]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
Revert "drm/i915: Parsing LFP brightness control from VBT"
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43 63static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 64
c76ce038
CW
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
2c22569b
CW
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
61050808
CW
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
5d82e3e6 87 obj->fence_dirty = false;
61050808
CW
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
73aa808f
CW
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
c20e8355 104 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
c20e8355 107 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108}
109
21dd3734 110static int
33196ded 111i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 112{
30dbf0c0
CW
113 int ret;
114
7abb690a
DV
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
1f83fee0 117 if (EXIT_COND)
30dbf0c0
CW
118 return 0;
119
0a6759c6
DV
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
1f83fee0
DV
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
0a6759c6
DV
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
30dbf0c0 132 return ret;
0a6759c6 133 }
1f83fee0 134#undef EXIT_COND
30dbf0c0 135
21dd3734 136 return 0;
30dbf0c0
CW
137}
138
54cf91dc 139int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 140{
33196ded 141 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
142 int ret;
143
33196ded 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
23bc5982 152 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
153 return 0;
154}
30dbf0c0 155
5a125c3c
EA
156int
157i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 158 struct drm_file *file)
5a125c3c 159{
73aa808f 160 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 161 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
162 struct drm_i915_gem_object *obj;
163 size_t pinned;
5a125c3c 164
6299f992 165 pinned = 0;
73aa808f 166 mutex_lock(&dev->struct_mutex);
35c20a60 167 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 168 if (i915_gem_obj_is_pinned(obj))
f343c5f6 169 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 170 mutex_unlock(&dev->struct_mutex);
5a125c3c 171
853ba5d2 172 args->aper_size = dev_priv->gtt.base.total;
0206e353 173 args->aper_available_size = args->aper_size - pinned;
6299f992 174
5a125c3c
EA
175 return 0;
176}
177
6a2c4232
CW
178static int
179i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 180{
6a2c4232
CW
181 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
182 char *vaddr = obj->phys_handle->vaddr;
183 struct sg_table *st;
184 struct scatterlist *sg;
185 int i;
00731155 186
6a2c4232
CW
187 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
188 return -EINVAL;
189
190 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191 struct page *page;
192 char *src;
193
194 page = shmem_read_mapping_page(mapping, i);
195 if (IS_ERR(page))
196 return PTR_ERR(page);
197
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 kunmap_atomic(src);
202
203 page_cache_release(page);
204 vaddr += PAGE_SIZE;
205 }
206
207 i915_gem_chipset_flush(obj->base.dev);
208
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
210 if (st == NULL)
211 return -ENOMEM;
212
213 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
214 kfree(st);
215 return -ENOMEM;
216 }
217
218 sg = st->sgl;
219 sg->offset = 0;
220 sg->length = obj->base.size;
00731155 221
6a2c4232
CW
222 sg_dma_address(sg) = obj->phys_handle->busaddr;
223 sg_dma_len(sg) = obj->base.size;
224
225 obj->pages = st;
226 obj->has_dma_mapping = true;
227 return 0;
228}
229
230static void
231i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
232{
233 int ret;
234
235 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 236
6a2c4232
CW
237 ret = i915_gem_object_set_to_cpu_domain(obj, true);
238 if (ret) {
239 /* In the event of a disaster, abandon all caches and
240 * hope for the best.
241 */
242 WARN_ON(ret != -EIO);
243 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
244 }
245
246 if (obj->madv == I915_MADV_DONTNEED)
247 obj->dirty = 0;
248
249 if (obj->dirty) {
00731155 250 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 251 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
252 int i;
253
254 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
255 struct page *page;
256 char *dst;
257
258 page = shmem_read_mapping_page(mapping, i);
259 if (IS_ERR(page))
260 continue;
261
262 dst = kmap_atomic(page);
263 drm_clflush_virt_range(vaddr, PAGE_SIZE);
264 memcpy(dst, vaddr, PAGE_SIZE);
265 kunmap_atomic(dst);
266
267 set_page_dirty(page);
268 if (obj->madv == I915_MADV_WILLNEED)
00731155 269 mark_page_accessed(page);
6a2c4232 270 page_cache_release(page);
00731155
CW
271 vaddr += PAGE_SIZE;
272 }
6a2c4232 273 obj->dirty = 0;
00731155
CW
274 }
275
6a2c4232
CW
276 sg_free_table(obj->pages);
277 kfree(obj->pages);
278
279 obj->has_dma_mapping = false;
280}
281
282static void
283i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
284{
285 drm_pci_free(obj->base.dev, obj->phys_handle);
286}
287
288static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
289 .get_pages = i915_gem_object_get_pages_phys,
290 .put_pages = i915_gem_object_put_pages_phys,
291 .release = i915_gem_object_release_phys,
292};
293
294static int
295drop_pages(struct drm_i915_gem_object *obj)
296{
297 struct i915_vma *vma, *next;
298 int ret;
299
300 drm_gem_object_reference(&obj->base);
301 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
302 if (i915_vma_unbind(vma))
303 break;
304
305 ret = i915_gem_object_put_pages(obj);
306 drm_gem_object_unreference(&obj->base);
307
308 return ret;
00731155
CW
309}
310
311int
312i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
313 int align)
314{
315 drm_dma_handle_t *phys;
6a2c4232 316 int ret;
00731155
CW
317
318 if (obj->phys_handle) {
319 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
320 return -EBUSY;
321
322 return 0;
323 }
324
325 if (obj->madv != I915_MADV_WILLNEED)
326 return -EFAULT;
327
328 if (obj->base.filp == NULL)
329 return -EINVAL;
330
6a2c4232
CW
331 ret = drop_pages(obj);
332 if (ret)
333 return ret;
334
00731155
CW
335 /* create a new object */
336 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
337 if (!phys)
338 return -ENOMEM;
339
00731155 340 obj->phys_handle = phys;
6a2c4232
CW
341 obj->ops = &i915_gem_phys_ops;
342
343 return i915_gem_object_get_pages(obj);
00731155
CW
344}
345
346static int
347i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
348 struct drm_i915_gem_pwrite *args,
349 struct drm_file *file_priv)
350{
351 struct drm_device *dev = obj->base.dev;
352 void *vaddr = obj->phys_handle->vaddr + args->offset;
353 char __user *user_data = to_user_ptr(args->data_ptr);
6a2c4232
CW
354 int ret;
355
356 /* We manually control the domain here and pretend that it
357 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
358 */
359 ret = i915_gem_object_wait_rendering(obj, false);
360 if (ret)
361 return ret;
00731155
CW
362
363 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
364 unsigned long unwritten;
365
366 /* The physical object once assigned is fixed for the lifetime
367 * of the obj, so we can safely drop the lock and continue
368 * to access vaddr.
369 */
370 mutex_unlock(&dev->struct_mutex);
371 unwritten = copy_from_user(vaddr, user_data, args->size);
372 mutex_lock(&dev->struct_mutex);
373 if (unwritten)
374 return -EFAULT;
375 }
376
6a2c4232 377 drm_clflush_virt_range(vaddr, args->size);
00731155
CW
378 i915_gem_chipset_flush(dev);
379 return 0;
380}
381
42dcedd4
CW
382void *i915_gem_object_alloc(struct drm_device *dev)
383{
384 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 385 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
386}
387
388void i915_gem_object_free(struct drm_i915_gem_object *obj)
389{
390 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
391 kmem_cache_free(dev_priv->slab, obj);
392}
393
ff72145b
DA
394static int
395i915_gem_create(struct drm_file *file,
396 struct drm_device *dev,
397 uint64_t size,
355a7018 398 bool dumb,
ff72145b 399 uint32_t *handle_p)
673a394b 400{
05394f39 401 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
402 int ret;
403 u32 handle;
673a394b 404
ff72145b 405 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
406 if (size == 0)
407 return -EINVAL;
673a394b
EA
408
409 /* Allocate the new object */
ff72145b 410 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
411 if (obj == NULL)
412 return -ENOMEM;
413
355a7018 414 obj->base.dumb = dumb;
05394f39 415 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 416 /* drop reference from allocate - handle holds it now */
d861e338
DV
417 drm_gem_object_unreference_unlocked(&obj->base);
418 if (ret)
419 return ret;
202f2fef 420
ff72145b 421 *handle_p = handle;
673a394b
EA
422 return 0;
423}
424
ff72145b
DA
425int
426i915_gem_dumb_create(struct drm_file *file,
427 struct drm_device *dev,
428 struct drm_mode_create_dumb *args)
429{
430 /* have to work out size/pitch and return them */
de45eaf7 431 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
432 args->size = args->pitch * args->height;
433 return i915_gem_create(file, dev,
355a7018 434 args->size, true, &args->handle);
ff72145b
DA
435}
436
ff72145b
DA
437/**
438 * Creates a new mm object and returns a handle to it.
439 */
440int
441i915_gem_create_ioctl(struct drm_device *dev, void *data,
442 struct drm_file *file)
443{
444 struct drm_i915_gem_create *args = data;
63ed2cb2 445
ff72145b 446 return i915_gem_create(file, dev,
355a7018 447 args->size, false, &args->handle);
ff72145b
DA
448}
449
8461d226
DV
450static inline int
451__copy_to_user_swizzled(char __user *cpu_vaddr,
452 const char *gpu_vaddr, int gpu_offset,
453 int length)
454{
455 int ret, cpu_offset = 0;
456
457 while (length > 0) {
458 int cacheline_end = ALIGN(gpu_offset + 1, 64);
459 int this_length = min(cacheline_end - gpu_offset, length);
460 int swizzled_gpu_offset = gpu_offset ^ 64;
461
462 ret = __copy_to_user(cpu_vaddr + cpu_offset,
463 gpu_vaddr + swizzled_gpu_offset,
464 this_length);
465 if (ret)
466 return ret + length;
467
468 cpu_offset += this_length;
469 gpu_offset += this_length;
470 length -= this_length;
471 }
472
473 return 0;
474}
475
8c59967c 476static inline int
4f0c7cfb
BW
477__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
478 const char __user *cpu_vaddr,
8c59967c
DV
479 int length)
480{
481 int ret, cpu_offset = 0;
482
483 while (length > 0) {
484 int cacheline_end = ALIGN(gpu_offset + 1, 64);
485 int this_length = min(cacheline_end - gpu_offset, length);
486 int swizzled_gpu_offset = gpu_offset ^ 64;
487
488 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
489 cpu_vaddr + cpu_offset,
490 this_length);
491 if (ret)
492 return ret + length;
493
494 cpu_offset += this_length;
495 gpu_offset += this_length;
496 length -= this_length;
497 }
498
499 return 0;
500}
501
4c914c0c
BV
502/*
503 * Pins the specified object's pages and synchronizes the object with
504 * GPU accesses. Sets needs_clflush to non-zero if the caller should
505 * flush the object from the CPU cache.
506 */
507int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
508 int *needs_clflush)
509{
510 int ret;
511
512 *needs_clflush = 0;
513
514 if (!obj->base.filp)
515 return -EINVAL;
516
517 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
518 /* If we're not in the cpu read domain, set ourself into the gtt
519 * read domain and manually flush cachelines (if required). This
520 * optimizes for the case when the gpu will dirty the data
521 * anyway again before the next pread happens. */
522 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
523 obj->cache_level);
524 ret = i915_gem_object_wait_rendering(obj, true);
525 if (ret)
526 return ret;
c8725f3d
CW
527
528 i915_gem_object_retire(obj);
4c914c0c
BV
529 }
530
531 ret = i915_gem_object_get_pages(obj);
532 if (ret)
533 return ret;
534
535 i915_gem_object_pin_pages(obj);
536
537 return ret;
538}
539
d174bd64
DV
540/* Per-page copy function for the shmem pread fastpath.
541 * Flushes invalid cachelines before reading the target if
542 * needs_clflush is set. */
eb01459f 543static int
d174bd64
DV
544shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
545 char __user *user_data,
546 bool page_do_bit17_swizzling, bool needs_clflush)
547{
548 char *vaddr;
549 int ret;
550
e7e58eb5 551 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
552 return -EINVAL;
553
554 vaddr = kmap_atomic(page);
555 if (needs_clflush)
556 drm_clflush_virt_range(vaddr + shmem_page_offset,
557 page_length);
558 ret = __copy_to_user_inatomic(user_data,
559 vaddr + shmem_page_offset,
560 page_length);
561 kunmap_atomic(vaddr);
562
f60d7f0c 563 return ret ? -EFAULT : 0;
d174bd64
DV
564}
565
23c18c71
DV
566static void
567shmem_clflush_swizzled_range(char *addr, unsigned long length,
568 bool swizzled)
569{
e7e58eb5 570 if (unlikely(swizzled)) {
23c18c71
DV
571 unsigned long start = (unsigned long) addr;
572 unsigned long end = (unsigned long) addr + length;
573
574 /* For swizzling simply ensure that we always flush both
575 * channels. Lame, but simple and it works. Swizzled
576 * pwrite/pread is far from a hotpath - current userspace
577 * doesn't use it at all. */
578 start = round_down(start, 128);
579 end = round_up(end, 128);
580
581 drm_clflush_virt_range((void *)start, end - start);
582 } else {
583 drm_clflush_virt_range(addr, length);
584 }
585
586}
587
d174bd64
DV
588/* Only difference to the fast-path function is that this can handle bit17
589 * and uses non-atomic copy and kmap functions. */
590static int
591shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
592 char __user *user_data,
593 bool page_do_bit17_swizzling, bool needs_clflush)
594{
595 char *vaddr;
596 int ret;
597
598 vaddr = kmap(page);
599 if (needs_clflush)
23c18c71
DV
600 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
601 page_length,
602 page_do_bit17_swizzling);
d174bd64
DV
603
604 if (page_do_bit17_swizzling)
605 ret = __copy_to_user_swizzled(user_data,
606 vaddr, shmem_page_offset,
607 page_length);
608 else
609 ret = __copy_to_user(user_data,
610 vaddr + shmem_page_offset,
611 page_length);
612 kunmap(page);
613
f60d7f0c 614 return ret ? - EFAULT : 0;
d174bd64
DV
615}
616
eb01459f 617static int
dbf7bff0
DV
618i915_gem_shmem_pread(struct drm_device *dev,
619 struct drm_i915_gem_object *obj,
620 struct drm_i915_gem_pread *args,
621 struct drm_file *file)
eb01459f 622{
8461d226 623 char __user *user_data;
eb01459f 624 ssize_t remain;
8461d226 625 loff_t offset;
eb2c0c81 626 int shmem_page_offset, page_length, ret = 0;
8461d226 627 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 628 int prefaulted = 0;
8489731c 629 int needs_clflush = 0;
67d5a50c 630 struct sg_page_iter sg_iter;
eb01459f 631
2bb4629a 632 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
633 remain = args->size;
634
8461d226 635 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 636
4c914c0c 637 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
638 if (ret)
639 return ret;
640
8461d226 641 offset = args->offset;
eb01459f 642
67d5a50c
ID
643 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
644 offset >> PAGE_SHIFT) {
2db76d7c 645 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
646
647 if (remain <= 0)
648 break;
649
eb01459f
EA
650 /* Operation in this page
651 *
eb01459f 652 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
653 * page_length = bytes to copy for this page
654 */
c8cbbb8b 655 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
656 page_length = remain;
657 if ((shmem_page_offset + page_length) > PAGE_SIZE)
658 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 659
8461d226
DV
660 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
661 (page_to_phys(page) & (1 << 17)) != 0;
662
d174bd64
DV
663 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
664 user_data, page_do_bit17_swizzling,
665 needs_clflush);
666 if (ret == 0)
667 goto next_page;
dbf7bff0 668
dbf7bff0
DV
669 mutex_unlock(&dev->struct_mutex);
670
d330a953 671 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 672 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
673 /* Userspace is tricking us, but we've already clobbered
674 * its pages with the prefault and promised to write the
675 * data up to the first fault. Hence ignore any errors
676 * and just continue. */
677 (void)ret;
678 prefaulted = 1;
679 }
eb01459f 680
d174bd64
DV
681 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
682 user_data, page_do_bit17_swizzling,
683 needs_clflush);
eb01459f 684
dbf7bff0 685 mutex_lock(&dev->struct_mutex);
f60d7f0c 686
f60d7f0c 687 if (ret)
8461d226 688 goto out;
8461d226 689
17793c9a 690next_page:
eb01459f 691 remain -= page_length;
8461d226 692 user_data += page_length;
eb01459f
EA
693 offset += page_length;
694 }
695
4f27b75d 696out:
f60d7f0c
CW
697 i915_gem_object_unpin_pages(obj);
698
eb01459f
EA
699 return ret;
700}
701
673a394b
EA
702/**
703 * Reads data from the object referenced by handle.
704 *
705 * On error, the contents of *data are undefined.
706 */
707int
708i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 709 struct drm_file *file)
673a394b
EA
710{
711 struct drm_i915_gem_pread *args = data;
05394f39 712 struct drm_i915_gem_object *obj;
35b62a89 713 int ret = 0;
673a394b 714
51311d0a
CW
715 if (args->size == 0)
716 return 0;
717
718 if (!access_ok(VERIFY_WRITE,
2bb4629a 719 to_user_ptr(args->data_ptr),
51311d0a
CW
720 args->size))
721 return -EFAULT;
722
4f27b75d 723 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 724 if (ret)
4f27b75d 725 return ret;
673a394b 726
05394f39 727 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 728 if (&obj->base == NULL) {
1d7cfea1
CW
729 ret = -ENOENT;
730 goto unlock;
4f27b75d 731 }
673a394b 732
7dcd2499 733 /* Bounds check source. */
05394f39
CW
734 if (args->offset > obj->base.size ||
735 args->size > obj->base.size - args->offset) {
ce9d419d 736 ret = -EINVAL;
35b62a89 737 goto out;
ce9d419d
CW
738 }
739
1286ff73
DV
740 /* prime objects have no backing filp to GEM pread/pwrite
741 * pages from.
742 */
743 if (!obj->base.filp) {
744 ret = -EINVAL;
745 goto out;
746 }
747
db53a302
CW
748 trace_i915_gem_object_pread(obj, args->offset, args->size);
749
dbf7bff0 750 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 751
35b62a89 752out:
05394f39 753 drm_gem_object_unreference(&obj->base);
1d7cfea1 754unlock:
4f27b75d 755 mutex_unlock(&dev->struct_mutex);
eb01459f 756 return ret;
673a394b
EA
757}
758
0839ccb8
KP
759/* This is the fast write path which cannot handle
760 * page faults in the source data
9b7530cc 761 */
0839ccb8
KP
762
763static inline int
764fast_user_write(struct io_mapping *mapping,
765 loff_t page_base, int page_offset,
766 char __user *user_data,
767 int length)
9b7530cc 768{
4f0c7cfb
BW
769 void __iomem *vaddr_atomic;
770 void *vaddr;
0839ccb8 771 unsigned long unwritten;
9b7530cc 772
3e4d3af5 773 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
774 /* We can use the cpu mem copy function because this is X86. */
775 vaddr = (void __force*)vaddr_atomic + page_offset;
776 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 777 user_data, length);
3e4d3af5 778 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 779 return unwritten;
0839ccb8
KP
780}
781
3de09aa3
EA
782/**
783 * This is the fast pwrite path, where we copy the data directly from the
784 * user into the GTT, uncached.
785 */
673a394b 786static int
05394f39
CW
787i915_gem_gtt_pwrite_fast(struct drm_device *dev,
788 struct drm_i915_gem_object *obj,
3de09aa3 789 struct drm_i915_gem_pwrite *args,
05394f39 790 struct drm_file *file)
673a394b 791{
3e31c6c0 792 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 793 ssize_t remain;
0839ccb8 794 loff_t offset, page_base;
673a394b 795 char __user *user_data;
935aaa69
DV
796 int page_offset, page_length, ret;
797
1ec9e26d 798 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
799 if (ret)
800 goto out;
801
802 ret = i915_gem_object_set_to_gtt_domain(obj, true);
803 if (ret)
804 goto out_unpin;
805
806 ret = i915_gem_object_put_fence(obj);
807 if (ret)
808 goto out_unpin;
673a394b 809
2bb4629a 810 user_data = to_user_ptr(args->data_ptr);
673a394b 811 remain = args->size;
673a394b 812
f343c5f6 813 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
814
815 while (remain > 0) {
816 /* Operation in this page
817 *
0839ccb8
KP
818 * page_base = page offset within aperture
819 * page_offset = offset within page
820 * page_length = bytes to copy for this page
673a394b 821 */
c8cbbb8b
CW
822 page_base = offset & PAGE_MASK;
823 page_offset = offset_in_page(offset);
0839ccb8
KP
824 page_length = remain;
825 if ((page_offset + remain) > PAGE_SIZE)
826 page_length = PAGE_SIZE - page_offset;
827
0839ccb8 828 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
829 * source page isn't available. Return the error and we'll
830 * retry in the slow path.
0839ccb8 831 */
5d4545ae 832 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
833 page_offset, user_data, page_length)) {
834 ret = -EFAULT;
835 goto out_unpin;
836 }
673a394b 837
0839ccb8
KP
838 remain -= page_length;
839 user_data += page_length;
840 offset += page_length;
673a394b 841 }
673a394b 842
935aaa69 843out_unpin:
d7f46fc4 844 i915_gem_object_ggtt_unpin(obj);
935aaa69 845out:
3de09aa3 846 return ret;
673a394b
EA
847}
848
d174bd64
DV
849/* Per-page copy function for the shmem pwrite fastpath.
850 * Flushes invalid cachelines before writing to the target if
851 * needs_clflush_before is set and flushes out any written cachelines after
852 * writing if needs_clflush is set. */
3043c60c 853static int
d174bd64
DV
854shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
855 char __user *user_data,
856 bool page_do_bit17_swizzling,
857 bool needs_clflush_before,
858 bool needs_clflush_after)
673a394b 859{
d174bd64 860 char *vaddr;
673a394b 861 int ret;
3de09aa3 862
e7e58eb5 863 if (unlikely(page_do_bit17_swizzling))
d174bd64 864 return -EINVAL;
3de09aa3 865
d174bd64
DV
866 vaddr = kmap_atomic(page);
867 if (needs_clflush_before)
868 drm_clflush_virt_range(vaddr + shmem_page_offset,
869 page_length);
c2831a94
CW
870 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
871 user_data, page_length);
d174bd64
DV
872 if (needs_clflush_after)
873 drm_clflush_virt_range(vaddr + shmem_page_offset,
874 page_length);
875 kunmap_atomic(vaddr);
3de09aa3 876
755d2218 877 return ret ? -EFAULT : 0;
3de09aa3
EA
878}
879
d174bd64
DV
880/* Only difference to the fast-path function is that this can handle bit17
881 * and uses non-atomic copy and kmap functions. */
3043c60c 882static int
d174bd64
DV
883shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
884 char __user *user_data,
885 bool page_do_bit17_swizzling,
886 bool needs_clflush_before,
887 bool needs_clflush_after)
673a394b 888{
d174bd64
DV
889 char *vaddr;
890 int ret;
e5281ccd 891
d174bd64 892 vaddr = kmap(page);
e7e58eb5 893 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
894 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
895 page_length,
896 page_do_bit17_swizzling);
d174bd64
DV
897 if (page_do_bit17_swizzling)
898 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
899 user_data,
900 page_length);
d174bd64
DV
901 else
902 ret = __copy_from_user(vaddr + shmem_page_offset,
903 user_data,
904 page_length);
905 if (needs_clflush_after)
23c18c71
DV
906 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
907 page_length,
908 page_do_bit17_swizzling);
d174bd64 909 kunmap(page);
40123c1f 910
755d2218 911 return ret ? -EFAULT : 0;
40123c1f
EA
912}
913
40123c1f 914static int
e244a443
DV
915i915_gem_shmem_pwrite(struct drm_device *dev,
916 struct drm_i915_gem_object *obj,
917 struct drm_i915_gem_pwrite *args,
918 struct drm_file *file)
40123c1f 919{
40123c1f 920 ssize_t remain;
8c59967c
DV
921 loff_t offset;
922 char __user *user_data;
eb2c0c81 923 int shmem_page_offset, page_length, ret = 0;
8c59967c 924 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 925 int hit_slowpath = 0;
58642885
DV
926 int needs_clflush_after = 0;
927 int needs_clflush_before = 0;
67d5a50c 928 struct sg_page_iter sg_iter;
40123c1f 929
2bb4629a 930 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
931 remain = args->size;
932
8c59967c 933 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 934
58642885
DV
935 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
936 /* If we're not in the cpu write domain, set ourself into the gtt
937 * write domain and manually flush cachelines (if required). This
938 * optimizes for the case when the gpu will use the data
939 * right away and we therefore have to clflush anyway. */
2c22569b 940 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
941 ret = i915_gem_object_wait_rendering(obj, false);
942 if (ret)
943 return ret;
c8725f3d
CW
944
945 i915_gem_object_retire(obj);
58642885 946 }
c76ce038
CW
947 /* Same trick applies to invalidate partially written cachelines read
948 * before writing. */
949 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
950 needs_clflush_before =
951 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 952
755d2218
CW
953 ret = i915_gem_object_get_pages(obj);
954 if (ret)
955 return ret;
956
957 i915_gem_object_pin_pages(obj);
958
673a394b 959 offset = args->offset;
05394f39 960 obj->dirty = 1;
673a394b 961
67d5a50c
ID
962 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 offset >> PAGE_SHIFT) {
2db76d7c 964 struct page *page = sg_page_iter_page(&sg_iter);
58642885 965 int partial_cacheline_write;
e5281ccd 966
9da3da66
CW
967 if (remain <= 0)
968 break;
969
40123c1f
EA
970 /* Operation in this page
971 *
40123c1f 972 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
973 * page_length = bytes to copy for this page
974 */
c8cbbb8b 975 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
976
977 page_length = remain;
978 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 980
58642885
DV
981 /* If we don't overwrite a cacheline completely we need to be
982 * careful to have up-to-date data by first clflushing. Don't
983 * overcomplicate things and flush the entire patch. */
984 partial_cacheline_write = needs_clflush_before &&
985 ((shmem_page_offset | page_length)
986 & (boot_cpu_data.x86_clflush_size - 1));
987
8c59967c
DV
988 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 (page_to_phys(page) & (1 << 17)) != 0;
990
d174bd64
DV
991 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 user_data, page_do_bit17_swizzling,
993 partial_cacheline_write,
994 needs_clflush_after);
995 if (ret == 0)
996 goto next_page;
e244a443
DV
997
998 hit_slowpath = 1;
e244a443 999 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1000 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 user_data, page_do_bit17_swizzling,
1002 partial_cacheline_write,
1003 needs_clflush_after);
40123c1f 1004
e244a443 1005 mutex_lock(&dev->struct_mutex);
755d2218 1006
755d2218 1007 if (ret)
8c59967c 1008 goto out;
8c59967c 1009
17793c9a 1010next_page:
40123c1f 1011 remain -= page_length;
8c59967c 1012 user_data += page_length;
40123c1f 1013 offset += page_length;
673a394b
EA
1014 }
1015
fbd5a26d 1016out:
755d2218
CW
1017 i915_gem_object_unpin_pages(obj);
1018
e244a443 1019 if (hit_slowpath) {
8dcf015e
DV
1020 /*
1021 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 * cachelines in-line while writing and the object moved
1023 * out of the cpu write domain while we've dropped the lock.
1024 */
1025 if (!needs_clflush_after &&
1026 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1027 if (i915_gem_clflush_object(obj, obj->pin_display))
1028 i915_gem_chipset_flush(dev);
e244a443 1029 }
8c59967c 1030 }
673a394b 1031
58642885 1032 if (needs_clflush_after)
e76e9aeb 1033 i915_gem_chipset_flush(dev);
58642885 1034
40123c1f 1035 return ret;
673a394b
EA
1036}
1037
1038/**
1039 * Writes data to the object referenced by handle.
1040 *
1041 * On error, the contents of the buffer that were to be modified are undefined.
1042 */
1043int
1044i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1045 struct drm_file *file)
673a394b
EA
1046{
1047 struct drm_i915_gem_pwrite *args = data;
05394f39 1048 struct drm_i915_gem_object *obj;
51311d0a
CW
1049 int ret;
1050
1051 if (args->size == 0)
1052 return 0;
1053
1054 if (!access_ok(VERIFY_READ,
2bb4629a 1055 to_user_ptr(args->data_ptr),
51311d0a
CW
1056 args->size))
1057 return -EFAULT;
1058
d330a953 1059 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1060 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1061 args->size);
1062 if (ret)
1063 return -EFAULT;
1064 }
673a394b 1065
fbd5a26d 1066 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1067 if (ret)
fbd5a26d 1068 return ret;
1d7cfea1 1069
05394f39 1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1071 if (&obj->base == NULL) {
1d7cfea1
CW
1072 ret = -ENOENT;
1073 goto unlock;
fbd5a26d 1074 }
673a394b 1075
7dcd2499 1076 /* Bounds check destination. */
05394f39
CW
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
ce9d419d 1079 ret = -EINVAL;
35b62a89 1080 goto out;
ce9d419d
CW
1081 }
1082
1286ff73
DV
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
db53a302
CW
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
935aaa69 1093 ret = -EFAULT;
673a394b
EA
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
2c22569b
CW
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
fbd5a26d 1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1107 }
673a394b 1108
6a2c4232
CW
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
5c0480f2 1115
35b62a89 1116out:
05394f39 1117 drm_gem_object_unreference(&obj->base);
1d7cfea1 1118unlock:
fbd5a26d 1119 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1120 return ret;
1121}
1122
b361237b 1123int
33196ded 1124i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1125 bool interruptible)
1126{
1f83fee0 1127 if (i915_reset_in_progress(error)) {
b361237b
CW
1128 /* Non-interruptible callers can't handle -EAGAIN, hence return
1129 * -EIO unconditionally for these. */
1130 if (!interruptible)
1131 return -EIO;
1132
1f83fee0
DV
1133 /* Recovery complete, but the reset failed ... */
1134 if (i915_terminally_wedged(error))
b361237b
CW
1135 return -EIO;
1136
6689c167
MA
1137 /*
1138 * Check if GPU Reset is in progress - we need intel_ring_begin
1139 * to work properly to reinit the hw state while the gpu is
1140 * still marked as reset-in-progress. Handle this with a flag.
1141 */
1142 if (!error->reload_in_reset)
1143 return -EAGAIN;
b361237b
CW
1144 }
1145
1146 return 0;
1147}
1148
1149/*
b6660d59 1150 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1151 */
84c33a64 1152int
b6660d59 1153i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b
CW
1154{
1155 int ret;
1156
b6660d59 1157 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b
CW
1158
1159 ret = 0;
b6660d59 1160 if (req == req->ring->outstanding_lazy_request)
9400ae5c 1161 ret = i915_add_request(req->ring);
b361237b
CW
1162
1163 return ret;
1164}
1165
094f9a54
CW
1166static void fake_irq(unsigned long data)
1167{
1168 wake_up_process((struct task_struct *)data);
1169}
1170
1171static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1172 struct intel_engine_cs *ring)
094f9a54
CW
1173{
1174 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1175}
1176
b29c19b6
CW
1177static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1178{
1179 if (file_priv == NULL)
1180 return true;
1181
1182 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1183}
1184
b361237b 1185/**
9c654818
JH
1186 * __i915_wait_request - wait until execution of request has finished
1187 * @req: duh!
1188 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1189 * @interruptible: do an interruptible wait (normally yes)
1190 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1191 *
f69061be
DV
1192 * Note: It is of utmost importance that the passed in seqno and reset_counter
1193 * values have been read by the caller in an smp safe manner. Where read-side
1194 * locks are involved, it is sufficient to read the reset_counter before
1195 * unlocking the lock that protects the seqno. For lockless tricks, the
1196 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1197 * inserted.
1198 *
9c654818 1199 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1200 * errno with remaining time filled in timeout argument.
1201 */
9c654818 1202int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1203 unsigned reset_counter,
b29c19b6 1204 bool interruptible,
5ed0bdf2 1205 s64 *timeout,
b29c19b6 1206 struct drm_i915_file_private *file_priv)
b361237b 1207{
9c654818 1208 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1209 struct drm_device *dev = ring->dev;
3e31c6c0 1210 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1211 const bool irq_test_in_progress =
1212 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1213 DEFINE_WAIT(wait);
47e9766d 1214 unsigned long timeout_expire;
5ed0bdf2 1215 s64 before, now;
b361237b
CW
1216 int ret;
1217
9df7575f 1218 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1219
1b5a433a 1220 if (i915_gem_request_completed(req, true))
b361237b
CW
1221 return 0;
1222
5ed0bdf2 1223 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
b361237b 1224
ec5cc0f9 1225 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1226 gen6_rps_boost(dev_priv);
1227 if (file_priv)
1228 mod_delayed_work(dev_priv->wq,
1229 &file_priv->mm.idle_work,
1230 msecs_to_jiffies(100));
1231 }
1232
168c3f21 1233 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1234 return -ENODEV;
1235
094f9a54 1236 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1237 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1238 before = ktime_get_raw_ns();
094f9a54
CW
1239 for (;;) {
1240 struct timer_list timer;
b361237b 1241
094f9a54
CW
1242 prepare_to_wait(&ring->irq_queue, &wait,
1243 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1244
f69061be
DV
1245 /* We need to check whether any gpu reset happened in between
1246 * the caller grabbing the seqno and now ... */
094f9a54
CW
1247 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1248 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1249 * is truely gone. */
1250 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1251 if (ret == 0)
1252 ret = -EAGAIN;
1253 break;
1254 }
f69061be 1255
1b5a433a 1256 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1257 ret = 0;
1258 break;
1259 }
b361237b 1260
094f9a54
CW
1261 if (interruptible && signal_pending(current)) {
1262 ret = -ERESTARTSYS;
1263 break;
1264 }
1265
47e9766d 1266 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1267 ret = -ETIME;
1268 break;
1269 }
1270
1271 timer.function = NULL;
1272 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1273 unsigned long expire;
1274
094f9a54 1275 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1276 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1277 mod_timer(&timer, expire);
1278 }
1279
5035c275 1280 io_schedule();
094f9a54 1281
094f9a54
CW
1282 if (timer.function) {
1283 del_singleshot_timer_sync(&timer);
1284 destroy_timer_on_stack(&timer);
1285 }
1286 }
5ed0bdf2 1287 now = ktime_get_raw_ns();
74328ee5 1288 trace_i915_gem_request_wait_end(req);
b361237b 1289
168c3f21
MK
1290 if (!irq_test_in_progress)
1291 ring->irq_put(ring);
094f9a54
CW
1292
1293 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1294
1295 if (timeout) {
5ed0bdf2
TG
1296 s64 tres = *timeout - (now - before);
1297
1298 *timeout = tres < 0 ? 0 : tres;
b361237b
CW
1299 }
1300
094f9a54 1301 return ret;
b361237b
CW
1302}
1303
1304/**
a4b3a571 1305 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1306 * request and object lists appropriately for that event.
1307 */
1308int
a4b3a571 1309i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1310{
a4b3a571
DV
1311 struct drm_device *dev;
1312 struct drm_i915_private *dev_priv;
1313 bool interruptible;
16e9a21f 1314 unsigned reset_counter;
b361237b
CW
1315 int ret;
1316
a4b3a571
DV
1317 BUG_ON(req == NULL);
1318
1319 dev = req->ring->dev;
1320 dev_priv = dev->dev_private;
1321 interruptible = dev_priv->mm.interruptible;
1322
b361237b 1323 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1324
33196ded 1325 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1326 if (ret)
1327 return ret;
1328
a4b3a571 1329 ret = i915_gem_check_olr(req);
b361237b
CW
1330 if (ret)
1331 return ret;
1332
16e9a21f 1333 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
a4b3a571 1334 i915_gem_request_reference(req);
9c654818
JH
1335 ret = __i915_wait_request(req, reset_counter,
1336 interruptible, NULL, NULL);
a4b3a571
DV
1337 i915_gem_request_unreference(req);
1338 return ret;
b361237b
CW
1339}
1340
d26e3af8 1341static int
8e639549 1342i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
d26e3af8 1343{
c8725f3d
CW
1344 if (!obj->active)
1345 return 0;
d26e3af8
CW
1346
1347 /* Manually manage the write flush as we may have not yet
1348 * retired the buffer.
1349 *
97b2a6a1
JH
1350 * Note that the last_write_req is always the earlier of
1351 * the two (read/write) requests, so if we haved successfully waited,
d26e3af8
CW
1352 * we know we have passed the last write.
1353 */
97b2a6a1 1354 i915_gem_request_assign(&obj->last_write_req, NULL);
d26e3af8
CW
1355
1356 return 0;
1357}
1358
b361237b
CW
1359/**
1360 * Ensures that all rendering to the object has completed and the object is
1361 * safe to unbind from the GTT or access from the CPU.
1362 */
1363static __must_check int
1364i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1365 bool readonly)
1366{
97b2a6a1 1367 struct drm_i915_gem_request *req;
b361237b
CW
1368 int ret;
1369
97b2a6a1
JH
1370 req = readonly ? obj->last_write_req : obj->last_read_req;
1371 if (!req)
b361237b
CW
1372 return 0;
1373
a4b3a571 1374 ret = i915_wait_request(req);
b361237b
CW
1375 if (ret)
1376 return ret;
1377
8e639549 1378 return i915_gem_object_wait_rendering__tail(obj);
b361237b
CW
1379}
1380
3236f57a
CW
1381/* A nonblocking variant of the above wait. This is a highly dangerous routine
1382 * as the object state may change during this call.
1383 */
1384static __must_check int
1385i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1386 struct drm_i915_file_private *file_priv,
3236f57a
CW
1387 bool readonly)
1388{
97b2a6a1 1389 struct drm_i915_gem_request *req;
3236f57a
CW
1390 struct drm_device *dev = obj->base.dev;
1391 struct drm_i915_private *dev_priv = dev->dev_private;
f69061be 1392 unsigned reset_counter;
3236f57a
CW
1393 int ret;
1394
1395 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1396 BUG_ON(!dev_priv->mm.interruptible);
1397
97b2a6a1
JH
1398 req = readonly ? obj->last_write_req : obj->last_read_req;
1399 if (!req)
3236f57a
CW
1400 return 0;
1401
33196ded 1402 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1403 if (ret)
1404 return ret;
1405
b6660d59 1406 ret = i915_gem_check_olr(req);
3236f57a
CW
1407 if (ret)
1408 return ret;
1409
f69061be 1410 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 1411 i915_gem_request_reference(req);
3236f57a 1412 mutex_unlock(&dev->struct_mutex);
9c654818 1413 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
3236f57a 1414 mutex_lock(&dev->struct_mutex);
ff865885 1415 i915_gem_request_unreference(req);
d26e3af8
CW
1416 if (ret)
1417 return ret;
3236f57a 1418
8e639549 1419 return i915_gem_object_wait_rendering__tail(obj);
3236f57a
CW
1420}
1421
673a394b 1422/**
2ef7eeaa
EA
1423 * Called when user space prepares to use an object with the CPU, either
1424 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1425 */
1426int
1427i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1428 struct drm_file *file)
673a394b
EA
1429{
1430 struct drm_i915_gem_set_domain *args = data;
05394f39 1431 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1432 uint32_t read_domains = args->read_domains;
1433 uint32_t write_domain = args->write_domain;
673a394b
EA
1434 int ret;
1435
2ef7eeaa 1436 /* Only handle setting domains to types used by the CPU. */
21d509e3 1437 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1438 return -EINVAL;
1439
21d509e3 1440 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1441 return -EINVAL;
1442
1443 /* Having something in the write domain implies it's in the read
1444 * domain, and only that read domain. Enforce that in the request.
1445 */
1446 if (write_domain != 0 && read_domains != write_domain)
1447 return -EINVAL;
1448
76c1dec1 1449 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1450 if (ret)
76c1dec1 1451 return ret;
1d7cfea1 1452
05394f39 1453 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1454 if (&obj->base == NULL) {
1d7cfea1
CW
1455 ret = -ENOENT;
1456 goto unlock;
76c1dec1 1457 }
673a394b 1458
3236f57a
CW
1459 /* Try to flush the object off the GPU without holding the lock.
1460 * We will repeat the flush holding the lock in the normal manner
1461 * to catch cases where we are gazumped.
1462 */
6e4930f6
CW
1463 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1464 file->driver_priv,
1465 !write_domain);
3236f57a
CW
1466 if (ret)
1467 goto unref;
1468
43566ded 1469 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1470 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1471 else
e47c68e9 1472 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1473
3236f57a 1474unref:
05394f39 1475 drm_gem_object_unreference(&obj->base);
1d7cfea1 1476unlock:
673a394b
EA
1477 mutex_unlock(&dev->struct_mutex);
1478 return ret;
1479}
1480
1481/**
1482 * Called when user space has done writes to this buffer
1483 */
1484int
1485i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1486 struct drm_file *file)
673a394b
EA
1487{
1488 struct drm_i915_gem_sw_finish *args = data;
05394f39 1489 struct drm_i915_gem_object *obj;
673a394b
EA
1490 int ret = 0;
1491
76c1dec1 1492 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1493 if (ret)
76c1dec1 1494 return ret;
1d7cfea1 1495
05394f39 1496 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1497 if (&obj->base == NULL) {
1d7cfea1
CW
1498 ret = -ENOENT;
1499 goto unlock;
673a394b
EA
1500 }
1501
673a394b 1502 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1503 if (obj->pin_display)
1504 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1505
05394f39 1506 drm_gem_object_unreference(&obj->base);
1d7cfea1 1507unlock:
673a394b
EA
1508 mutex_unlock(&dev->struct_mutex);
1509 return ret;
1510}
1511
1512/**
1513 * Maps the contents of an object, returning the address it is mapped
1514 * into.
1515 *
1516 * While the mapping holds a reference on the contents of the object, it doesn't
1517 * imply a ref on the object itself.
34367381
DV
1518 *
1519 * IMPORTANT:
1520 *
1521 * DRM driver writers who look a this function as an example for how to do GEM
1522 * mmap support, please don't implement mmap support like here. The modern way
1523 * to implement DRM mmap support is with an mmap offset ioctl (like
1524 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1525 * That way debug tooling like valgrind will understand what's going on, hiding
1526 * the mmap call in a driver private ioctl will break that. The i915 driver only
1527 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1528 */
1529int
1530i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1531 struct drm_file *file)
673a394b
EA
1532{
1533 struct drm_i915_gem_mmap *args = data;
1534 struct drm_gem_object *obj;
673a394b
EA
1535 unsigned long addr;
1536
1816f923
AG
1537 if (args->flags & ~(I915_MMAP_WC))
1538 return -EINVAL;
1539
1540 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1541 return -ENODEV;
1542
05394f39 1543 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1544 if (obj == NULL)
bf79cb91 1545 return -ENOENT;
673a394b 1546
1286ff73
DV
1547 /* prime objects have no backing filp to GEM mmap
1548 * pages from.
1549 */
1550 if (!obj->filp) {
1551 drm_gem_object_unreference_unlocked(obj);
1552 return -EINVAL;
1553 }
1554
6be5ceb0 1555 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1556 PROT_READ | PROT_WRITE, MAP_SHARED,
1557 args->offset);
1816f923
AG
1558 if (args->flags & I915_MMAP_WC) {
1559 struct mm_struct *mm = current->mm;
1560 struct vm_area_struct *vma;
1561
1562 down_write(&mm->mmap_sem);
1563 vma = find_vma(mm, addr);
1564 if (vma)
1565 vma->vm_page_prot =
1566 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1567 else
1568 addr = -ENOMEM;
1569 up_write(&mm->mmap_sem);
1570 }
bc9025bd 1571 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1572 if (IS_ERR((void *)addr))
1573 return addr;
1574
1575 args->addr_ptr = (uint64_t) addr;
1576
1577 return 0;
1578}
1579
de151cf6
JB
1580/**
1581 * i915_gem_fault - fault a page into the GTT
1582 * vma: VMA in question
1583 * vmf: fault info
1584 *
1585 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1586 * from userspace. The fault handler takes care of binding the object to
1587 * the GTT (if needed), allocating and programming a fence register (again,
1588 * only if needed based on whether the old reg is still valid or the object
1589 * is tiled) and inserting a new PTE into the faulting process.
1590 *
1591 * Note that the faulting process may involve evicting existing objects
1592 * from the GTT and/or fence registers to make room. So performance may
1593 * suffer if the GTT working set is large or there are few fence registers
1594 * left.
1595 */
1596int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1597{
05394f39
CW
1598 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1599 struct drm_device *dev = obj->base.dev;
3e31c6c0 1600 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1601 pgoff_t page_offset;
1602 unsigned long pfn;
1603 int ret = 0;
0f973f27 1604 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1605
f65c9168
PZ
1606 intel_runtime_pm_get(dev_priv);
1607
de151cf6
JB
1608 /* We don't use vmf->pgoff since that has the fake offset */
1609 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1610 PAGE_SHIFT;
1611
d9bc7e9f
CW
1612 ret = i915_mutex_lock_interruptible(dev);
1613 if (ret)
1614 goto out;
a00b10c3 1615
db53a302
CW
1616 trace_i915_gem_object_fault(obj, page_offset, true, write);
1617
6e4930f6
CW
1618 /* Try to flush the object off the GPU first without holding the lock.
1619 * Upon reacquiring the lock, we will perform our sanity checks and then
1620 * repeat the flush holding the lock in the normal manner to catch cases
1621 * where we are gazumped.
1622 */
1623 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1624 if (ret)
1625 goto unlock;
1626
eb119bd6
CW
1627 /* Access to snoopable pages through the GTT is incoherent. */
1628 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1629 ret = -EFAULT;
eb119bd6
CW
1630 goto unlock;
1631 }
1632
d9bc7e9f 1633 /* Now bind it into the GTT if needed */
1ec9e26d 1634 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1635 if (ret)
1636 goto unlock;
4a684a41 1637
c9839303
CW
1638 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1639 if (ret)
1640 goto unpin;
74898d7e 1641
06d98131 1642 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1643 if (ret)
c9839303 1644 goto unpin;
7d1c4804 1645
b90b91d8 1646 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1647 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1648 pfn >>= PAGE_SHIFT;
de151cf6 1649
b90b91d8 1650 if (!obj->fault_mappable) {
beff0d0f
VS
1651 unsigned long size = min_t(unsigned long,
1652 vma->vm_end - vma->vm_start,
1653 obj->base.size);
b90b91d8
CW
1654 int i;
1655
beff0d0f 1656 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1657 ret = vm_insert_pfn(vma,
1658 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1659 pfn + i);
1660 if (ret)
1661 break;
1662 }
1663
1664 obj->fault_mappable = true;
1665 } else
1666 ret = vm_insert_pfn(vma,
1667 (unsigned long)vmf->virtual_address,
1668 pfn + page_offset);
c9839303 1669unpin:
d7f46fc4 1670 i915_gem_object_ggtt_unpin(obj);
c715089f 1671unlock:
de151cf6 1672 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1673out:
de151cf6 1674 switch (ret) {
d9bc7e9f 1675 case -EIO:
2232f031
DV
1676 /*
1677 * We eat errors when the gpu is terminally wedged to avoid
1678 * userspace unduly crashing (gl has no provisions for mmaps to
1679 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1680 * and so needs to be reported.
1681 */
1682 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1683 ret = VM_FAULT_SIGBUS;
1684 break;
1685 }
045e769a 1686 case -EAGAIN:
571c608d
DV
1687 /*
1688 * EAGAIN means the gpu is hung and we'll wait for the error
1689 * handler to reset everything when re-faulting in
1690 * i915_mutex_lock_interruptible.
d9bc7e9f 1691 */
c715089f
CW
1692 case 0:
1693 case -ERESTARTSYS:
bed636ab 1694 case -EINTR:
e79e0fe3
DR
1695 case -EBUSY:
1696 /*
1697 * EBUSY is ok: this just means that another thread
1698 * already did the job.
1699 */
f65c9168
PZ
1700 ret = VM_FAULT_NOPAGE;
1701 break;
de151cf6 1702 case -ENOMEM:
f65c9168
PZ
1703 ret = VM_FAULT_OOM;
1704 break;
a7c2e1aa 1705 case -ENOSPC:
45d67817 1706 case -EFAULT:
f65c9168
PZ
1707 ret = VM_FAULT_SIGBUS;
1708 break;
de151cf6 1709 default:
a7c2e1aa 1710 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1711 ret = VM_FAULT_SIGBUS;
1712 break;
de151cf6 1713 }
f65c9168
PZ
1714
1715 intel_runtime_pm_put(dev_priv);
1716 return ret;
de151cf6
JB
1717}
1718
901782b2
CW
1719/**
1720 * i915_gem_release_mmap - remove physical page mappings
1721 * @obj: obj in question
1722 *
af901ca1 1723 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1724 * relinquish ownership of the pages back to the system.
1725 *
1726 * It is vital that we remove the page mapping if we have mapped a tiled
1727 * object through the GTT and then lose the fence register due to
1728 * resource pressure. Similarly if the object has been moved out of the
1729 * aperture, than pages mapped into userspace must be revoked. Removing the
1730 * mapping will then trigger a page fault on the next user access, allowing
1731 * fixup by i915_gem_fault().
1732 */
d05ca301 1733void
05394f39 1734i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1735{
6299f992
CW
1736 if (!obj->fault_mappable)
1737 return;
901782b2 1738
6796cb16
DH
1739 drm_vma_node_unmap(&obj->base.vma_node,
1740 obj->base.dev->anon_inode->i_mapping);
6299f992 1741 obj->fault_mappable = false;
901782b2
CW
1742}
1743
eedd10f4
CW
1744void
1745i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1746{
1747 struct drm_i915_gem_object *obj;
1748
1749 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1750 i915_gem_release_mmap(obj);
1751}
1752
0fa87796 1753uint32_t
e28f8711 1754i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1755{
e28f8711 1756 uint32_t gtt_size;
92b88aeb
CW
1757
1758 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1759 tiling_mode == I915_TILING_NONE)
1760 return size;
92b88aeb
CW
1761
1762 /* Previous chips need a power-of-two fence region when tiling */
1763 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1764 gtt_size = 1024*1024;
92b88aeb 1765 else
e28f8711 1766 gtt_size = 512*1024;
92b88aeb 1767
e28f8711
CW
1768 while (gtt_size < size)
1769 gtt_size <<= 1;
92b88aeb 1770
e28f8711 1771 return gtt_size;
92b88aeb
CW
1772}
1773
de151cf6
JB
1774/**
1775 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1776 * @obj: object to check
1777 *
1778 * Return the required GTT alignment for an object, taking into account
5e783301 1779 * potential fence register mapping.
de151cf6 1780 */
d865110c
ID
1781uint32_t
1782i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1783 int tiling_mode, bool fenced)
de151cf6 1784{
de151cf6
JB
1785 /*
1786 * Minimum alignment is 4k (GTT page size), but might be greater
1787 * if a fence register is needed for the object.
1788 */
d865110c 1789 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1790 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1791 return 4096;
1792
a00b10c3
CW
1793 /*
1794 * Previous chips need to be aligned to the size of the smallest
1795 * fence register that can contain the object.
1796 */
e28f8711 1797 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1798}
1799
d8cb5086
CW
1800static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1801{
1802 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1803 int ret;
1804
0de23977 1805 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1806 return 0;
1807
da494d7c
DV
1808 dev_priv->mm.shrinker_no_lock_stealing = true;
1809
d8cb5086
CW
1810 ret = drm_gem_create_mmap_offset(&obj->base);
1811 if (ret != -ENOSPC)
da494d7c 1812 goto out;
d8cb5086
CW
1813
1814 /* Badly fragmented mmap space? The only way we can recover
1815 * space is by destroying unwanted objects. We can't randomly release
1816 * mmap_offsets as userspace expects them to be persistent for the
1817 * lifetime of the objects. The closest we can is to release the
1818 * offsets on purgeable objects by truncating it and marking it purged,
1819 * which prevents userspace from ever using that object again.
1820 */
21ab4e74
CW
1821 i915_gem_shrink(dev_priv,
1822 obj->base.size >> PAGE_SHIFT,
1823 I915_SHRINK_BOUND |
1824 I915_SHRINK_UNBOUND |
1825 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1826 ret = drm_gem_create_mmap_offset(&obj->base);
1827 if (ret != -ENOSPC)
da494d7c 1828 goto out;
d8cb5086
CW
1829
1830 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1831 ret = drm_gem_create_mmap_offset(&obj->base);
1832out:
1833 dev_priv->mm.shrinker_no_lock_stealing = false;
1834
1835 return ret;
d8cb5086
CW
1836}
1837
1838static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1839{
d8cb5086
CW
1840 drm_gem_free_mmap_offset(&obj->base);
1841}
1842
355a7018 1843static int
ff72145b
DA
1844i915_gem_mmap_gtt(struct drm_file *file,
1845 struct drm_device *dev,
355a7018 1846 uint32_t handle, bool dumb,
ff72145b 1847 uint64_t *offset)
de151cf6 1848{
da761a6e 1849 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1850 struct drm_i915_gem_object *obj;
de151cf6
JB
1851 int ret;
1852
76c1dec1 1853 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1854 if (ret)
76c1dec1 1855 return ret;
de151cf6 1856
ff72145b 1857 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1858 if (&obj->base == NULL) {
1d7cfea1
CW
1859 ret = -ENOENT;
1860 goto unlock;
1861 }
de151cf6 1862
355a7018
TH
1863 /*
1864 * We don't allow dumb mmaps on objects created using another
1865 * interface.
1866 */
1867 WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
1868 "Illegal dumb map of accelerated buffer.\n");
1869
5d4545ae 1870 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1871 ret = -E2BIG;
ff56b0bc 1872 goto out;
da761a6e
CW
1873 }
1874
05394f39 1875 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1876 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1877 ret = -EFAULT;
1d7cfea1 1878 goto out;
ab18282d
CW
1879 }
1880
d8cb5086
CW
1881 ret = i915_gem_object_create_mmap_offset(obj);
1882 if (ret)
1883 goto out;
de151cf6 1884
0de23977 1885 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1886
1d7cfea1 1887out:
05394f39 1888 drm_gem_object_unreference(&obj->base);
1d7cfea1 1889unlock:
de151cf6 1890 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1891 return ret;
de151cf6
JB
1892}
1893
355a7018
TH
1894int
1895i915_gem_dumb_map_offset(struct drm_file *file,
1896 struct drm_device *dev,
1897 uint32_t handle,
1898 uint64_t *offset)
1899{
1900 return i915_gem_mmap_gtt(file, dev, handle, true, offset);
1901}
1902
ff72145b
DA
1903/**
1904 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1905 * @dev: DRM device
1906 * @data: GTT mapping ioctl data
1907 * @file: GEM object info
1908 *
1909 * Simply returns the fake offset to userspace so it can mmap it.
1910 * The mmap call will end up in drm_gem_mmap(), which will set things
1911 * up so we can get faults in the handler above.
1912 *
1913 * The fault handler will take care of binding the object into the GTT
1914 * (since it may have been evicted to make room for something), allocating
1915 * a fence register, and mapping the appropriate aperture address into
1916 * userspace.
1917 */
1918int
1919i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1920 struct drm_file *file)
1921{
1922 struct drm_i915_gem_mmap_gtt *args = data;
1923
355a7018 1924 return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
ff72145b
DA
1925}
1926
5537252b
CW
1927static inline int
1928i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1929{
1930 return obj->madv == I915_MADV_DONTNEED;
1931}
1932
225067ee
DV
1933/* Immediately discard the backing storage */
1934static void
1935i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1936{
4d6294bf 1937 i915_gem_object_free_mmap_offset(obj);
1286ff73 1938
4d6294bf
CW
1939 if (obj->base.filp == NULL)
1940 return;
e5281ccd 1941
225067ee
DV
1942 /* Our goal here is to return as much of the memory as
1943 * is possible back to the system as we are called from OOM.
1944 * To do this we must instruct the shmfs to drop all of its
1945 * backing pages, *now*.
1946 */
5537252b 1947 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1948 obj->madv = __I915_MADV_PURGED;
1949}
e5281ccd 1950
5537252b
CW
1951/* Try to discard unwanted pages */
1952static void
1953i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1954{
5537252b
CW
1955 struct address_space *mapping;
1956
1957 switch (obj->madv) {
1958 case I915_MADV_DONTNEED:
1959 i915_gem_object_truncate(obj);
1960 case __I915_MADV_PURGED:
1961 return;
1962 }
1963
1964 if (obj->base.filp == NULL)
1965 return;
1966
1967 mapping = file_inode(obj->base.filp)->i_mapping,
1968 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1969}
1970
5cdf5881 1971static void
05394f39 1972i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1973{
90797e6d
ID
1974 struct sg_page_iter sg_iter;
1975 int ret;
1286ff73 1976
05394f39 1977 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1978
6c085a72
CW
1979 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1980 if (ret) {
1981 /* In the event of a disaster, abandon all caches and
1982 * hope for the best.
1983 */
1984 WARN_ON(ret != -EIO);
2c22569b 1985 i915_gem_clflush_object(obj, true);
6c085a72
CW
1986 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1987 }
1988
6dacfd2f 1989 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1990 i915_gem_object_save_bit_17_swizzle(obj);
1991
05394f39
CW
1992 if (obj->madv == I915_MADV_DONTNEED)
1993 obj->dirty = 0;
3ef94daa 1994
90797e6d 1995 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1996 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1997
05394f39 1998 if (obj->dirty)
9da3da66 1999 set_page_dirty(page);
3ef94daa 2000
05394f39 2001 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2002 mark_page_accessed(page);
3ef94daa 2003
9da3da66 2004 page_cache_release(page);
3ef94daa 2005 }
05394f39 2006 obj->dirty = 0;
673a394b 2007
9da3da66
CW
2008 sg_free_table(obj->pages);
2009 kfree(obj->pages);
37e680a1 2010}
6c085a72 2011
dd624afd 2012int
37e680a1
CW
2013i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2014{
2015 const struct drm_i915_gem_object_ops *ops = obj->ops;
2016
2f745ad3 2017 if (obj->pages == NULL)
37e680a1
CW
2018 return 0;
2019
a5570178
CW
2020 if (obj->pages_pin_count)
2021 return -EBUSY;
2022
9843877d 2023 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2024
a2165e31
CW
2025 /* ->put_pages might need to allocate memory for the bit17 swizzle
2026 * array, hence protect them from being reaped by removing them from gtt
2027 * lists early. */
35c20a60 2028 list_del(&obj->global_list);
a2165e31 2029
37e680a1 2030 ops->put_pages(obj);
05394f39 2031 obj->pages = NULL;
37e680a1 2032
5537252b 2033 i915_gem_object_invalidate(obj);
6c085a72
CW
2034
2035 return 0;
2036}
2037
21ab4e74
CW
2038unsigned long
2039i915_gem_shrink(struct drm_i915_private *dev_priv,
2040 long target, unsigned flags)
6c085a72 2041{
60a53727
CW
2042 const struct {
2043 struct list_head *list;
2044 unsigned int bit;
2045 } phases[] = {
2046 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2047 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2048 { NULL, 0 },
2049 }, *phase;
d9973b43 2050 unsigned long count = 0;
6c085a72 2051
57094f82 2052 /*
c8725f3d 2053 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
2054 * (due to retiring requests) we have to strictly process only
2055 * one element of the list at the time, and recheck the list
2056 * on every iteration.
c8725f3d
CW
2057 *
2058 * In particular, we must hold a reference whilst removing the
2059 * object as we may end up waiting for and/or retiring the objects.
2060 * This might release the final reference (held by the active list)
2061 * and result in the object being freed from under us. This is
2062 * similar to the precautions the eviction code must take whilst
2063 * removing objects.
2064 *
2065 * Also note that although these lists do not hold a reference to
2066 * the object we can safely grab one here: The final object
2067 * unreferencing and the bound_list are both protected by the
2068 * dev->struct_mutex and so we won't ever be able to observe an
2069 * object on the bound_list with a reference count equals 0.
57094f82 2070 */
60a53727 2071 for (phase = phases; phase->list; phase++) {
21ab4e74 2072 struct list_head still_in_list;
c8725f3d 2073
60a53727
CW
2074 if ((flags & phase->bit) == 0)
2075 continue;
80dcfdbd 2076
21ab4e74 2077 INIT_LIST_HEAD(&still_in_list);
60a53727 2078 while (count < target && !list_empty(phase->list)) {
21ab4e74
CW
2079 struct drm_i915_gem_object *obj;
2080 struct i915_vma *vma, *v;
57094f82 2081
60a53727 2082 obj = list_first_entry(phase->list,
21ab4e74
CW
2083 typeof(*obj), global_list);
2084 list_move_tail(&obj->global_list, &still_in_list);
80dcfdbd 2085
60a53727
CW
2086 if (flags & I915_SHRINK_PURGEABLE &&
2087 !i915_gem_object_is_purgeable(obj))
21ab4e74 2088 continue;
57094f82 2089
21ab4e74 2090 drm_gem_object_reference(&obj->base);
80dcfdbd 2091
60a53727
CW
2092 /* For the unbound phase, this should be a no-op! */
2093 list_for_each_entry_safe(vma, v,
2094 &obj->vma_list, vma_link)
21ab4e74
CW
2095 if (i915_vma_unbind(vma))
2096 break;
57094f82 2097
21ab4e74
CW
2098 if (i915_gem_object_put_pages(obj) == 0)
2099 count += obj->base.size >> PAGE_SHIFT;
2100
2101 drm_gem_object_unreference(&obj->base);
2102 }
60a53727 2103 list_splice(&still_in_list, phase->list);
6c085a72
CW
2104 }
2105
2106 return count;
2107}
2108
d9973b43 2109static unsigned long
6c085a72
CW
2110i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2111{
6c085a72 2112 i915_gem_evict_everything(dev_priv->dev);
21ab4e74
CW
2113 return i915_gem_shrink(dev_priv, LONG_MAX,
2114 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
225067ee
DV
2115}
2116
37e680a1 2117static int
6c085a72 2118i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2119{
6c085a72 2120 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2121 int page_count, i;
2122 struct address_space *mapping;
9da3da66
CW
2123 struct sg_table *st;
2124 struct scatterlist *sg;
90797e6d 2125 struct sg_page_iter sg_iter;
e5281ccd 2126 struct page *page;
90797e6d 2127 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2128 gfp_t gfp;
e5281ccd 2129
6c085a72
CW
2130 /* Assert that the object is not currently in any GPU domain. As it
2131 * wasn't in the GTT, there shouldn't be any way it could have been in
2132 * a GPU cache
2133 */
2134 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2135 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2136
9da3da66
CW
2137 st = kmalloc(sizeof(*st), GFP_KERNEL);
2138 if (st == NULL)
2139 return -ENOMEM;
2140
05394f39 2141 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2142 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2143 kfree(st);
e5281ccd 2144 return -ENOMEM;
9da3da66 2145 }
e5281ccd 2146
9da3da66
CW
2147 /* Get the list of pages out of our struct file. They'll be pinned
2148 * at this point until we release them.
2149 *
2150 * Fail silently without starting the shrinker
2151 */
496ad9aa 2152 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2153 gfp = mapping_gfp_mask(mapping);
caf49191 2154 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2155 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2156 sg = st->sgl;
2157 st->nents = 0;
2158 for (i = 0; i < page_count; i++) {
6c085a72
CW
2159 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2160 if (IS_ERR(page)) {
21ab4e74
CW
2161 i915_gem_shrink(dev_priv,
2162 page_count,
2163 I915_SHRINK_BOUND |
2164 I915_SHRINK_UNBOUND |
2165 I915_SHRINK_PURGEABLE);
6c085a72
CW
2166 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2167 }
2168 if (IS_ERR(page)) {
2169 /* We've tried hard to allocate the memory by reaping
2170 * our own buffer, now let the real VM do its job and
2171 * go down in flames if truly OOM.
2172 */
6c085a72 2173 i915_gem_shrink_all(dev_priv);
f461d1be 2174 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2175 if (IS_ERR(page))
2176 goto err_pages;
6c085a72 2177 }
426729dc
KRW
2178#ifdef CONFIG_SWIOTLB
2179 if (swiotlb_nr_tbl()) {
2180 st->nents++;
2181 sg_set_page(sg, page, PAGE_SIZE, 0);
2182 sg = sg_next(sg);
2183 continue;
2184 }
2185#endif
90797e6d
ID
2186 if (!i || page_to_pfn(page) != last_pfn + 1) {
2187 if (i)
2188 sg = sg_next(sg);
2189 st->nents++;
2190 sg_set_page(sg, page, PAGE_SIZE, 0);
2191 } else {
2192 sg->length += PAGE_SIZE;
2193 }
2194 last_pfn = page_to_pfn(page);
3bbbe706
DV
2195
2196 /* Check that the i965g/gm workaround works. */
2197 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2198 }
426729dc
KRW
2199#ifdef CONFIG_SWIOTLB
2200 if (!swiotlb_nr_tbl())
2201#endif
2202 sg_mark_end(sg);
74ce6b6c
CW
2203 obj->pages = st;
2204
6dacfd2f 2205 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2206 i915_gem_object_do_bit_17_swizzle(obj);
2207
656bfa3a
DV
2208 if (obj->tiling_mode != I915_TILING_NONE &&
2209 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2210 i915_gem_object_pin_pages(obj);
2211
e5281ccd
CW
2212 return 0;
2213
2214err_pages:
90797e6d
ID
2215 sg_mark_end(sg);
2216 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2217 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2218 sg_free_table(st);
2219 kfree(st);
0820baf3
CW
2220
2221 /* shmemfs first checks if there is enough memory to allocate the page
2222 * and reports ENOSPC should there be insufficient, along with the usual
2223 * ENOMEM for a genuine allocation failure.
2224 *
2225 * We use ENOSPC in our driver to mean that we have run out of aperture
2226 * space and so want to translate the error from shmemfs back to our
2227 * usual understanding of ENOMEM.
2228 */
2229 if (PTR_ERR(page) == -ENOSPC)
2230 return -ENOMEM;
2231 else
2232 return PTR_ERR(page);
673a394b
EA
2233}
2234
37e680a1
CW
2235/* Ensure that the associated pages are gathered from the backing storage
2236 * and pinned into our object. i915_gem_object_get_pages() may be called
2237 * multiple times before they are released by a single call to
2238 * i915_gem_object_put_pages() - once the pages are no longer referenced
2239 * either as a result of memory pressure (reaping pages under the shrinker)
2240 * or as the object is itself released.
2241 */
2242int
2243i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2244{
2245 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2246 const struct drm_i915_gem_object_ops *ops = obj->ops;
2247 int ret;
2248
2f745ad3 2249 if (obj->pages)
37e680a1
CW
2250 return 0;
2251
43e28f09 2252 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2253 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2254 return -EFAULT;
43e28f09
CW
2255 }
2256
a5570178
CW
2257 BUG_ON(obj->pages_pin_count);
2258
37e680a1
CW
2259 ret = ops->get_pages(obj);
2260 if (ret)
2261 return ret;
2262
35c20a60 2263 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2264 return 0;
673a394b
EA
2265}
2266
e2d05a8b 2267static void
05394f39 2268i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2269 struct intel_engine_cs *ring)
673a394b 2270{
41c52415
JH
2271 struct drm_i915_gem_request *req;
2272 struct intel_engine_cs *old_ring;
617dbe27 2273
852835f3 2274 BUG_ON(ring == NULL);
41c52415
JH
2275
2276 req = intel_ring_get_request(ring);
2277 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2278
2279 if (old_ring != ring && obj->last_write_req) {
97b2a6a1
JH
2280 /* Keep the request relative to the current ring */
2281 i915_gem_request_assign(&obj->last_write_req, req);
02978ff5 2282 }
673a394b
EA
2283
2284 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2285 if (!obj->active) {
2286 drm_gem_object_reference(&obj->base);
2287 obj->active = 1;
673a394b 2288 }
e35a41de 2289
05394f39 2290 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2291
97b2a6a1 2292 i915_gem_request_assign(&obj->last_read_req, req);
caea7476
CW
2293}
2294
e2d05a8b 2295void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2296 struct intel_engine_cs *ring)
e2d05a8b
BW
2297{
2298 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2299 return i915_gem_object_move_to_active(vma->obj, ring);
2300}
2301
caea7476 2302static void
caea7476 2303i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2304{
feb822cf 2305 struct i915_vma *vma;
ce44b0ea 2306
65ce3027 2307 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2308 BUG_ON(!obj->active);
caea7476 2309
fe14d5f4
TU
2310 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2311 if (!list_empty(&vma->mm_list))
2312 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2313 }
caea7476 2314
f99d7069
DV
2315 intel_fb_obj_flush(obj, true);
2316
65ce3027 2317 list_del_init(&obj->ring_list);
caea7476 2318
97b2a6a1
JH
2319 i915_gem_request_assign(&obj->last_read_req, NULL);
2320 i915_gem_request_assign(&obj->last_write_req, NULL);
65ce3027
CW
2321 obj->base.write_domain = 0;
2322
97b2a6a1 2323 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476
CW
2324
2325 obj->active = 0;
2326 drm_gem_object_unreference(&obj->base);
2327
2328 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2329}
673a394b 2330
c8725f3d
CW
2331static void
2332i915_gem_object_retire(struct drm_i915_gem_object *obj)
2333{
41c52415 2334 if (obj->last_read_req == NULL)
c8725f3d
CW
2335 return;
2336
1b5a433a 2337 if (i915_gem_request_completed(obj->last_read_req, true))
c8725f3d
CW
2338 i915_gem_object_move_to_inactive(obj);
2339}
2340
9d773091 2341static int
fca26bb4 2342i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2343{
9d773091 2344 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2345 struct intel_engine_cs *ring;
9d773091 2346 int ret, i, j;
53d227f2 2347
107f27a5 2348 /* Carefully retire all requests without writing to the rings */
9d773091 2349 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2350 ret = intel_ring_idle(ring);
2351 if (ret)
2352 return ret;
9d773091 2353 }
9d773091 2354 i915_gem_retire_requests(dev);
107f27a5
CW
2355
2356 /* Finally reset hw state */
9d773091 2357 for_each_ring(ring, dev_priv, i) {
fca26bb4 2358 intel_ring_init_seqno(ring, seqno);
498d2ac1 2359
ebc348b2
BW
2360 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2361 ring->semaphore.sync_seqno[j] = 0;
9d773091 2362 }
53d227f2 2363
9d773091 2364 return 0;
53d227f2
DV
2365}
2366
fca26bb4
MK
2367int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2368{
2369 struct drm_i915_private *dev_priv = dev->dev_private;
2370 int ret;
2371
2372 if (seqno == 0)
2373 return -EINVAL;
2374
2375 /* HWS page needs to be set less than what we
2376 * will inject to ring
2377 */
2378 ret = i915_gem_init_seqno(dev, seqno - 1);
2379 if (ret)
2380 return ret;
2381
2382 /* Carefully set the last_seqno value so that wrap
2383 * detection still works
2384 */
2385 dev_priv->next_seqno = seqno;
2386 dev_priv->last_seqno = seqno - 1;
2387 if (dev_priv->last_seqno == 0)
2388 dev_priv->last_seqno--;
2389
2390 return 0;
2391}
2392
9d773091
CW
2393int
2394i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2395{
9d773091
CW
2396 struct drm_i915_private *dev_priv = dev->dev_private;
2397
2398 /* reserve 0 for non-seqno */
2399 if (dev_priv->next_seqno == 0) {
fca26bb4 2400 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2401 if (ret)
2402 return ret;
53d227f2 2403
9d773091
CW
2404 dev_priv->next_seqno = 1;
2405 }
53d227f2 2406
f72b3435 2407 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2408 return 0;
53d227f2
DV
2409}
2410
a4872ba6 2411int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2412 struct drm_file *file,
9400ae5c 2413 struct drm_i915_gem_object *obj)
673a394b 2414{
3e31c6c0 2415 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2416 struct drm_i915_gem_request *request;
48e29f55 2417 struct intel_ringbuffer *ringbuf;
7d736f4f 2418 u32 request_ring_position, request_start;
3cce469c
CW
2419 int ret;
2420
6259cead 2421 request = ring->outstanding_lazy_request;
48e29f55
OM
2422 if (WARN_ON(request == NULL))
2423 return -ENOMEM;
2424
2425 if (i915.enable_execlists) {
2426 struct intel_context *ctx = request->ctx;
2427 ringbuf = ctx->engine[ring->id].ringbuf;
2428 } else
2429 ringbuf = ring->buffer;
2430
2431 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2432 /*
2433 * Emit any outstanding flushes - execbuf can fail to emit the flush
2434 * after having emitted the batchbuffer command. Hence we need to fix
2435 * things up similar to emitting the lazy request. The difference here
2436 * is that the flush _must_ happen before the next request, no matter
2437 * what.
2438 */
48e29f55
OM
2439 if (i915.enable_execlists) {
2440 ret = logical_ring_flush_all_caches(ringbuf);
2441 if (ret)
2442 return ret;
2443 } else {
2444 ret = intel_ring_flush_all_caches(ring);
2445 if (ret)
2446 return ret;
2447 }
cc889e0f 2448
a71d8d94
CW
2449 /* Record the position of the start of the request so that
2450 * should we detect the updated seqno part-way through the
2451 * GPU processing the request, we never over-estimate the
2452 * position of the head.
2453 */
48e29f55 2454 request_ring_position = intel_ring_get_tail(ringbuf);
a71d8d94 2455
48e29f55
OM
2456 if (i915.enable_execlists) {
2457 ret = ring->emit_request(ringbuf);
2458 if (ret)
2459 return ret;
2460 } else {
2461 ret = ring->add_request(ring);
2462 if (ret)
2463 return ret;
2464 }
673a394b 2465
7d736f4f 2466 request->head = request_start;
a71d8d94 2467 request->tail = request_ring_position;
7d736f4f
MK
2468
2469 /* Whilst this request exists, batch_obj will be on the
2470 * active_list, and so will hold the active reference. Only when this
2471 * request is retired will the the batch_obj be moved onto the
2472 * inactive_list and lose its active reference. Hence we do not need
2473 * to explicitly hold another reference here.
2474 */
9a7e0c2a 2475 request->batch_obj = obj;
0e50e96b 2476
48e29f55
OM
2477 if (!i915.enable_execlists) {
2478 /* Hold a reference to the current context so that we can inspect
2479 * it later in case a hangcheck error event fires.
2480 */
2481 request->ctx = ring->last_context;
2482 if (request->ctx)
2483 i915_gem_context_reference(request->ctx);
2484 }
0e50e96b 2485
673a394b 2486 request->emitted_jiffies = jiffies;
852835f3 2487 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2488 request->file_priv = NULL;
852835f3 2489
db53a302
CW
2490 if (file) {
2491 struct drm_i915_file_private *file_priv = file->driver_priv;
2492
1c25595f 2493 spin_lock(&file_priv->mm.lock);
f787a5f5 2494 request->file_priv = file_priv;
b962442e 2495 list_add_tail(&request->client_list,
f787a5f5 2496 &file_priv->mm.request_list);
1c25595f 2497 spin_unlock(&file_priv->mm.lock);
b962442e 2498 }
673a394b 2499
74328ee5 2500 trace_i915_gem_request_add(request);
6259cead 2501 ring->outstanding_lazy_request = NULL;
db53a302 2502
87255483 2503 i915_queue_hangcheck(ring->dev);
10cd45b6 2504
87255483
DV
2505 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2506 queue_delayed_work(dev_priv->wq,
2507 &dev_priv->mm.retire_work,
2508 round_jiffies_up_relative(HZ));
2509 intel_mark_busy(dev_priv->dev);
cc889e0f 2510
3cce469c 2511 return 0;
673a394b
EA
2512}
2513
f787a5f5
CW
2514static inline void
2515i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2516{
1c25595f 2517 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2518
1c25595f
CW
2519 if (!file_priv)
2520 return;
1c5d22f7 2521
1c25595f 2522 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2523 list_del(&request->client_list);
2524 request->file_priv = NULL;
1c25595f 2525 spin_unlock(&file_priv->mm.lock);
673a394b 2526}
673a394b 2527
939fd762 2528static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2529 const struct intel_context *ctx)
be62acb4 2530{
44e2c070 2531 unsigned long elapsed;
be62acb4 2532
44e2c070
MK
2533 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2534
2535 if (ctx->hang_stats.banned)
be62acb4
MK
2536 return true;
2537
2538 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2539 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2540 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2541 return true;
88b4aa87
MK
2542 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2543 if (i915_stop_ring_allow_warn(dev_priv))
2544 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2545 return true;
3fac8978 2546 }
be62acb4
MK
2547 }
2548
2549 return false;
2550}
2551
939fd762 2552static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2553 struct intel_context *ctx,
b6b0fac0 2554 const bool guilty)
aa60c664 2555{
44e2c070
MK
2556 struct i915_ctx_hang_stats *hs;
2557
2558 if (WARN_ON(!ctx))
2559 return;
aa60c664 2560
44e2c070
MK
2561 hs = &ctx->hang_stats;
2562
2563 if (guilty) {
939fd762 2564 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2565 hs->batch_active++;
2566 hs->guilty_ts = get_seconds();
2567 } else {
2568 hs->batch_pending++;
aa60c664
MK
2569 }
2570}
2571
0e50e96b
MK
2572static void i915_gem_free_request(struct drm_i915_gem_request *request)
2573{
2574 list_del(&request->list);
2575 i915_gem_request_remove_from_client(request);
2576
abfe262a
JH
2577 i915_gem_request_unreference(request);
2578}
2579
2580void i915_gem_request_free(struct kref *req_ref)
2581{
2582 struct drm_i915_gem_request *req = container_of(req_ref,
2583 typeof(*req), ref);
2584 struct intel_context *ctx = req->ctx;
2585
0794aed3
TD
2586 if (ctx) {
2587 if (i915.enable_execlists) {
abfe262a 2588 struct intel_engine_cs *ring = req->ring;
0e50e96b 2589
0794aed3
TD
2590 if (ctx != ring->default_context)
2591 intel_lr_context_unpin(ring, ctx);
2592 }
abfe262a 2593
dcb4c12a
OM
2594 i915_gem_context_unreference(ctx);
2595 }
abfe262a
JH
2596
2597 kfree(req);
0e50e96b
MK
2598}
2599
8d9fc7fd 2600struct drm_i915_gem_request *
a4872ba6 2601i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2602{
4db080f9
CW
2603 struct drm_i915_gem_request *request;
2604
2605 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2606 if (i915_gem_request_completed(request, false))
4db080f9 2607 continue;
aa60c664 2608
b6b0fac0 2609 return request;
4db080f9 2610 }
b6b0fac0
MK
2611
2612 return NULL;
2613}
2614
2615static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2616 struct intel_engine_cs *ring)
b6b0fac0
MK
2617{
2618 struct drm_i915_gem_request *request;
2619 bool ring_hung;
2620
8d9fc7fd 2621 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2622
2623 if (request == NULL)
2624 return;
2625
2626 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2627
939fd762 2628 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2629
2630 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2631 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2632}
aa60c664 2633
4db080f9 2634static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2635 struct intel_engine_cs *ring)
4db080f9 2636{
dfaae392 2637 while (!list_empty(&ring->active_list)) {
05394f39 2638 struct drm_i915_gem_object *obj;
9375e446 2639
05394f39
CW
2640 obj = list_first_entry(&ring->active_list,
2641 struct drm_i915_gem_object,
2642 ring_list);
9375e446 2643
05394f39 2644 i915_gem_object_move_to_inactive(obj);
673a394b 2645 }
1d62beea 2646
dcb4c12a
OM
2647 /*
2648 * Clear the execlists queue up before freeing the requests, as those
2649 * are the ones that keep the context and ringbuffer backing objects
2650 * pinned in place.
2651 */
2652 while (!list_empty(&ring->execlist_queue)) {
2653 struct intel_ctx_submit_request *submit_req;
2654
2655 submit_req = list_first_entry(&ring->execlist_queue,
2656 struct intel_ctx_submit_request,
2657 execlist_link);
2658 list_del(&submit_req->execlist_link);
2659 intel_runtime_pm_put(dev_priv);
2660 i915_gem_context_unreference(submit_req->ctx);
2661 kfree(submit_req);
2662 }
2663
1d62beea
BW
2664 /*
2665 * We must free the requests after all the corresponding objects have
2666 * been moved off active lists. Which is the same order as the normal
2667 * retire_requests function does. This is important if object hold
2668 * implicit references on things like e.g. ppgtt address spaces through
2669 * the request.
2670 */
2671 while (!list_empty(&ring->request_list)) {
2672 struct drm_i915_gem_request *request;
2673
2674 request = list_first_entry(&ring->request_list,
2675 struct drm_i915_gem_request,
2676 list);
2677
2678 i915_gem_free_request(request);
2679 }
e3efda49 2680
6259cead
JH
2681 /* This may not have been flushed before the reset, so clean it now */
2682 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2683}
2684
19b2dbde 2685void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2686{
2687 struct drm_i915_private *dev_priv = dev->dev_private;
2688 int i;
2689
4b9de737 2690 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2691 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2692
94a335db
DV
2693 /*
2694 * Commit delayed tiling changes if we have an object still
2695 * attached to the fence, otherwise just clear the fence.
2696 */
2697 if (reg->obj) {
2698 i915_gem_object_update_fence(reg->obj, reg,
2699 reg->obj->tiling_mode);
2700 } else {
2701 i915_gem_write_fence(dev, i, NULL);
2702 }
312817a3
CW
2703 }
2704}
2705
069efc1d 2706void i915_gem_reset(struct drm_device *dev)
673a394b 2707{
77f01230 2708 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2709 struct intel_engine_cs *ring;
1ec14ad3 2710 int i;
673a394b 2711
4db080f9
CW
2712 /*
2713 * Before we free the objects from the requests, we need to inspect
2714 * them for finding the guilty party. As the requests only borrow
2715 * their reference to the objects, the inspection must be done first.
2716 */
2717 for_each_ring(ring, dev_priv, i)
2718 i915_gem_reset_ring_status(dev_priv, ring);
2719
b4519513 2720 for_each_ring(ring, dev_priv, i)
4db080f9 2721 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2722
acce9ffa
BW
2723 i915_gem_context_reset(dev);
2724
19b2dbde 2725 i915_gem_restore_fences(dev);
673a394b
EA
2726}
2727
2728/**
2729 * This function clears the request list as sequence numbers are passed.
2730 */
1cf0ba14 2731void
a4872ba6 2732i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2733{
db53a302 2734 if (list_empty(&ring->request_list))
6c0594a3
KW
2735 return;
2736
db53a302 2737 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2738
e9103038
CW
2739 /* Move any buffers on the active list that are no longer referenced
2740 * by the ringbuffer to the flushing/inactive lists as appropriate,
2741 * before we free the context associated with the requests.
2742 */
2743 while (!list_empty(&ring->active_list)) {
2744 struct drm_i915_gem_object *obj;
2745
2746 obj = list_first_entry(&ring->active_list,
2747 struct drm_i915_gem_object,
2748 ring_list);
2749
1b5a433a 2750 if (!i915_gem_request_completed(obj->last_read_req, true))
e9103038
CW
2751 break;
2752
2753 i915_gem_object_move_to_inactive(obj);
2754 }
2755
2756
852835f3 2757 while (!list_empty(&ring->request_list)) {
673a394b 2758 struct drm_i915_gem_request *request;
48e29f55 2759 struct intel_ringbuffer *ringbuf;
673a394b 2760
852835f3 2761 request = list_first_entry(&ring->request_list,
673a394b
EA
2762 struct drm_i915_gem_request,
2763 list);
673a394b 2764
1b5a433a 2765 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2766 break;
2767
74328ee5 2768 trace_i915_gem_request_retire(request);
48e29f55
OM
2769
2770 /* This is one of the few common intersection points
2771 * between legacy ringbuffer submission and execlists:
2772 * we need to tell them apart in order to find the correct
2773 * ringbuffer to which the request belongs to.
2774 */
2775 if (i915.enable_execlists) {
2776 struct intel_context *ctx = request->ctx;
2777 ringbuf = ctx->engine[ring->id].ringbuf;
2778 } else
2779 ringbuf = ring->buffer;
2780
a71d8d94
CW
2781 /* We know the GPU must have read the request to have
2782 * sent us the seqno + interrupt, so use the position
2783 * of tail of the request to update the last known position
2784 * of the GPU head.
2785 */
48e29f55 2786 ringbuf->last_retired_head = request->tail;
b84d5f0c 2787
0e50e96b 2788 i915_gem_free_request(request);
b84d5f0c 2789 }
673a394b 2790
581c26e8
JH
2791 if (unlikely(ring->trace_irq_req &&
2792 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2793 ring->irq_put(ring);
581c26e8 2794 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2795 }
23bc5982 2796
db53a302 2797 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2798}
2799
b29c19b6 2800bool
b09a1fec
CW
2801i915_gem_retire_requests(struct drm_device *dev)
2802{
3e31c6c0 2803 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2804 struct intel_engine_cs *ring;
b29c19b6 2805 bool idle = true;
1ec14ad3 2806 int i;
b09a1fec 2807
b29c19b6 2808 for_each_ring(ring, dev_priv, i) {
b4519513 2809 i915_gem_retire_requests_ring(ring);
b29c19b6 2810 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2811 if (i915.enable_execlists) {
2812 unsigned long flags;
2813
2814 spin_lock_irqsave(&ring->execlist_lock, flags);
2815 idle &= list_empty(&ring->execlist_queue);
2816 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2817
2818 intel_execlists_retire_requests(ring);
2819 }
b29c19b6
CW
2820 }
2821
2822 if (idle)
2823 mod_delayed_work(dev_priv->wq,
2824 &dev_priv->mm.idle_work,
2825 msecs_to_jiffies(100));
2826
2827 return idle;
b09a1fec
CW
2828}
2829
75ef9da2 2830static void
673a394b
EA
2831i915_gem_retire_work_handler(struct work_struct *work)
2832{
b29c19b6
CW
2833 struct drm_i915_private *dev_priv =
2834 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2835 struct drm_device *dev = dev_priv->dev;
0a58705b 2836 bool idle;
673a394b 2837
891b48cf 2838 /* Come back later if the device is busy... */
b29c19b6
CW
2839 idle = false;
2840 if (mutex_trylock(&dev->struct_mutex)) {
2841 idle = i915_gem_retire_requests(dev);
2842 mutex_unlock(&dev->struct_mutex);
673a394b 2843 }
b29c19b6 2844 if (!idle)
bcb45086
CW
2845 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2846 round_jiffies_up_relative(HZ));
b29c19b6 2847}
0a58705b 2848
b29c19b6
CW
2849static void
2850i915_gem_idle_work_handler(struct work_struct *work)
2851{
2852 struct drm_i915_private *dev_priv =
2853 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2854
2855 intel_mark_idle(dev_priv->dev);
673a394b
EA
2856}
2857
30dfebf3
DV
2858/**
2859 * Ensures that an object will eventually get non-busy by flushing any required
2860 * write domains, emitting any outstanding lazy request and retiring and
2861 * completed requests.
2862 */
2863static int
2864i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2865{
41c52415 2866 struct intel_engine_cs *ring;
30dfebf3
DV
2867 int ret;
2868
2869 if (obj->active) {
41c52415
JH
2870 ring = i915_gem_request_get_ring(obj->last_read_req);
2871
b6660d59 2872 ret = i915_gem_check_olr(obj->last_read_req);
30dfebf3
DV
2873 if (ret)
2874 return ret;
2875
41c52415 2876 i915_gem_retire_requests_ring(ring);
30dfebf3
DV
2877 }
2878
2879 return 0;
2880}
2881
23ba4fd0
BW
2882/**
2883 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2884 * @DRM_IOCTL_ARGS: standard ioctl arguments
2885 *
2886 * Returns 0 if successful, else an error is returned with the remaining time in
2887 * the timeout parameter.
2888 * -ETIME: object is still busy after timeout
2889 * -ERESTARTSYS: signal interrupted the wait
2890 * -ENONENT: object doesn't exist
2891 * Also possible, but rare:
2892 * -EAGAIN: GPU wedged
2893 * -ENOMEM: damn
2894 * -ENODEV: Internal IRQ fail
2895 * -E?: The add request failed
2896 *
2897 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2898 * non-zero timeout parameter the wait ioctl will wait for the given number of
2899 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2900 * without holding struct_mutex the object may become re-busied before this
2901 * function completes. A similar but shorter * race condition exists in the busy
2902 * ioctl
2903 */
2904int
2905i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2906{
3e31c6c0 2907 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2908 struct drm_i915_gem_wait *args = data;
2909 struct drm_i915_gem_object *obj;
ff865885 2910 struct drm_i915_gem_request *req;
f69061be 2911 unsigned reset_counter;
23ba4fd0
BW
2912 int ret = 0;
2913
11b5d511
DV
2914 if (args->flags != 0)
2915 return -EINVAL;
2916
23ba4fd0
BW
2917 ret = i915_mutex_lock_interruptible(dev);
2918 if (ret)
2919 return ret;
2920
2921 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2922 if (&obj->base == NULL) {
2923 mutex_unlock(&dev->struct_mutex);
2924 return -ENOENT;
2925 }
2926
30dfebf3
DV
2927 /* Need to make sure the object gets inactive eventually. */
2928 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2929 if (ret)
2930 goto out;
2931
97b2a6a1
JH
2932 if (!obj->active || !obj->last_read_req)
2933 goto out;
23ba4fd0 2934
ff865885 2935 req = obj->last_read_req;
23ba4fd0 2936
23ba4fd0 2937 /* Do this after OLR check to make sure we make forward progress polling
5ed0bdf2 2938 * on this IOCTL with a timeout <=0 (like busy ioctl)
23ba4fd0 2939 */
5ed0bdf2 2940 if (args->timeout_ns <= 0) {
23ba4fd0
BW
2941 ret = -ETIME;
2942 goto out;
2943 }
2944
2945 drm_gem_object_unreference(&obj->base);
f69061be 2946 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 2947 i915_gem_request_reference(req);
23ba4fd0
BW
2948 mutex_unlock(&dev->struct_mutex);
2949
9c654818
JH
2950 ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
2951 file->driver_priv);
ff865885
JH
2952 mutex_lock(&dev->struct_mutex);
2953 i915_gem_request_unreference(req);
2954 mutex_unlock(&dev->struct_mutex);
2955 return ret;
23ba4fd0
BW
2956
2957out:
2958 drm_gem_object_unreference(&obj->base);
2959 mutex_unlock(&dev->struct_mutex);
2960 return ret;
2961}
2962
5816d648
BW
2963/**
2964 * i915_gem_object_sync - sync an object to a ring.
2965 *
2966 * @obj: object which may be in use on another ring.
2967 * @to: ring we wish to use the object on. May be NULL.
2968 *
2969 * This code is meant to abstract object synchronization with the GPU.
2970 * Calling with NULL implies synchronizing the object with the CPU
2971 * rather than a particular GPU ring.
2972 *
2973 * Returns 0 if successful, else propagates up the lower layer error.
2974 */
2911a35b
BW
2975int
2976i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2977 struct intel_engine_cs *to)
2911a35b 2978{
41c52415 2979 struct intel_engine_cs *from;
2911a35b
BW
2980 u32 seqno;
2981 int ret, idx;
2982
41c52415
JH
2983 from = i915_gem_request_get_ring(obj->last_read_req);
2984
2911a35b
BW
2985 if (from == NULL || to == from)
2986 return 0;
2987
5816d648 2988 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2989 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2990
2991 idx = intel_ring_sync_index(from, to);
2992
97b2a6a1 2993 seqno = i915_gem_request_get_seqno(obj->last_read_req);
ddd4dbc6
RV
2994 /* Optimization: Avoid semaphore sync when we are sure we already
2995 * waited for an object with higher seqno */
ebc348b2 2996 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2997 return 0;
2998
b6660d59 2999 ret = i915_gem_check_olr(obj->last_read_req);
b4aca010
BW
3000 if (ret)
3001 return ret;
2911a35b 3002
74328ee5 3003 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
ebc348b2 3004 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 3005 if (!ret)
97b2a6a1 3006 /* We use last_read_req because sync_to()
7b01e260
MK
3007 * might have just caused seqno wrap under
3008 * the radar.
3009 */
97b2a6a1
JH
3010 from->semaphore.sync_seqno[idx] =
3011 i915_gem_request_get_seqno(obj->last_read_req);
2911a35b 3012
e3a5a225 3013 return ret;
2911a35b
BW
3014}
3015
b5ffc9bc
CW
3016static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3017{
3018 u32 old_write_domain, old_read_domains;
3019
b5ffc9bc
CW
3020 /* Force a pagefault for domain tracking on next user access */
3021 i915_gem_release_mmap(obj);
3022
b97c3d9c
KP
3023 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3024 return;
3025
97c809fd
CW
3026 /* Wait for any direct GTT access to complete */
3027 mb();
3028
b5ffc9bc
CW
3029 old_read_domains = obj->base.read_domains;
3030 old_write_domain = obj->base.write_domain;
3031
3032 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3033 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3034
3035 trace_i915_gem_object_change_domain(obj,
3036 old_read_domains,
3037 old_write_domain);
3038}
3039
07fe0b12 3040int i915_vma_unbind(struct i915_vma *vma)
673a394b 3041{
07fe0b12 3042 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3043 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3044 int ret;
673a394b 3045
07fe0b12 3046 if (list_empty(&vma->vma_link))
673a394b
EA
3047 return 0;
3048
0ff501cb
DV
3049 if (!drm_mm_node_allocated(&vma->node)) {
3050 i915_gem_vma_destroy(vma);
0ff501cb
DV
3051 return 0;
3052 }
433544bd 3053
d7f46fc4 3054 if (vma->pin_count)
31d8d651 3055 return -EBUSY;
673a394b 3056
c4670ad0
CW
3057 BUG_ON(obj->pages == NULL);
3058
a8198eea 3059 ret = i915_gem_object_finish_gpu(obj);
1488fc08 3060 if (ret)
a8198eea
CW
3061 return ret;
3062 /* Continue on if we fail due to EIO, the GPU is hung so we
3063 * should be safe and we need to cleanup or else we might
3064 * cause memory corruption through use-after-free.
3065 */
3066
fe14d5f4
TU
3067 if (i915_is_ggtt(vma->vm) &&
3068 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3069 i915_gem_object_finish_gtt(obj);
5323fd04 3070
8b1bc9b4
DV
3071 /* release the fence reg _after_ flushing */
3072 ret = i915_gem_object_put_fence(obj);
3073 if (ret)
3074 return ret;
3075 }
96b47b65 3076
07fe0b12 3077 trace_i915_vma_unbind(vma);
db53a302 3078
6f65e29a
BW
3079 vma->unbind_vma(vma);
3080
64bf9303 3081 list_del_init(&vma->mm_list);
fe14d5f4
TU
3082 if (i915_is_ggtt(vma->vm)) {
3083 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3084 obj->map_and_fenceable = false;
3085 } else if (vma->ggtt_view.pages) {
3086 sg_free_table(vma->ggtt_view.pages);
3087 kfree(vma->ggtt_view.pages);
3088 vma->ggtt_view.pages = NULL;
3089 }
3090 }
673a394b 3091
2f633156
BW
3092 drm_mm_remove_node(&vma->node);
3093 i915_gem_vma_destroy(vma);
3094
3095 /* Since the unbound list is global, only move to that list if
b93dab6e 3096 * no more VMAs exist. */
9490edb5 3097 if (list_empty(&obj->vma_list)) {
fe14d5f4
TU
3098 /* Throw away the active reference before
3099 * moving to the unbound list. */
3100 i915_gem_object_retire(obj);
3101
9490edb5 3102 i915_gem_gtt_finish_object(obj);
2f633156 3103 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3104 }
673a394b 3105
70903c3b
CW
3106 /* And finally now the object is completely decoupled from this vma,
3107 * we can drop its hold on the backing storage and allow it to be
3108 * reaped by the shrinker.
3109 */
3110 i915_gem_object_unpin_pages(obj);
3111
88241785 3112 return 0;
54cf91dc
CW
3113}
3114
b2da9fe5 3115int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3116{
3e31c6c0 3117 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3118 struct intel_engine_cs *ring;
1ec14ad3 3119 int ret, i;
4df2faf4 3120
4df2faf4 3121 /* Flush everything onto the inactive list. */
b4519513 3122 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3123 if (!i915.enable_execlists) {
3124 ret = i915_switch_context(ring, ring->default_context);
3125 if (ret)
3126 return ret;
3127 }
b6c7488d 3128
3e960501 3129 ret = intel_ring_idle(ring);
1ec14ad3
CW
3130 if (ret)
3131 return ret;
3132 }
4df2faf4 3133
8a1a49f9 3134 return 0;
4df2faf4
DV
3135}
3136
9ce079e4
CW
3137static void i965_write_fence_reg(struct drm_device *dev, int reg,
3138 struct drm_i915_gem_object *obj)
de151cf6 3139{
3e31c6c0 3140 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3141 int fence_reg;
3142 int fence_pitch_shift;
de151cf6 3143
56c844e5
ID
3144 if (INTEL_INFO(dev)->gen >= 6) {
3145 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3146 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3147 } else {
3148 fence_reg = FENCE_REG_965_0;
3149 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3150 }
3151
d18b9619
CW
3152 fence_reg += reg * 8;
3153
3154 /* To w/a incoherency with non-atomic 64-bit register updates,
3155 * we split the 64-bit update into two 32-bit writes. In order
3156 * for a partial fence not to be evaluated between writes, we
3157 * precede the update with write to turn off the fence register,
3158 * and only enable the fence as the last step.
3159 *
3160 * For extra levels of paranoia, we make sure each step lands
3161 * before applying the next step.
3162 */
3163 I915_WRITE(fence_reg, 0);
3164 POSTING_READ(fence_reg);
3165
9ce079e4 3166 if (obj) {
f343c5f6 3167 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3168 uint64_t val;
de151cf6 3169
f343c5f6 3170 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3171 0xfffff000) << 32;
f343c5f6 3172 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3173 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3174 if (obj->tiling_mode == I915_TILING_Y)
3175 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3176 val |= I965_FENCE_REG_VALID;
c6642782 3177
d18b9619
CW
3178 I915_WRITE(fence_reg + 4, val >> 32);
3179 POSTING_READ(fence_reg + 4);
3180
3181 I915_WRITE(fence_reg + 0, val);
3182 POSTING_READ(fence_reg);
3183 } else {
3184 I915_WRITE(fence_reg + 4, 0);
3185 POSTING_READ(fence_reg + 4);
3186 }
de151cf6
JB
3187}
3188
9ce079e4
CW
3189static void i915_write_fence_reg(struct drm_device *dev, int reg,
3190 struct drm_i915_gem_object *obj)
de151cf6 3191{
3e31c6c0 3192 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3193 u32 val;
de151cf6 3194
9ce079e4 3195 if (obj) {
f343c5f6 3196 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3197 int pitch_val;
3198 int tile_width;
c6642782 3199
f343c5f6 3200 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3201 (size & -size) != size ||
f343c5f6
BW
3202 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3203 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3204 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3205
9ce079e4
CW
3206 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3207 tile_width = 128;
3208 else
3209 tile_width = 512;
3210
3211 /* Note: pitch better be a power of two tile widths */
3212 pitch_val = obj->stride / tile_width;
3213 pitch_val = ffs(pitch_val) - 1;
3214
f343c5f6 3215 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3216 if (obj->tiling_mode == I915_TILING_Y)
3217 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3218 val |= I915_FENCE_SIZE_BITS(size);
3219 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3220 val |= I830_FENCE_REG_VALID;
3221 } else
3222 val = 0;
3223
3224 if (reg < 8)
3225 reg = FENCE_REG_830_0 + reg * 4;
3226 else
3227 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3228
3229 I915_WRITE(reg, val);
3230 POSTING_READ(reg);
de151cf6
JB
3231}
3232
9ce079e4
CW
3233static void i830_write_fence_reg(struct drm_device *dev, int reg,
3234 struct drm_i915_gem_object *obj)
de151cf6 3235{
3e31c6c0 3236 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3237 uint32_t val;
de151cf6 3238
9ce079e4 3239 if (obj) {
f343c5f6 3240 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3241 uint32_t pitch_val;
de151cf6 3242
f343c5f6 3243 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3244 (size & -size) != size ||
f343c5f6
BW
3245 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3246 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3247 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3248
9ce079e4
CW
3249 pitch_val = obj->stride / 128;
3250 pitch_val = ffs(pitch_val) - 1;
de151cf6 3251
f343c5f6 3252 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3253 if (obj->tiling_mode == I915_TILING_Y)
3254 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3255 val |= I830_FENCE_SIZE_BITS(size);
3256 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3257 val |= I830_FENCE_REG_VALID;
3258 } else
3259 val = 0;
c6642782 3260
9ce079e4
CW
3261 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3262 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3263}
3264
d0a57789
CW
3265inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3266{
3267 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3268}
3269
9ce079e4
CW
3270static void i915_gem_write_fence(struct drm_device *dev, int reg,
3271 struct drm_i915_gem_object *obj)
3272{
d0a57789
CW
3273 struct drm_i915_private *dev_priv = dev->dev_private;
3274
3275 /* Ensure that all CPU reads are completed before installing a fence
3276 * and all writes before removing the fence.
3277 */
3278 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3279 mb();
3280
94a335db
DV
3281 WARN(obj && (!obj->stride || !obj->tiling_mode),
3282 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3283 obj->stride, obj->tiling_mode);
3284
ce38ab05
RV
3285 if (IS_GEN2(dev))
3286 i830_write_fence_reg(dev, reg, obj);
3287 else if (IS_GEN3(dev))
3288 i915_write_fence_reg(dev, reg, obj);
3289 else if (INTEL_INFO(dev)->gen >= 4)
3290 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3291
3292 /* And similarly be paranoid that no direct access to this region
3293 * is reordered to before the fence is installed.
3294 */
3295 if (i915_gem_object_needs_mb(obj))
3296 mb();
de151cf6
JB
3297}
3298
61050808
CW
3299static inline int fence_number(struct drm_i915_private *dev_priv,
3300 struct drm_i915_fence_reg *fence)
3301{
3302 return fence - dev_priv->fence_regs;
3303}
3304
3305static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3306 struct drm_i915_fence_reg *fence,
3307 bool enable)
3308{
2dc8aae0 3309 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3310 int reg = fence_number(dev_priv, fence);
3311
3312 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3313
3314 if (enable) {
46a0b638 3315 obj->fence_reg = reg;
61050808
CW
3316 fence->obj = obj;
3317 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3318 } else {
3319 obj->fence_reg = I915_FENCE_REG_NONE;
3320 fence->obj = NULL;
3321 list_del_init(&fence->lru_list);
3322 }
94a335db 3323 obj->fence_dirty = false;
61050808
CW
3324}
3325
d9e86c0e 3326static int
d0a57789 3327i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3328{
97b2a6a1 3329 if (obj->last_fenced_req) {
a4b3a571 3330 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3331 if (ret)
3332 return ret;
d9e86c0e 3333
97b2a6a1 3334 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3335 }
3336
3337 return 0;
3338}
3339
3340int
3341i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3342{
61050808 3343 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3344 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3345 int ret;
3346
d0a57789 3347 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3348 if (ret)
3349 return ret;
3350
61050808
CW
3351 if (obj->fence_reg == I915_FENCE_REG_NONE)
3352 return 0;
d9e86c0e 3353
f9c513e9
CW
3354 fence = &dev_priv->fence_regs[obj->fence_reg];
3355
aff10b30
DV
3356 if (WARN_ON(fence->pin_count))
3357 return -EBUSY;
3358
61050808 3359 i915_gem_object_fence_lost(obj);
f9c513e9 3360 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3361
3362 return 0;
3363}
3364
3365static struct drm_i915_fence_reg *
a360bb1a 3366i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3367{
ae3db24a 3368 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3369 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3370 int i;
ae3db24a
DV
3371
3372 /* First try to find a free reg */
d9e86c0e 3373 avail = NULL;
ae3db24a
DV
3374 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3375 reg = &dev_priv->fence_regs[i];
3376 if (!reg->obj)
d9e86c0e 3377 return reg;
ae3db24a 3378
1690e1eb 3379 if (!reg->pin_count)
d9e86c0e 3380 avail = reg;
ae3db24a
DV
3381 }
3382
d9e86c0e 3383 if (avail == NULL)
5dce5b93 3384 goto deadlock;
ae3db24a
DV
3385
3386 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3387 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3388 if (reg->pin_count)
ae3db24a
DV
3389 continue;
3390
8fe301ad 3391 return reg;
ae3db24a
DV
3392 }
3393
5dce5b93
CW
3394deadlock:
3395 /* Wait for completion of pending flips which consume fences */
3396 if (intel_has_pending_fb_unpin(dev))
3397 return ERR_PTR(-EAGAIN);
3398
3399 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3400}
3401
de151cf6 3402/**
9a5a53b3 3403 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3404 * @obj: object to map through a fence reg
3405 *
3406 * When mapping objects through the GTT, userspace wants to be able to write
3407 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3408 * This function walks the fence regs looking for a free one for @obj,
3409 * stealing one if it can't find any.
3410 *
3411 * It then sets up the reg based on the object's properties: address, pitch
3412 * and tiling format.
9a5a53b3
CW
3413 *
3414 * For an untiled surface, this removes any existing fence.
de151cf6 3415 */
8c4b8c3f 3416int
06d98131 3417i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3418{
05394f39 3419 struct drm_device *dev = obj->base.dev;
79e53945 3420 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3421 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3422 struct drm_i915_fence_reg *reg;
ae3db24a 3423 int ret;
de151cf6 3424
14415745
CW
3425 /* Have we updated the tiling parameters upon the object and so
3426 * will need to serialise the write to the associated fence register?
3427 */
5d82e3e6 3428 if (obj->fence_dirty) {
d0a57789 3429 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3430 if (ret)
3431 return ret;
3432 }
9a5a53b3 3433
d9e86c0e 3434 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3435 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3436 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3437 if (!obj->fence_dirty) {
14415745
CW
3438 list_move_tail(&reg->lru_list,
3439 &dev_priv->mm.fence_list);
3440 return 0;
3441 }
3442 } else if (enable) {
e6a84468
CW
3443 if (WARN_ON(!obj->map_and_fenceable))
3444 return -EINVAL;
3445
14415745 3446 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3447 if (IS_ERR(reg))
3448 return PTR_ERR(reg);
d9e86c0e 3449
14415745
CW
3450 if (reg->obj) {
3451 struct drm_i915_gem_object *old = reg->obj;
3452
d0a57789 3453 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3454 if (ret)
3455 return ret;
3456
14415745 3457 i915_gem_object_fence_lost(old);
29c5a587 3458 }
14415745 3459 } else
a09ba7fa 3460 return 0;
a09ba7fa 3461
14415745 3462 i915_gem_object_update_fence(obj, reg, enable);
14415745 3463
9ce079e4 3464 return 0;
de151cf6
JB
3465}
3466
4144f9b5 3467static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3468 unsigned long cache_level)
3469{
4144f9b5 3470 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3471 struct drm_mm_node *other;
3472
4144f9b5
CW
3473 /*
3474 * On some machines we have to be careful when putting differing types
3475 * of snoopable memory together to avoid the prefetcher crossing memory
3476 * domains and dying. During vm initialisation, we decide whether or not
3477 * these constraints apply and set the drm_mm.color_adjust
3478 * appropriately.
42d6ab48 3479 */
4144f9b5 3480 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3481 return true;
3482
c6cfb325 3483 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3484 return true;
3485
3486 if (list_empty(&gtt_space->node_list))
3487 return true;
3488
3489 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3490 if (other->allocated && !other->hole_follows && other->color != cache_level)
3491 return false;
3492
3493 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3494 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3495 return false;
3496
3497 return true;
3498}
3499
673a394b
EA
3500/**
3501 * Finds free space in the GTT aperture and binds the object there.
3502 */
262de145 3503static struct i915_vma *
07fe0b12
BW
3504i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3505 struct i915_address_space *vm,
3506 unsigned alignment,
fe14d5f4
TU
3507 uint64_t flags,
3508 const struct i915_ggtt_view *view)
673a394b 3509{
05394f39 3510 struct drm_device *dev = obj->base.dev;
3e31c6c0 3511 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3512 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3513 unsigned long start =
3514 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3515 unsigned long end =
1ec9e26d 3516 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3517 struct i915_vma *vma;
07f73f69 3518 int ret;
673a394b 3519
e28f8711
CW
3520 fence_size = i915_gem_get_gtt_size(dev,
3521 obj->base.size,
3522 obj->tiling_mode);
3523 fence_alignment = i915_gem_get_gtt_alignment(dev,
3524 obj->base.size,
d865110c 3525 obj->tiling_mode, true);
e28f8711 3526 unfenced_alignment =
d865110c 3527 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3528 obj->base.size,
3529 obj->tiling_mode, false);
a00b10c3 3530
673a394b 3531 if (alignment == 0)
1ec9e26d 3532 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3533 unfenced_alignment;
1ec9e26d 3534 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3535 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3536 return ERR_PTR(-EINVAL);
673a394b
EA
3537 }
3538
1ec9e26d 3539 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3540
654fc607
CW
3541 /* If the object is bigger than the entire aperture, reject it early
3542 * before evicting everything in a vain attempt to find space.
3543 */
d23db88c
CW
3544 if (obj->base.size > end) {
3545 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3546 obj->base.size,
1ec9e26d 3547 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3548 end);
262de145 3549 return ERR_PTR(-E2BIG);
654fc607
CW
3550 }
3551
37e680a1 3552 ret = i915_gem_object_get_pages(obj);
6c085a72 3553 if (ret)
262de145 3554 return ERR_PTR(ret);
6c085a72 3555
fbdda6fb
CW
3556 i915_gem_object_pin_pages(obj);
3557
fe14d5f4 3558 vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
262de145 3559 if (IS_ERR(vma))
bc6bc15b 3560 goto err_unpin;
2f633156 3561
0a9ae0d7 3562search_free:
07fe0b12 3563 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3564 size, alignment,
d23db88c
CW
3565 obj->cache_level,
3566 start, end,
62347f9e
LK
3567 DRM_MM_SEARCH_DEFAULT,
3568 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3569 if (ret) {
f6cd1f15 3570 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3571 obj->cache_level,
3572 start, end,
3573 flags);
dc9dd7a2
CW
3574 if (ret == 0)
3575 goto search_free;
9731129c 3576
bc6bc15b 3577 goto err_free_vma;
673a394b 3578 }
4144f9b5 3579 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3580 ret = -EINVAL;
bc6bc15b 3581 goto err_remove_node;
673a394b
EA
3582 }
3583
74163907 3584 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3585 if (ret)
bc6bc15b 3586 goto err_remove_node;
673a394b 3587
fe14d5f4
TU
3588 trace_i915_vma_bind(vma, flags);
3589 ret = i915_vma_bind(vma, obj->cache_level,
3590 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3591 if (ret)
3592 goto err_finish_gtt;
3593
35c20a60 3594 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3595 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3596
262de145 3597 return vma;
2f633156 3598
fe14d5f4
TU
3599err_finish_gtt:
3600 i915_gem_gtt_finish_object(obj);
bc6bc15b 3601err_remove_node:
6286ef9b 3602 drm_mm_remove_node(&vma->node);
bc6bc15b 3603err_free_vma:
2f633156 3604 i915_gem_vma_destroy(vma);
262de145 3605 vma = ERR_PTR(ret);
bc6bc15b 3606err_unpin:
2f633156 3607 i915_gem_object_unpin_pages(obj);
262de145 3608 return vma;
673a394b
EA
3609}
3610
000433b6 3611bool
2c22569b
CW
3612i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3613 bool force)
673a394b 3614{
673a394b
EA
3615 /* If we don't have a page list set up, then we're not pinned
3616 * to GPU, and we can ignore the cache flush because it'll happen
3617 * again at bind time.
3618 */
05394f39 3619 if (obj->pages == NULL)
000433b6 3620 return false;
673a394b 3621
769ce464
ID
3622 /*
3623 * Stolen memory is always coherent with the GPU as it is explicitly
3624 * marked as wc by the system, or the system is cache-coherent.
3625 */
6a2c4232 3626 if (obj->stolen || obj->phys_handle)
000433b6 3627 return false;
769ce464 3628
9c23f7fc
CW
3629 /* If the GPU is snooping the contents of the CPU cache,
3630 * we do not need to manually clear the CPU cache lines. However,
3631 * the caches are only snooped when the render cache is
3632 * flushed/invalidated. As we always have to emit invalidations
3633 * and flushes when moving into and out of the RENDER domain, correct
3634 * snooping behaviour occurs naturally as the result of our domain
3635 * tracking.
3636 */
2c22569b 3637 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3638 return false;
9c23f7fc 3639
1c5d22f7 3640 trace_i915_gem_object_clflush(obj);
9da3da66 3641 drm_clflush_sg(obj->pages);
000433b6
CW
3642
3643 return true;
e47c68e9
EA
3644}
3645
3646/** Flushes the GTT write domain for the object if it's dirty. */
3647static void
05394f39 3648i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3649{
1c5d22f7
CW
3650 uint32_t old_write_domain;
3651
05394f39 3652 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3653 return;
3654
63256ec5 3655 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3656 * to it immediately go to main memory as far as we know, so there's
3657 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3658 *
3659 * However, we do have to enforce the order so that all writes through
3660 * the GTT land before any writes to the device, such as updates to
3661 * the GATT itself.
e47c68e9 3662 */
63256ec5
CW
3663 wmb();
3664
05394f39
CW
3665 old_write_domain = obj->base.write_domain;
3666 obj->base.write_domain = 0;
1c5d22f7 3667
f99d7069
DV
3668 intel_fb_obj_flush(obj, false);
3669
1c5d22f7 3670 trace_i915_gem_object_change_domain(obj,
05394f39 3671 obj->base.read_domains,
1c5d22f7 3672 old_write_domain);
e47c68e9
EA
3673}
3674
3675/** Flushes the CPU write domain for the object if it's dirty. */
3676static void
2c22569b
CW
3677i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3678 bool force)
e47c68e9 3679{
1c5d22f7 3680 uint32_t old_write_domain;
e47c68e9 3681
05394f39 3682 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3683 return;
3684
000433b6
CW
3685 if (i915_gem_clflush_object(obj, force))
3686 i915_gem_chipset_flush(obj->base.dev);
3687
05394f39
CW
3688 old_write_domain = obj->base.write_domain;
3689 obj->base.write_domain = 0;
1c5d22f7 3690
f99d7069
DV
3691 intel_fb_obj_flush(obj, false);
3692
1c5d22f7 3693 trace_i915_gem_object_change_domain(obj,
05394f39 3694 obj->base.read_domains,
1c5d22f7 3695 old_write_domain);
e47c68e9
EA
3696}
3697
2ef7eeaa
EA
3698/**
3699 * Moves a single object to the GTT read, and possibly write domain.
3700 *
3701 * This function returns when the move is complete, including waiting on
3702 * flushes to occur.
3703 */
79e53945 3704int
2021746e 3705i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3706{
1c5d22f7 3707 uint32_t old_write_domain, old_read_domains;
43566ded 3708 struct i915_vma *vma;
e47c68e9 3709 int ret;
2ef7eeaa 3710
8d7e3de1
CW
3711 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3712 return 0;
3713
0201f1ec 3714 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3715 if (ret)
3716 return ret;
3717
c8725f3d 3718 i915_gem_object_retire(obj);
43566ded
CW
3719
3720 /* Flush and acquire obj->pages so that we are coherent through
3721 * direct access in memory with previous cached writes through
3722 * shmemfs and that our cache domain tracking remains valid.
3723 * For example, if the obj->filp was moved to swap without us
3724 * being notified and releasing the pages, we would mistakenly
3725 * continue to assume that the obj remained out of the CPU cached
3726 * domain.
3727 */
3728 ret = i915_gem_object_get_pages(obj);
3729 if (ret)
3730 return ret;
3731
2c22569b 3732 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3733
d0a57789
CW
3734 /* Serialise direct access to this object with the barriers for
3735 * coherent writes from the GPU, by effectively invalidating the
3736 * GTT domain upon first access.
3737 */
3738 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3739 mb();
3740
05394f39
CW
3741 old_write_domain = obj->base.write_domain;
3742 old_read_domains = obj->base.read_domains;
1c5d22f7 3743
e47c68e9
EA
3744 /* It should now be out of any other write domains, and we can update
3745 * the domain values for our changes.
3746 */
05394f39
CW
3747 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3748 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3749 if (write) {
05394f39
CW
3750 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3751 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3752 obj->dirty = 1;
2ef7eeaa
EA
3753 }
3754
f99d7069
DV
3755 if (write)
3756 intel_fb_obj_invalidate(obj, NULL);
3757
1c5d22f7
CW
3758 trace_i915_gem_object_change_domain(obj,
3759 old_read_domains,
3760 old_write_domain);
3761
8325a09d 3762 /* And bump the LRU for this access */
43566ded
CW
3763 vma = i915_gem_obj_to_ggtt(obj);
3764 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3765 list_move_tail(&vma->mm_list,
43566ded 3766 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3767
e47c68e9
EA
3768 return 0;
3769}
3770
e4ffd173
CW
3771int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3772 enum i915_cache_level cache_level)
3773{
7bddb01f 3774 struct drm_device *dev = obj->base.dev;
df6f783a 3775 struct i915_vma *vma, *next;
e4ffd173
CW
3776 int ret;
3777
3778 if (obj->cache_level == cache_level)
3779 return 0;
3780
d7f46fc4 3781 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3782 DRM_DEBUG("can not change the cache level of pinned objects\n");
3783 return -EBUSY;
3784 }
3785
df6f783a 3786 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3787 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3788 ret = i915_vma_unbind(vma);
3089c6f2
BW
3789 if (ret)
3790 return ret;
3089c6f2 3791 }
42d6ab48
CW
3792 }
3793
3089c6f2 3794 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3795 ret = i915_gem_object_finish_gpu(obj);
3796 if (ret)
3797 return ret;
3798
3799 i915_gem_object_finish_gtt(obj);
3800
3801 /* Before SandyBridge, you could not use tiling or fence
3802 * registers with snooped memory, so relinquish any fences
3803 * currently pointing to our region in the aperture.
3804 */
42d6ab48 3805 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3806 ret = i915_gem_object_put_fence(obj);
3807 if (ret)
3808 return ret;
3809 }
3810
6f65e29a 3811 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
3812 if (drm_mm_node_allocated(&vma->node)) {
3813 ret = i915_vma_bind(vma, cache_level,
3814 vma->bound & GLOBAL_BIND);
3815 if (ret)
3816 return ret;
3817 }
e4ffd173
CW
3818 }
3819
2c22569b
CW
3820 list_for_each_entry(vma, &obj->vma_list, vma_link)
3821 vma->node.color = cache_level;
3822 obj->cache_level = cache_level;
3823
3824 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3825 u32 old_read_domains, old_write_domain;
3826
3827 /* If we're coming from LLC cached, then we haven't
3828 * actually been tracking whether the data is in the
3829 * CPU cache or not, since we only allow one bit set
3830 * in obj->write_domain and have been skipping the clflushes.
3831 * Just set it to the CPU cache for now.
3832 */
c8725f3d 3833 i915_gem_object_retire(obj);
e4ffd173 3834 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3835
3836 old_read_domains = obj->base.read_domains;
3837 old_write_domain = obj->base.write_domain;
3838
3839 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3840 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3841
3842 trace_i915_gem_object_change_domain(obj,
3843 old_read_domains,
3844 old_write_domain);
3845 }
3846
e4ffd173
CW
3847 return 0;
3848}
3849
199adf40
BW
3850int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3851 struct drm_file *file)
e6994aee 3852{
199adf40 3853 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3854 struct drm_i915_gem_object *obj;
3855 int ret;
3856
3857 ret = i915_mutex_lock_interruptible(dev);
3858 if (ret)
3859 return ret;
3860
3861 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3862 if (&obj->base == NULL) {
3863 ret = -ENOENT;
3864 goto unlock;
3865 }
3866
651d794f
CW
3867 switch (obj->cache_level) {
3868 case I915_CACHE_LLC:
3869 case I915_CACHE_L3_LLC:
3870 args->caching = I915_CACHING_CACHED;
3871 break;
3872
4257d3ba
CW
3873 case I915_CACHE_WT:
3874 args->caching = I915_CACHING_DISPLAY;
3875 break;
3876
651d794f
CW
3877 default:
3878 args->caching = I915_CACHING_NONE;
3879 break;
3880 }
e6994aee
CW
3881
3882 drm_gem_object_unreference(&obj->base);
3883unlock:
3884 mutex_unlock(&dev->struct_mutex);
3885 return ret;
3886}
3887
199adf40
BW
3888int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3889 struct drm_file *file)
e6994aee 3890{
199adf40 3891 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3892 struct drm_i915_gem_object *obj;
3893 enum i915_cache_level level;
3894 int ret;
3895
199adf40
BW
3896 switch (args->caching) {
3897 case I915_CACHING_NONE:
e6994aee
CW
3898 level = I915_CACHE_NONE;
3899 break;
199adf40 3900 case I915_CACHING_CACHED:
e6994aee
CW
3901 level = I915_CACHE_LLC;
3902 break;
4257d3ba
CW
3903 case I915_CACHING_DISPLAY:
3904 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3905 break;
e6994aee
CW
3906 default:
3907 return -EINVAL;
3908 }
3909
3bc2913e
BW
3910 ret = i915_mutex_lock_interruptible(dev);
3911 if (ret)
3912 return ret;
3913
e6994aee
CW
3914 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3915 if (&obj->base == NULL) {
3916 ret = -ENOENT;
3917 goto unlock;
3918 }
3919
3920 ret = i915_gem_object_set_cache_level(obj, level);
3921
3922 drm_gem_object_unreference(&obj->base);
3923unlock:
3924 mutex_unlock(&dev->struct_mutex);
3925 return ret;
3926}
3927
cc98b413
CW
3928static bool is_pin_display(struct drm_i915_gem_object *obj)
3929{
19656430
OM
3930 struct i915_vma *vma;
3931
19656430
OM
3932 vma = i915_gem_obj_to_ggtt(obj);
3933 if (!vma)
3934 return false;
3935
4feb7659 3936 /* There are 2 sources that pin objects:
cc98b413
CW
3937 * 1. The display engine (scanouts, sprites, cursors);
3938 * 2. Reservations for execbuffer;
cc98b413
CW
3939 *
3940 * We can ignore reservations as we hold the struct_mutex and
4feb7659 3941 * are only called outside of the reservation path.
cc98b413 3942 */
4feb7659 3943 return vma->pin_count;
cc98b413
CW
3944}
3945
b9241ea3 3946/*
2da3b9b9
CW
3947 * Prepare buffer for display plane (scanout, cursors, etc).
3948 * Can be called from an uninterruptible phase (modesetting) and allows
3949 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3950 */
3951int
2da3b9b9
CW
3952i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3953 u32 alignment,
a4872ba6 3954 struct intel_engine_cs *pipelined)
b9241ea3 3955{
2da3b9b9 3956 u32 old_read_domains, old_write_domain;
19656430 3957 bool was_pin_display;
b9241ea3
ZW
3958 int ret;
3959
41c52415 3960 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
2911a35b
BW
3961 ret = i915_gem_object_sync(obj, pipelined);
3962 if (ret)
b9241ea3
ZW
3963 return ret;
3964 }
3965
cc98b413
CW
3966 /* Mark the pin_display early so that we account for the
3967 * display coherency whilst setting up the cache domains.
3968 */
19656430 3969 was_pin_display = obj->pin_display;
cc98b413
CW
3970 obj->pin_display = true;
3971
a7ef0640
EA
3972 /* The display engine is not coherent with the LLC cache on gen6. As
3973 * a result, we make sure that the pinning that is about to occur is
3974 * done with uncached PTEs. This is lowest common denominator for all
3975 * chipsets.
3976 *
3977 * However for gen6+, we could do better by using the GFDT bit instead
3978 * of uncaching, which would allow us to flush all the LLC-cached data
3979 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3980 */
651d794f
CW
3981 ret = i915_gem_object_set_cache_level(obj,
3982 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3983 if (ret)
cc98b413 3984 goto err_unpin_display;
a7ef0640 3985
2da3b9b9
CW
3986 /* As the user may map the buffer once pinned in the display plane
3987 * (e.g. libkms for the bootup splash), we have to ensure that we
3988 * always use map_and_fenceable for all scanout buffers.
3989 */
1ec9e26d 3990 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3991 if (ret)
cc98b413 3992 goto err_unpin_display;
2da3b9b9 3993
2c22569b 3994 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3995
2da3b9b9 3996 old_write_domain = obj->base.write_domain;
05394f39 3997 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3998
3999 /* It should now be out of any other write domains, and we can update
4000 * the domain values for our changes.
4001 */
e5f1d962 4002 obj->base.write_domain = 0;
05394f39 4003 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4004
4005 trace_i915_gem_object_change_domain(obj,
4006 old_read_domains,
2da3b9b9 4007 old_write_domain);
b9241ea3
ZW
4008
4009 return 0;
cc98b413
CW
4010
4011err_unpin_display:
19656430
OM
4012 WARN_ON(was_pin_display != is_pin_display(obj));
4013 obj->pin_display = was_pin_display;
cc98b413
CW
4014 return ret;
4015}
4016
4017void
4018i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4019{
d7f46fc4 4020 i915_gem_object_ggtt_unpin(obj);
cc98b413 4021 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
4022}
4023
85345517 4024int
a8198eea 4025i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 4026{
88241785
CW
4027 int ret;
4028
a8198eea 4029 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
4030 return 0;
4031
0201f1ec 4032 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
4033 if (ret)
4034 return ret;
4035
a8198eea
CW
4036 /* Ensure that we invalidate the GPU's caches and TLBs. */
4037 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 4038 return 0;
85345517
CW
4039}
4040
e47c68e9
EA
4041/**
4042 * Moves a single object to the CPU read, and possibly write domain.
4043 *
4044 * This function returns when the move is complete, including waiting on
4045 * flushes to occur.
4046 */
dabdfe02 4047int
919926ae 4048i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4049{
1c5d22f7 4050 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4051 int ret;
4052
8d7e3de1
CW
4053 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4054 return 0;
4055
0201f1ec 4056 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4057 if (ret)
4058 return ret;
4059
c8725f3d 4060 i915_gem_object_retire(obj);
e47c68e9 4061 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4062
05394f39
CW
4063 old_write_domain = obj->base.write_domain;
4064 old_read_domains = obj->base.read_domains;
1c5d22f7 4065
e47c68e9 4066 /* Flush the CPU cache if it's still invalid. */
05394f39 4067 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4068 i915_gem_clflush_object(obj, false);
2ef7eeaa 4069
05394f39 4070 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4071 }
4072
4073 /* It should now be out of any other write domains, and we can update
4074 * the domain values for our changes.
4075 */
05394f39 4076 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4077
4078 /* If we're writing through the CPU, then the GPU read domains will
4079 * need to be invalidated at next use.
4080 */
4081 if (write) {
05394f39
CW
4082 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4083 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4084 }
2ef7eeaa 4085
f99d7069
DV
4086 if (write)
4087 intel_fb_obj_invalidate(obj, NULL);
4088
1c5d22f7
CW
4089 trace_i915_gem_object_change_domain(obj,
4090 old_read_domains,
4091 old_write_domain);
4092
2ef7eeaa
EA
4093 return 0;
4094}
4095
673a394b
EA
4096/* Throttle our rendering by waiting until the ring has completed our requests
4097 * emitted over 20 msec ago.
4098 *
b962442e
EA
4099 * Note that if we were to use the current jiffies each time around the loop,
4100 * we wouldn't escape the function with any frames outstanding if the time to
4101 * render a frame was over 20ms.
4102 *
673a394b
EA
4103 * This should get us reasonable parallelism between CPU and GPU but also
4104 * relatively low latency when blocking on a particular request to finish.
4105 */
40a5f0de 4106static int
f787a5f5 4107i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4108{
f787a5f5
CW
4109 struct drm_i915_private *dev_priv = dev->dev_private;
4110 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4111 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
54fb2411 4112 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4113 unsigned reset_counter;
f787a5f5 4114 int ret;
93533c29 4115
308887aa
DV
4116 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4117 if (ret)
4118 return ret;
4119
4120 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4121 if (ret)
4122 return ret;
e110e8d6 4123
1c25595f 4124 spin_lock(&file_priv->mm.lock);
f787a5f5 4125 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4126 if (time_after_eq(request->emitted_jiffies, recent_enough))
4127 break;
40a5f0de 4128
54fb2411 4129 target = request;
b962442e 4130 }
f69061be 4131 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4132 if (target)
4133 i915_gem_request_reference(target);
1c25595f 4134 spin_unlock(&file_priv->mm.lock);
40a5f0de 4135
54fb2411 4136 if (target == NULL)
f787a5f5 4137 return 0;
2bc43b5c 4138
9c654818 4139 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4140 if (ret == 0)
4141 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4142
ff865885
JH
4143 mutex_lock(&dev->struct_mutex);
4144 i915_gem_request_unreference(target);
4145 mutex_unlock(&dev->struct_mutex);
4146
40a5f0de
EA
4147 return ret;
4148}
4149
d23db88c
CW
4150static bool
4151i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4152{
4153 struct drm_i915_gem_object *obj = vma->obj;
4154
4155 if (alignment &&
4156 vma->node.start & (alignment - 1))
4157 return true;
4158
4159 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4160 return true;
4161
4162 if (flags & PIN_OFFSET_BIAS &&
4163 vma->node.start < (flags & PIN_OFFSET_MASK))
4164 return true;
4165
4166 return false;
4167}
4168
673a394b 4169int
fe14d5f4
TU
4170i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
4171 struct i915_address_space *vm,
4172 uint32_t alignment,
4173 uint64_t flags,
4174 const struct i915_ggtt_view *view)
673a394b 4175{
6e7186af 4176 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4177 struct i915_vma *vma;
ef79e17c 4178 unsigned bound;
673a394b
EA
4179 int ret;
4180
6e7186af
BW
4181 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4182 return -ENODEV;
4183
bf3d149b 4184 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4185 return -EINVAL;
07fe0b12 4186
c826c449
CW
4187 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4188 return -EINVAL;
4189
fe14d5f4 4190 vma = i915_gem_obj_to_vma_view(obj, vm, view);
07fe0b12 4191 if (vma) {
d7f46fc4
BW
4192 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4193 return -EBUSY;
4194
d23db88c 4195 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4196 WARN(vma->pin_count,
ae7d49d8 4197 "bo is already pinned with incorrect alignment:"
f343c5f6 4198 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4199 " obj->map_and_fenceable=%d\n",
fe14d5f4
TU
4200 i915_gem_obj_offset_view(obj, vm, view->type),
4201 alignment,
d23db88c 4202 !!(flags & PIN_MAPPABLE),
05394f39 4203 obj->map_and_fenceable);
07fe0b12 4204 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4205 if (ret)
4206 return ret;
8ea99c92
DV
4207
4208 vma = NULL;
ac0c6b5a
CW
4209 }
4210 }
4211
ef79e17c 4212 bound = vma ? vma->bound : 0;
8ea99c92 4213 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
fe14d5f4
TU
4214 vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
4215 flags, view);
262de145
DV
4216 if (IS_ERR(vma))
4217 return PTR_ERR(vma);
22c344e9 4218 }
76446cac 4219
fe14d5f4
TU
4220 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4221 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4222 if (ret)
4223 return ret;
4224 }
74898d7e 4225
ef79e17c
CW
4226 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4227 bool mappable, fenceable;
4228 u32 fence_size, fence_alignment;
4229
4230 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4231 obj->base.size,
4232 obj->tiling_mode);
4233 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4234 obj->base.size,
4235 obj->tiling_mode,
4236 true);
4237
4238 fenceable = (vma->node.size == fence_size &&
4239 (vma->node.start & (fence_alignment - 1)) == 0);
4240
4241 mappable = (vma->node.start + obj->base.size <=
4242 dev_priv->gtt.mappable_end);
4243
4244 obj->map_and_fenceable = mappable && fenceable;
4245 }
4246
4247 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4248
8ea99c92 4249 vma->pin_count++;
1ec9e26d
DV
4250 if (flags & PIN_MAPPABLE)
4251 obj->pin_mappable |= true;
673a394b
EA
4252
4253 return 0;
4254}
4255
4256void
d7f46fc4 4257i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4258{
d7f46fc4 4259 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4260
d7f46fc4
BW
4261 BUG_ON(!vma);
4262 BUG_ON(vma->pin_count == 0);
4263 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4264
4265 if (--vma->pin_count == 0)
6299f992 4266 obj->pin_mappable = false;
673a394b
EA
4267}
4268
d8ffa60b
DV
4269bool
4270i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4271{
4272 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4273 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4274 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4275
4276 WARN_ON(!ggtt_vma ||
4277 dev_priv->fence_regs[obj->fence_reg].pin_count >
4278 ggtt_vma->pin_count);
4279 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4280 return true;
4281 } else
4282 return false;
4283}
4284
4285void
4286i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4287{
4288 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4289 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4290 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4291 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4292 }
4293}
4294
673a394b
EA
4295int
4296i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4297 struct drm_file *file)
673a394b
EA
4298{
4299 struct drm_i915_gem_busy *args = data;
05394f39 4300 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4301 int ret;
4302
76c1dec1 4303 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4304 if (ret)
76c1dec1 4305 return ret;
673a394b 4306
05394f39 4307 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4308 if (&obj->base == NULL) {
1d7cfea1
CW
4309 ret = -ENOENT;
4310 goto unlock;
673a394b 4311 }
d1b851fc 4312
0be555b6
CW
4313 /* Count all active objects as busy, even if they are currently not used
4314 * by the gpu. Users of this interface expect objects to eventually
4315 * become non-busy without any further actions, therefore emit any
4316 * necessary flushes here.
c4de0a5d 4317 */
30dfebf3 4318 ret = i915_gem_object_flush_active(obj);
0be555b6 4319
30dfebf3 4320 args->busy = obj->active;
41c52415
JH
4321 if (obj->last_read_req) {
4322 struct intel_engine_cs *ring;
e9808edd 4323 BUILD_BUG_ON(I915_NUM_RINGS > 16);
41c52415
JH
4324 ring = i915_gem_request_get_ring(obj->last_read_req);
4325 args->busy |= intel_ring_flag(ring) << 16;
e9808edd 4326 }
673a394b 4327
05394f39 4328 drm_gem_object_unreference(&obj->base);
1d7cfea1 4329unlock:
673a394b 4330 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4331 return ret;
673a394b
EA
4332}
4333
4334int
4335i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4336 struct drm_file *file_priv)
4337{
0206e353 4338 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4339}
4340
3ef94daa
CW
4341int
4342i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4343 struct drm_file *file_priv)
4344{
656bfa3a 4345 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4346 struct drm_i915_gem_madvise *args = data;
05394f39 4347 struct drm_i915_gem_object *obj;
76c1dec1 4348 int ret;
3ef94daa
CW
4349
4350 switch (args->madv) {
4351 case I915_MADV_DONTNEED:
4352 case I915_MADV_WILLNEED:
4353 break;
4354 default:
4355 return -EINVAL;
4356 }
4357
1d7cfea1
CW
4358 ret = i915_mutex_lock_interruptible(dev);
4359 if (ret)
4360 return ret;
4361
05394f39 4362 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4363 if (&obj->base == NULL) {
1d7cfea1
CW
4364 ret = -ENOENT;
4365 goto unlock;
3ef94daa 4366 }
3ef94daa 4367
d7f46fc4 4368 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4369 ret = -EINVAL;
4370 goto out;
3ef94daa
CW
4371 }
4372
656bfa3a
DV
4373 if (obj->pages &&
4374 obj->tiling_mode != I915_TILING_NONE &&
4375 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4376 if (obj->madv == I915_MADV_WILLNEED)
4377 i915_gem_object_unpin_pages(obj);
4378 if (args->madv == I915_MADV_WILLNEED)
4379 i915_gem_object_pin_pages(obj);
4380 }
4381
05394f39
CW
4382 if (obj->madv != __I915_MADV_PURGED)
4383 obj->madv = args->madv;
3ef94daa 4384
6c085a72
CW
4385 /* if the object is no longer attached, discard its backing storage */
4386 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4387 i915_gem_object_truncate(obj);
4388
05394f39 4389 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4390
1d7cfea1 4391out:
05394f39 4392 drm_gem_object_unreference(&obj->base);
1d7cfea1 4393unlock:
3ef94daa 4394 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4395 return ret;
3ef94daa
CW
4396}
4397
37e680a1
CW
4398void i915_gem_object_init(struct drm_i915_gem_object *obj,
4399 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4400{
35c20a60 4401 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4402 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4403 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4404 INIT_LIST_HEAD(&obj->vma_list);
493018dc 4405 INIT_LIST_HEAD(&obj->batch_pool_list);
0327d6ba 4406
37e680a1
CW
4407 obj->ops = ops;
4408
0327d6ba
CW
4409 obj->fence_reg = I915_FENCE_REG_NONE;
4410 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4411
4412 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4413}
4414
37e680a1
CW
4415static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4416 .get_pages = i915_gem_object_get_pages_gtt,
4417 .put_pages = i915_gem_object_put_pages_gtt,
4418};
4419
05394f39
CW
4420struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4421 size_t size)
ac52bc56 4422{
c397b908 4423 struct drm_i915_gem_object *obj;
5949eac4 4424 struct address_space *mapping;
1a240d4d 4425 gfp_t mask;
ac52bc56 4426
42dcedd4 4427 obj = i915_gem_object_alloc(dev);
c397b908
DV
4428 if (obj == NULL)
4429 return NULL;
673a394b 4430
c397b908 4431 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4432 i915_gem_object_free(obj);
c397b908
DV
4433 return NULL;
4434 }
673a394b 4435
bed1ea95
CW
4436 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4437 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4438 /* 965gm cannot relocate objects above 4GiB. */
4439 mask &= ~__GFP_HIGHMEM;
4440 mask |= __GFP_DMA32;
4441 }
4442
496ad9aa 4443 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4444 mapping_set_gfp_mask(mapping, mask);
5949eac4 4445
37e680a1 4446 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4447
c397b908
DV
4448 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4449 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4450
3d29b842
ED
4451 if (HAS_LLC(dev)) {
4452 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4453 * cache) for about a 10% performance improvement
4454 * compared to uncached. Graphics requests other than
4455 * display scanout are coherent with the CPU in
4456 * accessing this cache. This means in this mode we
4457 * don't need to clflush on the CPU side, and on the
4458 * GPU side we only need to flush internal caches to
4459 * get data visible to the CPU.
4460 *
4461 * However, we maintain the display planes as UC, and so
4462 * need to rebind when first used as such.
4463 */
4464 obj->cache_level = I915_CACHE_LLC;
4465 } else
4466 obj->cache_level = I915_CACHE_NONE;
4467
d861e338
DV
4468 trace_i915_gem_object_create(obj);
4469
05394f39 4470 return obj;
c397b908
DV
4471}
4472
340fbd8c
CW
4473static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4474{
4475 /* If we are the last user of the backing storage (be it shmemfs
4476 * pages or stolen etc), we know that the pages are going to be
4477 * immediately released. In this case, we can then skip copying
4478 * back the contents from the GPU.
4479 */
4480
4481 if (obj->madv != I915_MADV_WILLNEED)
4482 return false;
4483
4484 if (obj->base.filp == NULL)
4485 return true;
4486
4487 /* At first glance, this looks racy, but then again so would be
4488 * userspace racing mmap against close. However, the first external
4489 * reference to the filp can only be obtained through the
4490 * i915_gem_mmap_ioctl() which safeguards us against the user
4491 * acquiring such a reference whilst we are in the middle of
4492 * freeing the object.
4493 */
4494 return atomic_long_read(&obj->base.filp->f_count) == 1;
4495}
4496
1488fc08 4497void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4498{
1488fc08 4499 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4500 struct drm_device *dev = obj->base.dev;
3e31c6c0 4501 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4502 struct i915_vma *vma, *next;
673a394b 4503
f65c9168
PZ
4504 intel_runtime_pm_get(dev_priv);
4505
26e12f89
CW
4506 trace_i915_gem_object_destroy(obj);
4507
07fe0b12 4508 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4509 int ret;
4510
4511 vma->pin_count = 0;
4512 ret = i915_vma_unbind(vma);
07fe0b12
BW
4513 if (WARN_ON(ret == -ERESTARTSYS)) {
4514 bool was_interruptible;
1488fc08 4515
07fe0b12
BW
4516 was_interruptible = dev_priv->mm.interruptible;
4517 dev_priv->mm.interruptible = false;
1488fc08 4518
07fe0b12 4519 WARN_ON(i915_vma_unbind(vma));
1488fc08 4520
07fe0b12
BW
4521 dev_priv->mm.interruptible = was_interruptible;
4522 }
1488fc08
CW
4523 }
4524
1d64ae71
BW
4525 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4526 * before progressing. */
4527 if (obj->stolen)
4528 i915_gem_object_unpin_pages(obj);
4529
a071fa00
DV
4530 WARN_ON(obj->frontbuffer_bits);
4531
656bfa3a
DV
4532 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4533 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4534 obj->tiling_mode != I915_TILING_NONE)
4535 i915_gem_object_unpin_pages(obj);
4536
401c29f6
BW
4537 if (WARN_ON(obj->pages_pin_count))
4538 obj->pages_pin_count = 0;
340fbd8c 4539 if (discard_backing_storage(obj))
5537252b 4540 obj->madv = I915_MADV_DONTNEED;
37e680a1 4541 i915_gem_object_put_pages(obj);
d8cb5086 4542 i915_gem_object_free_mmap_offset(obj);
de151cf6 4543
9da3da66
CW
4544 BUG_ON(obj->pages);
4545
2f745ad3
CW
4546 if (obj->base.import_attach)
4547 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4548
5cc9ed4b
CW
4549 if (obj->ops->release)
4550 obj->ops->release(obj);
4551
05394f39
CW
4552 drm_gem_object_release(&obj->base);
4553 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4554
05394f39 4555 kfree(obj->bit_17);
42dcedd4 4556 i915_gem_object_free(obj);
f65c9168
PZ
4557
4558 intel_runtime_pm_put(dev_priv);
673a394b
EA
4559}
4560
fe14d5f4
TU
4561struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
4562 struct i915_address_space *vm,
4563 const struct i915_ggtt_view *view)
e656a6cb
DV
4564{
4565 struct i915_vma *vma;
4566 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4 4567 if (vma->vm == vm && vma->ggtt_view.type == view->type)
e656a6cb
DV
4568 return vma;
4569
4570 return NULL;
4571}
4572
2f633156
BW
4573void i915_gem_vma_destroy(struct i915_vma *vma)
4574{
b9d06dd9 4575 struct i915_address_space *vm = NULL;
2f633156 4576 WARN_ON(vma->node.allocated);
aaa05667
CW
4577
4578 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4579 if (!list_empty(&vma->exec_list))
4580 return;
4581
b9d06dd9 4582 vm = vma->vm;
b9d06dd9 4583
841cd773
DV
4584 if (!i915_is_ggtt(vm))
4585 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4586
8b9c2b94 4587 list_del(&vma->vma_link);
b93dab6e 4588
2f633156
BW
4589 kfree(vma);
4590}
4591
e3efda49
CW
4592static void
4593i915_gem_stop_ringbuffers(struct drm_device *dev)
4594{
4595 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4596 struct intel_engine_cs *ring;
e3efda49
CW
4597 int i;
4598
4599 for_each_ring(ring, dev_priv, i)
a83014d3 4600 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4601}
4602
29105ccc 4603int
45c5f202 4604i915_gem_suspend(struct drm_device *dev)
29105ccc 4605{
3e31c6c0 4606 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4607 int ret = 0;
28dfe52a 4608
45c5f202 4609 mutex_lock(&dev->struct_mutex);
b2da9fe5 4610 ret = i915_gpu_idle(dev);
f7403347 4611 if (ret)
45c5f202 4612 goto err;
f7403347 4613
b2da9fe5 4614 i915_gem_retire_requests(dev);
673a394b 4615
29105ccc 4616 /* Under UMS, be paranoid and evict. */
a39d7efc 4617 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4618 i915_gem_evict_everything(dev);
29105ccc 4619
e3efda49 4620 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4621 mutex_unlock(&dev->struct_mutex);
4622
4623 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4624 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4625 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4626
bdcf120b
CW
4627 /* Assert that we sucessfully flushed all the work and
4628 * reset the GPU back to its idle, low power state.
4629 */
4630 WARN_ON(dev_priv->mm.busy);
4631
673a394b 4632 return 0;
45c5f202
CW
4633
4634err:
4635 mutex_unlock(&dev->struct_mutex);
4636 return ret;
673a394b
EA
4637}
4638
a4872ba6 4639int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4640{
c3787e2e 4641 struct drm_device *dev = ring->dev;
3e31c6c0 4642 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4643 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4644 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4645 int i, ret;
b9524a1e 4646
040d2baa 4647 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4648 return 0;
b9524a1e 4649
c3787e2e
BW
4650 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4651 if (ret)
4652 return ret;
b9524a1e 4653
c3787e2e
BW
4654 /*
4655 * Note: We do not worry about the concurrent register cacheline hang
4656 * here because no other code should access these registers other than
4657 * at initialization time.
4658 */
b9524a1e 4659 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4660 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4661 intel_ring_emit(ring, reg_base + i);
4662 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4663 }
4664
c3787e2e 4665 intel_ring_advance(ring);
b9524a1e 4666
c3787e2e 4667 return ret;
b9524a1e
BW
4668}
4669
f691e2f4
DV
4670void i915_gem_init_swizzling(struct drm_device *dev)
4671{
3e31c6c0 4672 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4673
11782b02 4674 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4675 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4676 return;
4677
4678 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4679 DISP_TILE_SURFACE_SWIZZLING);
4680
11782b02
DV
4681 if (IS_GEN5(dev))
4682 return;
4683
f691e2f4
DV
4684 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4685 if (IS_GEN6(dev))
6b26c86d 4686 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4687 else if (IS_GEN7(dev))
6b26c86d 4688 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4689 else if (IS_GEN8(dev))
4690 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4691 else
4692 BUG();
f691e2f4 4693}
e21af88d 4694
67b1b571
CW
4695static bool
4696intel_enable_blt(struct drm_device *dev)
4697{
4698 if (!HAS_BLT(dev))
4699 return false;
4700
4701 /* The blitter was dysfunctional on early prototypes */
4702 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4703 DRM_INFO("BLT not supported on this pre-production hardware;"
4704 " graphics performance will be degraded.\n");
4705 return false;
4706 }
4707
4708 return true;
4709}
4710
81e7f200
VS
4711static void init_unused_ring(struct drm_device *dev, u32 base)
4712{
4713 struct drm_i915_private *dev_priv = dev->dev_private;
4714
4715 I915_WRITE(RING_CTL(base), 0);
4716 I915_WRITE(RING_HEAD(base), 0);
4717 I915_WRITE(RING_TAIL(base), 0);
4718 I915_WRITE(RING_START(base), 0);
4719}
4720
4721static void init_unused_rings(struct drm_device *dev)
4722{
4723 if (IS_I830(dev)) {
4724 init_unused_ring(dev, PRB1_BASE);
4725 init_unused_ring(dev, SRB0_BASE);
4726 init_unused_ring(dev, SRB1_BASE);
4727 init_unused_ring(dev, SRB2_BASE);
4728 init_unused_ring(dev, SRB3_BASE);
4729 } else if (IS_GEN2(dev)) {
4730 init_unused_ring(dev, SRB0_BASE);
4731 init_unused_ring(dev, SRB1_BASE);
4732 } else if (IS_GEN3(dev)) {
4733 init_unused_ring(dev, PRB1_BASE);
4734 init_unused_ring(dev, PRB2_BASE);
4735 }
4736}
4737
a83014d3 4738int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4739{
4fc7c971 4740 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4741 int ret;
68f95ba9 4742
5c1143bb 4743 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4744 if (ret)
b6913e4b 4745 return ret;
68f95ba9
CW
4746
4747 if (HAS_BSD(dev)) {
5c1143bb 4748 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4749 if (ret)
4750 goto cleanup_render_ring;
d1b851fc 4751 }
68f95ba9 4752
67b1b571 4753 if (intel_enable_blt(dev)) {
549f7365
CW
4754 ret = intel_init_blt_ring_buffer(dev);
4755 if (ret)
4756 goto cleanup_bsd_ring;
4757 }
4758
9a8a2213
BW
4759 if (HAS_VEBOX(dev)) {
4760 ret = intel_init_vebox_ring_buffer(dev);
4761 if (ret)
4762 goto cleanup_blt_ring;
4763 }
4764
845f74a7
ZY
4765 if (HAS_BSD2(dev)) {
4766 ret = intel_init_bsd2_ring_buffer(dev);
4767 if (ret)
4768 goto cleanup_vebox_ring;
4769 }
9a8a2213 4770
99433931 4771 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4772 if (ret)
845f74a7 4773 goto cleanup_bsd2_ring;
4fc7c971
BW
4774
4775 return 0;
4776
845f74a7
ZY
4777cleanup_bsd2_ring:
4778 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4779cleanup_vebox_ring:
4780 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4781cleanup_blt_ring:
4782 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4783cleanup_bsd_ring:
4784 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4785cleanup_render_ring:
4786 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4787
4788 return ret;
4789}
4790
4791int
4792i915_gem_init_hw(struct drm_device *dev)
4793{
3e31c6c0 4794 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4795 struct intel_engine_cs *ring;
35a85ac6 4796 int ret, i;
4fc7c971
BW
4797
4798 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4799 return -EIO;
4800
59124506 4801 if (dev_priv->ellc_size)
05e21cc4 4802 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4803
0bf21347
VS
4804 if (IS_HASWELL(dev))
4805 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4806 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4807
88a2b2a3 4808 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4809 if (IS_IVYBRIDGE(dev)) {
4810 u32 temp = I915_READ(GEN7_MSG_CTL);
4811 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4812 I915_WRITE(GEN7_MSG_CTL, temp);
4813 } else if (INTEL_INFO(dev)->gen >= 7) {
4814 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4815 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4816 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4817 }
88a2b2a3
BW
4818 }
4819
4fc7c971
BW
4820 i915_gem_init_swizzling(dev);
4821
d5abdfda
DV
4822 /*
4823 * At least 830 can leave some of the unused rings
4824 * "active" (ie. head != tail) after resume which
4825 * will prevent c3 entry. Makes sure all unused rings
4826 * are totally idle.
4827 */
4828 init_unused_rings(dev);
4829
35a57ffb
DV
4830 for_each_ring(ring, dev_priv, i) {
4831 ret = ring->init_hw(ring);
4832 if (ret)
4833 return ret;
4834 }
99433931 4835
c3787e2e
BW
4836 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4837 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4838
254f965c 4839 /*
2fa48d8d
BW
4840 * XXX: Contexts should only be initialized once. Doing a switch to the
4841 * default context switch however is something we'd like to do after
4842 * reset or thaw (the latter may not actually be necessary for HW, but
4843 * goes with our code better). Context switching requires rings (for
4844 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4845 */
2fa48d8d 4846 ret = i915_gem_context_enable(dev_priv);
60990320 4847 if (ret && ret != -EIO) {
2fa48d8d 4848 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4849 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4850
4851 return ret;
4852 }
4853
4854 ret = i915_ppgtt_init_hw(dev);
4855 if (ret && ret != -EIO) {
4856 DRM_ERROR("PPGTT enable failed %d\n", ret);
4857 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4858 }
e21af88d 4859
2fa48d8d 4860 return ret;
8187a2b7
ZN
4861}
4862
1070a42b
CW
4863int i915_gem_init(struct drm_device *dev)
4864{
4865 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4866 int ret;
4867
127f1003
OM
4868 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4869 i915.enable_execlists);
4870
1070a42b 4871 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4872
4873 if (IS_VALLEYVIEW(dev)) {
4874 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4875 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4876 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4877 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4878 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4879 }
4880
a83014d3
OM
4881 if (!i915.enable_execlists) {
4882 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4883 dev_priv->gt.init_rings = i915_gem_init_rings;
4884 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4885 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd
OM
4886 } else {
4887 dev_priv->gt.do_execbuf = intel_execlists_submission;
4888 dev_priv->gt.init_rings = intel_logical_rings_init;
4889 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4890 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4891 }
4892
6c5566a8 4893 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4894 if (ret)
4895 goto out_unlock;
6c5566a8 4896
d7e5008f 4897 i915_gem_init_global_gtt(dev);
d62b4892 4898
2fa48d8d 4899 ret = i915_gem_context_init(dev);
7bcc3777
JN
4900 if (ret)
4901 goto out_unlock;
2fa48d8d 4902
35a57ffb
DV
4903 ret = dev_priv->gt.init_rings(dev);
4904 if (ret)
7bcc3777 4905 goto out_unlock;
35a57ffb 4906
1070a42b 4907 ret = i915_gem_init_hw(dev);
60990320
CW
4908 if (ret == -EIO) {
4909 /* Allow ring initialisation to fail by marking the GPU as
4910 * wedged. But we only want to do this where the GPU is angry,
4911 * for all other failure, such as an allocation failure, bail.
4912 */
4913 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4914 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4915 ret = 0;
1070a42b 4916 }
7bcc3777
JN
4917
4918out_unlock:
60990320 4919 mutex_unlock(&dev->struct_mutex);
1070a42b 4920
60990320 4921 return ret;
1070a42b
CW
4922}
4923
8187a2b7
ZN
4924void
4925i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4926{
3e31c6c0 4927 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4928 struct intel_engine_cs *ring;
1ec14ad3 4929 int i;
8187a2b7 4930
b4519513 4931 for_each_ring(ring, dev_priv, i)
a83014d3 4932 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4933}
4934
64193406 4935static void
a4872ba6 4936init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4937{
4938 INIT_LIST_HEAD(&ring->active_list);
4939 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4940}
4941
7e0d96bc
BW
4942void i915_init_vm(struct drm_i915_private *dev_priv,
4943 struct i915_address_space *vm)
fc8c067e 4944{
7e0d96bc
BW
4945 if (!i915_is_ggtt(vm))
4946 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4947 vm->dev = dev_priv->dev;
4948 INIT_LIST_HEAD(&vm->active_list);
4949 INIT_LIST_HEAD(&vm->inactive_list);
4950 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4951 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4952}
4953
673a394b
EA
4954void
4955i915_gem_load(struct drm_device *dev)
4956{
3e31c6c0 4957 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4958 int i;
4959
4960 dev_priv->slab =
4961 kmem_cache_create("i915_gem_object",
4962 sizeof(struct drm_i915_gem_object), 0,
4963 SLAB_HWCACHE_ALIGN,
4964 NULL);
673a394b 4965
fc8c067e
BW
4966 INIT_LIST_HEAD(&dev_priv->vm_list);
4967 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4968
a33afea5 4969 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4970 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4971 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4972 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4973 for (i = 0; i < I915_NUM_RINGS; i++)
4974 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4975 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4976 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4977 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4978 i915_gem_retire_work_handler);
b29c19b6
CW
4979 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4980 i915_gem_idle_work_handler);
1f83fee0 4981 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4982
94400120 4983 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4984 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4985 I915_WRITE(MI_ARB_STATE,
4986 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4987 }
4988
72bfa19c
CW
4989 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4990
de151cf6 4991 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4992 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4993 dev_priv->fence_reg_start = 3;
de151cf6 4994
42b5aeab
VS
4995 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4996 dev_priv->num_fence_regs = 32;
4997 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4998 dev_priv->num_fence_regs = 16;
4999 else
5000 dev_priv->num_fence_regs = 8;
5001
b5aa8a0f 5002 /* Initialize fence registers to zero */
19b2dbde
CW
5003 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5004 i915_gem_restore_fences(dev);
10ed13e4 5005
673a394b 5006 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5007 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5008
ce453d81
CW
5009 dev_priv->mm.interruptible = true;
5010
ceabbba5
CW
5011 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5012 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5013 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5014 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
5015
5016 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5017 register_oom_notifier(&dev_priv->mm.oom_notifier);
f99d7069 5018
78a42377
BV
5019 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5020
f99d7069 5021 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5022}
71acb5eb 5023
f787a5f5 5024void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5025{
f787a5f5 5026 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 5027
b29c19b6
CW
5028 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5029
b962442e
EA
5030 /* Clean up our request list when the client is going away, so that
5031 * later retire_requests won't dereference our soon-to-be-gone
5032 * file_priv.
5033 */
1c25595f 5034 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5035 while (!list_empty(&file_priv->mm.request_list)) {
5036 struct drm_i915_gem_request *request;
5037
5038 request = list_first_entry(&file_priv->mm.request_list,
5039 struct drm_i915_gem_request,
5040 client_list);
5041 list_del(&request->client_list);
5042 request->file_priv = NULL;
5043 }
1c25595f 5044 spin_unlock(&file_priv->mm.lock);
b962442e 5045}
31169714 5046
b29c19b6
CW
5047static void
5048i915_gem_file_idle_work_handler(struct work_struct *work)
5049{
5050 struct drm_i915_file_private *file_priv =
5051 container_of(work, typeof(*file_priv), mm.idle_work.work);
5052
5053 atomic_set(&file_priv->rps_wait_boost, false);
5054}
5055
5056int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5057{
5058 struct drm_i915_file_private *file_priv;
e422b888 5059 int ret;
b29c19b6
CW
5060
5061 DRM_DEBUG_DRIVER("\n");
5062
5063 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5064 if (!file_priv)
5065 return -ENOMEM;
5066
5067 file->driver_priv = file_priv;
5068 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5069 file_priv->file = file;
b29c19b6
CW
5070
5071 spin_lock_init(&file_priv->mm.lock);
5072 INIT_LIST_HEAD(&file_priv->mm.request_list);
5073 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5074 i915_gem_file_idle_work_handler);
5075
e422b888
BW
5076 ret = i915_gem_context_open(dev, file);
5077 if (ret)
5078 kfree(file_priv);
b29c19b6 5079
e422b888 5080 return ret;
b29c19b6
CW
5081}
5082
b680c37a
DV
5083/**
5084 * i915_gem_track_fb - update frontbuffer tracking
5085 * old: current GEM buffer for the frontbuffer slots
5086 * new: new GEM buffer for the frontbuffer slots
5087 * frontbuffer_bits: bitmask of frontbuffer slots
5088 *
5089 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5090 * from @old and setting them in @new. Both @old and @new can be NULL.
5091 */
a071fa00
DV
5092void i915_gem_track_fb(struct drm_i915_gem_object *old,
5093 struct drm_i915_gem_object *new,
5094 unsigned frontbuffer_bits)
5095{
5096 if (old) {
5097 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5098 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5099 old->frontbuffer_bits &= ~frontbuffer_bits;
5100 }
5101
5102 if (new) {
5103 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5104 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5105 new->frontbuffer_bits |= frontbuffer_bits;
5106 }
5107}
5108
5774506f
CW
5109static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5110{
5111 if (!mutex_is_locked(mutex))
5112 return false;
5113
5114#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5115 return mutex->owner == task;
5116#else
5117 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5118 return false;
5119#endif
5120}
5121
b453c4db
CW
5122static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5123{
5124 if (!mutex_trylock(&dev->struct_mutex)) {
5125 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5126 return false;
5127
5128 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5129 return false;
5130
5131 *unlock = false;
5132 } else
5133 *unlock = true;
5134
5135 return true;
5136}
5137
ceabbba5
CW
5138static int num_vma_bound(struct drm_i915_gem_object *obj)
5139{
5140 struct i915_vma *vma;
5141 int count = 0;
5142
5143 list_for_each_entry(vma, &obj->vma_list, vma_link)
5144 if (drm_mm_node_allocated(&vma->node))
5145 count++;
5146
5147 return count;
5148}
5149
7dc19d5a 5150static unsigned long
ceabbba5 5151i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5152{
17250b71 5153 struct drm_i915_private *dev_priv =
ceabbba5 5154 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5155 struct drm_device *dev = dev_priv->dev;
6c085a72 5156 struct drm_i915_gem_object *obj;
7dc19d5a 5157 unsigned long count;
b453c4db 5158 bool unlock;
17250b71 5159
b453c4db
CW
5160 if (!i915_gem_shrinker_lock(dev, &unlock))
5161 return 0;
31169714 5162
7dc19d5a 5163 count = 0;
35c20a60 5164 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5165 if (obj->pages_pin_count == 0)
7dc19d5a 5166 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5167
5168 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5169 if (!i915_gem_obj_is_pinned(obj) &&
5170 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5171 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5172 }
17250b71 5173
5774506f
CW
5174 if (unlock)
5175 mutex_unlock(&dev->struct_mutex);
d9973b43 5176
7dc19d5a 5177 return count;
31169714 5178}
a70a3148
BW
5179
5180/* All the new VM stuff */
fe14d5f4
TU
5181unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
5182 struct i915_address_space *vm,
5183 enum i915_ggtt_view_type view)
a70a3148
BW
5184{
5185 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5186 struct i915_vma *vma;
5187
896ab1a5 5188 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5189
a70a3148 5190 list_for_each_entry(vma, &o->vma_list, vma_link) {
fe14d5f4 5191 if (vma->vm == vm && vma->ggtt_view.type == view)
a70a3148
BW
5192 return vma->node.start;
5193
5194 }
f25748ea
DV
5195 WARN(1, "%s vma for this object not found.\n",
5196 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5197 return -1;
5198}
5199
fe14d5f4
TU
5200bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
5201 struct i915_address_space *vm,
5202 enum i915_ggtt_view_type view)
a70a3148
BW
5203{
5204 struct i915_vma *vma;
5205
5206 list_for_each_entry(vma, &o->vma_list, vma_link)
fe14d5f4
TU
5207 if (vma->vm == vm &&
5208 vma->ggtt_view.type == view &&
5209 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5210 return true;
5211
5212 return false;
5213}
5214
5215bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5216{
5a1d5eb0 5217 struct i915_vma *vma;
a70a3148 5218
5a1d5eb0
CW
5219 list_for_each_entry(vma, &o->vma_list, vma_link)
5220 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5221 return true;
5222
5223 return false;
5224}
5225
5226unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5227 struct i915_address_space *vm)
5228{
5229 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5230 struct i915_vma *vma;
5231
896ab1a5 5232 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5233
5234 BUG_ON(list_empty(&o->vma_list));
5235
5236 list_for_each_entry(vma, &o->vma_list, vma_link)
5237 if (vma->vm == vm)
5238 return vma->node.size;
5239
5240 return 0;
5241}
5242
7dc19d5a 5243static unsigned long
ceabbba5 5244i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5245{
5246 struct drm_i915_private *dev_priv =
ceabbba5 5247 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5248 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5249 unsigned long freed;
b453c4db 5250 bool unlock;
7dc19d5a 5251
b453c4db
CW
5252 if (!i915_gem_shrinker_lock(dev, &unlock))
5253 return SHRINK_STOP;
7dc19d5a 5254
21ab4e74
CW
5255 freed = i915_gem_shrink(dev_priv,
5256 sc->nr_to_scan,
5257 I915_SHRINK_BOUND |
5258 I915_SHRINK_UNBOUND |
5259 I915_SHRINK_PURGEABLE);
d9973b43 5260 if (freed < sc->nr_to_scan)
21ab4e74
CW
5261 freed += i915_gem_shrink(dev_priv,
5262 sc->nr_to_scan - freed,
5263 I915_SHRINK_BOUND |
5264 I915_SHRINK_UNBOUND);
7dc19d5a
DC
5265 if (unlock)
5266 mutex_unlock(&dev->struct_mutex);
d9973b43 5267
7dc19d5a
DC
5268 return freed;
5269}
5c2abbea 5270
2cfcd32a
CW
5271static int
5272i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5273{
5274 struct drm_i915_private *dev_priv =
5275 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5276 struct drm_device *dev = dev_priv->dev;
5277 struct drm_i915_gem_object *obj;
5278 unsigned long timeout = msecs_to_jiffies(5000) + 1;
005445c5 5279 unsigned long pinned, bound, unbound, freed_pages;
2cfcd32a
CW
5280 bool was_interruptible;
5281 bool unlock;
5282
a1db2fa7 5283 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
2cfcd32a 5284 schedule_timeout_killable(1);
a1db2fa7
CW
5285 if (fatal_signal_pending(current))
5286 return NOTIFY_DONE;
5287 }
2cfcd32a
CW
5288 if (timeout == 0) {
5289 pr_err("Unable to purge GPU memory due lock contention.\n");
5290 return NOTIFY_DONE;
5291 }
5292
5293 was_interruptible = dev_priv->mm.interruptible;
5294 dev_priv->mm.interruptible = false;
5295
005445c5 5296 freed_pages = i915_gem_shrink_all(dev_priv);
2cfcd32a
CW
5297
5298 dev_priv->mm.interruptible = was_interruptible;
5299
5300 /* Because we may be allocating inside our own driver, we cannot
5301 * assert that there are no objects with pinned pages that are not
5302 * being pointed to by hardware.
5303 */
5304 unbound = bound = pinned = 0;
5305 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5306 if (!obj->base.filp) /* not backed by a freeable object */
5307 continue;
5308
5309 if (obj->pages_pin_count)
5310 pinned += obj->base.size;
5311 else
5312 unbound += obj->base.size;
5313 }
5314 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5315 if (!obj->base.filp)
5316 continue;
5317
5318 if (obj->pages_pin_count)
5319 pinned += obj->base.size;
5320 else
5321 bound += obj->base.size;
5322 }
5323
5324 if (unlock)
5325 mutex_unlock(&dev->struct_mutex);
5326
bb9059d3
CW
5327 if (freed_pages || unbound || bound)
5328 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5329 freed_pages << PAGE_SHIFT, pinned);
2cfcd32a
CW
5330 if (unbound || bound)
5331 pr_err("%lu and %lu bytes still available in the "
5332 "bound and unbound GPU page lists.\n",
5333 bound, unbound);
5334
005445c5 5335 *(unsigned long *)ptr += freed_pages;
2cfcd32a
CW
5336 return NOTIFY_DONE;
5337}
5338
5c2abbea
BW
5339struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5340{
f7635669 5341 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5c2abbea
BW
5342 struct i915_vma *vma;
5343
fe14d5f4
TU
5344 list_for_each_entry(vma, &obj->vma_list, vma_link)
5345 if (vma->vm == ggtt &&
5346 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
f7635669 5347 return vma;
5c2abbea 5348
f7635669 5349 return NULL;
5c2abbea 5350}