]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Fix VLV DP RBR/HDMI/DAC PLL LPF coefficients
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
86a1ee26
CW
43 bool map_and_fenceable,
44 bool nonblocking);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
21dd3734 89static int
33196ded 90i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 91{
30dbf0c0
CW
92 int ret;
93
7abb690a
DV
94#define EXIT_COND (!i915_reset_in_progress(error) || \
95 i915_terminally_wedged(error))
1f83fee0 96 if (EXIT_COND)
30dbf0c0
CW
97 return 0;
98
0a6759c6
DV
99 /*
100 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101 * userspace. If it takes that long something really bad is going on and
102 * we should simply try to bail out and fail as gracefully as possible.
103 */
1f83fee0
DV
104 ret = wait_event_interruptible_timeout(error->reset_queue,
105 EXIT_COND,
106 10*HZ);
0a6759c6
DV
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
30dbf0c0 111 return ret;
0a6759c6 112 }
1f83fee0 113#undef EXIT_COND
30dbf0c0 114
21dd3734 115 return 0;
30dbf0c0
CW
116}
117
54cf91dc 118int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 119{
33196ded 120 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
121 int ret;
122
33196ded 123 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
124 if (ret)
125 return ret;
126
127 ret = mutex_lock_interruptible(&dev->struct_mutex);
128 if (ret)
129 return ret;
130
23bc5982 131 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
132 return 0;
133}
30dbf0c0 134
7d1c4804 135static inline bool
05394f39 136i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 137{
f343c5f6 138 return i915_gem_obj_ggtt_bound(obj) && !obj->active;
7d1c4804
CW
139}
140
79e53945
JB
141int
142i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 143 struct drm_file *file)
79e53945 144{
93d18799 145 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 146 struct drm_i915_gem_init *args = data;
2021746e 147
7bb6fb8d
DV
148 if (drm_core_check_feature(dev, DRIVER_MODESET))
149 return -ENODEV;
150
2021746e
CW
151 if (args->gtt_start >= args->gtt_end ||
152 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153 return -EINVAL;
79e53945 154
f534bc0b
DV
155 /* GEM with user mode setting was never supported on ilk and later. */
156 if (INTEL_INFO(dev)->gen >= 5)
157 return -ENODEV;
158
79e53945 159 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
160 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161 args->gtt_end);
93d18799 162 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
163 mutex_unlock(&dev->struct_mutex);
164
2021746e 165 return 0;
673a394b
EA
166}
167
5a125c3c
EA
168int
169i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 170 struct drm_file *file)
5a125c3c 171{
73aa808f 172 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 173 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
174 struct drm_i915_gem_object *obj;
175 size_t pinned;
5a125c3c 176
6299f992 177 pinned = 0;
73aa808f 178 mutex_lock(&dev->struct_mutex);
35c20a60 179 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1b50247a 180 if (obj->pin_count)
f343c5f6 181 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 182 mutex_unlock(&dev->struct_mutex);
5a125c3c 183
5d4545ae 184 args->aper_size = dev_priv->gtt.total;
0206e353 185 args->aper_available_size = args->aper_size - pinned;
6299f992 186
5a125c3c
EA
187 return 0;
188}
189
42dcedd4
CW
190void *i915_gem_object_alloc(struct drm_device *dev)
191{
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194}
195
196void i915_gem_object_free(struct drm_i915_gem_object *obj)
197{
198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199 kmem_cache_free(dev_priv->slab, obj);
200}
201
ff72145b
DA
202static int
203i915_gem_create(struct drm_file *file,
204 struct drm_device *dev,
205 uint64_t size,
206 uint32_t *handle_p)
673a394b 207{
05394f39 208 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
209 int ret;
210 u32 handle;
673a394b 211
ff72145b 212 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
213 if (size == 0)
214 return -EINVAL;
673a394b
EA
215
216 /* Allocate the new object */
ff72145b 217 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
218 if (obj == NULL)
219 return -ENOMEM;
220
05394f39 221 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 222 if (ret) {
05394f39
CW
223 drm_gem_object_release(&obj->base);
224 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
42dcedd4 225 i915_gem_object_free(obj);
673a394b 226 return ret;
1dfd9754 227 }
673a394b 228
202f2fef 229 /* drop reference from allocate - handle holds it now */
05394f39 230 drm_gem_object_unreference(&obj->base);
202f2fef
CW
231 trace_i915_gem_object_create(obj);
232
ff72145b 233 *handle_p = handle;
673a394b
EA
234 return 0;
235}
236
ff72145b
DA
237int
238i915_gem_dumb_create(struct drm_file *file,
239 struct drm_device *dev,
240 struct drm_mode_create_dumb *args)
241{
242 /* have to work out size/pitch and return them */
ed0291fd 243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
244 args->size = args->pitch * args->height;
245 return i915_gem_create(file, dev,
246 args->size, &args->handle);
247}
248
249int i915_gem_dumb_destroy(struct drm_file *file,
250 struct drm_device *dev,
251 uint32_t handle)
252{
253 return drm_gem_handle_delete(file, handle);
254}
255
256/**
257 * Creates a new mm object and returns a handle to it.
258 */
259int
260i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file)
262{
263 struct drm_i915_gem_create *args = data;
63ed2cb2 264
ff72145b
DA
265 return i915_gem_create(file, dev,
266 args->size, &args->handle);
267}
268
8461d226
DV
269static inline int
270__copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273{
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293}
294
8c59967c 295static inline int
4f0c7cfb
BW
296__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
8c59967c
DV
298 int length)
299{
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319}
320
d174bd64
DV
321/* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
eb01459f 324static int
d174bd64
DV
325shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328{
329 char *vaddr;
330 int ret;
331
e7e58eb5 332 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
f60d7f0c 344 return ret ? -EFAULT : 0;
d174bd64
DV
345}
346
23c18c71
DV
347static void
348shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350{
e7e58eb5 351 if (unlikely(swizzled)) {
23c18c71
DV
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367}
368
d174bd64
DV
369/* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371static int
372shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375{
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
23c18c71
DV
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
d174bd64
DV
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
f60d7f0c 395 return ret ? - EFAULT : 0;
d174bd64
DV
396}
397
eb01459f 398static int
dbf7bff0
DV
399i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
eb01459f 403{
8461d226 404 char __user *user_data;
eb01459f 405 ssize_t remain;
8461d226 406 loff_t offset;
eb2c0c81 407 int shmem_page_offset, page_length, ret = 0;
8461d226 408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 409 int prefaulted = 0;
8489731c 410 int needs_clflush = 0;
67d5a50c 411 struct sg_page_iter sg_iter;
eb01459f 412
2bb4629a 413 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
414 remain = args->size;
415
8461d226 416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 417
8489731c
DV
418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 /* If we're not in the cpu read domain, set ourself into the gtt
420 * read domain and manually flush cachelines (if required). This
421 * optimizes for the case when the gpu will dirty the data
422 * anyway again before the next pread happens. */
423 if (obj->cache_level == I915_CACHE_NONE)
424 needs_clflush = 1;
f343c5f6 425 if (i915_gem_obj_ggtt_bound(obj)) {
6c085a72
CW
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
8489731c 430 }
eb01459f 431
f60d7f0c
CW
432 ret = i915_gem_object_get_pages(obj);
433 if (ret)
434 return ret;
435
436 i915_gem_object_pin_pages(obj);
437
8461d226 438 offset = args->offset;
eb01459f 439
67d5a50c
ID
440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 offset >> PAGE_SHIFT) {
2db76d7c 442 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
443
444 if (remain <= 0)
445 break;
446
eb01459f
EA
447 /* Operation in this page
448 *
eb01459f 449 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
450 * page_length = bytes to copy for this page
451 */
c8cbbb8b 452 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
453 page_length = remain;
454 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 456
8461d226
DV
457 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 (page_to_phys(page) & (1 << 17)) != 0;
459
d174bd64
DV
460 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 user_data, page_do_bit17_swizzling,
462 needs_clflush);
463 if (ret == 0)
464 goto next_page;
dbf7bff0 465
dbf7bff0
DV
466 mutex_unlock(&dev->struct_mutex);
467
96d79b52 468 if (!prefaulted) {
f56f821f 469 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
470 /* Userspace is tricking us, but we've already clobbered
471 * its pages with the prefault and promised to write the
472 * data up to the first fault. Hence ignore any errors
473 * and just continue. */
474 (void)ret;
475 prefaulted = 1;
476 }
eb01459f 477
d174bd64
DV
478 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 user_data, page_do_bit17_swizzling,
480 needs_clflush);
eb01459f 481
dbf7bff0 482 mutex_lock(&dev->struct_mutex);
f60d7f0c 483
dbf7bff0 484next_page:
e5281ccd 485 mark_page_accessed(page);
e5281ccd 486
f60d7f0c 487 if (ret)
8461d226 488 goto out;
8461d226 489
eb01459f 490 remain -= page_length;
8461d226 491 user_data += page_length;
eb01459f
EA
492 offset += page_length;
493 }
494
4f27b75d 495out:
f60d7f0c
CW
496 i915_gem_object_unpin_pages(obj);
497
eb01459f
EA
498 return ret;
499}
500
673a394b
EA
501/**
502 * Reads data from the object referenced by handle.
503 *
504 * On error, the contents of *data are undefined.
505 */
506int
507i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 508 struct drm_file *file)
673a394b
EA
509{
510 struct drm_i915_gem_pread *args = data;
05394f39 511 struct drm_i915_gem_object *obj;
35b62a89 512 int ret = 0;
673a394b 513
51311d0a
CW
514 if (args->size == 0)
515 return 0;
516
517 if (!access_ok(VERIFY_WRITE,
2bb4629a 518 to_user_ptr(args->data_ptr),
51311d0a
CW
519 args->size))
520 return -EFAULT;
521
4f27b75d 522 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 523 if (ret)
4f27b75d 524 return ret;
673a394b 525
05394f39 526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 527 if (&obj->base == NULL) {
1d7cfea1
CW
528 ret = -ENOENT;
529 goto unlock;
4f27b75d 530 }
673a394b 531
7dcd2499 532 /* Bounds check source. */
05394f39
CW
533 if (args->offset > obj->base.size ||
534 args->size > obj->base.size - args->offset) {
ce9d419d 535 ret = -EINVAL;
35b62a89 536 goto out;
ce9d419d
CW
537 }
538
1286ff73
DV
539 /* prime objects have no backing filp to GEM pread/pwrite
540 * pages from.
541 */
542 if (!obj->base.filp) {
543 ret = -EINVAL;
544 goto out;
545 }
546
db53a302
CW
547 trace_i915_gem_object_pread(obj, args->offset, args->size);
548
dbf7bff0 549 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 550
35b62a89 551out:
05394f39 552 drm_gem_object_unreference(&obj->base);
1d7cfea1 553unlock:
4f27b75d 554 mutex_unlock(&dev->struct_mutex);
eb01459f 555 return ret;
673a394b
EA
556}
557
0839ccb8
KP
558/* This is the fast write path which cannot handle
559 * page faults in the source data
9b7530cc 560 */
0839ccb8
KP
561
562static inline int
563fast_user_write(struct io_mapping *mapping,
564 loff_t page_base, int page_offset,
565 char __user *user_data,
566 int length)
9b7530cc 567{
4f0c7cfb
BW
568 void __iomem *vaddr_atomic;
569 void *vaddr;
0839ccb8 570 unsigned long unwritten;
9b7530cc 571
3e4d3af5 572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
573 /* We can use the cpu mem copy function because this is X86. */
574 vaddr = (void __force*)vaddr_atomic + page_offset;
575 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 576 user_data, length);
3e4d3af5 577 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 578 return unwritten;
0839ccb8
KP
579}
580
3de09aa3
EA
581/**
582 * This is the fast pwrite path, where we copy the data directly from the
583 * user into the GTT, uncached.
584 */
673a394b 585static int
05394f39
CW
586i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 struct drm_i915_gem_object *obj,
3de09aa3 588 struct drm_i915_gem_pwrite *args,
05394f39 589 struct drm_file *file)
673a394b 590{
0839ccb8 591 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 592 ssize_t remain;
0839ccb8 593 loff_t offset, page_base;
673a394b 594 char __user *user_data;
935aaa69
DV
595 int page_offset, page_length, ret;
596
86a1ee26 597 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
598 if (ret)
599 goto out;
600
601 ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 if (ret)
603 goto out_unpin;
604
605 ret = i915_gem_object_put_fence(obj);
606 if (ret)
607 goto out_unpin;
673a394b 608
2bb4629a 609 user_data = to_user_ptr(args->data_ptr);
673a394b 610 remain = args->size;
673a394b 611
f343c5f6 612 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
613
614 while (remain > 0) {
615 /* Operation in this page
616 *
0839ccb8
KP
617 * page_base = page offset within aperture
618 * page_offset = offset within page
619 * page_length = bytes to copy for this page
673a394b 620 */
c8cbbb8b
CW
621 page_base = offset & PAGE_MASK;
622 page_offset = offset_in_page(offset);
0839ccb8
KP
623 page_length = remain;
624 if ((page_offset + remain) > PAGE_SIZE)
625 page_length = PAGE_SIZE - page_offset;
626
0839ccb8 627 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
628 * source page isn't available. Return the error and we'll
629 * retry in the slow path.
0839ccb8 630 */
5d4545ae 631 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
632 page_offset, user_data, page_length)) {
633 ret = -EFAULT;
634 goto out_unpin;
635 }
673a394b 636
0839ccb8
KP
637 remain -= page_length;
638 user_data += page_length;
639 offset += page_length;
673a394b 640 }
673a394b 641
935aaa69
DV
642out_unpin:
643 i915_gem_object_unpin(obj);
644out:
3de09aa3 645 return ret;
673a394b
EA
646}
647
d174bd64
DV
648/* Per-page copy function for the shmem pwrite fastpath.
649 * Flushes invalid cachelines before writing to the target if
650 * needs_clflush_before is set and flushes out any written cachelines after
651 * writing if needs_clflush is set. */
3043c60c 652static int
d174bd64
DV
653shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
673a394b 658{
d174bd64 659 char *vaddr;
673a394b 660 int ret;
3de09aa3 661
e7e58eb5 662 if (unlikely(page_do_bit17_swizzling))
d174bd64 663 return -EINVAL;
3de09aa3 664
d174bd64
DV
665 vaddr = kmap_atomic(page);
666 if (needs_clflush_before)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 user_data,
671 page_length);
672 if (needs_clflush_after)
673 drm_clflush_virt_range(vaddr + shmem_page_offset,
674 page_length);
675 kunmap_atomic(vaddr);
3de09aa3 676
755d2218 677 return ret ? -EFAULT : 0;
3de09aa3
EA
678}
679
d174bd64
DV
680/* Only difference to the fast-path function is that this can handle bit17
681 * and uses non-atomic copy and kmap functions. */
3043c60c 682static int
d174bd64
DV
683shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 char __user *user_data,
685 bool page_do_bit17_swizzling,
686 bool needs_clflush_before,
687 bool needs_clflush_after)
673a394b 688{
d174bd64
DV
689 char *vaddr;
690 int ret;
e5281ccd 691
d174bd64 692 vaddr = kmap(page);
e7e58eb5 693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
d174bd64
DV
697 if (page_do_bit17_swizzling)
698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
699 user_data,
700 page_length);
d174bd64
DV
701 else
702 ret = __copy_from_user(vaddr + shmem_page_offset,
703 user_data,
704 page_length);
705 if (needs_clflush_after)
23c18c71
DV
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
d174bd64 709 kunmap(page);
40123c1f 710
755d2218 711 return ret ? -EFAULT : 0;
40123c1f
EA
712}
713
40123c1f 714static int
e244a443
DV
715i915_gem_shmem_pwrite(struct drm_device *dev,
716 struct drm_i915_gem_object *obj,
717 struct drm_i915_gem_pwrite *args,
718 struct drm_file *file)
40123c1f 719{
40123c1f 720 ssize_t remain;
8c59967c
DV
721 loff_t offset;
722 char __user *user_data;
eb2c0c81 723 int shmem_page_offset, page_length, ret = 0;
8c59967c 724 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 725 int hit_slowpath = 0;
58642885
DV
726 int needs_clflush_after = 0;
727 int needs_clflush_before = 0;
67d5a50c 728 struct sg_page_iter sg_iter;
40123c1f 729
2bb4629a 730 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
731 remain = args->size;
732
8c59967c 733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 734
58642885
DV
735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 /* If we're not in the cpu write domain, set ourself into the gtt
737 * write domain and manually flush cachelines (if required). This
738 * optimizes for the case when the gpu will use the data
739 * right away and we therefore have to clflush anyway. */
740 if (obj->cache_level == I915_CACHE_NONE)
741 needs_clflush_after = 1;
f343c5f6 742 if (i915_gem_obj_ggtt_bound(obj)) {
6c085a72
CW
743 ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 if (ret)
745 return ret;
746 }
58642885
DV
747 }
748 /* Same trick applies for invalidate partially written cachelines before
749 * writing. */
750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 && obj->cache_level == I915_CACHE_NONE)
752 needs_clflush_before = 1;
753
755d2218
CW
754 ret = i915_gem_object_get_pages(obj);
755 if (ret)
756 return ret;
757
758 i915_gem_object_pin_pages(obj);
759
673a394b 760 offset = args->offset;
05394f39 761 obj->dirty = 1;
673a394b 762
67d5a50c
ID
763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 offset >> PAGE_SHIFT) {
2db76d7c 765 struct page *page = sg_page_iter_page(&sg_iter);
58642885 766 int partial_cacheline_write;
e5281ccd 767
9da3da66
CW
768 if (remain <= 0)
769 break;
770
40123c1f
EA
771 /* Operation in this page
772 *
40123c1f 773 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
774 * page_length = bytes to copy for this page
775 */
c8cbbb8b 776 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 781
58642885
DV
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
8c59967c
DV
789 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 (page_to_phys(page) & (1 << 17)) != 0;
791
d174bd64
DV
792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 user_data, page_do_bit17_swizzling,
794 partial_cacheline_write,
795 needs_clflush_after);
796 if (ret == 0)
797 goto next_page;
e244a443
DV
798
799 hit_slowpath = 1;
e244a443 800 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
40123c1f 805
e244a443 806 mutex_lock(&dev->struct_mutex);
755d2218 807
e244a443 808next_page:
e5281ccd
CW
809 set_page_dirty(page);
810 mark_page_accessed(page);
e5281ccd 811
755d2218 812 if (ret)
8c59967c 813 goto out;
8c59967c 814
40123c1f 815 remain -= page_length;
8c59967c 816 user_data += page_length;
40123c1f 817 offset += page_length;
673a394b
EA
818 }
819
fbd5a26d 820out:
755d2218
CW
821 i915_gem_object_unpin_pages(obj);
822
e244a443 823 if (hit_slowpath) {
8dcf015e
DV
824 /*
825 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 * cachelines in-line while writing and the object moved
827 * out of the cpu write domain while we've dropped the lock.
828 */
829 if (!needs_clflush_after &&
830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
e244a443 831 i915_gem_clflush_object(obj);
e76e9aeb 832 i915_gem_chipset_flush(dev);
e244a443 833 }
8c59967c 834 }
673a394b 835
58642885 836 if (needs_clflush_after)
e76e9aeb 837 i915_gem_chipset_flush(dev);
58642885 838
40123c1f 839 return ret;
673a394b
EA
840}
841
842/**
843 * Writes data to the object referenced by handle.
844 *
845 * On error, the contents of the buffer that were to be modified are undefined.
846 */
847int
848i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 849 struct drm_file *file)
673a394b
EA
850{
851 struct drm_i915_gem_pwrite *args = data;
05394f39 852 struct drm_i915_gem_object *obj;
51311d0a
CW
853 int ret;
854
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_READ,
2bb4629a 859 to_user_ptr(args->data_ptr),
51311d0a
CW
860 args->size))
861 return -EFAULT;
862
2bb4629a 863 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
f56f821f 864 args->size);
51311d0a
CW
865 if (ret)
866 return -EFAULT;
673a394b 867
fbd5a26d 868 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 869 if (ret)
fbd5a26d 870 return ret;
1d7cfea1 871
05394f39 872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 873 if (&obj->base == NULL) {
1d7cfea1
CW
874 ret = -ENOENT;
875 goto unlock;
fbd5a26d 876 }
673a394b 877
7dcd2499 878 /* Bounds check destination. */
05394f39
CW
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
ce9d419d 881 ret = -EINVAL;
35b62a89 882 goto out;
ce9d419d
CW
883 }
884
1286ff73
DV
885 /* prime objects have no backing filp to GEM pread/pwrite
886 * pages from.
887 */
888 if (!obj->base.filp) {
889 ret = -EINVAL;
890 goto out;
891 }
892
db53a302
CW
893 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
935aaa69 895 ret = -EFAULT;
673a394b
EA
896 /* We can only do the GTT pwrite on untiled buffers, as otherwise
897 * it would end up going through the fenced access, and we'll get
898 * different detiling behavior between reading and writing.
899 * pread/pwrite currently are reading and writing from the CPU
900 * perspective, requiring manual detiling by the client.
901 */
5c0480f2 902 if (obj->phys_obj) {
fbd5a26d 903 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
904 goto out;
905 }
906
86a1ee26 907 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 908 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 909 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 910 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
911 /* Note that the gtt paths might fail with non-page-backed user
912 * pointers (e.g. gtt mappings when moving data between
913 * textures). Fallback to the shmem path in that case. */
fbd5a26d 914 }
673a394b 915
86a1ee26 916 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 917 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 918
35b62a89 919out:
05394f39 920 drm_gem_object_unreference(&obj->base);
1d7cfea1 921unlock:
fbd5a26d 922 mutex_unlock(&dev->struct_mutex);
673a394b
EA
923 return ret;
924}
925
b361237b 926int
33196ded 927i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
928 bool interruptible)
929{
1f83fee0 930 if (i915_reset_in_progress(error)) {
b361237b
CW
931 /* Non-interruptible callers can't handle -EAGAIN, hence return
932 * -EIO unconditionally for these. */
933 if (!interruptible)
934 return -EIO;
935
1f83fee0
DV
936 /* Recovery complete, but the reset failed ... */
937 if (i915_terminally_wedged(error))
b361237b
CW
938 return -EIO;
939
940 return -EAGAIN;
941 }
942
943 return 0;
944}
945
946/*
947 * Compare seqno against outstanding lazy request. Emit a request if they are
948 * equal.
949 */
950static int
951i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952{
953 int ret;
954
955 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957 ret = 0;
958 if (seqno == ring->outstanding_lazy_request)
0025c077 959 ret = i915_add_request(ring, NULL);
b361237b
CW
960
961 return ret;
962}
963
964/**
965 * __wait_seqno - wait until execution of seqno has finished
966 * @ring: the ring expected to report seqno
967 * @seqno: duh!
f69061be 968 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
969 * @interruptible: do an interruptible wait (normally yes)
970 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971 *
f69061be
DV
972 * Note: It is of utmost importance that the passed in seqno and reset_counter
973 * values have been read by the caller in an smp safe manner. Where read-side
974 * locks are involved, it is sufficient to read the reset_counter before
975 * unlocking the lock that protects the seqno. For lockless tricks, the
976 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977 * inserted.
978 *
b361237b
CW
979 * Returns 0 if the seqno was found within the alloted time. Else returns the
980 * errno with remaining time filled in timeout argument.
981 */
982static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 983 unsigned reset_counter,
b361237b
CW
984 bool interruptible, struct timespec *timeout)
985{
986 drm_i915_private_t *dev_priv = ring->dev->dev_private;
987 struct timespec before, now, wait_time={1,0};
988 unsigned long timeout_jiffies;
989 long end;
990 bool wait_forever = true;
991 int ret;
992
993 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994 return 0;
995
996 trace_i915_gem_request_wait_begin(ring, seqno);
997
998 if (timeout != NULL) {
999 wait_time = *timeout;
1000 wait_forever = false;
1001 }
1002
e054cc39 1003 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
b361237b
CW
1004
1005 if (WARN_ON(!ring->irq_get(ring)))
1006 return -ENODEV;
1007
1008 /* Record current time in case interrupted by signal, or wedged * */
1009 getrawmonotonic(&before);
1010
1011#define EXIT_COND \
1012 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
f69061be
DV
1013 i915_reset_in_progress(&dev_priv->gpu_error) || \
1014 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
b361237b
CW
1015 do {
1016 if (interruptible)
1017 end = wait_event_interruptible_timeout(ring->irq_queue,
1018 EXIT_COND,
1019 timeout_jiffies);
1020 else
1021 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022 timeout_jiffies);
1023
f69061be
DV
1024 /* We need to check whether any gpu reset happened in between
1025 * the caller grabbing the seqno and now ... */
1026 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 end = -EAGAIN;
1028
1029 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030 * gone. */
33196ded 1031 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1032 if (ret)
1033 end = ret;
1034 } while (end == 0 && wait_forever);
1035
1036 getrawmonotonic(&now);
1037
1038 ring->irq_put(ring);
1039 trace_i915_gem_request_wait_end(ring, seqno);
1040#undef EXIT_COND
1041
1042 if (timeout) {
1043 struct timespec sleep_time = timespec_sub(now, before);
1044 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1045 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1047 }
1048
1049 switch (end) {
1050 case -EIO:
1051 case -EAGAIN: /* Wedged */
1052 case -ERESTARTSYS: /* Signal */
1053 return (int)end;
1054 case 0: /* Timeout */
b361237b
CW
1055 return -ETIME;
1056 default: /* Completed */
1057 WARN_ON(end < 0); /* We're not aware of other errors */
1058 return 0;
1059 }
1060}
1061
1062/**
1063 * Waits for a sequence number to be signaled, and cleans up the
1064 * request and object lists appropriately for that event.
1065 */
1066int
1067i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068{
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 bool interruptible = dev_priv->mm.interruptible;
1072 int ret;
1073
1074 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075 BUG_ON(seqno == 0);
1076
33196ded 1077 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1078 if (ret)
1079 return ret;
1080
1081 ret = i915_gem_check_olr(ring, seqno);
1082 if (ret)
1083 return ret;
1084
f69061be
DV
1085 return __wait_seqno(ring, seqno,
1086 atomic_read(&dev_priv->gpu_error.reset_counter),
1087 interruptible, NULL);
b361237b
CW
1088}
1089
d26e3af8
CW
1090static int
1091i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1092 struct intel_ring_buffer *ring)
1093{
1094 i915_gem_retire_requests_ring(ring);
1095
1096 /* Manually manage the write flush as we may have not yet
1097 * retired the buffer.
1098 *
1099 * Note that the last_write_seqno is always the earlier of
1100 * the two (read/write) seqno, so if we haved successfully waited,
1101 * we know we have passed the last write.
1102 */
1103 obj->last_write_seqno = 0;
1104 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1105
1106 return 0;
1107}
1108
b361237b
CW
1109/**
1110 * Ensures that all rendering to the object has completed and the object is
1111 * safe to unbind from the GTT or access from the CPU.
1112 */
1113static __must_check int
1114i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1115 bool readonly)
1116{
1117 struct intel_ring_buffer *ring = obj->ring;
1118 u32 seqno;
1119 int ret;
1120
1121 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1122 if (seqno == 0)
1123 return 0;
1124
1125 ret = i915_wait_seqno(ring, seqno);
1126 if (ret)
1127 return ret;
1128
d26e3af8 1129 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1130}
1131
3236f57a
CW
1132/* A nonblocking variant of the above wait. This is a highly dangerous routine
1133 * as the object state may change during this call.
1134 */
1135static __must_check int
1136i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1137 bool readonly)
1138{
1139 struct drm_device *dev = obj->base.dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 struct intel_ring_buffer *ring = obj->ring;
f69061be 1142 unsigned reset_counter;
3236f57a
CW
1143 u32 seqno;
1144 int ret;
1145
1146 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147 BUG_ON(!dev_priv->mm.interruptible);
1148
1149 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1150 if (seqno == 0)
1151 return 0;
1152
33196ded 1153 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1154 if (ret)
1155 return ret;
1156
1157 ret = i915_gem_check_olr(ring, seqno);
1158 if (ret)
1159 return ret;
1160
f69061be 1161 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1162 mutex_unlock(&dev->struct_mutex);
f69061be 1163 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3236f57a 1164 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1165 if (ret)
1166 return ret;
3236f57a 1167
d26e3af8 1168 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1169}
1170
673a394b 1171/**
2ef7eeaa
EA
1172 * Called when user space prepares to use an object with the CPU, either
1173 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1174 */
1175int
1176i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1177 struct drm_file *file)
673a394b
EA
1178{
1179 struct drm_i915_gem_set_domain *args = data;
05394f39 1180 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1181 uint32_t read_domains = args->read_domains;
1182 uint32_t write_domain = args->write_domain;
673a394b
EA
1183 int ret;
1184
2ef7eeaa 1185 /* Only handle setting domains to types used by the CPU. */
21d509e3 1186 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1187 return -EINVAL;
1188
21d509e3 1189 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1190 return -EINVAL;
1191
1192 /* Having something in the write domain implies it's in the read
1193 * domain, and only that read domain. Enforce that in the request.
1194 */
1195 if (write_domain != 0 && read_domains != write_domain)
1196 return -EINVAL;
1197
76c1dec1 1198 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1199 if (ret)
76c1dec1 1200 return ret;
1d7cfea1 1201
05394f39 1202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1203 if (&obj->base == NULL) {
1d7cfea1
CW
1204 ret = -ENOENT;
1205 goto unlock;
76c1dec1 1206 }
673a394b 1207
3236f57a
CW
1208 /* Try to flush the object off the GPU without holding the lock.
1209 * We will repeat the flush holding the lock in the normal manner
1210 * to catch cases where we are gazumped.
1211 */
1212 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1213 if (ret)
1214 goto unref;
1215
2ef7eeaa
EA
1216 if (read_domains & I915_GEM_DOMAIN_GTT) {
1217 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1218
1219 /* Silently promote "you're not bound, there was nothing to do"
1220 * to success, since the client was just asking us to
1221 * make sure everything was done.
1222 */
1223 if (ret == -EINVAL)
1224 ret = 0;
2ef7eeaa 1225 } else {
e47c68e9 1226 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1227 }
1228
3236f57a 1229unref:
05394f39 1230 drm_gem_object_unreference(&obj->base);
1d7cfea1 1231unlock:
673a394b
EA
1232 mutex_unlock(&dev->struct_mutex);
1233 return ret;
1234}
1235
1236/**
1237 * Called when user space has done writes to this buffer
1238 */
1239int
1240i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1241 struct drm_file *file)
673a394b
EA
1242{
1243 struct drm_i915_gem_sw_finish *args = data;
05394f39 1244 struct drm_i915_gem_object *obj;
673a394b
EA
1245 int ret = 0;
1246
76c1dec1 1247 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1248 if (ret)
76c1dec1 1249 return ret;
1d7cfea1 1250
05394f39 1251 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1252 if (&obj->base == NULL) {
1d7cfea1
CW
1253 ret = -ENOENT;
1254 goto unlock;
673a394b
EA
1255 }
1256
673a394b 1257 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1258 if (obj->pin_count)
e47c68e9
EA
1259 i915_gem_object_flush_cpu_write_domain(obj);
1260
05394f39 1261 drm_gem_object_unreference(&obj->base);
1d7cfea1 1262unlock:
673a394b
EA
1263 mutex_unlock(&dev->struct_mutex);
1264 return ret;
1265}
1266
1267/**
1268 * Maps the contents of an object, returning the address it is mapped
1269 * into.
1270 *
1271 * While the mapping holds a reference on the contents of the object, it doesn't
1272 * imply a ref on the object itself.
1273 */
1274int
1275i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1276 struct drm_file *file)
673a394b
EA
1277{
1278 struct drm_i915_gem_mmap *args = data;
1279 struct drm_gem_object *obj;
673a394b
EA
1280 unsigned long addr;
1281
05394f39 1282 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1283 if (obj == NULL)
bf79cb91 1284 return -ENOENT;
673a394b 1285
1286ff73
DV
1286 /* prime objects have no backing filp to GEM mmap
1287 * pages from.
1288 */
1289 if (!obj->filp) {
1290 drm_gem_object_unreference_unlocked(obj);
1291 return -EINVAL;
1292 }
1293
6be5ceb0 1294 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1295 PROT_READ | PROT_WRITE, MAP_SHARED,
1296 args->offset);
bc9025bd 1297 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1298 if (IS_ERR((void *)addr))
1299 return addr;
1300
1301 args->addr_ptr = (uint64_t) addr;
1302
1303 return 0;
1304}
1305
de151cf6
JB
1306/**
1307 * i915_gem_fault - fault a page into the GTT
1308 * vma: VMA in question
1309 * vmf: fault info
1310 *
1311 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1312 * from userspace. The fault handler takes care of binding the object to
1313 * the GTT (if needed), allocating and programming a fence register (again,
1314 * only if needed based on whether the old reg is still valid or the object
1315 * is tiled) and inserting a new PTE into the faulting process.
1316 *
1317 * Note that the faulting process may involve evicting existing objects
1318 * from the GTT and/or fence registers to make room. So performance may
1319 * suffer if the GTT working set is large or there are few fence registers
1320 * left.
1321 */
1322int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1323{
05394f39
CW
1324 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1325 struct drm_device *dev = obj->base.dev;
7d1c4804 1326 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1327 pgoff_t page_offset;
1328 unsigned long pfn;
1329 int ret = 0;
0f973f27 1330 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1331
1332 /* We don't use vmf->pgoff since that has the fake offset */
1333 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1334 PAGE_SHIFT;
1335
d9bc7e9f
CW
1336 ret = i915_mutex_lock_interruptible(dev);
1337 if (ret)
1338 goto out;
a00b10c3 1339
db53a302
CW
1340 trace_i915_gem_object_fault(obj, page_offset, true, write);
1341
eb119bd6
CW
1342 /* Access to snoopable pages through the GTT is incoherent. */
1343 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1344 ret = -EINVAL;
1345 goto unlock;
1346 }
1347
d9bc7e9f 1348 /* Now bind it into the GTT if needed */
c9839303
CW
1349 ret = i915_gem_object_pin(obj, 0, true, false);
1350 if (ret)
1351 goto unlock;
4a684a41 1352
c9839303
CW
1353 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1354 if (ret)
1355 goto unpin;
74898d7e 1356
06d98131 1357 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1358 if (ret)
c9839303 1359 goto unpin;
7d1c4804 1360
6299f992
CW
1361 obj->fault_mappable = true;
1362
f343c5f6
BW
1363 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1364 pfn >>= PAGE_SHIFT;
1365 pfn += page_offset;
de151cf6
JB
1366
1367 /* Finally, remap it using the new GTT offset */
1368 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1369unpin:
1370 i915_gem_object_unpin(obj);
c715089f 1371unlock:
de151cf6 1372 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1373out:
de151cf6 1374 switch (ret) {
d9bc7e9f 1375 case -EIO:
a9340cca
DV
1376 /* If this -EIO is due to a gpu hang, give the reset code a
1377 * chance to clean up the mess. Otherwise return the proper
1378 * SIGBUS. */
1f83fee0 1379 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1380 return VM_FAULT_SIGBUS;
045e769a 1381 case -EAGAIN:
d9bc7e9f
CW
1382 /* Give the error handler a chance to run and move the
1383 * objects off the GPU active list. Next time we service the
1384 * fault, we should be able to transition the page into the
1385 * GTT without touching the GPU (and so avoid further
1386 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387 * with coherency, just lost writes.
1388 */
045e769a 1389 set_need_resched();
c715089f
CW
1390 case 0:
1391 case -ERESTARTSYS:
bed636ab 1392 case -EINTR:
e79e0fe3
DR
1393 case -EBUSY:
1394 /*
1395 * EBUSY is ok: this just means that another thread
1396 * already did the job.
1397 */
c715089f 1398 return VM_FAULT_NOPAGE;
de151cf6 1399 case -ENOMEM:
de151cf6 1400 return VM_FAULT_OOM;
a7c2e1aa
DV
1401 case -ENOSPC:
1402 return VM_FAULT_SIGBUS;
de151cf6 1403 default:
a7c2e1aa 1404 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1405 return VM_FAULT_SIGBUS;
de151cf6
JB
1406 }
1407}
1408
901782b2
CW
1409/**
1410 * i915_gem_release_mmap - remove physical page mappings
1411 * @obj: obj in question
1412 *
af901ca1 1413 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1414 * relinquish ownership of the pages back to the system.
1415 *
1416 * It is vital that we remove the page mapping if we have mapped a tiled
1417 * object through the GTT and then lose the fence register due to
1418 * resource pressure. Similarly if the object has been moved out of the
1419 * aperture, than pages mapped into userspace must be revoked. Removing the
1420 * mapping will then trigger a page fault on the next user access, allowing
1421 * fixup by i915_gem_fault().
1422 */
d05ca301 1423void
05394f39 1424i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1425{
6299f992
CW
1426 if (!obj->fault_mappable)
1427 return;
901782b2 1428
f6e47884
CW
1429 if (obj->base.dev->dev_mapping)
1430 unmap_mapping_range(obj->base.dev->dev_mapping,
1431 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432 obj->base.size, 1);
fb7d516a 1433
6299f992 1434 obj->fault_mappable = false;
901782b2
CW
1435}
1436
0fa87796 1437uint32_t
e28f8711 1438i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1439{
e28f8711 1440 uint32_t gtt_size;
92b88aeb
CW
1441
1442 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1443 tiling_mode == I915_TILING_NONE)
1444 return size;
92b88aeb
CW
1445
1446 /* Previous chips need a power-of-two fence region when tiling */
1447 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1448 gtt_size = 1024*1024;
92b88aeb 1449 else
e28f8711 1450 gtt_size = 512*1024;
92b88aeb 1451
e28f8711
CW
1452 while (gtt_size < size)
1453 gtt_size <<= 1;
92b88aeb 1454
e28f8711 1455 return gtt_size;
92b88aeb
CW
1456}
1457
de151cf6
JB
1458/**
1459 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460 * @obj: object to check
1461 *
1462 * Return the required GTT alignment for an object, taking into account
5e783301 1463 * potential fence register mapping.
de151cf6 1464 */
d865110c
ID
1465uint32_t
1466i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467 int tiling_mode, bool fenced)
de151cf6 1468{
de151cf6
JB
1469 /*
1470 * Minimum alignment is 4k (GTT page size), but might be greater
1471 * if a fence register is needed for the object.
1472 */
d865110c 1473 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1474 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1475 return 4096;
1476
a00b10c3
CW
1477 /*
1478 * Previous chips need to be aligned to the size of the smallest
1479 * fence register that can contain the object.
1480 */
e28f8711 1481 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1482}
1483
d8cb5086
CW
1484static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485{
1486 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487 int ret;
1488
1489 if (obj->base.map_list.map)
1490 return 0;
1491
da494d7c
DV
1492 dev_priv->mm.shrinker_no_lock_stealing = true;
1493
d8cb5086
CW
1494 ret = drm_gem_create_mmap_offset(&obj->base);
1495 if (ret != -ENOSPC)
da494d7c 1496 goto out;
d8cb5086
CW
1497
1498 /* Badly fragmented mmap space? The only way we can recover
1499 * space is by destroying unwanted objects. We can't randomly release
1500 * mmap_offsets as userspace expects them to be persistent for the
1501 * lifetime of the objects. The closest we can is to release the
1502 * offsets on purgeable objects by truncating it and marking it purged,
1503 * which prevents userspace from ever using that object again.
1504 */
1505 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506 ret = drm_gem_create_mmap_offset(&obj->base);
1507 if (ret != -ENOSPC)
da494d7c 1508 goto out;
d8cb5086
CW
1509
1510 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1511 ret = drm_gem_create_mmap_offset(&obj->base);
1512out:
1513 dev_priv->mm.shrinker_no_lock_stealing = false;
1514
1515 return ret;
d8cb5086
CW
1516}
1517
1518static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519{
1520 if (!obj->base.map_list.map)
1521 return;
1522
1523 drm_gem_free_mmap_offset(&obj->base);
1524}
1525
de151cf6 1526int
ff72145b
DA
1527i915_gem_mmap_gtt(struct drm_file *file,
1528 struct drm_device *dev,
1529 uint32_t handle,
1530 uint64_t *offset)
de151cf6 1531{
da761a6e 1532 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1533 struct drm_i915_gem_object *obj;
de151cf6
JB
1534 int ret;
1535
76c1dec1 1536 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1537 if (ret)
76c1dec1 1538 return ret;
de151cf6 1539
ff72145b 1540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1541 if (&obj->base == NULL) {
1d7cfea1
CW
1542 ret = -ENOENT;
1543 goto unlock;
1544 }
de151cf6 1545
5d4545ae 1546 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1547 ret = -E2BIG;
ff56b0bc 1548 goto out;
da761a6e
CW
1549 }
1550
05394f39 1551 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1552 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1553 ret = -EINVAL;
1554 goto out;
ab18282d
CW
1555 }
1556
d8cb5086
CW
1557 ret = i915_gem_object_create_mmap_offset(obj);
1558 if (ret)
1559 goto out;
de151cf6 1560
ff72145b 1561 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1562
1d7cfea1 1563out:
05394f39 1564 drm_gem_object_unreference(&obj->base);
1d7cfea1 1565unlock:
de151cf6 1566 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1567 return ret;
de151cf6
JB
1568}
1569
ff72145b
DA
1570/**
1571 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572 * @dev: DRM device
1573 * @data: GTT mapping ioctl data
1574 * @file: GEM object info
1575 *
1576 * Simply returns the fake offset to userspace so it can mmap it.
1577 * The mmap call will end up in drm_gem_mmap(), which will set things
1578 * up so we can get faults in the handler above.
1579 *
1580 * The fault handler will take care of binding the object into the GTT
1581 * (since it may have been evicted to make room for something), allocating
1582 * a fence register, and mapping the appropriate aperture address into
1583 * userspace.
1584 */
1585int
1586i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587 struct drm_file *file)
1588{
1589 struct drm_i915_gem_mmap_gtt *args = data;
1590
ff72145b
DA
1591 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592}
1593
225067ee
DV
1594/* Immediately discard the backing storage */
1595static void
1596i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1597{
e5281ccd 1598 struct inode *inode;
e5281ccd 1599
4d6294bf 1600 i915_gem_object_free_mmap_offset(obj);
1286ff73 1601
4d6294bf
CW
1602 if (obj->base.filp == NULL)
1603 return;
e5281ccd 1604
225067ee
DV
1605 /* Our goal here is to return as much of the memory as
1606 * is possible back to the system as we are called from OOM.
1607 * To do this we must instruct the shmfs to drop all of its
1608 * backing pages, *now*.
1609 */
496ad9aa 1610 inode = file_inode(obj->base.filp);
225067ee 1611 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1612
225067ee
DV
1613 obj->madv = __I915_MADV_PURGED;
1614}
e5281ccd 1615
225067ee
DV
1616static inline int
1617i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618{
1619 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1620}
1621
5cdf5881 1622static void
05394f39 1623i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1624{
90797e6d
ID
1625 struct sg_page_iter sg_iter;
1626 int ret;
1286ff73 1627
05394f39 1628 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1629
6c085a72
CW
1630 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631 if (ret) {
1632 /* In the event of a disaster, abandon all caches and
1633 * hope for the best.
1634 */
1635 WARN_ON(ret != -EIO);
1636 i915_gem_clflush_object(obj);
1637 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638 }
1639
6dacfd2f 1640 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1641 i915_gem_object_save_bit_17_swizzle(obj);
1642
05394f39
CW
1643 if (obj->madv == I915_MADV_DONTNEED)
1644 obj->dirty = 0;
3ef94daa 1645
90797e6d 1646 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1647 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1648
05394f39 1649 if (obj->dirty)
9da3da66 1650 set_page_dirty(page);
3ef94daa 1651
05394f39 1652 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1653 mark_page_accessed(page);
3ef94daa 1654
9da3da66 1655 page_cache_release(page);
3ef94daa 1656 }
05394f39 1657 obj->dirty = 0;
673a394b 1658
9da3da66
CW
1659 sg_free_table(obj->pages);
1660 kfree(obj->pages);
37e680a1 1661}
6c085a72 1662
dd624afd 1663int
37e680a1
CW
1664i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665{
1666 const struct drm_i915_gem_object_ops *ops = obj->ops;
1667
2f745ad3 1668 if (obj->pages == NULL)
37e680a1
CW
1669 return 0;
1670
f343c5f6 1671 BUG_ON(i915_gem_obj_ggtt_bound(obj));
6c085a72 1672
a5570178
CW
1673 if (obj->pages_pin_count)
1674 return -EBUSY;
1675
a2165e31
CW
1676 /* ->put_pages might need to allocate memory for the bit17 swizzle
1677 * array, hence protect them from being reaped by removing them from gtt
1678 * lists early. */
35c20a60 1679 list_del(&obj->global_list);
a2165e31 1680
37e680a1 1681 ops->put_pages(obj);
05394f39 1682 obj->pages = NULL;
37e680a1 1683
6c085a72
CW
1684 if (i915_gem_object_is_purgeable(obj))
1685 i915_gem_object_truncate(obj);
1686
1687 return 0;
1688}
1689
1690static long
93927ca5
DV
1691__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692 bool purgeable_only)
6c085a72
CW
1693{
1694 struct drm_i915_gem_object *obj, *next;
1695 long count = 0;
1696
1697 list_for_each_entry_safe(obj, next,
1698 &dev_priv->mm.unbound_list,
35c20a60 1699 global_list) {
93927ca5 1700 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1701 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1702 count += obj->base.size >> PAGE_SHIFT;
1703 if (count >= target)
1704 return count;
1705 }
1706 }
1707
1708 list_for_each_entry_safe(obj, next,
1709 &dev_priv->mm.inactive_list,
1710 mm_list) {
93927ca5 1711 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
6c085a72 1712 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1713 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1714 count += obj->base.size >> PAGE_SHIFT;
1715 if (count >= target)
1716 return count;
1717 }
1718 }
1719
1720 return count;
1721}
1722
93927ca5
DV
1723static long
1724i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1725{
1726 return __i915_gem_shrink(dev_priv, target, true);
1727}
1728
6c085a72
CW
1729static void
1730i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1731{
1732 struct drm_i915_gem_object *obj, *next;
1733
1734 i915_gem_evict_everything(dev_priv->dev);
1735
35c20a60
BW
1736 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1737 global_list)
37e680a1 1738 i915_gem_object_put_pages(obj);
225067ee
DV
1739}
1740
37e680a1 1741static int
6c085a72 1742i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1743{
6c085a72 1744 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1745 int page_count, i;
1746 struct address_space *mapping;
9da3da66
CW
1747 struct sg_table *st;
1748 struct scatterlist *sg;
90797e6d 1749 struct sg_page_iter sg_iter;
e5281ccd 1750 struct page *page;
90797e6d 1751 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1752 gfp_t gfp;
e5281ccd 1753
6c085a72
CW
1754 /* Assert that the object is not currently in any GPU domain. As it
1755 * wasn't in the GTT, there shouldn't be any way it could have been in
1756 * a GPU cache
1757 */
1758 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1759 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1760
9da3da66
CW
1761 st = kmalloc(sizeof(*st), GFP_KERNEL);
1762 if (st == NULL)
1763 return -ENOMEM;
1764
05394f39 1765 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1766 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1767 sg_free_table(st);
1768 kfree(st);
e5281ccd 1769 return -ENOMEM;
9da3da66 1770 }
e5281ccd 1771
9da3da66
CW
1772 /* Get the list of pages out of our struct file. They'll be pinned
1773 * at this point until we release them.
1774 *
1775 * Fail silently without starting the shrinker
1776 */
496ad9aa 1777 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1778 gfp = mapping_gfp_mask(mapping);
caf49191 1779 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1780 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1781 sg = st->sgl;
1782 st->nents = 0;
1783 for (i = 0; i < page_count; i++) {
6c085a72
CW
1784 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1785 if (IS_ERR(page)) {
1786 i915_gem_purge(dev_priv, page_count);
1787 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1788 }
1789 if (IS_ERR(page)) {
1790 /* We've tried hard to allocate the memory by reaping
1791 * our own buffer, now let the real VM do its job and
1792 * go down in flames if truly OOM.
1793 */
caf49191 1794 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1795 gfp |= __GFP_IO | __GFP_WAIT;
1796
1797 i915_gem_shrink_all(dev_priv);
1798 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1799 if (IS_ERR(page))
1800 goto err_pages;
1801
caf49191 1802 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1803 gfp &= ~(__GFP_IO | __GFP_WAIT);
1804 }
1625e7e5
KRW
1805#ifdef CONFIG_SWIOTLB
1806 if (swiotlb_nr_tbl()) {
1807 st->nents++;
1808 sg_set_page(sg, page, PAGE_SIZE, 0);
1809 sg = sg_next(sg);
1810 continue;
1811 }
1812#endif
90797e6d
ID
1813 if (!i || page_to_pfn(page) != last_pfn + 1) {
1814 if (i)
1815 sg = sg_next(sg);
1816 st->nents++;
1817 sg_set_page(sg, page, PAGE_SIZE, 0);
1818 } else {
1819 sg->length += PAGE_SIZE;
1820 }
1821 last_pfn = page_to_pfn(page);
e5281ccd 1822 }
1625e7e5
KRW
1823#ifdef CONFIG_SWIOTLB
1824 if (!swiotlb_nr_tbl())
1825#endif
1826 sg_mark_end(sg);
74ce6b6c
CW
1827 obj->pages = st;
1828
6dacfd2f 1829 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1830 i915_gem_object_do_bit_17_swizzle(obj);
1831
1832 return 0;
1833
1834err_pages:
90797e6d
ID
1835 sg_mark_end(sg);
1836 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1837 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1838 sg_free_table(st);
1839 kfree(st);
e5281ccd 1840 return PTR_ERR(page);
673a394b
EA
1841}
1842
37e680a1
CW
1843/* Ensure that the associated pages are gathered from the backing storage
1844 * and pinned into our object. i915_gem_object_get_pages() may be called
1845 * multiple times before they are released by a single call to
1846 * i915_gem_object_put_pages() - once the pages are no longer referenced
1847 * either as a result of memory pressure (reaping pages under the shrinker)
1848 * or as the object is itself released.
1849 */
1850int
1851i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1852{
1853 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1854 const struct drm_i915_gem_object_ops *ops = obj->ops;
1855 int ret;
1856
2f745ad3 1857 if (obj->pages)
37e680a1
CW
1858 return 0;
1859
43e28f09
CW
1860 if (obj->madv != I915_MADV_WILLNEED) {
1861 DRM_ERROR("Attempting to obtain a purgeable object\n");
1862 return -EINVAL;
1863 }
1864
a5570178
CW
1865 BUG_ON(obj->pages_pin_count);
1866
37e680a1
CW
1867 ret = ops->get_pages(obj);
1868 if (ret)
1869 return ret;
1870
35c20a60 1871 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1872 return 0;
673a394b
EA
1873}
1874
54cf91dc 1875void
05394f39 1876i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1877 struct intel_ring_buffer *ring)
673a394b 1878{
05394f39 1879 struct drm_device *dev = obj->base.dev;
69dc4987 1880 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1881 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1882
852835f3 1883 BUG_ON(ring == NULL);
05394f39 1884 obj->ring = ring;
673a394b
EA
1885
1886 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1887 if (!obj->active) {
1888 drm_gem_object_reference(&obj->base);
1889 obj->active = 1;
673a394b 1890 }
e35a41de 1891
673a394b 1892 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1893 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1894 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1895
0201f1ec 1896 obj->last_read_seqno = seqno;
caea7476 1897
7dd49065 1898 if (obj->fenced_gpu_access) {
caea7476 1899 obj->last_fenced_seqno = seqno;
caea7476 1900
7dd49065
CW
1901 /* Bump MRU to take account of the delayed flush */
1902 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1903 struct drm_i915_fence_reg *reg;
1904
1905 reg = &dev_priv->fence_regs[obj->fence_reg];
1906 list_move_tail(&reg->lru_list,
1907 &dev_priv->mm.fence_list);
1908 }
caea7476
CW
1909 }
1910}
1911
1912static void
caea7476 1913i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1914{
05394f39 1915 struct drm_device *dev = obj->base.dev;
caea7476 1916 struct drm_i915_private *dev_priv = dev->dev_private;
ce44b0ea 1917
65ce3027 1918 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1919 BUG_ON(!obj->active);
caea7476 1920
1b50247a 1921 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476 1922
65ce3027 1923 list_del_init(&obj->ring_list);
caea7476
CW
1924 obj->ring = NULL;
1925
65ce3027
CW
1926 obj->last_read_seqno = 0;
1927 obj->last_write_seqno = 0;
1928 obj->base.write_domain = 0;
1929
1930 obj->last_fenced_seqno = 0;
caea7476 1931 obj->fenced_gpu_access = false;
caea7476
CW
1932
1933 obj->active = 0;
1934 drm_gem_object_unreference(&obj->base);
1935
1936 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1937}
673a394b 1938
9d773091 1939static int
fca26bb4 1940i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1941{
9d773091
CW
1942 struct drm_i915_private *dev_priv = dev->dev_private;
1943 struct intel_ring_buffer *ring;
1944 int ret, i, j;
53d227f2 1945
107f27a5 1946 /* Carefully retire all requests without writing to the rings */
9d773091 1947 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1948 ret = intel_ring_idle(ring);
1949 if (ret)
1950 return ret;
9d773091 1951 }
9d773091 1952 i915_gem_retire_requests(dev);
107f27a5
CW
1953
1954 /* Finally reset hw state */
9d773091 1955 for_each_ring(ring, dev_priv, i) {
fca26bb4 1956 intel_ring_init_seqno(ring, seqno);
498d2ac1 1957
9d773091
CW
1958 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1959 ring->sync_seqno[j] = 0;
1960 }
53d227f2 1961
9d773091 1962 return 0;
53d227f2
DV
1963}
1964
fca26bb4
MK
1965int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1966{
1967 struct drm_i915_private *dev_priv = dev->dev_private;
1968 int ret;
1969
1970 if (seqno == 0)
1971 return -EINVAL;
1972
1973 /* HWS page needs to be set less than what we
1974 * will inject to ring
1975 */
1976 ret = i915_gem_init_seqno(dev, seqno - 1);
1977 if (ret)
1978 return ret;
1979
1980 /* Carefully set the last_seqno value so that wrap
1981 * detection still works
1982 */
1983 dev_priv->next_seqno = seqno;
1984 dev_priv->last_seqno = seqno - 1;
1985 if (dev_priv->last_seqno == 0)
1986 dev_priv->last_seqno--;
1987
1988 return 0;
1989}
1990
9d773091
CW
1991int
1992i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 1993{
9d773091
CW
1994 struct drm_i915_private *dev_priv = dev->dev_private;
1995
1996 /* reserve 0 for non-seqno */
1997 if (dev_priv->next_seqno == 0) {
fca26bb4 1998 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
1999 if (ret)
2000 return ret;
53d227f2 2001
9d773091
CW
2002 dev_priv->next_seqno = 1;
2003 }
53d227f2 2004
f72b3435 2005 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2006 return 0;
53d227f2
DV
2007}
2008
0025c077
MK
2009int __i915_add_request(struct intel_ring_buffer *ring,
2010 struct drm_file *file,
7d736f4f 2011 struct drm_i915_gem_object *obj,
0025c077 2012 u32 *out_seqno)
673a394b 2013{
db53a302 2014 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2015 struct drm_i915_gem_request *request;
7d736f4f 2016 u32 request_ring_position, request_start;
673a394b 2017 int was_empty;
3cce469c
CW
2018 int ret;
2019
7d736f4f 2020 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2021 /*
2022 * Emit any outstanding flushes - execbuf can fail to emit the flush
2023 * after having emitted the batchbuffer command. Hence we need to fix
2024 * things up similar to emitting the lazy request. The difference here
2025 * is that the flush _must_ happen before the next request, no matter
2026 * what.
2027 */
a7b9761d
CW
2028 ret = intel_ring_flush_all_caches(ring);
2029 if (ret)
2030 return ret;
cc889e0f 2031
acb868d3
CW
2032 request = kmalloc(sizeof(*request), GFP_KERNEL);
2033 if (request == NULL)
2034 return -ENOMEM;
cc889e0f 2035
673a394b 2036
a71d8d94
CW
2037 /* Record the position of the start of the request so that
2038 * should we detect the updated seqno part-way through the
2039 * GPU processing the request, we never over-estimate the
2040 * position of the head.
2041 */
2042 request_ring_position = intel_ring_get_tail(ring);
2043
9d773091 2044 ret = ring->add_request(ring);
3bb73aba
CW
2045 if (ret) {
2046 kfree(request);
2047 return ret;
2048 }
673a394b 2049
9d773091 2050 request->seqno = intel_ring_get_seqno(ring);
852835f3 2051 request->ring = ring;
7d736f4f 2052 request->head = request_start;
a71d8d94 2053 request->tail = request_ring_position;
0e50e96b 2054 request->ctx = ring->last_context;
7d736f4f
MK
2055 request->batch_obj = obj;
2056
2057 /* Whilst this request exists, batch_obj will be on the
2058 * active_list, and so will hold the active reference. Only when this
2059 * request is retired will the the batch_obj be moved onto the
2060 * inactive_list and lose its active reference. Hence we do not need
2061 * to explicitly hold another reference here.
2062 */
0e50e96b
MK
2063
2064 if (request->ctx)
2065 i915_gem_context_reference(request->ctx);
2066
673a394b 2067 request->emitted_jiffies = jiffies;
852835f3
ZN
2068 was_empty = list_empty(&ring->request_list);
2069 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2070 request->file_priv = NULL;
852835f3 2071
db53a302
CW
2072 if (file) {
2073 struct drm_i915_file_private *file_priv = file->driver_priv;
2074
1c25595f 2075 spin_lock(&file_priv->mm.lock);
f787a5f5 2076 request->file_priv = file_priv;
b962442e 2077 list_add_tail(&request->client_list,
f787a5f5 2078 &file_priv->mm.request_list);
1c25595f 2079 spin_unlock(&file_priv->mm.lock);
b962442e 2080 }
673a394b 2081
9d773091 2082 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2083 ring->outstanding_lazy_request = 0;
db53a302 2084
f65d9421 2085 if (!dev_priv->mm.suspended) {
3e0dc6b0 2086 if (i915_enable_hangcheck) {
99584db3 2087 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
cecc21fe 2088 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3e0dc6b0 2089 }
f047e395 2090 if (was_empty) {
b3b079db 2091 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2092 &dev_priv->mm.retire_work,
2093 round_jiffies_up_relative(HZ));
f047e395
CW
2094 intel_mark_busy(dev_priv->dev);
2095 }
f65d9421 2096 }
cc889e0f 2097
acb868d3 2098 if (out_seqno)
9d773091 2099 *out_seqno = request->seqno;
3cce469c 2100 return 0;
673a394b
EA
2101}
2102
f787a5f5
CW
2103static inline void
2104i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2105{
1c25595f 2106 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2107
1c25595f
CW
2108 if (!file_priv)
2109 return;
1c5d22f7 2110
1c25595f 2111 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2112 if (request->file_priv) {
2113 list_del(&request->client_list);
2114 request->file_priv = NULL;
2115 }
1c25595f 2116 spin_unlock(&file_priv->mm.lock);
673a394b 2117}
673a394b 2118
aa60c664
MK
2119static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
2120{
f343c5f6
BW
2121 if (acthd >= i915_gem_obj_ggtt_offset(obj) &&
2122 acthd < i915_gem_obj_ggtt_offset(obj) + obj->base.size)
aa60c664
MK
2123 return true;
2124
2125 return false;
2126}
2127
2128static bool i915_head_inside_request(const u32 acthd_unmasked,
2129 const u32 request_start,
2130 const u32 request_end)
2131{
2132 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2133
2134 if (request_start < request_end) {
2135 if (acthd >= request_start && acthd < request_end)
2136 return true;
2137 } else if (request_start > request_end) {
2138 if (acthd >= request_start || acthd < request_end)
2139 return true;
2140 }
2141
2142 return false;
2143}
2144
2145static bool i915_request_guilty(struct drm_i915_gem_request *request,
2146 const u32 acthd, bool *inside)
2147{
2148 /* There is a possibility that unmasked head address
2149 * pointing inside the ring, matches the batch_obj address range.
2150 * However this is extremely unlikely.
2151 */
2152
2153 if (request->batch_obj) {
2154 if (i915_head_inside_object(acthd, request->batch_obj)) {
2155 *inside = true;
2156 return true;
2157 }
2158 }
2159
2160 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2161 *inside = false;
2162 return true;
2163 }
2164
2165 return false;
2166}
2167
2168static void i915_set_reset_status(struct intel_ring_buffer *ring,
2169 struct drm_i915_gem_request *request,
2170 u32 acthd)
2171{
2172 struct i915_ctx_hang_stats *hs = NULL;
2173 bool inside, guilty;
2174
2175 /* Innocent until proven guilty */
2176 guilty = false;
2177
2178 if (ring->hangcheck.action != wait &&
2179 i915_request_guilty(request, acthd, &inside)) {
f343c5f6 2180 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
aa60c664
MK
2181 ring->name,
2182 inside ? "inside" : "flushing",
2183 request->batch_obj ?
f343c5f6 2184 i915_gem_obj_ggtt_offset(request->batch_obj) : 0,
aa60c664
MK
2185 request->ctx ? request->ctx->id : 0,
2186 acthd);
2187
2188 guilty = true;
2189 }
2190
2191 /* If contexts are disabled or this is the default context, use
2192 * file_priv->reset_state
2193 */
2194 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2195 hs = &request->ctx->hang_stats;
2196 else if (request->file_priv)
2197 hs = &request->file_priv->hang_stats;
2198
2199 if (hs) {
2200 if (guilty)
2201 hs->batch_active++;
2202 else
2203 hs->batch_pending++;
2204 }
2205}
2206
0e50e96b
MK
2207static void i915_gem_free_request(struct drm_i915_gem_request *request)
2208{
2209 list_del(&request->list);
2210 i915_gem_request_remove_from_client(request);
2211
2212 if (request->ctx)
2213 i915_gem_context_unreference(request->ctx);
2214
2215 kfree(request);
2216}
2217
dfaae392
CW
2218static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2219 struct intel_ring_buffer *ring)
9375e446 2220{
aa60c664
MK
2221 u32 completed_seqno;
2222 u32 acthd;
2223
2224 acthd = intel_ring_get_active_head(ring);
2225 completed_seqno = ring->get_seqno(ring, false);
2226
dfaae392
CW
2227 while (!list_empty(&ring->request_list)) {
2228 struct drm_i915_gem_request *request;
673a394b 2229
dfaae392
CW
2230 request = list_first_entry(&ring->request_list,
2231 struct drm_i915_gem_request,
2232 list);
de151cf6 2233
aa60c664
MK
2234 if (request->seqno > completed_seqno)
2235 i915_set_reset_status(ring, request, acthd);
2236
0e50e96b 2237 i915_gem_free_request(request);
dfaae392 2238 }
673a394b 2239
dfaae392 2240 while (!list_empty(&ring->active_list)) {
05394f39 2241 struct drm_i915_gem_object *obj;
9375e446 2242
05394f39
CW
2243 obj = list_first_entry(&ring->active_list,
2244 struct drm_i915_gem_object,
2245 ring_list);
9375e446 2246
05394f39 2247 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2248 }
2249}
2250
312817a3
CW
2251static void i915_gem_reset_fences(struct drm_device *dev)
2252{
2253 struct drm_i915_private *dev_priv = dev->dev_private;
2254 int i;
2255
4b9de737 2256 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2257 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2258
ada726c7
CW
2259 if (reg->obj)
2260 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2261
f9c513e9
CW
2262 i915_gem_write_fence(dev, i, NULL);
2263
ada726c7
CW
2264 reg->pin_count = 0;
2265 reg->obj = NULL;
2266 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2267 }
ada726c7
CW
2268
2269 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2270}
2271
069efc1d 2272void i915_gem_reset(struct drm_device *dev)
673a394b 2273{
77f01230 2274 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2275 struct drm_i915_gem_object *obj;
b4519513 2276 struct intel_ring_buffer *ring;
1ec14ad3 2277 int i;
673a394b 2278
b4519513
CW
2279 for_each_ring(ring, dev_priv, i)
2280 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2281
dfaae392
CW
2282 /* Move everything out of the GPU domains to ensure we do any
2283 * necessary invalidation upon reuse.
2284 */
05394f39 2285 list_for_each_entry(obj,
77f01230 2286 &dev_priv->mm.inactive_list,
69dc4987 2287 mm_list)
77f01230 2288 {
05394f39 2289 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2290 }
069efc1d
CW
2291
2292 /* The fence registers are invalidated so clear them out */
312817a3 2293 i915_gem_reset_fences(dev);
673a394b
EA
2294}
2295
2296/**
2297 * This function clears the request list as sequence numbers are passed.
2298 */
a71d8d94 2299void
db53a302 2300i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2301{
673a394b
EA
2302 uint32_t seqno;
2303
db53a302 2304 if (list_empty(&ring->request_list))
6c0594a3
KW
2305 return;
2306
db53a302 2307 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2308
b2eadbc8 2309 seqno = ring->get_seqno(ring, true);
1ec14ad3 2310
852835f3 2311 while (!list_empty(&ring->request_list)) {
673a394b 2312 struct drm_i915_gem_request *request;
673a394b 2313
852835f3 2314 request = list_first_entry(&ring->request_list,
673a394b
EA
2315 struct drm_i915_gem_request,
2316 list);
673a394b 2317
dfaae392 2318 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2319 break;
2320
db53a302 2321 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2322 /* We know the GPU must have read the request to have
2323 * sent us the seqno + interrupt, so use the position
2324 * of tail of the request to update the last known position
2325 * of the GPU head.
2326 */
2327 ring->last_retired_head = request->tail;
b84d5f0c 2328
0e50e96b 2329 i915_gem_free_request(request);
b84d5f0c 2330 }
673a394b 2331
b84d5f0c
CW
2332 /* Move any buffers on the active list that are no longer referenced
2333 * by the ringbuffer to the flushing/inactive lists as appropriate.
2334 */
2335 while (!list_empty(&ring->active_list)) {
05394f39 2336 struct drm_i915_gem_object *obj;
b84d5f0c 2337
0206e353 2338 obj = list_first_entry(&ring->active_list,
05394f39
CW
2339 struct drm_i915_gem_object,
2340 ring_list);
673a394b 2341
0201f1ec 2342 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2343 break;
b84d5f0c 2344
65ce3027 2345 i915_gem_object_move_to_inactive(obj);
673a394b 2346 }
9d34e5db 2347
db53a302
CW
2348 if (unlikely(ring->trace_irq_seqno &&
2349 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2350 ring->irq_put(ring);
db53a302 2351 ring->trace_irq_seqno = 0;
9d34e5db 2352 }
23bc5982 2353
db53a302 2354 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2355}
2356
b09a1fec
CW
2357void
2358i915_gem_retire_requests(struct drm_device *dev)
2359{
2360 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2361 struct intel_ring_buffer *ring;
1ec14ad3 2362 int i;
b09a1fec 2363
b4519513
CW
2364 for_each_ring(ring, dev_priv, i)
2365 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2366}
2367
75ef9da2 2368static void
673a394b
EA
2369i915_gem_retire_work_handler(struct work_struct *work)
2370{
2371 drm_i915_private_t *dev_priv;
2372 struct drm_device *dev;
b4519513 2373 struct intel_ring_buffer *ring;
0a58705b
CW
2374 bool idle;
2375 int i;
673a394b
EA
2376
2377 dev_priv = container_of(work, drm_i915_private_t,
2378 mm.retire_work.work);
2379 dev = dev_priv->dev;
2380
891b48cf
CW
2381 /* Come back later if the device is busy... */
2382 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2383 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2384 round_jiffies_up_relative(HZ));
891b48cf
CW
2385 return;
2386 }
673a394b 2387
b09a1fec 2388 i915_gem_retire_requests(dev);
673a394b 2389
0a58705b
CW
2390 /* Send a periodic flush down the ring so we don't hold onto GEM
2391 * objects indefinitely.
673a394b 2392 */
0a58705b 2393 idle = true;
b4519513 2394 for_each_ring(ring, dev_priv, i) {
3bb73aba 2395 if (ring->gpu_caches_dirty)
0025c077 2396 i915_add_request(ring, NULL);
0a58705b
CW
2397
2398 idle &= list_empty(&ring->request_list);
673a394b
EA
2399 }
2400
0a58705b 2401 if (!dev_priv->mm.suspended && !idle)
bcb45086
CW
2402 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2403 round_jiffies_up_relative(HZ));
f047e395
CW
2404 if (idle)
2405 intel_mark_idle(dev);
0a58705b 2406
673a394b 2407 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2408}
2409
30dfebf3
DV
2410/**
2411 * Ensures that an object will eventually get non-busy by flushing any required
2412 * write domains, emitting any outstanding lazy request and retiring and
2413 * completed requests.
2414 */
2415static int
2416i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2417{
2418 int ret;
2419
2420 if (obj->active) {
0201f1ec 2421 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2422 if (ret)
2423 return ret;
2424
30dfebf3
DV
2425 i915_gem_retire_requests_ring(obj->ring);
2426 }
2427
2428 return 0;
2429}
2430
23ba4fd0
BW
2431/**
2432 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2433 * @DRM_IOCTL_ARGS: standard ioctl arguments
2434 *
2435 * Returns 0 if successful, else an error is returned with the remaining time in
2436 * the timeout parameter.
2437 * -ETIME: object is still busy after timeout
2438 * -ERESTARTSYS: signal interrupted the wait
2439 * -ENONENT: object doesn't exist
2440 * Also possible, but rare:
2441 * -EAGAIN: GPU wedged
2442 * -ENOMEM: damn
2443 * -ENODEV: Internal IRQ fail
2444 * -E?: The add request failed
2445 *
2446 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2447 * non-zero timeout parameter the wait ioctl will wait for the given number of
2448 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2449 * without holding struct_mutex the object may become re-busied before this
2450 * function completes. A similar but shorter * race condition exists in the busy
2451 * ioctl
2452 */
2453int
2454i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2455{
f69061be 2456 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2457 struct drm_i915_gem_wait *args = data;
2458 struct drm_i915_gem_object *obj;
2459 struct intel_ring_buffer *ring = NULL;
eac1f14f 2460 struct timespec timeout_stack, *timeout = NULL;
f69061be 2461 unsigned reset_counter;
23ba4fd0
BW
2462 u32 seqno = 0;
2463 int ret = 0;
2464
eac1f14f
BW
2465 if (args->timeout_ns >= 0) {
2466 timeout_stack = ns_to_timespec(args->timeout_ns);
2467 timeout = &timeout_stack;
2468 }
23ba4fd0
BW
2469
2470 ret = i915_mutex_lock_interruptible(dev);
2471 if (ret)
2472 return ret;
2473
2474 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2475 if (&obj->base == NULL) {
2476 mutex_unlock(&dev->struct_mutex);
2477 return -ENOENT;
2478 }
2479
30dfebf3
DV
2480 /* Need to make sure the object gets inactive eventually. */
2481 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2482 if (ret)
2483 goto out;
2484
2485 if (obj->active) {
0201f1ec 2486 seqno = obj->last_read_seqno;
23ba4fd0
BW
2487 ring = obj->ring;
2488 }
2489
2490 if (seqno == 0)
2491 goto out;
2492
23ba4fd0
BW
2493 /* Do this after OLR check to make sure we make forward progress polling
2494 * on this IOCTL with a 0 timeout (like busy ioctl)
2495 */
2496 if (!args->timeout_ns) {
2497 ret = -ETIME;
2498 goto out;
2499 }
2500
2501 drm_gem_object_unreference(&obj->base);
f69061be 2502 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2503 mutex_unlock(&dev->struct_mutex);
2504
f69061be 2505 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
4f42f4ef 2506 if (timeout)
eac1f14f 2507 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2508 return ret;
2509
2510out:
2511 drm_gem_object_unreference(&obj->base);
2512 mutex_unlock(&dev->struct_mutex);
2513 return ret;
2514}
2515
5816d648
BW
2516/**
2517 * i915_gem_object_sync - sync an object to a ring.
2518 *
2519 * @obj: object which may be in use on another ring.
2520 * @to: ring we wish to use the object on. May be NULL.
2521 *
2522 * This code is meant to abstract object synchronization with the GPU.
2523 * Calling with NULL implies synchronizing the object with the CPU
2524 * rather than a particular GPU ring.
2525 *
2526 * Returns 0 if successful, else propagates up the lower layer error.
2527 */
2911a35b
BW
2528int
2529i915_gem_object_sync(struct drm_i915_gem_object *obj,
2530 struct intel_ring_buffer *to)
2531{
2532 struct intel_ring_buffer *from = obj->ring;
2533 u32 seqno;
2534 int ret, idx;
2535
2536 if (from == NULL || to == from)
2537 return 0;
2538
5816d648 2539 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2540 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2541
2542 idx = intel_ring_sync_index(from, to);
2543
0201f1ec 2544 seqno = obj->last_read_seqno;
2911a35b
BW
2545 if (seqno <= from->sync_seqno[idx])
2546 return 0;
2547
b4aca010
BW
2548 ret = i915_gem_check_olr(obj->ring, seqno);
2549 if (ret)
2550 return ret;
2911a35b 2551
1500f7ea 2552 ret = to->sync_to(to, from, seqno);
e3a5a225 2553 if (!ret)
7b01e260
MK
2554 /* We use last_read_seqno because sync_to()
2555 * might have just caused seqno wrap under
2556 * the radar.
2557 */
2558 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2559
e3a5a225 2560 return ret;
2911a35b
BW
2561}
2562
b5ffc9bc
CW
2563static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2564{
2565 u32 old_write_domain, old_read_domains;
2566
b5ffc9bc
CW
2567 /* Force a pagefault for domain tracking on next user access */
2568 i915_gem_release_mmap(obj);
2569
b97c3d9c
KP
2570 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2571 return;
2572
97c809fd
CW
2573 /* Wait for any direct GTT access to complete */
2574 mb();
2575
b5ffc9bc
CW
2576 old_read_domains = obj->base.read_domains;
2577 old_write_domain = obj->base.write_domain;
2578
2579 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2580 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2581
2582 trace_i915_gem_object_change_domain(obj,
2583 old_read_domains,
2584 old_write_domain);
2585}
2586
673a394b
EA
2587/**
2588 * Unbinds an object from the GTT aperture.
2589 */
0f973f27 2590int
05394f39 2591i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2592{
7bddb01f 2593 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2594 int ret;
673a394b 2595
f343c5f6 2596 if (!i915_gem_obj_ggtt_bound(obj))
673a394b
EA
2597 return 0;
2598
31d8d651
CW
2599 if (obj->pin_count)
2600 return -EBUSY;
673a394b 2601
c4670ad0
CW
2602 BUG_ON(obj->pages == NULL);
2603
a8198eea 2604 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2605 if (ret)
a8198eea
CW
2606 return ret;
2607 /* Continue on if we fail due to EIO, the GPU is hung so we
2608 * should be safe and we need to cleanup or else we might
2609 * cause memory corruption through use-after-free.
2610 */
2611
b5ffc9bc 2612 i915_gem_object_finish_gtt(obj);
5323fd04 2613
96b47b65 2614 /* release the fence reg _after_ flushing */
d9e86c0e 2615 ret = i915_gem_object_put_fence(obj);
1488fc08 2616 if (ret)
d9e86c0e 2617 return ret;
96b47b65 2618
db53a302
CW
2619 trace_i915_gem_object_unbind(obj);
2620
74898d7e
DV
2621 if (obj->has_global_gtt_mapping)
2622 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2623 if (obj->has_aliasing_ppgtt_mapping) {
2624 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2625 obj->has_aliasing_ppgtt_mapping = 0;
2626 }
74163907 2627 i915_gem_gtt_finish_object(obj);
401c29f6 2628 i915_gem_object_unpin_pages(obj);
7bddb01f 2629
6c085a72 2630 list_del(&obj->mm_list);
35c20a60 2631 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
75e9e915 2632 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2633 obj->map_and_fenceable = true;
673a394b 2634
c6cfb325 2635 drm_mm_remove_node(&obj->gtt_space);
673a394b 2636
88241785 2637 return 0;
54cf91dc
CW
2638}
2639
b2da9fe5 2640int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2641{
2642 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2643 struct intel_ring_buffer *ring;
1ec14ad3 2644 int ret, i;
4df2faf4 2645
4df2faf4 2646 /* Flush everything onto the inactive list. */
b4519513 2647 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2648 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2649 if (ret)
2650 return ret;
2651
3e960501 2652 ret = intel_ring_idle(ring);
1ec14ad3
CW
2653 if (ret)
2654 return ret;
2655 }
4df2faf4 2656
8a1a49f9 2657 return 0;
4df2faf4
DV
2658}
2659
9ce079e4
CW
2660static void i965_write_fence_reg(struct drm_device *dev, int reg,
2661 struct drm_i915_gem_object *obj)
de151cf6 2662{
de151cf6 2663 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2664 int fence_reg;
2665 int fence_pitch_shift;
de151cf6
JB
2666 uint64_t val;
2667
56c844e5
ID
2668 if (INTEL_INFO(dev)->gen >= 6) {
2669 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2670 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2671 } else {
2672 fence_reg = FENCE_REG_965_0;
2673 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2674 }
2675
9ce079e4 2676 if (obj) {
f343c5f6 2677 u32 size = i915_gem_obj_ggtt_size(obj);
de151cf6 2678
f343c5f6 2679 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2680 0xfffff000) << 32;
f343c5f6 2681 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2682 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2683 if (obj->tiling_mode == I915_TILING_Y)
2684 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2685 val |= I965_FENCE_REG_VALID;
2686 } else
2687 val = 0;
c6642782 2688
56c844e5
ID
2689 fence_reg += reg * 8;
2690 I915_WRITE64(fence_reg, val);
2691 POSTING_READ(fence_reg);
de151cf6
JB
2692}
2693
9ce079e4
CW
2694static void i915_write_fence_reg(struct drm_device *dev, int reg,
2695 struct drm_i915_gem_object *obj)
de151cf6 2696{
de151cf6 2697 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2698 u32 val;
de151cf6 2699
9ce079e4 2700 if (obj) {
f343c5f6 2701 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2702 int pitch_val;
2703 int tile_width;
c6642782 2704
f343c5f6 2705 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2706 (size & -size) != size ||
f343c5f6
BW
2707 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2708 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2709 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2710
9ce079e4
CW
2711 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2712 tile_width = 128;
2713 else
2714 tile_width = 512;
2715
2716 /* Note: pitch better be a power of two tile widths */
2717 pitch_val = obj->stride / tile_width;
2718 pitch_val = ffs(pitch_val) - 1;
2719
f343c5f6 2720 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2721 if (obj->tiling_mode == I915_TILING_Y)
2722 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2723 val |= I915_FENCE_SIZE_BITS(size);
2724 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2725 val |= I830_FENCE_REG_VALID;
2726 } else
2727 val = 0;
2728
2729 if (reg < 8)
2730 reg = FENCE_REG_830_0 + reg * 4;
2731 else
2732 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2733
2734 I915_WRITE(reg, val);
2735 POSTING_READ(reg);
de151cf6
JB
2736}
2737
9ce079e4
CW
2738static void i830_write_fence_reg(struct drm_device *dev, int reg,
2739 struct drm_i915_gem_object *obj)
de151cf6 2740{
de151cf6 2741 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2742 uint32_t val;
de151cf6 2743
9ce079e4 2744 if (obj) {
f343c5f6 2745 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2746 uint32_t pitch_val;
de151cf6 2747
f343c5f6 2748 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2749 (size & -size) != size ||
f343c5f6
BW
2750 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2751 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2752 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2753
9ce079e4
CW
2754 pitch_val = obj->stride / 128;
2755 pitch_val = ffs(pitch_val) - 1;
de151cf6 2756
f343c5f6 2757 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2758 if (obj->tiling_mode == I915_TILING_Y)
2759 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2760 val |= I830_FENCE_SIZE_BITS(size);
2761 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2762 val |= I830_FENCE_REG_VALID;
2763 } else
2764 val = 0;
c6642782 2765
9ce079e4
CW
2766 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2767 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2768}
2769
d0a57789
CW
2770inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2771{
2772 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2773}
2774
9ce079e4
CW
2775static void i915_gem_write_fence(struct drm_device *dev, int reg,
2776 struct drm_i915_gem_object *obj)
2777{
d0a57789
CW
2778 struct drm_i915_private *dev_priv = dev->dev_private;
2779
2780 /* Ensure that all CPU reads are completed before installing a fence
2781 * and all writes before removing the fence.
2782 */
2783 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2784 mb();
2785
9ce079e4
CW
2786 switch (INTEL_INFO(dev)->gen) {
2787 case 7:
56c844e5 2788 case 6:
9ce079e4
CW
2789 case 5:
2790 case 4: i965_write_fence_reg(dev, reg, obj); break;
2791 case 3: i915_write_fence_reg(dev, reg, obj); break;
2792 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2793 default: BUG();
9ce079e4 2794 }
d0a57789
CW
2795
2796 /* And similarly be paranoid that no direct access to this region
2797 * is reordered to before the fence is installed.
2798 */
2799 if (i915_gem_object_needs_mb(obj))
2800 mb();
de151cf6
JB
2801}
2802
61050808
CW
2803static inline int fence_number(struct drm_i915_private *dev_priv,
2804 struct drm_i915_fence_reg *fence)
2805{
2806 return fence - dev_priv->fence_regs;
2807}
2808
2dc8aae0
CW
2809struct write_fence {
2810 struct drm_device *dev;
2811 struct drm_i915_gem_object *obj;
2812 int fence;
2813};
2814
25ff1195
CW
2815static void i915_gem_write_fence__ipi(void *data)
2816{
2dc8aae0
CW
2817 struct write_fence *args = data;
2818
2819 /* Required for SNB+ with LLC */
25ff1195 2820 wbinvd();
2dc8aae0
CW
2821
2822 /* Required for VLV */
2823 i915_gem_write_fence(args->dev, args->fence, args->obj);
25ff1195
CW
2824}
2825
61050808
CW
2826static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2827 struct drm_i915_fence_reg *fence,
2828 bool enable)
2829{
2dc8aae0
CW
2830 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2831 struct write_fence args = {
2832 .dev = obj->base.dev,
2833 .fence = fence_number(dev_priv, fence),
2834 .obj = enable ? obj : NULL,
2835 };
25ff1195
CW
2836
2837 /* In order to fully serialize access to the fenced region and
2838 * the update to the fence register we need to take extreme
2839 * measures on SNB+. In theory, the write to the fence register
2840 * flushes all memory transactions before, and coupled with the
2841 * mb() placed around the register write we serialise all memory
2842 * operations with respect to the changes in the tiler. Yet, on
2843 * SNB+ we need to take a step further and emit an explicit wbinvd()
2844 * on each processor in order to manually flush all memory
2845 * transactions before updating the fence register.
2dc8aae0
CW
2846 *
2847 * However, Valleyview complicates matter. There the wbinvd is
2848 * insufficient and unlike SNB/IVB requires the serialising
2849 * register write. (Note that that register write by itself is
2850 * conversely not sufficient for SNB+.) To compromise, we do both.
25ff1195 2851 */
2dc8aae0
CW
2852 if (INTEL_INFO(args.dev)->gen >= 6)
2853 on_each_cpu(i915_gem_write_fence__ipi, &args, 1);
2854 else
2855 i915_gem_write_fence(args.dev, args.fence, args.obj);
61050808
CW
2856
2857 if (enable) {
2dc8aae0 2858 obj->fence_reg = args.fence;
61050808
CW
2859 fence->obj = obj;
2860 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2861 } else {
2862 obj->fence_reg = I915_FENCE_REG_NONE;
2863 fence->obj = NULL;
2864 list_del_init(&fence->lru_list);
2865 }
2866}
2867
d9e86c0e 2868static int
d0a57789 2869i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2870{
1c293ea3 2871 if (obj->last_fenced_seqno) {
86d5bc37 2872 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2873 if (ret)
2874 return ret;
d9e86c0e
CW
2875
2876 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2877 }
2878
86d5bc37 2879 obj->fenced_gpu_access = false;
d9e86c0e
CW
2880 return 0;
2881}
2882
2883int
2884i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2885{
61050808 2886 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 2887 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
2888 int ret;
2889
d0a57789 2890 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
2891 if (ret)
2892 return ret;
2893
61050808
CW
2894 if (obj->fence_reg == I915_FENCE_REG_NONE)
2895 return 0;
d9e86c0e 2896
f9c513e9
CW
2897 fence = &dev_priv->fence_regs[obj->fence_reg];
2898
61050808 2899 i915_gem_object_fence_lost(obj);
f9c513e9 2900 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
2901
2902 return 0;
2903}
2904
2905static struct drm_i915_fence_reg *
a360bb1a 2906i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2907{
ae3db24a 2908 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2909 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2910 int i;
ae3db24a
DV
2911
2912 /* First try to find a free reg */
d9e86c0e 2913 avail = NULL;
ae3db24a
DV
2914 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2915 reg = &dev_priv->fence_regs[i];
2916 if (!reg->obj)
d9e86c0e 2917 return reg;
ae3db24a 2918
1690e1eb 2919 if (!reg->pin_count)
d9e86c0e 2920 avail = reg;
ae3db24a
DV
2921 }
2922
d9e86c0e
CW
2923 if (avail == NULL)
2924 return NULL;
ae3db24a
DV
2925
2926 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2927 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2928 if (reg->pin_count)
ae3db24a
DV
2929 continue;
2930
8fe301ad 2931 return reg;
ae3db24a
DV
2932 }
2933
8fe301ad 2934 return NULL;
ae3db24a
DV
2935}
2936
de151cf6 2937/**
9a5a53b3 2938 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2939 * @obj: object to map through a fence reg
2940 *
2941 * When mapping objects through the GTT, userspace wants to be able to write
2942 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2943 * This function walks the fence regs looking for a free one for @obj,
2944 * stealing one if it can't find any.
2945 *
2946 * It then sets up the reg based on the object's properties: address, pitch
2947 * and tiling format.
9a5a53b3
CW
2948 *
2949 * For an untiled surface, this removes any existing fence.
de151cf6 2950 */
8c4b8c3f 2951int
06d98131 2952i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2953{
05394f39 2954 struct drm_device *dev = obj->base.dev;
79e53945 2955 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2956 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2957 struct drm_i915_fence_reg *reg;
ae3db24a 2958 int ret;
de151cf6 2959
14415745
CW
2960 /* Have we updated the tiling parameters upon the object and so
2961 * will need to serialise the write to the associated fence register?
2962 */
5d82e3e6 2963 if (obj->fence_dirty) {
d0a57789 2964 ret = i915_gem_object_wait_fence(obj);
14415745
CW
2965 if (ret)
2966 return ret;
2967 }
9a5a53b3 2968
d9e86c0e 2969 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2970 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2971 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2972 if (!obj->fence_dirty) {
14415745
CW
2973 list_move_tail(&reg->lru_list,
2974 &dev_priv->mm.fence_list);
2975 return 0;
2976 }
2977 } else if (enable) {
2978 reg = i915_find_fence_reg(dev);
2979 if (reg == NULL)
2980 return -EDEADLK;
d9e86c0e 2981
14415745
CW
2982 if (reg->obj) {
2983 struct drm_i915_gem_object *old = reg->obj;
2984
d0a57789 2985 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
2986 if (ret)
2987 return ret;
2988
14415745 2989 i915_gem_object_fence_lost(old);
29c5a587 2990 }
14415745 2991 } else
a09ba7fa 2992 return 0;
a09ba7fa 2993
14415745 2994 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2995 obj->fence_dirty = false;
14415745 2996
9ce079e4 2997 return 0;
de151cf6
JB
2998}
2999
42d6ab48
CW
3000static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3001 struct drm_mm_node *gtt_space,
3002 unsigned long cache_level)
3003{
3004 struct drm_mm_node *other;
3005
3006 /* On non-LLC machines we have to be careful when putting differing
3007 * types of snoopable memory together to avoid the prefetcher
4239ca77 3008 * crossing memory domains and dying.
42d6ab48
CW
3009 */
3010 if (HAS_LLC(dev))
3011 return true;
3012
c6cfb325 3013 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3014 return true;
3015
3016 if (list_empty(&gtt_space->node_list))
3017 return true;
3018
3019 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3020 if (other->allocated && !other->hole_follows && other->color != cache_level)
3021 return false;
3022
3023 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3024 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3025 return false;
3026
3027 return true;
3028}
3029
3030static void i915_gem_verify_gtt(struct drm_device *dev)
3031{
3032#if WATCH_GTT
3033 struct drm_i915_private *dev_priv = dev->dev_private;
3034 struct drm_i915_gem_object *obj;
3035 int err = 0;
3036
35c20a60 3037 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3038 if (obj->gtt_space == NULL) {
3039 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3040 err++;
3041 continue;
3042 }
3043
3044 if (obj->cache_level != obj->gtt_space->color) {
3045 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3046 i915_gem_obj_ggtt_offset(obj),
3047 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3048 obj->cache_level,
3049 obj->gtt_space->color);
3050 err++;
3051 continue;
3052 }
3053
3054 if (!i915_gem_valid_gtt_space(dev,
3055 obj->gtt_space,
3056 obj->cache_level)) {
3057 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3058 i915_gem_obj_ggtt_offset(obj),
3059 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3060 obj->cache_level);
3061 err++;
3062 continue;
3063 }
3064 }
3065
3066 WARN_ON(err);
3067#endif
3068}
3069
673a394b
EA
3070/**
3071 * Finds free space in the GTT aperture and binds the object there.
3072 */
3073static int
05394f39 3074i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 3075 unsigned alignment,
86a1ee26
CW
3076 bool map_and_fenceable,
3077 bool nonblocking)
673a394b 3078{
05394f39 3079 struct drm_device *dev = obj->base.dev;
673a394b 3080 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3081 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 3082 bool mappable, fenceable;
0a9ae0d7
BW
3083 size_t gtt_max = map_and_fenceable ?
3084 dev_priv->gtt.mappable_end : dev_priv->gtt.total;
07f73f69 3085 int ret;
673a394b 3086
e28f8711
CW
3087 fence_size = i915_gem_get_gtt_size(dev,
3088 obj->base.size,
3089 obj->tiling_mode);
3090 fence_alignment = i915_gem_get_gtt_alignment(dev,
3091 obj->base.size,
d865110c 3092 obj->tiling_mode, true);
e28f8711 3093 unfenced_alignment =
d865110c 3094 i915_gem_get_gtt_alignment(dev,
e28f8711 3095 obj->base.size,
d865110c 3096 obj->tiling_mode, false);
a00b10c3 3097
673a394b 3098 if (alignment == 0)
5e783301
DV
3099 alignment = map_and_fenceable ? fence_alignment :
3100 unfenced_alignment;
75e9e915 3101 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3102 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3103 return -EINVAL;
3104 }
3105
05394f39 3106 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3107
654fc607
CW
3108 /* If the object is bigger than the entire aperture, reject it early
3109 * before evicting everything in a vain attempt to find space.
3110 */
0a9ae0d7 3111 if (obj->base.size > gtt_max) {
3765f304 3112 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3113 obj->base.size,
3114 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3115 gtt_max);
654fc607
CW
3116 return -E2BIG;
3117 }
3118
37e680a1 3119 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3120 if (ret)
3121 return ret;
3122
fbdda6fb
CW
3123 i915_gem_object_pin_pages(obj);
3124
0a9ae0d7 3125search_free:
c6cfb325
BW
3126 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space,
3127 &obj->gtt_space,
0a9ae0d7
BW
3128 size, alignment,
3129 obj->cache_level, 0, gtt_max);
dc9dd7a2 3130 if (ret) {
75e9e915 3131 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 3132 obj->cache_level,
86a1ee26
CW
3133 map_and_fenceable,
3134 nonblocking);
dc9dd7a2
CW
3135 if (ret == 0)
3136 goto search_free;
9731129c 3137
dc9dd7a2 3138 i915_gem_object_unpin_pages(obj);
dc9dd7a2 3139 return ret;
673a394b 3140 }
c6cfb325
BW
3141 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &obj->gtt_space,
3142 obj->cache_level))) {
fbdda6fb 3143 i915_gem_object_unpin_pages(obj);
c6cfb325 3144 drm_mm_remove_node(&obj->gtt_space);
42d6ab48 3145 return -EINVAL;
673a394b
EA
3146 }
3147
74163907 3148 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 3149 if (ret) {
fbdda6fb 3150 i915_gem_object_unpin_pages(obj);
c6cfb325 3151 drm_mm_remove_node(&obj->gtt_space);
6c085a72 3152 return ret;
673a394b 3153 }
673a394b 3154
35c20a60 3155 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
05394f39 3156 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 3157
75e9e915 3158 fenceable =
c6cfb325
BW
3159 i915_gem_obj_ggtt_size(obj) == fence_size &&
3160 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
a00b10c3 3161
f343c5f6
BW
3162 mappable = i915_gem_obj_ggtt_offset(obj) + obj->base.size <=
3163 dev_priv->gtt.mappable_end;
a00b10c3 3164
05394f39 3165 obj->map_and_fenceable = mappable && fenceable;
75e9e915 3166
db53a302 3167 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 3168 i915_gem_verify_gtt(dev);
673a394b
EA
3169 return 0;
3170}
3171
3172void
05394f39 3173i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3174{
673a394b
EA
3175 /* If we don't have a page list set up, then we're not pinned
3176 * to GPU, and we can ignore the cache flush because it'll happen
3177 * again at bind time.
3178 */
05394f39 3179 if (obj->pages == NULL)
673a394b
EA
3180 return;
3181
769ce464
ID
3182 /*
3183 * Stolen memory is always coherent with the GPU as it is explicitly
3184 * marked as wc by the system, or the system is cache-coherent.
3185 */
3186 if (obj->stolen)
3187 return;
3188
9c23f7fc
CW
3189 /* If the GPU is snooping the contents of the CPU cache,
3190 * we do not need to manually clear the CPU cache lines. However,
3191 * the caches are only snooped when the render cache is
3192 * flushed/invalidated. As we always have to emit invalidations
3193 * and flushes when moving into and out of the RENDER domain, correct
3194 * snooping behaviour occurs naturally as the result of our domain
3195 * tracking.
3196 */
3197 if (obj->cache_level != I915_CACHE_NONE)
3198 return;
3199
1c5d22f7 3200 trace_i915_gem_object_clflush(obj);
cfa16a0d 3201
9da3da66 3202 drm_clflush_sg(obj->pages);
e47c68e9
EA
3203}
3204
3205/** Flushes the GTT write domain for the object if it's dirty. */
3206static void
05394f39 3207i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3208{
1c5d22f7
CW
3209 uint32_t old_write_domain;
3210
05394f39 3211 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3212 return;
3213
63256ec5 3214 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3215 * to it immediately go to main memory as far as we know, so there's
3216 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3217 *
3218 * However, we do have to enforce the order so that all writes through
3219 * the GTT land before any writes to the device, such as updates to
3220 * the GATT itself.
e47c68e9 3221 */
63256ec5
CW
3222 wmb();
3223
05394f39
CW
3224 old_write_domain = obj->base.write_domain;
3225 obj->base.write_domain = 0;
1c5d22f7
CW
3226
3227 trace_i915_gem_object_change_domain(obj,
05394f39 3228 obj->base.read_domains,
1c5d22f7 3229 old_write_domain);
e47c68e9
EA
3230}
3231
3232/** Flushes the CPU write domain for the object if it's dirty. */
3233static void
05394f39 3234i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3235{
1c5d22f7 3236 uint32_t old_write_domain;
e47c68e9 3237
05394f39 3238 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3239 return;
3240
3241 i915_gem_clflush_object(obj);
e76e9aeb 3242 i915_gem_chipset_flush(obj->base.dev);
05394f39
CW
3243 old_write_domain = obj->base.write_domain;
3244 obj->base.write_domain = 0;
1c5d22f7
CW
3245
3246 trace_i915_gem_object_change_domain(obj,
05394f39 3247 obj->base.read_domains,
1c5d22f7 3248 old_write_domain);
e47c68e9
EA
3249}
3250
2ef7eeaa
EA
3251/**
3252 * Moves a single object to the GTT read, and possibly write domain.
3253 *
3254 * This function returns when the move is complete, including waiting on
3255 * flushes to occur.
3256 */
79e53945 3257int
2021746e 3258i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3259{
8325a09d 3260 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3261 uint32_t old_write_domain, old_read_domains;
e47c68e9 3262 int ret;
2ef7eeaa 3263
02354392 3264 /* Not valid to be called on unbound objects. */
f343c5f6 3265 if (!i915_gem_obj_ggtt_bound(obj))
02354392
EA
3266 return -EINVAL;
3267
8d7e3de1
CW
3268 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3269 return 0;
3270
0201f1ec 3271 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3272 if (ret)
3273 return ret;
3274
7213342d 3275 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3276
d0a57789
CW
3277 /* Serialise direct access to this object with the barriers for
3278 * coherent writes from the GPU, by effectively invalidating the
3279 * GTT domain upon first access.
3280 */
3281 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3282 mb();
3283
05394f39
CW
3284 old_write_domain = obj->base.write_domain;
3285 old_read_domains = obj->base.read_domains;
1c5d22f7 3286
e47c68e9
EA
3287 /* It should now be out of any other write domains, and we can update
3288 * the domain values for our changes.
3289 */
05394f39
CW
3290 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3291 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3292 if (write) {
05394f39
CW
3293 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3294 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3295 obj->dirty = 1;
2ef7eeaa
EA
3296 }
3297
1c5d22f7
CW
3298 trace_i915_gem_object_change_domain(obj,
3299 old_read_domains,
3300 old_write_domain);
3301
8325a09d
CW
3302 /* And bump the LRU for this access */
3303 if (i915_gem_object_is_inactive(obj))
3304 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3305
e47c68e9
EA
3306 return 0;
3307}
3308
e4ffd173
CW
3309int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3310 enum i915_cache_level cache_level)
3311{
7bddb01f
DV
3312 struct drm_device *dev = obj->base.dev;
3313 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3314 int ret;
3315
3316 if (obj->cache_level == cache_level)
3317 return 0;
3318
3319 if (obj->pin_count) {
3320 DRM_DEBUG("can not change the cache level of pinned objects\n");
3321 return -EBUSY;
3322 }
3323
c6cfb325 3324 if (!i915_gem_valid_gtt_space(dev, &obj->gtt_space, cache_level)) {
42d6ab48
CW
3325 ret = i915_gem_object_unbind(obj);
3326 if (ret)
3327 return ret;
3328 }
3329
f343c5f6 3330 if (i915_gem_obj_ggtt_bound(obj)) {
e4ffd173
CW
3331 ret = i915_gem_object_finish_gpu(obj);
3332 if (ret)
3333 return ret;
3334
3335 i915_gem_object_finish_gtt(obj);
3336
3337 /* Before SandyBridge, you could not use tiling or fence
3338 * registers with snooped memory, so relinquish any fences
3339 * currently pointing to our region in the aperture.
3340 */
42d6ab48 3341 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3342 ret = i915_gem_object_put_fence(obj);
3343 if (ret)
3344 return ret;
3345 }
3346
74898d7e
DV
3347 if (obj->has_global_gtt_mapping)
3348 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3349 if (obj->has_aliasing_ppgtt_mapping)
3350 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3351 obj, cache_level);
42d6ab48 3352
f343c5f6 3353 i915_gem_obj_ggtt_set_color(obj, cache_level);
e4ffd173
CW
3354 }
3355
3356 if (cache_level == I915_CACHE_NONE) {
3357 u32 old_read_domains, old_write_domain;
3358
3359 /* If we're coming from LLC cached, then we haven't
3360 * actually been tracking whether the data is in the
3361 * CPU cache or not, since we only allow one bit set
3362 * in obj->write_domain and have been skipping the clflushes.
3363 * Just set it to the CPU cache for now.
3364 */
3365 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3366 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3367
3368 old_read_domains = obj->base.read_domains;
3369 old_write_domain = obj->base.write_domain;
3370
3371 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3372 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3373
3374 trace_i915_gem_object_change_domain(obj,
3375 old_read_domains,
3376 old_write_domain);
3377 }
3378
3379 obj->cache_level = cache_level;
42d6ab48 3380 i915_gem_verify_gtt(dev);
e4ffd173
CW
3381 return 0;
3382}
3383
199adf40
BW
3384int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3385 struct drm_file *file)
e6994aee 3386{
199adf40 3387 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3388 struct drm_i915_gem_object *obj;
3389 int ret;
3390
3391 ret = i915_mutex_lock_interruptible(dev);
3392 if (ret)
3393 return ret;
3394
3395 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3396 if (&obj->base == NULL) {
3397 ret = -ENOENT;
3398 goto unlock;
3399 }
3400
199adf40 3401 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3402
3403 drm_gem_object_unreference(&obj->base);
3404unlock:
3405 mutex_unlock(&dev->struct_mutex);
3406 return ret;
3407}
3408
199adf40
BW
3409int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3410 struct drm_file *file)
e6994aee 3411{
199adf40 3412 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3413 struct drm_i915_gem_object *obj;
3414 enum i915_cache_level level;
3415 int ret;
3416
199adf40
BW
3417 switch (args->caching) {
3418 case I915_CACHING_NONE:
e6994aee
CW
3419 level = I915_CACHE_NONE;
3420 break;
199adf40 3421 case I915_CACHING_CACHED:
e6994aee
CW
3422 level = I915_CACHE_LLC;
3423 break;
3424 default:
3425 return -EINVAL;
3426 }
3427
3bc2913e
BW
3428 ret = i915_mutex_lock_interruptible(dev);
3429 if (ret)
3430 return ret;
3431
e6994aee
CW
3432 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3433 if (&obj->base == NULL) {
3434 ret = -ENOENT;
3435 goto unlock;
3436 }
3437
3438 ret = i915_gem_object_set_cache_level(obj, level);
3439
3440 drm_gem_object_unreference(&obj->base);
3441unlock:
3442 mutex_unlock(&dev->struct_mutex);
3443 return ret;
3444}
3445
b9241ea3 3446/*
2da3b9b9
CW
3447 * Prepare buffer for display plane (scanout, cursors, etc).
3448 * Can be called from an uninterruptible phase (modesetting) and allows
3449 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3450 */
3451int
2da3b9b9
CW
3452i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3453 u32 alignment,
919926ae 3454 struct intel_ring_buffer *pipelined)
b9241ea3 3455{
2da3b9b9 3456 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3457 int ret;
3458
0be73284 3459 if (pipelined != obj->ring) {
2911a35b
BW
3460 ret = i915_gem_object_sync(obj, pipelined);
3461 if (ret)
b9241ea3
ZW
3462 return ret;
3463 }
3464
a7ef0640
EA
3465 /* The display engine is not coherent with the LLC cache on gen6. As
3466 * a result, we make sure that the pinning that is about to occur is
3467 * done with uncached PTEs. This is lowest common denominator for all
3468 * chipsets.
3469 *
3470 * However for gen6+, we could do better by using the GFDT bit instead
3471 * of uncaching, which would allow us to flush all the LLC-cached data
3472 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3473 */
3474 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3475 if (ret)
3476 return ret;
3477
2da3b9b9
CW
3478 /* As the user may map the buffer once pinned in the display plane
3479 * (e.g. libkms for the bootup splash), we have to ensure that we
3480 * always use map_and_fenceable for all scanout buffers.
3481 */
86a1ee26 3482 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3483 if (ret)
3484 return ret;
3485
b118c1e3
CW
3486 i915_gem_object_flush_cpu_write_domain(obj);
3487
2da3b9b9 3488 old_write_domain = obj->base.write_domain;
05394f39 3489 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3490
3491 /* It should now be out of any other write domains, and we can update
3492 * the domain values for our changes.
3493 */
e5f1d962 3494 obj->base.write_domain = 0;
05394f39 3495 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3496
3497 trace_i915_gem_object_change_domain(obj,
3498 old_read_domains,
2da3b9b9 3499 old_write_domain);
b9241ea3
ZW
3500
3501 return 0;
3502}
3503
85345517 3504int
a8198eea 3505i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3506{
88241785
CW
3507 int ret;
3508
a8198eea 3509 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3510 return 0;
3511
0201f1ec 3512 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3513 if (ret)
3514 return ret;
3515
a8198eea
CW
3516 /* Ensure that we invalidate the GPU's caches and TLBs. */
3517 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3518 return 0;
85345517
CW
3519}
3520
e47c68e9
EA
3521/**
3522 * Moves a single object to the CPU read, and possibly write domain.
3523 *
3524 * This function returns when the move is complete, including waiting on
3525 * flushes to occur.
3526 */
dabdfe02 3527int
919926ae 3528i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3529{
1c5d22f7 3530 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3531 int ret;
3532
8d7e3de1
CW
3533 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3534 return 0;
3535
0201f1ec 3536 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3537 if (ret)
3538 return ret;
3539
e47c68e9 3540 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3541
05394f39
CW
3542 old_write_domain = obj->base.write_domain;
3543 old_read_domains = obj->base.read_domains;
1c5d22f7 3544
e47c68e9 3545 /* Flush the CPU cache if it's still invalid. */
05394f39 3546 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3547 i915_gem_clflush_object(obj);
2ef7eeaa 3548
05394f39 3549 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3550 }
3551
3552 /* It should now be out of any other write domains, and we can update
3553 * the domain values for our changes.
3554 */
05394f39 3555 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3556
3557 /* If we're writing through the CPU, then the GPU read domains will
3558 * need to be invalidated at next use.
3559 */
3560 if (write) {
05394f39
CW
3561 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3562 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3563 }
2ef7eeaa 3564
1c5d22f7
CW
3565 trace_i915_gem_object_change_domain(obj,
3566 old_read_domains,
3567 old_write_domain);
3568
2ef7eeaa
EA
3569 return 0;
3570}
3571
673a394b
EA
3572/* Throttle our rendering by waiting until the ring has completed our requests
3573 * emitted over 20 msec ago.
3574 *
b962442e
EA
3575 * Note that if we were to use the current jiffies each time around the loop,
3576 * we wouldn't escape the function with any frames outstanding if the time to
3577 * render a frame was over 20ms.
3578 *
673a394b
EA
3579 * This should get us reasonable parallelism between CPU and GPU but also
3580 * relatively low latency when blocking on a particular request to finish.
3581 */
40a5f0de 3582static int
f787a5f5 3583i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3584{
f787a5f5
CW
3585 struct drm_i915_private *dev_priv = dev->dev_private;
3586 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3587 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3588 struct drm_i915_gem_request *request;
3589 struct intel_ring_buffer *ring = NULL;
f69061be 3590 unsigned reset_counter;
f787a5f5
CW
3591 u32 seqno = 0;
3592 int ret;
93533c29 3593
308887aa
DV
3594 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3595 if (ret)
3596 return ret;
3597
3598 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3599 if (ret)
3600 return ret;
e110e8d6 3601
1c25595f 3602 spin_lock(&file_priv->mm.lock);
f787a5f5 3603 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3604 if (time_after_eq(request->emitted_jiffies, recent_enough))
3605 break;
40a5f0de 3606
f787a5f5
CW
3607 ring = request->ring;
3608 seqno = request->seqno;
b962442e 3609 }
f69061be 3610 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3611 spin_unlock(&file_priv->mm.lock);
40a5f0de 3612
f787a5f5
CW
3613 if (seqno == 0)
3614 return 0;
2bc43b5c 3615
f69061be 3616 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
f787a5f5
CW
3617 if (ret == 0)
3618 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3619
3620 return ret;
3621}
3622
673a394b 3623int
05394f39
CW
3624i915_gem_object_pin(struct drm_i915_gem_object *obj,
3625 uint32_t alignment,
86a1ee26
CW
3626 bool map_and_fenceable,
3627 bool nonblocking)
673a394b 3628{
673a394b
EA
3629 int ret;
3630
7e81a42e
CW
3631 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3632 return -EBUSY;
ac0c6b5a 3633
f343c5f6
BW
3634 if (i915_gem_obj_ggtt_bound(obj)) {
3635 if ((alignment && i915_gem_obj_ggtt_offset(obj) & (alignment - 1)) ||
05394f39
CW
3636 (map_and_fenceable && !obj->map_and_fenceable)) {
3637 WARN(obj->pin_count,
ae7d49d8 3638 "bo is already pinned with incorrect alignment:"
f343c5f6 3639 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3640 " obj->map_and_fenceable=%d\n",
f343c5f6 3641 i915_gem_obj_ggtt_offset(obj), alignment,
75e9e915 3642 map_and_fenceable,
05394f39 3643 obj->map_and_fenceable);
ac0c6b5a
CW
3644 ret = i915_gem_object_unbind(obj);
3645 if (ret)
3646 return ret;
3647 }
3648 }
3649
f343c5f6 3650 if (!i915_gem_obj_ggtt_bound(obj)) {
8742267a
CW
3651 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3652
a00b10c3 3653 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3654 map_and_fenceable,
3655 nonblocking);
9731129c 3656 if (ret)
673a394b 3657 return ret;
8742267a
CW
3658
3659 if (!dev_priv->mm.aliasing_ppgtt)
3660 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3661 }
76446cac 3662
74898d7e
DV
3663 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3664 i915_gem_gtt_bind_object(obj, obj->cache_level);
3665
1b50247a 3666 obj->pin_count++;
6299f992 3667 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3668
3669 return 0;
3670}
3671
3672void
05394f39 3673i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3674{
05394f39 3675 BUG_ON(obj->pin_count == 0);
f343c5f6 3676 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
673a394b 3677
1b50247a 3678 if (--obj->pin_count == 0)
6299f992 3679 obj->pin_mappable = false;
673a394b
EA
3680}
3681
3682int
3683i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3684 struct drm_file *file)
673a394b
EA
3685{
3686 struct drm_i915_gem_pin *args = data;
05394f39 3687 struct drm_i915_gem_object *obj;
673a394b
EA
3688 int ret;
3689
1d7cfea1
CW
3690 ret = i915_mutex_lock_interruptible(dev);
3691 if (ret)
3692 return ret;
673a394b 3693
05394f39 3694 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3695 if (&obj->base == NULL) {
1d7cfea1
CW
3696 ret = -ENOENT;
3697 goto unlock;
673a394b 3698 }
673a394b 3699
05394f39 3700 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3701 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3702 ret = -EINVAL;
3703 goto out;
3ef94daa
CW
3704 }
3705
05394f39 3706 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3707 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3708 args->handle);
1d7cfea1
CW
3709 ret = -EINVAL;
3710 goto out;
79e53945
JB
3711 }
3712
93be8788 3713 if (obj->user_pin_count == 0) {
86a1ee26 3714 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3715 if (ret)
3716 goto out;
673a394b
EA
3717 }
3718
93be8788
CW
3719 obj->user_pin_count++;
3720 obj->pin_filp = file;
3721
673a394b
EA
3722 /* XXX - flush the CPU caches for pinned objects
3723 * as the X server doesn't manage domains yet
3724 */
e47c68e9 3725 i915_gem_object_flush_cpu_write_domain(obj);
f343c5f6 3726 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3727out:
05394f39 3728 drm_gem_object_unreference(&obj->base);
1d7cfea1 3729unlock:
673a394b 3730 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3731 return ret;
673a394b
EA
3732}
3733
3734int
3735i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3736 struct drm_file *file)
673a394b
EA
3737{
3738 struct drm_i915_gem_pin *args = data;
05394f39 3739 struct drm_i915_gem_object *obj;
76c1dec1 3740 int ret;
673a394b 3741
1d7cfea1
CW
3742 ret = i915_mutex_lock_interruptible(dev);
3743 if (ret)
3744 return ret;
673a394b 3745
05394f39 3746 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3747 if (&obj->base == NULL) {
1d7cfea1
CW
3748 ret = -ENOENT;
3749 goto unlock;
673a394b 3750 }
76c1dec1 3751
05394f39 3752 if (obj->pin_filp != file) {
79e53945
JB
3753 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3754 args->handle);
1d7cfea1
CW
3755 ret = -EINVAL;
3756 goto out;
79e53945 3757 }
05394f39
CW
3758 obj->user_pin_count--;
3759 if (obj->user_pin_count == 0) {
3760 obj->pin_filp = NULL;
79e53945
JB
3761 i915_gem_object_unpin(obj);
3762 }
673a394b 3763
1d7cfea1 3764out:
05394f39 3765 drm_gem_object_unreference(&obj->base);
1d7cfea1 3766unlock:
673a394b 3767 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3768 return ret;
673a394b
EA
3769}
3770
3771int
3772i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3773 struct drm_file *file)
673a394b
EA
3774{
3775 struct drm_i915_gem_busy *args = data;
05394f39 3776 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3777 int ret;
3778
76c1dec1 3779 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3780 if (ret)
76c1dec1 3781 return ret;
673a394b 3782
05394f39 3783 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3784 if (&obj->base == NULL) {
1d7cfea1
CW
3785 ret = -ENOENT;
3786 goto unlock;
673a394b 3787 }
d1b851fc 3788
0be555b6
CW
3789 /* Count all active objects as busy, even if they are currently not used
3790 * by the gpu. Users of this interface expect objects to eventually
3791 * become non-busy without any further actions, therefore emit any
3792 * necessary flushes here.
c4de0a5d 3793 */
30dfebf3 3794 ret = i915_gem_object_flush_active(obj);
0be555b6 3795
30dfebf3 3796 args->busy = obj->active;
e9808edd
CW
3797 if (obj->ring) {
3798 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3799 args->busy |= intel_ring_flag(obj->ring) << 16;
3800 }
673a394b 3801
05394f39 3802 drm_gem_object_unreference(&obj->base);
1d7cfea1 3803unlock:
673a394b 3804 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3805 return ret;
673a394b
EA
3806}
3807
3808int
3809i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3810 struct drm_file *file_priv)
3811{
0206e353 3812 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3813}
3814
3ef94daa
CW
3815int
3816i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3817 struct drm_file *file_priv)
3818{
3819 struct drm_i915_gem_madvise *args = data;
05394f39 3820 struct drm_i915_gem_object *obj;
76c1dec1 3821 int ret;
3ef94daa
CW
3822
3823 switch (args->madv) {
3824 case I915_MADV_DONTNEED:
3825 case I915_MADV_WILLNEED:
3826 break;
3827 default:
3828 return -EINVAL;
3829 }
3830
1d7cfea1
CW
3831 ret = i915_mutex_lock_interruptible(dev);
3832 if (ret)
3833 return ret;
3834
05394f39 3835 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3836 if (&obj->base == NULL) {
1d7cfea1
CW
3837 ret = -ENOENT;
3838 goto unlock;
3ef94daa 3839 }
3ef94daa 3840
05394f39 3841 if (obj->pin_count) {
1d7cfea1
CW
3842 ret = -EINVAL;
3843 goto out;
3ef94daa
CW
3844 }
3845
05394f39
CW
3846 if (obj->madv != __I915_MADV_PURGED)
3847 obj->madv = args->madv;
3ef94daa 3848
6c085a72
CW
3849 /* if the object is no longer attached, discard its backing storage */
3850 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3851 i915_gem_object_truncate(obj);
3852
05394f39 3853 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3854
1d7cfea1 3855out:
05394f39 3856 drm_gem_object_unreference(&obj->base);
1d7cfea1 3857unlock:
3ef94daa 3858 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3859 return ret;
3ef94daa
CW
3860}
3861
37e680a1
CW
3862void i915_gem_object_init(struct drm_i915_gem_object *obj,
3863 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3864{
0327d6ba 3865 INIT_LIST_HEAD(&obj->mm_list);
35c20a60 3866 INIT_LIST_HEAD(&obj->global_list);
0327d6ba
CW
3867 INIT_LIST_HEAD(&obj->ring_list);
3868 INIT_LIST_HEAD(&obj->exec_list);
3869
37e680a1
CW
3870 obj->ops = ops;
3871
0327d6ba
CW
3872 obj->fence_reg = I915_FENCE_REG_NONE;
3873 obj->madv = I915_MADV_WILLNEED;
3874 /* Avoid an unnecessary call to unbind on the first bind. */
3875 obj->map_and_fenceable = true;
3876
3877 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3878}
3879
37e680a1
CW
3880static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3881 .get_pages = i915_gem_object_get_pages_gtt,
3882 .put_pages = i915_gem_object_put_pages_gtt,
3883};
3884
05394f39
CW
3885struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3886 size_t size)
ac52bc56 3887{
c397b908 3888 struct drm_i915_gem_object *obj;
5949eac4 3889 struct address_space *mapping;
1a240d4d 3890 gfp_t mask;
ac52bc56 3891
42dcedd4 3892 obj = i915_gem_object_alloc(dev);
c397b908
DV
3893 if (obj == NULL)
3894 return NULL;
673a394b 3895
c397b908 3896 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 3897 i915_gem_object_free(obj);
c397b908
DV
3898 return NULL;
3899 }
673a394b 3900
bed1ea95
CW
3901 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3902 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3903 /* 965gm cannot relocate objects above 4GiB. */
3904 mask &= ~__GFP_HIGHMEM;
3905 mask |= __GFP_DMA32;
3906 }
3907
496ad9aa 3908 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 3909 mapping_set_gfp_mask(mapping, mask);
5949eac4 3910
37e680a1 3911 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3912
c397b908
DV
3913 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3914 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3915
3d29b842
ED
3916 if (HAS_LLC(dev)) {
3917 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3918 * cache) for about a 10% performance improvement
3919 * compared to uncached. Graphics requests other than
3920 * display scanout are coherent with the CPU in
3921 * accessing this cache. This means in this mode we
3922 * don't need to clflush on the CPU side, and on the
3923 * GPU side we only need to flush internal caches to
3924 * get data visible to the CPU.
3925 *
3926 * However, we maintain the display planes as UC, and so
3927 * need to rebind when first used as such.
3928 */
3929 obj->cache_level = I915_CACHE_LLC;
3930 } else
3931 obj->cache_level = I915_CACHE_NONE;
3932
05394f39 3933 return obj;
c397b908
DV
3934}
3935
3936int i915_gem_init_object(struct drm_gem_object *obj)
3937{
3938 BUG();
de151cf6 3939
673a394b
EA
3940 return 0;
3941}
3942
1488fc08 3943void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3944{
1488fc08 3945 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3946 struct drm_device *dev = obj->base.dev;
be72615b 3947 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3948
26e12f89
CW
3949 trace_i915_gem_object_destroy(obj);
3950
1488fc08
CW
3951 if (obj->phys_obj)
3952 i915_gem_detach_phys_object(dev, obj);
3953
3954 obj->pin_count = 0;
3955 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3956 bool was_interruptible;
3957
3958 was_interruptible = dev_priv->mm.interruptible;
3959 dev_priv->mm.interruptible = false;
3960
3961 WARN_ON(i915_gem_object_unbind(obj));
3962
3963 dev_priv->mm.interruptible = was_interruptible;
3964 }
3965
1d64ae71
BW
3966 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3967 * before progressing. */
3968 if (obj->stolen)
3969 i915_gem_object_unpin_pages(obj);
3970
401c29f6
BW
3971 if (WARN_ON(obj->pages_pin_count))
3972 obj->pages_pin_count = 0;
37e680a1 3973 i915_gem_object_put_pages(obj);
d8cb5086 3974 i915_gem_object_free_mmap_offset(obj);
0104fdbb 3975 i915_gem_object_release_stolen(obj);
de151cf6 3976
9da3da66
CW
3977 BUG_ON(obj->pages);
3978
2f745ad3
CW
3979 if (obj->base.import_attach)
3980 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 3981
05394f39
CW
3982 drm_gem_object_release(&obj->base);
3983 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3984
05394f39 3985 kfree(obj->bit_17);
42dcedd4 3986 i915_gem_object_free(obj);
673a394b
EA
3987}
3988
29105ccc
CW
3989int
3990i915_gem_idle(struct drm_device *dev)
3991{
3992 drm_i915_private_t *dev_priv = dev->dev_private;
3993 int ret;
28dfe52a 3994
29105ccc 3995 mutex_lock(&dev->struct_mutex);
1c5d22f7 3996
87acb0a5 3997 if (dev_priv->mm.suspended) {
29105ccc
CW
3998 mutex_unlock(&dev->struct_mutex);
3999 return 0;
28dfe52a
EA
4000 }
4001
b2da9fe5 4002 ret = i915_gpu_idle(dev);
6dbe2772
KP
4003 if (ret) {
4004 mutex_unlock(&dev->struct_mutex);
673a394b 4005 return ret;
6dbe2772 4006 }
b2da9fe5 4007 i915_gem_retire_requests(dev);
673a394b 4008
29105ccc 4009 /* Under UMS, be paranoid and evict. */
a39d7efc 4010 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4011 i915_gem_evict_everything(dev);
29105ccc 4012
312817a3
CW
4013 i915_gem_reset_fences(dev);
4014
29105ccc
CW
4015 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4016 * We need to replace this with a semaphore, or something.
4017 * And not confound mm.suspended!
4018 */
4019 dev_priv->mm.suspended = 1;
99584db3 4020 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc
CW
4021
4022 i915_kernel_lost_context(dev);
6dbe2772 4023 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4024
6dbe2772
KP
4025 mutex_unlock(&dev->struct_mutex);
4026
29105ccc
CW
4027 /* Cancel the retire work handler, which should be idle now. */
4028 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4029
673a394b
EA
4030 return 0;
4031}
4032
b9524a1e
BW
4033void i915_gem_l3_remap(struct drm_device *dev)
4034{
4035 drm_i915_private_t *dev_priv = dev->dev_private;
4036 u32 misccpctl;
4037 int i;
4038
eb32e458 4039 if (!HAS_L3_GPU_CACHE(dev))
b9524a1e
BW
4040 return;
4041
a4da4fa4 4042 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
4043 return;
4044
4045 misccpctl = I915_READ(GEN7_MISCCPCTL);
4046 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4047 POSTING_READ(GEN7_MISCCPCTL);
4048
4049 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4050 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 4051 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
4052 DRM_DEBUG("0x%x was already programmed to %x\n",
4053 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 4054 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 4055 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 4056 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
4057 }
4058
4059 /* Make sure all the writes land before disabling dop clock gating */
4060 POSTING_READ(GEN7_L3LOG_BASE);
4061
4062 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4063}
4064
f691e2f4
DV
4065void i915_gem_init_swizzling(struct drm_device *dev)
4066{
4067 drm_i915_private_t *dev_priv = dev->dev_private;
4068
11782b02 4069 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4070 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4071 return;
4072
4073 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4074 DISP_TILE_SURFACE_SWIZZLING);
4075
11782b02
DV
4076 if (IS_GEN5(dev))
4077 return;
4078
f691e2f4
DV
4079 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4080 if (IS_GEN6(dev))
6b26c86d 4081 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4082 else if (IS_GEN7(dev))
6b26c86d 4083 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
4084 else
4085 BUG();
f691e2f4 4086}
e21af88d 4087
67b1b571
CW
4088static bool
4089intel_enable_blt(struct drm_device *dev)
4090{
4091 if (!HAS_BLT(dev))
4092 return false;
4093
4094 /* The blitter was dysfunctional on early prototypes */
4095 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4096 DRM_INFO("BLT not supported on this pre-production hardware;"
4097 " graphics performance will be degraded.\n");
4098 return false;
4099 }
4100
4101 return true;
4102}
4103
4fc7c971 4104static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4105{
4fc7c971 4106 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4107 int ret;
68f95ba9 4108
5c1143bb 4109 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4110 if (ret)
b6913e4b 4111 return ret;
68f95ba9
CW
4112
4113 if (HAS_BSD(dev)) {
5c1143bb 4114 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4115 if (ret)
4116 goto cleanup_render_ring;
d1b851fc 4117 }
68f95ba9 4118
67b1b571 4119 if (intel_enable_blt(dev)) {
549f7365
CW
4120 ret = intel_init_blt_ring_buffer(dev);
4121 if (ret)
4122 goto cleanup_bsd_ring;
4123 }
4124
9a8a2213
BW
4125 if (HAS_VEBOX(dev)) {
4126 ret = intel_init_vebox_ring_buffer(dev);
4127 if (ret)
4128 goto cleanup_blt_ring;
4129 }
4130
4131
99433931 4132 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4133 if (ret)
9a8a2213 4134 goto cleanup_vebox_ring;
4fc7c971
BW
4135
4136 return 0;
4137
9a8a2213
BW
4138cleanup_vebox_ring:
4139 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4140cleanup_blt_ring:
4141 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4142cleanup_bsd_ring:
4143 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4144cleanup_render_ring:
4145 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4146
4147 return ret;
4148}
4149
4150int
4151i915_gem_init_hw(struct drm_device *dev)
4152{
4153 drm_i915_private_t *dev_priv = dev->dev_private;
4154 int ret;
4155
4156 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4157 return -EIO;
4158
4159 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4160 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4161
88a2b2a3
BW
4162 if (HAS_PCH_NOP(dev)) {
4163 u32 temp = I915_READ(GEN7_MSG_CTL);
4164 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4165 I915_WRITE(GEN7_MSG_CTL, temp);
4166 }
4167
4fc7c971
BW
4168 i915_gem_l3_remap(dev);
4169
4170 i915_gem_init_swizzling(dev);
4171
4172 ret = i915_gem_init_rings(dev);
99433931
MK
4173 if (ret)
4174 return ret;
4175
254f965c
BW
4176 /*
4177 * XXX: There was some w/a described somewhere suggesting loading
4178 * contexts before PPGTT.
4179 */
4180 i915_gem_context_init(dev);
b7c36d25
BW
4181 if (dev_priv->mm.aliasing_ppgtt) {
4182 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4183 if (ret) {
4184 i915_gem_cleanup_aliasing_ppgtt(dev);
4185 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4186 }
4187 }
e21af88d 4188
68f95ba9 4189 return 0;
8187a2b7
ZN
4190}
4191
1070a42b
CW
4192int i915_gem_init(struct drm_device *dev)
4193{
4194 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4195 int ret;
4196
1070a42b 4197 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4198
4199 if (IS_VALLEYVIEW(dev)) {
4200 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4201 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4202 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4203 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4204 }
4205
d7e5008f 4206 i915_gem_init_global_gtt(dev);
d62b4892 4207
1070a42b
CW
4208 ret = i915_gem_init_hw(dev);
4209 mutex_unlock(&dev->struct_mutex);
4210 if (ret) {
4211 i915_gem_cleanup_aliasing_ppgtt(dev);
4212 return ret;
4213 }
4214
53ca26ca
DV
4215 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4216 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4217 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4218 return 0;
4219}
4220
8187a2b7
ZN
4221void
4222i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4223{
4224 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4225 struct intel_ring_buffer *ring;
1ec14ad3 4226 int i;
8187a2b7 4227
b4519513
CW
4228 for_each_ring(ring, dev_priv, i)
4229 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4230}
4231
673a394b
EA
4232int
4233i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4234 struct drm_file *file_priv)
4235{
4236 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4237 int ret;
673a394b 4238
79e53945
JB
4239 if (drm_core_check_feature(dev, DRIVER_MODESET))
4240 return 0;
4241
1f83fee0 4242 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4243 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4244 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4245 }
4246
673a394b 4247 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4248 dev_priv->mm.suspended = 0;
4249
f691e2f4 4250 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4251 if (ret != 0) {
4252 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4253 return ret;
d816f6ac 4254 }
9bb2d6f9 4255
69dc4987 4256 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4257 mutex_unlock(&dev->struct_mutex);
dbb19d30 4258
5f35308b
CW
4259 ret = drm_irq_install(dev);
4260 if (ret)
4261 goto cleanup_ringbuffer;
dbb19d30 4262
673a394b 4263 return 0;
5f35308b
CW
4264
4265cleanup_ringbuffer:
4266 mutex_lock(&dev->struct_mutex);
4267 i915_gem_cleanup_ringbuffer(dev);
4268 dev_priv->mm.suspended = 1;
4269 mutex_unlock(&dev->struct_mutex);
4270
4271 return ret;
673a394b
EA
4272}
4273
4274int
4275i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4276 struct drm_file *file_priv)
4277{
79e53945
JB
4278 if (drm_core_check_feature(dev, DRIVER_MODESET))
4279 return 0;
4280
dbb19d30 4281 drm_irq_uninstall(dev);
e6890f6f 4282 return i915_gem_idle(dev);
673a394b
EA
4283}
4284
4285void
4286i915_gem_lastclose(struct drm_device *dev)
4287{
4288 int ret;
673a394b 4289
e806b495
EA
4290 if (drm_core_check_feature(dev, DRIVER_MODESET))
4291 return;
4292
6dbe2772
KP
4293 ret = i915_gem_idle(dev);
4294 if (ret)
4295 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4296}
4297
64193406
CW
4298static void
4299init_ring_lists(struct intel_ring_buffer *ring)
4300{
4301 INIT_LIST_HEAD(&ring->active_list);
4302 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4303}
4304
673a394b
EA
4305void
4306i915_gem_load(struct drm_device *dev)
4307{
4308 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4309 int i;
4310
4311 dev_priv->slab =
4312 kmem_cache_create("i915_gem_object",
4313 sizeof(struct drm_i915_gem_object), 0,
4314 SLAB_HWCACHE_ALIGN,
4315 NULL);
673a394b 4316
69dc4987 4317 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4318 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4319 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4320 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4321 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4322 for (i = 0; i < I915_NUM_RINGS; i++)
4323 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4324 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4325 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4326 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4327 i915_gem_retire_work_handler);
1f83fee0 4328 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4329
94400120
DA
4330 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4331 if (IS_GEN3(dev)) {
50743298
DV
4332 I915_WRITE(MI_ARB_STATE,
4333 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4334 }
4335
72bfa19c
CW
4336 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4337
de151cf6 4338 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4339 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4340 dev_priv->fence_reg_start = 3;
de151cf6 4341
42b5aeab
VS
4342 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4343 dev_priv->num_fence_regs = 32;
4344 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4345 dev_priv->num_fence_regs = 16;
4346 else
4347 dev_priv->num_fence_regs = 8;
4348
b5aa8a0f 4349 /* Initialize fence registers to zero */
ada726c7 4350 i915_gem_reset_fences(dev);
10ed13e4 4351
673a394b 4352 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4353 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4354
ce453d81
CW
4355 dev_priv->mm.interruptible = true;
4356
17250b71
CW
4357 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4358 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4359 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4360}
71acb5eb
DA
4361
4362/*
4363 * Create a physically contiguous memory object for this object
4364 * e.g. for cursor + overlay regs
4365 */
995b6762
CW
4366static int i915_gem_init_phys_object(struct drm_device *dev,
4367 int id, int size, int align)
71acb5eb
DA
4368{
4369 drm_i915_private_t *dev_priv = dev->dev_private;
4370 struct drm_i915_gem_phys_object *phys_obj;
4371 int ret;
4372
4373 if (dev_priv->mm.phys_objs[id - 1] || !size)
4374 return 0;
4375
9a298b2a 4376 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4377 if (!phys_obj)
4378 return -ENOMEM;
4379
4380 phys_obj->id = id;
4381
6eeefaf3 4382 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4383 if (!phys_obj->handle) {
4384 ret = -ENOMEM;
4385 goto kfree_obj;
4386 }
4387#ifdef CONFIG_X86
4388 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4389#endif
4390
4391 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4392
4393 return 0;
4394kfree_obj:
9a298b2a 4395 kfree(phys_obj);
71acb5eb
DA
4396 return ret;
4397}
4398
995b6762 4399static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4400{
4401 drm_i915_private_t *dev_priv = dev->dev_private;
4402 struct drm_i915_gem_phys_object *phys_obj;
4403
4404 if (!dev_priv->mm.phys_objs[id - 1])
4405 return;
4406
4407 phys_obj = dev_priv->mm.phys_objs[id - 1];
4408 if (phys_obj->cur_obj) {
4409 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4410 }
4411
4412#ifdef CONFIG_X86
4413 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4414#endif
4415 drm_pci_free(dev, phys_obj->handle);
4416 kfree(phys_obj);
4417 dev_priv->mm.phys_objs[id - 1] = NULL;
4418}
4419
4420void i915_gem_free_all_phys_object(struct drm_device *dev)
4421{
4422 int i;
4423
260883c8 4424 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4425 i915_gem_free_phys_object(dev, i);
4426}
4427
4428void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4429 struct drm_i915_gem_object *obj)
71acb5eb 4430{
496ad9aa 4431 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4432 char *vaddr;
71acb5eb 4433 int i;
71acb5eb
DA
4434 int page_count;
4435
05394f39 4436 if (!obj->phys_obj)
71acb5eb 4437 return;
05394f39 4438 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4439
05394f39 4440 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4441 for (i = 0; i < page_count; i++) {
5949eac4 4442 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4443 if (!IS_ERR(page)) {
4444 char *dst = kmap_atomic(page);
4445 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4446 kunmap_atomic(dst);
4447
4448 drm_clflush_pages(&page, 1);
4449
4450 set_page_dirty(page);
4451 mark_page_accessed(page);
4452 page_cache_release(page);
4453 }
71acb5eb 4454 }
e76e9aeb 4455 i915_gem_chipset_flush(dev);
d78b47b9 4456
05394f39
CW
4457 obj->phys_obj->cur_obj = NULL;
4458 obj->phys_obj = NULL;
71acb5eb
DA
4459}
4460
4461int
4462i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4463 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4464 int id,
4465 int align)
71acb5eb 4466{
496ad9aa 4467 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4468 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4469 int ret = 0;
4470 int page_count;
4471 int i;
4472
4473 if (id > I915_MAX_PHYS_OBJECT)
4474 return -EINVAL;
4475
05394f39
CW
4476 if (obj->phys_obj) {
4477 if (obj->phys_obj->id == id)
71acb5eb
DA
4478 return 0;
4479 i915_gem_detach_phys_object(dev, obj);
4480 }
4481
71acb5eb
DA
4482 /* create a new object */
4483 if (!dev_priv->mm.phys_objs[id - 1]) {
4484 ret = i915_gem_init_phys_object(dev, id,
05394f39 4485 obj->base.size, align);
71acb5eb 4486 if (ret) {
05394f39
CW
4487 DRM_ERROR("failed to init phys object %d size: %zu\n",
4488 id, obj->base.size);
e5281ccd 4489 return ret;
71acb5eb
DA
4490 }
4491 }
4492
4493 /* bind to the object */
05394f39
CW
4494 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4495 obj->phys_obj->cur_obj = obj;
71acb5eb 4496
05394f39 4497 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4498
4499 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4500 struct page *page;
4501 char *dst, *src;
4502
5949eac4 4503 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4504 if (IS_ERR(page))
4505 return PTR_ERR(page);
71acb5eb 4506
ff75b9bc 4507 src = kmap_atomic(page);
05394f39 4508 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4509 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4510 kunmap_atomic(src);
71acb5eb 4511
e5281ccd
CW
4512 mark_page_accessed(page);
4513 page_cache_release(page);
4514 }
d78b47b9 4515
71acb5eb 4516 return 0;
71acb5eb
DA
4517}
4518
4519static int
05394f39
CW
4520i915_gem_phys_pwrite(struct drm_device *dev,
4521 struct drm_i915_gem_object *obj,
71acb5eb
DA
4522 struct drm_i915_gem_pwrite *args,
4523 struct drm_file *file_priv)
4524{
05394f39 4525 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4526 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4527
b47b30cc
CW
4528 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4529 unsigned long unwritten;
4530
4531 /* The physical object once assigned is fixed for the lifetime
4532 * of the obj, so we can safely drop the lock and continue
4533 * to access vaddr.
4534 */
4535 mutex_unlock(&dev->struct_mutex);
4536 unwritten = copy_from_user(vaddr, user_data, args->size);
4537 mutex_lock(&dev->struct_mutex);
4538 if (unwritten)
4539 return -EFAULT;
4540 }
71acb5eb 4541
e76e9aeb 4542 i915_gem_chipset_flush(dev);
71acb5eb
DA
4543 return 0;
4544}
b962442e 4545
f787a5f5 4546void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4547{
f787a5f5 4548 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4549
4550 /* Clean up our request list when the client is going away, so that
4551 * later retire_requests won't dereference our soon-to-be-gone
4552 * file_priv.
4553 */
1c25595f 4554 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4555 while (!list_empty(&file_priv->mm.request_list)) {
4556 struct drm_i915_gem_request *request;
4557
4558 request = list_first_entry(&file_priv->mm.request_list,
4559 struct drm_i915_gem_request,
4560 client_list);
4561 list_del(&request->client_list);
4562 request->file_priv = NULL;
4563 }
1c25595f 4564 spin_unlock(&file_priv->mm.lock);
b962442e 4565}
31169714 4566
5774506f
CW
4567static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4568{
4569 if (!mutex_is_locked(mutex))
4570 return false;
4571
4572#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4573 return mutex->owner == task;
4574#else
4575 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4576 return false;
4577#endif
4578}
4579
31169714 4580static int
1495f230 4581i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4582{
17250b71
CW
4583 struct drm_i915_private *dev_priv =
4584 container_of(shrinker,
4585 struct drm_i915_private,
4586 mm.inactive_shrinker);
4587 struct drm_device *dev = dev_priv->dev;
6c085a72 4588 struct drm_i915_gem_object *obj;
1495f230 4589 int nr_to_scan = sc->nr_to_scan;
5774506f 4590 bool unlock = true;
17250b71
CW
4591 int cnt;
4592
5774506f
CW
4593 if (!mutex_trylock(&dev->struct_mutex)) {
4594 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4595 return 0;
4596
677feac2
DV
4597 if (dev_priv->mm.shrinker_no_lock_stealing)
4598 return 0;
4599
5774506f
CW
4600 unlock = false;
4601 }
31169714 4602
6c085a72
CW
4603 if (nr_to_scan) {
4604 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
93927ca5
DV
4605 if (nr_to_scan > 0)
4606 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4607 false);
6c085a72
CW
4608 if (nr_to_scan > 0)
4609 i915_gem_shrink_all(dev_priv);
31169714
CW
4610 }
4611
17250b71 4612 cnt = 0;
35c20a60 4613 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178
CW
4614 if (obj->pages_pin_count == 0)
4615 cnt += obj->base.size >> PAGE_SHIFT;
35c20a60 4616 list_for_each_entry(obj, &dev_priv->mm.inactive_list, global_list)
a5570178 4617 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4618 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4619
5774506f
CW
4620 if (unlock)
4621 mutex_unlock(&dev->struct_mutex);
6c085a72 4622 return cnt;
31169714 4623}