]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Simplify fence finding
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
d9e86c0e
CW
45static void i915_gem_clear_fence_reg(struct drm_device *dev,
46 struct drm_i915_fence_reg *reg);
05394f39
CW
47static int i915_gem_phys_pwrite(struct drm_device *dev,
48 struct drm_i915_gem_object *obj,
71acb5eb 49 struct drm_i915_gem_pwrite *args,
05394f39
CW
50 struct drm_file *file);
51static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 52
17250b71 53static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 54 struct shrink_control *sc);
8c59967c 55static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 56
73aa808f
CW
57/* some bookkeeping */
58static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
59 size_t size)
60{
61 dev_priv->mm.object_count++;
62 dev_priv->mm.object_memory += size;
63}
64
65static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
68 dev_priv->mm.object_count--;
69 dev_priv->mm.object_memory -= size;
70}
71
21dd3734
CW
72static int
73i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
74{
75 struct drm_i915_private *dev_priv = dev->dev_private;
76 struct completion *x = &dev_priv->error_completion;
77 unsigned long flags;
78 int ret;
79
80 if (!atomic_read(&dev_priv->mm.wedged))
81 return 0;
82
83 ret = wait_for_completion_interruptible(x);
84 if (ret)
85 return ret;
86
21dd3734
CW
87 if (atomic_read(&dev_priv->mm.wedged)) {
88 /* GPU is hung, bump the completion count to account for
89 * the token we just consumed so that we never hit zero and
90 * end up waiting upon a subsequent completion event that
91 * will never happen.
92 */
93 spin_lock_irqsave(&x->wait.lock, flags);
94 x->done++;
95 spin_unlock_irqrestore(&x->wait.lock, flags);
96 }
97 return 0;
30dbf0c0
CW
98}
99
54cf91dc 100int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 101{
76c1dec1
CW
102 int ret;
103
21dd3734 104 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
105 if (ret)
106 return ret;
107
108 ret = mutex_lock_interruptible(&dev->struct_mutex);
109 if (ret)
110 return ret;
111
23bc5982 112 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
113 return 0;
114}
30dbf0c0 115
7d1c4804 116static inline bool
05394f39 117i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 118{
05394f39 119 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
120}
121
79e53945
JB
122int
123i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 124 struct drm_file *file)
79e53945
JB
125{
126 struct drm_i915_gem_init *args = data;
2021746e
CW
127
128 if (args->gtt_start >= args->gtt_end ||
129 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
130 return -EINVAL;
79e53945 131
f534bc0b
DV
132 /* GEM with user mode setting was never supported on ilk and later. */
133 if (INTEL_INFO(dev)->gen >= 5)
134 return -ENODEV;
135
79e53945 136 mutex_lock(&dev->struct_mutex);
644ec02b
DV
137 i915_gem_init_global_gtt(dev, args->gtt_start,
138 args->gtt_end, args->gtt_end);
673a394b
EA
139 mutex_unlock(&dev->struct_mutex);
140
2021746e 141 return 0;
673a394b
EA
142}
143
5a125c3c
EA
144int
145i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 146 struct drm_file *file)
5a125c3c 147{
73aa808f 148 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 149 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
150 struct drm_i915_gem_object *obj;
151 size_t pinned;
5a125c3c
EA
152
153 if (!(dev->driver->driver_features & DRIVER_GEM))
154 return -ENODEV;
155
6299f992 156 pinned = 0;
73aa808f 157 mutex_lock(&dev->struct_mutex);
6299f992
CW
158 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
159 pinned += obj->gtt_space->size;
73aa808f 160 mutex_unlock(&dev->struct_mutex);
5a125c3c 161
6299f992 162 args->aper_size = dev_priv->mm.gtt_total;
0206e353 163 args->aper_available_size = args->aper_size - pinned;
6299f992 164
5a125c3c
EA
165 return 0;
166}
167
ff72145b
DA
168static int
169i915_gem_create(struct drm_file *file,
170 struct drm_device *dev,
171 uint64_t size,
172 uint32_t *handle_p)
673a394b 173{
05394f39 174 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
175 int ret;
176 u32 handle;
673a394b 177
ff72145b 178 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
179 if (size == 0)
180 return -EINVAL;
673a394b
EA
181
182 /* Allocate the new object */
ff72145b 183 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
184 if (obj == NULL)
185 return -ENOMEM;
186
05394f39 187 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 188 if (ret) {
05394f39
CW
189 drm_gem_object_release(&obj->base);
190 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 191 kfree(obj);
673a394b 192 return ret;
1dfd9754 193 }
673a394b 194
202f2fef 195 /* drop reference from allocate - handle holds it now */
05394f39 196 drm_gem_object_unreference(&obj->base);
202f2fef
CW
197 trace_i915_gem_object_create(obj);
198
ff72145b 199 *handle_p = handle;
673a394b
EA
200 return 0;
201}
202
ff72145b
DA
203int
204i915_gem_dumb_create(struct drm_file *file,
205 struct drm_device *dev,
206 struct drm_mode_create_dumb *args)
207{
208 /* have to work out size/pitch and return them */
ed0291fd 209 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
210 args->size = args->pitch * args->height;
211 return i915_gem_create(file, dev,
212 args->size, &args->handle);
213}
214
215int i915_gem_dumb_destroy(struct drm_file *file,
216 struct drm_device *dev,
217 uint32_t handle)
218{
219 return drm_gem_handle_delete(file, handle);
220}
221
222/**
223 * Creates a new mm object and returns a handle to it.
224 */
225int
226i915_gem_create_ioctl(struct drm_device *dev, void *data,
227 struct drm_file *file)
228{
229 struct drm_i915_gem_create *args = data;
230 return i915_gem_create(file, dev,
231 args->size, &args->handle);
232}
233
05394f39 234static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 235{
05394f39 236 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
237
238 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 239 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
240}
241
8461d226
DV
242static inline int
243__copy_to_user_swizzled(char __user *cpu_vaddr,
244 const char *gpu_vaddr, int gpu_offset,
245 int length)
246{
247 int ret, cpu_offset = 0;
248
249 while (length > 0) {
250 int cacheline_end = ALIGN(gpu_offset + 1, 64);
251 int this_length = min(cacheline_end - gpu_offset, length);
252 int swizzled_gpu_offset = gpu_offset ^ 64;
253
254 ret = __copy_to_user(cpu_vaddr + cpu_offset,
255 gpu_vaddr + swizzled_gpu_offset,
256 this_length);
257 if (ret)
258 return ret + length;
259
260 cpu_offset += this_length;
261 gpu_offset += this_length;
262 length -= this_length;
263 }
264
265 return 0;
266}
267
8c59967c
DV
268static inline int
269__copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
270 const char *cpu_vaddr,
271 int length)
272{
273 int ret, cpu_offset = 0;
274
275 while (length > 0) {
276 int cacheline_end = ALIGN(gpu_offset + 1, 64);
277 int this_length = min(cacheline_end - gpu_offset, length);
278 int swizzled_gpu_offset = gpu_offset ^ 64;
279
280 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
281 cpu_vaddr + cpu_offset,
282 this_length);
283 if (ret)
284 return ret + length;
285
286 cpu_offset += this_length;
287 gpu_offset += this_length;
288 length -= this_length;
289 }
290
291 return 0;
292}
293
d174bd64
DV
294/* Per-page copy function for the shmem pread fastpath.
295 * Flushes invalid cachelines before reading the target if
296 * needs_clflush is set. */
eb01459f 297static int
d174bd64
DV
298shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
299 char __user *user_data,
300 bool page_do_bit17_swizzling, bool needs_clflush)
301{
302 char *vaddr;
303 int ret;
304
e7e58eb5 305 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
306 return -EINVAL;
307
308 vaddr = kmap_atomic(page);
309 if (needs_clflush)
310 drm_clflush_virt_range(vaddr + shmem_page_offset,
311 page_length);
312 ret = __copy_to_user_inatomic(user_data,
313 vaddr + shmem_page_offset,
314 page_length);
315 kunmap_atomic(vaddr);
316
317 return ret;
318}
319
23c18c71
DV
320static void
321shmem_clflush_swizzled_range(char *addr, unsigned long length,
322 bool swizzled)
323{
e7e58eb5 324 if (unlikely(swizzled)) {
23c18c71
DV
325 unsigned long start = (unsigned long) addr;
326 unsigned long end = (unsigned long) addr + length;
327
328 /* For swizzling simply ensure that we always flush both
329 * channels. Lame, but simple and it works. Swizzled
330 * pwrite/pread is far from a hotpath - current userspace
331 * doesn't use it at all. */
332 start = round_down(start, 128);
333 end = round_up(end, 128);
334
335 drm_clflush_virt_range((void *)start, end - start);
336 } else {
337 drm_clflush_virt_range(addr, length);
338 }
339
340}
341
d174bd64
DV
342/* Only difference to the fast-path function is that this can handle bit17
343 * and uses non-atomic copy and kmap functions. */
344static int
345shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
346 char __user *user_data,
347 bool page_do_bit17_swizzling, bool needs_clflush)
348{
349 char *vaddr;
350 int ret;
351
352 vaddr = kmap(page);
353 if (needs_clflush)
23c18c71
DV
354 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
355 page_length,
356 page_do_bit17_swizzling);
d174bd64
DV
357
358 if (page_do_bit17_swizzling)
359 ret = __copy_to_user_swizzled(user_data,
360 vaddr, shmem_page_offset,
361 page_length);
362 else
363 ret = __copy_to_user(user_data,
364 vaddr + shmem_page_offset,
365 page_length);
366 kunmap(page);
367
368 return ret;
369}
370
eb01459f 371static int
dbf7bff0
DV
372i915_gem_shmem_pread(struct drm_device *dev,
373 struct drm_i915_gem_object *obj,
374 struct drm_i915_gem_pread *args,
375 struct drm_file *file)
eb01459f 376{
05394f39 377 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 378 char __user *user_data;
eb01459f 379 ssize_t remain;
8461d226 380 loff_t offset;
eb2c0c81 381 int shmem_page_offset, page_length, ret = 0;
8461d226 382 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 383 int hit_slowpath = 0;
96d79b52 384 int prefaulted = 0;
8489731c 385 int needs_clflush = 0;
692a576b 386 int release_page;
eb01459f 387
8461d226 388 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
389 remain = args->size;
390
8461d226 391 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 392
8489731c
DV
393 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
394 /* If we're not in the cpu read domain, set ourself into the gtt
395 * read domain and manually flush cachelines (if required). This
396 * optimizes for the case when the gpu will dirty the data
397 * anyway again before the next pread happens. */
398 if (obj->cache_level == I915_CACHE_NONE)
399 needs_clflush = 1;
400 ret = i915_gem_object_set_to_gtt_domain(obj, false);
401 if (ret)
402 return ret;
403 }
eb01459f 404
8461d226 405 offset = args->offset;
eb01459f
EA
406
407 while (remain > 0) {
e5281ccd
CW
408 struct page *page;
409
eb01459f
EA
410 /* Operation in this page
411 *
eb01459f 412 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
413 * page_length = bytes to copy for this page
414 */
c8cbbb8b 415 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
416 page_length = remain;
417 if ((shmem_page_offset + page_length) > PAGE_SIZE)
418 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 419
692a576b
DV
420 if (obj->pages) {
421 page = obj->pages[offset >> PAGE_SHIFT];
422 release_page = 0;
423 } else {
424 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
425 if (IS_ERR(page)) {
426 ret = PTR_ERR(page);
427 goto out;
428 }
429 release_page = 1;
b65552f0 430 }
e5281ccd 431
8461d226
DV
432 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
433 (page_to_phys(page) & (1 << 17)) != 0;
434
d174bd64
DV
435 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
436 user_data, page_do_bit17_swizzling,
437 needs_clflush);
438 if (ret == 0)
439 goto next_page;
dbf7bff0
DV
440
441 hit_slowpath = 1;
692a576b 442 page_cache_get(page);
dbf7bff0
DV
443 mutex_unlock(&dev->struct_mutex);
444
96d79b52 445 if (!prefaulted) {
f56f821f 446 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
447 /* Userspace is tricking us, but we've already clobbered
448 * its pages with the prefault and promised to write the
449 * data up to the first fault. Hence ignore any errors
450 * and just continue. */
451 (void)ret;
452 prefaulted = 1;
453 }
eb01459f 454
d174bd64
DV
455 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
456 user_data, page_do_bit17_swizzling,
457 needs_clflush);
eb01459f 458
dbf7bff0 459 mutex_lock(&dev->struct_mutex);
e5281ccd 460 page_cache_release(page);
dbf7bff0 461next_page:
e5281ccd 462 mark_page_accessed(page);
692a576b
DV
463 if (release_page)
464 page_cache_release(page);
e5281ccd 465
8461d226
DV
466 if (ret) {
467 ret = -EFAULT;
468 goto out;
469 }
470
eb01459f 471 remain -= page_length;
8461d226 472 user_data += page_length;
eb01459f
EA
473 offset += page_length;
474 }
475
4f27b75d 476out:
dbf7bff0
DV
477 if (hit_slowpath) {
478 /* Fixup: Kill any reinstated backing storage pages */
479 if (obj->madv == __I915_MADV_PURGED)
480 i915_gem_object_truncate(obj);
481 }
eb01459f
EA
482
483 return ret;
484}
485
673a394b
EA
486/**
487 * Reads data from the object referenced by handle.
488 *
489 * On error, the contents of *data are undefined.
490 */
491int
492i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 493 struct drm_file *file)
673a394b
EA
494{
495 struct drm_i915_gem_pread *args = data;
05394f39 496 struct drm_i915_gem_object *obj;
35b62a89 497 int ret = 0;
673a394b 498
51311d0a
CW
499 if (args->size == 0)
500 return 0;
501
502 if (!access_ok(VERIFY_WRITE,
503 (char __user *)(uintptr_t)args->data_ptr,
504 args->size))
505 return -EFAULT;
506
4f27b75d 507 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 508 if (ret)
4f27b75d 509 return ret;
673a394b 510
05394f39 511 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 512 if (&obj->base == NULL) {
1d7cfea1
CW
513 ret = -ENOENT;
514 goto unlock;
4f27b75d 515 }
673a394b 516
7dcd2499 517 /* Bounds check source. */
05394f39
CW
518 if (args->offset > obj->base.size ||
519 args->size > obj->base.size - args->offset) {
ce9d419d 520 ret = -EINVAL;
35b62a89 521 goto out;
ce9d419d
CW
522 }
523
db53a302
CW
524 trace_i915_gem_object_pread(obj, args->offset, args->size);
525
dbf7bff0 526 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 527
35b62a89 528out:
05394f39 529 drm_gem_object_unreference(&obj->base);
1d7cfea1 530unlock:
4f27b75d 531 mutex_unlock(&dev->struct_mutex);
eb01459f 532 return ret;
673a394b
EA
533}
534
0839ccb8
KP
535/* This is the fast write path which cannot handle
536 * page faults in the source data
9b7530cc 537 */
0839ccb8
KP
538
539static inline int
540fast_user_write(struct io_mapping *mapping,
541 loff_t page_base, int page_offset,
542 char __user *user_data,
543 int length)
9b7530cc 544{
9b7530cc 545 char *vaddr_atomic;
0839ccb8 546 unsigned long unwritten;
9b7530cc 547
3e4d3af5 548 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
549 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
550 user_data, length);
3e4d3af5 551 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 552 return unwritten;
0839ccb8
KP
553}
554
3de09aa3
EA
555/**
556 * This is the fast pwrite path, where we copy the data directly from the
557 * user into the GTT, uncached.
558 */
673a394b 559static int
05394f39
CW
560i915_gem_gtt_pwrite_fast(struct drm_device *dev,
561 struct drm_i915_gem_object *obj,
3de09aa3 562 struct drm_i915_gem_pwrite *args,
05394f39 563 struct drm_file *file)
673a394b 564{
0839ccb8 565 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 566 ssize_t remain;
0839ccb8 567 loff_t offset, page_base;
673a394b 568 char __user *user_data;
935aaa69
DV
569 int page_offset, page_length, ret;
570
571 ret = i915_gem_object_pin(obj, 0, true);
572 if (ret)
573 goto out;
574
575 ret = i915_gem_object_set_to_gtt_domain(obj, true);
576 if (ret)
577 goto out_unpin;
578
579 ret = i915_gem_object_put_fence(obj);
580 if (ret)
581 goto out_unpin;
673a394b
EA
582
583 user_data = (char __user *) (uintptr_t) args->data_ptr;
584 remain = args->size;
673a394b 585
05394f39 586 offset = obj->gtt_offset + args->offset;
673a394b
EA
587
588 while (remain > 0) {
589 /* Operation in this page
590 *
0839ccb8
KP
591 * page_base = page offset within aperture
592 * page_offset = offset within page
593 * page_length = bytes to copy for this page
673a394b 594 */
c8cbbb8b
CW
595 page_base = offset & PAGE_MASK;
596 page_offset = offset_in_page(offset);
0839ccb8
KP
597 page_length = remain;
598 if ((page_offset + remain) > PAGE_SIZE)
599 page_length = PAGE_SIZE - page_offset;
600
0839ccb8 601 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
602 * source page isn't available. Return the error and we'll
603 * retry in the slow path.
0839ccb8 604 */
fbd5a26d 605 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
606 page_offset, user_data, page_length)) {
607 ret = -EFAULT;
608 goto out_unpin;
609 }
673a394b 610
0839ccb8
KP
611 remain -= page_length;
612 user_data += page_length;
613 offset += page_length;
673a394b 614 }
673a394b 615
935aaa69
DV
616out_unpin:
617 i915_gem_object_unpin(obj);
618out:
3de09aa3 619 return ret;
673a394b
EA
620}
621
d174bd64
DV
622/* Per-page copy function for the shmem pwrite fastpath.
623 * Flushes invalid cachelines before writing to the target if
624 * needs_clflush_before is set and flushes out any written cachelines after
625 * writing if needs_clflush is set. */
3043c60c 626static int
d174bd64
DV
627shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
628 char __user *user_data,
629 bool page_do_bit17_swizzling,
630 bool needs_clflush_before,
631 bool needs_clflush_after)
673a394b 632{
d174bd64 633 char *vaddr;
673a394b 634 int ret;
3de09aa3 635
e7e58eb5 636 if (unlikely(page_do_bit17_swizzling))
d174bd64 637 return -EINVAL;
3de09aa3 638
d174bd64
DV
639 vaddr = kmap_atomic(page);
640 if (needs_clflush_before)
641 drm_clflush_virt_range(vaddr + shmem_page_offset,
642 page_length);
643 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
644 user_data,
645 page_length);
646 if (needs_clflush_after)
647 drm_clflush_virt_range(vaddr + shmem_page_offset,
648 page_length);
649 kunmap_atomic(vaddr);
3de09aa3
EA
650
651 return ret;
652}
653
d174bd64
DV
654/* Only difference to the fast-path function is that this can handle bit17
655 * and uses non-atomic copy and kmap functions. */
3043c60c 656static int
d174bd64
DV
657shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
658 char __user *user_data,
659 bool page_do_bit17_swizzling,
660 bool needs_clflush_before,
661 bool needs_clflush_after)
673a394b 662{
d174bd64
DV
663 char *vaddr;
664 int ret;
e5281ccd 665
d174bd64 666 vaddr = kmap(page);
e7e58eb5 667 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
668 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
669 page_length,
670 page_do_bit17_swizzling);
d174bd64
DV
671 if (page_do_bit17_swizzling)
672 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
673 user_data,
674 page_length);
d174bd64
DV
675 else
676 ret = __copy_from_user(vaddr + shmem_page_offset,
677 user_data,
678 page_length);
679 if (needs_clflush_after)
23c18c71
DV
680 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
681 page_length,
682 page_do_bit17_swizzling);
d174bd64 683 kunmap(page);
40123c1f 684
d174bd64 685 return ret;
40123c1f
EA
686}
687
40123c1f 688static int
e244a443
DV
689i915_gem_shmem_pwrite(struct drm_device *dev,
690 struct drm_i915_gem_object *obj,
691 struct drm_i915_gem_pwrite *args,
692 struct drm_file *file)
40123c1f 693{
05394f39 694 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 695 ssize_t remain;
8c59967c
DV
696 loff_t offset;
697 char __user *user_data;
eb2c0c81 698 int shmem_page_offset, page_length, ret = 0;
8c59967c 699 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 700 int hit_slowpath = 0;
58642885
DV
701 int needs_clflush_after = 0;
702 int needs_clflush_before = 0;
692a576b 703 int release_page;
40123c1f 704
8c59967c 705 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
706 remain = args->size;
707
8c59967c 708 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 709
58642885
DV
710 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
711 /* If we're not in the cpu write domain, set ourself into the gtt
712 * write domain and manually flush cachelines (if required). This
713 * optimizes for the case when the gpu will use the data
714 * right away and we therefore have to clflush anyway. */
715 if (obj->cache_level == I915_CACHE_NONE)
716 needs_clflush_after = 1;
717 ret = i915_gem_object_set_to_gtt_domain(obj, true);
718 if (ret)
719 return ret;
720 }
721 /* Same trick applies for invalidate partially written cachelines before
722 * writing. */
723 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
724 && obj->cache_level == I915_CACHE_NONE)
725 needs_clflush_before = 1;
726
673a394b 727 offset = args->offset;
05394f39 728 obj->dirty = 1;
673a394b 729
40123c1f 730 while (remain > 0) {
e5281ccd 731 struct page *page;
58642885 732 int partial_cacheline_write;
e5281ccd 733
40123c1f
EA
734 /* Operation in this page
735 *
40123c1f 736 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
737 * page_length = bytes to copy for this page
738 */
c8cbbb8b 739 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
740
741 page_length = remain;
742 if ((shmem_page_offset + page_length) > PAGE_SIZE)
743 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 744
58642885
DV
745 /* If we don't overwrite a cacheline completely we need to be
746 * careful to have up-to-date data by first clflushing. Don't
747 * overcomplicate things and flush the entire patch. */
748 partial_cacheline_write = needs_clflush_before &&
749 ((shmem_page_offset | page_length)
750 & (boot_cpu_data.x86_clflush_size - 1));
751
692a576b
DV
752 if (obj->pages) {
753 page = obj->pages[offset >> PAGE_SHIFT];
754 release_page = 0;
755 } else {
756 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
757 if (IS_ERR(page)) {
758 ret = PTR_ERR(page);
759 goto out;
760 }
761 release_page = 1;
e5281ccd
CW
762 }
763
8c59967c
DV
764 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
765 (page_to_phys(page) & (1 << 17)) != 0;
766
d174bd64
DV
767 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
768 user_data, page_do_bit17_swizzling,
769 partial_cacheline_write,
770 needs_clflush_after);
771 if (ret == 0)
772 goto next_page;
e244a443
DV
773
774 hit_slowpath = 1;
692a576b 775 page_cache_get(page);
e244a443
DV
776 mutex_unlock(&dev->struct_mutex);
777
d174bd64
DV
778 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
779 user_data, page_do_bit17_swizzling,
780 partial_cacheline_write,
781 needs_clflush_after);
40123c1f 782
e244a443 783 mutex_lock(&dev->struct_mutex);
692a576b 784 page_cache_release(page);
e244a443 785next_page:
e5281ccd
CW
786 set_page_dirty(page);
787 mark_page_accessed(page);
692a576b
DV
788 if (release_page)
789 page_cache_release(page);
e5281ccd 790
8c59967c
DV
791 if (ret) {
792 ret = -EFAULT;
793 goto out;
794 }
795
40123c1f 796 remain -= page_length;
8c59967c 797 user_data += page_length;
40123c1f 798 offset += page_length;
673a394b
EA
799 }
800
fbd5a26d 801out:
e244a443
DV
802 if (hit_slowpath) {
803 /* Fixup: Kill any reinstated backing storage pages */
804 if (obj->madv == __I915_MADV_PURGED)
805 i915_gem_object_truncate(obj);
806 /* and flush dirty cachelines in case the object isn't in the cpu write
807 * domain anymore. */
808 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
809 i915_gem_clflush_object(obj);
810 intel_gtt_chipset_flush();
811 }
8c59967c 812 }
673a394b 813
58642885
DV
814 if (needs_clflush_after)
815 intel_gtt_chipset_flush();
816
40123c1f 817 return ret;
673a394b
EA
818}
819
820/**
821 * Writes data to the object referenced by handle.
822 *
823 * On error, the contents of the buffer that were to be modified are undefined.
824 */
825int
826i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 827 struct drm_file *file)
673a394b
EA
828{
829 struct drm_i915_gem_pwrite *args = data;
05394f39 830 struct drm_i915_gem_object *obj;
51311d0a
CW
831 int ret;
832
833 if (args->size == 0)
834 return 0;
835
836 if (!access_ok(VERIFY_READ,
837 (char __user *)(uintptr_t)args->data_ptr,
838 args->size))
839 return -EFAULT;
840
f56f821f
DV
841 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
842 args->size);
51311d0a
CW
843 if (ret)
844 return -EFAULT;
673a394b 845
fbd5a26d 846 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 847 if (ret)
fbd5a26d 848 return ret;
1d7cfea1 849
05394f39 850 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 851 if (&obj->base == NULL) {
1d7cfea1
CW
852 ret = -ENOENT;
853 goto unlock;
fbd5a26d 854 }
673a394b 855
7dcd2499 856 /* Bounds check destination. */
05394f39
CW
857 if (args->offset > obj->base.size ||
858 args->size > obj->base.size - args->offset) {
ce9d419d 859 ret = -EINVAL;
35b62a89 860 goto out;
ce9d419d
CW
861 }
862
db53a302
CW
863 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
864
935aaa69 865 ret = -EFAULT;
673a394b
EA
866 /* We can only do the GTT pwrite on untiled buffers, as otherwise
867 * it would end up going through the fenced access, and we'll get
868 * different detiling behavior between reading and writing.
869 * pread/pwrite currently are reading and writing from the CPU
870 * perspective, requiring manual detiling by the client.
871 */
5c0480f2 872 if (obj->phys_obj) {
fbd5a26d 873 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
874 goto out;
875 }
876
877 if (obj->gtt_space &&
3ae53783 878 obj->cache_level == I915_CACHE_NONE &&
c07496fa 879 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 880 obj->map_and_fenceable &&
5c0480f2 881 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 882 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
883 /* Note that the gtt paths might fail with non-page-backed user
884 * pointers (e.g. gtt mappings when moving data between
885 * textures). Fallback to the shmem path in that case. */
fbd5a26d 886 }
673a394b 887
5c0480f2 888 if (ret == -EFAULT)
935aaa69 889 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 890
35b62a89 891out:
05394f39 892 drm_gem_object_unreference(&obj->base);
1d7cfea1 893unlock:
fbd5a26d 894 mutex_unlock(&dev->struct_mutex);
673a394b
EA
895 return ret;
896}
897
898/**
2ef7eeaa
EA
899 * Called when user space prepares to use an object with the CPU, either
900 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
901 */
902int
903i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 904 struct drm_file *file)
673a394b
EA
905{
906 struct drm_i915_gem_set_domain *args = data;
05394f39 907 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
908 uint32_t read_domains = args->read_domains;
909 uint32_t write_domain = args->write_domain;
673a394b
EA
910 int ret;
911
912 if (!(dev->driver->driver_features & DRIVER_GEM))
913 return -ENODEV;
914
2ef7eeaa 915 /* Only handle setting domains to types used by the CPU. */
21d509e3 916 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
917 return -EINVAL;
918
21d509e3 919 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
920 return -EINVAL;
921
922 /* Having something in the write domain implies it's in the read
923 * domain, and only that read domain. Enforce that in the request.
924 */
925 if (write_domain != 0 && read_domains != write_domain)
926 return -EINVAL;
927
76c1dec1 928 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 929 if (ret)
76c1dec1 930 return ret;
1d7cfea1 931
05394f39 932 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 933 if (&obj->base == NULL) {
1d7cfea1
CW
934 ret = -ENOENT;
935 goto unlock;
76c1dec1 936 }
673a394b 937
2ef7eeaa
EA
938 if (read_domains & I915_GEM_DOMAIN_GTT) {
939 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
940
941 /* Silently promote "you're not bound, there was nothing to do"
942 * to success, since the client was just asking us to
943 * make sure everything was done.
944 */
945 if (ret == -EINVAL)
946 ret = 0;
2ef7eeaa 947 } else {
e47c68e9 948 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
949 }
950
05394f39 951 drm_gem_object_unreference(&obj->base);
1d7cfea1 952unlock:
673a394b
EA
953 mutex_unlock(&dev->struct_mutex);
954 return ret;
955}
956
957/**
958 * Called when user space has done writes to this buffer
959 */
960int
961i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 962 struct drm_file *file)
673a394b
EA
963{
964 struct drm_i915_gem_sw_finish *args = data;
05394f39 965 struct drm_i915_gem_object *obj;
673a394b
EA
966 int ret = 0;
967
968 if (!(dev->driver->driver_features & DRIVER_GEM))
969 return -ENODEV;
970
76c1dec1 971 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 972 if (ret)
76c1dec1 973 return ret;
1d7cfea1 974
05394f39 975 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 976 if (&obj->base == NULL) {
1d7cfea1
CW
977 ret = -ENOENT;
978 goto unlock;
673a394b
EA
979 }
980
673a394b 981 /* Pinned buffers may be scanout, so flush the cache */
05394f39 982 if (obj->pin_count)
e47c68e9
EA
983 i915_gem_object_flush_cpu_write_domain(obj);
984
05394f39 985 drm_gem_object_unreference(&obj->base);
1d7cfea1 986unlock:
673a394b
EA
987 mutex_unlock(&dev->struct_mutex);
988 return ret;
989}
990
991/**
992 * Maps the contents of an object, returning the address it is mapped
993 * into.
994 *
995 * While the mapping holds a reference on the contents of the object, it doesn't
996 * imply a ref on the object itself.
997 */
998int
999i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1000 struct drm_file *file)
673a394b
EA
1001{
1002 struct drm_i915_gem_mmap *args = data;
1003 struct drm_gem_object *obj;
673a394b
EA
1004 unsigned long addr;
1005
1006 if (!(dev->driver->driver_features & DRIVER_GEM))
1007 return -ENODEV;
1008
05394f39 1009 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1010 if (obj == NULL)
bf79cb91 1011 return -ENOENT;
673a394b 1012
673a394b
EA
1013 down_write(&current->mm->mmap_sem);
1014 addr = do_mmap(obj->filp, 0, args->size,
1015 PROT_READ | PROT_WRITE, MAP_SHARED,
1016 args->offset);
1017 up_write(&current->mm->mmap_sem);
bc9025bd 1018 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1019 if (IS_ERR((void *)addr))
1020 return addr;
1021
1022 args->addr_ptr = (uint64_t) addr;
1023
1024 return 0;
1025}
1026
de151cf6
JB
1027/**
1028 * i915_gem_fault - fault a page into the GTT
1029 * vma: VMA in question
1030 * vmf: fault info
1031 *
1032 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1033 * from userspace. The fault handler takes care of binding the object to
1034 * the GTT (if needed), allocating and programming a fence register (again,
1035 * only if needed based on whether the old reg is still valid or the object
1036 * is tiled) and inserting a new PTE into the faulting process.
1037 *
1038 * Note that the faulting process may involve evicting existing objects
1039 * from the GTT and/or fence registers to make room. So performance may
1040 * suffer if the GTT working set is large or there are few fence registers
1041 * left.
1042 */
1043int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1044{
05394f39
CW
1045 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1046 struct drm_device *dev = obj->base.dev;
7d1c4804 1047 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1048 pgoff_t page_offset;
1049 unsigned long pfn;
1050 int ret = 0;
0f973f27 1051 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1052
1053 /* We don't use vmf->pgoff since that has the fake offset */
1054 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1055 PAGE_SHIFT;
1056
d9bc7e9f
CW
1057 ret = i915_mutex_lock_interruptible(dev);
1058 if (ret)
1059 goto out;
a00b10c3 1060
db53a302
CW
1061 trace_i915_gem_object_fault(obj, page_offset, true, write);
1062
d9bc7e9f 1063 /* Now bind it into the GTT if needed */
919926ae
CW
1064 if (!obj->map_and_fenceable) {
1065 ret = i915_gem_object_unbind(obj);
1066 if (ret)
1067 goto unlock;
a00b10c3 1068 }
05394f39 1069 if (!obj->gtt_space) {
75e9e915 1070 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1071 if (ret)
1072 goto unlock;
de151cf6 1073
e92d03bf
EA
1074 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1075 if (ret)
1076 goto unlock;
1077 }
4a684a41 1078
74898d7e
DV
1079 if (!obj->has_global_gtt_mapping)
1080 i915_gem_gtt_bind_object(obj, obj->cache_level);
1081
06d98131 1082 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1083 if (ret)
1084 goto unlock;
de151cf6 1085
05394f39
CW
1086 if (i915_gem_object_is_inactive(obj))
1087 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1088
6299f992
CW
1089 obj->fault_mappable = true;
1090
05394f39 1091 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1092 page_offset;
1093
1094 /* Finally, remap it using the new GTT offset */
1095 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1096unlock:
de151cf6 1097 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1098out:
de151cf6 1099 switch (ret) {
d9bc7e9f 1100 case -EIO:
045e769a 1101 case -EAGAIN:
d9bc7e9f
CW
1102 /* Give the error handler a chance to run and move the
1103 * objects off the GPU active list. Next time we service the
1104 * fault, we should be able to transition the page into the
1105 * GTT without touching the GPU (and so avoid further
1106 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1107 * with coherency, just lost writes.
1108 */
045e769a 1109 set_need_resched();
c715089f
CW
1110 case 0:
1111 case -ERESTARTSYS:
bed636ab 1112 case -EINTR:
c715089f 1113 return VM_FAULT_NOPAGE;
de151cf6 1114 case -ENOMEM:
de151cf6 1115 return VM_FAULT_OOM;
de151cf6 1116 default:
c715089f 1117 return VM_FAULT_SIGBUS;
de151cf6
JB
1118 }
1119}
1120
901782b2
CW
1121/**
1122 * i915_gem_release_mmap - remove physical page mappings
1123 * @obj: obj in question
1124 *
af901ca1 1125 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1126 * relinquish ownership of the pages back to the system.
1127 *
1128 * It is vital that we remove the page mapping if we have mapped a tiled
1129 * object through the GTT and then lose the fence register due to
1130 * resource pressure. Similarly if the object has been moved out of the
1131 * aperture, than pages mapped into userspace must be revoked. Removing the
1132 * mapping will then trigger a page fault on the next user access, allowing
1133 * fixup by i915_gem_fault().
1134 */
d05ca301 1135void
05394f39 1136i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1137{
6299f992
CW
1138 if (!obj->fault_mappable)
1139 return;
901782b2 1140
f6e47884
CW
1141 if (obj->base.dev->dev_mapping)
1142 unmap_mapping_range(obj->base.dev->dev_mapping,
1143 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1144 obj->base.size, 1);
fb7d516a 1145
6299f992 1146 obj->fault_mappable = false;
901782b2
CW
1147}
1148
92b88aeb 1149static uint32_t
e28f8711 1150i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1151{
e28f8711 1152 uint32_t gtt_size;
92b88aeb
CW
1153
1154 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1155 tiling_mode == I915_TILING_NONE)
1156 return size;
92b88aeb
CW
1157
1158 /* Previous chips need a power-of-two fence region when tiling */
1159 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1160 gtt_size = 1024*1024;
92b88aeb 1161 else
e28f8711 1162 gtt_size = 512*1024;
92b88aeb 1163
e28f8711
CW
1164 while (gtt_size < size)
1165 gtt_size <<= 1;
92b88aeb 1166
e28f8711 1167 return gtt_size;
92b88aeb
CW
1168}
1169
de151cf6
JB
1170/**
1171 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1172 * @obj: object to check
1173 *
1174 * Return the required GTT alignment for an object, taking into account
5e783301 1175 * potential fence register mapping.
de151cf6
JB
1176 */
1177static uint32_t
e28f8711
CW
1178i915_gem_get_gtt_alignment(struct drm_device *dev,
1179 uint32_t size,
1180 int tiling_mode)
de151cf6 1181{
de151cf6
JB
1182 /*
1183 * Minimum alignment is 4k (GTT page size), but might be greater
1184 * if a fence register is needed for the object.
1185 */
a00b10c3 1186 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1187 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1188 return 4096;
1189
a00b10c3
CW
1190 /*
1191 * Previous chips need to be aligned to the size of the smallest
1192 * fence register that can contain the object.
1193 */
e28f8711 1194 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1195}
1196
5e783301
DV
1197/**
1198 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1199 * unfenced object
e28f8711
CW
1200 * @dev: the device
1201 * @size: size of the object
1202 * @tiling_mode: tiling mode of the object
5e783301
DV
1203 *
1204 * Return the required GTT alignment for an object, only taking into account
1205 * unfenced tiled surface requirements.
1206 */
467cffba 1207uint32_t
e28f8711
CW
1208i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1209 uint32_t size,
1210 int tiling_mode)
5e783301 1211{
5e783301
DV
1212 /*
1213 * Minimum alignment is 4k (GTT page size) for sane hw.
1214 */
1215 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1216 tiling_mode == I915_TILING_NONE)
5e783301
DV
1217 return 4096;
1218
e28f8711
CW
1219 /* Previous hardware however needs to be aligned to a power-of-two
1220 * tile height. The simplest method for determining this is to reuse
1221 * the power-of-tile object size.
5e783301 1222 */
e28f8711 1223 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1224}
1225
de151cf6 1226int
ff72145b
DA
1227i915_gem_mmap_gtt(struct drm_file *file,
1228 struct drm_device *dev,
1229 uint32_t handle,
1230 uint64_t *offset)
de151cf6 1231{
da761a6e 1232 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1233 struct drm_i915_gem_object *obj;
de151cf6
JB
1234 int ret;
1235
1236 if (!(dev->driver->driver_features & DRIVER_GEM))
1237 return -ENODEV;
1238
76c1dec1 1239 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1240 if (ret)
76c1dec1 1241 return ret;
de151cf6 1242
ff72145b 1243 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1244 if (&obj->base == NULL) {
1d7cfea1
CW
1245 ret = -ENOENT;
1246 goto unlock;
1247 }
de151cf6 1248
05394f39 1249 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1250 ret = -E2BIG;
ff56b0bc 1251 goto out;
da761a6e
CW
1252 }
1253
05394f39 1254 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1255 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1256 ret = -EINVAL;
1257 goto out;
ab18282d
CW
1258 }
1259
05394f39 1260 if (!obj->base.map_list.map) {
b464e9a2 1261 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1262 if (ret)
1263 goto out;
de151cf6
JB
1264 }
1265
ff72145b 1266 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1267
1d7cfea1 1268out:
05394f39 1269 drm_gem_object_unreference(&obj->base);
1d7cfea1 1270unlock:
de151cf6 1271 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1272 return ret;
de151cf6
JB
1273}
1274
ff72145b
DA
1275/**
1276 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1277 * @dev: DRM device
1278 * @data: GTT mapping ioctl data
1279 * @file: GEM object info
1280 *
1281 * Simply returns the fake offset to userspace so it can mmap it.
1282 * The mmap call will end up in drm_gem_mmap(), which will set things
1283 * up so we can get faults in the handler above.
1284 *
1285 * The fault handler will take care of binding the object into the GTT
1286 * (since it may have been evicted to make room for something), allocating
1287 * a fence register, and mapping the appropriate aperture address into
1288 * userspace.
1289 */
1290int
1291i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1292 struct drm_file *file)
1293{
1294 struct drm_i915_gem_mmap_gtt *args = data;
1295
1296 if (!(dev->driver->driver_features & DRIVER_GEM))
1297 return -ENODEV;
1298
1299 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1300}
1301
1302
e5281ccd 1303static int
05394f39 1304i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1305 gfp_t gfpmask)
1306{
e5281ccd
CW
1307 int page_count, i;
1308 struct address_space *mapping;
1309 struct inode *inode;
1310 struct page *page;
1311
1312 /* Get the list of pages out of our struct file. They'll be pinned
1313 * at this point until we release them.
1314 */
05394f39
CW
1315 page_count = obj->base.size / PAGE_SIZE;
1316 BUG_ON(obj->pages != NULL);
1317 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1318 if (obj->pages == NULL)
e5281ccd
CW
1319 return -ENOMEM;
1320
05394f39 1321 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1322 mapping = inode->i_mapping;
5949eac4
HD
1323 gfpmask |= mapping_gfp_mask(mapping);
1324
e5281ccd 1325 for (i = 0; i < page_count; i++) {
5949eac4 1326 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1327 if (IS_ERR(page))
1328 goto err_pages;
1329
05394f39 1330 obj->pages[i] = page;
e5281ccd
CW
1331 }
1332
6dacfd2f 1333 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1334 i915_gem_object_do_bit_17_swizzle(obj);
1335
1336 return 0;
1337
1338err_pages:
1339 while (i--)
05394f39 1340 page_cache_release(obj->pages[i]);
e5281ccd 1341
05394f39
CW
1342 drm_free_large(obj->pages);
1343 obj->pages = NULL;
e5281ccd
CW
1344 return PTR_ERR(page);
1345}
1346
5cdf5881 1347static void
05394f39 1348i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1349{
05394f39 1350 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1351 int i;
1352
05394f39 1353 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1354
6dacfd2f 1355 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1356 i915_gem_object_save_bit_17_swizzle(obj);
1357
05394f39
CW
1358 if (obj->madv == I915_MADV_DONTNEED)
1359 obj->dirty = 0;
3ef94daa
CW
1360
1361 for (i = 0; i < page_count; i++) {
05394f39
CW
1362 if (obj->dirty)
1363 set_page_dirty(obj->pages[i]);
3ef94daa 1364
05394f39
CW
1365 if (obj->madv == I915_MADV_WILLNEED)
1366 mark_page_accessed(obj->pages[i]);
3ef94daa 1367
05394f39 1368 page_cache_release(obj->pages[i]);
3ef94daa 1369 }
05394f39 1370 obj->dirty = 0;
673a394b 1371
05394f39
CW
1372 drm_free_large(obj->pages);
1373 obj->pages = NULL;
673a394b
EA
1374}
1375
54cf91dc 1376void
05394f39 1377i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1378 struct intel_ring_buffer *ring,
1379 u32 seqno)
673a394b 1380{
05394f39 1381 struct drm_device *dev = obj->base.dev;
69dc4987 1382 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1383
852835f3 1384 BUG_ON(ring == NULL);
05394f39 1385 obj->ring = ring;
673a394b
EA
1386
1387 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1388 if (!obj->active) {
1389 drm_gem_object_reference(&obj->base);
1390 obj->active = 1;
673a394b 1391 }
e35a41de 1392
673a394b 1393 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1394 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1395 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1396
05394f39 1397 obj->last_rendering_seqno = seqno;
caea7476 1398
7dd49065 1399 if (obj->fenced_gpu_access) {
caea7476 1400 obj->last_fenced_seqno = seqno;
caea7476 1401
7dd49065
CW
1402 /* Bump MRU to take account of the delayed flush */
1403 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1404 struct drm_i915_fence_reg *reg;
1405
1406 reg = &dev_priv->fence_regs[obj->fence_reg];
1407 list_move_tail(&reg->lru_list,
1408 &dev_priv->mm.fence_list);
1409 }
caea7476
CW
1410 }
1411}
1412
1413static void
1414i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1415{
1416 list_del_init(&obj->ring_list);
1417 obj->last_rendering_seqno = 0;
15a13bbd 1418 obj->last_fenced_seqno = 0;
673a394b
EA
1419}
1420
ce44b0ea 1421static void
05394f39 1422i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1423{
05394f39 1424 struct drm_device *dev = obj->base.dev;
ce44b0ea 1425 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1426
05394f39
CW
1427 BUG_ON(!obj->active);
1428 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1429
1430 i915_gem_object_move_off_active(obj);
1431}
1432
1433static void
1434i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1435{
1436 struct drm_device *dev = obj->base.dev;
1437 struct drm_i915_private *dev_priv = dev->dev_private;
1438
1439 if (obj->pin_count != 0)
1440 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1441 else
1442 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1443
1444 BUG_ON(!list_empty(&obj->gpu_write_list));
1445 BUG_ON(!obj->active);
1446 obj->ring = NULL;
1447
1448 i915_gem_object_move_off_active(obj);
1449 obj->fenced_gpu_access = false;
caea7476
CW
1450
1451 obj->active = 0;
87ca9c8a 1452 obj->pending_gpu_write = false;
caea7476
CW
1453 drm_gem_object_unreference(&obj->base);
1454
1455 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1456}
673a394b 1457
963b4836
CW
1458/* Immediately discard the backing storage */
1459static void
05394f39 1460i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1461{
bb6baf76 1462 struct inode *inode;
963b4836 1463
ae9fed6b
CW
1464 /* Our goal here is to return as much of the memory as
1465 * is possible back to the system as we are called from OOM.
1466 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1467 * backing pages, *now*.
ae9fed6b 1468 */
05394f39 1469 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1470 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1471
a14917ee
CW
1472 if (obj->base.map_list.map)
1473 drm_gem_free_mmap_offset(&obj->base);
1474
05394f39 1475 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1476}
1477
1478static inline int
05394f39 1479i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1480{
05394f39 1481 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1482}
1483
63560396 1484static void
db53a302
CW
1485i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1486 uint32_t flush_domains)
63560396 1487{
05394f39 1488 struct drm_i915_gem_object *obj, *next;
63560396 1489
05394f39 1490 list_for_each_entry_safe(obj, next,
64193406 1491 &ring->gpu_write_list,
63560396 1492 gpu_write_list) {
05394f39
CW
1493 if (obj->base.write_domain & flush_domains) {
1494 uint32_t old_write_domain = obj->base.write_domain;
63560396 1495
05394f39
CW
1496 obj->base.write_domain = 0;
1497 list_del_init(&obj->gpu_write_list);
1ec14ad3 1498 i915_gem_object_move_to_active(obj, ring,
db53a302 1499 i915_gem_next_request_seqno(ring));
63560396 1500
63560396 1501 trace_i915_gem_object_change_domain(obj,
05394f39 1502 obj->base.read_domains,
63560396
DV
1503 old_write_domain);
1504 }
1505 }
1506}
8187a2b7 1507
53d227f2
DV
1508static u32
1509i915_gem_get_seqno(struct drm_device *dev)
1510{
1511 drm_i915_private_t *dev_priv = dev->dev_private;
1512 u32 seqno = dev_priv->next_seqno;
1513
1514 /* reserve 0 for non-seqno */
1515 if (++dev_priv->next_seqno == 0)
1516 dev_priv->next_seqno = 1;
1517
1518 return seqno;
1519}
1520
1521u32
1522i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1523{
1524 if (ring->outstanding_lazy_request == 0)
1525 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1526
1527 return ring->outstanding_lazy_request;
1528}
1529
3cce469c 1530int
db53a302 1531i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1532 struct drm_file *file,
db53a302 1533 struct drm_i915_gem_request *request)
673a394b 1534{
db53a302 1535 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1536 uint32_t seqno;
a71d8d94 1537 u32 request_ring_position;
673a394b 1538 int was_empty;
3cce469c
CW
1539 int ret;
1540
1541 BUG_ON(request == NULL);
53d227f2 1542 seqno = i915_gem_next_request_seqno(ring);
673a394b 1543
a71d8d94
CW
1544 /* Record the position of the start of the request so that
1545 * should we detect the updated seqno part-way through the
1546 * GPU processing the request, we never over-estimate the
1547 * position of the head.
1548 */
1549 request_ring_position = intel_ring_get_tail(ring);
1550
3cce469c
CW
1551 ret = ring->add_request(ring, &seqno);
1552 if (ret)
1553 return ret;
673a394b 1554
db53a302 1555 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1556
1557 request->seqno = seqno;
852835f3 1558 request->ring = ring;
a71d8d94 1559 request->tail = request_ring_position;
673a394b 1560 request->emitted_jiffies = jiffies;
852835f3
ZN
1561 was_empty = list_empty(&ring->request_list);
1562 list_add_tail(&request->list, &ring->request_list);
1563
db53a302
CW
1564 if (file) {
1565 struct drm_i915_file_private *file_priv = file->driver_priv;
1566
1c25595f 1567 spin_lock(&file_priv->mm.lock);
f787a5f5 1568 request->file_priv = file_priv;
b962442e 1569 list_add_tail(&request->client_list,
f787a5f5 1570 &file_priv->mm.request_list);
1c25595f 1571 spin_unlock(&file_priv->mm.lock);
b962442e 1572 }
673a394b 1573
5391d0cf 1574 ring->outstanding_lazy_request = 0;
db53a302 1575
f65d9421 1576 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1577 if (i915_enable_hangcheck) {
1578 mod_timer(&dev_priv->hangcheck_timer,
1579 jiffies +
1580 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1581 }
f65d9421 1582 if (was_empty)
b3b079db
CW
1583 queue_delayed_work(dev_priv->wq,
1584 &dev_priv->mm.retire_work, HZ);
f65d9421 1585 }
3cce469c 1586 return 0;
673a394b
EA
1587}
1588
f787a5f5
CW
1589static inline void
1590i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1591{
1c25595f 1592 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1593
1c25595f
CW
1594 if (!file_priv)
1595 return;
1c5d22f7 1596
1c25595f 1597 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1598 if (request->file_priv) {
1599 list_del(&request->client_list);
1600 request->file_priv = NULL;
1601 }
1c25595f 1602 spin_unlock(&file_priv->mm.lock);
673a394b 1603}
673a394b 1604
dfaae392
CW
1605static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1606 struct intel_ring_buffer *ring)
9375e446 1607{
dfaae392
CW
1608 while (!list_empty(&ring->request_list)) {
1609 struct drm_i915_gem_request *request;
673a394b 1610
dfaae392
CW
1611 request = list_first_entry(&ring->request_list,
1612 struct drm_i915_gem_request,
1613 list);
de151cf6 1614
dfaae392 1615 list_del(&request->list);
f787a5f5 1616 i915_gem_request_remove_from_client(request);
dfaae392
CW
1617 kfree(request);
1618 }
673a394b 1619
dfaae392 1620 while (!list_empty(&ring->active_list)) {
05394f39 1621 struct drm_i915_gem_object *obj;
9375e446 1622
05394f39
CW
1623 obj = list_first_entry(&ring->active_list,
1624 struct drm_i915_gem_object,
1625 ring_list);
9375e446 1626
05394f39
CW
1627 obj->base.write_domain = 0;
1628 list_del_init(&obj->gpu_write_list);
1629 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1630 }
1631}
1632
312817a3
CW
1633static void i915_gem_reset_fences(struct drm_device *dev)
1634{
1635 struct drm_i915_private *dev_priv = dev->dev_private;
1636 int i;
1637
4b9de737 1638 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1639 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1640 struct drm_i915_gem_object *obj = reg->obj;
1641
1642 if (!obj)
1643 continue;
1644
1645 if (obj->tiling_mode)
1646 i915_gem_release_mmap(obj);
1647
d9e86c0e
CW
1648 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1649 reg->obj->fenced_gpu_access = false;
1650 reg->obj->last_fenced_seqno = 0;
d9e86c0e 1651 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1652 }
1653}
1654
069efc1d 1655void i915_gem_reset(struct drm_device *dev)
673a394b 1656{
77f01230 1657 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1658 struct drm_i915_gem_object *obj;
1ec14ad3 1659 int i;
673a394b 1660
1ec14ad3
CW
1661 for (i = 0; i < I915_NUM_RINGS; i++)
1662 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1663
1664 /* Remove anything from the flushing lists. The GPU cache is likely
1665 * to be lost on reset along with the data, so simply move the
1666 * lost bo to the inactive list.
1667 */
1668 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1669 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1670 struct drm_i915_gem_object,
1671 mm_list);
dfaae392 1672
05394f39
CW
1673 obj->base.write_domain = 0;
1674 list_del_init(&obj->gpu_write_list);
1675 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1676 }
1677
1678 /* Move everything out of the GPU domains to ensure we do any
1679 * necessary invalidation upon reuse.
1680 */
05394f39 1681 list_for_each_entry(obj,
77f01230 1682 &dev_priv->mm.inactive_list,
69dc4987 1683 mm_list)
77f01230 1684 {
05394f39 1685 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1686 }
069efc1d
CW
1687
1688 /* The fence registers are invalidated so clear them out */
312817a3 1689 i915_gem_reset_fences(dev);
673a394b
EA
1690}
1691
1692/**
1693 * This function clears the request list as sequence numbers are passed.
1694 */
a71d8d94 1695void
db53a302 1696i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1697{
673a394b 1698 uint32_t seqno;
1ec14ad3 1699 int i;
673a394b 1700
db53a302 1701 if (list_empty(&ring->request_list))
6c0594a3
KW
1702 return;
1703
db53a302 1704 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1705
78501eac 1706 seqno = ring->get_seqno(ring);
1ec14ad3 1707
076e2c0e 1708 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1709 if (seqno >= ring->sync_seqno[i])
1710 ring->sync_seqno[i] = 0;
1711
852835f3 1712 while (!list_empty(&ring->request_list)) {
673a394b 1713 struct drm_i915_gem_request *request;
673a394b 1714
852835f3 1715 request = list_first_entry(&ring->request_list,
673a394b
EA
1716 struct drm_i915_gem_request,
1717 list);
673a394b 1718
dfaae392 1719 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1720 break;
1721
db53a302 1722 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1723 /* We know the GPU must have read the request to have
1724 * sent us the seqno + interrupt, so use the position
1725 * of tail of the request to update the last known position
1726 * of the GPU head.
1727 */
1728 ring->last_retired_head = request->tail;
b84d5f0c
CW
1729
1730 list_del(&request->list);
f787a5f5 1731 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1732 kfree(request);
1733 }
673a394b 1734
b84d5f0c
CW
1735 /* Move any buffers on the active list that are no longer referenced
1736 * by the ringbuffer to the flushing/inactive lists as appropriate.
1737 */
1738 while (!list_empty(&ring->active_list)) {
05394f39 1739 struct drm_i915_gem_object *obj;
b84d5f0c 1740
0206e353 1741 obj = list_first_entry(&ring->active_list,
05394f39
CW
1742 struct drm_i915_gem_object,
1743 ring_list);
673a394b 1744
05394f39 1745 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1746 break;
b84d5f0c 1747
05394f39 1748 if (obj->base.write_domain != 0)
b84d5f0c
CW
1749 i915_gem_object_move_to_flushing(obj);
1750 else
1751 i915_gem_object_move_to_inactive(obj);
673a394b 1752 }
9d34e5db 1753
db53a302
CW
1754 if (unlikely(ring->trace_irq_seqno &&
1755 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1756 ring->irq_put(ring);
db53a302 1757 ring->trace_irq_seqno = 0;
9d34e5db 1758 }
23bc5982 1759
db53a302 1760 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1761}
1762
b09a1fec
CW
1763void
1764i915_gem_retire_requests(struct drm_device *dev)
1765{
1766 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1767 int i;
b09a1fec 1768
be72615b 1769 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1770 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1771
1772 /* We must be careful that during unbind() we do not
1773 * accidentally infinitely recurse into retire requests.
1774 * Currently:
1775 * retire -> free -> unbind -> wait -> retire_ring
1776 */
05394f39 1777 list_for_each_entry_safe(obj, next,
be72615b 1778 &dev_priv->mm.deferred_free_list,
69dc4987 1779 mm_list)
05394f39 1780 i915_gem_free_object_tail(obj);
be72615b
CW
1781 }
1782
1ec14ad3 1783 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1784 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1785}
1786
75ef9da2 1787static void
673a394b
EA
1788i915_gem_retire_work_handler(struct work_struct *work)
1789{
1790 drm_i915_private_t *dev_priv;
1791 struct drm_device *dev;
0a58705b
CW
1792 bool idle;
1793 int i;
673a394b
EA
1794
1795 dev_priv = container_of(work, drm_i915_private_t,
1796 mm.retire_work.work);
1797 dev = dev_priv->dev;
1798
891b48cf
CW
1799 /* Come back later if the device is busy... */
1800 if (!mutex_trylock(&dev->struct_mutex)) {
1801 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1802 return;
1803 }
1804
b09a1fec 1805 i915_gem_retire_requests(dev);
d1b851fc 1806
0a58705b
CW
1807 /* Send a periodic flush down the ring so we don't hold onto GEM
1808 * objects indefinitely.
1809 */
1810 idle = true;
1811 for (i = 0; i < I915_NUM_RINGS; i++) {
1812 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1813
1814 if (!list_empty(&ring->gpu_write_list)) {
1815 struct drm_i915_gem_request *request;
1816 int ret;
1817
db53a302
CW
1818 ret = i915_gem_flush_ring(ring,
1819 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1820 request = kzalloc(sizeof(*request), GFP_KERNEL);
1821 if (ret || request == NULL ||
db53a302 1822 i915_add_request(ring, NULL, request))
0a58705b
CW
1823 kfree(request);
1824 }
1825
1826 idle &= list_empty(&ring->request_list);
1827 }
1828
1829 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1830 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1831
673a394b
EA
1832 mutex_unlock(&dev->struct_mutex);
1833}
1834
db53a302
CW
1835/**
1836 * Waits for a sequence number to be signaled, and cleans up the
1837 * request and object lists appropriately for that event.
1838 */
5a5a0c64 1839int
db53a302 1840i915_wait_request(struct intel_ring_buffer *ring,
b93f9cf1
BW
1841 uint32_t seqno,
1842 bool do_retire)
673a394b 1843{
db53a302 1844 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1845 u32 ier;
673a394b
EA
1846 int ret = 0;
1847
1848 BUG_ON(seqno == 0);
1849
d9bc7e9f
CW
1850 if (atomic_read(&dev_priv->mm.wedged)) {
1851 struct completion *x = &dev_priv->error_completion;
1852 bool recovery_complete;
1853 unsigned long flags;
1854
1855 /* Give the error handler a chance to run. */
1856 spin_lock_irqsave(&x->wait.lock, flags);
1857 recovery_complete = x->done > 0;
1858 spin_unlock_irqrestore(&x->wait.lock, flags);
1859
1860 return recovery_complete ? -EIO : -EAGAIN;
1861 }
30dbf0c0 1862
5d97eb69 1863 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1864 struct drm_i915_gem_request *request;
1865
1866 request = kzalloc(sizeof(*request), GFP_KERNEL);
1867 if (request == NULL)
e35a41de 1868 return -ENOMEM;
3cce469c 1869
db53a302 1870 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
1871 if (ret) {
1872 kfree(request);
1873 return ret;
1874 }
1875
1876 seqno = request->seqno;
e35a41de 1877 }
ffed1d09 1878
78501eac 1879 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 1880 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d 1881 ier = I915_READ(DEIER) | I915_READ(GTIER);
23e3f9b3
JB
1882 else if (IS_VALLEYVIEW(ring->dev))
1883 ier = I915_READ(GTIER) | I915_READ(VLV_IER);
036a4a7d
ZW
1884 else
1885 ier = I915_READ(IER);
802c7eb6
JB
1886 if (!ier) {
1887 DRM_ERROR("something (likely vbetool) disabled "
1888 "interrupts, re-enabling\n");
f01c22fd
CW
1889 ring->dev->driver->irq_preinstall(ring->dev);
1890 ring->dev->driver->irq_postinstall(ring->dev);
802c7eb6
JB
1891 }
1892
db53a302 1893 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 1894
b2223497 1895 ring->waiting_seqno = seqno;
b13c2b96 1896 if (ring->irq_get(ring)) {
ce453d81 1897 if (dev_priv->mm.interruptible)
b13c2b96
CW
1898 ret = wait_event_interruptible(ring->irq_queue,
1899 i915_seqno_passed(ring->get_seqno(ring), seqno)
1900 || atomic_read(&dev_priv->mm.wedged));
1901 else
1902 wait_event(ring->irq_queue,
1903 i915_seqno_passed(ring->get_seqno(ring), seqno)
1904 || atomic_read(&dev_priv->mm.wedged));
1905
1906 ring->irq_put(ring);
e959b5db
EA
1907 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1908 seqno) ||
1909 atomic_read(&dev_priv->mm.wedged), 3000))
b5ba177d 1910 ret = -EBUSY;
b2223497 1911 ring->waiting_seqno = 0;
1c5d22f7 1912
db53a302 1913 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 1914 }
ba1234d1 1915 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1916 ret = -EAGAIN;
673a394b 1917
673a394b
EA
1918 /* Directly dispatch request retiring. While we have the work queue
1919 * to handle this, the waiter on a request often wants an associated
1920 * buffer to have made it to the inactive list, and we would need
1921 * a separate wait queue to handle that.
1922 */
b93f9cf1 1923 if (ret == 0 && do_retire)
db53a302 1924 i915_gem_retire_requests_ring(ring);
673a394b
EA
1925
1926 return ret;
1927}
1928
673a394b
EA
1929/**
1930 * Ensures that all rendering to the object has completed and the object is
1931 * safe to unbind from the GTT or access from the CPU.
1932 */
54cf91dc 1933int
ce453d81 1934i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 1935{
673a394b
EA
1936 int ret;
1937
e47c68e9
EA
1938 /* This function only exists to support waiting for existing rendering,
1939 * not for emitting required flushes.
673a394b 1940 */
05394f39 1941 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1942
1943 /* If there is rendering queued on the buffer being evicted, wait for
1944 * it.
1945 */
05394f39 1946 if (obj->active) {
b93f9cf1
BW
1947 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
1948 true);
2cf34d7b 1949 if (ret)
673a394b
EA
1950 return ret;
1951 }
1952
1953 return 0;
1954}
1955
5816d648
BW
1956/**
1957 * i915_gem_object_sync - sync an object to a ring.
1958 *
1959 * @obj: object which may be in use on another ring.
1960 * @to: ring we wish to use the object on. May be NULL.
1961 *
1962 * This code is meant to abstract object synchronization with the GPU.
1963 * Calling with NULL implies synchronizing the object with the CPU
1964 * rather than a particular GPU ring.
1965 *
1966 * Returns 0 if successful, else propagates up the lower layer error.
1967 */
2911a35b
BW
1968int
1969i915_gem_object_sync(struct drm_i915_gem_object *obj,
1970 struct intel_ring_buffer *to)
1971{
1972 struct intel_ring_buffer *from = obj->ring;
1973 u32 seqno;
1974 int ret, idx;
1975
1976 if (from == NULL || to == from)
1977 return 0;
1978
5816d648 1979 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2911a35b
BW
1980 return i915_gem_object_wait_rendering(obj);
1981
1982 idx = intel_ring_sync_index(from, to);
1983
1984 seqno = obj->last_rendering_seqno;
1985 if (seqno <= from->sync_seqno[idx])
1986 return 0;
1987
1988 if (seqno == from->outstanding_lazy_request) {
1989 struct drm_i915_gem_request *request;
1990
1991 request = kzalloc(sizeof(*request), GFP_KERNEL);
1992 if (request == NULL)
1993 return -ENOMEM;
1994
1995 ret = i915_add_request(from, NULL, request);
1996 if (ret) {
1997 kfree(request);
1998 return ret;
1999 }
2000
2001 seqno = request->seqno;
2002 }
2003
2911a35b 2004
1500f7ea 2005 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2006 if (!ret)
2007 from->sync_seqno[idx] = seqno;
2911a35b 2008
e3a5a225 2009 return ret;
2911a35b
BW
2010}
2011
b5ffc9bc
CW
2012static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2013{
2014 u32 old_write_domain, old_read_domains;
2015
b5ffc9bc
CW
2016 /* Act a barrier for all accesses through the GTT */
2017 mb();
2018
2019 /* Force a pagefault for domain tracking on next user access */
2020 i915_gem_release_mmap(obj);
2021
b97c3d9c
KP
2022 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2023 return;
2024
b5ffc9bc
CW
2025 old_read_domains = obj->base.read_domains;
2026 old_write_domain = obj->base.write_domain;
2027
2028 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2029 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2030
2031 trace_i915_gem_object_change_domain(obj,
2032 old_read_domains,
2033 old_write_domain);
2034}
2035
673a394b
EA
2036/**
2037 * Unbinds an object from the GTT aperture.
2038 */
0f973f27 2039int
05394f39 2040i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2041{
7bddb01f 2042 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2043 int ret = 0;
2044
05394f39 2045 if (obj->gtt_space == NULL)
673a394b
EA
2046 return 0;
2047
05394f39 2048 if (obj->pin_count != 0) {
673a394b
EA
2049 DRM_ERROR("Attempting to unbind pinned buffer\n");
2050 return -EINVAL;
2051 }
2052
a8198eea
CW
2053 ret = i915_gem_object_finish_gpu(obj);
2054 if (ret == -ERESTARTSYS)
2055 return ret;
2056 /* Continue on if we fail due to EIO, the GPU is hung so we
2057 * should be safe and we need to cleanup or else we might
2058 * cause memory corruption through use-after-free.
2059 */
2060
b5ffc9bc 2061 i915_gem_object_finish_gtt(obj);
5323fd04 2062
673a394b
EA
2063 /* Move the object to the CPU domain to ensure that
2064 * any possible CPU writes while it's not in the GTT
a8198eea 2065 * are flushed when we go to remap it.
673a394b 2066 */
a8198eea
CW
2067 if (ret == 0)
2068 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2069 if (ret == -ERESTARTSYS)
673a394b 2070 return ret;
812ed492 2071 if (ret) {
a8198eea
CW
2072 /* In the event of a disaster, abandon all caches and
2073 * hope for the best.
2074 */
812ed492 2075 i915_gem_clflush_object(obj);
05394f39 2076 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2077 }
673a394b 2078
96b47b65 2079 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2080 ret = i915_gem_object_put_fence(obj);
2081 if (ret == -ERESTARTSYS)
2082 return ret;
96b47b65 2083
db53a302
CW
2084 trace_i915_gem_object_unbind(obj);
2085
74898d7e
DV
2086 if (obj->has_global_gtt_mapping)
2087 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2088 if (obj->has_aliasing_ppgtt_mapping) {
2089 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2090 obj->has_aliasing_ppgtt_mapping = 0;
2091 }
74163907 2092 i915_gem_gtt_finish_object(obj);
7bddb01f 2093
e5281ccd 2094 i915_gem_object_put_pages_gtt(obj);
673a394b 2095
6299f992 2096 list_del_init(&obj->gtt_list);
05394f39 2097 list_del_init(&obj->mm_list);
75e9e915 2098 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2099 obj->map_and_fenceable = true;
673a394b 2100
05394f39
CW
2101 drm_mm_put_block(obj->gtt_space);
2102 obj->gtt_space = NULL;
2103 obj->gtt_offset = 0;
673a394b 2104
05394f39 2105 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2106 i915_gem_object_truncate(obj);
2107
8dc1775d 2108 return ret;
673a394b
EA
2109}
2110
88241785 2111int
db53a302 2112i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2113 uint32_t invalidate_domains,
2114 uint32_t flush_domains)
2115{
88241785
CW
2116 int ret;
2117
36d527de
CW
2118 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2119 return 0;
2120
db53a302
CW
2121 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2122
88241785
CW
2123 ret = ring->flush(ring, invalidate_domains, flush_domains);
2124 if (ret)
2125 return ret;
2126
36d527de
CW
2127 if (flush_domains & I915_GEM_GPU_DOMAINS)
2128 i915_gem_process_flushing_list(ring, flush_domains);
2129
88241785 2130 return 0;
54cf91dc
CW
2131}
2132
b93f9cf1 2133static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
a56ba56c 2134{
88241785
CW
2135 int ret;
2136
395b70be 2137 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2138 return 0;
2139
88241785 2140 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2141 ret = i915_gem_flush_ring(ring,
0ac74c6b 2142 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2143 if (ret)
2144 return ret;
2145 }
2146
b93f9cf1
BW
2147 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2148 do_retire);
a56ba56c
CW
2149}
2150
b93f9cf1 2151int i915_gpu_idle(struct drm_device *dev, bool do_retire)
4df2faf4
DV
2152{
2153 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 2154 int ret, i;
4df2faf4 2155
4df2faf4 2156 /* Flush everything onto the inactive list. */
1ec14ad3 2157 for (i = 0; i < I915_NUM_RINGS; i++) {
b93f9cf1 2158 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
1ec14ad3
CW
2159 if (ret)
2160 return ret;
2161 }
4df2faf4 2162
8a1a49f9 2163 return 0;
4df2faf4
DV
2164}
2165
a360bb1a 2166static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj)
4e901fdc 2167{
05394f39 2168 struct drm_device *dev = obj->base.dev;
4e901fdc 2169 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2170 u32 size = obj->gtt_space->size;
2171 int regnum = obj->fence_reg;
4e901fdc
EA
2172 uint64_t val;
2173
05394f39 2174 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2175 0xfffff000) << 32;
05394f39
CW
2176 val |= obj->gtt_offset & 0xfffff000;
2177 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2178 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2179
05394f39 2180 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2181 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2182 val |= I965_FENCE_REG_VALID;
2183
a360bb1a 2184 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
c6642782
DV
2185
2186 return 0;
4e901fdc
EA
2187}
2188
a360bb1a 2189static int i965_write_fence_reg(struct drm_i915_gem_object *obj)
de151cf6 2190{
05394f39 2191 struct drm_device *dev = obj->base.dev;
de151cf6 2192 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2193 u32 size = obj->gtt_space->size;
2194 int regnum = obj->fence_reg;
de151cf6
JB
2195 uint64_t val;
2196
05394f39 2197 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2198 0xfffff000) << 32;
05394f39
CW
2199 val |= obj->gtt_offset & 0xfffff000;
2200 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2201 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2202 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2203 val |= I965_FENCE_REG_VALID;
2204
a360bb1a 2205 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
c6642782
DV
2206
2207 return 0;
de151cf6
JB
2208}
2209
a360bb1a 2210static int i915_write_fence_reg(struct drm_i915_gem_object *obj)
de151cf6 2211{
05394f39 2212 struct drm_device *dev = obj->base.dev;
de151cf6 2213 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2214 u32 size = obj->gtt_space->size;
c6642782 2215 u32 fence_reg, val, pitch_val;
0f973f27 2216 int tile_width;
de151cf6 2217
c6642782
DV
2218 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2219 (size & -size) != size ||
2220 (obj->gtt_offset & (size - 1)),
2221 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2222 obj->gtt_offset, obj->map_and_fenceable, size))
2223 return -EINVAL;
de151cf6 2224
c6642782 2225 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2226 tile_width = 128;
de151cf6 2227 else
0f973f27
JB
2228 tile_width = 512;
2229
2230 /* Note: pitch better be a power of two tile widths */
05394f39 2231 pitch_val = obj->stride / tile_width;
0f973f27 2232 pitch_val = ffs(pitch_val) - 1;
de151cf6 2233
05394f39
CW
2234 val = obj->gtt_offset;
2235 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2236 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2237 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2238 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2239 val |= I830_FENCE_REG_VALID;
2240
05394f39 2241 fence_reg = obj->fence_reg;
a00b10c3
CW
2242 if (fence_reg < 8)
2243 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2244 else
a00b10c3 2245 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782 2246
a360bb1a 2247 I915_WRITE(fence_reg, val);
c6642782
DV
2248
2249 return 0;
de151cf6
JB
2250}
2251
a360bb1a 2252static int i830_write_fence_reg(struct drm_i915_gem_object *obj)
de151cf6 2253{
05394f39 2254 struct drm_device *dev = obj->base.dev;
de151cf6 2255 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2256 u32 size = obj->gtt_space->size;
2257 int regnum = obj->fence_reg;
de151cf6
JB
2258 uint32_t val;
2259 uint32_t pitch_val;
2260
c6642782
DV
2261 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2262 (size & -size) != size ||
2263 (obj->gtt_offset & (size - 1)),
2264 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2265 obj->gtt_offset, size))
2266 return -EINVAL;
de151cf6 2267
05394f39 2268 pitch_val = obj->stride / 128;
e76a16de 2269 pitch_val = ffs(pitch_val) - 1;
e76a16de 2270
05394f39
CW
2271 val = obj->gtt_offset;
2272 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2273 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2274 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2275 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2276 val |= I830_FENCE_REG_VALID;
2277
a360bb1a 2278 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
c6642782
DV
2279
2280 return 0;
de151cf6
JB
2281}
2282
d9e86c0e
CW
2283static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2284{
2285 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2286}
2287
2288static int
a360bb1a 2289i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e
CW
2290{
2291 int ret;
2292
2293 if (obj->fenced_gpu_access) {
88241785 2294 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
1c293ea3 2295 ret = i915_gem_flush_ring(obj->ring,
88241785
CW
2296 0, obj->base.write_domain);
2297 if (ret)
2298 return ret;
2299 }
d9e86c0e
CW
2300
2301 obj->fenced_gpu_access = false;
2302 }
2303
1c293ea3
CW
2304 if (obj->last_fenced_seqno) {
2305 if (!ring_passed_seqno(obj->ring,
d9e86c0e 2306 obj->last_fenced_seqno)) {
1c293ea3 2307 ret = i915_wait_request(obj->ring,
b93f9cf1
BW
2308 obj->last_fenced_seqno,
2309 true);
d9e86c0e
CW
2310 if (ret)
2311 return ret;
2312 }
2313
2314 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2315 }
2316
63256ec5
CW
2317 /* Ensure that all CPU reads are completed before installing a fence
2318 * and all writes before removing the fence.
2319 */
2320 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2321 mb();
2322
d9e86c0e
CW
2323 return 0;
2324}
2325
2326int
2327i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2328{
2329 int ret;
2330
2331 if (obj->tiling_mode)
2332 i915_gem_release_mmap(obj);
2333
a360bb1a 2334 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2335 if (ret)
2336 return ret;
2337
2338 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2339 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1690e1eb
CW
2340
2341 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
d9e86c0e
CW
2342 i915_gem_clear_fence_reg(obj->base.dev,
2343 &dev_priv->fence_regs[obj->fence_reg]);
2344
2345 obj->fence_reg = I915_FENCE_REG_NONE;
2346 }
2347
2348 return 0;
2349}
2350
2351static struct drm_i915_fence_reg *
a360bb1a 2352i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2353{
ae3db24a 2354 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2355 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2356 int i;
ae3db24a
DV
2357
2358 /* First try to find a free reg */
d9e86c0e 2359 avail = NULL;
ae3db24a
DV
2360 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2361 reg = &dev_priv->fence_regs[i];
2362 if (!reg->obj)
d9e86c0e 2363 return reg;
ae3db24a 2364
1690e1eb 2365 if (!reg->pin_count)
d9e86c0e 2366 avail = reg;
ae3db24a
DV
2367 }
2368
d9e86c0e
CW
2369 if (avail == NULL)
2370 return NULL;
ae3db24a
DV
2371
2372 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2373 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2374 if (reg->pin_count)
ae3db24a
DV
2375 continue;
2376
8fe301ad 2377 return reg;
ae3db24a
DV
2378 }
2379
8fe301ad 2380 return NULL;
ae3db24a
DV
2381}
2382
de151cf6 2383/**
9a5a53b3 2384 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2385 * @obj: object to map through a fence reg
2386 *
2387 * When mapping objects through the GTT, userspace wants to be able to write
2388 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2389 * This function walks the fence regs looking for a free one for @obj,
2390 * stealing one if it can't find any.
2391 *
2392 * It then sets up the reg based on the object's properties: address, pitch
2393 * and tiling format.
9a5a53b3
CW
2394 *
2395 * For an untiled surface, this removes any existing fence.
de151cf6 2396 */
8c4b8c3f 2397int
06d98131 2398i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2399{
05394f39 2400 struct drm_device *dev = obj->base.dev;
79e53945 2401 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2402 struct drm_i915_fence_reg *reg;
ae3db24a 2403 int ret;
de151cf6 2404
9a5a53b3
CW
2405 if (obj->tiling_mode == I915_TILING_NONE)
2406 return i915_gem_object_put_fence(obj);
2407
d9e86c0e 2408 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2409 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2410 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2411 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2412
29c5a587 2413 if (obj->tiling_changed) {
a360bb1a 2414 ret = i915_gem_object_flush_fence(obj);
29c5a587
CW
2415 if (ret)
2416 return ret;
2417
29c5a587
CW
2418 goto update;
2419 }
d9e86c0e 2420
a09ba7fa
EA
2421 return 0;
2422 }
2423
a360bb1a 2424 reg = i915_find_fence_reg(dev);
d9e86c0e 2425 if (reg == NULL)
39965b37 2426 return -EDEADLK;
de151cf6 2427
a360bb1a 2428 ret = i915_gem_object_flush_fence(obj);
d9e86c0e 2429 if (ret)
ae3db24a 2430 return ret;
de151cf6 2431
d9e86c0e
CW
2432 if (reg->obj) {
2433 struct drm_i915_gem_object *old = reg->obj;
2434
2435 drm_gem_object_reference(&old->base);
2436
2437 if (old->tiling_mode)
2438 i915_gem_release_mmap(old);
2439
a360bb1a 2440 ret = i915_gem_object_flush_fence(old);
d9e86c0e
CW
2441 if (ret) {
2442 drm_gem_object_unreference(&old->base);
2443 return ret;
2444 }
2445
d9e86c0e 2446 old->fence_reg = I915_FENCE_REG_NONE;
a360bb1a 2447 old->last_fenced_seqno = 0;
d9e86c0e
CW
2448
2449 drm_gem_object_unreference(&old->base);
a360bb1a 2450 }
a09ba7fa 2451
de151cf6 2452 reg->obj = obj;
d9e86c0e
CW
2453 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2454 obj->fence_reg = reg - dev_priv->fence_regs;
de151cf6 2455
d9e86c0e
CW
2456update:
2457 obj->tiling_changed = false;
e259befd 2458 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2459 case 7:
e259befd 2460 case 6:
a360bb1a 2461 ret = sandybridge_write_fence_reg(obj);
e259befd
CW
2462 break;
2463 case 5:
2464 case 4:
a360bb1a 2465 ret = i965_write_fence_reg(obj);
e259befd
CW
2466 break;
2467 case 3:
a360bb1a 2468 ret = i915_write_fence_reg(obj);
e259befd
CW
2469 break;
2470 case 2:
a360bb1a 2471 ret = i830_write_fence_reg(obj);
e259befd
CW
2472 break;
2473 }
d9ddcb96 2474
c6642782 2475 return ret;
de151cf6
JB
2476}
2477
2478/**
2479 * i915_gem_clear_fence_reg - clear out fence register info
2480 * @obj: object to clear
2481 *
2482 * Zeroes out the fence register itself and clears out the associated
05394f39 2483 * data structures in dev_priv and obj.
de151cf6
JB
2484 */
2485static void
d9e86c0e
CW
2486i915_gem_clear_fence_reg(struct drm_device *dev,
2487 struct drm_i915_fence_reg *reg)
de151cf6 2488{
79e53945 2489 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2490 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2491
e259befd 2492 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2493 case 7:
e259befd 2494 case 6:
d9e86c0e 2495 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2496 break;
2497 case 5:
2498 case 4:
d9e86c0e 2499 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2500 break;
2501 case 3:
d9e86c0e
CW
2502 if (fence_reg >= 8)
2503 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2504 else
e259befd 2505 case 2:
d9e86c0e 2506 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2507
2508 I915_WRITE(fence_reg, 0);
e259befd 2509 break;
dc529a4f 2510 }
de151cf6 2511
007cc8ac 2512 list_del_init(&reg->lru_list);
d9e86c0e 2513 reg->obj = NULL;
1690e1eb 2514 reg->pin_count = 0;
52dc7d32
CW
2515}
2516
673a394b
EA
2517/**
2518 * Finds free space in the GTT aperture and binds the object there.
2519 */
2520static int
05394f39 2521i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2522 unsigned alignment,
75e9e915 2523 bool map_and_fenceable)
673a394b 2524{
05394f39 2525 struct drm_device *dev = obj->base.dev;
673a394b 2526 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2527 struct drm_mm_node *free_space;
a00b10c3 2528 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2529 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2530 bool mappable, fenceable;
07f73f69 2531 int ret;
673a394b 2532
05394f39 2533 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2534 DRM_ERROR("Attempting to bind a purgeable object\n");
2535 return -EINVAL;
2536 }
2537
e28f8711
CW
2538 fence_size = i915_gem_get_gtt_size(dev,
2539 obj->base.size,
2540 obj->tiling_mode);
2541 fence_alignment = i915_gem_get_gtt_alignment(dev,
2542 obj->base.size,
2543 obj->tiling_mode);
2544 unfenced_alignment =
2545 i915_gem_get_unfenced_gtt_alignment(dev,
2546 obj->base.size,
2547 obj->tiling_mode);
a00b10c3 2548
673a394b 2549 if (alignment == 0)
5e783301
DV
2550 alignment = map_and_fenceable ? fence_alignment :
2551 unfenced_alignment;
75e9e915 2552 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2553 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2554 return -EINVAL;
2555 }
2556
05394f39 2557 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2558
654fc607
CW
2559 /* If the object is bigger than the entire aperture, reject it early
2560 * before evicting everything in a vain attempt to find space.
2561 */
05394f39 2562 if (obj->base.size >
75e9e915 2563 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2564 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2565 return -E2BIG;
2566 }
2567
673a394b 2568 search_free:
75e9e915 2569 if (map_and_fenceable)
920afa77
DV
2570 free_space =
2571 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2572 size, alignment, 0,
920afa77
DV
2573 dev_priv->mm.gtt_mappable_end,
2574 0);
2575 else
2576 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2577 size, alignment, 0);
920afa77
DV
2578
2579 if (free_space != NULL) {
75e9e915 2580 if (map_and_fenceable)
05394f39 2581 obj->gtt_space =
920afa77 2582 drm_mm_get_block_range_generic(free_space,
a00b10c3 2583 size, alignment, 0,
920afa77
DV
2584 dev_priv->mm.gtt_mappable_end,
2585 0);
2586 else
05394f39 2587 obj->gtt_space =
a00b10c3 2588 drm_mm_get_block(free_space, size, alignment);
920afa77 2589 }
05394f39 2590 if (obj->gtt_space == NULL) {
673a394b
EA
2591 /* If the gtt is empty and we're still having trouble
2592 * fitting our object in, we're out of memory.
2593 */
75e9e915
DV
2594 ret = i915_gem_evict_something(dev, size, alignment,
2595 map_and_fenceable);
9731129c 2596 if (ret)
673a394b 2597 return ret;
9731129c 2598
673a394b
EA
2599 goto search_free;
2600 }
2601
e5281ccd 2602 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2603 if (ret) {
05394f39
CW
2604 drm_mm_put_block(obj->gtt_space);
2605 obj->gtt_space = NULL;
07f73f69
CW
2606
2607 if (ret == -ENOMEM) {
809b6334
CW
2608 /* first try to reclaim some memory by clearing the GTT */
2609 ret = i915_gem_evict_everything(dev, false);
07f73f69 2610 if (ret) {
07f73f69 2611 /* now try to shrink everyone else */
4bdadb97
CW
2612 if (gfpmask) {
2613 gfpmask = 0;
2614 goto search_free;
07f73f69
CW
2615 }
2616
809b6334 2617 return -ENOMEM;
07f73f69
CW
2618 }
2619
2620 goto search_free;
2621 }
2622
673a394b
EA
2623 return ret;
2624 }
2625
74163907 2626 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2627 if (ret) {
e5281ccd 2628 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2629 drm_mm_put_block(obj->gtt_space);
2630 obj->gtt_space = NULL;
07f73f69 2631
809b6334 2632 if (i915_gem_evict_everything(dev, false))
07f73f69 2633 return ret;
07f73f69
CW
2634
2635 goto search_free;
673a394b 2636 }
673a394b 2637
0ebb9829
DV
2638 if (!dev_priv->mm.aliasing_ppgtt)
2639 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2640
6299f992 2641 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2642 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2643
673a394b
EA
2644 /* Assert that the object is not currently in any GPU domain. As it
2645 * wasn't in the GTT, there shouldn't be any way it could have been in
2646 * a GPU cache
2647 */
05394f39
CW
2648 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2649 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2650
6299f992 2651 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2652
75e9e915 2653 fenceable =
05394f39 2654 obj->gtt_space->size == fence_size &&
0206e353 2655 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2656
75e9e915 2657 mappable =
05394f39 2658 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2659
05394f39 2660 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2661
db53a302 2662 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2663 return 0;
2664}
2665
2666void
05394f39 2667i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2668{
673a394b
EA
2669 /* If we don't have a page list set up, then we're not pinned
2670 * to GPU, and we can ignore the cache flush because it'll happen
2671 * again at bind time.
2672 */
05394f39 2673 if (obj->pages == NULL)
673a394b
EA
2674 return;
2675
9c23f7fc
CW
2676 /* If the GPU is snooping the contents of the CPU cache,
2677 * we do not need to manually clear the CPU cache lines. However,
2678 * the caches are only snooped when the render cache is
2679 * flushed/invalidated. As we always have to emit invalidations
2680 * and flushes when moving into and out of the RENDER domain, correct
2681 * snooping behaviour occurs naturally as the result of our domain
2682 * tracking.
2683 */
2684 if (obj->cache_level != I915_CACHE_NONE)
2685 return;
2686
1c5d22f7 2687 trace_i915_gem_object_clflush(obj);
cfa16a0d 2688
05394f39 2689 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2690}
2691
e47c68e9 2692/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2693static int
3619df03 2694i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2695{
05394f39 2696 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2697 return 0;
e47c68e9
EA
2698
2699 /* Queue the GPU write cache flushing we need. */
db53a302 2700 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2701}
2702
2703/** Flushes the GTT write domain for the object if it's dirty. */
2704static void
05394f39 2705i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2706{
1c5d22f7
CW
2707 uint32_t old_write_domain;
2708
05394f39 2709 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2710 return;
2711
63256ec5 2712 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2713 * to it immediately go to main memory as far as we know, so there's
2714 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2715 *
2716 * However, we do have to enforce the order so that all writes through
2717 * the GTT land before any writes to the device, such as updates to
2718 * the GATT itself.
e47c68e9 2719 */
63256ec5
CW
2720 wmb();
2721
05394f39
CW
2722 old_write_domain = obj->base.write_domain;
2723 obj->base.write_domain = 0;
1c5d22f7
CW
2724
2725 trace_i915_gem_object_change_domain(obj,
05394f39 2726 obj->base.read_domains,
1c5d22f7 2727 old_write_domain);
e47c68e9
EA
2728}
2729
2730/** Flushes the CPU write domain for the object if it's dirty. */
2731static void
05394f39 2732i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2733{
1c5d22f7 2734 uint32_t old_write_domain;
e47c68e9 2735
05394f39 2736 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2737 return;
2738
2739 i915_gem_clflush_object(obj);
40ce6575 2740 intel_gtt_chipset_flush();
05394f39
CW
2741 old_write_domain = obj->base.write_domain;
2742 obj->base.write_domain = 0;
1c5d22f7
CW
2743
2744 trace_i915_gem_object_change_domain(obj,
05394f39 2745 obj->base.read_domains,
1c5d22f7 2746 old_write_domain);
e47c68e9
EA
2747}
2748
2ef7eeaa
EA
2749/**
2750 * Moves a single object to the GTT read, and possibly write domain.
2751 *
2752 * This function returns when the move is complete, including waiting on
2753 * flushes to occur.
2754 */
79e53945 2755int
2021746e 2756i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2757{
1c5d22f7 2758 uint32_t old_write_domain, old_read_domains;
e47c68e9 2759 int ret;
2ef7eeaa 2760
02354392 2761 /* Not valid to be called on unbound objects. */
05394f39 2762 if (obj->gtt_space == NULL)
02354392
EA
2763 return -EINVAL;
2764
8d7e3de1
CW
2765 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2766 return 0;
2767
88241785
CW
2768 ret = i915_gem_object_flush_gpu_write_domain(obj);
2769 if (ret)
2770 return ret;
2771
87ca9c8a 2772 if (obj->pending_gpu_write || write) {
ce453d81 2773 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2774 if (ret)
2775 return ret;
2776 }
2dafb1e0 2777
7213342d 2778 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2779
05394f39
CW
2780 old_write_domain = obj->base.write_domain;
2781 old_read_domains = obj->base.read_domains;
1c5d22f7 2782
e47c68e9
EA
2783 /* It should now be out of any other write domains, and we can update
2784 * the domain values for our changes.
2785 */
05394f39
CW
2786 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2787 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2788 if (write) {
05394f39
CW
2789 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2790 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2791 obj->dirty = 1;
2ef7eeaa
EA
2792 }
2793
1c5d22f7
CW
2794 trace_i915_gem_object_change_domain(obj,
2795 old_read_domains,
2796 old_write_domain);
2797
e47c68e9
EA
2798 return 0;
2799}
2800
e4ffd173
CW
2801int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2802 enum i915_cache_level cache_level)
2803{
7bddb01f
DV
2804 struct drm_device *dev = obj->base.dev;
2805 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2806 int ret;
2807
2808 if (obj->cache_level == cache_level)
2809 return 0;
2810
2811 if (obj->pin_count) {
2812 DRM_DEBUG("can not change the cache level of pinned objects\n");
2813 return -EBUSY;
2814 }
2815
2816 if (obj->gtt_space) {
2817 ret = i915_gem_object_finish_gpu(obj);
2818 if (ret)
2819 return ret;
2820
2821 i915_gem_object_finish_gtt(obj);
2822
2823 /* Before SandyBridge, you could not use tiling or fence
2824 * registers with snooped memory, so relinquish any fences
2825 * currently pointing to our region in the aperture.
2826 */
2827 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2828 ret = i915_gem_object_put_fence(obj);
2829 if (ret)
2830 return ret;
2831 }
2832
74898d7e
DV
2833 if (obj->has_global_gtt_mapping)
2834 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2835 if (obj->has_aliasing_ppgtt_mapping)
2836 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2837 obj, cache_level);
e4ffd173
CW
2838 }
2839
2840 if (cache_level == I915_CACHE_NONE) {
2841 u32 old_read_domains, old_write_domain;
2842
2843 /* If we're coming from LLC cached, then we haven't
2844 * actually been tracking whether the data is in the
2845 * CPU cache or not, since we only allow one bit set
2846 * in obj->write_domain and have been skipping the clflushes.
2847 * Just set it to the CPU cache for now.
2848 */
2849 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2850 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2851
2852 old_read_domains = obj->base.read_domains;
2853 old_write_domain = obj->base.write_domain;
2854
2855 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2856 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2857
2858 trace_i915_gem_object_change_domain(obj,
2859 old_read_domains,
2860 old_write_domain);
2861 }
2862
2863 obj->cache_level = cache_level;
2864 return 0;
2865}
2866
b9241ea3 2867/*
2da3b9b9
CW
2868 * Prepare buffer for display plane (scanout, cursors, etc).
2869 * Can be called from an uninterruptible phase (modesetting) and allows
2870 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
2871 */
2872int
2da3b9b9
CW
2873i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2874 u32 alignment,
919926ae 2875 struct intel_ring_buffer *pipelined)
b9241ea3 2876{
2da3b9b9 2877 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2878 int ret;
2879
88241785
CW
2880 ret = i915_gem_object_flush_gpu_write_domain(obj);
2881 if (ret)
2882 return ret;
2883
0be73284 2884 if (pipelined != obj->ring) {
2911a35b
BW
2885 ret = i915_gem_object_sync(obj, pipelined);
2886 if (ret)
b9241ea3
ZW
2887 return ret;
2888 }
2889
a7ef0640
EA
2890 /* The display engine is not coherent with the LLC cache on gen6. As
2891 * a result, we make sure that the pinning that is about to occur is
2892 * done with uncached PTEs. This is lowest common denominator for all
2893 * chipsets.
2894 *
2895 * However for gen6+, we could do better by using the GFDT bit instead
2896 * of uncaching, which would allow us to flush all the LLC-cached data
2897 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2898 */
2899 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2900 if (ret)
2901 return ret;
2902
2da3b9b9
CW
2903 /* As the user may map the buffer once pinned in the display plane
2904 * (e.g. libkms for the bootup splash), we have to ensure that we
2905 * always use map_and_fenceable for all scanout buffers.
2906 */
2907 ret = i915_gem_object_pin(obj, alignment, true);
2908 if (ret)
2909 return ret;
2910
b118c1e3
CW
2911 i915_gem_object_flush_cpu_write_domain(obj);
2912
2da3b9b9 2913 old_write_domain = obj->base.write_domain;
05394f39 2914 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
2915
2916 /* It should now be out of any other write domains, and we can update
2917 * the domain values for our changes.
2918 */
2919 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 2920 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2921
2922 trace_i915_gem_object_change_domain(obj,
2923 old_read_domains,
2da3b9b9 2924 old_write_domain);
b9241ea3
ZW
2925
2926 return 0;
2927}
2928
85345517 2929int
a8198eea 2930i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 2931{
88241785
CW
2932 int ret;
2933
a8198eea 2934 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
2935 return 0;
2936
88241785 2937 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2938 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
2939 if (ret)
2940 return ret;
2941 }
85345517 2942
c501ae7f
CW
2943 ret = i915_gem_object_wait_rendering(obj);
2944 if (ret)
2945 return ret;
2946
a8198eea
CW
2947 /* Ensure that we invalidate the GPU's caches and TLBs. */
2948 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 2949 return 0;
85345517
CW
2950}
2951
e47c68e9
EA
2952/**
2953 * Moves a single object to the CPU read, and possibly write domain.
2954 *
2955 * This function returns when the move is complete, including waiting on
2956 * flushes to occur.
2957 */
dabdfe02 2958int
919926ae 2959i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 2960{
1c5d22f7 2961 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2962 int ret;
2963
8d7e3de1
CW
2964 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
2965 return 0;
2966
88241785
CW
2967 ret = i915_gem_object_flush_gpu_write_domain(obj);
2968 if (ret)
2969 return ret;
2970
f8413190
CW
2971 if (write || obj->pending_gpu_write) {
2972 ret = i915_gem_object_wait_rendering(obj);
2973 if (ret)
2974 return ret;
2975 }
2ef7eeaa 2976
e47c68e9 2977 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2978
05394f39
CW
2979 old_write_domain = obj->base.write_domain;
2980 old_read_domains = obj->base.read_domains;
1c5d22f7 2981
e47c68e9 2982 /* Flush the CPU cache if it's still invalid. */
05394f39 2983 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2984 i915_gem_clflush_object(obj);
2ef7eeaa 2985
05394f39 2986 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2987 }
2988
2989 /* It should now be out of any other write domains, and we can update
2990 * the domain values for our changes.
2991 */
05394f39 2992 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
2993
2994 /* If we're writing through the CPU, then the GPU read domains will
2995 * need to be invalidated at next use.
2996 */
2997 if (write) {
05394f39
CW
2998 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2999 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3000 }
2ef7eeaa 3001
1c5d22f7
CW
3002 trace_i915_gem_object_change_domain(obj,
3003 old_read_domains,
3004 old_write_domain);
3005
2ef7eeaa
EA
3006 return 0;
3007}
3008
673a394b
EA
3009/* Throttle our rendering by waiting until the ring has completed our requests
3010 * emitted over 20 msec ago.
3011 *
b962442e
EA
3012 * Note that if we were to use the current jiffies each time around the loop,
3013 * we wouldn't escape the function with any frames outstanding if the time to
3014 * render a frame was over 20ms.
3015 *
673a394b
EA
3016 * This should get us reasonable parallelism between CPU and GPU but also
3017 * relatively low latency when blocking on a particular request to finish.
3018 */
40a5f0de 3019static int
f787a5f5 3020i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3021{
f787a5f5
CW
3022 struct drm_i915_private *dev_priv = dev->dev_private;
3023 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3024 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3025 struct drm_i915_gem_request *request;
3026 struct intel_ring_buffer *ring = NULL;
3027 u32 seqno = 0;
3028 int ret;
93533c29 3029
e110e8d6
CW
3030 if (atomic_read(&dev_priv->mm.wedged))
3031 return -EIO;
3032
1c25595f 3033 spin_lock(&file_priv->mm.lock);
f787a5f5 3034 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3035 if (time_after_eq(request->emitted_jiffies, recent_enough))
3036 break;
40a5f0de 3037
f787a5f5
CW
3038 ring = request->ring;
3039 seqno = request->seqno;
b962442e 3040 }
1c25595f 3041 spin_unlock(&file_priv->mm.lock);
40a5f0de 3042
f787a5f5
CW
3043 if (seqno == 0)
3044 return 0;
2bc43b5c 3045
f787a5f5 3046 ret = 0;
78501eac 3047 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3048 /* And wait for the seqno passing without holding any locks and
3049 * causing extra latency for others. This is safe as the irq
3050 * generation is designed to be run atomically and so is
3051 * lockless.
3052 */
b13c2b96
CW
3053 if (ring->irq_get(ring)) {
3054 ret = wait_event_interruptible(ring->irq_queue,
3055 i915_seqno_passed(ring->get_seqno(ring), seqno)
3056 || atomic_read(&dev_priv->mm.wedged));
3057 ring->irq_put(ring);
40a5f0de 3058
b13c2b96
CW
3059 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3060 ret = -EIO;
e959b5db
EA
3061 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3062 seqno) ||
7ea29b13
EA
3063 atomic_read(&dev_priv->mm.wedged), 3000)) {
3064 ret = -EBUSY;
b13c2b96 3065 }
40a5f0de
EA
3066 }
3067
f787a5f5
CW
3068 if (ret == 0)
3069 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3070
3071 return ret;
3072}
3073
673a394b 3074int
05394f39
CW
3075i915_gem_object_pin(struct drm_i915_gem_object *obj,
3076 uint32_t alignment,
75e9e915 3077 bool map_and_fenceable)
673a394b 3078{
05394f39 3079 struct drm_device *dev = obj->base.dev;
f13d3f73 3080 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3081 int ret;
3082
05394f39 3083 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3084 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3085
05394f39
CW
3086 if (obj->gtt_space != NULL) {
3087 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3088 (map_and_fenceable && !obj->map_and_fenceable)) {
3089 WARN(obj->pin_count,
ae7d49d8 3090 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3091 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3092 " obj->map_and_fenceable=%d\n",
05394f39 3093 obj->gtt_offset, alignment,
75e9e915 3094 map_and_fenceable,
05394f39 3095 obj->map_and_fenceable);
ac0c6b5a
CW
3096 ret = i915_gem_object_unbind(obj);
3097 if (ret)
3098 return ret;
3099 }
3100 }
3101
05394f39 3102 if (obj->gtt_space == NULL) {
a00b10c3 3103 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3104 map_and_fenceable);
9731129c 3105 if (ret)
673a394b 3106 return ret;
22c344e9 3107 }
76446cac 3108
74898d7e
DV
3109 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3110 i915_gem_gtt_bind_object(obj, obj->cache_level);
3111
05394f39 3112 if (obj->pin_count++ == 0) {
05394f39
CW
3113 if (!obj->active)
3114 list_move_tail(&obj->mm_list,
f13d3f73 3115 &dev_priv->mm.pinned_list);
673a394b 3116 }
6299f992 3117 obj->pin_mappable |= map_and_fenceable;
673a394b 3118
23bc5982 3119 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3120 return 0;
3121}
3122
3123void
05394f39 3124i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3125{
05394f39 3126 struct drm_device *dev = obj->base.dev;
673a394b 3127 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3128
23bc5982 3129 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3130 BUG_ON(obj->pin_count == 0);
3131 BUG_ON(obj->gtt_space == NULL);
673a394b 3132
05394f39
CW
3133 if (--obj->pin_count == 0) {
3134 if (!obj->active)
3135 list_move_tail(&obj->mm_list,
673a394b 3136 &dev_priv->mm.inactive_list);
6299f992 3137 obj->pin_mappable = false;
673a394b 3138 }
23bc5982 3139 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3140}
3141
3142int
3143i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3144 struct drm_file *file)
673a394b
EA
3145{
3146 struct drm_i915_gem_pin *args = data;
05394f39 3147 struct drm_i915_gem_object *obj;
673a394b
EA
3148 int ret;
3149
1d7cfea1
CW
3150 ret = i915_mutex_lock_interruptible(dev);
3151 if (ret)
3152 return ret;
673a394b 3153
05394f39 3154 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3155 if (&obj->base == NULL) {
1d7cfea1
CW
3156 ret = -ENOENT;
3157 goto unlock;
673a394b 3158 }
673a394b 3159
05394f39 3160 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3161 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3162 ret = -EINVAL;
3163 goto out;
3ef94daa
CW
3164 }
3165
05394f39 3166 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3167 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3168 args->handle);
1d7cfea1
CW
3169 ret = -EINVAL;
3170 goto out;
79e53945
JB
3171 }
3172
05394f39
CW
3173 obj->user_pin_count++;
3174 obj->pin_filp = file;
3175 if (obj->user_pin_count == 1) {
75e9e915 3176 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3177 if (ret)
3178 goto out;
673a394b
EA
3179 }
3180
3181 /* XXX - flush the CPU caches for pinned objects
3182 * as the X server doesn't manage domains yet
3183 */
e47c68e9 3184 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3185 args->offset = obj->gtt_offset;
1d7cfea1 3186out:
05394f39 3187 drm_gem_object_unreference(&obj->base);
1d7cfea1 3188unlock:
673a394b 3189 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3190 return ret;
673a394b
EA
3191}
3192
3193int
3194i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3195 struct drm_file *file)
673a394b
EA
3196{
3197 struct drm_i915_gem_pin *args = data;
05394f39 3198 struct drm_i915_gem_object *obj;
76c1dec1 3199 int ret;
673a394b 3200
1d7cfea1
CW
3201 ret = i915_mutex_lock_interruptible(dev);
3202 if (ret)
3203 return ret;
673a394b 3204
05394f39 3205 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3206 if (&obj->base == NULL) {
1d7cfea1
CW
3207 ret = -ENOENT;
3208 goto unlock;
673a394b 3209 }
76c1dec1 3210
05394f39 3211 if (obj->pin_filp != file) {
79e53945
JB
3212 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3213 args->handle);
1d7cfea1
CW
3214 ret = -EINVAL;
3215 goto out;
79e53945 3216 }
05394f39
CW
3217 obj->user_pin_count--;
3218 if (obj->user_pin_count == 0) {
3219 obj->pin_filp = NULL;
79e53945
JB
3220 i915_gem_object_unpin(obj);
3221 }
673a394b 3222
1d7cfea1 3223out:
05394f39 3224 drm_gem_object_unreference(&obj->base);
1d7cfea1 3225unlock:
673a394b 3226 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3227 return ret;
673a394b
EA
3228}
3229
3230int
3231i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3232 struct drm_file *file)
673a394b
EA
3233{
3234 struct drm_i915_gem_busy *args = data;
05394f39 3235 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3236 int ret;
3237
76c1dec1 3238 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3239 if (ret)
76c1dec1 3240 return ret;
673a394b 3241
05394f39 3242 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3243 if (&obj->base == NULL) {
1d7cfea1
CW
3244 ret = -ENOENT;
3245 goto unlock;
673a394b 3246 }
d1b851fc 3247
0be555b6
CW
3248 /* Count all active objects as busy, even if they are currently not used
3249 * by the gpu. Users of this interface expect objects to eventually
3250 * become non-busy without any further actions, therefore emit any
3251 * necessary flushes here.
c4de0a5d 3252 */
05394f39 3253 args->busy = obj->active;
0be555b6
CW
3254 if (args->busy) {
3255 /* Unconditionally flush objects, even when the gpu still uses this
3256 * object. Userspace calling this function indicates that it wants to
3257 * use this buffer rather sooner than later, so issuing the required
3258 * flush earlier is beneficial.
3259 */
1a1c6976 3260 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3261 ret = i915_gem_flush_ring(obj->ring,
88241785 3262 0, obj->base.write_domain);
1a1c6976
CW
3263 } else if (obj->ring->outstanding_lazy_request ==
3264 obj->last_rendering_seqno) {
3265 struct drm_i915_gem_request *request;
3266
7a194876
CW
3267 /* This ring is not being cleared by active usage,
3268 * so emit a request to do so.
3269 */
1a1c6976 3270 request = kzalloc(sizeof(*request), GFP_KERNEL);
457eafce 3271 if (request) {
0206e353 3272 ret = i915_add_request(obj->ring, NULL, request);
457eafce
RM
3273 if (ret)
3274 kfree(request);
3275 } else
7a194876
CW
3276 ret = -ENOMEM;
3277 }
0be555b6
CW
3278
3279 /* Update the active list for the hardware's current position.
3280 * Otherwise this only updates on a delayed timer or when irqs
3281 * are actually unmasked, and our working set ends up being
3282 * larger than required.
3283 */
db53a302 3284 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3285
05394f39 3286 args->busy = obj->active;
0be555b6 3287 }
673a394b 3288
05394f39 3289 drm_gem_object_unreference(&obj->base);
1d7cfea1 3290unlock:
673a394b 3291 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3292 return ret;
673a394b
EA
3293}
3294
3295int
3296i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3297 struct drm_file *file_priv)
3298{
0206e353 3299 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3300}
3301
3ef94daa
CW
3302int
3303i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3304 struct drm_file *file_priv)
3305{
3306 struct drm_i915_gem_madvise *args = data;
05394f39 3307 struct drm_i915_gem_object *obj;
76c1dec1 3308 int ret;
3ef94daa
CW
3309
3310 switch (args->madv) {
3311 case I915_MADV_DONTNEED:
3312 case I915_MADV_WILLNEED:
3313 break;
3314 default:
3315 return -EINVAL;
3316 }
3317
1d7cfea1
CW
3318 ret = i915_mutex_lock_interruptible(dev);
3319 if (ret)
3320 return ret;
3321
05394f39 3322 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3323 if (&obj->base == NULL) {
1d7cfea1
CW
3324 ret = -ENOENT;
3325 goto unlock;
3ef94daa 3326 }
3ef94daa 3327
05394f39 3328 if (obj->pin_count) {
1d7cfea1
CW
3329 ret = -EINVAL;
3330 goto out;
3ef94daa
CW
3331 }
3332
05394f39
CW
3333 if (obj->madv != __I915_MADV_PURGED)
3334 obj->madv = args->madv;
3ef94daa 3335
2d7ef395 3336 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3337 if (i915_gem_object_is_purgeable(obj) &&
3338 obj->gtt_space == NULL)
2d7ef395
CW
3339 i915_gem_object_truncate(obj);
3340
05394f39 3341 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3342
1d7cfea1 3343out:
05394f39 3344 drm_gem_object_unreference(&obj->base);
1d7cfea1 3345unlock:
3ef94daa 3346 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3347 return ret;
3ef94daa
CW
3348}
3349
05394f39
CW
3350struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3351 size_t size)
ac52bc56 3352{
73aa808f 3353 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3354 struct drm_i915_gem_object *obj;
5949eac4 3355 struct address_space *mapping;
ac52bc56 3356
c397b908
DV
3357 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3358 if (obj == NULL)
3359 return NULL;
673a394b 3360
c397b908
DV
3361 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3362 kfree(obj);
3363 return NULL;
3364 }
673a394b 3365
5949eac4
HD
3366 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3367 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3368
73aa808f
CW
3369 i915_gem_info_add_obj(dev_priv, size);
3370
c397b908
DV
3371 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3372 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3373
3d29b842
ED
3374 if (HAS_LLC(dev)) {
3375 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3376 * cache) for about a 10% performance improvement
3377 * compared to uncached. Graphics requests other than
3378 * display scanout are coherent with the CPU in
3379 * accessing this cache. This means in this mode we
3380 * don't need to clflush on the CPU side, and on the
3381 * GPU side we only need to flush internal caches to
3382 * get data visible to the CPU.
3383 *
3384 * However, we maintain the display planes as UC, and so
3385 * need to rebind when first used as such.
3386 */
3387 obj->cache_level = I915_CACHE_LLC;
3388 } else
3389 obj->cache_level = I915_CACHE_NONE;
3390
62b8b215 3391 obj->base.driver_private = NULL;
c397b908 3392 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3393 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3394 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3395 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3396 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3397 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3398 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3399 /* Avoid an unnecessary call to unbind on the first bind. */
3400 obj->map_and_fenceable = true;
de151cf6 3401
05394f39 3402 return obj;
c397b908
DV
3403}
3404
3405int i915_gem_init_object(struct drm_gem_object *obj)
3406{
3407 BUG();
de151cf6 3408
673a394b
EA
3409 return 0;
3410}
3411
05394f39 3412static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3413{
05394f39 3414 struct drm_device *dev = obj->base.dev;
be72615b 3415 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3416 int ret;
673a394b 3417
be72615b
CW
3418 ret = i915_gem_object_unbind(obj);
3419 if (ret == -ERESTARTSYS) {
05394f39 3420 list_move(&obj->mm_list,
be72615b
CW
3421 &dev_priv->mm.deferred_free_list);
3422 return;
3423 }
673a394b 3424
26e12f89
CW
3425 trace_i915_gem_object_destroy(obj);
3426
05394f39 3427 if (obj->base.map_list.map)
b464e9a2 3428 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3429
05394f39
CW
3430 drm_gem_object_release(&obj->base);
3431 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3432
05394f39
CW
3433 kfree(obj->bit_17);
3434 kfree(obj);
673a394b
EA
3435}
3436
05394f39 3437void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3438{
05394f39
CW
3439 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3440 struct drm_device *dev = obj->base.dev;
be72615b 3441
05394f39 3442 while (obj->pin_count > 0)
be72615b
CW
3443 i915_gem_object_unpin(obj);
3444
05394f39 3445 if (obj->phys_obj)
be72615b
CW
3446 i915_gem_detach_phys_object(dev, obj);
3447
3448 i915_gem_free_object_tail(obj);
3449}
3450
29105ccc
CW
3451int
3452i915_gem_idle(struct drm_device *dev)
3453{
3454 drm_i915_private_t *dev_priv = dev->dev_private;
3455 int ret;
28dfe52a 3456
29105ccc 3457 mutex_lock(&dev->struct_mutex);
1c5d22f7 3458
87acb0a5 3459 if (dev_priv->mm.suspended) {
29105ccc
CW
3460 mutex_unlock(&dev->struct_mutex);
3461 return 0;
28dfe52a
EA
3462 }
3463
b93f9cf1 3464 ret = i915_gpu_idle(dev, true);
6dbe2772
KP
3465 if (ret) {
3466 mutex_unlock(&dev->struct_mutex);
673a394b 3467 return ret;
6dbe2772 3468 }
673a394b 3469
29105ccc
CW
3470 /* Under UMS, be paranoid and evict. */
3471 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3472 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3473 if (ret) {
3474 mutex_unlock(&dev->struct_mutex);
3475 return ret;
3476 }
3477 }
3478
312817a3
CW
3479 i915_gem_reset_fences(dev);
3480
29105ccc
CW
3481 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3482 * We need to replace this with a semaphore, or something.
3483 * And not confound mm.suspended!
3484 */
3485 dev_priv->mm.suspended = 1;
bc0c7f14 3486 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3487
3488 i915_kernel_lost_context(dev);
6dbe2772 3489 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3490
6dbe2772
KP
3491 mutex_unlock(&dev->struct_mutex);
3492
29105ccc
CW
3493 /* Cancel the retire work handler, which should be idle now. */
3494 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3495
673a394b
EA
3496 return 0;
3497}
3498
f691e2f4
DV
3499void i915_gem_init_swizzling(struct drm_device *dev)
3500{
3501 drm_i915_private_t *dev_priv = dev->dev_private;
3502
11782b02 3503 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3504 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3505 return;
3506
3507 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3508 DISP_TILE_SURFACE_SWIZZLING);
3509
11782b02
DV
3510 if (IS_GEN5(dev))
3511 return;
3512
f691e2f4
DV
3513 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3514 if (IS_GEN6(dev))
3515 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
3516 else
3517 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
3518}
e21af88d
DV
3519
3520void i915_gem_init_ppgtt(struct drm_device *dev)
3521{
3522 drm_i915_private_t *dev_priv = dev->dev_private;
3523 uint32_t pd_offset;
3524 struct intel_ring_buffer *ring;
55a254ac
DV
3525 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3526 uint32_t __iomem *pd_addr;
3527 uint32_t pd_entry;
e21af88d
DV
3528 int i;
3529
3530 if (!dev_priv->mm.aliasing_ppgtt)
3531 return;
3532
55a254ac
DV
3533
3534 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3535 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3536 dma_addr_t pt_addr;
3537
3538 if (dev_priv->mm.gtt->needs_dmar)
3539 pt_addr = ppgtt->pt_dma_addr[i];
3540 else
3541 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3542
3543 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3544 pd_entry |= GEN6_PDE_VALID;
3545
3546 writel(pd_entry, pd_addr + i);
3547 }
3548 readl(pd_addr);
3549
3550 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3551 pd_offset /= 64; /* in cachelines, */
3552 pd_offset <<= 16;
3553
3554 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3555 uint32_t ecochk, gab_ctl, ecobits;
3556
3557 ecobits = I915_READ(GAC_ECO_BITS);
3558 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3559
3560 gab_ctl = I915_READ(GAB_CTL);
3561 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3562
3563 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3564 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3565 ECOCHK_PPGTT_CACHE64B);
3566 I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3567 } else if (INTEL_INFO(dev)->gen >= 7) {
3568 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3569 /* GFX_MODE is per-ring on gen7+ */
3570 }
3571
3572 for (i = 0; i < I915_NUM_RINGS; i++) {
3573 ring = &dev_priv->ring[i];
3574
3575 if (INTEL_INFO(dev)->gen >= 7)
3576 I915_WRITE(RING_MODE_GEN7(ring),
3577 GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3578
3579 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3580 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3581 }
3582}
3583
8187a2b7 3584int
f691e2f4 3585i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3586{
3587 drm_i915_private_t *dev_priv = dev->dev_private;
3588 int ret;
68f95ba9 3589
f691e2f4
DV
3590 i915_gem_init_swizzling(dev);
3591
5c1143bb 3592 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3593 if (ret)
b6913e4b 3594 return ret;
68f95ba9
CW
3595
3596 if (HAS_BSD(dev)) {
5c1143bb 3597 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3598 if (ret)
3599 goto cleanup_render_ring;
d1b851fc 3600 }
68f95ba9 3601
549f7365
CW
3602 if (HAS_BLT(dev)) {
3603 ret = intel_init_blt_ring_buffer(dev);
3604 if (ret)
3605 goto cleanup_bsd_ring;
3606 }
3607
6f392d54
CW
3608 dev_priv->next_seqno = 1;
3609
e21af88d
DV
3610 i915_gem_init_ppgtt(dev);
3611
68f95ba9
CW
3612 return 0;
3613
549f7365 3614cleanup_bsd_ring:
1ec14ad3 3615 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3616cleanup_render_ring:
1ec14ad3 3617 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3618 return ret;
3619}
3620
3621void
3622i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3623{
3624 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3625 int i;
8187a2b7 3626
1ec14ad3
CW
3627 for (i = 0; i < I915_NUM_RINGS; i++)
3628 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3629}
3630
673a394b
EA
3631int
3632i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3633 struct drm_file *file_priv)
3634{
3635 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3636 int ret, i;
673a394b 3637
79e53945
JB
3638 if (drm_core_check_feature(dev, DRIVER_MODESET))
3639 return 0;
3640
ba1234d1 3641 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3642 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3643 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3644 }
3645
673a394b 3646 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3647 dev_priv->mm.suspended = 0;
3648
f691e2f4 3649 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3650 if (ret != 0) {
3651 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3652 return ret;
d816f6ac 3653 }
9bb2d6f9 3654
69dc4987 3655 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3656 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3657 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3658 for (i = 0; i < I915_NUM_RINGS; i++) {
3659 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3660 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3661 }
673a394b 3662 mutex_unlock(&dev->struct_mutex);
dbb19d30 3663
5f35308b
CW
3664 ret = drm_irq_install(dev);
3665 if (ret)
3666 goto cleanup_ringbuffer;
dbb19d30 3667
673a394b 3668 return 0;
5f35308b
CW
3669
3670cleanup_ringbuffer:
3671 mutex_lock(&dev->struct_mutex);
3672 i915_gem_cleanup_ringbuffer(dev);
3673 dev_priv->mm.suspended = 1;
3674 mutex_unlock(&dev->struct_mutex);
3675
3676 return ret;
673a394b
EA
3677}
3678
3679int
3680i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3681 struct drm_file *file_priv)
3682{
79e53945
JB
3683 if (drm_core_check_feature(dev, DRIVER_MODESET))
3684 return 0;
3685
dbb19d30 3686 drm_irq_uninstall(dev);
e6890f6f 3687 return i915_gem_idle(dev);
673a394b
EA
3688}
3689
3690void
3691i915_gem_lastclose(struct drm_device *dev)
3692{
3693 int ret;
673a394b 3694
e806b495
EA
3695 if (drm_core_check_feature(dev, DRIVER_MODESET))
3696 return;
3697
6dbe2772
KP
3698 ret = i915_gem_idle(dev);
3699 if (ret)
3700 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3701}
3702
64193406
CW
3703static void
3704init_ring_lists(struct intel_ring_buffer *ring)
3705{
3706 INIT_LIST_HEAD(&ring->active_list);
3707 INIT_LIST_HEAD(&ring->request_list);
3708 INIT_LIST_HEAD(&ring->gpu_write_list);
3709}
3710
673a394b
EA
3711void
3712i915_gem_load(struct drm_device *dev)
3713{
b5aa8a0f 3714 int i;
673a394b
EA
3715 drm_i915_private_t *dev_priv = dev->dev_private;
3716
69dc4987 3717 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3718 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3719 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3720 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3721 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3722 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3723 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3724 for (i = 0; i < I915_NUM_RINGS; i++)
3725 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3726 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3727 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3728 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3729 i915_gem_retire_work_handler);
30dbf0c0 3730 init_completion(&dev_priv->error_completion);
31169714 3731
94400120
DA
3732 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3733 if (IS_GEN3(dev)) {
3734 u32 tmp = I915_READ(MI_ARB_STATE);
3735 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3736 /* arb state is a masked write, so set bit + bit in mask */
3737 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3738 I915_WRITE(MI_ARB_STATE, tmp);
3739 }
3740 }
3741
72bfa19c
CW
3742 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3743
de151cf6 3744 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3745 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3746 dev_priv->fence_reg_start = 3;
de151cf6 3747
a6c45cf0 3748 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3749 dev_priv->num_fence_regs = 16;
3750 else
3751 dev_priv->num_fence_regs = 8;
3752
b5aa8a0f 3753 /* Initialize fence registers to zero */
10ed13e4
EA
3754 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3755 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
b5aa8a0f 3756 }
10ed13e4 3757
673a394b 3758 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3759 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3760
ce453d81
CW
3761 dev_priv->mm.interruptible = true;
3762
17250b71
CW
3763 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3764 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3765 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3766}
71acb5eb
DA
3767
3768/*
3769 * Create a physically contiguous memory object for this object
3770 * e.g. for cursor + overlay regs
3771 */
995b6762
CW
3772static int i915_gem_init_phys_object(struct drm_device *dev,
3773 int id, int size, int align)
71acb5eb
DA
3774{
3775 drm_i915_private_t *dev_priv = dev->dev_private;
3776 struct drm_i915_gem_phys_object *phys_obj;
3777 int ret;
3778
3779 if (dev_priv->mm.phys_objs[id - 1] || !size)
3780 return 0;
3781
9a298b2a 3782 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3783 if (!phys_obj)
3784 return -ENOMEM;
3785
3786 phys_obj->id = id;
3787
6eeefaf3 3788 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3789 if (!phys_obj->handle) {
3790 ret = -ENOMEM;
3791 goto kfree_obj;
3792 }
3793#ifdef CONFIG_X86
3794 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3795#endif
3796
3797 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3798
3799 return 0;
3800kfree_obj:
9a298b2a 3801 kfree(phys_obj);
71acb5eb
DA
3802 return ret;
3803}
3804
995b6762 3805static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3806{
3807 drm_i915_private_t *dev_priv = dev->dev_private;
3808 struct drm_i915_gem_phys_object *phys_obj;
3809
3810 if (!dev_priv->mm.phys_objs[id - 1])
3811 return;
3812
3813 phys_obj = dev_priv->mm.phys_objs[id - 1];
3814 if (phys_obj->cur_obj) {
3815 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3816 }
3817
3818#ifdef CONFIG_X86
3819 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3820#endif
3821 drm_pci_free(dev, phys_obj->handle);
3822 kfree(phys_obj);
3823 dev_priv->mm.phys_objs[id - 1] = NULL;
3824}
3825
3826void i915_gem_free_all_phys_object(struct drm_device *dev)
3827{
3828 int i;
3829
260883c8 3830 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3831 i915_gem_free_phys_object(dev, i);
3832}
3833
3834void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3835 struct drm_i915_gem_object *obj)
71acb5eb 3836{
05394f39 3837 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3838 char *vaddr;
71acb5eb 3839 int i;
71acb5eb
DA
3840 int page_count;
3841
05394f39 3842 if (!obj->phys_obj)
71acb5eb 3843 return;
05394f39 3844 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3845
05394f39 3846 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3847 for (i = 0; i < page_count; i++) {
5949eac4 3848 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3849 if (!IS_ERR(page)) {
3850 char *dst = kmap_atomic(page);
3851 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3852 kunmap_atomic(dst);
3853
3854 drm_clflush_pages(&page, 1);
3855
3856 set_page_dirty(page);
3857 mark_page_accessed(page);
3858 page_cache_release(page);
3859 }
71acb5eb 3860 }
40ce6575 3861 intel_gtt_chipset_flush();
d78b47b9 3862
05394f39
CW
3863 obj->phys_obj->cur_obj = NULL;
3864 obj->phys_obj = NULL;
71acb5eb
DA
3865}
3866
3867int
3868i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3869 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3870 int id,
3871 int align)
71acb5eb 3872{
05394f39 3873 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3874 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3875 int ret = 0;
3876 int page_count;
3877 int i;
3878
3879 if (id > I915_MAX_PHYS_OBJECT)
3880 return -EINVAL;
3881
05394f39
CW
3882 if (obj->phys_obj) {
3883 if (obj->phys_obj->id == id)
71acb5eb
DA
3884 return 0;
3885 i915_gem_detach_phys_object(dev, obj);
3886 }
3887
71acb5eb
DA
3888 /* create a new object */
3889 if (!dev_priv->mm.phys_objs[id - 1]) {
3890 ret = i915_gem_init_phys_object(dev, id,
05394f39 3891 obj->base.size, align);
71acb5eb 3892 if (ret) {
05394f39
CW
3893 DRM_ERROR("failed to init phys object %d size: %zu\n",
3894 id, obj->base.size);
e5281ccd 3895 return ret;
71acb5eb
DA
3896 }
3897 }
3898
3899 /* bind to the object */
05394f39
CW
3900 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3901 obj->phys_obj->cur_obj = obj;
71acb5eb 3902
05394f39 3903 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
3904
3905 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3906 struct page *page;
3907 char *dst, *src;
3908
5949eac4 3909 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3910 if (IS_ERR(page))
3911 return PTR_ERR(page);
71acb5eb 3912
ff75b9bc 3913 src = kmap_atomic(page);
05394f39 3914 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 3915 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 3916 kunmap_atomic(src);
71acb5eb 3917
e5281ccd
CW
3918 mark_page_accessed(page);
3919 page_cache_release(page);
3920 }
d78b47b9 3921
71acb5eb 3922 return 0;
71acb5eb
DA
3923}
3924
3925static int
05394f39
CW
3926i915_gem_phys_pwrite(struct drm_device *dev,
3927 struct drm_i915_gem_object *obj,
71acb5eb
DA
3928 struct drm_i915_gem_pwrite *args,
3929 struct drm_file *file_priv)
3930{
05394f39 3931 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 3932 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 3933
b47b30cc
CW
3934 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3935 unsigned long unwritten;
3936
3937 /* The physical object once assigned is fixed for the lifetime
3938 * of the obj, so we can safely drop the lock and continue
3939 * to access vaddr.
3940 */
3941 mutex_unlock(&dev->struct_mutex);
3942 unwritten = copy_from_user(vaddr, user_data, args->size);
3943 mutex_lock(&dev->struct_mutex);
3944 if (unwritten)
3945 return -EFAULT;
3946 }
71acb5eb 3947
40ce6575 3948 intel_gtt_chipset_flush();
71acb5eb
DA
3949 return 0;
3950}
b962442e 3951
f787a5f5 3952void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 3953{
f787a5f5 3954 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
3955
3956 /* Clean up our request list when the client is going away, so that
3957 * later retire_requests won't dereference our soon-to-be-gone
3958 * file_priv.
3959 */
1c25595f 3960 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
3961 while (!list_empty(&file_priv->mm.request_list)) {
3962 struct drm_i915_gem_request *request;
3963
3964 request = list_first_entry(&file_priv->mm.request_list,
3965 struct drm_i915_gem_request,
3966 client_list);
3967 list_del(&request->client_list);
3968 request->file_priv = NULL;
3969 }
1c25595f 3970 spin_unlock(&file_priv->mm.lock);
b962442e 3971}
31169714 3972
1637ef41
CW
3973static int
3974i915_gpu_is_active(struct drm_device *dev)
3975{
3976 drm_i915_private_t *dev_priv = dev->dev_private;
3977 int lists_empty;
3978
1637ef41 3979 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 3980 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
3981
3982 return !lists_empty;
3983}
3984
31169714 3985static int
1495f230 3986i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 3987{
17250b71
CW
3988 struct drm_i915_private *dev_priv =
3989 container_of(shrinker,
3990 struct drm_i915_private,
3991 mm.inactive_shrinker);
3992 struct drm_device *dev = dev_priv->dev;
3993 struct drm_i915_gem_object *obj, *next;
1495f230 3994 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
3995 int cnt;
3996
3997 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 3998 return 0;
31169714
CW
3999
4000 /* "fast-path" to count number of available objects */
4001 if (nr_to_scan == 0) {
17250b71
CW
4002 cnt = 0;
4003 list_for_each_entry(obj,
4004 &dev_priv->mm.inactive_list,
4005 mm_list)
4006 cnt++;
4007 mutex_unlock(&dev->struct_mutex);
4008 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4009 }
4010
1637ef41 4011rescan:
31169714 4012 /* first scan for clean buffers */
17250b71 4013 i915_gem_retire_requests(dev);
31169714 4014
17250b71
CW
4015 list_for_each_entry_safe(obj, next,
4016 &dev_priv->mm.inactive_list,
4017 mm_list) {
4018 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4019 if (i915_gem_object_unbind(obj) == 0 &&
4020 --nr_to_scan == 0)
17250b71 4021 break;
31169714 4022 }
31169714
CW
4023 }
4024
4025 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4026 cnt = 0;
4027 list_for_each_entry_safe(obj, next,
4028 &dev_priv->mm.inactive_list,
4029 mm_list) {
2021746e
CW
4030 if (nr_to_scan &&
4031 i915_gem_object_unbind(obj) == 0)
17250b71 4032 nr_to_scan--;
2021746e 4033 else
17250b71
CW
4034 cnt++;
4035 }
4036
4037 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4038 /*
4039 * We are desperate for pages, so as a last resort, wait
4040 * for the GPU to finish and discard whatever we can.
4041 * This has a dramatic impact to reduce the number of
4042 * OOM-killer events whilst running the GPU aggressively.
4043 */
b93f9cf1 4044 if (i915_gpu_idle(dev, true) == 0)
1637ef41
CW
4045 goto rescan;
4046 }
17250b71
CW
4047 mutex_unlock(&dev->struct_mutex);
4048 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4049}