]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32#include <linux/swap.h>
79e53945 33#include <linux/pci.h>
673a394b 34
28dfe52a
EA
35#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
e47c68e9
EA
37static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
40static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 int write);
42static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 uint64_t offset,
44 uint64_t size);
45static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
856fa198
EA
46static int i915_gem_object_get_pages(struct drm_gem_object *obj);
47static void i915_gem_object_put_pages(struct drm_gem_object *obj);
673a394b 48static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
49static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
0f973f27 51static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
de151cf6
JB
52static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
53static int i915_gem_evict_something(struct drm_device *dev);
71acb5eb
DA
54static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
673a394b 57
79e53945
JB
58int i915_gem_do_init(struct drm_device *dev, unsigned long start,
59 unsigned long end)
673a394b
EA
60{
61 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 62
79e53945
JB
63 if (start >= end ||
64 (start & (PAGE_SIZE - 1)) != 0 ||
65 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
66 return -EINVAL;
67 }
68
79e53945
JB
69 drm_mm_init(&dev_priv->mm.gtt_space, start,
70 end - start);
673a394b 71
79e53945
JB
72 dev->gtt_total = (uint32_t) (end - start);
73
74 return 0;
75}
673a394b 76
79e53945
JB
77int
78i915_gem_init_ioctl(struct drm_device *dev, void *data,
79 struct drm_file *file_priv)
80{
81 struct drm_i915_gem_init *args = data;
82 int ret;
83
84 mutex_lock(&dev->struct_mutex);
85 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
86 mutex_unlock(&dev->struct_mutex);
87
79e53945 88 return ret;
673a394b
EA
89}
90
5a125c3c
EA
91int
92i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file_priv)
94{
5a125c3c 95 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
96
97 if (!(dev->driver->driver_features & DRIVER_GEM))
98 return -ENODEV;
99
100 args->aper_size = dev->gtt_total;
2678d9d6
KP
101 args->aper_available_size = (args->aper_size -
102 atomic_read(&dev->pin_memory));
5a125c3c
EA
103
104 return 0;
105}
106
673a394b
EA
107
108/**
109 * Creates a new mm object and returns a handle to it.
110 */
111int
112i915_gem_create_ioctl(struct drm_device *dev, void *data,
113 struct drm_file *file_priv)
114{
115 struct drm_i915_gem_create *args = data;
116 struct drm_gem_object *obj;
117 int handle, ret;
118
119 args->size = roundup(args->size, PAGE_SIZE);
120
121 /* Allocate the new object */
122 obj = drm_gem_object_alloc(dev, args->size);
123 if (obj == NULL)
124 return -ENOMEM;
125
126 ret = drm_gem_handle_create(file_priv, obj, &handle);
127 mutex_lock(&dev->struct_mutex);
128 drm_gem_object_handle_unreference(obj);
129 mutex_unlock(&dev->struct_mutex);
130
131 if (ret)
132 return ret;
133
134 args->handle = handle;
135
136 return 0;
137}
138
eb01459f
EA
139static inline int
140fast_shmem_read(struct page **pages,
141 loff_t page_base, int page_offset,
142 char __user *data,
143 int length)
144{
145 char __iomem *vaddr;
146 int ret;
147
148 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
149 if (vaddr == NULL)
150 return -ENOMEM;
151 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
152 kunmap_atomic(vaddr, KM_USER0);
153
154 return ret;
155}
156
40123c1f
EA
157static inline int
158slow_shmem_copy(struct page *dst_page,
159 int dst_offset,
160 struct page *src_page,
161 int src_offset,
162 int length)
163{
164 char *dst_vaddr, *src_vaddr;
165
166 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
167 if (dst_vaddr == NULL)
168 return -ENOMEM;
169
170 src_vaddr = kmap_atomic(src_page, KM_USER1);
171 if (src_vaddr == NULL) {
172 kunmap_atomic(dst_vaddr, KM_USER0);
173 return -ENOMEM;
174 }
175
176 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
177
178 kunmap_atomic(src_vaddr, KM_USER1);
179 kunmap_atomic(dst_vaddr, KM_USER0);
180
181 return 0;
182}
183
eb01459f
EA
184/**
185 * This is the fast shmem pread path, which attempts to copy_from_user directly
186 * from the backing pages of the object to the user's address space. On a
187 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
188 */
189static int
190i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
191 struct drm_i915_gem_pread *args,
192 struct drm_file *file_priv)
193{
194 struct drm_i915_gem_object *obj_priv = obj->driver_private;
195 ssize_t remain;
196 loff_t offset, page_base;
197 char __user *user_data;
198 int page_offset, page_length;
199 int ret;
200
201 user_data = (char __user *) (uintptr_t) args->data_ptr;
202 remain = args->size;
203
204 mutex_lock(&dev->struct_mutex);
205
206 ret = i915_gem_object_get_pages(obj);
207 if (ret != 0)
208 goto fail_unlock;
209
210 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
211 args->size);
212 if (ret != 0)
213 goto fail_put_pages;
214
215 obj_priv = obj->driver_private;
216 offset = args->offset;
217
218 while (remain > 0) {
219 /* Operation in this page
220 *
221 * page_base = page offset within aperture
222 * page_offset = offset within page
223 * page_length = bytes to copy for this page
224 */
225 page_base = (offset & ~(PAGE_SIZE-1));
226 page_offset = offset & (PAGE_SIZE-1);
227 page_length = remain;
228 if ((page_offset + remain) > PAGE_SIZE)
229 page_length = PAGE_SIZE - page_offset;
230
231 ret = fast_shmem_read(obj_priv->pages,
232 page_base, page_offset,
233 user_data, page_length);
234 if (ret)
235 goto fail_put_pages;
236
237 remain -= page_length;
238 user_data += page_length;
239 offset += page_length;
240 }
241
242fail_put_pages:
243 i915_gem_object_put_pages(obj);
244fail_unlock:
245 mutex_unlock(&dev->struct_mutex);
246
247 return ret;
248}
249
250/**
251 * This is the fallback shmem pread path, which allocates temporary storage
252 * in kernel space to copy_to_user into outside of the struct_mutex, so we
253 * can copy out of the object's backing pages while holding the struct mutex
254 * and not take page faults.
255 */
256static int
257i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
260{
261 struct drm_i915_gem_object *obj_priv = obj->driver_private;
262 struct mm_struct *mm = current->mm;
263 struct page **user_pages;
264 ssize_t remain;
265 loff_t offset, pinned_pages, i;
266 loff_t first_data_page, last_data_page, num_pages;
267 int shmem_page_index, shmem_page_offset;
268 int data_page_index, data_page_offset;
269 int page_length;
270 int ret;
271 uint64_t data_ptr = args->data_ptr;
272
273 remain = args->size;
274
275 /* Pin the user pages containing the data. We can't fault while
276 * holding the struct mutex, yet we want to hold it while
277 * dereferencing the user data.
278 */
279 first_data_page = data_ptr / PAGE_SIZE;
280 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
281 num_pages = last_data_page - first_data_page + 1;
282
283 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
284 if (user_pages == NULL)
285 return -ENOMEM;
286
287 down_read(&mm->mmap_sem);
288 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
289 num_pages, 0, 0, user_pages, NULL);
290 up_read(&mm->mmap_sem);
291 if (pinned_pages < num_pages) {
292 ret = -EFAULT;
293 goto fail_put_user_pages;
294 }
295
296 mutex_lock(&dev->struct_mutex);
297
298 ret = i915_gem_object_get_pages(obj);
299 if (ret != 0)
300 goto fail_unlock;
301
302 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
303 args->size);
304 if (ret != 0)
305 goto fail_put_pages;
306
307 obj_priv = obj->driver_private;
308 offset = args->offset;
309
310 while (remain > 0) {
311 /* Operation in this page
312 *
313 * shmem_page_index = page number within shmem file
314 * shmem_page_offset = offset within page in shmem file
315 * data_page_index = page number in get_user_pages return
316 * data_page_offset = offset with data_page_index page.
317 * page_length = bytes to copy for this page
318 */
319 shmem_page_index = offset / PAGE_SIZE;
320 shmem_page_offset = offset & ~PAGE_MASK;
321 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
322 data_page_offset = data_ptr & ~PAGE_MASK;
323
324 page_length = remain;
325 if ((shmem_page_offset + page_length) > PAGE_SIZE)
326 page_length = PAGE_SIZE - shmem_page_offset;
327 if ((data_page_offset + page_length) > PAGE_SIZE)
328 page_length = PAGE_SIZE - data_page_offset;
329
330 ret = slow_shmem_copy(user_pages[data_page_index],
331 data_page_offset,
332 obj_priv->pages[shmem_page_index],
333 shmem_page_offset,
334 page_length);
335 if (ret)
336 goto fail_put_pages;
337
338 remain -= page_length;
339 data_ptr += page_length;
340 offset += page_length;
341 }
342
343fail_put_pages:
344 i915_gem_object_put_pages(obj);
345fail_unlock:
346 mutex_unlock(&dev->struct_mutex);
347fail_put_user_pages:
348 for (i = 0; i < pinned_pages; i++) {
349 SetPageDirty(user_pages[i]);
350 page_cache_release(user_pages[i]);
351 }
352 kfree(user_pages);
353
354 return ret;
355}
356
673a394b
EA
357/**
358 * Reads data from the object referenced by handle.
359 *
360 * On error, the contents of *data are undefined.
361 */
362int
363i915_gem_pread_ioctl(struct drm_device *dev, void *data,
364 struct drm_file *file_priv)
365{
366 struct drm_i915_gem_pread *args = data;
367 struct drm_gem_object *obj;
368 struct drm_i915_gem_object *obj_priv;
673a394b
EA
369 int ret;
370
371 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
372 if (obj == NULL)
373 return -EBADF;
374 obj_priv = obj->driver_private;
375
376 /* Bounds check source.
377 *
378 * XXX: This could use review for overflow issues...
379 */
380 if (args->offset > obj->size || args->size > obj->size ||
381 args->offset + args->size > obj->size) {
382 drm_gem_object_unreference(obj);
383 return -EINVAL;
384 }
385
eb01459f
EA
386 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
387 if (ret != 0)
388 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
673a394b
EA
389
390 drm_gem_object_unreference(obj);
673a394b 391
eb01459f 392 return ret;
673a394b
EA
393}
394
0839ccb8
KP
395/* This is the fast write path which cannot handle
396 * page faults in the source data
9b7530cc 397 */
0839ccb8
KP
398
399static inline int
400fast_user_write(struct io_mapping *mapping,
401 loff_t page_base, int page_offset,
402 char __user *user_data,
403 int length)
9b7530cc 404{
9b7530cc 405 char *vaddr_atomic;
0839ccb8 406 unsigned long unwritten;
9b7530cc 407
0839ccb8
KP
408 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
409 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
410 user_data, length);
411 io_mapping_unmap_atomic(vaddr_atomic);
412 if (unwritten)
413 return -EFAULT;
414 return 0;
415}
416
417/* Here's the write path which can sleep for
418 * page faults
419 */
420
421static inline int
3de09aa3
EA
422slow_kernel_write(struct io_mapping *mapping,
423 loff_t gtt_base, int gtt_offset,
424 struct page *user_page, int user_offset,
425 int length)
0839ccb8 426{
3de09aa3 427 char *src_vaddr, *dst_vaddr;
0839ccb8
KP
428 unsigned long unwritten;
429
3de09aa3
EA
430 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
431 src_vaddr = kmap_atomic(user_page, KM_USER1);
432 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
433 src_vaddr + user_offset,
434 length);
435 kunmap_atomic(src_vaddr, KM_USER1);
436 io_mapping_unmap_atomic(dst_vaddr);
0839ccb8
KP
437 if (unwritten)
438 return -EFAULT;
9b7530cc 439 return 0;
9b7530cc
LT
440}
441
40123c1f
EA
442static inline int
443fast_shmem_write(struct page **pages,
444 loff_t page_base, int page_offset,
445 char __user *data,
446 int length)
447{
448 char __iomem *vaddr;
d0088775 449 unsigned long unwritten;
40123c1f
EA
450
451 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
452 if (vaddr == NULL)
453 return -ENOMEM;
d0088775 454 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
455 kunmap_atomic(vaddr, KM_USER0);
456
d0088775
DA
457 if (unwritten)
458 return -EFAULT;
40123c1f
EA
459 return 0;
460}
461
3de09aa3
EA
462/**
463 * This is the fast pwrite path, where we copy the data directly from the
464 * user into the GTT, uncached.
465 */
673a394b 466static int
3de09aa3
EA
467i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
468 struct drm_i915_gem_pwrite *args,
469 struct drm_file *file_priv)
673a394b
EA
470{
471 struct drm_i915_gem_object *obj_priv = obj->driver_private;
0839ccb8 472 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 473 ssize_t remain;
0839ccb8 474 loff_t offset, page_base;
673a394b 475 char __user *user_data;
0839ccb8
KP
476 int page_offset, page_length;
477 int ret;
673a394b
EA
478
479 user_data = (char __user *) (uintptr_t) args->data_ptr;
480 remain = args->size;
481 if (!access_ok(VERIFY_READ, user_data, remain))
482 return -EFAULT;
483
484
485 mutex_lock(&dev->struct_mutex);
486 ret = i915_gem_object_pin(obj, 0);
487 if (ret) {
488 mutex_unlock(&dev->struct_mutex);
489 return ret;
490 }
2ef7eeaa 491 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
492 if (ret)
493 goto fail;
494
495 obj_priv = obj->driver_private;
496 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
497
498 while (remain > 0) {
499 /* Operation in this page
500 *
0839ccb8
KP
501 * page_base = page offset within aperture
502 * page_offset = offset within page
503 * page_length = bytes to copy for this page
673a394b 504 */
0839ccb8
KP
505 page_base = (offset & ~(PAGE_SIZE-1));
506 page_offset = offset & (PAGE_SIZE-1);
507 page_length = remain;
508 if ((page_offset + remain) > PAGE_SIZE)
509 page_length = PAGE_SIZE - page_offset;
510
511 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
512 page_offset, user_data, page_length);
513
514 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
515 * source page isn't available. Return the error and we'll
516 * retry in the slow path.
0839ccb8 517 */
3de09aa3
EA
518 if (ret)
519 goto fail;
673a394b 520
0839ccb8
KP
521 remain -= page_length;
522 user_data += page_length;
523 offset += page_length;
673a394b 524 }
673a394b
EA
525
526fail:
527 i915_gem_object_unpin(obj);
528 mutex_unlock(&dev->struct_mutex);
529
530 return ret;
531}
532
3de09aa3
EA
533/**
534 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
535 * the memory and maps it using kmap_atomic for copying.
536 *
537 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
538 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
539 */
3043c60c 540static int
3de09aa3
EA
541i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
542 struct drm_i915_gem_pwrite *args,
543 struct drm_file *file_priv)
673a394b 544{
3de09aa3
EA
545 struct drm_i915_gem_object *obj_priv = obj->driver_private;
546 drm_i915_private_t *dev_priv = dev->dev_private;
547 ssize_t remain;
548 loff_t gtt_page_base, offset;
549 loff_t first_data_page, last_data_page, num_pages;
550 loff_t pinned_pages, i;
551 struct page **user_pages;
552 struct mm_struct *mm = current->mm;
553 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 554 int ret;
3de09aa3
EA
555 uint64_t data_ptr = args->data_ptr;
556
557 remain = args->size;
558
559 /* Pin the user pages containing the data. We can't fault while
560 * holding the struct mutex, and all of the pwrite implementations
561 * want to hold it while dereferencing the user data.
562 */
563 first_data_page = data_ptr / PAGE_SIZE;
564 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
565 num_pages = last_data_page - first_data_page + 1;
566
567 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
568 if (user_pages == NULL)
569 return -ENOMEM;
570
571 down_read(&mm->mmap_sem);
572 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
573 num_pages, 0, 0, user_pages, NULL);
574 up_read(&mm->mmap_sem);
575 if (pinned_pages < num_pages) {
576 ret = -EFAULT;
577 goto out_unpin_pages;
578 }
673a394b
EA
579
580 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
581 ret = i915_gem_object_pin(obj, 0);
582 if (ret)
583 goto out_unlock;
584
585 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
586 if (ret)
587 goto out_unpin_object;
588
589 obj_priv = obj->driver_private;
590 offset = obj_priv->gtt_offset + args->offset;
591
592 while (remain > 0) {
593 /* Operation in this page
594 *
595 * gtt_page_base = page offset within aperture
596 * gtt_page_offset = offset within page in aperture
597 * data_page_index = page number in get_user_pages return
598 * data_page_offset = offset with data_page_index page.
599 * page_length = bytes to copy for this page
600 */
601 gtt_page_base = offset & PAGE_MASK;
602 gtt_page_offset = offset & ~PAGE_MASK;
603 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
604 data_page_offset = data_ptr & ~PAGE_MASK;
605
606 page_length = remain;
607 if ((gtt_page_offset + page_length) > PAGE_SIZE)
608 page_length = PAGE_SIZE - gtt_page_offset;
609 if ((data_page_offset + page_length) > PAGE_SIZE)
610 page_length = PAGE_SIZE - data_page_offset;
611
612 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
613 gtt_page_base, gtt_page_offset,
614 user_pages[data_page_index],
615 data_page_offset,
616 page_length);
617
618 /* If we get a fault while copying data, then (presumably) our
619 * source page isn't available. Return the error and we'll
620 * retry in the slow path.
621 */
622 if (ret)
623 goto out_unpin_object;
624
625 remain -= page_length;
626 offset += page_length;
627 data_ptr += page_length;
628 }
629
630out_unpin_object:
631 i915_gem_object_unpin(obj);
632out_unlock:
633 mutex_unlock(&dev->struct_mutex);
634out_unpin_pages:
635 for (i = 0; i < pinned_pages; i++)
636 page_cache_release(user_pages[i]);
637 kfree(user_pages);
638
639 return ret;
640}
641
40123c1f
EA
642/**
643 * This is the fast shmem pwrite path, which attempts to directly
644 * copy_from_user into the kmapped pages backing the object.
645 */
3043c60c 646static int
40123c1f
EA
647i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
648 struct drm_i915_gem_pwrite *args,
649 struct drm_file *file_priv)
673a394b 650{
40123c1f
EA
651 struct drm_i915_gem_object *obj_priv = obj->driver_private;
652 ssize_t remain;
653 loff_t offset, page_base;
654 char __user *user_data;
655 int page_offset, page_length;
673a394b 656 int ret;
40123c1f
EA
657
658 user_data = (char __user *) (uintptr_t) args->data_ptr;
659 remain = args->size;
673a394b
EA
660
661 mutex_lock(&dev->struct_mutex);
662
40123c1f
EA
663 ret = i915_gem_object_get_pages(obj);
664 if (ret != 0)
665 goto fail_unlock;
673a394b 666
e47c68e9 667 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
668 if (ret != 0)
669 goto fail_put_pages;
670
671 obj_priv = obj->driver_private;
672 offset = args->offset;
673 obj_priv->dirty = 1;
674
675 while (remain > 0) {
676 /* Operation in this page
677 *
678 * page_base = page offset within aperture
679 * page_offset = offset within page
680 * page_length = bytes to copy for this page
681 */
682 page_base = (offset & ~(PAGE_SIZE-1));
683 page_offset = offset & (PAGE_SIZE-1);
684 page_length = remain;
685 if ((page_offset + remain) > PAGE_SIZE)
686 page_length = PAGE_SIZE - page_offset;
687
688 ret = fast_shmem_write(obj_priv->pages,
689 page_base, page_offset,
690 user_data, page_length);
691 if (ret)
692 goto fail_put_pages;
693
694 remain -= page_length;
695 user_data += page_length;
696 offset += page_length;
697 }
698
699fail_put_pages:
700 i915_gem_object_put_pages(obj);
701fail_unlock:
702 mutex_unlock(&dev->struct_mutex);
703
704 return ret;
705}
706
707/**
708 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
709 * the memory and maps it using kmap_atomic for copying.
710 *
711 * This avoids taking mmap_sem for faulting on the user's address while the
712 * struct_mutex is held.
713 */
714static int
715i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
716 struct drm_i915_gem_pwrite *args,
717 struct drm_file *file_priv)
718{
719 struct drm_i915_gem_object *obj_priv = obj->driver_private;
720 struct mm_struct *mm = current->mm;
721 struct page **user_pages;
722 ssize_t remain;
723 loff_t offset, pinned_pages, i;
724 loff_t first_data_page, last_data_page, num_pages;
725 int shmem_page_index, shmem_page_offset;
726 int data_page_index, data_page_offset;
727 int page_length;
728 int ret;
729 uint64_t data_ptr = args->data_ptr;
730
731 remain = args->size;
732
733 /* Pin the user pages containing the data. We can't fault while
734 * holding the struct mutex, and all of the pwrite implementations
735 * want to hold it while dereferencing the user data.
736 */
737 first_data_page = data_ptr / PAGE_SIZE;
738 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
739 num_pages = last_data_page - first_data_page + 1;
740
741 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
742 if (user_pages == NULL)
743 return -ENOMEM;
744
745 down_read(&mm->mmap_sem);
746 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
747 num_pages, 0, 0, user_pages, NULL);
748 up_read(&mm->mmap_sem);
749 if (pinned_pages < num_pages) {
750 ret = -EFAULT;
751 goto fail_put_user_pages;
673a394b
EA
752 }
753
40123c1f
EA
754 mutex_lock(&dev->struct_mutex);
755
756 ret = i915_gem_object_get_pages(obj);
757 if (ret != 0)
758 goto fail_unlock;
759
760 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
761 if (ret != 0)
762 goto fail_put_pages;
763
764 obj_priv = obj->driver_private;
673a394b 765 offset = args->offset;
40123c1f 766 obj_priv->dirty = 1;
673a394b 767
40123c1f
EA
768 while (remain > 0) {
769 /* Operation in this page
770 *
771 * shmem_page_index = page number within shmem file
772 * shmem_page_offset = offset within page in shmem file
773 * data_page_index = page number in get_user_pages return
774 * data_page_offset = offset with data_page_index page.
775 * page_length = bytes to copy for this page
776 */
777 shmem_page_index = offset / PAGE_SIZE;
778 shmem_page_offset = offset & ~PAGE_MASK;
779 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
780 data_page_offset = data_ptr & ~PAGE_MASK;
781
782 page_length = remain;
783 if ((shmem_page_offset + page_length) > PAGE_SIZE)
784 page_length = PAGE_SIZE - shmem_page_offset;
785 if ((data_page_offset + page_length) > PAGE_SIZE)
786 page_length = PAGE_SIZE - data_page_offset;
787
788 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
789 shmem_page_offset,
790 user_pages[data_page_index],
791 data_page_offset,
792 page_length);
793 if (ret)
794 goto fail_put_pages;
795
796 remain -= page_length;
797 data_ptr += page_length;
798 offset += page_length;
673a394b
EA
799 }
800
40123c1f
EA
801fail_put_pages:
802 i915_gem_object_put_pages(obj);
803fail_unlock:
673a394b 804 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
805fail_put_user_pages:
806 for (i = 0; i < pinned_pages; i++)
807 page_cache_release(user_pages[i]);
808 kfree(user_pages);
673a394b 809
40123c1f 810 return ret;
673a394b
EA
811}
812
813/**
814 * Writes data to the object referenced by handle.
815 *
816 * On error, the contents of the buffer that were to be modified are undefined.
817 */
818int
819i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
820 struct drm_file *file_priv)
821{
822 struct drm_i915_gem_pwrite *args = data;
823 struct drm_gem_object *obj;
824 struct drm_i915_gem_object *obj_priv;
825 int ret = 0;
826
827 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
828 if (obj == NULL)
829 return -EBADF;
830 obj_priv = obj->driver_private;
831
832 /* Bounds check destination.
833 *
834 * XXX: This could use review for overflow issues...
835 */
836 if (args->offset > obj->size || args->size > obj->size ||
837 args->offset + args->size > obj->size) {
838 drm_gem_object_unreference(obj);
839 return -EINVAL;
840 }
841
842 /* We can only do the GTT pwrite on untiled buffers, as otherwise
843 * it would end up going through the fenced access, and we'll get
844 * different detiling behavior between reading and writing.
845 * pread/pwrite currently are reading and writing from the CPU
846 * perspective, requiring manual detiling by the client.
847 */
71acb5eb
DA
848 if (obj_priv->phys_obj)
849 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
850 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
3de09aa3
EA
851 dev->gtt_total != 0) {
852 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
853 if (ret == -EFAULT) {
854 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
855 file_priv);
856 }
40123c1f
EA
857 } else {
858 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
859 if (ret == -EFAULT) {
860 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
861 file_priv);
862 }
863 }
673a394b
EA
864
865#if WATCH_PWRITE
866 if (ret)
867 DRM_INFO("pwrite failed %d\n", ret);
868#endif
869
870 drm_gem_object_unreference(obj);
871
872 return ret;
873}
874
875/**
2ef7eeaa
EA
876 * Called when user space prepares to use an object with the CPU, either
877 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
878 */
879int
880i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
881 struct drm_file *file_priv)
882{
883 struct drm_i915_gem_set_domain *args = data;
884 struct drm_gem_object *obj;
2ef7eeaa
EA
885 uint32_t read_domains = args->read_domains;
886 uint32_t write_domain = args->write_domain;
673a394b
EA
887 int ret;
888
889 if (!(dev->driver->driver_features & DRIVER_GEM))
890 return -ENODEV;
891
2ef7eeaa
EA
892 /* Only handle setting domains to types used by the CPU. */
893 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
894 return -EINVAL;
895
896 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
897 return -EINVAL;
898
899 /* Having something in the write domain implies it's in the read
900 * domain, and only that read domain. Enforce that in the request.
901 */
902 if (write_domain != 0 && read_domains != write_domain)
903 return -EINVAL;
904
673a394b
EA
905 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
906 if (obj == NULL)
907 return -EBADF;
908
909 mutex_lock(&dev->struct_mutex);
910#if WATCH_BUF
911 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
2ef7eeaa 912 obj, obj->size, read_domains, write_domain);
673a394b 913#endif
2ef7eeaa
EA
914 if (read_domains & I915_GEM_DOMAIN_GTT) {
915 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
916
917 /* Silently promote "you're not bound, there was nothing to do"
918 * to success, since the client was just asking us to
919 * make sure everything was done.
920 */
921 if (ret == -EINVAL)
922 ret = 0;
2ef7eeaa 923 } else {
e47c68e9 924 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
925 }
926
673a394b
EA
927 drm_gem_object_unreference(obj);
928 mutex_unlock(&dev->struct_mutex);
929 return ret;
930}
931
932/**
933 * Called when user space has done writes to this buffer
934 */
935int
936i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
937 struct drm_file *file_priv)
938{
939 struct drm_i915_gem_sw_finish *args = data;
940 struct drm_gem_object *obj;
941 struct drm_i915_gem_object *obj_priv;
942 int ret = 0;
943
944 if (!(dev->driver->driver_features & DRIVER_GEM))
945 return -ENODEV;
946
947 mutex_lock(&dev->struct_mutex);
948 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
949 if (obj == NULL) {
950 mutex_unlock(&dev->struct_mutex);
951 return -EBADF;
952 }
953
954#if WATCH_BUF
955 DRM_INFO("%s: sw_finish %d (%p %d)\n",
956 __func__, args->handle, obj, obj->size);
957#endif
958 obj_priv = obj->driver_private;
959
960 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
961 if (obj_priv->pin_count)
962 i915_gem_object_flush_cpu_write_domain(obj);
963
673a394b
EA
964 drm_gem_object_unreference(obj);
965 mutex_unlock(&dev->struct_mutex);
966 return ret;
967}
968
969/**
970 * Maps the contents of an object, returning the address it is mapped
971 * into.
972 *
973 * While the mapping holds a reference on the contents of the object, it doesn't
974 * imply a ref on the object itself.
975 */
976int
977i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
978 struct drm_file *file_priv)
979{
980 struct drm_i915_gem_mmap *args = data;
981 struct drm_gem_object *obj;
982 loff_t offset;
983 unsigned long addr;
984
985 if (!(dev->driver->driver_features & DRIVER_GEM))
986 return -ENODEV;
987
988 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
989 if (obj == NULL)
990 return -EBADF;
991
992 offset = args->offset;
993
994 down_write(&current->mm->mmap_sem);
995 addr = do_mmap(obj->filp, 0, args->size,
996 PROT_READ | PROT_WRITE, MAP_SHARED,
997 args->offset);
998 up_write(&current->mm->mmap_sem);
999 mutex_lock(&dev->struct_mutex);
1000 drm_gem_object_unreference(obj);
1001 mutex_unlock(&dev->struct_mutex);
1002 if (IS_ERR((void *)addr))
1003 return addr;
1004
1005 args->addr_ptr = (uint64_t) addr;
1006
1007 return 0;
1008}
1009
de151cf6
JB
1010/**
1011 * i915_gem_fault - fault a page into the GTT
1012 * vma: VMA in question
1013 * vmf: fault info
1014 *
1015 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1016 * from userspace. The fault handler takes care of binding the object to
1017 * the GTT (if needed), allocating and programming a fence register (again,
1018 * only if needed based on whether the old reg is still valid or the object
1019 * is tiled) and inserting a new PTE into the faulting process.
1020 *
1021 * Note that the faulting process may involve evicting existing objects
1022 * from the GTT and/or fence registers to make room. So performance may
1023 * suffer if the GTT working set is large or there are few fence registers
1024 * left.
1025 */
1026int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1027{
1028 struct drm_gem_object *obj = vma->vm_private_data;
1029 struct drm_device *dev = obj->dev;
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1032 pgoff_t page_offset;
1033 unsigned long pfn;
1034 int ret = 0;
0f973f27 1035 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1036
1037 /* We don't use vmf->pgoff since that has the fake offset */
1038 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1039 PAGE_SHIFT;
1040
1041 /* Now bind it into the GTT if needed */
1042 mutex_lock(&dev->struct_mutex);
1043 if (!obj_priv->gtt_space) {
1044 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1045 if (ret) {
1046 mutex_unlock(&dev->struct_mutex);
1047 return VM_FAULT_SIGBUS;
1048 }
1049 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
1050 }
1051
1052 /* Need a new fence register? */
1053 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
d9ddcb96 1054 obj_priv->tiling_mode != I915_TILING_NONE) {
0f973f27 1055 ret = i915_gem_object_get_fence_reg(obj, write);
7d8d58b2
CW
1056 if (ret) {
1057 mutex_unlock(&dev->struct_mutex);
d9ddcb96 1058 return VM_FAULT_SIGBUS;
7d8d58b2 1059 }
d9ddcb96 1060 }
de151cf6
JB
1061
1062 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1063 page_offset;
1064
1065 /* Finally, remap it using the new GTT offset */
1066 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1067
1068 mutex_unlock(&dev->struct_mutex);
1069
1070 switch (ret) {
1071 case -ENOMEM:
1072 case -EAGAIN:
1073 return VM_FAULT_OOM;
1074 case -EFAULT:
959b887c 1075 case -EINVAL:
de151cf6
JB
1076 return VM_FAULT_SIGBUS;
1077 default:
1078 return VM_FAULT_NOPAGE;
1079 }
1080}
1081
1082/**
1083 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1084 * @obj: obj in question
1085 *
1086 * GEM memory mapping works by handing back to userspace a fake mmap offset
1087 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1088 * up the object based on the offset and sets up the various memory mapping
1089 * structures.
1090 *
1091 * This routine allocates and attaches a fake offset for @obj.
1092 */
1093static int
1094i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1095{
1096 struct drm_device *dev = obj->dev;
1097 struct drm_gem_mm *mm = dev->mm_private;
1098 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1099 struct drm_map_list *list;
f77d390c 1100 struct drm_local_map *map;
de151cf6
JB
1101 int ret = 0;
1102
1103 /* Set the object up for mmap'ing */
1104 list = &obj->map_list;
1105 list->map = drm_calloc(1, sizeof(struct drm_map_list),
1106 DRM_MEM_DRIVER);
1107 if (!list->map)
1108 return -ENOMEM;
1109
1110 map = list->map;
1111 map->type = _DRM_GEM;
1112 map->size = obj->size;
1113 map->handle = obj;
1114
1115 /* Get a DRM GEM mmap offset allocated... */
1116 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1117 obj->size / PAGE_SIZE, 0, 0);
1118 if (!list->file_offset_node) {
1119 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1120 ret = -ENOMEM;
1121 goto out_free_list;
1122 }
1123
1124 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1125 obj->size / PAGE_SIZE, 0);
1126 if (!list->file_offset_node) {
1127 ret = -ENOMEM;
1128 goto out_free_list;
1129 }
1130
1131 list->hash.key = list->file_offset_node->start;
1132 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1133 DRM_ERROR("failed to add to map hash\n");
1134 goto out_free_mm;
1135 }
1136
1137 /* By now we should be all set, any drm_mmap request on the offset
1138 * below will get to our mmap & fault handler */
1139 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1140
1141 return 0;
1142
1143out_free_mm:
1144 drm_mm_put_block(list->file_offset_node);
1145out_free_list:
1146 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
1147
1148 return ret;
1149}
1150
ab00b3e5
JB
1151static void
1152i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1153{
1154 struct drm_device *dev = obj->dev;
1155 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1156 struct drm_gem_mm *mm = dev->mm_private;
1157 struct drm_map_list *list;
1158
1159 list = &obj->map_list;
1160 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1161
1162 if (list->file_offset_node) {
1163 drm_mm_put_block(list->file_offset_node);
1164 list->file_offset_node = NULL;
1165 }
1166
1167 if (list->map) {
1168 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
1169 list->map = NULL;
1170 }
1171
1172 obj_priv->mmap_offset = 0;
1173}
1174
de151cf6
JB
1175/**
1176 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1177 * @obj: object to check
1178 *
1179 * Return the required GTT alignment for an object, taking into account
1180 * potential fence register mapping if needed.
1181 */
1182static uint32_t
1183i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1184{
1185 struct drm_device *dev = obj->dev;
1186 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1187 int start, i;
1188
1189 /*
1190 * Minimum alignment is 4k (GTT page size), but might be greater
1191 * if a fence register is needed for the object.
1192 */
1193 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1194 return 4096;
1195
1196 /*
1197 * Previous chips need to be aligned to the size of the smallest
1198 * fence register that can contain the object.
1199 */
1200 if (IS_I9XX(dev))
1201 start = 1024*1024;
1202 else
1203 start = 512*1024;
1204
1205 for (i = start; i < obj->size; i <<= 1)
1206 ;
1207
1208 return i;
1209}
1210
1211/**
1212 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1213 * @dev: DRM device
1214 * @data: GTT mapping ioctl data
1215 * @file_priv: GEM object info
1216 *
1217 * Simply returns the fake offset to userspace so it can mmap it.
1218 * The mmap call will end up in drm_gem_mmap(), which will set things
1219 * up so we can get faults in the handler above.
1220 *
1221 * The fault handler will take care of binding the object into the GTT
1222 * (since it may have been evicted to make room for something), allocating
1223 * a fence register, and mapping the appropriate aperture address into
1224 * userspace.
1225 */
1226int
1227i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1228 struct drm_file *file_priv)
1229{
1230 struct drm_i915_gem_mmap_gtt *args = data;
1231 struct drm_i915_private *dev_priv = dev->dev_private;
1232 struct drm_gem_object *obj;
1233 struct drm_i915_gem_object *obj_priv;
1234 int ret;
1235
1236 if (!(dev->driver->driver_features & DRIVER_GEM))
1237 return -ENODEV;
1238
1239 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1240 if (obj == NULL)
1241 return -EBADF;
1242
1243 mutex_lock(&dev->struct_mutex);
1244
1245 obj_priv = obj->driver_private;
1246
1247 if (!obj_priv->mmap_offset) {
1248 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1249 if (ret) {
1250 drm_gem_object_unreference(obj);
1251 mutex_unlock(&dev->struct_mutex);
de151cf6 1252 return ret;
13af1062 1253 }
de151cf6
JB
1254 }
1255
1256 args->offset = obj_priv->mmap_offset;
1257
1258 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1259
1260 /* Make sure the alignment is correct for fence regs etc */
1261 if (obj_priv->agp_mem &&
1262 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1263 drm_gem_object_unreference(obj);
1264 mutex_unlock(&dev->struct_mutex);
1265 return -EINVAL;
1266 }
1267
1268 /*
1269 * Pull it into the GTT so that we have a page list (makes the
1270 * initial fault faster and any subsequent flushing possible).
1271 */
1272 if (!obj_priv->agp_mem) {
1273 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1274 if (ret) {
1275 drm_gem_object_unreference(obj);
1276 mutex_unlock(&dev->struct_mutex);
1277 return ret;
1278 }
1279 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
1280 }
1281
1282 drm_gem_object_unreference(obj);
1283 mutex_unlock(&dev->struct_mutex);
1284
1285 return 0;
1286}
1287
673a394b 1288static void
856fa198 1289i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b
EA
1290{
1291 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1292 int page_count = obj->size / PAGE_SIZE;
1293 int i;
1294
856fa198 1295 BUG_ON(obj_priv->pages_refcount == 0);
673a394b 1296
856fa198
EA
1297 if (--obj_priv->pages_refcount != 0)
1298 return;
673a394b
EA
1299
1300 for (i = 0; i < page_count; i++)
856fa198 1301 if (obj_priv->pages[i] != NULL) {
673a394b 1302 if (obj_priv->dirty)
856fa198
EA
1303 set_page_dirty(obj_priv->pages[i]);
1304 mark_page_accessed(obj_priv->pages[i]);
1305 page_cache_release(obj_priv->pages[i]);
673a394b
EA
1306 }
1307 obj_priv->dirty = 0;
1308
856fa198 1309 drm_free(obj_priv->pages,
673a394b
EA
1310 page_count * sizeof(struct page *),
1311 DRM_MEM_DRIVER);
856fa198 1312 obj_priv->pages = NULL;
673a394b
EA
1313}
1314
1315static void
ce44b0ea 1316i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
673a394b
EA
1317{
1318 struct drm_device *dev = obj->dev;
1319 drm_i915_private_t *dev_priv = dev->dev_private;
1320 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1321
1322 /* Add a reference if we're newly entering the active list. */
1323 if (!obj_priv->active) {
1324 drm_gem_object_reference(obj);
1325 obj_priv->active = 1;
1326 }
1327 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1328 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1329 list_move_tail(&obj_priv->list,
1330 &dev_priv->mm.active_list);
5e118f41 1331 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1332 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1333}
1334
ce44b0ea
EA
1335static void
1336i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1337{
1338 struct drm_device *dev = obj->dev;
1339 drm_i915_private_t *dev_priv = dev->dev_private;
1340 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1341
1342 BUG_ON(!obj_priv->active);
1343 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1344 obj_priv->last_rendering_seqno = 0;
1345}
673a394b
EA
1346
1347static void
1348i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1349{
1350 struct drm_device *dev = obj->dev;
1351 drm_i915_private_t *dev_priv = dev->dev_private;
1352 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1353
1354 i915_verify_inactive(dev, __FILE__, __LINE__);
1355 if (obj_priv->pin_count != 0)
1356 list_del_init(&obj_priv->list);
1357 else
1358 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1359
ce44b0ea 1360 obj_priv->last_rendering_seqno = 0;
673a394b
EA
1361 if (obj_priv->active) {
1362 obj_priv->active = 0;
1363 drm_gem_object_unreference(obj);
1364 }
1365 i915_verify_inactive(dev, __FILE__, __LINE__);
1366}
1367
1368/**
1369 * Creates a new sequence number, emitting a write of it to the status page
1370 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1371 *
1372 * Must be called with struct_lock held.
1373 *
1374 * Returned sequence numbers are nonzero on success.
1375 */
1376static uint32_t
1377i915_add_request(struct drm_device *dev, uint32_t flush_domains)
1378{
1379 drm_i915_private_t *dev_priv = dev->dev_private;
1380 struct drm_i915_gem_request *request;
1381 uint32_t seqno;
1382 int was_empty;
1383 RING_LOCALS;
1384
1385 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
1386 if (request == NULL)
1387 return 0;
1388
1389 /* Grab the seqno we're going to make this request be, and bump the
1390 * next (skipping 0 so it can be the reserved no-seqno value).
1391 */
1392 seqno = dev_priv->mm.next_gem_seqno;
1393 dev_priv->mm.next_gem_seqno++;
1394 if (dev_priv->mm.next_gem_seqno == 0)
1395 dev_priv->mm.next_gem_seqno++;
1396
1397 BEGIN_LP_RING(4);
1398 OUT_RING(MI_STORE_DWORD_INDEX);
1399 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1400 OUT_RING(seqno);
1401
1402 OUT_RING(MI_USER_INTERRUPT);
1403 ADVANCE_LP_RING();
1404
1405 DRM_DEBUG("%d\n", seqno);
1406
1407 request->seqno = seqno;
1408 request->emitted_jiffies = jiffies;
673a394b
EA
1409 was_empty = list_empty(&dev_priv->mm.request_list);
1410 list_add_tail(&request->list, &dev_priv->mm.request_list);
1411
ce44b0ea
EA
1412 /* Associate any objects on the flushing list matching the write
1413 * domain we're flushing with our flush.
1414 */
1415 if (flush_domains != 0) {
1416 struct drm_i915_gem_object *obj_priv, *next;
1417
1418 list_for_each_entry_safe(obj_priv, next,
1419 &dev_priv->mm.flushing_list, list) {
1420 struct drm_gem_object *obj = obj_priv->obj;
1421
1422 if ((obj->write_domain & flush_domains) ==
1423 obj->write_domain) {
1424 obj->write_domain = 0;
1425 i915_gem_object_move_to_active(obj, seqno);
1426 }
1427 }
1428
1429 }
1430
6dbe2772 1431 if (was_empty && !dev_priv->mm.suspended)
673a394b
EA
1432 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1433 return seqno;
1434}
1435
1436/**
1437 * Command execution barrier
1438 *
1439 * Ensures that all commands in the ring are finished
1440 * before signalling the CPU
1441 */
3043c60c 1442static uint32_t
673a394b
EA
1443i915_retire_commands(struct drm_device *dev)
1444{
1445 drm_i915_private_t *dev_priv = dev->dev_private;
1446 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1447 uint32_t flush_domains = 0;
1448 RING_LOCALS;
1449
1450 /* The sampler always gets flushed on i965 (sigh) */
1451 if (IS_I965G(dev))
1452 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1453 BEGIN_LP_RING(2);
1454 OUT_RING(cmd);
1455 OUT_RING(0); /* noop */
1456 ADVANCE_LP_RING();
1457 return flush_domains;
1458}
1459
1460/**
1461 * Moves buffers associated only with the given active seqno from the active
1462 * to inactive list, potentially freeing them.
1463 */
1464static void
1465i915_gem_retire_request(struct drm_device *dev,
1466 struct drm_i915_gem_request *request)
1467{
1468 drm_i915_private_t *dev_priv = dev->dev_private;
1469
1470 /* Move any buffers on the active list that are no longer referenced
1471 * by the ringbuffer to the flushing/inactive lists as appropriate.
1472 */
5e118f41 1473 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1474 while (!list_empty(&dev_priv->mm.active_list)) {
1475 struct drm_gem_object *obj;
1476 struct drm_i915_gem_object *obj_priv;
1477
1478 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1479 struct drm_i915_gem_object,
1480 list);
1481 obj = obj_priv->obj;
1482
1483 /* If the seqno being retired doesn't match the oldest in the
1484 * list, then the oldest in the list must still be newer than
1485 * this seqno.
1486 */
1487 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1488 goto out;
de151cf6 1489
673a394b
EA
1490#if WATCH_LRU
1491 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1492 __func__, request->seqno, obj);
1493#endif
1494
ce44b0ea
EA
1495 if (obj->write_domain != 0)
1496 i915_gem_object_move_to_flushing(obj);
1497 else
673a394b 1498 i915_gem_object_move_to_inactive(obj);
673a394b 1499 }
5e118f41
CW
1500out:
1501 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1502}
1503
1504/**
1505 * Returns true if seq1 is later than seq2.
1506 */
1507static int
1508i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1509{
1510 return (int32_t)(seq1 - seq2) >= 0;
1511}
1512
1513uint32_t
1514i915_get_gem_seqno(struct drm_device *dev)
1515{
1516 drm_i915_private_t *dev_priv = dev->dev_private;
1517
1518 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1519}
1520
1521/**
1522 * This function clears the request list as sequence numbers are passed.
1523 */
1524void
1525i915_gem_retire_requests(struct drm_device *dev)
1526{
1527 drm_i915_private_t *dev_priv = dev->dev_private;
1528 uint32_t seqno;
1529
6c0594a3
KW
1530 if (!dev_priv->hw_status_page)
1531 return;
1532
673a394b
EA
1533 seqno = i915_get_gem_seqno(dev);
1534
1535 while (!list_empty(&dev_priv->mm.request_list)) {
1536 struct drm_i915_gem_request *request;
1537 uint32_t retiring_seqno;
1538
1539 request = list_first_entry(&dev_priv->mm.request_list,
1540 struct drm_i915_gem_request,
1541 list);
1542 retiring_seqno = request->seqno;
1543
1544 if (i915_seqno_passed(seqno, retiring_seqno) ||
1545 dev_priv->mm.wedged) {
1546 i915_gem_retire_request(dev, request);
1547
1548 list_del(&request->list);
1549 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1550 } else
1551 break;
1552 }
1553}
1554
1555void
1556i915_gem_retire_work_handler(struct work_struct *work)
1557{
1558 drm_i915_private_t *dev_priv;
1559 struct drm_device *dev;
1560
1561 dev_priv = container_of(work, drm_i915_private_t,
1562 mm.retire_work.work);
1563 dev = dev_priv->dev;
1564
1565 mutex_lock(&dev->struct_mutex);
1566 i915_gem_retire_requests(dev);
6dbe2772
KP
1567 if (!dev_priv->mm.suspended &&
1568 !list_empty(&dev_priv->mm.request_list))
673a394b
EA
1569 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1570 mutex_unlock(&dev->struct_mutex);
1571}
1572
1573/**
1574 * Waits for a sequence number to be signaled, and cleans up the
1575 * request and object lists appropriately for that event.
1576 */
3043c60c 1577static int
673a394b
EA
1578i915_wait_request(struct drm_device *dev, uint32_t seqno)
1579{
1580 drm_i915_private_t *dev_priv = dev->dev_private;
1581 int ret = 0;
1582
1583 BUG_ON(seqno == 0);
1584
1585 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1586 dev_priv->mm.waiting_gem_seqno = seqno;
1587 i915_user_irq_get(dev);
1588 ret = wait_event_interruptible(dev_priv->irq_queue,
1589 i915_seqno_passed(i915_get_gem_seqno(dev),
1590 seqno) ||
1591 dev_priv->mm.wedged);
1592 i915_user_irq_put(dev);
1593 dev_priv->mm.waiting_gem_seqno = 0;
1594 }
1595 if (dev_priv->mm.wedged)
1596 ret = -EIO;
1597
1598 if (ret && ret != -ERESTARTSYS)
1599 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1600 __func__, ret, seqno, i915_get_gem_seqno(dev));
1601
1602 /* Directly dispatch request retiring. While we have the work queue
1603 * to handle this, the waiter on a request often wants an associated
1604 * buffer to have made it to the inactive list, and we would need
1605 * a separate wait queue to handle that.
1606 */
1607 if (ret == 0)
1608 i915_gem_retire_requests(dev);
1609
1610 return ret;
1611}
1612
1613static void
1614i915_gem_flush(struct drm_device *dev,
1615 uint32_t invalidate_domains,
1616 uint32_t flush_domains)
1617{
1618 drm_i915_private_t *dev_priv = dev->dev_private;
1619 uint32_t cmd;
1620 RING_LOCALS;
1621
1622#if WATCH_EXEC
1623 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1624 invalidate_domains, flush_domains);
1625#endif
1626
1627 if (flush_domains & I915_GEM_DOMAIN_CPU)
1628 drm_agp_chipset_flush(dev);
1629
1630 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1631 I915_GEM_DOMAIN_GTT)) {
1632 /*
1633 * read/write caches:
1634 *
1635 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1636 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1637 * also flushed at 2d versus 3d pipeline switches.
1638 *
1639 * read-only caches:
1640 *
1641 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1642 * MI_READ_FLUSH is set, and is always flushed on 965.
1643 *
1644 * I915_GEM_DOMAIN_COMMAND may not exist?
1645 *
1646 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1647 * invalidated when MI_EXE_FLUSH is set.
1648 *
1649 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1650 * invalidated with every MI_FLUSH.
1651 *
1652 * TLBs:
1653 *
1654 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1655 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1656 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1657 * are flushed at any MI_FLUSH.
1658 */
1659
1660 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1661 if ((invalidate_domains|flush_domains) &
1662 I915_GEM_DOMAIN_RENDER)
1663 cmd &= ~MI_NO_WRITE_FLUSH;
1664 if (!IS_I965G(dev)) {
1665 /*
1666 * On the 965, the sampler cache always gets flushed
1667 * and this bit is reserved.
1668 */
1669 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1670 cmd |= MI_READ_FLUSH;
1671 }
1672 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1673 cmd |= MI_EXE_FLUSH;
1674
1675#if WATCH_EXEC
1676 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1677#endif
1678 BEGIN_LP_RING(2);
1679 OUT_RING(cmd);
1680 OUT_RING(0); /* noop */
1681 ADVANCE_LP_RING();
1682 }
1683}
1684
1685/**
1686 * Ensures that all rendering to the object has completed and the object is
1687 * safe to unbind from the GTT or access from the CPU.
1688 */
1689static int
1690i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1691{
1692 struct drm_device *dev = obj->dev;
1693 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1694 int ret;
1695
e47c68e9
EA
1696 /* This function only exists to support waiting for existing rendering,
1697 * not for emitting required flushes.
673a394b 1698 */
e47c68e9 1699 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1700
1701 /* If there is rendering queued on the buffer being evicted, wait for
1702 * it.
1703 */
1704 if (obj_priv->active) {
1705#if WATCH_BUF
1706 DRM_INFO("%s: object %p wait for seqno %08x\n",
1707 __func__, obj, obj_priv->last_rendering_seqno);
1708#endif
1709 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1710 if (ret != 0)
1711 return ret;
1712 }
1713
1714 return 0;
1715}
1716
1717/**
1718 * Unbinds an object from the GTT aperture.
1719 */
0f973f27 1720int
673a394b
EA
1721i915_gem_object_unbind(struct drm_gem_object *obj)
1722{
1723 struct drm_device *dev = obj->dev;
1724 struct drm_i915_gem_object *obj_priv = obj->driver_private;
de151cf6 1725 loff_t offset;
673a394b
EA
1726 int ret = 0;
1727
1728#if WATCH_BUF
1729 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1730 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1731#endif
1732 if (obj_priv->gtt_space == NULL)
1733 return 0;
1734
1735 if (obj_priv->pin_count != 0) {
1736 DRM_ERROR("Attempting to unbind pinned buffer\n");
1737 return -EINVAL;
1738 }
1739
673a394b
EA
1740 /* Move the object to the CPU domain to ensure that
1741 * any possible CPU writes while it's not in the GTT
1742 * are flushed when we go to remap it. This will
1743 * also ensure that all pending GPU writes are finished
1744 * before we unbind.
1745 */
e47c68e9 1746 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b 1747 if (ret) {
e47c68e9
EA
1748 if (ret != -ERESTARTSYS)
1749 DRM_ERROR("set_domain failed: %d\n", ret);
673a394b
EA
1750 return ret;
1751 }
1752
1753 if (obj_priv->agp_mem != NULL) {
1754 drm_unbind_agp(obj_priv->agp_mem);
1755 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1756 obj_priv->agp_mem = NULL;
1757 }
1758
1759 BUG_ON(obj_priv->active);
1760
de151cf6
JB
1761 /* blow away mappings if mapped through GTT */
1762 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
79e53945
JB
1763 if (dev->dev_mapping)
1764 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
de151cf6
JB
1765
1766 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1767 i915_gem_clear_fence_reg(obj);
1768
856fa198 1769 i915_gem_object_put_pages(obj);
673a394b
EA
1770
1771 if (obj_priv->gtt_space) {
1772 atomic_dec(&dev->gtt_count);
1773 atomic_sub(obj->size, &dev->gtt_memory);
1774
1775 drm_mm_put_block(obj_priv->gtt_space);
1776 obj_priv->gtt_space = NULL;
1777 }
1778
1779 /* Remove ourselves from the LRU list if present. */
1780 if (!list_empty(&obj_priv->list))
1781 list_del_init(&obj_priv->list);
1782
1783 return 0;
1784}
1785
1786static int
1787i915_gem_evict_something(struct drm_device *dev)
1788{
1789 drm_i915_private_t *dev_priv = dev->dev_private;
1790 struct drm_gem_object *obj;
1791 struct drm_i915_gem_object *obj_priv;
1792 int ret = 0;
1793
1794 for (;;) {
1795 /* If there's an inactive buffer available now, grab it
1796 * and be done.
1797 */
1798 if (!list_empty(&dev_priv->mm.inactive_list)) {
1799 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1800 struct drm_i915_gem_object,
1801 list);
1802 obj = obj_priv->obj;
1803 BUG_ON(obj_priv->pin_count != 0);
1804#if WATCH_LRU
1805 DRM_INFO("%s: evicting %p\n", __func__, obj);
1806#endif
1807 BUG_ON(obj_priv->active);
1808
1809 /* Wait on the rendering and unbind the buffer. */
1810 ret = i915_gem_object_unbind(obj);
1811 break;
1812 }
1813
1814 /* If we didn't get anything, but the ring is still processing
1815 * things, wait for one of those things to finish and hopefully
1816 * leave us a buffer to evict.
1817 */
1818 if (!list_empty(&dev_priv->mm.request_list)) {
1819 struct drm_i915_gem_request *request;
1820
1821 request = list_first_entry(&dev_priv->mm.request_list,
1822 struct drm_i915_gem_request,
1823 list);
1824
1825 ret = i915_wait_request(dev, request->seqno);
1826 if (ret)
1827 break;
1828
1829 /* if waiting caused an object to become inactive,
1830 * then loop around and wait for it. Otherwise, we
1831 * assume that waiting freed and unbound something,
1832 * so there should now be some space in the GTT
1833 */
1834 if (!list_empty(&dev_priv->mm.inactive_list))
1835 continue;
1836 break;
1837 }
1838
1839 /* If we didn't have anything on the request list but there
1840 * are buffers awaiting a flush, emit one and try again.
1841 * When we wait on it, those buffers waiting for that flush
1842 * will get moved to inactive.
1843 */
1844 if (!list_empty(&dev_priv->mm.flushing_list)) {
1845 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1846 struct drm_i915_gem_object,
1847 list);
1848 obj = obj_priv->obj;
1849
1850 i915_gem_flush(dev,
1851 obj->write_domain,
1852 obj->write_domain);
1853 i915_add_request(dev, obj->write_domain);
1854
1855 obj = NULL;
1856 continue;
1857 }
1858
1859 DRM_ERROR("inactive empty %d request empty %d "
1860 "flushing empty %d\n",
1861 list_empty(&dev_priv->mm.inactive_list),
1862 list_empty(&dev_priv->mm.request_list),
1863 list_empty(&dev_priv->mm.flushing_list));
1864 /* If we didn't do any of the above, there's nothing to be done
1865 * and we just can't fit it in.
1866 */
1867 return -ENOMEM;
1868 }
1869 return ret;
1870}
1871
ac94a962
KP
1872static int
1873i915_gem_evict_everything(struct drm_device *dev)
1874{
1875 int ret;
1876
1877 for (;;) {
1878 ret = i915_gem_evict_something(dev);
1879 if (ret != 0)
1880 break;
1881 }
15c35334
OA
1882 if (ret == -ENOMEM)
1883 return 0;
ac94a962
KP
1884 return ret;
1885}
1886
673a394b 1887static int
856fa198 1888i915_gem_object_get_pages(struct drm_gem_object *obj)
673a394b
EA
1889{
1890 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1891 int page_count, i;
1892 struct address_space *mapping;
1893 struct inode *inode;
1894 struct page *page;
1895 int ret;
1896
856fa198 1897 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
1898 return 0;
1899
1900 /* Get the list of pages out of our struct file. They'll be pinned
1901 * at this point until we release them.
1902 */
1903 page_count = obj->size / PAGE_SIZE;
856fa198
EA
1904 BUG_ON(obj_priv->pages != NULL);
1905 obj_priv->pages = drm_calloc(page_count, sizeof(struct page *),
1906 DRM_MEM_DRIVER);
1907 if (obj_priv->pages == NULL) {
673a394b 1908 DRM_ERROR("Faled to allocate page list\n");
856fa198 1909 obj_priv->pages_refcount--;
673a394b
EA
1910 return -ENOMEM;
1911 }
1912
1913 inode = obj->filp->f_path.dentry->d_inode;
1914 mapping = inode->i_mapping;
1915 for (i = 0; i < page_count; i++) {
1916 page = read_mapping_page(mapping, i, NULL);
1917 if (IS_ERR(page)) {
1918 ret = PTR_ERR(page);
1919 DRM_ERROR("read_mapping_page failed: %d\n", ret);
856fa198 1920 i915_gem_object_put_pages(obj);
673a394b
EA
1921 return ret;
1922 }
856fa198 1923 obj_priv->pages[i] = page;
673a394b
EA
1924 }
1925 return 0;
1926}
1927
de151cf6
JB
1928static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1929{
1930 struct drm_gem_object *obj = reg->obj;
1931 struct drm_device *dev = obj->dev;
1932 drm_i915_private_t *dev_priv = dev->dev_private;
1933 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1934 int regnum = obj_priv->fence_reg;
1935 uint64_t val;
1936
1937 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1938 0xfffff000) << 32;
1939 val |= obj_priv->gtt_offset & 0xfffff000;
1940 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1941 if (obj_priv->tiling_mode == I915_TILING_Y)
1942 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1943 val |= I965_FENCE_REG_VALID;
1944
1945 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1946}
1947
1948static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1949{
1950 struct drm_gem_object *obj = reg->obj;
1951 struct drm_device *dev = obj->dev;
1952 drm_i915_private_t *dev_priv = dev->dev_private;
1953 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1954 int regnum = obj_priv->fence_reg;
0f973f27 1955 int tile_width;
dc529a4f 1956 uint32_t fence_reg, val;
de151cf6
JB
1957 uint32_t pitch_val;
1958
1959 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1960 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 1961 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 1962 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
1963 return;
1964 }
1965
0f973f27
JB
1966 if (obj_priv->tiling_mode == I915_TILING_Y &&
1967 HAS_128_BYTE_Y_TILING(dev))
1968 tile_width = 128;
de151cf6 1969 else
0f973f27
JB
1970 tile_width = 512;
1971
1972 /* Note: pitch better be a power of two tile widths */
1973 pitch_val = obj_priv->stride / tile_width;
1974 pitch_val = ffs(pitch_val) - 1;
de151cf6
JB
1975
1976 val = obj_priv->gtt_offset;
1977 if (obj_priv->tiling_mode == I915_TILING_Y)
1978 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1979 val |= I915_FENCE_SIZE_BITS(obj->size);
1980 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1981 val |= I830_FENCE_REG_VALID;
1982
dc529a4f
EA
1983 if (regnum < 8)
1984 fence_reg = FENCE_REG_830_0 + (regnum * 4);
1985 else
1986 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
1987 I915_WRITE(fence_reg, val);
de151cf6
JB
1988}
1989
1990static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1991{
1992 struct drm_gem_object *obj = reg->obj;
1993 struct drm_device *dev = obj->dev;
1994 drm_i915_private_t *dev_priv = dev->dev_private;
1995 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1996 int regnum = obj_priv->fence_reg;
1997 uint32_t val;
1998 uint32_t pitch_val;
8d7773a3 1999 uint32_t fence_size_bits;
de151cf6 2000
8d7773a3 2001 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2002 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2003 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2004 __func__, obj_priv->gtt_offset);
de151cf6
JB
2005 return;
2006 }
2007
2008 pitch_val = (obj_priv->stride / 128) - 1;
8d7773a3 2009 WARN_ON(pitch_val & ~0x0000000f);
de151cf6
JB
2010 val = obj_priv->gtt_offset;
2011 if (obj_priv->tiling_mode == I915_TILING_Y)
2012 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2013 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2014 WARN_ON(fence_size_bits & ~0x00000f00);
2015 val |= fence_size_bits;
de151cf6
JB
2016 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2017 val |= I830_FENCE_REG_VALID;
2018
2019 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2020
2021}
2022
2023/**
2024 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2025 * @obj: object to map through a fence reg
0f973f27 2026 * @write: object is about to be written
de151cf6
JB
2027 *
2028 * When mapping objects through the GTT, userspace wants to be able to write
2029 * to them without having to worry about swizzling if the object is tiled.
2030 *
2031 * This function walks the fence regs looking for a free one for @obj,
2032 * stealing one if it can't find any.
2033 *
2034 * It then sets up the reg based on the object's properties: address, pitch
2035 * and tiling format.
2036 */
d9ddcb96 2037static int
0f973f27 2038i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
de151cf6
JB
2039{
2040 struct drm_device *dev = obj->dev;
79e53945 2041 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
2042 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2043 struct drm_i915_fence_reg *reg = NULL;
fc7170ba
CW
2044 struct drm_i915_gem_object *old_obj_priv = NULL;
2045 int i, ret, avail;
de151cf6
JB
2046
2047 switch (obj_priv->tiling_mode) {
2048 case I915_TILING_NONE:
2049 WARN(1, "allocating a fence for non-tiled object?\n");
2050 break;
2051 case I915_TILING_X:
0f973f27
JB
2052 if (!obj_priv->stride)
2053 return -EINVAL;
2054 WARN((obj_priv->stride & (512 - 1)),
2055 "object 0x%08x is X tiled but has non-512B pitch\n",
2056 obj_priv->gtt_offset);
de151cf6
JB
2057 break;
2058 case I915_TILING_Y:
0f973f27
JB
2059 if (!obj_priv->stride)
2060 return -EINVAL;
2061 WARN((obj_priv->stride & (128 - 1)),
2062 "object 0x%08x is Y tiled but has non-128B pitch\n",
2063 obj_priv->gtt_offset);
de151cf6
JB
2064 break;
2065 }
2066
2067 /* First try to find a free reg */
9b2412f9 2068try_again:
fc7170ba 2069 avail = 0;
de151cf6
JB
2070 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2071 reg = &dev_priv->fence_regs[i];
2072 if (!reg->obj)
2073 break;
fc7170ba
CW
2074
2075 old_obj_priv = reg->obj->driver_private;
2076 if (!old_obj_priv->pin_count)
2077 avail++;
de151cf6
JB
2078 }
2079
2080 /* None available, try to steal one or wait for a user to finish */
2081 if (i == dev_priv->num_fence_regs) {
d7619c4b 2082 uint32_t seqno = dev_priv->mm.next_gem_seqno;
de151cf6
JB
2083 loff_t offset;
2084
fc7170ba
CW
2085 if (avail == 0)
2086 return -ENOMEM;
2087
de151cf6
JB
2088 for (i = dev_priv->fence_reg_start;
2089 i < dev_priv->num_fence_regs; i++) {
d7619c4b
CW
2090 uint32_t this_seqno;
2091
de151cf6
JB
2092 reg = &dev_priv->fence_regs[i];
2093 old_obj_priv = reg->obj->driver_private;
d7619c4b
CW
2094
2095 if (old_obj_priv->pin_count)
2096 continue;
2097
2098 /* i915 uses fences for GPU access to tiled buffers */
2099 if (IS_I965G(dev) || !old_obj_priv->active)
de151cf6 2100 break;
d7619c4b
CW
2101
2102 /* find the seqno of the first available fence */
2103 this_seqno = old_obj_priv->last_rendering_seqno;
2104 if (this_seqno != 0 &&
2105 reg->obj->write_domain == 0 &&
2106 i915_seqno_passed(seqno, this_seqno))
2107 seqno = this_seqno;
de151cf6
JB
2108 }
2109
2110 /*
2111 * Now things get ugly... we have to wait for one of the
2112 * objects to finish before trying again.
2113 */
2114 if (i == dev_priv->num_fence_regs) {
d7619c4b
CW
2115 if (seqno == dev_priv->mm.next_gem_seqno) {
2116 i915_gem_flush(dev,
2117 I915_GEM_GPU_DOMAINS,
2118 I915_GEM_GPU_DOMAINS);
2119 seqno = i915_add_request(dev,
2120 I915_GEM_GPU_DOMAINS);
2121 if (seqno == 0)
2122 return -ENOMEM;
de151cf6 2123 }
d7619c4b
CW
2124
2125 ret = i915_wait_request(dev, seqno);
2126 if (ret)
2127 return ret;
de151cf6
JB
2128 goto try_again;
2129 }
2130
d7619c4b
CW
2131 BUG_ON(old_obj_priv->active ||
2132 (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
2133
de151cf6
JB
2134 /*
2135 * Zap this virtual mapping so we can set up a fence again
2136 * for this object next time we need it.
2137 */
2138 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
79e53945
JB
2139 if (dev->dev_mapping)
2140 unmap_mapping_range(dev->dev_mapping, offset,
2141 reg->obj->size, 1);
de151cf6
JB
2142 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2143 }
2144
2145 obj_priv->fence_reg = i;
2146 reg->obj = obj;
2147
2148 if (IS_I965G(dev))
2149 i965_write_fence_reg(reg);
2150 else if (IS_I9XX(dev))
2151 i915_write_fence_reg(reg);
2152 else
2153 i830_write_fence_reg(reg);
d9ddcb96
EA
2154
2155 return 0;
de151cf6
JB
2156}
2157
2158/**
2159 * i915_gem_clear_fence_reg - clear out fence register info
2160 * @obj: object to clear
2161 *
2162 * Zeroes out the fence register itself and clears out the associated
2163 * data structures in dev_priv and obj_priv.
2164 */
2165static void
2166i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2167{
2168 struct drm_device *dev = obj->dev;
79e53945 2169 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2170 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2171
2172 if (IS_I965G(dev))
2173 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
dc529a4f
EA
2174 else {
2175 uint32_t fence_reg;
2176
2177 if (obj_priv->fence_reg < 8)
2178 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2179 else
2180 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2181 8) * 4;
2182
2183 I915_WRITE(fence_reg, 0);
2184 }
de151cf6
JB
2185
2186 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2187 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2188}
2189
673a394b
EA
2190/**
2191 * Finds free space in the GTT aperture and binds the object there.
2192 */
2193static int
2194i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2195{
2196 struct drm_device *dev = obj->dev;
2197 drm_i915_private_t *dev_priv = dev->dev_private;
2198 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2199 struct drm_mm_node *free_space;
2200 int page_count, ret;
2201
9bb2d6f9
EA
2202 if (dev_priv->mm.suspended)
2203 return -EBUSY;
673a394b 2204 if (alignment == 0)
0f973f27 2205 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2206 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2207 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2208 return -EINVAL;
2209 }
2210
2211 search_free:
2212 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2213 obj->size, alignment, 0);
2214 if (free_space != NULL) {
2215 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2216 alignment);
2217 if (obj_priv->gtt_space != NULL) {
2218 obj_priv->gtt_space->private = obj;
2219 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2220 }
2221 }
2222 if (obj_priv->gtt_space == NULL) {
5e118f41
CW
2223 bool lists_empty;
2224
673a394b
EA
2225 /* If the gtt is empty and we're still having trouble
2226 * fitting our object in, we're out of memory.
2227 */
2228#if WATCH_LRU
2229 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2230#endif
5e118f41
CW
2231 spin_lock(&dev_priv->mm.active_list_lock);
2232 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2233 list_empty(&dev_priv->mm.flushing_list) &&
2234 list_empty(&dev_priv->mm.active_list));
2235 spin_unlock(&dev_priv->mm.active_list_lock);
2236 if (lists_empty) {
673a394b
EA
2237 DRM_ERROR("GTT full, but LRU list empty\n");
2238 return -ENOMEM;
2239 }
2240
2241 ret = i915_gem_evict_something(dev);
2242 if (ret != 0) {
ac94a962
KP
2243 if (ret != -ERESTARTSYS)
2244 DRM_ERROR("Failed to evict a buffer %d\n", ret);
673a394b
EA
2245 return ret;
2246 }
2247 goto search_free;
2248 }
2249
2250#if WATCH_BUF
2251 DRM_INFO("Binding object of size %d at 0x%08x\n",
2252 obj->size, obj_priv->gtt_offset);
2253#endif
856fa198 2254 ret = i915_gem_object_get_pages(obj);
673a394b
EA
2255 if (ret) {
2256 drm_mm_put_block(obj_priv->gtt_space);
2257 obj_priv->gtt_space = NULL;
2258 return ret;
2259 }
2260
2261 page_count = obj->size / PAGE_SIZE;
2262 /* Create an AGP memory structure pointing at our pages, and bind it
2263 * into the GTT.
2264 */
2265 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2266 obj_priv->pages,
673a394b 2267 page_count,
ba1eb1d8
KP
2268 obj_priv->gtt_offset,
2269 obj_priv->agp_type);
673a394b 2270 if (obj_priv->agp_mem == NULL) {
856fa198 2271 i915_gem_object_put_pages(obj);
673a394b
EA
2272 drm_mm_put_block(obj_priv->gtt_space);
2273 obj_priv->gtt_space = NULL;
2274 return -ENOMEM;
2275 }
2276 atomic_inc(&dev->gtt_count);
2277 atomic_add(obj->size, &dev->gtt_memory);
2278
2279 /* Assert that the object is not currently in any GPU domain. As it
2280 * wasn't in the GTT, there shouldn't be any way it could have been in
2281 * a GPU cache
2282 */
2283 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2284 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2285
2286 return 0;
2287}
2288
2289void
2290i915_gem_clflush_object(struct drm_gem_object *obj)
2291{
2292 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2293
2294 /* If we don't have a page list set up, then we're not pinned
2295 * to GPU, and we can ignore the cache flush because it'll happen
2296 * again at bind time.
2297 */
856fa198 2298 if (obj_priv->pages == NULL)
673a394b
EA
2299 return;
2300
856fa198 2301 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2302}
2303
e47c68e9
EA
2304/** Flushes any GPU write domain for the object if it's dirty. */
2305static void
2306i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2307{
2308 struct drm_device *dev = obj->dev;
2309 uint32_t seqno;
2310
2311 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2312 return;
2313
2314 /* Queue the GPU write cache flushing we need. */
2315 i915_gem_flush(dev, 0, obj->write_domain);
2316 seqno = i915_add_request(dev, obj->write_domain);
2317 obj->write_domain = 0;
2318 i915_gem_object_move_to_active(obj, seqno);
2319}
2320
2321/** Flushes the GTT write domain for the object if it's dirty. */
2322static void
2323i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2324{
2325 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2326 return;
2327
2328 /* No actual flushing is required for the GTT write domain. Writes
2329 * to it immediately go to main memory as far as we know, so there's
2330 * no chipset flush. It also doesn't land in render cache.
2331 */
2332 obj->write_domain = 0;
2333}
2334
2335/** Flushes the CPU write domain for the object if it's dirty. */
2336static void
2337i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2338{
2339 struct drm_device *dev = obj->dev;
2340
2341 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2342 return;
2343
2344 i915_gem_clflush_object(obj);
2345 drm_agp_chipset_flush(dev);
2346 obj->write_domain = 0;
2347}
2348
2ef7eeaa
EA
2349/**
2350 * Moves a single object to the GTT read, and possibly write domain.
2351 *
2352 * This function returns when the move is complete, including waiting on
2353 * flushes to occur.
2354 */
79e53945 2355int
2ef7eeaa
EA
2356i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2357{
2ef7eeaa 2358 struct drm_i915_gem_object *obj_priv = obj->driver_private;
e47c68e9 2359 int ret;
2ef7eeaa 2360
02354392
EA
2361 /* Not valid to be called on unbound objects. */
2362 if (obj_priv->gtt_space == NULL)
2363 return -EINVAL;
2364
e47c68e9
EA
2365 i915_gem_object_flush_gpu_write_domain(obj);
2366 /* Wait on any GPU rendering and flushing to occur. */
2367 ret = i915_gem_object_wait_rendering(obj);
2368 if (ret != 0)
2369 return ret;
2370
2371 /* If we're writing through the GTT domain, then CPU and GPU caches
2372 * will need to be invalidated at next use.
2ef7eeaa 2373 */
e47c68e9
EA
2374 if (write)
2375 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2376
e47c68e9 2377 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2378
e47c68e9
EA
2379 /* It should now be out of any other write domains, and we can update
2380 * the domain values for our changes.
2381 */
2382 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2383 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2384 if (write) {
2385 obj->write_domain = I915_GEM_DOMAIN_GTT;
2386 obj_priv->dirty = 1;
2ef7eeaa
EA
2387 }
2388
e47c68e9
EA
2389 return 0;
2390}
2391
2392/**
2393 * Moves a single object to the CPU read, and possibly write domain.
2394 *
2395 * This function returns when the move is complete, including waiting on
2396 * flushes to occur.
2397 */
2398static int
2399i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2400{
e47c68e9
EA
2401 int ret;
2402
2403 i915_gem_object_flush_gpu_write_domain(obj);
2ef7eeaa 2404 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2405 ret = i915_gem_object_wait_rendering(obj);
2406 if (ret != 0)
2407 return ret;
2ef7eeaa 2408
e47c68e9 2409 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2410
e47c68e9
EA
2411 /* If we have a partially-valid cache of the object in the CPU,
2412 * finish invalidating it and free the per-page flags.
2ef7eeaa 2413 */
e47c68e9 2414 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2415
e47c68e9
EA
2416 /* Flush the CPU cache if it's still invalid. */
2417 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2418 i915_gem_clflush_object(obj);
2ef7eeaa 2419
e47c68e9 2420 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2421 }
2422
2423 /* It should now be out of any other write domains, and we can update
2424 * the domain values for our changes.
2425 */
e47c68e9
EA
2426 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2427
2428 /* If we're writing through the CPU, then the GPU read domains will
2429 * need to be invalidated at next use.
2430 */
2431 if (write) {
2432 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2433 obj->write_domain = I915_GEM_DOMAIN_CPU;
2434 }
2ef7eeaa
EA
2435
2436 return 0;
2437}
2438
673a394b
EA
2439/*
2440 * Set the next domain for the specified object. This
2441 * may not actually perform the necessary flushing/invaliding though,
2442 * as that may want to be batched with other set_domain operations
2443 *
2444 * This is (we hope) the only really tricky part of gem. The goal
2445 * is fairly simple -- track which caches hold bits of the object
2446 * and make sure they remain coherent. A few concrete examples may
2447 * help to explain how it works. For shorthand, we use the notation
2448 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2449 * a pair of read and write domain masks.
2450 *
2451 * Case 1: the batch buffer
2452 *
2453 * 1. Allocated
2454 * 2. Written by CPU
2455 * 3. Mapped to GTT
2456 * 4. Read by GPU
2457 * 5. Unmapped from GTT
2458 * 6. Freed
2459 *
2460 * Let's take these a step at a time
2461 *
2462 * 1. Allocated
2463 * Pages allocated from the kernel may still have
2464 * cache contents, so we set them to (CPU, CPU) always.
2465 * 2. Written by CPU (using pwrite)
2466 * The pwrite function calls set_domain (CPU, CPU) and
2467 * this function does nothing (as nothing changes)
2468 * 3. Mapped by GTT
2469 * This function asserts that the object is not
2470 * currently in any GPU-based read or write domains
2471 * 4. Read by GPU
2472 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2473 * As write_domain is zero, this function adds in the
2474 * current read domains (CPU+COMMAND, 0).
2475 * flush_domains is set to CPU.
2476 * invalidate_domains is set to COMMAND
2477 * clflush is run to get data out of the CPU caches
2478 * then i915_dev_set_domain calls i915_gem_flush to
2479 * emit an MI_FLUSH and drm_agp_chipset_flush
2480 * 5. Unmapped from GTT
2481 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2482 * flush_domains and invalidate_domains end up both zero
2483 * so no flushing/invalidating happens
2484 * 6. Freed
2485 * yay, done
2486 *
2487 * Case 2: The shared render buffer
2488 *
2489 * 1. Allocated
2490 * 2. Mapped to GTT
2491 * 3. Read/written by GPU
2492 * 4. set_domain to (CPU,CPU)
2493 * 5. Read/written by CPU
2494 * 6. Read/written by GPU
2495 *
2496 * 1. Allocated
2497 * Same as last example, (CPU, CPU)
2498 * 2. Mapped to GTT
2499 * Nothing changes (assertions find that it is not in the GPU)
2500 * 3. Read/written by GPU
2501 * execbuffer calls set_domain (RENDER, RENDER)
2502 * flush_domains gets CPU
2503 * invalidate_domains gets GPU
2504 * clflush (obj)
2505 * MI_FLUSH and drm_agp_chipset_flush
2506 * 4. set_domain (CPU, CPU)
2507 * flush_domains gets GPU
2508 * invalidate_domains gets CPU
2509 * wait_rendering (obj) to make sure all drawing is complete.
2510 * This will include an MI_FLUSH to get the data from GPU
2511 * to memory
2512 * clflush (obj) to invalidate the CPU cache
2513 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2514 * 5. Read/written by CPU
2515 * cache lines are loaded and dirtied
2516 * 6. Read written by GPU
2517 * Same as last GPU access
2518 *
2519 * Case 3: The constant buffer
2520 *
2521 * 1. Allocated
2522 * 2. Written by CPU
2523 * 3. Read by GPU
2524 * 4. Updated (written) by CPU again
2525 * 5. Read by GPU
2526 *
2527 * 1. Allocated
2528 * (CPU, CPU)
2529 * 2. Written by CPU
2530 * (CPU, CPU)
2531 * 3. Read by GPU
2532 * (CPU+RENDER, 0)
2533 * flush_domains = CPU
2534 * invalidate_domains = RENDER
2535 * clflush (obj)
2536 * MI_FLUSH
2537 * drm_agp_chipset_flush
2538 * 4. Updated (written) by CPU again
2539 * (CPU, CPU)
2540 * flush_domains = 0 (no previous write domain)
2541 * invalidate_domains = 0 (no new read domains)
2542 * 5. Read by GPU
2543 * (CPU+RENDER, 0)
2544 * flush_domains = CPU
2545 * invalidate_domains = RENDER
2546 * clflush (obj)
2547 * MI_FLUSH
2548 * drm_agp_chipset_flush
2549 */
c0d90829 2550static void
8b0e378a 2551i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2552{
2553 struct drm_device *dev = obj->dev;
2554 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2555 uint32_t invalidate_domains = 0;
2556 uint32_t flush_domains = 0;
e47c68e9 2557
8b0e378a
EA
2558 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2559 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b
EA
2560
2561#if WATCH_BUF
2562 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2563 __func__, obj,
8b0e378a
EA
2564 obj->read_domains, obj->pending_read_domains,
2565 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2566#endif
2567 /*
2568 * If the object isn't moving to a new write domain,
2569 * let the object stay in multiple read domains
2570 */
8b0e378a
EA
2571 if (obj->pending_write_domain == 0)
2572 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2573 else
2574 obj_priv->dirty = 1;
2575
2576 /*
2577 * Flush the current write domain if
2578 * the new read domains don't match. Invalidate
2579 * any read domains which differ from the old
2580 * write domain
2581 */
8b0e378a
EA
2582 if (obj->write_domain &&
2583 obj->write_domain != obj->pending_read_domains) {
673a394b 2584 flush_domains |= obj->write_domain;
8b0e378a
EA
2585 invalidate_domains |=
2586 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2587 }
2588 /*
2589 * Invalidate any read caches which may have
2590 * stale data. That is, any new read domains.
2591 */
8b0e378a 2592 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
2593 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2594#if WATCH_BUF
2595 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2596 __func__, flush_domains, invalidate_domains);
2597#endif
673a394b
EA
2598 i915_gem_clflush_object(obj);
2599 }
2600
efbeed96
EA
2601 /* The actual obj->write_domain will be updated with
2602 * pending_write_domain after we emit the accumulated flush for all
2603 * of our domain changes in execbuffers (which clears objects'
2604 * write_domains). So if we have a current write domain that we
2605 * aren't changing, set pending_write_domain to that.
2606 */
2607 if (flush_domains == 0 && obj->pending_write_domain == 0)
2608 obj->pending_write_domain = obj->write_domain;
8b0e378a 2609 obj->read_domains = obj->pending_read_domains;
673a394b
EA
2610
2611 dev->invalidate_domains |= invalidate_domains;
2612 dev->flush_domains |= flush_domains;
2613#if WATCH_BUF
2614 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2615 __func__,
2616 obj->read_domains, obj->write_domain,
2617 dev->invalidate_domains, dev->flush_domains);
2618#endif
673a394b
EA
2619}
2620
2621/**
e47c68e9 2622 * Moves the object from a partially CPU read to a full one.
673a394b 2623 *
e47c68e9
EA
2624 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2625 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 2626 */
e47c68e9
EA
2627static void
2628i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b
EA
2629{
2630 struct drm_i915_gem_object *obj_priv = obj->driver_private;
673a394b 2631
e47c68e9
EA
2632 if (!obj_priv->page_cpu_valid)
2633 return;
2634
2635 /* If we're partially in the CPU read domain, finish moving it in.
2636 */
2637 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2638 int i;
2639
2640 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2641 if (obj_priv->page_cpu_valid[i])
2642 continue;
856fa198 2643 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 2644 }
e47c68e9
EA
2645 }
2646
2647 /* Free the page_cpu_valid mappings which are now stale, whether
2648 * or not we've got I915_GEM_DOMAIN_CPU.
2649 */
2650 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2651 DRM_MEM_DRIVER);
2652 obj_priv->page_cpu_valid = NULL;
2653}
2654
2655/**
2656 * Set the CPU read domain on a range of the object.
2657 *
2658 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2659 * not entirely valid. The page_cpu_valid member of the object flags which
2660 * pages have been flushed, and will be respected by
2661 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2662 * of the whole object.
2663 *
2664 * This function returns when the move is complete, including waiting on
2665 * flushes to occur.
2666 */
2667static int
2668i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2669 uint64_t offset, uint64_t size)
2670{
2671 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2672 int i, ret;
673a394b 2673
e47c68e9
EA
2674 if (offset == 0 && size == obj->size)
2675 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 2676
e47c68e9
EA
2677 i915_gem_object_flush_gpu_write_domain(obj);
2678 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 2679 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 2680 if (ret != 0)
6a47baa6 2681 return ret;
e47c68e9
EA
2682 i915_gem_object_flush_gtt_write_domain(obj);
2683
2684 /* If we're already fully in the CPU read domain, we're done. */
2685 if (obj_priv->page_cpu_valid == NULL &&
2686 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2687 return 0;
673a394b 2688
e47c68e9
EA
2689 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2690 * newly adding I915_GEM_DOMAIN_CPU
2691 */
673a394b
EA
2692 if (obj_priv->page_cpu_valid == NULL) {
2693 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2694 DRM_MEM_DRIVER);
e47c68e9
EA
2695 if (obj_priv->page_cpu_valid == NULL)
2696 return -ENOMEM;
2697 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2698 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
2699
2700 /* Flush the cache on any pages that are still invalid from the CPU's
2701 * perspective.
2702 */
e47c68e9
EA
2703 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2704 i++) {
673a394b
EA
2705 if (obj_priv->page_cpu_valid[i])
2706 continue;
2707
856fa198 2708 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
2709
2710 obj_priv->page_cpu_valid[i] = 1;
2711 }
2712
e47c68e9
EA
2713 /* It should now be out of any other write domains, and we can update
2714 * the domain values for our changes.
2715 */
2716 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2717
2718 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2719
673a394b
EA
2720 return 0;
2721}
2722
673a394b
EA
2723/**
2724 * Pin an object to the GTT and evaluate the relocations landing in it.
2725 */
2726static int
2727i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2728 struct drm_file *file_priv,
40a5f0de
EA
2729 struct drm_i915_gem_exec_object *entry,
2730 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
2731{
2732 struct drm_device *dev = obj->dev;
0839ccb8 2733 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
2734 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2735 int i, ret;
0839ccb8 2736 void __iomem *reloc_page;
673a394b
EA
2737
2738 /* Choose the GTT offset for our buffer and put it there. */
2739 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2740 if (ret)
2741 return ret;
2742
2743 entry->offset = obj_priv->gtt_offset;
2744
673a394b
EA
2745 /* Apply the relocations, using the GTT aperture to avoid cache
2746 * flushing requirements.
2747 */
2748 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 2749 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
2750 struct drm_gem_object *target_obj;
2751 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
2752 uint32_t reloc_val, reloc_offset;
2753 uint32_t __iomem *reloc_entry;
673a394b 2754
673a394b 2755 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 2756 reloc->target_handle);
673a394b
EA
2757 if (target_obj == NULL) {
2758 i915_gem_object_unpin(obj);
2759 return -EBADF;
2760 }
2761 target_obj_priv = target_obj->driver_private;
2762
2763 /* The target buffer should have appeared before us in the
2764 * exec_object list, so it should have a GTT space bound by now.
2765 */
2766 if (target_obj_priv->gtt_space == NULL) {
2767 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 2768 reloc->target_handle);
673a394b
EA
2769 drm_gem_object_unreference(target_obj);
2770 i915_gem_object_unpin(obj);
2771 return -EINVAL;
2772 }
2773
40a5f0de 2774 if (reloc->offset > obj->size - 4) {
673a394b
EA
2775 DRM_ERROR("Relocation beyond object bounds: "
2776 "obj %p target %d offset %d size %d.\n",
40a5f0de
EA
2777 obj, reloc->target_handle,
2778 (int) reloc->offset, (int) obj->size);
673a394b
EA
2779 drm_gem_object_unreference(target_obj);
2780 i915_gem_object_unpin(obj);
2781 return -EINVAL;
2782 }
40a5f0de 2783 if (reloc->offset & 3) {
673a394b
EA
2784 DRM_ERROR("Relocation not 4-byte aligned: "
2785 "obj %p target %d offset %d.\n",
40a5f0de
EA
2786 obj, reloc->target_handle,
2787 (int) reloc->offset);
673a394b
EA
2788 drm_gem_object_unreference(target_obj);
2789 i915_gem_object_unpin(obj);
2790 return -EINVAL;
2791 }
2792
40a5f0de
EA
2793 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2794 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
2795 DRM_ERROR("reloc with read/write CPU domains: "
2796 "obj %p target %d offset %d "
2797 "read %08x write %08x",
40a5f0de
EA
2798 obj, reloc->target_handle,
2799 (int) reloc->offset,
2800 reloc->read_domains,
2801 reloc->write_domain);
491152b8
CW
2802 drm_gem_object_unreference(target_obj);
2803 i915_gem_object_unpin(obj);
e47c68e9
EA
2804 return -EINVAL;
2805 }
2806
40a5f0de
EA
2807 if (reloc->write_domain && target_obj->pending_write_domain &&
2808 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
2809 DRM_ERROR("Write domain conflict: "
2810 "obj %p target %d offset %d "
2811 "new %08x old %08x\n",
40a5f0de
EA
2812 obj, reloc->target_handle,
2813 (int) reloc->offset,
2814 reloc->write_domain,
673a394b
EA
2815 target_obj->pending_write_domain);
2816 drm_gem_object_unreference(target_obj);
2817 i915_gem_object_unpin(obj);
2818 return -EINVAL;
2819 }
2820
2821#if WATCH_RELOC
2822 DRM_INFO("%s: obj %p offset %08x target %d "
2823 "read %08x write %08x gtt %08x "
2824 "presumed %08x delta %08x\n",
2825 __func__,
2826 obj,
40a5f0de
EA
2827 (int) reloc->offset,
2828 (int) reloc->target_handle,
2829 (int) reloc->read_domains,
2830 (int) reloc->write_domain,
673a394b 2831 (int) target_obj_priv->gtt_offset,
40a5f0de
EA
2832 (int) reloc->presumed_offset,
2833 reloc->delta);
673a394b
EA
2834#endif
2835
40a5f0de
EA
2836 target_obj->pending_read_domains |= reloc->read_domains;
2837 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
2838
2839 /* If the relocation already has the right value in it, no
2840 * more work needs to be done.
2841 */
40a5f0de 2842 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
2843 drm_gem_object_unreference(target_obj);
2844 continue;
2845 }
2846
2ef7eeaa
EA
2847 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2848 if (ret != 0) {
2849 drm_gem_object_unreference(target_obj);
2850 i915_gem_object_unpin(obj);
2851 return -EINVAL;
673a394b
EA
2852 }
2853
2854 /* Map the page containing the relocation we're going to
2855 * perform.
2856 */
40a5f0de 2857 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
2858 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2859 (reloc_offset &
2860 ~(PAGE_SIZE - 1)));
3043c60c 2861 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 2862 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 2863 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
2864
2865#if WATCH_BUF
2866 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 2867 obj, (unsigned int) reloc->offset,
673a394b
EA
2868 readl(reloc_entry), reloc_val);
2869#endif
2870 writel(reloc_val, reloc_entry);
0839ccb8 2871 io_mapping_unmap_atomic(reloc_page);
673a394b 2872
40a5f0de
EA
2873 /* The updated presumed offset for this entry will be
2874 * copied back out to the user.
673a394b 2875 */
40a5f0de 2876 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
2877
2878 drm_gem_object_unreference(target_obj);
2879 }
2880
673a394b
EA
2881#if WATCH_BUF
2882 if (0)
2883 i915_gem_dump_object(obj, 128, __func__, ~0);
2884#endif
2885 return 0;
2886}
2887
2888/** Dispatch a batchbuffer to the ring
2889 */
2890static int
2891i915_dispatch_gem_execbuffer(struct drm_device *dev,
2892 struct drm_i915_gem_execbuffer *exec,
201361a5 2893 struct drm_clip_rect *cliprects,
673a394b
EA
2894 uint64_t exec_offset)
2895{
2896 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
2897 int nbox = exec->num_cliprects;
2898 int i = 0, count;
2899 uint32_t exec_start, exec_len;
2900 RING_LOCALS;
2901
2902 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2903 exec_len = (uint32_t) exec->batch_len;
2904
2905 if ((exec_start | exec_len) & 0x7) {
2906 DRM_ERROR("alignment\n");
2907 return -EINVAL;
2908 }
2909
2910 if (!exec_start)
2911 return -EINVAL;
2912
2913 count = nbox ? nbox : 1;
2914
2915 for (i = 0; i < count; i++) {
2916 if (i < nbox) {
201361a5 2917 int ret = i915_emit_box(dev, cliprects, i,
673a394b
EA
2918 exec->DR1, exec->DR4);
2919 if (ret)
2920 return ret;
2921 }
2922
2923 if (IS_I830(dev) || IS_845G(dev)) {
2924 BEGIN_LP_RING(4);
2925 OUT_RING(MI_BATCH_BUFFER);
2926 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2927 OUT_RING(exec_start + exec_len - 4);
2928 OUT_RING(0);
2929 ADVANCE_LP_RING();
2930 } else {
2931 BEGIN_LP_RING(2);
2932 if (IS_I965G(dev)) {
2933 OUT_RING(MI_BATCH_BUFFER_START |
2934 (2 << 6) |
2935 MI_BATCH_NON_SECURE_I965);
2936 OUT_RING(exec_start);
2937 } else {
2938 OUT_RING(MI_BATCH_BUFFER_START |
2939 (2 << 6));
2940 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2941 }
2942 ADVANCE_LP_RING();
2943 }
2944 }
2945
2946 /* XXX breadcrumb */
2947 return 0;
2948}
2949
2950/* Throttle our rendering by waiting until the ring has completed our requests
2951 * emitted over 20 msec ago.
2952 *
2953 * This should get us reasonable parallelism between CPU and GPU but also
2954 * relatively low latency when blocking on a particular request to finish.
2955 */
2956static int
2957i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2958{
2959 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2960 int ret = 0;
2961 uint32_t seqno;
2962
2963 mutex_lock(&dev->struct_mutex);
2964 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2965 i915_file_priv->mm.last_gem_throttle_seqno =
2966 i915_file_priv->mm.last_gem_seqno;
2967 if (seqno)
2968 ret = i915_wait_request(dev, seqno);
2969 mutex_unlock(&dev->struct_mutex);
2970 return ret;
2971}
2972
40a5f0de
EA
2973static int
2974i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
2975 uint32_t buffer_count,
2976 struct drm_i915_gem_relocation_entry **relocs)
2977{
2978 uint32_t reloc_count = 0, reloc_index = 0, i;
2979 int ret;
2980
2981 *relocs = NULL;
2982 for (i = 0; i < buffer_count; i++) {
2983 if (reloc_count + exec_list[i].relocation_count < reloc_count)
2984 return -EINVAL;
2985 reloc_count += exec_list[i].relocation_count;
2986 }
2987
2988 *relocs = drm_calloc(reloc_count, sizeof(**relocs), DRM_MEM_DRIVER);
2989 if (*relocs == NULL)
2990 return -ENOMEM;
2991
2992 for (i = 0; i < buffer_count; i++) {
2993 struct drm_i915_gem_relocation_entry __user *user_relocs;
2994
2995 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
2996
2997 ret = copy_from_user(&(*relocs)[reloc_index],
2998 user_relocs,
2999 exec_list[i].relocation_count *
3000 sizeof(**relocs));
3001 if (ret != 0) {
3002 drm_free(*relocs, reloc_count * sizeof(**relocs),
3003 DRM_MEM_DRIVER);
3004 *relocs = NULL;
3005 return ret;
3006 }
3007
3008 reloc_index += exec_list[i].relocation_count;
3009 }
3010
3011 return ret;
3012}
3013
3014static int
3015i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3016 uint32_t buffer_count,
3017 struct drm_i915_gem_relocation_entry *relocs)
3018{
3019 uint32_t reloc_count = 0, i;
3020 int ret;
3021
3022 for (i = 0; i < buffer_count; i++) {
3023 struct drm_i915_gem_relocation_entry __user *user_relocs;
3024
3025 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3026
3027 if (ret == 0) {
3028 ret = copy_to_user(user_relocs,
3029 &relocs[reloc_count],
3030 exec_list[i].relocation_count *
3031 sizeof(*relocs));
3032 }
3033
3034 reloc_count += exec_list[i].relocation_count;
3035 }
3036
3037 drm_free(relocs, reloc_count * sizeof(*relocs), DRM_MEM_DRIVER);
3038
3039 return ret;
3040}
3041
673a394b
EA
3042int
3043i915_gem_execbuffer(struct drm_device *dev, void *data,
3044 struct drm_file *file_priv)
3045{
3046 drm_i915_private_t *dev_priv = dev->dev_private;
3047 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3048 struct drm_i915_gem_execbuffer *args = data;
3049 struct drm_i915_gem_exec_object *exec_list = NULL;
3050 struct drm_gem_object **object_list = NULL;
3051 struct drm_gem_object *batch_obj;
b70d11da 3052 struct drm_i915_gem_object *obj_priv;
201361a5 3053 struct drm_clip_rect *cliprects = NULL;
40a5f0de
EA
3054 struct drm_i915_gem_relocation_entry *relocs;
3055 int ret, ret2, i, pinned = 0;
673a394b 3056 uint64_t exec_offset;
40a5f0de 3057 uint32_t seqno, flush_domains, reloc_index;
ac94a962 3058 int pin_tries;
673a394b
EA
3059
3060#if WATCH_EXEC
3061 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3062 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3063#endif
3064
4f481ed2
EA
3065 if (args->buffer_count < 1) {
3066 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3067 return -EINVAL;
3068 }
673a394b
EA
3069 /* Copy in the exec list from userland */
3070 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
3071 DRM_MEM_DRIVER);
3072 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
3073 DRM_MEM_DRIVER);
3074 if (exec_list == NULL || object_list == NULL) {
3075 DRM_ERROR("Failed to allocate exec or object list "
3076 "for %d buffers\n",
3077 args->buffer_count);
3078 ret = -ENOMEM;
3079 goto pre_mutex_err;
3080 }
3081 ret = copy_from_user(exec_list,
3082 (struct drm_i915_relocation_entry __user *)
3083 (uintptr_t) args->buffers_ptr,
3084 sizeof(*exec_list) * args->buffer_count);
3085 if (ret != 0) {
3086 DRM_ERROR("copy %d exec entries failed %d\n",
3087 args->buffer_count, ret);
3088 goto pre_mutex_err;
3089 }
3090
201361a5
EA
3091 if (args->num_cliprects != 0) {
3092 cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
3093 DRM_MEM_DRIVER);
3094 if (cliprects == NULL)
3095 goto pre_mutex_err;
3096
3097 ret = copy_from_user(cliprects,
3098 (struct drm_clip_rect __user *)
3099 (uintptr_t) args->cliprects_ptr,
3100 sizeof(*cliprects) * args->num_cliprects);
3101 if (ret != 0) {
3102 DRM_ERROR("copy %d cliprects failed: %d\n",
3103 args->num_cliprects, ret);
3104 goto pre_mutex_err;
3105 }
3106 }
3107
40a5f0de
EA
3108 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3109 &relocs);
3110 if (ret != 0)
3111 goto pre_mutex_err;
3112
673a394b
EA
3113 mutex_lock(&dev->struct_mutex);
3114
3115 i915_verify_inactive(dev, __FILE__, __LINE__);
3116
3117 if (dev_priv->mm.wedged) {
3118 DRM_ERROR("Execbuf while wedged\n");
3119 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3120 ret = -EIO;
3121 goto pre_mutex_err;
673a394b
EA
3122 }
3123
3124 if (dev_priv->mm.suspended) {
3125 DRM_ERROR("Execbuf while VT-switched.\n");
3126 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3127 ret = -EBUSY;
3128 goto pre_mutex_err;
673a394b
EA
3129 }
3130
ac94a962 3131 /* Look up object handles */
673a394b
EA
3132 for (i = 0; i < args->buffer_count; i++) {
3133 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3134 exec_list[i].handle);
3135 if (object_list[i] == NULL) {
3136 DRM_ERROR("Invalid object handle %d at index %d\n",
3137 exec_list[i].handle, i);
3138 ret = -EBADF;
3139 goto err;
3140 }
b70d11da
KH
3141
3142 obj_priv = object_list[i]->driver_private;
3143 if (obj_priv->in_execbuffer) {
3144 DRM_ERROR("Object %p appears more than once in object list\n",
3145 object_list[i]);
3146 ret = -EBADF;
3147 goto err;
3148 }
3149 obj_priv->in_execbuffer = true;
ac94a962 3150 }
673a394b 3151
ac94a962
KP
3152 /* Pin and relocate */
3153 for (pin_tries = 0; ; pin_tries++) {
3154 ret = 0;
40a5f0de
EA
3155 reloc_index = 0;
3156
ac94a962
KP
3157 for (i = 0; i < args->buffer_count; i++) {
3158 object_list[i]->pending_read_domains = 0;
3159 object_list[i]->pending_write_domain = 0;
3160 ret = i915_gem_object_pin_and_relocate(object_list[i],
3161 file_priv,
40a5f0de
EA
3162 &exec_list[i],
3163 &relocs[reloc_index]);
ac94a962
KP
3164 if (ret)
3165 break;
3166 pinned = i + 1;
40a5f0de 3167 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3168 }
3169 /* success */
3170 if (ret == 0)
3171 break;
3172
3173 /* error other than GTT full, or we've already tried again */
3174 if (ret != -ENOMEM || pin_tries >= 1) {
f1acec93
EA
3175 if (ret != -ERESTARTSYS)
3176 DRM_ERROR("Failed to pin buffers %d\n", ret);
673a394b
EA
3177 goto err;
3178 }
ac94a962
KP
3179
3180 /* unpin all of our buffers */
3181 for (i = 0; i < pinned; i++)
3182 i915_gem_object_unpin(object_list[i]);
b1177636 3183 pinned = 0;
ac94a962
KP
3184
3185 /* evict everyone we can from the aperture */
3186 ret = i915_gem_evict_everything(dev);
3187 if (ret)
3188 goto err;
673a394b
EA
3189 }
3190
3191 /* Set the pending read domains for the batch buffer to COMMAND */
3192 batch_obj = object_list[args->buffer_count-1];
3193 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
3194 batch_obj->pending_write_domain = 0;
3195
3196 i915_verify_inactive(dev, __FILE__, __LINE__);
3197
646f0f6e
KP
3198 /* Zero the global flush/invalidate flags. These
3199 * will be modified as new domains are computed
3200 * for each object
3201 */
3202 dev->invalidate_domains = 0;
3203 dev->flush_domains = 0;
3204
673a394b
EA
3205 for (i = 0; i < args->buffer_count; i++) {
3206 struct drm_gem_object *obj = object_list[i];
673a394b 3207
646f0f6e 3208 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3209 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3210 }
3211
3212 i915_verify_inactive(dev, __FILE__, __LINE__);
3213
646f0f6e
KP
3214 if (dev->invalidate_domains | dev->flush_domains) {
3215#if WATCH_EXEC
3216 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3217 __func__,
3218 dev->invalidate_domains,
3219 dev->flush_domains);
3220#endif
3221 i915_gem_flush(dev,
3222 dev->invalidate_domains,
3223 dev->flush_domains);
3224 if (dev->flush_domains)
3225 (void)i915_add_request(dev, dev->flush_domains);
3226 }
673a394b 3227
efbeed96
EA
3228 for (i = 0; i < args->buffer_count; i++) {
3229 struct drm_gem_object *obj = object_list[i];
3230
3231 obj->write_domain = obj->pending_write_domain;
3232 }
3233
673a394b
EA
3234 i915_verify_inactive(dev, __FILE__, __LINE__);
3235
3236#if WATCH_COHERENCY
3237 for (i = 0; i < args->buffer_count; i++) {
3238 i915_gem_object_check_coherency(object_list[i],
3239 exec_list[i].handle);
3240 }
3241#endif
3242
3243 exec_offset = exec_list[args->buffer_count - 1].offset;
3244
3245#if WATCH_EXEC
3246 i915_gem_dump_object(object_list[args->buffer_count - 1],
3247 args->batch_len,
3248 __func__,
3249 ~0);
3250#endif
3251
673a394b 3252 /* Exec the batchbuffer */
201361a5 3253 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
673a394b
EA
3254 if (ret) {
3255 DRM_ERROR("dispatch failed %d\n", ret);
3256 goto err;
3257 }
3258
3259 /*
3260 * Ensure that the commands in the batch buffer are
3261 * finished before the interrupt fires
3262 */
3263 flush_domains = i915_retire_commands(dev);
3264
3265 i915_verify_inactive(dev, __FILE__, __LINE__);
3266
3267 /*
3268 * Get a seqno representing the execution of the current buffer,
3269 * which we can wait on. We would like to mitigate these interrupts,
3270 * likely by only creating seqnos occasionally (so that we have
3271 * *some* interrupts representing completion of buffers that we can
3272 * wait on when trying to clear up gtt space).
3273 */
3274 seqno = i915_add_request(dev, flush_domains);
3275 BUG_ON(seqno == 0);
3276 i915_file_priv->mm.last_gem_seqno = seqno;
3277 for (i = 0; i < args->buffer_count; i++) {
3278 struct drm_gem_object *obj = object_list[i];
673a394b 3279
ce44b0ea 3280 i915_gem_object_move_to_active(obj, seqno);
673a394b
EA
3281#if WATCH_LRU
3282 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3283#endif
3284 }
3285#if WATCH_LRU
3286 i915_dump_lru(dev, __func__);
3287#endif
3288
3289 i915_verify_inactive(dev, __FILE__, __LINE__);
3290
673a394b 3291err:
aad87dff
JL
3292 for (i = 0; i < pinned; i++)
3293 i915_gem_object_unpin(object_list[i]);
3294
b70d11da
KH
3295 for (i = 0; i < args->buffer_count; i++) {
3296 if (object_list[i]) {
3297 obj_priv = object_list[i]->driver_private;
3298 obj_priv->in_execbuffer = false;
3299 }
aad87dff 3300 drm_gem_object_unreference(object_list[i]);
b70d11da 3301 }
673a394b 3302
673a394b
EA
3303 mutex_unlock(&dev->struct_mutex);
3304
a35f2e2b
RD
3305 if (!ret) {
3306 /* Copy the new buffer offsets back to the user's exec list. */
3307 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3308 (uintptr_t) args->buffers_ptr,
3309 exec_list,
3310 sizeof(*exec_list) * args->buffer_count);
3311 if (ret)
3312 DRM_ERROR("failed to copy %d exec entries "
3313 "back to user (%d)\n",
3314 args->buffer_count, ret);
3315 }
3316
40a5f0de
EA
3317 /* Copy the updated relocations out regardless of current error
3318 * state. Failure to update the relocs would mean that the next
3319 * time userland calls execbuf, it would do so with presumed offset
3320 * state that didn't match the actual object state.
3321 */
3322 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3323 relocs);
3324 if (ret2 != 0) {
3325 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3326
3327 if (ret == 0)
3328 ret = ret2;
3329 }
3330
673a394b
EA
3331pre_mutex_err:
3332 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
3333 DRM_MEM_DRIVER);
3334 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
3335 DRM_MEM_DRIVER);
201361a5
EA
3336 drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
3337 DRM_MEM_DRIVER);
673a394b
EA
3338
3339 return ret;
3340}
3341
3342int
3343i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3344{
3345 struct drm_device *dev = obj->dev;
3346 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3347 int ret;
3348
3349 i915_verify_inactive(dev, __FILE__, __LINE__);
3350 if (obj_priv->gtt_space == NULL) {
3351 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3352 if (ret != 0) {
9bb2d6f9 3353 if (ret != -EBUSY && ret != -ERESTARTSYS)
0fce81e3 3354 DRM_ERROR("Failure to bind: %d\n", ret);
673a394b
EA
3355 return ret;
3356 }
22c344e9
CW
3357 }
3358 /*
3359 * Pre-965 chips need a fence register set up in order to
3360 * properly handle tiled surfaces.
3361 */
3362 if (!IS_I965G(dev) &&
3363 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3364 obj_priv->tiling_mode != I915_TILING_NONE) {
3365 ret = i915_gem_object_get_fence_reg(obj, true);
3366 if (ret != 0) {
3367 if (ret != -EBUSY && ret != -ERESTARTSYS)
3368 DRM_ERROR("Failure to install fence: %d\n",
3369 ret);
3370 return ret;
3371 }
673a394b
EA
3372 }
3373 obj_priv->pin_count++;
3374
3375 /* If the object is not active and not pending a flush,
3376 * remove it from the inactive list
3377 */
3378 if (obj_priv->pin_count == 1) {
3379 atomic_inc(&dev->pin_count);
3380 atomic_add(obj->size, &dev->pin_memory);
3381 if (!obj_priv->active &&
3382 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3383 I915_GEM_DOMAIN_GTT)) == 0 &&
3384 !list_empty(&obj_priv->list))
3385 list_del_init(&obj_priv->list);
3386 }
3387 i915_verify_inactive(dev, __FILE__, __LINE__);
3388
3389 return 0;
3390}
3391
3392void
3393i915_gem_object_unpin(struct drm_gem_object *obj)
3394{
3395 struct drm_device *dev = obj->dev;
3396 drm_i915_private_t *dev_priv = dev->dev_private;
3397 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3398
3399 i915_verify_inactive(dev, __FILE__, __LINE__);
3400 obj_priv->pin_count--;
3401 BUG_ON(obj_priv->pin_count < 0);
3402 BUG_ON(obj_priv->gtt_space == NULL);
3403
3404 /* If the object is no longer pinned, and is
3405 * neither active nor being flushed, then stick it on
3406 * the inactive list
3407 */
3408 if (obj_priv->pin_count == 0) {
3409 if (!obj_priv->active &&
3410 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3411 I915_GEM_DOMAIN_GTT)) == 0)
3412 list_move_tail(&obj_priv->list,
3413 &dev_priv->mm.inactive_list);
3414 atomic_dec(&dev->pin_count);
3415 atomic_sub(obj->size, &dev->pin_memory);
3416 }
3417 i915_verify_inactive(dev, __FILE__, __LINE__);
3418}
3419
3420int
3421i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3422 struct drm_file *file_priv)
3423{
3424 struct drm_i915_gem_pin *args = data;
3425 struct drm_gem_object *obj;
3426 struct drm_i915_gem_object *obj_priv;
3427 int ret;
3428
3429 mutex_lock(&dev->struct_mutex);
3430
3431 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3432 if (obj == NULL) {
3433 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3434 args->handle);
3435 mutex_unlock(&dev->struct_mutex);
3436 return -EBADF;
3437 }
3438 obj_priv = obj->driver_private;
3439
79e53945
JB
3440 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3441 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3442 args->handle);
96dec61d 3443 drm_gem_object_unreference(obj);
673a394b 3444 mutex_unlock(&dev->struct_mutex);
79e53945
JB
3445 return -EINVAL;
3446 }
3447
3448 obj_priv->user_pin_count++;
3449 obj_priv->pin_filp = file_priv;
3450 if (obj_priv->user_pin_count == 1) {
3451 ret = i915_gem_object_pin(obj, args->alignment);
3452 if (ret != 0) {
3453 drm_gem_object_unreference(obj);
3454 mutex_unlock(&dev->struct_mutex);
3455 return ret;
3456 }
673a394b
EA
3457 }
3458
3459 /* XXX - flush the CPU caches for pinned objects
3460 * as the X server doesn't manage domains yet
3461 */
e47c68e9 3462 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
3463 args->offset = obj_priv->gtt_offset;
3464 drm_gem_object_unreference(obj);
3465 mutex_unlock(&dev->struct_mutex);
3466
3467 return 0;
3468}
3469
3470int
3471i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3472 struct drm_file *file_priv)
3473{
3474 struct drm_i915_gem_pin *args = data;
3475 struct drm_gem_object *obj;
79e53945 3476 struct drm_i915_gem_object *obj_priv;
673a394b
EA
3477
3478 mutex_lock(&dev->struct_mutex);
3479
3480 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3481 if (obj == NULL) {
3482 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3483 args->handle);
3484 mutex_unlock(&dev->struct_mutex);
3485 return -EBADF;
3486 }
3487
79e53945
JB
3488 obj_priv = obj->driver_private;
3489 if (obj_priv->pin_filp != file_priv) {
3490 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3491 args->handle);
3492 drm_gem_object_unreference(obj);
3493 mutex_unlock(&dev->struct_mutex);
3494 return -EINVAL;
3495 }
3496 obj_priv->user_pin_count--;
3497 if (obj_priv->user_pin_count == 0) {
3498 obj_priv->pin_filp = NULL;
3499 i915_gem_object_unpin(obj);
3500 }
673a394b
EA
3501
3502 drm_gem_object_unreference(obj);
3503 mutex_unlock(&dev->struct_mutex);
3504 return 0;
3505}
3506
3507int
3508i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3509 struct drm_file *file_priv)
3510{
3511 struct drm_i915_gem_busy *args = data;
3512 struct drm_gem_object *obj;
3513 struct drm_i915_gem_object *obj_priv;
3514
3515 mutex_lock(&dev->struct_mutex);
3516 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3517 if (obj == NULL) {
3518 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3519 args->handle);
3520 mutex_unlock(&dev->struct_mutex);
3521 return -EBADF;
3522 }
3523
f21289b3
EA
3524 /* Update the active list for the hardware's current position.
3525 * Otherwise this only updates on a delayed timer or when irqs are
3526 * actually unmasked, and our working set ends up being larger than
3527 * required.
3528 */
3529 i915_gem_retire_requests(dev);
3530
673a394b 3531 obj_priv = obj->driver_private;
c4de0a5d
EA
3532 /* Don't count being on the flushing list against the object being
3533 * done. Otherwise, a buffer left on the flushing list but not getting
3534 * flushed (because nobody's flushing that domain) won't ever return
3535 * unbusy and get reused by libdrm's bo cache. The other expected
3536 * consumer of this interface, OpenGL's occlusion queries, also specs
3537 * that the objects get unbusy "eventually" without any interference.
3538 */
3539 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
673a394b
EA
3540
3541 drm_gem_object_unreference(obj);
3542 mutex_unlock(&dev->struct_mutex);
3543 return 0;
3544}
3545
3546int
3547i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3548 struct drm_file *file_priv)
3549{
3550 return i915_gem_ring_throttle(dev, file_priv);
3551}
3552
3553int i915_gem_init_object(struct drm_gem_object *obj)
3554{
3555 struct drm_i915_gem_object *obj_priv;
3556
3557 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
3558 if (obj_priv == NULL)
3559 return -ENOMEM;
3560
3561 /*
3562 * We've just allocated pages from the kernel,
3563 * so they've just been written by the CPU with
3564 * zeros. They'll need to be clflushed before we
3565 * use them with the GPU.
3566 */
3567 obj->write_domain = I915_GEM_DOMAIN_CPU;
3568 obj->read_domains = I915_GEM_DOMAIN_CPU;
3569
ba1eb1d8
KP
3570 obj_priv->agp_type = AGP_USER_MEMORY;
3571
673a394b
EA
3572 obj->driver_private = obj_priv;
3573 obj_priv->obj = obj;
de151cf6 3574 obj_priv->fence_reg = I915_FENCE_REG_NONE;
673a394b 3575 INIT_LIST_HEAD(&obj_priv->list);
de151cf6 3576
673a394b
EA
3577 return 0;
3578}
3579
3580void i915_gem_free_object(struct drm_gem_object *obj)
3581{
de151cf6 3582 struct drm_device *dev = obj->dev;
673a394b
EA
3583 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3584
3585 while (obj_priv->pin_count > 0)
3586 i915_gem_object_unpin(obj);
3587
71acb5eb
DA
3588 if (obj_priv->phys_obj)
3589 i915_gem_detach_phys_object(dev, obj);
3590
673a394b
EA
3591 i915_gem_object_unbind(obj);
3592
ab00b3e5 3593 i915_gem_free_mmap_offset(obj);
de151cf6 3594
673a394b
EA
3595 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
3596 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3597}
3598
673a394b
EA
3599/** Unbinds all objects that are on the given buffer list. */
3600static int
3601i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3602{
3603 struct drm_gem_object *obj;
3604 struct drm_i915_gem_object *obj_priv;
3605 int ret;
3606
3607 while (!list_empty(head)) {
3608 obj_priv = list_first_entry(head,
3609 struct drm_i915_gem_object,
3610 list);
3611 obj = obj_priv->obj;
3612
3613 if (obj_priv->pin_count != 0) {
3614 DRM_ERROR("Pinned object in unbind list\n");
3615 mutex_unlock(&dev->struct_mutex);
3616 return -EINVAL;
3617 }
3618
3619 ret = i915_gem_object_unbind(obj);
3620 if (ret != 0) {
3621 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3622 ret);
3623 mutex_unlock(&dev->struct_mutex);
3624 return ret;
3625 }
3626 }
3627
3628
3629 return 0;
3630}
3631
5669fcac 3632int
673a394b
EA
3633i915_gem_idle(struct drm_device *dev)
3634{
3635 drm_i915_private_t *dev_priv = dev->dev_private;
3636 uint32_t seqno, cur_seqno, last_seqno;
3637 int stuck, ret;
3638
6dbe2772
KP
3639 mutex_lock(&dev->struct_mutex);
3640
3641 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3642 mutex_unlock(&dev->struct_mutex);
673a394b 3643 return 0;
6dbe2772 3644 }
673a394b
EA
3645
3646 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3647 * We need to replace this with a semaphore, or something.
3648 */
3649 dev_priv->mm.suspended = 1;
3650
6dbe2772
KP
3651 /* Cancel the retire work handler, wait for it to finish if running
3652 */
3653 mutex_unlock(&dev->struct_mutex);
3654 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3655 mutex_lock(&dev->struct_mutex);
3656
673a394b
EA
3657 i915_kernel_lost_context(dev);
3658
3659 /* Flush the GPU along with all non-CPU write domains
3660 */
3661 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3662 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
de151cf6 3663 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
673a394b
EA
3664
3665 if (seqno == 0) {
3666 mutex_unlock(&dev->struct_mutex);
3667 return -ENOMEM;
3668 }
3669
3670 dev_priv->mm.waiting_gem_seqno = seqno;
3671 last_seqno = 0;
3672 stuck = 0;
3673 for (;;) {
3674 cur_seqno = i915_get_gem_seqno(dev);
3675 if (i915_seqno_passed(cur_seqno, seqno))
3676 break;
3677 if (last_seqno == cur_seqno) {
3678 if (stuck++ > 100) {
3679 DRM_ERROR("hardware wedged\n");
3680 dev_priv->mm.wedged = 1;
3681 DRM_WAKEUP(&dev_priv->irq_queue);
3682 break;
3683 }
3684 }
3685 msleep(10);
3686 last_seqno = cur_seqno;
3687 }
3688 dev_priv->mm.waiting_gem_seqno = 0;
3689
3690 i915_gem_retire_requests(dev);
3691
5e118f41 3692 spin_lock(&dev_priv->mm.active_list_lock);
28dfe52a
EA
3693 if (!dev_priv->mm.wedged) {
3694 /* Active and flushing should now be empty as we've
3695 * waited for a sequence higher than any pending execbuffer
3696 */
3697 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3698 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3699 /* Request should now be empty as we've also waited
3700 * for the last request in the list
3701 */
3702 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3703 }
673a394b 3704
28dfe52a
EA
3705 /* Empty the active and flushing lists to inactive. If there's
3706 * anything left at this point, it means that we're wedged and
3707 * nothing good's going to happen by leaving them there. So strip
3708 * the GPU domains and just stuff them onto inactive.
673a394b 3709 */
28dfe52a
EA
3710 while (!list_empty(&dev_priv->mm.active_list)) {
3711 struct drm_i915_gem_object *obj_priv;
673a394b 3712
28dfe52a
EA
3713 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3714 struct drm_i915_gem_object,
3715 list);
3716 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3717 i915_gem_object_move_to_inactive(obj_priv->obj);
3718 }
5e118f41 3719 spin_unlock(&dev_priv->mm.active_list_lock);
28dfe52a
EA
3720
3721 while (!list_empty(&dev_priv->mm.flushing_list)) {
3722 struct drm_i915_gem_object *obj_priv;
3723
151903d5 3724 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
28dfe52a
EA
3725 struct drm_i915_gem_object,
3726 list);
3727 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3728 i915_gem_object_move_to_inactive(obj_priv->obj);
3729 }
3730
3731
3732 /* Move all inactive buffers out of the GTT. */
673a394b 3733 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
28dfe52a 3734 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
6dbe2772
KP
3735 if (ret) {
3736 mutex_unlock(&dev->struct_mutex);
673a394b 3737 return ret;
6dbe2772 3738 }
673a394b 3739
6dbe2772
KP
3740 i915_gem_cleanup_ringbuffer(dev);
3741 mutex_unlock(&dev->struct_mutex);
3742
673a394b
EA
3743 return 0;
3744}
3745
3746static int
3747i915_gem_init_hws(struct drm_device *dev)
3748{
3749 drm_i915_private_t *dev_priv = dev->dev_private;
3750 struct drm_gem_object *obj;
3751 struct drm_i915_gem_object *obj_priv;
3752 int ret;
3753
3754 /* If we need a physical address for the status page, it's already
3755 * initialized at driver load time.
3756 */
3757 if (!I915_NEED_GFX_HWS(dev))
3758 return 0;
3759
3760 obj = drm_gem_object_alloc(dev, 4096);
3761 if (obj == NULL) {
3762 DRM_ERROR("Failed to allocate status page\n");
3763 return -ENOMEM;
3764 }
3765 obj_priv = obj->driver_private;
ba1eb1d8 3766 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
3767
3768 ret = i915_gem_object_pin(obj, 4096);
3769 if (ret != 0) {
3770 drm_gem_object_unreference(obj);
3771 return ret;
3772 }
3773
3774 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 3775
856fa198 3776 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
ba1eb1d8 3777 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
3778 DRM_ERROR("Failed to map status page.\n");
3779 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3eb2ee77 3780 i915_gem_object_unpin(obj);
673a394b
EA
3781 drm_gem_object_unreference(obj);
3782 return -EINVAL;
3783 }
3784 dev_priv->hws_obj = obj;
673a394b
EA
3785 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3786 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
ba1eb1d8 3787 I915_READ(HWS_PGA); /* posting read */
673a394b
EA
3788 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3789
3790 return 0;
3791}
3792
85a7bb98
CW
3793static void
3794i915_gem_cleanup_hws(struct drm_device *dev)
3795{
3796 drm_i915_private_t *dev_priv = dev->dev_private;
bab2d1f6
CW
3797 struct drm_gem_object *obj;
3798 struct drm_i915_gem_object *obj_priv;
85a7bb98
CW
3799
3800 if (dev_priv->hws_obj == NULL)
3801 return;
3802
bab2d1f6
CW
3803 obj = dev_priv->hws_obj;
3804 obj_priv = obj->driver_private;
3805
856fa198 3806 kunmap(obj_priv->pages[0]);
85a7bb98
CW
3807 i915_gem_object_unpin(obj);
3808 drm_gem_object_unreference(obj);
3809 dev_priv->hws_obj = NULL;
bab2d1f6 3810
85a7bb98
CW
3811 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3812 dev_priv->hw_status_page = NULL;
3813
3814 /* Write high address into HWS_PGA when disabling. */
3815 I915_WRITE(HWS_PGA, 0x1ffff000);
3816}
3817
79e53945 3818int
673a394b
EA
3819i915_gem_init_ringbuffer(struct drm_device *dev)
3820{
3821 drm_i915_private_t *dev_priv = dev->dev_private;
3822 struct drm_gem_object *obj;
3823 struct drm_i915_gem_object *obj_priv;
79e53945 3824 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
673a394b 3825 int ret;
50aa253d 3826 u32 head;
673a394b
EA
3827
3828 ret = i915_gem_init_hws(dev);
3829 if (ret != 0)
3830 return ret;
3831
3832 obj = drm_gem_object_alloc(dev, 128 * 1024);
3833 if (obj == NULL) {
3834 DRM_ERROR("Failed to allocate ringbuffer\n");
85a7bb98 3835 i915_gem_cleanup_hws(dev);
673a394b
EA
3836 return -ENOMEM;
3837 }
3838 obj_priv = obj->driver_private;
3839
3840 ret = i915_gem_object_pin(obj, 4096);
3841 if (ret != 0) {
3842 drm_gem_object_unreference(obj);
85a7bb98 3843 i915_gem_cleanup_hws(dev);
673a394b
EA
3844 return ret;
3845 }
3846
3847 /* Set up the kernel mapping for the ring. */
79e53945
JB
3848 ring->Size = obj->size;
3849 ring->tail_mask = obj->size - 1;
673a394b 3850
79e53945
JB
3851 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3852 ring->map.size = obj->size;
3853 ring->map.type = 0;
3854 ring->map.flags = 0;
3855 ring->map.mtrr = 0;
673a394b 3856
79e53945
JB
3857 drm_core_ioremap_wc(&ring->map, dev);
3858 if (ring->map.handle == NULL) {
673a394b
EA
3859 DRM_ERROR("Failed to map ringbuffer.\n");
3860 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
47ed185a 3861 i915_gem_object_unpin(obj);
673a394b 3862 drm_gem_object_unreference(obj);
85a7bb98 3863 i915_gem_cleanup_hws(dev);
673a394b
EA
3864 return -EINVAL;
3865 }
79e53945
JB
3866 ring->ring_obj = obj;
3867 ring->virtual_start = ring->map.handle;
673a394b
EA
3868
3869 /* Stop the ring if it's running. */
3870 I915_WRITE(PRB0_CTL, 0);
673a394b 3871 I915_WRITE(PRB0_TAIL, 0);
50aa253d 3872 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
3873
3874 /* Initialize the ring. */
3875 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
3876 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3877
3878 /* G45 ring initialization fails to reset head to zero */
3879 if (head != 0) {
3880 DRM_ERROR("Ring head not reset to zero "
3881 "ctl %08x head %08x tail %08x start %08x\n",
3882 I915_READ(PRB0_CTL),
3883 I915_READ(PRB0_HEAD),
3884 I915_READ(PRB0_TAIL),
3885 I915_READ(PRB0_START));
3886 I915_WRITE(PRB0_HEAD, 0);
3887
3888 DRM_ERROR("Ring head forced to zero "
3889 "ctl %08x head %08x tail %08x start %08x\n",
3890 I915_READ(PRB0_CTL),
3891 I915_READ(PRB0_HEAD),
3892 I915_READ(PRB0_TAIL),
3893 I915_READ(PRB0_START));
3894 }
3895
673a394b
EA
3896 I915_WRITE(PRB0_CTL,
3897 ((obj->size - 4096) & RING_NR_PAGES) |
3898 RING_NO_REPORT |
3899 RING_VALID);
3900
50aa253d
KP
3901 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3902
3903 /* If the head is still not zero, the ring is dead */
3904 if (head != 0) {
3905 DRM_ERROR("Ring initialization failed "
3906 "ctl %08x head %08x tail %08x start %08x\n",
3907 I915_READ(PRB0_CTL),
3908 I915_READ(PRB0_HEAD),
3909 I915_READ(PRB0_TAIL),
3910 I915_READ(PRB0_START));
3911 return -EIO;
3912 }
3913
673a394b 3914 /* Update our cache of the ring state */
79e53945
JB
3915 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3916 i915_kernel_lost_context(dev);
3917 else {
3918 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3919 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
3920 ring->space = ring->head - (ring->tail + 8);
3921 if (ring->space < 0)
3922 ring->space += ring->Size;
3923 }
673a394b
EA
3924
3925 return 0;
3926}
3927
79e53945 3928void
673a394b
EA
3929i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3930{
3931 drm_i915_private_t *dev_priv = dev->dev_private;
3932
3933 if (dev_priv->ring.ring_obj == NULL)
3934 return;
3935
3936 drm_core_ioremapfree(&dev_priv->ring.map, dev);
3937
3938 i915_gem_object_unpin(dev_priv->ring.ring_obj);
3939 drm_gem_object_unreference(dev_priv->ring.ring_obj);
3940 dev_priv->ring.ring_obj = NULL;
3941 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3942
85a7bb98 3943 i915_gem_cleanup_hws(dev);
673a394b
EA
3944}
3945
3946int
3947i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3948 struct drm_file *file_priv)
3949{
3950 drm_i915_private_t *dev_priv = dev->dev_private;
3951 int ret;
3952
79e53945
JB
3953 if (drm_core_check_feature(dev, DRIVER_MODESET))
3954 return 0;
3955
673a394b
EA
3956 if (dev_priv->mm.wedged) {
3957 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3958 dev_priv->mm.wedged = 0;
3959 }
3960
673a394b 3961 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3962 dev_priv->mm.suspended = 0;
3963
3964 ret = i915_gem_init_ringbuffer(dev);
3965 if (ret != 0)
3966 return ret;
3967
5e118f41 3968 spin_lock(&dev_priv->mm.active_list_lock);
673a394b 3969 BUG_ON(!list_empty(&dev_priv->mm.active_list));
5e118f41
CW
3970 spin_unlock(&dev_priv->mm.active_list_lock);
3971
673a394b
EA
3972 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3973 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3974 BUG_ON(!list_empty(&dev_priv->mm.request_list));
673a394b 3975 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
3976
3977 drm_irq_install(dev);
3978
673a394b
EA
3979 return 0;
3980}
3981
3982int
3983i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3984 struct drm_file *file_priv)
3985{
3986 int ret;
3987
79e53945
JB
3988 if (drm_core_check_feature(dev, DRIVER_MODESET))
3989 return 0;
3990
673a394b 3991 ret = i915_gem_idle(dev);
dbb19d30
KH
3992 drm_irq_uninstall(dev);
3993
6dbe2772 3994 return ret;
673a394b
EA
3995}
3996
3997void
3998i915_gem_lastclose(struct drm_device *dev)
3999{
4000 int ret;
673a394b 4001
e806b495
EA
4002 if (drm_core_check_feature(dev, DRIVER_MODESET))
4003 return;
4004
6dbe2772
KP
4005 ret = i915_gem_idle(dev);
4006 if (ret)
4007 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4008}
4009
4010void
4011i915_gem_load(struct drm_device *dev)
4012{
4013 drm_i915_private_t *dev_priv = dev->dev_private;
4014
5e118f41 4015 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b
EA
4016 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4017 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4018 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4019 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4020 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4021 i915_gem_retire_work_handler);
4022 dev_priv->mm.next_gem_seqno = 1;
4023
de151cf6
JB
4024 /* Old X drivers will take 0-2 for front, back, depth buffers */
4025 dev_priv->fence_reg_start = 3;
4026
0f973f27 4027 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4028 dev_priv->num_fence_regs = 16;
4029 else
4030 dev_priv->num_fence_regs = 8;
4031
673a394b
EA
4032 i915_gem_detect_bit_6_swizzle(dev);
4033}
71acb5eb
DA
4034
4035/*
4036 * Create a physically contiguous memory object for this object
4037 * e.g. for cursor + overlay regs
4038 */
4039int i915_gem_init_phys_object(struct drm_device *dev,
4040 int id, int size)
4041{
4042 drm_i915_private_t *dev_priv = dev->dev_private;
4043 struct drm_i915_gem_phys_object *phys_obj;
4044 int ret;
4045
4046 if (dev_priv->mm.phys_objs[id - 1] || !size)
4047 return 0;
4048
4049 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4050 if (!phys_obj)
4051 return -ENOMEM;
4052
4053 phys_obj->id = id;
4054
4055 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4056 if (!phys_obj->handle) {
4057 ret = -ENOMEM;
4058 goto kfree_obj;
4059 }
4060#ifdef CONFIG_X86
4061 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4062#endif
4063
4064 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4065
4066 return 0;
4067kfree_obj:
4068 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4069 return ret;
4070}
4071
4072void i915_gem_free_phys_object(struct drm_device *dev, int id)
4073{
4074 drm_i915_private_t *dev_priv = dev->dev_private;
4075 struct drm_i915_gem_phys_object *phys_obj;
4076
4077 if (!dev_priv->mm.phys_objs[id - 1])
4078 return;
4079
4080 phys_obj = dev_priv->mm.phys_objs[id - 1];
4081 if (phys_obj->cur_obj) {
4082 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4083 }
4084
4085#ifdef CONFIG_X86
4086 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4087#endif
4088 drm_pci_free(dev, phys_obj->handle);
4089 kfree(phys_obj);
4090 dev_priv->mm.phys_objs[id - 1] = NULL;
4091}
4092
4093void i915_gem_free_all_phys_object(struct drm_device *dev)
4094{
4095 int i;
4096
260883c8 4097 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4098 i915_gem_free_phys_object(dev, i);
4099}
4100
4101void i915_gem_detach_phys_object(struct drm_device *dev,
4102 struct drm_gem_object *obj)
4103{
4104 struct drm_i915_gem_object *obj_priv;
4105 int i;
4106 int ret;
4107 int page_count;
4108
4109 obj_priv = obj->driver_private;
4110 if (!obj_priv->phys_obj)
4111 return;
4112
856fa198 4113 ret = i915_gem_object_get_pages(obj);
71acb5eb
DA
4114 if (ret)
4115 goto out;
4116
4117 page_count = obj->size / PAGE_SIZE;
4118
4119 for (i = 0; i < page_count; i++) {
856fa198 4120 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4121 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4122
4123 memcpy(dst, src, PAGE_SIZE);
4124 kunmap_atomic(dst, KM_USER0);
4125 }
856fa198 4126 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb
DA
4127 drm_agp_chipset_flush(dev);
4128out:
4129 obj_priv->phys_obj->cur_obj = NULL;
4130 obj_priv->phys_obj = NULL;
4131}
4132
4133int
4134i915_gem_attach_phys_object(struct drm_device *dev,
4135 struct drm_gem_object *obj, int id)
4136{
4137 drm_i915_private_t *dev_priv = dev->dev_private;
4138 struct drm_i915_gem_object *obj_priv;
4139 int ret = 0;
4140 int page_count;
4141 int i;
4142
4143 if (id > I915_MAX_PHYS_OBJECT)
4144 return -EINVAL;
4145
4146 obj_priv = obj->driver_private;
4147
4148 if (obj_priv->phys_obj) {
4149 if (obj_priv->phys_obj->id == id)
4150 return 0;
4151 i915_gem_detach_phys_object(dev, obj);
4152 }
4153
4154
4155 /* create a new object */
4156 if (!dev_priv->mm.phys_objs[id - 1]) {
4157 ret = i915_gem_init_phys_object(dev, id,
4158 obj->size);
4159 if (ret) {
aeb565df 4160 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4161 goto out;
4162 }
4163 }
4164
4165 /* bind to the object */
4166 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4167 obj_priv->phys_obj->cur_obj = obj;
4168
856fa198 4169 ret = i915_gem_object_get_pages(obj);
71acb5eb
DA
4170 if (ret) {
4171 DRM_ERROR("failed to get page list\n");
4172 goto out;
4173 }
4174
4175 page_count = obj->size / PAGE_SIZE;
4176
4177 for (i = 0; i < page_count; i++) {
856fa198 4178 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4179 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4180
4181 memcpy(dst, src, PAGE_SIZE);
4182 kunmap_atomic(src, KM_USER0);
4183 }
4184
4185 return 0;
4186out:
4187 return ret;
4188}
4189
4190static int
4191i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4192 struct drm_i915_gem_pwrite *args,
4193 struct drm_file *file_priv)
4194{
4195 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4196 void *obj_addr;
4197 int ret;
4198 char __user *user_data;
4199
4200 user_data = (char __user *) (uintptr_t) args->data_ptr;
4201 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4202
e08fb4f6 4203 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4204 ret = copy_from_user(obj_addr, user_data, args->size);
4205 if (ret)
4206 return -EFAULT;
4207
4208 drm_agp_chipset_flush(dev);
4209 return 0;
4210}