->driver->driver_features & DRIVER_GEM))
1133 return -ENODEV;
1134
05394f39 1135 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1136 if (obj == NULL)
bf79cb91 1137 return -ENOENT;
673a394b 1138
da761a6e
CW
1139 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1140 drm_gem_object_unreference_unlocked(obj);
1141 return -E2BIG;
1142 }
1143
673a394b
EA
1144 offset = args->offset;
1145
1146 down_write(&current->mm->mmap_sem);
1147 addr = do_mmap(obj->filp, 0, args->size,
1148 PROT_READ | PROT_WRITE, MAP_SHARED,
1149 args->offset);
1150 up_write(&current->mm->mmap_sem);
bc9025bd 1151 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1152 if (IS_ERR((void *)addr))
1153 return addr;
1154
1155 args->addr_ptr = (uint64_t) addr;
1156
1157 return 0;
1158}
1159
de151cf6
JB
1160/**
1161 * i915_gem_fault - fault a page into the GTT
1162 * vma: VMA in question
1163 * vmf: fault info
1164 *
1165 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1166 * from userspace. The fault handler takes care of binding the object to
1167 * the GTT (if needed), allocating and programming a fence register (again,
1168 * only if needed based on whether the old reg is still valid or the object
1169 * is tiled) and inserting a new PTE into the faulting process.
1170 *
1171 * Note that the faulting process may involve evicting existing objects
1172 * from the GTT and/or fence registers to make room. So performance may
1173 * suffer if the GTT working set is large or there are few fence registers
1174 * left.
1175 */
1176int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1177{
05394f39
CW
1178 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1179 struct drm_device *dev = obj->base.dev;
7d1c4804 1180 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1181 pgoff_t page_offset;
1182 unsigned long pfn;
1183 int ret = 0;
0f973f27 1184 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1185
1186 /* We don't use vmf->pgoff since that has the fake offset */
1187 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1188 PAGE_SHIFT;
1189
1190 /* Now bind it into the GTT if needed */
1191 mutex_lock(&dev->struct_mutex);
a00b10c3 1192
919926ae
CW
1193 if (!obj->map_and_fenceable) {
1194 ret = i915_gem_object_unbind(obj);
1195 if (ret)
1196 goto unlock;
a00b10c3 1197 }
05394f39 1198 if (!obj->gtt_space) {
75e9e915 1199 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1200 if (ret)
1201 goto unlock;
de151cf6
JB
1202 }
1203
4a684a41
CW
1204 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1205 if (ret)
1206 goto unlock;
1207
de151cf6 1208 /* Need a new fence register? */
05394f39 1209 if (obj->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1210 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1211 if (ret)
1212 goto unlock;
d9ddcb96 1213 }
de151cf6 1214
05394f39
CW
1215 if (i915_gem_object_is_inactive(obj))
1216 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1217
6299f992
CW
1218 obj->fault_mappable = true;
1219
05394f39 1220 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1221 page_offset;
1222
1223 /* Finally, remap it using the new GTT offset */
1224 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1225unlock:
de151cf6
JB
1226 mutex_unlock(&dev->struct_mutex);
1227
1228 switch (ret) {
045e769a
CW
1229 case -EAGAIN:
1230 set_need_resched();
c715089f
CW
1231 case 0:
1232 case -ERESTARTSYS:
1233 return VM_FAULT_NOPAGE;
de151cf6 1234 case -ENOMEM:
de151cf6 1235 return VM_FAULT_OOM;
de151cf6 1236 default:
c715089f 1237 return VM_FAULT_SIGBUS;
de151cf6
JB
1238 }
1239}
1240
1241/**
1242 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1243 * @obj: obj in question
1244 *
1245 * GEM memory mapping works by handing back to userspace a fake mmap offset
1246 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1247 * up the object based on the offset and sets up the various memory mapping
1248 * structures.
1249 *
1250 * This routine allocates and attaches a fake offset for @obj.
1251 */
1252static int
05394f39 1253i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
de151cf6 1254{
05394f39 1255 struct drm_device *dev = obj->base.dev;
de151cf6 1256 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1257 struct drm_map_list *list;
f77d390c 1258 struct drm_local_map *map;
de151cf6
JB
1259 int ret = 0;
1260
1261 /* Set the object up for mmap'ing */
05394f39 1262 list = &obj->base.map_list;
9a298b2a 1263 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1264 if (!list->map)
1265 return -ENOMEM;
1266
1267 map = list->map;
1268 map->type = _DRM_GEM;
05394f39 1269 map->size = obj->base.size;
de151cf6
JB
1270 map->handle = obj;
1271
1272 /* Get a DRM GEM mmap offset allocated... */
1273 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
05394f39
CW
1274 obj->base.size / PAGE_SIZE,
1275 0, 0);
de151cf6 1276 if (!list->file_offset_node) {
05394f39
CW
1277 DRM_ERROR("failed to allocate offset for bo %d\n",
1278 obj->base.name);
9e0ae534 1279 ret = -ENOSPC;
de151cf6
JB
1280 goto out_free_list;
1281 }
1282
1283 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
05394f39
CW
1284 obj->base.size / PAGE_SIZE,
1285 0);
de151cf6
JB
1286 if (!list->file_offset_node) {
1287 ret = -ENOMEM;
1288 goto out_free_list;
1289 }
1290
1291 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1292 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1293 if (ret) {
de151cf6
JB
1294 DRM_ERROR("failed to add to map hash\n");
1295 goto out_free_mm;
1296 }
1297
de151cf6
JB
1298 return 0;
1299
1300out_free_mm:
1301 drm_mm_put_block(list->file_offset_node);
1302out_free_list:
9a298b2a 1303 kfree(list->map);
39a01d1f 1304 list->map = NULL;
de151cf6
JB
1305
1306 return ret;
1307}
1308
901782b2
CW
1309/**
1310 * i915_gem_release_mmap - remove physical page mappings
1311 * @obj: obj in question
1312 *
af901ca1 1313 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1314 * relinquish ownership of the pages back to the system.
1315 *
1316 * It is vital that we remove the page mapping if we have mapped a tiled
1317 * object through the GTT and then lose the fence register due to
1318 * resource pressure. Similarly if the object has been moved out of the
1319 * aperture, than pages mapped into userspace must be revoked. Removing the
1320 * mapping will then trigger a page fault on the next user access, allowing
1321 * fixup by i915_gem_fault().
1322 */
d05ca301 1323void
05394f39 1324i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1325{
6299f992
CW
1326 if (!obj->fault_mappable)
1327 return;
901782b2 1328
6299f992
CW
1329 unmap_mapping_range(obj->base.dev->dev_mapping,
1330 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1331 obj->base.size, 1);
fb7d516a 1332
6299f992 1333 obj->fault_mappable = false;
901782b2
CW
1334}
1335
ab00b3e5 1336static void
05394f39 1337i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
ab00b3e5 1338{
05394f39 1339 struct drm_device *dev = obj->base.dev;
ab00b3e5 1340 struct drm_gem_mm *mm = dev->mm_private;
05394f39 1341 struct drm_map_list *list = &obj->base.map_list;
ab00b3e5 1342
ab00b3e5 1343 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1344 drm_mm_put_block(list->file_offset_node);
1345 kfree(list->map);
1346 list->map = NULL;
ab00b3e5
JB
1347}
1348
92b88aeb
CW
1349static uint32_t
1350i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1351{
1352 struct drm_device *dev = obj->base.dev;
1353 uint32_t size;
1354
1355 if (INTEL_INFO(dev)->gen >= 4 ||
1356 obj->tiling_mode == I915_TILING_NONE)
1357 return obj->base.size;
1358
1359 /* Previous chips need a power-of-two fence region when tiling */
1360 if (INTEL_INFO(dev)->gen == 3)
1361 size = 1024*1024;
1362 else
1363 size = 512*1024;
1364
1365 while (size < obj->base.size)
1366 size <<= 1;
1367
1368 return size;
1369}
1370
de151cf6
JB
1371/**
1372 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1373 * @obj: object to check
1374 *
1375 * Return the required GTT alignment for an object, taking into account
5e783301 1376 * potential fence register mapping.
de151cf6
JB
1377 */
1378static uint32_t
05394f39 1379i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
de151cf6 1380{
05394f39 1381 struct drm_device *dev = obj->base.dev;
de151cf6
JB
1382
1383 /*
1384 * Minimum alignment is 4k (GTT page size), but might be greater
1385 * if a fence register is needed for the object.
1386 */
a00b10c3 1387 if (INTEL_INFO(dev)->gen >= 4 ||
05394f39 1388 obj->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1389 return 4096;
1390
a00b10c3
CW
1391 /*
1392 * Previous chips need to be aligned to the size of the smallest
1393 * fence register that can contain the object.
1394 */
05394f39 1395 return i915_gem_get_gtt_size(obj);
a00b10c3
CW
1396}
1397
5e783301
DV
1398/**
1399 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1400 * unfenced object
1401 * @obj: object to check
1402 *
1403 * Return the required GTT alignment for an object, only taking into account
1404 * unfenced tiled surface requirements.
1405 */
1406static uint32_t
05394f39 1407i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
5e783301 1408{
05394f39 1409 struct drm_device *dev = obj->base.dev;
5e783301
DV
1410 int tile_height;
1411
1412 /*
1413 * Minimum alignment is 4k (GTT page size) for sane hw.
1414 */
1415 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
05394f39 1416 obj->tiling_mode == I915_TILING_NONE)
5e783301
DV
1417 return 4096;
1418
1419 /*
1420 * Older chips need unfenced tiled buffers to be aligned to the left
1421 * edge of an even tile row (where tile rows are counted as if the bo is
1422 * placed in a fenced gtt region).
1423 */
1424 if (IS_GEN2(dev) ||
05394f39 1425 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
5e783301
DV
1426 tile_height = 32;
1427 else
1428 tile_height = 8;
1429
05394f39 1430 return tile_height * obj->stride * 2;
5e783301
DV
1431}
1432
de151cf6
JB
1433/**
1434 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1435 * @dev: DRM device
1436 * @data: GTT mapping ioctl data
05394f39 1437 * @file: GEM object info
de151cf6
JB
1438 *
1439 * Simply returns the fake offset to userspace so it can mmap it.
1440 * The mmap call will end up in drm_gem_mmap(), which will set things
1441 * up so we can get faults in the handler above.
1442 *
1443 * The fault handler will take care of binding the object into the GTT
1444 * (since it may have been evicted to make room for something), allocating
1445 * a fence register, and mapping the appropriate aperture address into
1446 * userspace.
1447 */
1448int
1449i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
05394f39 1450 struct drm_file *file)
de151cf6 1451{
da761a6e 1452 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 1453 struct drm_i915_gem_mmap_gtt *args = data;
05394f39 1454 struct drm_i915_gem_object *obj;
de151cf6
JB
1455 int ret;
1456
1457 if (!(dev->driver->driver_features & DRIVER_GEM))
1458 return -ENODEV;
1459
76c1dec1 1460 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1461 if (ret)
76c1dec1 1462 return ret;
de151cf6 1463
05394f39 1464 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
1465 if (obj == NULL) {
1466 ret = -ENOENT;
1467 goto unlock;
1468 }
de151cf6 1469
05394f39 1470 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e
CW
1471 ret = -E2BIG;
1472 goto unlock;
1473 }
1474
05394f39 1475 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1476 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1477 ret = -EINVAL;
1478 goto out;
ab18282d
CW
1479 }
1480
05394f39 1481 if (!obj->base.map_list.map) {
de151cf6 1482 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1483 if (ret)
1484 goto out;
de151cf6
JB
1485 }
1486
05394f39 1487 args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1488
1d7cfea1 1489out:
05394f39 1490 drm_gem_object_unreference(&obj->base);
1d7cfea1 1491unlock:
de151cf6 1492 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1493 return ret;
de151cf6
JB
1494}
1495
e5281ccd 1496static int
05394f39 1497i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1498 gfp_t gfpmask)
1499{
e5281ccd
CW
1500 int page_count, i;
1501 struct address_space *mapping;
1502 struct inode *inode;
1503 struct page *page;
1504
1505 /* Get the list of pages out of our struct file. They'll be pinned
1506 * at this point until we release them.
1507 */
05394f39
CW
1508 page_count = obj->base.size / PAGE_SIZE;
1509 BUG_ON(obj->pages != NULL);
1510 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1511 if (obj->pages == NULL)
e5281ccd
CW
1512 return -ENOMEM;
1513
05394f39 1514 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd
CW
1515 mapping = inode->i_mapping;
1516 for (i = 0; i < page_count; i++) {
1517 page = read_cache_page_gfp(mapping, i,
1518 GFP_HIGHUSER |
1519 __GFP_COLD |
1520 __GFP_RECLAIMABLE |
1521 gfpmask);
1522 if (IS_ERR(page))
1523 goto err_pages;
1524
05394f39 1525 obj->pages[i] = page;
e5281ccd
CW
1526 }
1527
05394f39 1528 if (obj->tiling_mode != I915_TILING_NONE)
e5281ccd
CW
1529 i915_gem_object_do_bit_17_swizzle(obj);
1530
1531 return 0;
1532
1533err_pages:
1534 while (i--)
05394f39 1535 page_cache_release(obj->pages[i]);
e5281ccd 1536
05394f39
CW
1537 drm_free_large(obj->pages);
1538 obj->pages = NULL;
e5281ccd
CW
1539 return PTR_ERR(page);
1540}
1541
5cdf5881 1542static void
05394f39 1543i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1544{
05394f39 1545 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1546 int i;
1547
05394f39 1548 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1549
05394f39 1550 if (obj->tiling_mode != I915_TILING_NONE)
280b713b
EA
1551 i915_gem_object_save_bit_17_swizzle(obj);
1552
05394f39
CW
1553 if (obj->madv == I915_MADV_DONTNEED)
1554 obj->dirty = 0;
3ef94daa
CW
1555
1556 for (i = 0; i < page_count; i++) {
05394f39
CW
1557 if (obj->dirty)
1558 set_page_dirty(obj->pages[i]);
3ef94daa 1559
05394f39
CW
1560 if (obj->madv == I915_MADV_WILLNEED)
1561 mark_page_accessed(obj->pages[i]);
3ef94daa 1562
05394f39 1563 page_cache_release(obj->pages[i]);
3ef94daa 1564 }
05394f39 1565 obj->dirty = 0;
673a394b 1566
05394f39
CW
1567 drm_free_large(obj->pages);
1568 obj->pages = NULL;
673a394b
EA
1569}
1570
54cf91dc 1571void
05394f39 1572i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
852835f3 1573 struct intel_ring_buffer *ring)
673a394b 1574{
05394f39 1575 struct drm_device *dev = obj->base.dev;
69dc4987 1576 struct drm_i915_private *dev_priv = dev->dev_private;
a56ba56c 1577 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1578
852835f3 1579 BUG_ON(ring == NULL);
05394f39 1580 obj->ring = ring;
673a394b
EA
1581
1582 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1583 if (!obj->active) {
1584 drm_gem_object_reference(&obj->base);
1585 obj->active = 1;
673a394b 1586 }
e35a41de 1587
673a394b 1588 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1589 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1590 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1591
05394f39 1592 obj->last_rendering_seqno = seqno;
caea7476
CW
1593 if (obj->fenced_gpu_access) {
1594 struct drm_i915_fence_reg *reg;
1595
1596 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1597
1598 obj->last_fenced_seqno = seqno;
1599 obj->last_fenced_ring = ring;
1600
1601 reg = &dev_priv->fence_regs[obj->fence_reg];
1602 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1603 }
1604}
1605
1606static void
1607i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1608{
1609 list_del_init(&obj->ring_list);
1610 obj->last_rendering_seqno = 0;
1611 obj->last_fenced_seqno = 0;
673a394b
EA
1612}
1613
ce44b0ea 1614static void
05394f39 1615i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1616{
05394f39 1617 struct drm_device *dev = obj->base.dev;
ce44b0ea 1618 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1619
05394f39
CW
1620 BUG_ON(!obj->active);
1621 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1622
1623 i915_gem_object_move_off_active(obj);
1624}
1625
1626static void
1627i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1628{
1629 struct drm_device *dev = obj->base.dev;
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1631
1632 if (obj->pin_count != 0)
1633 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1634 else
1635 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1636
1637 BUG_ON(!list_empty(&obj->gpu_write_list));
1638 BUG_ON(!obj->active);
1639 obj->ring = NULL;
1640
1641 i915_gem_object_move_off_active(obj);
1642 obj->fenced_gpu_access = false;
1643 obj->last_fenced_ring = NULL;
1644
1645 obj->active = 0;
87ca9c8a 1646 obj->pending_gpu_write = false;
caea7476
CW
1647 drm_gem_object_unreference(&obj->base);
1648
1649 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1650}
673a394b 1651
963b4836
CW
1652/* Immediately discard the backing storage */
1653static void
05394f39 1654i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1655{
bb6baf76 1656 struct inode *inode;
963b4836 1657
ae9fed6b
CW
1658 /* Our goal here is to return as much of the memory as
1659 * is possible back to the system as we are called from OOM.
1660 * To do this we must instruct the shmfs to drop all of its
1661 * backing pages, *now*. Here we mirror the actions taken
1662 * when by shmem_delete_inode() to release the backing store.
1663 */
05394f39 1664 inode = obj->base.filp->f_path.dentry->d_inode;
ae9fed6b
CW
1665 truncate_inode_pages(inode->i_mapping, 0);
1666 if (inode->i_op->truncate_range)
1667 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1668
05394f39 1669 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1670}
1671
1672static inline int
05394f39 1673i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1674{
05394f39 1675 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1676}
1677
63560396
DV
1678static void
1679i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1680 uint32_t flush_domains,
852835f3 1681 struct intel_ring_buffer *ring)
63560396 1682{
05394f39 1683 struct drm_i915_gem_object *obj, *next;
63560396 1684
05394f39 1685 list_for_each_entry_safe(obj, next,
64193406 1686 &ring->gpu_write_list,
63560396 1687 gpu_write_list) {
05394f39
CW
1688 if (obj->base.write_domain & flush_domains) {
1689 uint32_t old_write_domain = obj->base.write_domain;
63560396 1690
05394f39
CW
1691 obj->base.write_domain = 0;
1692 list_del_init(&obj->gpu_write_list);
617dbe27 1693 i915_gem_object_move_to_active(obj, ring);
63560396 1694
63560396 1695 trace_i915_gem_object_change_domain(obj,
05394f39 1696 obj->base.read_domains,
63560396
DV
1697 old_write_domain);
1698 }
1699 }
1700}
8187a2b7 1701
3cce469c 1702int
8a1a49f9 1703i915_add_request(struct drm_device *dev,
f787a5f5 1704 struct drm_file *file,
8dc5d147 1705 struct drm_i915_gem_request *request,
8a1a49f9 1706 struct intel_ring_buffer *ring)
673a394b
EA
1707{
1708 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1709 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1710 uint32_t seqno;
1711 int was_empty;
3cce469c
CW
1712 int ret;
1713
1714 BUG_ON(request == NULL);
673a394b 1715
f787a5f5
CW
1716 if (file != NULL)
1717 file_priv = file->driver_priv;
b962442e 1718
3cce469c
CW
1719 ret = ring->add_request(ring, &seqno);
1720 if (ret)
1721 return ret;
673a394b 1722
a56ba56c 1723 ring->outstanding_lazy_request = false;
673a394b
EA
1724
1725 request->seqno = seqno;
852835f3 1726 request->ring = ring;
673a394b 1727 request->emitted_jiffies = jiffies;
852835f3
ZN
1728 was_empty = list_empty(&ring->request_list);
1729 list_add_tail(&request->list, &ring->request_list);
1730
f787a5f5 1731 if (file_priv) {
1c25595f 1732 spin_lock(&file_priv->mm.lock);
f787a5f5 1733 request->file_priv = file_priv;
b962442e 1734 list_add_tail(&request->client_list,
f787a5f5 1735 &file_priv->mm.request_list);
1c25595f 1736 spin_unlock(&file_priv->mm.lock);
b962442e 1737 }
673a394b 1738
f65d9421 1739 if (!dev_priv->mm.suspended) {
b3b079db
CW
1740 mod_timer(&dev_priv->hangcheck_timer,
1741 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1742 if (was_empty)
b3b079db
CW
1743 queue_delayed_work(dev_priv->wq,
1744 &dev_priv->mm.retire_work, HZ);
f65d9421 1745 }
3cce469c 1746 return 0;
673a394b
EA
1747}
1748
f787a5f5
CW
1749static inline void
1750i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1751{
1c25595f 1752 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1753
1c25595f
CW
1754 if (!file_priv)
1755 return;
1c5d22f7 1756
1c25595f
CW
1757 spin_lock(&file_priv->mm.lock);
1758 list_del(&request->client_list);
1759 request->file_priv = NULL;
1760 spin_unlock(&file_priv->mm.lock);
673a394b 1761}
673a394b 1762
dfaae392
CW
1763static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1764 struct intel_ring_buffer *ring)
9375e446 1765{
dfaae392
CW
1766 while (!list_empty(&ring->request_list)) {
1767 struct drm_i915_gem_request *request;
673a394b 1768
dfaae392
CW
1769 request = list_first_entry(&ring->request_list,
1770 struct drm_i915_gem_request,
1771 list);
de151cf6 1772
dfaae392 1773 list_del(&request->list);
f787a5f5 1774 i915_gem_request_remove_from_client(request);
dfaae392
CW
1775 kfree(request);
1776 }
673a394b 1777
dfaae392 1778 while (!list_empty(&ring->active_list)) {
05394f39 1779 struct drm_i915_gem_object *obj;
9375e446 1780
05394f39
CW
1781 obj = list_first_entry(&ring->active_list,
1782 struct drm_i915_gem_object,
1783 ring_list);
9375e446 1784
05394f39
CW
1785 obj->base.write_domain = 0;
1786 list_del_init(&obj->gpu_write_list);
1787 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1788 }
1789}
1790
312817a3
CW
1791static void i915_gem_reset_fences(struct drm_device *dev)
1792{
1793 struct drm_i915_private *dev_priv = dev->dev_private;
1794 int i;
1795
1796 for (i = 0; i < 16; i++) {
1797 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1798 struct drm_i915_gem_object *obj = reg->obj;
1799
1800 if (!obj)
1801 continue;
1802
1803 if (obj->tiling_mode)
1804 i915_gem_release_mmap(obj);
1805
1806 i915_gem_clear_fence_reg(obj);
312817a3
CW
1807 }
1808}
1809
069efc1d 1810void i915_gem_reset(struct drm_device *dev)
673a394b 1811{
77f01230 1812 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1813 struct drm_i915_gem_object *obj;
673a394b 1814
dfaae392 1815 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1816 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
549f7365 1817 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
dfaae392
CW
1818
1819 /* Remove anything from the flushing lists. The GPU cache is likely
1820 * to be lost on reset along with the data, so simply move the
1821 * lost bo to the inactive list.
1822 */
1823 while (!list_empty(&dev_priv->mm.flushing_list)) {
05394f39
CW
1824 obj= list_first_entry(&dev_priv->mm.flushing_list,
1825 struct drm_i915_gem_object,
1826 mm_list);
dfaae392 1827
05394f39
CW
1828 obj->base.write_domain = 0;
1829 list_del_init(&obj->gpu_write_list);
1830 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1831 }
1832
1833 /* Move everything out of the GPU domains to ensure we do any
1834 * necessary invalidation upon reuse.
1835 */
05394f39 1836 list_for_each_entry(obj,
77f01230 1837 &dev_priv->mm.inactive_list,
69dc4987 1838 mm_list)
77f01230 1839 {
05394f39 1840 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1841 }
069efc1d
CW
1842
1843 /* The fence registers are invalidated so clear them out */
312817a3 1844 i915_gem_reset_fences(dev);
673a394b
EA
1845}
1846
1847/**
1848 * This function clears the request list as sequence numbers are passed.
1849 */
b09a1fec
CW
1850static void
1851i915_gem_retire_requests_ring(struct drm_device *dev,
1852 struct intel_ring_buffer *ring)
673a394b
EA
1853{
1854 drm_i915_private_t *dev_priv = dev->dev_private;
1855 uint32_t seqno;
1856
b84d5f0c
CW
1857 if (!ring->status_page.page_addr ||
1858 list_empty(&ring->request_list))
6c0594a3
KW
1859 return;
1860
23bc5982 1861 WARN_ON(i915_verify_lists(dev));
673a394b 1862
78501eac 1863 seqno = ring->get_seqno(ring);
852835f3 1864 while (!list_empty(&ring->request_list)) {
673a394b 1865 struct drm_i915_gem_request *request;
673a394b 1866
852835f3 1867 request = list_first_entry(&ring->request_list,
673a394b
EA
1868 struct drm_i915_gem_request,
1869 list);
673a394b 1870
dfaae392 1871 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1872 break;
1873
1874 trace_i915_gem_request_retire(dev, request->seqno);
1875
1876 list_del(&request->list);
f787a5f5 1877 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1878 kfree(request);
1879 }
673a394b 1880
b84d5f0c
CW
1881 /* Move any buffers on the active list that are no longer referenced
1882 * by the ringbuffer to the flushing/inactive lists as appropriate.
1883 */
1884 while (!list_empty(&ring->active_list)) {
05394f39 1885 struct drm_i915_gem_object *obj;
b84d5f0c 1886
05394f39
CW
1887 obj= list_first_entry(&ring->active_list,
1888 struct drm_i915_gem_object,
1889 ring_list);
673a394b 1890
05394f39 1891 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1892 break;
b84d5f0c 1893
05394f39 1894 if (obj->base.write_domain != 0)
b84d5f0c
CW
1895 i915_gem_object_move_to_flushing(obj);
1896 else
1897 i915_gem_object_move_to_inactive(obj);
673a394b 1898 }
9d34e5db
CW
1899
1900 if (unlikely (dev_priv->trace_irq_seqno &&
1901 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
78501eac 1902 ring->user_irq_put(ring);
9d34e5db
CW
1903 dev_priv->trace_irq_seqno = 0;
1904 }
23bc5982
CW
1905
1906 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1907}
1908
b09a1fec
CW
1909void
1910i915_gem_retire_requests(struct drm_device *dev)
1911{
1912 drm_i915_private_t *dev_priv = dev->dev_private;
1913
be72615b 1914 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1915 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1916
1917 /* We must be careful that during unbind() we do not
1918 * accidentally infinitely recurse into retire requests.
1919 * Currently:
1920 * retire -> free -> unbind -> wait -> retire_ring
1921 */
05394f39 1922 list_for_each_entry_safe(obj, next,
be72615b 1923 &dev_priv->mm.deferred_free_list,
69dc4987 1924 mm_list)
05394f39 1925 i915_gem_free_object_tail(obj);
be72615b
CW
1926 }
1927
b09a1fec 1928 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 1929 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
549f7365 1930 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
b09a1fec
CW
1931}
1932
75ef9da2 1933static void
673a394b
EA
1934i915_gem_retire_work_handler(struct work_struct *work)
1935{
1936 drm_i915_private_t *dev_priv;
1937 struct drm_device *dev;
1938
1939 dev_priv = container_of(work, drm_i915_private_t,
1940 mm.retire_work.work);
1941 dev = dev_priv->dev;
1942
891b48cf
CW
1943 /* Come back later if the device is busy... */
1944 if (!mutex_trylock(&dev->struct_mutex)) {
1945 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1946 return;
1947 }
1948
b09a1fec 1949 i915_gem_retire_requests(dev);
d1b851fc 1950
6dbe2772 1951 if (!dev_priv->mm.suspended &&
d1b851fc 1952 (!list_empty(&dev_priv->render_ring.request_list) ||
549f7365
CW
1953 !list_empty(&dev_priv->bsd_ring.request_list) ||
1954 !list_empty(&dev_priv->blt_ring.request_list)))
9c9fe1f8 1955 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1956 mutex_unlock(&dev->struct_mutex);
1957}
1958
5a5a0c64 1959int
852835f3 1960i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1961 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1962{
1963 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1964 u32 ier;
673a394b
EA
1965 int ret = 0;
1966
1967 BUG_ON(seqno == 0);
1968
ba1234d1 1969 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
1970 return -EAGAIN;
1971
5d97eb69 1972 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1973 struct drm_i915_gem_request *request;
1974
1975 request = kzalloc(sizeof(*request), GFP_KERNEL);
1976 if (request == NULL)
e35a41de 1977 return -ENOMEM;
3cce469c
CW
1978
1979 ret = i915_add_request(dev, NULL, request, ring);
1980 if (ret) {
1981 kfree(request);
1982 return ret;
1983 }
1984
1985 seqno = request->seqno;
e35a41de 1986 }
ffed1d09 1987
78501eac 1988 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
bad720ff 1989 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1990 ier = I915_READ(DEIER) | I915_READ(GTIER);
1991 else
1992 ier = I915_READ(IER);
802c7eb6
JB
1993 if (!ier) {
1994 DRM_ERROR("something (likely vbetool) disabled "
1995 "interrupts, re-enabling\n");
1996 i915_driver_irq_preinstall(dev);
1997 i915_driver_irq_postinstall(dev);
1998 }
1999
1c5d22f7
CW
2000 trace_i915_gem_request_wait_begin(dev, seqno);
2001
b2223497 2002 ring->waiting_seqno = seqno;
78501eac 2003 ring->user_irq_get(ring);
48764bf4 2004 if (interruptible)
852835f3 2005 ret = wait_event_interruptible(ring->irq_queue,
78501eac 2006 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2007 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2008 else
852835f3 2009 wait_event(ring->irq_queue,
78501eac 2010 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2011 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2012
78501eac 2013 ring->user_irq_put(ring);
b2223497 2014 ring->waiting_seqno = 0;
1c5d22f7
CW
2015
2016 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2017 }
ba1234d1 2018 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2019 ret = -EAGAIN;
673a394b
EA
2020
2021 if (ret && ret != -ERESTARTSYS)
8bff917c 2022 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2023 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2024 dev_priv->next_seqno);
673a394b
EA
2025
2026 /* Directly dispatch request retiring. While we have the work queue
2027 * to handle this, the waiter on a request often wants an associated
2028 * buffer to have made it to the inactive list, and we would need
2029 * a separate wait queue to handle that.
2030 */
2031 if (ret == 0)
b09a1fec 2032 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2033
2034 return ret;
2035}
2036
48764bf4
DV
2037/**
2038 * Waits for a sequence number to be signaled, and cleans up the
2039 * request and object lists appropriately for that event.
2040 */
2041static int
852835f3 2042i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2043 struct intel_ring_buffer *ring)
48764bf4 2044{
852835f3 2045 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2046}
2047
673a394b
EA
2048/**
2049 * Ensures that all rendering to the object has completed and the object is
2050 * safe to unbind from the GTT or access from the CPU.
2051 */
54cf91dc 2052int
05394f39 2053i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2cf34d7b 2054 bool interruptible)
673a394b 2055{
05394f39 2056 struct drm_device *dev = obj->base.dev;
673a394b
EA
2057 int ret;
2058
e47c68e9
EA
2059 /* This function only exists to support waiting for existing rendering,
2060 * not for emitting required flushes.
673a394b 2061 */
05394f39 2062 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2063
2064 /* If there is rendering queued on the buffer being evicted, wait for
2065 * it.
2066 */
05394f39 2067 if (obj->active) {
2cf34d7b 2068 ret = i915_do_wait_request(dev,
05394f39 2069 obj->last_rendering_seqno,
2cf34d7b 2070 interruptible,
05394f39 2071 obj->ring);
2cf34d7b 2072 if (ret)
673a394b
EA
2073 return ret;
2074 }
2075
2076 return 0;
2077}
2078
2079/**
2080 * Unbinds an object from the GTT aperture.
2081 */
0f973f27 2082int
05394f39 2083i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2084{
673a394b
EA
2085 int ret = 0;
2086
05394f39 2087 if (obj->gtt_space == NULL)
673a394b
EA
2088 return 0;
2089
05394f39 2090 if (obj->pin_count != 0) {
673a394b
EA
2091 DRM_ERROR("Attempting to unbind pinned buffer\n");
2092 return -EINVAL;
2093 }
2094
5323fd04
EA
2095 /* blow away mappings if mapped through GTT */
2096 i915_gem_release_mmap(obj);
2097
673a394b
EA
2098 /* Move the object to the CPU domain to ensure that
2099 * any possible CPU writes while it's not in the GTT
2100 * are flushed when we go to remap it. This will
2101 * also ensure that all pending GPU writes are finished
2102 * before we unbind.
2103 */
e47c68e9 2104 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2105 if (ret == -ERESTARTSYS)
673a394b 2106 return ret;
8dc1775d
CW
2107 /* Continue on if we fail due to EIO, the GPU is hung so we
2108 * should be safe and we need to cleanup or else we might
2109 * cause memory corruption through use-after-free.
2110 */
812ed492
CW
2111 if (ret) {
2112 i915_gem_clflush_object(obj);
05394f39 2113 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2114 }
673a394b 2115
96b47b65 2116 /* release the fence reg _after_ flushing */
05394f39 2117 if (obj->fence_reg != I915_FENCE_REG_NONE)
96b47b65
DV
2118 i915_gem_clear_fence_reg(obj);
2119
7c2e6fdf 2120 i915_gem_gtt_unbind_object(obj);
e5281ccd 2121 i915_gem_object_put_pages_gtt(obj);
673a394b 2122
6299f992 2123 list_del_init(&obj->gtt_list);
05394f39 2124 list_del_init(&obj->mm_list);
75e9e915 2125 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2126 obj->map_and_fenceable = true;
673a394b 2127
05394f39
CW
2128 drm_mm_put_block(obj->gtt_space);
2129 obj->gtt_space = NULL;
2130 obj->gtt_offset = 0;
673a394b 2131
05394f39 2132 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2133 i915_gem_object_truncate(obj);
2134
1c5d22f7
CW
2135 trace_i915_gem_object_unbind(obj);
2136
8dc1775d 2137 return ret;
673a394b
EA
2138}
2139
54cf91dc
CW
2140void
2141i915_gem_flush_ring(struct drm_device *dev,
2142 struct intel_ring_buffer *ring,
2143 uint32_t invalidate_domains,
2144 uint32_t flush_domains)
2145{
2146 ring->flush(ring, invalidate_domains, flush_domains);
2147 i915_gem_process_flushing_list(dev, flush_domains, ring);
2148}
2149
a56ba56c
CW
2150static int i915_ring_idle(struct drm_device *dev,
2151 struct intel_ring_buffer *ring)
2152{
395b70be 2153 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2154 return 0;
2155
05394f39 2156 i915_gem_flush_ring(dev, ring,
a56ba56c
CW
2157 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2158 return i915_wait_request(dev,
2159 i915_gem_next_request_seqno(dev, ring),
2160 ring);
2161}
2162
b47eb4a2 2163int
4df2faf4
DV
2164i915_gpu_idle(struct drm_device *dev)
2165{
2166 drm_i915_private_t *dev_priv = dev->dev_private;
2167 bool lists_empty;
852835f3 2168 int ret;
4df2faf4 2169
d1b851fc 2170 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2171 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2172 if (lists_empty)
2173 return 0;
2174
2175 /* Flush everything onto the inactive list. */
a56ba56c 2176 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2177 if (ret)
2178 return ret;
d1b851fc 2179
87acb0a5
CW
2180 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2181 if (ret)
2182 return ret;
d1b851fc 2183
549f7365
CW
2184 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2185 if (ret)
2186 return ret;
4df2faf4 2187
8a1a49f9 2188 return 0;
4df2faf4
DV
2189}
2190
c6642782
DV
2191static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2192 struct intel_ring_buffer *pipelined)
4e901fdc 2193{
05394f39 2194 struct drm_device *dev = obj->base.dev;
4e901fdc 2195 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2196 u32 size = obj->gtt_space->size;
2197 int regnum = obj->fence_reg;
4e901fdc
EA
2198 uint64_t val;
2199
05394f39 2200 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2201 0xfffff000) << 32;
05394f39
CW
2202 val |= obj->gtt_offset & 0xfffff000;
2203 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2204 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2205
05394f39 2206 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2207 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2208 val |= I965_FENCE_REG_VALID;
2209
c6642782
DV
2210 if (pipelined) {
2211 int ret = intel_ring_begin(pipelined, 6);
2212 if (ret)
2213 return ret;
2214
2215 intel_ring_emit(pipelined, MI_NOOP);
2216 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2217 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2218 intel_ring_emit(pipelined, (u32)val);
2219 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2220 intel_ring_emit(pipelined, (u32)(val >> 32));
2221 intel_ring_advance(pipelined);
2222 } else
2223 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2224
2225 return 0;
4e901fdc
EA
2226}
2227
c6642782
DV
2228static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2229 struct intel_ring_buffer *pipelined)
de151cf6 2230{
05394f39 2231 struct drm_device *dev = obj->base.dev;
de151cf6 2232 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2233 u32 size = obj->gtt_space->size;
2234 int regnum = obj->fence_reg;
de151cf6
JB
2235 uint64_t val;
2236
05394f39 2237 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2238 0xfffff000) << 32;
05394f39
CW
2239 val |= obj->gtt_offset & 0xfffff000;
2240 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2241 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2242 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2243 val |= I965_FENCE_REG_VALID;
2244
c6642782
DV
2245 if (pipelined) {
2246 int ret = intel_ring_begin(pipelined, 6);
2247 if (ret)
2248 return ret;
2249
2250 intel_ring_emit(pipelined, MI_NOOP);
2251 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2252 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2253 intel_ring_emit(pipelined, (u32)val);
2254 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2255 intel_ring_emit(pipelined, (u32)(val >> 32));
2256 intel_ring_advance(pipelined);
2257 } else
2258 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2259
2260 return 0;
de151cf6
JB
2261}
2262
c6642782
DV
2263static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2264 struct intel_ring_buffer *pipelined)
de151cf6 2265{
05394f39 2266 struct drm_device *dev = obj->base.dev;
de151cf6 2267 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2268 u32 size = obj->gtt_space->size;
c6642782 2269 u32 fence_reg, val, pitch_val;
0f973f27 2270 int tile_width;
de151cf6 2271
c6642782
DV
2272 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2273 (size & -size) != size ||
2274 (obj->gtt_offset & (size - 1)),
2275 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2276 obj->gtt_offset, obj->map_and_fenceable, size))
2277 return -EINVAL;
de151cf6 2278
c6642782 2279 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2280 tile_width = 128;
de151cf6 2281 else
0f973f27
JB
2282 tile_width = 512;
2283
2284 /* Note: pitch better be a power of two tile widths */
05394f39 2285 pitch_val = obj->stride / tile_width;
0f973f27 2286 pitch_val = ffs(pitch_val) - 1;
de151cf6 2287
05394f39
CW
2288 val = obj->gtt_offset;
2289 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2290 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2291 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2292 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2293 val |= I830_FENCE_REG_VALID;
2294
05394f39 2295 fence_reg = obj->fence_reg;
a00b10c3
CW
2296 if (fence_reg < 8)
2297 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2298 else
a00b10c3 2299 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2300
2301 if (pipelined) {
2302 int ret = intel_ring_begin(pipelined, 4);
2303 if (ret)
2304 return ret;
2305
2306 intel_ring_emit(pipelined, MI_NOOP);
2307 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2308 intel_ring_emit(pipelined, fence_reg);
2309 intel_ring_emit(pipelined, val);
2310 intel_ring_advance(pipelined);
2311 } else
2312 I915_WRITE(fence_reg, val);
2313
2314 return 0;
de151cf6
JB
2315}
2316
c6642782
DV
2317static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2318 struct intel_ring_buffer *pipelined)
de151cf6 2319{
05394f39 2320 struct drm_device *dev = obj->base.dev;
de151cf6 2321 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2322 u32 size = obj->gtt_space->size;
2323 int regnum = obj->fence_reg;
de151cf6
JB
2324 uint32_t val;
2325 uint32_t pitch_val;
2326
c6642782
DV
2327 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2328 (size & -size) != size ||
2329 (obj->gtt_offset & (size - 1)),
2330 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2331 obj->gtt_offset, size))
2332 return -EINVAL;
de151cf6 2333
05394f39 2334 pitch_val = obj->stride / 128;
e76a16de 2335 pitch_val = ffs(pitch_val) - 1;
e76a16de 2336
05394f39
CW
2337 val = obj->gtt_offset;
2338 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2339 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2340 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2341 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2342 val |= I830_FENCE_REG_VALID;
2343
c6642782
DV
2344 if (pipelined) {
2345 int ret = intel_ring_begin(pipelined, 4);
2346 if (ret)
2347 return ret;
2348
2349 intel_ring_emit(pipelined, MI_NOOP);
2350 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2351 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2352 intel_ring_emit(pipelined, val);
2353 intel_ring_advance(pipelined);
2354 } else
2355 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2356
2357 return 0;
de151cf6
JB
2358}
2359
2cf34d7b
CW
2360static int i915_find_fence_reg(struct drm_device *dev,
2361 bool interruptible)
ae3db24a 2362{
ae3db24a 2363 struct drm_i915_private *dev_priv = dev->dev_private;
a00b10c3 2364 struct drm_i915_fence_reg *reg;
05394f39 2365 struct drm_i915_gem_object *obj = NULL;
ae3db24a
DV
2366 int i, avail, ret;
2367
2368 /* First try to find a free reg */
2369 avail = 0;
2370 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2371 reg = &dev_priv->fence_regs[i];
2372 if (!reg->obj)
2373 return i;
2374
05394f39
CW
2375 if (!reg->obj->pin_count)
2376 avail++;
ae3db24a
DV
2377 }
2378
2379 if (avail == 0)
2380 return -ENOSPC;
2381
2382 /* None available, try to steal one or wait for a user to finish */
a00b10c3 2383 avail = I915_FENCE_REG_NONE;
007cc8ac
DV
2384 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2385 lru_list) {
05394f39
CW
2386 obj = reg->obj;
2387 if (obj->pin_count)
ae3db24a
DV
2388 continue;
2389
2390 /* found one! */
05394f39 2391 avail = obj->fence_reg;
ae3db24a
DV
2392 break;
2393 }
2394
a00b10c3 2395 BUG_ON(avail == I915_FENCE_REG_NONE);
ae3db24a
DV
2396
2397 /* We only have a reference on obj from the active list. put_fence_reg
2398 * might drop that one, causing a use-after-free in it. So hold a
2399 * private reference to obj like the other callers of put_fence_reg
2400 * (set_tiling ioctl) do. */
05394f39
CW
2401 drm_gem_object_reference(&obj->base);
2402 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2403 drm_gem_object_unreference(&obj->base);
ae3db24a
DV
2404 if (ret != 0)
2405 return ret;
2406
a00b10c3 2407 return avail;
ae3db24a
DV
2408}
2409
de151cf6
JB
2410/**
2411 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2412 * @obj: object to map through a fence reg
2413 *
2414 * When mapping objects through the GTT, userspace wants to be able to write
2415 * to them without having to worry about swizzling if the object is tiled.
2416 *
2417 * This function walks the fence regs looking for a free one for @obj,
2418 * stealing one if it can't find any.
2419 *
2420 * It then sets up the reg based on the object's properties: address, pitch
2421 * and tiling format.
2422 */
8c4b8c3f 2423int
05394f39 2424i915_gem_object_get_fence_reg(struct drm_i915_gem_object *obj,
2cf34d7b 2425 bool interruptible)
de151cf6 2426{
05394f39 2427 struct drm_device *dev = obj->base.dev;
79e53945 2428 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 2429 struct drm_i915_fence_reg *reg = NULL;
c6642782 2430 struct intel_ring_buffer *pipelined = NULL;
ae3db24a 2431 int ret;
de151cf6 2432
a09ba7fa 2433 /* Just update our place in the LRU if our fence is getting used. */
05394f39
CW
2434 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2435 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2436 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2437 return 0;
2438 }
2439
05394f39 2440 switch (obj->tiling_mode) {
de151cf6
JB
2441 case I915_TILING_NONE:
2442 WARN(1, "allocating a fence for non-tiled object?\n");
2443 break;
2444 case I915_TILING_X:
05394f39 2445 if (!obj->stride)
0f973f27 2446 return -EINVAL;
05394f39 2447 WARN((obj->stride & (512 - 1)),
0f973f27 2448 "object 0x%08x is X tiled but has non-512B pitch\n",
05394f39 2449 obj->gtt_offset);
de151cf6
JB
2450 break;
2451 case I915_TILING_Y:
05394f39 2452 if (!obj->stride)
0f973f27 2453 return -EINVAL;
05394f39 2454 WARN((obj->stride & (128 - 1)),
0f973f27 2455 "object 0x%08x is Y tiled but has non-128B pitch\n",
05394f39 2456 obj->gtt_offset);
de151cf6
JB
2457 break;
2458 }
2459
2cf34d7b 2460 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2461 if (ret < 0)
2462 return ret;
de151cf6 2463
05394f39
CW
2464 obj->fence_reg = ret;
2465 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2466 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2467
de151cf6
JB
2468 reg->obj = obj;
2469
e259befd
CW
2470 switch (INTEL_INFO(dev)->gen) {
2471 case 6:
c6642782 2472 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2473 break;
2474 case 5:
2475 case 4:
c6642782 2476 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2477 break;
2478 case 3:
c6642782 2479 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2480 break;
2481 case 2:
c6642782 2482 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2483 break;
2484 }
d9ddcb96 2485
a00b10c3 2486 trace_i915_gem_object_get_fence(obj,
05394f39
CW
2487 obj->fence_reg,
2488 obj->tiling_mode);
c6642782 2489 return ret;
de151cf6
JB
2490}
2491
2492/**
2493 * i915_gem_clear_fence_reg - clear out fence register info
2494 * @obj: object to clear
2495 *
2496 * Zeroes out the fence register itself and clears out the associated
05394f39 2497 * data structures in dev_priv and obj.
de151cf6
JB
2498 */
2499static void
05394f39 2500i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj)
de151cf6 2501{
05394f39 2502 struct drm_device *dev = obj->base.dev;
79e53945 2503 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2504 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[obj->fence_reg];
e259befd 2505 uint32_t fence_reg;
de151cf6 2506
e259befd
CW
2507 switch (INTEL_INFO(dev)->gen) {
2508 case 6:
4e901fdc 2509 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
05394f39 2510 (obj->fence_reg * 8), 0);
e259befd
CW
2511 break;
2512 case 5:
2513 case 4:
05394f39 2514 I915_WRITE64(FENCE_REG_965_0 + (obj->fence_reg * 8), 0);
e259befd
CW
2515 break;
2516 case 3:
05394f39
CW
2517 if (obj->fence_reg >= 8)
2518 fence_reg = FENCE_REG_945_8 + (obj->fence_reg - 8) * 4;
dc529a4f 2519 else
e259befd 2520 case 2:
05394f39 2521 fence_reg = FENCE_REG_830_0 + obj->fence_reg * 4;
dc529a4f
EA
2522
2523 I915_WRITE(fence_reg, 0);
e259befd 2524 break;
dc529a4f 2525 }
de151cf6 2526
007cc8ac 2527 reg->obj = NULL;
05394f39 2528 obj->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2529 list_del_init(&reg->lru_list);
de151cf6
JB
2530}
2531
52dc7d32
CW
2532/**
2533 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2534 * to the buffer to finish, and then resets the fence register.
2535 * @obj: tiled object holding a fence register.
2cf34d7b 2536 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2537 *
2538 * Zeroes out the fence register itself and clears out the associated
05394f39 2539 * data structures in dev_priv and obj.
52dc7d32
CW
2540 */
2541int
05394f39 2542i915_gem_object_put_fence_reg(struct drm_i915_gem_object *obj,
2cf34d7b 2543 bool interruptible)
52dc7d32 2544{
05394f39 2545 struct drm_device *dev = obj->base.dev;
caea7476 2546 int ret;
52dc7d32 2547
05394f39 2548 if (obj->fence_reg == I915_FENCE_REG_NONE)
52dc7d32
CW
2549 return 0;
2550
10ae9bd2
DV
2551 /* If we've changed tiling, GTT-mappings of the object
2552 * need to re-fault to ensure that the correct fence register
2553 * setup is in place.
2554 */
2555 i915_gem_release_mmap(obj);
2556
52dc7d32
CW
2557 /* On the i915, GPU access to tiled buffers is via a fence,
2558 * therefore we must wait for any outstanding access to complete
2559 * before clearing the fence.
2560 */
caea7476 2561 if (obj->fenced_gpu_access) {
3619df03 2562 i915_gem_object_flush_gpu_write_domain(obj);
caea7476
CW
2563 obj->fenced_gpu_access = false;
2564 }
2565
2566 if (obj->last_fenced_seqno) {
2567 ret = i915_do_wait_request(dev,
2568 obj->last_fenced_seqno,
2569 interruptible,
2570 obj->last_fenced_ring);
0bc23aad 2571 if (ret)
52dc7d32 2572 return ret;
53640e1d 2573
caea7476 2574 obj->last_fenced_seqno = false;
52dc7d32
CW
2575 }
2576
4a726612 2577 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2578 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2579
2580 return 0;
2581}
2582
673a394b
EA
2583/**
2584 * Finds free space in the GTT aperture and binds the object there.
2585 */
2586static int
05394f39 2587i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2588 unsigned alignment,
75e9e915 2589 bool map_and_fenceable)
673a394b 2590{
05394f39 2591 struct drm_device *dev = obj->base.dev;
673a394b 2592 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2593 struct drm_mm_node *free_space;
a00b10c3 2594 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2595 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2596 bool mappable, fenceable;
07f73f69 2597 int ret;
673a394b 2598
05394f39 2599 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2600 DRM_ERROR("Attempting to bind a purgeable object\n");
2601 return -EINVAL;
2602 }
2603
05394f39
CW
2604 fence_size = i915_gem_get_gtt_size(obj);
2605 fence_alignment = i915_gem_get_gtt_alignment(obj);
2606 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
a00b10c3 2607
673a394b 2608 if (alignment == 0)
5e783301
DV
2609 alignment = map_and_fenceable ? fence_alignment :
2610 unfenced_alignment;
75e9e915 2611 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2612 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2613 return -EINVAL;
2614 }
2615
05394f39 2616 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2617
654fc607
CW
2618 /* If the object is bigger than the entire aperture, reject it early
2619 * before evicting everything in a vain attempt to find space.
2620 */
05394f39 2621 if (obj->base.size >
75e9e915 2622 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2623 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2624 return -E2BIG;
2625 }
2626
673a394b 2627 search_free:
75e9e915 2628 if (map_and_fenceable)
920afa77
DV
2629 free_space =
2630 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2631 size, alignment, 0,
920afa77
DV
2632 dev_priv->mm.gtt_mappable_end,
2633 0);
2634 else
2635 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2636 size, alignment, 0);
920afa77
DV
2637
2638 if (free_space != NULL) {
75e9e915 2639 if (map_and_fenceable)
05394f39 2640 obj->gtt_space =
920afa77 2641 drm_mm_get_block_range_generic(free_space,
a00b10c3 2642 size, alignment, 0,
920afa77
DV
2643 dev_priv->mm.gtt_mappable_end,
2644 0);
2645 else
05394f39 2646 obj->gtt_space =
a00b10c3 2647 drm_mm_get_block(free_space, size, alignment);
920afa77 2648 }
05394f39 2649 if (obj->gtt_space == NULL) {
673a394b
EA
2650 /* If the gtt is empty and we're still having trouble
2651 * fitting our object in, we're out of memory.
2652 */
75e9e915
DV
2653 ret = i915_gem_evict_something(dev, size, alignment,
2654 map_and_fenceable);
9731129c 2655 if (ret)
673a394b 2656 return ret;
9731129c 2657
673a394b
EA
2658 goto search_free;
2659 }
2660
e5281ccd 2661 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2662 if (ret) {
05394f39
CW
2663 drm_mm_put_block(obj->gtt_space);
2664 obj->gtt_space = NULL;
07f73f69
CW
2665
2666 if (ret == -ENOMEM) {
2667 /* first try to clear up some space from the GTT */
a00b10c3 2668 ret = i915_gem_evict_something(dev, size,
75e9e915
DV
2669 alignment,
2670 map_and_fenceable);
07f73f69 2671 if (ret) {
07f73f69 2672 /* now try to shrink everyone else */
4bdadb97
CW
2673 if (gfpmask) {
2674 gfpmask = 0;
2675 goto search_free;
07f73f69
CW
2676 }
2677
2678 return ret;
2679 }
2680
2681 goto search_free;
2682 }
2683
673a394b
EA
2684 return ret;
2685 }
2686
7c2e6fdf
DV
2687 ret = i915_gem_gtt_bind_object(obj);
2688 if (ret) {
e5281ccd 2689 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2690 drm_mm_put_block(obj->gtt_space);
2691 obj->gtt_space = NULL;
07f73f69 2692
a00b10c3 2693 ret = i915_gem_evict_something(dev, size,
75e9e915 2694 alignment, map_and_fenceable);
9731129c 2695 if (ret)
07f73f69 2696 return ret;
07f73f69
CW
2697
2698 goto search_free;
673a394b 2699 }
673a394b 2700
6299f992 2701 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2702 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2703
673a394b
EA
2704 /* Assert that the object is not currently in any GPU domain. As it
2705 * wasn't in the GTT, there shouldn't be any way it could have been in
2706 * a GPU cache
2707 */
05394f39
CW
2708 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2709 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2710
6299f992 2711 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2712
75e9e915 2713 fenceable =
05394f39
CW
2714 obj->gtt_space->size == fence_size &&
2715 (obj->gtt_space->start & (fence_alignment -1)) == 0;
a00b10c3 2716
75e9e915 2717 mappable =
05394f39 2718 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2719
05394f39 2720 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2721
6299f992 2722 trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
673a394b
EA
2723 return 0;
2724}
2725
2726void
05394f39 2727i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2728{
673a394b
EA
2729 /* If we don't have a page list set up, then we're not pinned
2730 * to GPU, and we can ignore the cache flush because it'll happen
2731 * again at bind time.
2732 */
05394f39 2733 if (obj->pages == NULL)
673a394b
EA
2734 return;
2735
1c5d22f7 2736 trace_i915_gem_object_clflush(obj);
cfa16a0d 2737
05394f39 2738 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2739}
2740
e47c68e9 2741/** Flushes any GPU write domain for the object if it's dirty. */
3619df03
CW
2742static void
2743i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2744{
05394f39 2745 struct drm_device *dev = obj->base.dev;
e47c68e9 2746
05394f39 2747 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
3619df03 2748 return;
e47c68e9
EA
2749
2750 /* Queue the GPU write cache flushing we need. */
05394f39
CW
2751 i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
2752 BUG_ON(obj->base.write_domain);
e47c68e9
EA
2753}
2754
2755/** Flushes the GTT write domain for the object if it's dirty. */
2756static void
05394f39 2757i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2758{
1c5d22f7
CW
2759 uint32_t old_write_domain;
2760
05394f39 2761 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2762 return;
2763
2764 /* No actual flushing is required for the GTT write domain. Writes
2765 * to it immediately go to main memory as far as we know, so there's
2766 * no chipset flush. It also doesn't land in render cache.
2767 */
4a684a41
CW
2768 i915_gem_release_mmap(obj);
2769
05394f39
CW
2770 old_write_domain = obj->base.write_domain;
2771 obj->base.write_domain = 0;
1c5d22f7
CW
2772
2773 trace_i915_gem_object_change_domain(obj,
05394f39 2774 obj->base.read_domains,
1c5d22f7 2775 old_write_domain);
e47c68e9
EA
2776}
2777
2778/** Flushes the CPU write domain for the object if it's dirty. */
2779static void
05394f39 2780i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2781{
1c5d22f7 2782 uint32_t old_write_domain;
e47c68e9 2783
05394f39 2784 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2785 return;
2786
2787 i915_gem_clflush_object(obj);
40ce6575 2788 intel_gtt_chipset_flush();
05394f39
CW
2789 old_write_domain = obj->base.write_domain;
2790 obj->base.write_domain = 0;
1c5d22f7
CW
2791
2792 trace_i915_gem_object_change_domain(obj,
05394f39 2793 obj->base.read_domains,
1c5d22f7 2794 old_write_domain);
e47c68e9
EA
2795}
2796
2ef7eeaa
EA
2797/**
2798 * Moves a single object to the GTT read, and possibly write domain.
2799 *
2800 * This function returns when the move is complete, including waiting on
2801 * flushes to occur.
2802 */
79e53945 2803int
2021746e 2804i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2805{
1c5d22f7 2806 uint32_t old_write_domain, old_read_domains;
e47c68e9 2807 int ret;
2ef7eeaa 2808
02354392 2809 /* Not valid to be called on unbound objects. */
05394f39 2810 if (obj->gtt_space == NULL)
02354392
EA
2811 return -EINVAL;
2812
3619df03 2813 i915_gem_object_flush_gpu_write_domain(obj);
87ca9c8a
CW
2814 if (obj->pending_gpu_write || write) {
2815 ret = i915_gem_object_wait_rendering(obj, true);
2816 if (ret)
2817 return ret;
2818 }
2dafb1e0 2819
7213342d 2820 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2821
05394f39
CW
2822 old_write_domain = obj->base.write_domain;
2823 old_read_domains = obj->base.read_domains;
1c5d22f7 2824
e47c68e9
EA
2825 /* It should now be out of any other write domains, and we can update
2826 * the domain values for our changes.
2827 */
05394f39
CW
2828 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2829 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2830 if (write) {
05394f39
CW
2831 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2832 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2833 obj->dirty = 1;
2ef7eeaa
EA
2834 }
2835
1c5d22f7
CW
2836 trace_i915_gem_object_change_domain(obj,
2837 old_read_domains,
2838 old_write_domain);
2839
e47c68e9
EA
2840 return 0;
2841}
2842
b9241ea3
ZW
2843/*
2844 * Prepare buffer for display plane. Use uninterruptible for possible flush
2845 * wait, as in modesetting process we're not supposed to be interrupted.
2846 */
2847int
05394f39 2848i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
919926ae 2849 struct intel_ring_buffer *pipelined)
b9241ea3 2850{
ba3d8d74 2851 uint32_t old_read_domains;
b9241ea3
ZW
2852 int ret;
2853
2854 /* Not valid to be called on unbound objects. */
05394f39 2855 if (obj->gtt_space == NULL)
b9241ea3
ZW
2856 return -EINVAL;
2857
3619df03 2858 i915_gem_object_flush_gpu_write_domain(obj);
b9241ea3 2859
ced270fa
CW
2860 /* Currently, we are always called from an non-interruptible context. */
2861 if (!pipelined) {
2862 ret = i915_gem_object_wait_rendering(obj, false);
2863 if (ret)
b9241ea3
ZW
2864 return ret;
2865 }
2866
b118c1e3
CW
2867 i915_gem_object_flush_cpu_write_domain(obj);
2868
05394f39
CW
2869 old_read_domains = obj->base.read_domains;
2870 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2871
2872 trace_i915_gem_object_change_domain(obj,
2873 old_read_domains,
05394f39 2874 obj->base.write_domain);
b9241ea3
ZW
2875
2876 return 0;
2877}
2878
85345517
CW
2879int
2880i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
2881 bool interruptible)
2882{
2883 if (!obj->active)
2884 return 0;
2885
2886 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
05394f39 2887 i915_gem_flush_ring(obj->base.dev, obj->ring,
85345517
CW
2888 0, obj->base.write_domain);
2889
05394f39 2890 return i915_gem_object_wait_rendering(obj, interruptible);
85345517
CW
2891}
2892
e47c68e9
EA
2893/**
2894 * Moves a single object to the CPU read, and possibly write domain.
2895 *
2896 * This function returns when the move is complete, including waiting on
2897 * flushes to occur.
2898 */
2899static int
919926ae 2900i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 2901{
1c5d22f7 2902 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2903 int ret;
2904
3619df03 2905 i915_gem_object_flush_gpu_write_domain(obj);
de18a29e
DV
2906 ret = i915_gem_object_wait_rendering(obj, true);
2907 if (ret)
e47c68e9 2908 return ret;
2ef7eeaa 2909
e47c68e9 2910 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2911
e47c68e9
EA
2912 /* If we have a partially-valid cache of the object in the CPU,
2913 * finish invalidating it and free the per-page flags.
2ef7eeaa 2914 */
e47c68e9 2915 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2916
05394f39
CW
2917 old_write_domain = obj->base.write_domain;
2918 old_read_domains = obj->base.read_domains;
1c5d22f7 2919
e47c68e9 2920 /* Flush the CPU cache if it's still invalid. */
05394f39 2921 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2922 i915_gem_clflush_object(obj);
2ef7eeaa 2923
05394f39 2924 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2925 }
2926
2927 /* It should now be out of any other write domains, and we can update
2928 * the domain values for our changes.
2929 */
05394f39 2930 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
2931
2932 /* If we're writing through the CPU, then the GPU read domains will
2933 * need to be invalidated at next use.
2934 */
2935 if (write) {
05394f39
CW
2936 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2937 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 2938 }
2ef7eeaa 2939
1c5d22f7
CW
2940 trace_i915_gem_object_change_domain(obj,
2941 old_read_domains,
2942 old_write_domain);
2943
2ef7eeaa
EA
2944 return 0;
2945}
2946
673a394b 2947/**
e47c68e9 2948 * Moves the object from a partially CPU read to a full one.
673a394b 2949 *
e47c68e9
EA
2950 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2951 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 2952 */
e47c68e9 2953static void
05394f39 2954i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 2955{
05394f39 2956 if (!obj->page_cpu_valid)
e47c68e9
EA
2957 return;
2958
2959 /* If we're partially in the CPU read domain, finish moving it in.
2960 */
05394f39 2961 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
2962 int i;
2963
05394f39
CW
2964 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
2965 if (obj->page_cpu_valid[i])
e47c68e9 2966 continue;
05394f39 2967 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 2968 }
e47c68e9
EA
2969 }
2970
2971 /* Free the page_cpu_valid mappings which are now stale, whether
2972 * or not we've got I915_GEM_DOMAIN_CPU.
2973 */
05394f39
CW
2974 kfree(obj->page_cpu_valid);
2975 obj->page_cpu_valid = NULL;
e47c68e9
EA
2976}
2977
2978/**
2979 * Set the CPU read domain on a range of the object.
2980 *
2981 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2982 * not entirely valid. The page_cpu_valid member of the object flags which
2983 * pages have been flushed, and will be respected by
2984 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2985 * of the whole object.
2986 *
2987 * This function returns when the move is complete, including waiting on
2988 * flushes to occur.
2989 */
2990static int
05394f39 2991i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
2992 uint64_t offset, uint64_t size)
2993{
1c5d22f7 2994 uint32_t old_read_domains;
e47c68e9 2995 int i, ret;
673a394b 2996
05394f39 2997 if (offset == 0 && size == obj->base.size)
e47c68e9 2998 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 2999
3619df03 3000 i915_gem_object_flush_gpu_write_domain(obj);
de18a29e
DV
3001 ret = i915_gem_object_wait_rendering(obj, true);
3002 if (ret)
6a47baa6 3003 return ret;
de18a29e 3004
e47c68e9
EA
3005 i915_gem_object_flush_gtt_write_domain(obj);
3006
3007 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3008 if (obj->page_cpu_valid == NULL &&
3009 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3010 return 0;
673a394b 3011
e47c68e9
EA
3012 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3013 * newly adding I915_GEM_DOMAIN_CPU
3014 */
05394f39
CW
3015 if (obj->page_cpu_valid == NULL) {
3016 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3017 GFP_KERNEL);
3018 if (obj->page_cpu_valid == NULL)
e47c68e9 3019 return -ENOMEM;
05394f39
CW
3020 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3021 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3022
3023 /* Flush the cache on any pages that are still invalid from the CPU's
3024 * perspective.
3025 */
e47c68e9
EA
3026 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3027 i++) {
05394f39 3028 if (obj->page_cpu_valid[i])
673a394b
EA
3029 continue;
3030
05394f39 3031 drm_clflush_pages(obj->pages + i, 1);
673a394b 3032
05394f39 3033 obj->page_cpu_valid[i] = 1;
673a394b
EA
3034 }
3035
e47c68e9
EA
3036 /* It should now be out of any other write domains, and we can update
3037 * the domain values for our changes.
3038 */
05394f39 3039 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3040
05394f39
CW
3041 old_read_domains = obj->base.read_domains;
3042 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3043
1c5d22f7
CW
3044 trace_i915_gem_object_change_domain(obj,
3045 old_read_domains,
05394f39 3046 obj->base.write_domain);
1c5d22f7 3047
673a394b
EA
3048 return 0;
3049}
3050
673a394b
EA
3051/* Throttle our rendering by waiting until the ring has completed our requests
3052 * emitted over 20 msec ago.
3053 *
b962442e
EA
3054 * Note that if we were to use the current jiffies each time around the loop,
3055 * we wouldn't escape the function with any frames outstanding if the time to
3056 * render a frame was over 20ms.
3057 *
673a394b
EA
3058 * This should get us reasonable parallelism between CPU and GPU but also
3059 * relatively low latency when blocking on a particular request to finish.
3060 */
40a5f0de 3061static int
f787a5f5 3062i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3063{
f787a5f5
CW
3064 struct drm_i915_private *dev_priv = dev->dev_private;
3065 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3066 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3067 struct drm_i915_gem_request *request;
3068 struct intel_ring_buffer *ring = NULL;
3069 u32 seqno = 0;
3070 int ret;
93533c29 3071
1c25595f 3072 spin_lock(&file_priv->mm.lock);
f787a5f5 3073 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3074 if (time_after_eq(request->emitted_jiffies, recent_enough))
3075 break;
40a5f0de 3076
f787a5f5
CW
3077 ring = request->ring;
3078 seqno = request->seqno;
b962442e 3079 }
1c25595f 3080 spin_unlock(&file_priv->mm.lock);
40a5f0de 3081
f787a5f5
CW
3082 if (seqno == 0)
3083 return 0;
2bc43b5c 3084
f787a5f5 3085 ret = 0;
78501eac 3086 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3087 /* And wait for the seqno passing without holding any locks and
3088 * causing extra latency for others. This is safe as the irq
3089 * generation is designed to be run atomically and so is
3090 * lockless.
3091 */
78501eac 3092 ring->user_irq_get(ring);
f787a5f5 3093 ret = wait_event_interruptible(ring->irq_queue,
78501eac 3094 i915_seqno_passed(ring->get_seqno(ring), seqno)
f787a5f5 3095 || atomic_read(&dev_priv->mm.wedged));
78501eac 3096 ring->user_irq_put(ring);
40a5f0de 3097
f787a5f5
CW
3098 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3099 ret = -EIO;
40a5f0de
EA
3100 }
3101
f787a5f5
CW
3102 if (ret == 0)
3103 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3104
3105 return ret;
3106}
3107
673a394b 3108int
05394f39
CW
3109i915_gem_object_pin(struct drm_i915_gem_object *obj,
3110 uint32_t alignment,
75e9e915 3111 bool map_and_fenceable)
673a394b 3112{
05394f39 3113 struct drm_device *dev = obj->base.dev;
f13d3f73 3114 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3115 int ret;
3116
05394f39 3117 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3118 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3119
05394f39
CW
3120 if (obj->gtt_space != NULL) {
3121 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3122 (map_and_fenceable && !obj->map_and_fenceable)) {
3123 WARN(obj->pin_count,
ae7d49d8 3124 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3125 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3126 " obj->map_and_fenceable=%d\n",
05394f39 3127 obj->gtt_offset, alignment,
75e9e915 3128 map_and_fenceable,
05394f39 3129 obj->map_and_fenceable);
ac0c6b5a
CW
3130 ret = i915_gem_object_unbind(obj);
3131 if (ret)
3132 return ret;
3133 }
3134 }
3135
05394f39 3136 if (obj->gtt_space == NULL) {
a00b10c3 3137 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3138 map_and_fenceable);
9731129c 3139 if (ret)
673a394b 3140 return ret;
22c344e9 3141 }
76446cac 3142
05394f39 3143 if (obj->pin_count++ == 0) {
05394f39
CW
3144 if (!obj->active)
3145 list_move_tail(&obj->mm_list,
f13d3f73 3146 &dev_priv->mm.pinned_list);
673a394b 3147 }
6299f992 3148 obj->pin_mappable |= map_and_fenceable;
673a394b 3149
23bc5982 3150 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3151 return 0;
3152}
3153
3154void
05394f39 3155i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3156{
05394f39 3157 struct drm_device *dev = obj->base.dev;
673a394b 3158 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3159
23bc5982 3160 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3161 BUG_ON(obj->pin_count == 0);
3162 BUG_ON(obj->gtt_space == NULL);
673a394b 3163
05394f39
CW
3164 if (--obj->pin_count == 0) {
3165 if (!obj->active)
3166 list_move_tail(&obj->mm_list,
673a394b 3167 &dev_priv->mm.inactive_list);
6299f992 3168 obj->pin_mappable = false;
673a394b 3169 }
23bc5982 3170 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3171}
3172
3173int
3174i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3175 struct drm_file *file)
673a394b
EA
3176{
3177 struct drm_i915_gem_pin *args = data;
05394f39 3178 struct drm_i915_gem_object *obj;
673a394b
EA
3179 int ret;
3180
1d7cfea1
CW
3181 ret = i915_mutex_lock_interruptible(dev);
3182 if (ret)
3183 return ret;
673a394b 3184
05394f39 3185 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 3186 if (obj == NULL) {
1d7cfea1
CW
3187 ret = -ENOENT;
3188 goto unlock;
673a394b 3189 }
673a394b 3190
05394f39 3191 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3192 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3193 ret = -EINVAL;
3194 goto out;
3ef94daa
CW
3195 }
3196
05394f39 3197 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3198 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3199 args->handle);
1d7cfea1
CW
3200 ret = -EINVAL;
3201 goto out;
79e53945
JB
3202 }
3203
05394f39
CW
3204 obj->user_pin_count++;
3205 obj->pin_filp = file;
3206 if (obj->user_pin_count == 1) {
75e9e915 3207 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3208 if (ret)
3209 goto out;
673a394b
EA
3210 }
3211
3212 /* XXX - flush the CPU caches for pinned objects
3213 * as the X server doesn't manage domains yet
3214 */
e47c68e9 3215 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3216 args->offset = obj->gtt_offset;
1d7cfea1 3217out:
05394f39 3218 drm_gem_object_unreference(&obj->base);
1d7cfea1 3219unlock:
673a394b 3220 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3221 return ret;
673a394b
EA
3222}
3223
3224int
3225i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3226 struct drm_file *file)
673a394b
EA
3227{
3228 struct drm_i915_gem_pin *args = data;
05394f39 3229 struct drm_i915_gem_object *obj;
76c1dec1 3230 int ret;
673a394b 3231
1d7cfea1
CW
3232 ret = i915_mutex_lock_interruptible(dev);
3233 if (ret)
3234 return ret;
673a394b 3235
05394f39 3236 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 3237 if (obj == NULL) {
1d7cfea1
CW
3238 ret = -ENOENT;
3239 goto unlock;
673a394b 3240 }
76c1dec1 3241
05394f39 3242 if (obj->pin_filp != file) {
79e53945
JB
3243 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3244 args->handle);
1d7cfea1
CW
3245 ret = -EINVAL;
3246 goto out;
79e53945 3247 }
05394f39
CW
3248 obj->user_pin_count--;
3249 if (obj->user_pin_count == 0) {
3250 obj->pin_filp = NULL;
79e53945
JB
3251 i915_gem_object_unpin(obj);
3252 }
673a394b 3253
1d7cfea1 3254out:
05394f39 3255 drm_gem_object_unreference(&obj->base);
1d7cfea1 3256unlock:
673a394b 3257 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3258 return ret;
673a394b
EA
3259}
3260
3261int
3262i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3263 struct drm_file *file)
673a394b
EA
3264{
3265 struct drm_i915_gem_busy *args = data;
05394f39 3266 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3267 int ret;
3268
76c1dec1 3269 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3270 if (ret)
76c1dec1 3271 return ret;
673a394b 3272
05394f39 3273 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 3274 if (obj == NULL) {
1d7cfea1
CW
3275 ret = -ENOENT;
3276 goto unlock;
673a394b 3277 }
d1b851fc 3278
0be555b6
CW
3279 /* Count all active objects as busy, even if they are currently not used
3280 * by the gpu. Users of this interface expect objects to eventually
3281 * become non-busy without any further actions, therefore emit any
3282 * necessary flushes here.
c4de0a5d 3283 */
05394f39 3284 args->busy = obj->active;
0be555b6
CW
3285 if (args->busy) {
3286 /* Unconditionally flush objects, even when the gpu still uses this
3287 * object. Userspace calling this function indicates that it wants to
3288 * use this buffer rather sooner than later, so issuing the required
3289 * flush earlier is beneficial.
3290 */
05394f39
CW
3291 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
3292 i915_gem_flush_ring(dev, obj->ring,
3293 0, obj->base.write_domain);
0be555b6
CW
3294
3295 /* Update the active list for the hardware's current position.
3296 * Otherwise this only updates on a delayed timer or when irqs
3297 * are actually unmasked, and our working set ends up being
3298 * larger than required.
3299 */
05394f39 3300 i915_gem_retire_requests_ring(dev, obj->ring);
0be555b6 3301
05394f39 3302 args->busy = obj->active;
0be555b6 3303 }
673a394b 3304
05394f39 3305 drm_gem_object_unreference(&obj->base);
1d7cfea1 3306unlock:
673a394b 3307 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3308 return ret;
673a394b
EA
3309}
3310
3311int
3312i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3313 struct drm_file *file_priv)
3314{
3315 return i915_gem_ring_throttle(dev, file_priv);
3316}
3317
3ef94daa
CW
3318int
3319i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3320 struct drm_file *file_priv)
3321{
3322 struct drm_i915_gem_madvise *args = data;
05394f39 3323 struct drm_i915_gem_object *obj;
76c1dec1 3324 int ret;
3ef94daa
CW
3325
3326 switch (args->madv) {
3327 case I915_MADV_DONTNEED:
3328 case I915_MADV_WILLNEED:
3329 break;
3330 default:
3331 return -EINVAL;
3332 }
3333
1d7cfea1
CW
3334 ret = i915_mutex_lock_interruptible(dev);
3335 if (ret)
3336 return ret;
3337
05394f39 3338 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3ef94daa 3339 if (obj == NULL) {
1d7cfea1
CW
3340 ret = -ENOENT;
3341 goto unlock;
3ef94daa 3342 }
3ef94daa 3343
05394f39 3344 if (obj->pin_count) {
1d7cfea1
CW
3345 ret = -EINVAL;
3346 goto out;
3ef94daa
CW
3347 }
3348
05394f39
CW
3349 if (obj->madv != __I915_MADV_PURGED)
3350 obj->madv = args->madv;
3ef94daa 3351
2d7ef395 3352 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3353 if (i915_gem_object_is_purgeable(obj) &&
3354 obj->gtt_space == NULL)
2d7ef395
CW
3355 i915_gem_object_truncate(obj);
3356
05394f39 3357 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3358
1d7cfea1 3359out:
05394f39 3360 drm_gem_object_unreference(&obj->base);
1d7cfea1 3361unlock:
3ef94daa 3362 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3363 return ret;
3ef94daa
CW
3364}
3365
05394f39
CW
3366struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3367 size_t size)
ac52bc56 3368{
73aa808f 3369 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3370 struct drm_i915_gem_object *obj;
ac52bc56 3371
c397b908
DV
3372 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3373 if (obj == NULL)
3374 return NULL;
673a394b 3375
c397b908
DV
3376 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3377 kfree(obj);
3378 return NULL;
3379 }
673a394b 3380
73aa808f
CW
3381 i915_gem_info_add_obj(dev_priv, size);
3382
c397b908
DV
3383 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3384 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3385
c397b908 3386 obj->agp_type = AGP_USER_MEMORY;
62b8b215 3387 obj->base.driver_private = NULL;
c397b908 3388 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3389 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3390 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3391 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3392 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3393 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3394 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3395 /* Avoid an unnecessary call to unbind on the first bind. */
3396 obj->map_and_fenceable = true;
de151cf6 3397
05394f39 3398 return obj;
c397b908
DV
3399}
3400
3401int i915_gem_init_object(struct drm_gem_object *obj)
3402{
3403 BUG();
de151cf6 3404
673a394b
EA
3405 return 0;
3406}
3407
05394f39 3408static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3409{
05394f39 3410 struct drm_device *dev = obj->base.dev;
be72615b 3411 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3412 int ret;
673a394b 3413
be72615b
CW
3414 ret = i915_gem_object_unbind(obj);
3415 if (ret == -ERESTARTSYS) {
05394f39 3416 list_move(&obj->mm_list,
be72615b
CW
3417 &dev_priv->mm.deferred_free_list);
3418 return;
3419 }
673a394b 3420
05394f39 3421 if (obj->base.map_list.map)
7e616158 3422 i915_gem_free_mmap_offset(obj);
de151cf6 3423
05394f39
CW
3424 drm_gem_object_release(&obj->base);
3425 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3426
05394f39
CW
3427 kfree(obj->page_cpu_valid);
3428 kfree(obj->bit_17);
3429 kfree(obj);
673a394b
EA
3430}
3431
05394f39 3432void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3433{
05394f39
CW
3434 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3435 struct drm_device *dev = obj->base.dev;
be72615b
CW
3436
3437 trace_i915_gem_object_destroy(obj);
3438
05394f39 3439 while (obj->pin_count > 0)
be72615b
CW
3440 i915_gem_object_unpin(obj);
3441
05394f39 3442 if (obj->phys_obj)
be72615b
CW
3443 i915_gem_detach_phys_object(dev, obj);
3444
3445 i915_gem_free_object_tail(obj);
3446}
3447
29105ccc
CW
3448int
3449i915_gem_idle(struct drm_device *dev)
3450{
3451 drm_i915_private_t *dev_priv = dev->dev_private;
3452 int ret;
28dfe52a 3453
29105ccc 3454 mutex_lock(&dev->struct_mutex);
1c5d22f7 3455
87acb0a5 3456 if (dev_priv->mm.suspended) {
29105ccc
CW
3457 mutex_unlock(&dev->struct_mutex);
3458 return 0;
28dfe52a
EA
3459 }
3460
29105ccc 3461 ret = i915_gpu_idle(dev);
6dbe2772
KP
3462 if (ret) {
3463 mutex_unlock(&dev->struct_mutex);
673a394b 3464 return ret;
6dbe2772 3465 }
673a394b 3466
29105ccc
CW
3467 /* Under UMS, be paranoid and evict. */
3468 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3469 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3470 if (ret) {
3471 mutex_unlock(&dev->struct_mutex);
3472 return ret;
3473 }
3474 }
3475
312817a3
CW
3476 i915_gem_reset_fences(dev);
3477
29105ccc
CW
3478 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3479 * We need to replace this with a semaphore, or something.
3480 * And not confound mm.suspended!
3481 */
3482 dev_priv->mm.suspended = 1;
bc0c7f14 3483 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3484
3485 i915_kernel_lost_context(dev);
6dbe2772 3486 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3487
6dbe2772
KP
3488 mutex_unlock(&dev->struct_mutex);
3489
29105ccc
CW
3490 /* Cancel the retire work handler, which should be idle now. */
3491 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3492
673a394b
EA
3493 return 0;
3494}
3495
8187a2b7
ZN
3496int
3497i915_gem_init_ringbuffer(struct drm_device *dev)
3498{
3499 drm_i915_private_t *dev_priv = dev->dev_private;
3500 int ret;
68f95ba9 3501
5c1143bb 3502 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3503 if (ret)
b6913e4b 3504 return ret;
68f95ba9
CW
3505
3506 if (HAS_BSD(dev)) {
5c1143bb 3507 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3508 if (ret)
3509 goto cleanup_render_ring;
d1b851fc 3510 }
68f95ba9 3511
549f7365
CW
3512 if (HAS_BLT(dev)) {
3513 ret = intel_init_blt_ring_buffer(dev);
3514 if (ret)
3515 goto cleanup_bsd_ring;
3516 }
3517
6f392d54
CW
3518 dev_priv->next_seqno = 1;
3519
68f95ba9
CW
3520 return 0;
3521
549f7365 3522cleanup_bsd_ring:
78501eac 3523 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
68f95ba9 3524cleanup_render_ring:
78501eac 3525 intel_cleanup_ring_buffer(&dev_priv->render_ring);
8187a2b7
ZN
3526 return ret;
3527}
3528
3529void
3530i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3531{
3532 drm_i915_private_t *dev_priv = dev->dev_private;
3533
78501eac
CW
3534 intel_cleanup_ring_buffer(&dev_priv->render_ring);
3535 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
3536 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
8187a2b7
ZN
3537}
3538
673a394b
EA
3539int
3540i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3541 struct drm_file *file_priv)
3542{
3543 drm_i915_private_t *dev_priv = dev->dev_private;
3544 int ret;
3545
79e53945
JB
3546 if (drm_core_check_feature(dev, DRIVER_MODESET))
3547 return 0;
3548
ba1234d1 3549 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3550 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3551 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3552 }
3553
673a394b 3554 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3555 dev_priv->mm.suspended = 0;
3556
3557 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
3558 if (ret != 0) {
3559 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3560 return ret;
d816f6ac 3561 }
9bb2d6f9 3562
69dc4987 3563 BUG_ON(!list_empty(&dev_priv->mm.active_list));
852835f3 3564 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 3565 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
549f7365 3566 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
673a394b
EA
3567 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3568 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 3569 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 3570 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
549f7365 3571 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
673a394b 3572 mutex_unlock(&dev->struct_mutex);
dbb19d30 3573
5f35308b
CW
3574 ret = drm_irq_install(dev);
3575 if (ret)
3576 goto cleanup_ringbuffer;
dbb19d30 3577
673a394b 3578 return 0;
5f35308b
CW
3579
3580cleanup_ringbuffer:
3581 mutex_lock(&dev->struct_mutex);
3582 i915_gem_cleanup_ringbuffer(dev);
3583 dev_priv->mm.suspended = 1;
3584 mutex_unlock(&dev->struct_mutex);
3585
3586 return ret;
673a394b
EA
3587}
3588
3589int
3590i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3591 struct drm_file *file_priv)
3592{
79e53945
JB
3593 if (drm_core_check_feature(dev, DRIVER_MODESET))
3594 return 0;
3595
dbb19d30 3596 drm_irq_uninstall(dev);
e6890f6f 3597 return i915_gem_idle(dev);
673a394b
EA
3598}
3599
3600void
3601i915_gem_lastclose(struct drm_device *dev)
3602{
3603 int ret;
673a394b 3604
e806b495
EA
3605 if (drm_core_check_feature(dev, DRIVER_MODESET))
3606 return;
3607
6dbe2772
KP
3608 ret = i915_gem_idle(dev);
3609 if (ret)
3610 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3611}
3612
64193406
CW
3613static void
3614init_ring_lists(struct intel_ring_buffer *ring)
3615{
3616 INIT_LIST_HEAD(&ring->active_list);
3617 INIT_LIST_HEAD(&ring->request_list);
3618 INIT_LIST_HEAD(&ring->gpu_write_list);
3619}
3620
673a394b
EA
3621void
3622i915_gem_load(struct drm_device *dev)
3623{
b5aa8a0f 3624 int i;
673a394b
EA
3625 drm_i915_private_t *dev_priv = dev->dev_private;
3626
69dc4987 3627 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3628 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3629 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3630 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3631 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3632 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3633 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
64193406
CW
3634 init_ring_lists(&dev_priv->render_ring);
3635 init_ring_lists(&dev_priv->bsd_ring);
3636 init_ring_lists(&dev_priv->blt_ring);
007cc8ac
DV
3637 for (i = 0; i < 16; i++)
3638 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3639 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3640 i915_gem_retire_work_handler);
30dbf0c0 3641 init_completion(&dev_priv->error_completion);
31169714 3642
94400120
DA
3643 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3644 if (IS_GEN3(dev)) {
3645 u32 tmp = I915_READ(MI_ARB_STATE);
3646 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3647 /* arb state is a masked write, so set bit + bit in mask */
3648 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3649 I915_WRITE(MI_ARB_STATE, tmp);
3650 }
3651 }
3652
de151cf6 3653 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3654 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3655 dev_priv->fence_reg_start = 3;
de151cf6 3656
a6c45cf0 3657 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3658 dev_priv->num_fence_regs = 16;
3659 else
3660 dev_priv->num_fence_regs = 8;
3661
b5aa8a0f 3662 /* Initialize fence registers to zero */
a6c45cf0
CW
3663 switch (INTEL_INFO(dev)->gen) {
3664 case 6:
3665 for (i = 0; i < 16; i++)
3666 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
3667 break;
3668 case 5:
3669 case 4:
b5aa8a0f
GH
3670 for (i = 0; i < 16; i++)
3671 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
3672 break;
3673 case 3:
b5aa8a0f
GH
3674 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3675 for (i = 0; i < 8; i++)
3676 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
3677 case 2:
3678 for (i = 0; i < 8; i++)
3679 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
3680 break;
b5aa8a0f 3681 }
673a394b 3682 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3683 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71
CW
3684
3685 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3686 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3687 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3688}
71acb5eb
DA
3689
3690/*
3691 * Create a physically contiguous memory object for this object
3692 * e.g. for cursor + overlay regs
3693 */
995b6762
CW
3694static int i915_gem_init_phys_object(struct drm_device *dev,
3695 int id, int size, int align)
71acb5eb
DA
3696{
3697 drm_i915_private_t *dev_priv = dev->dev_private;
3698 struct drm_i915_gem_phys_object *phys_obj;
3699 int ret;
3700
3701 if (dev_priv->mm.phys_objs[id - 1] || !size)
3702 return 0;
3703
9a298b2a 3704 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3705 if (!phys_obj)
3706 return -ENOMEM;
3707
3708 phys_obj->id = id;
3709
6eeefaf3 3710 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3711 if (!phys_obj->handle) {
3712 ret = -ENOMEM;
3713 goto kfree_obj;
3714 }
3715#ifdef CONFIG_X86
3716 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3717#endif
3718
3719 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3720
3721 return 0;
3722kfree_obj:
9a298b2a 3723 kfree(phys_obj);
71acb5eb
DA
3724 return ret;
3725}
3726
995b6762 3727static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3728{
3729 drm_i915_private_t *dev_priv = dev->dev_private;
3730 struct drm_i915_gem_phys_object *phys_obj;
3731
3732 if (!dev_priv->mm.phys_objs[id - 1])
3733 return;
3734
3735 phys_obj = dev_priv->mm.phys_objs[id - 1];
3736 if (phys_obj->cur_obj) {
3737 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3738 }
3739
3740#ifdef CONFIG_X86
3741 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3742#endif
3743 drm_pci_free(dev, phys_obj->handle);
3744 kfree(phys_obj);
3745 dev_priv->mm.phys_objs[id - 1] = NULL;
3746}
3747
3748void i915_gem_free_all_phys_object(struct drm_device *dev)
3749{
3750 int i;
3751
260883c8 3752 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3753 i915_gem_free_phys_object(dev, i);
3754}
3755
3756void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3757 struct drm_i915_gem_object *obj)
71acb5eb 3758{
05394f39 3759 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3760 char *vaddr;
71acb5eb 3761 int i;
71acb5eb
DA
3762 int page_count;
3763
05394f39 3764 if (!obj->phys_obj)
71acb5eb 3765 return;
05394f39 3766 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3767
05394f39 3768 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3769 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3770 struct page *page = read_cache_page_gfp(mapping, i,
3771 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3772 if (!IS_ERR(page)) {
3773 char *dst = kmap_atomic(page);
3774 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3775 kunmap_atomic(dst);
3776
3777 drm_clflush_pages(&page, 1);
3778
3779 set_page_dirty(page);
3780 mark_page_accessed(page);
3781 page_cache_release(page);
3782 }
71acb5eb 3783 }
40ce6575 3784 intel_gtt_chipset_flush();
d78b47b9 3785
05394f39
CW
3786 obj->phys_obj->cur_obj = NULL;
3787 obj->phys_obj = NULL;
71acb5eb
DA
3788}
3789
3790int
3791i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3792 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3793 int id,
3794 int align)
71acb5eb 3795{
05394f39 3796 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3797 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3798 int ret = 0;
3799 int page_count;
3800 int i;
3801
3802 if (id > I915_MAX_PHYS_OBJECT)
3803 return -EINVAL;
3804
05394f39
CW
3805 if (obj->phys_obj) {
3806 if (obj->phys_obj->id == id)
71acb5eb
DA
3807 return 0;
3808 i915_gem_detach_phys_object(dev, obj);
3809 }
3810
71acb5eb
DA
3811 /* create a new object */
3812 if (!dev_priv->mm.phys_objs[id - 1]) {
3813 ret = i915_gem_init_phys_object(dev, id,
05394f39 3814 obj->base.size, align);
71acb5eb 3815 if (ret) {
05394f39
CW
3816 DRM_ERROR("failed to init phys object %d size: %zu\n",
3817 id, obj->base.size);
e5281ccd 3818 return ret;
71acb5eb
DA
3819 }
3820 }
3821
3822 /* bind to the object */
05394f39
CW
3823 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3824 obj->phys_obj->cur_obj = obj;
71acb5eb 3825
05394f39 3826 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
3827
3828 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3829 struct page *page;
3830 char *dst, *src;
3831
3832 page = read_cache_page_gfp(mapping, i,
3833 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3834 if (IS_ERR(page))
3835 return PTR_ERR(page);
71acb5eb 3836
ff75b9bc 3837 src = kmap_atomic(page);
05394f39 3838 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 3839 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 3840 kunmap_atomic(src);
71acb5eb 3841
e5281ccd
CW
3842 mark_page_accessed(page);
3843 page_cache_release(page);
3844 }
d78b47b9 3845
71acb5eb 3846 return 0;
71acb5eb
DA
3847}
3848
3849static int
05394f39
CW
3850i915_gem_phys_pwrite(struct drm_device *dev,
3851 struct drm_i915_gem_object *obj,
71acb5eb
DA
3852 struct drm_i915_gem_pwrite *args,
3853 struct drm_file *file_priv)
3854{
05394f39 3855 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 3856 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 3857
b47b30cc
CW
3858 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3859 unsigned long unwritten;
3860
3861 /* The physical object once assigned is fixed for the lifetime
3862 * of the obj, so we can safely drop the lock and continue
3863 * to access vaddr.
3864 */
3865 mutex_unlock(&dev->struct_mutex);
3866 unwritten = copy_from_user(vaddr, user_data, args->size);
3867 mutex_lock(&dev->struct_mutex);
3868 if (unwritten)
3869 return -EFAULT;
3870 }
71acb5eb 3871
40ce6575 3872 intel_gtt_chipset_flush();
71acb5eb
DA
3873 return 0;
3874}
b962442e 3875
f787a5f5 3876void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 3877{
f787a5f5 3878 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
3879
3880 /* Clean up our request list when the client is going away, so that
3881 * later retire_requests won't dereference our soon-to-be-gone
3882 * file_priv.
3883 */
1c25595f 3884 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
3885 while (!list_empty(&file_priv->mm.request_list)) {
3886 struct drm_i915_gem_request *request;
3887
3888 request = list_first_entry(&file_priv->mm.request_list,
3889 struct drm_i915_gem_request,
3890 client_list);
3891 list_del(&request->client_list);
3892 request->file_priv = NULL;
3893 }
1c25595f 3894 spin_unlock(&file_priv->mm.lock);
b962442e 3895}
31169714 3896
1637ef41
CW
3897static int
3898i915_gpu_is_active(struct drm_device *dev)
3899{
3900 drm_i915_private_t *dev_priv = dev->dev_private;
3901 int lists_empty;
3902
1637ef41 3903 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 3904 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
3905
3906 return !lists_empty;
3907}
3908
31169714 3909static int
17250b71
CW
3910i915_gem_inactive_shrink(struct shrinker *shrinker,
3911 int nr_to_scan,
3912 gfp_t gfp_mask)
31169714 3913{
17250b71
CW
3914 struct drm_i915_private *dev_priv =
3915 container_of(shrinker,
3916 struct drm_i915_private,
3917 mm.inactive_shrinker);
3918 struct drm_device *dev = dev_priv->dev;
3919 struct drm_i915_gem_object *obj, *next;
3920 int cnt;
3921
3922 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 3923 return 0;
31169714
CW
3924
3925 /* "fast-path" to count number of available objects */
3926 if (nr_to_scan == 0) {
17250b71
CW
3927 cnt = 0;
3928 list_for_each_entry(obj,
3929 &dev_priv->mm.inactive_list,
3930 mm_list)
3931 cnt++;
3932 mutex_unlock(&dev->struct_mutex);
3933 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
3934 }
3935
1637ef41 3936rescan:
31169714 3937 /* first scan for clean buffers */
17250b71 3938 i915_gem_retire_requests(dev);
31169714 3939
17250b71
CW
3940 list_for_each_entry_safe(obj, next,
3941 &dev_priv->mm.inactive_list,
3942 mm_list) {
3943 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
3944 if (i915_gem_object_unbind(obj) == 0 &&
3945 --nr_to_scan == 0)
17250b71 3946 break;
31169714 3947 }
31169714
CW
3948 }
3949
3950 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
3951 cnt = 0;
3952 list_for_each_entry_safe(obj, next,
3953 &dev_priv->mm.inactive_list,
3954 mm_list) {
2021746e
CW
3955 if (nr_to_scan &&
3956 i915_gem_object_unbind(obj) == 0)
17250b71 3957 nr_to_scan--;
2021746e 3958 else
17250b71
CW
3959 cnt++;
3960 }
3961
3962 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
3963 /*
3964 * We are desperate for pages, so as a last resort, wait
3965 * for the GPU to finish and discard whatever we can.
3966 * This has a dramatic impact to reduce the number of
3967 * OOM-killer events whilst running the GPU aggressively.
3968 */
17250b71 3969 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
3970 goto rescan;
3971 }
17250b71
CW
3972 mutex_unlock(&dev->struct_mutex);
3973 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 3974}