]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Convert dev_priv->dev backpointers to dev_priv->drm
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
0ccdacf6 35#include "intel_mocs.h"
5949eac4 36#include <linux/shmem_fs.h>
5a0e3ad6 37#include <linux/slab.h>
673a394b 38#include <linux/swap.h>
79e53945 39#include <linux/pci.h>
1286ff73 40#include <linux/dma-buf.h>
673a394b 41
05394f39 42static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 43static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 44static void
b4716185
CW
45i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46static void
47i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 48
c76ce038
CW
49static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51{
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53}
54
2c22569b
CW
55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56{
b50a5371
AS
57 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 return false;
59
2c22569b
CW
60 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 return true;
62
63 return obj->pin_display;
64}
65
4f1959ee
AS
66static int
67insert_mappable_node(struct drm_i915_private *i915,
68 struct drm_mm_node *node, u32 size)
69{
70 memset(node, 0, sizeof(*node));
71 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
72 size, 0, 0, 0,
73 i915->ggtt.mappable_end,
74 DRM_MM_SEARCH_DEFAULT,
75 DRM_MM_CREATE_DEFAULT);
76}
77
78static void
79remove_mappable_node(struct drm_mm_node *node)
80{
81 drm_mm_remove_node(node);
82}
83
73aa808f
CW
84/* some bookkeeping */
85static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 size_t size)
87{
c20e8355 88 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89 dev_priv->mm.object_count++;
90 dev_priv->mm.object_memory += size;
c20e8355 91 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
92}
93
94static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 size_t size)
96{
c20e8355 97 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98 dev_priv->mm.object_count--;
99 dev_priv->mm.object_memory -= size;
c20e8355 100 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
101}
102
21dd3734 103static int
33196ded 104i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 105{
30dbf0c0
CW
106 int ret;
107
d98c52cf 108 if (!i915_reset_in_progress(error))
30dbf0c0
CW
109 return 0;
110
0a6759c6
DV
111 /*
112 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
113 * userspace. If it takes that long something really bad is going on and
114 * we should simply try to bail out and fail as gracefully as possible.
115 */
1f83fee0 116 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 117 !i915_reset_in_progress(error),
1f83fee0 118 10*HZ);
0a6759c6
DV
119 if (ret == 0) {
120 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
121 return -EIO;
122 } else if (ret < 0) {
30dbf0c0 123 return ret;
d98c52cf
CW
124 } else {
125 return 0;
0a6759c6 126 }
30dbf0c0
CW
127}
128
54cf91dc 129int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 130{
fac5e23e 131 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
132 int ret;
133
33196ded 134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
23bc5982 142 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
72e96d64 150 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 151 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 152 struct drm_i915_gem_get_aperture *args = data;
ca1543be 153 struct i915_vma *vma;
6299f992 154 size_t pinned;
5a125c3c 155
6299f992 156 pinned = 0;
73aa808f 157 mutex_lock(&dev->struct_mutex);
1c7f4bca 158 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
ca1543be
TU
159 if (vma->pin_count)
160 pinned += vma->node.size;
1c7f4bca 161 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
ca1543be
TU
162 if (vma->pin_count)
163 pinned += vma->node.size;
73aa808f 164 mutex_unlock(&dev->struct_mutex);
5a125c3c 165
72e96d64 166 args->aper_size = ggtt->base.total;
0206e353 167 args->aper_available_size = args->aper_size - pinned;
6299f992 168
5a125c3c
EA
169 return 0;
170}
171
6a2c4232
CW
172static int
173i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 174{
6a2c4232
CW
175 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
176 char *vaddr = obj->phys_handle->vaddr;
177 struct sg_table *st;
178 struct scatterlist *sg;
179 int i;
00731155 180
6a2c4232
CW
181 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182 return -EINVAL;
183
184 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 struct page *page;
186 char *src;
187
188 page = shmem_read_mapping_page(mapping, i);
189 if (IS_ERR(page))
190 return PTR_ERR(page);
191
192 src = kmap_atomic(page);
193 memcpy(vaddr, src, PAGE_SIZE);
194 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 kunmap_atomic(src);
196
09cbfeaf 197 put_page(page);
6a2c4232
CW
198 vaddr += PAGE_SIZE;
199 }
200
c033666a 201 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
202
203 st = kmalloc(sizeof(*st), GFP_KERNEL);
204 if (st == NULL)
205 return -ENOMEM;
206
207 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 kfree(st);
209 return -ENOMEM;
210 }
211
212 sg = st->sgl;
213 sg->offset = 0;
214 sg->length = obj->base.size;
00731155 215
6a2c4232
CW
216 sg_dma_address(sg) = obj->phys_handle->busaddr;
217 sg_dma_len(sg) = obj->base.size;
218
219 obj->pages = st;
6a2c4232
CW
220 return 0;
221}
222
223static void
224i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
225{
226 int ret;
227
228 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 229
6a2c4232 230 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 231 if (WARN_ON(ret)) {
6a2c4232
CW
232 /* In the event of a disaster, abandon all caches and
233 * hope for the best.
234 */
6a2c4232
CW
235 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
236 }
237
238 if (obj->madv == I915_MADV_DONTNEED)
239 obj->dirty = 0;
240
241 if (obj->dirty) {
00731155 242 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 243 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
244 int i;
245
246 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
247 struct page *page;
248 char *dst;
249
250 page = shmem_read_mapping_page(mapping, i);
251 if (IS_ERR(page))
252 continue;
253
254 dst = kmap_atomic(page);
255 drm_clflush_virt_range(vaddr, PAGE_SIZE);
256 memcpy(dst, vaddr, PAGE_SIZE);
257 kunmap_atomic(dst);
258
259 set_page_dirty(page);
260 if (obj->madv == I915_MADV_WILLNEED)
00731155 261 mark_page_accessed(page);
09cbfeaf 262 put_page(page);
00731155
CW
263 vaddr += PAGE_SIZE;
264 }
6a2c4232 265 obj->dirty = 0;
00731155
CW
266 }
267
6a2c4232
CW
268 sg_free_table(obj->pages);
269 kfree(obj->pages);
6a2c4232
CW
270}
271
272static void
273i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274{
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276}
277
278static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282};
283
284static int
285drop_pages(struct drm_i915_gem_object *obj)
286{
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
1c7f4bca 291 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
6a2c4232
CW
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
00731155
CW
299}
300
301int
302i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304{
305 drm_dma_handle_t *phys;
6a2c4232 306 int ret;
00731155
CW
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
6a2c4232
CW
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
00731155
CW
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
00731155 330 obj->phys_handle = phys;
6a2c4232
CW
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
00731155
CW
334}
335
336static int
337i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340{
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 343 char __user *user_data = u64_to_user_ptr(args->data_ptr);
063e4e6b 344 int ret = 0;
6a2c4232
CW
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
00731155 352
77a0d1ca 353 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
00731155
CW
368 }
369
6a2c4232 370 drm_clflush_virt_range(vaddr, args->size);
c033666a 371 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
372
373out:
de152b62 374 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 375 return ret;
00731155
CW
376}
377
42dcedd4
CW
378void *i915_gem_object_alloc(struct drm_device *dev)
379{
fac5e23e 380 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
382}
383
384void i915_gem_object_free(struct drm_i915_gem_object *obj)
385{
fac5e23e 386 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 387 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
388}
389
ff72145b
DA
390static int
391i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
673a394b 395{
05394f39 396 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
397 int ret;
398 u32 handle;
673a394b 399
ff72145b 400 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
401 if (size == 0)
402 return -EINVAL;
673a394b
EA
403
404 /* Allocate the new object */
d37cd8a8 405 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
406 if (IS_ERR(obj))
407 return PTR_ERR(obj);
673a394b 408
05394f39 409 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 410 /* drop reference from allocate - handle holds it now */
d861e338
DV
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
202f2fef 414
ff72145b 415 *handle_p = handle;
673a394b
EA
416 return 0;
417}
418
ff72145b
DA
419int
420i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423{
424 /* have to work out size/pitch and return them */
de45eaf7 425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
da6b51d0 428 args->size, &args->handle);
ff72145b
DA
429}
430
ff72145b
DA
431/**
432 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
433 * @dev: drm device pointer
434 * @data: ioctl data blob
435 * @file: drm file pointer
ff72145b
DA
436 */
437int
438i915_gem_create_ioctl(struct drm_device *dev, void *data,
439 struct drm_file *file)
440{
441 struct drm_i915_gem_create *args = data;
63ed2cb2 442
ff72145b 443 return i915_gem_create(file, dev,
da6b51d0 444 args->size, &args->handle);
ff72145b
DA
445}
446
8461d226
DV
447static inline int
448__copy_to_user_swizzled(char __user *cpu_vaddr,
449 const char *gpu_vaddr, int gpu_offset,
450 int length)
451{
452 int ret, cpu_offset = 0;
453
454 while (length > 0) {
455 int cacheline_end = ALIGN(gpu_offset + 1, 64);
456 int this_length = min(cacheline_end - gpu_offset, length);
457 int swizzled_gpu_offset = gpu_offset ^ 64;
458
459 ret = __copy_to_user(cpu_vaddr + cpu_offset,
460 gpu_vaddr + swizzled_gpu_offset,
461 this_length);
462 if (ret)
463 return ret + length;
464
465 cpu_offset += this_length;
466 gpu_offset += this_length;
467 length -= this_length;
468 }
469
470 return 0;
471}
472
8c59967c 473static inline int
4f0c7cfb
BW
474__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475 const char __user *cpu_vaddr,
8c59967c
DV
476 int length)
477{
478 int ret, cpu_offset = 0;
479
480 while (length > 0) {
481 int cacheline_end = ALIGN(gpu_offset + 1, 64);
482 int this_length = min(cacheline_end - gpu_offset, length);
483 int swizzled_gpu_offset = gpu_offset ^ 64;
484
485 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486 cpu_vaddr + cpu_offset,
487 this_length);
488 if (ret)
489 return ret + length;
490
491 cpu_offset += this_length;
492 gpu_offset += this_length;
493 length -= this_length;
494 }
495
496 return 0;
497}
498
4c914c0c
BV
499/*
500 * Pins the specified object's pages and synchronizes the object with
501 * GPU accesses. Sets needs_clflush to non-zero if the caller should
502 * flush the object from the CPU cache.
503 */
504int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505 int *needs_clflush)
506{
507 int ret;
508
509 *needs_clflush = 0;
510
b9bcd14a 511 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4c914c0c
BV
512 return -EINVAL;
513
514 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515 /* If we're not in the cpu read domain, set ourself into the gtt
516 * read domain and manually flush cachelines (if required). This
517 * optimizes for the case when the gpu will dirty the data
518 * anyway again before the next pread happens. */
519 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520 obj->cache_level);
521 ret = i915_gem_object_wait_rendering(obj, true);
522 if (ret)
523 return ret;
524 }
525
526 ret = i915_gem_object_get_pages(obj);
527 if (ret)
528 return ret;
529
530 i915_gem_object_pin_pages(obj);
531
532 return ret;
533}
534
d174bd64
DV
535/* Per-page copy function for the shmem pread fastpath.
536 * Flushes invalid cachelines before reading the target if
537 * needs_clflush is set. */
eb01459f 538static int
d174bd64
DV
539shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
540 char __user *user_data,
541 bool page_do_bit17_swizzling, bool needs_clflush)
542{
543 char *vaddr;
544 int ret;
545
e7e58eb5 546 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
547 return -EINVAL;
548
549 vaddr = kmap_atomic(page);
550 if (needs_clflush)
551 drm_clflush_virt_range(vaddr + shmem_page_offset,
552 page_length);
553 ret = __copy_to_user_inatomic(user_data,
554 vaddr + shmem_page_offset,
555 page_length);
556 kunmap_atomic(vaddr);
557
f60d7f0c 558 return ret ? -EFAULT : 0;
d174bd64
DV
559}
560
23c18c71
DV
561static void
562shmem_clflush_swizzled_range(char *addr, unsigned long length,
563 bool swizzled)
564{
e7e58eb5 565 if (unlikely(swizzled)) {
23c18c71
DV
566 unsigned long start = (unsigned long) addr;
567 unsigned long end = (unsigned long) addr + length;
568
569 /* For swizzling simply ensure that we always flush both
570 * channels. Lame, but simple and it works. Swizzled
571 * pwrite/pread is far from a hotpath - current userspace
572 * doesn't use it at all. */
573 start = round_down(start, 128);
574 end = round_up(end, 128);
575
576 drm_clflush_virt_range((void *)start, end - start);
577 } else {
578 drm_clflush_virt_range(addr, length);
579 }
580
581}
582
d174bd64
DV
583/* Only difference to the fast-path function is that this can handle bit17
584 * and uses non-atomic copy and kmap functions. */
585static int
586shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
587 char __user *user_data,
588 bool page_do_bit17_swizzling, bool needs_clflush)
589{
590 char *vaddr;
591 int ret;
592
593 vaddr = kmap(page);
594 if (needs_clflush)
23c18c71
DV
595 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
596 page_length,
597 page_do_bit17_swizzling);
d174bd64
DV
598
599 if (page_do_bit17_swizzling)
600 ret = __copy_to_user_swizzled(user_data,
601 vaddr, shmem_page_offset,
602 page_length);
603 else
604 ret = __copy_to_user(user_data,
605 vaddr + shmem_page_offset,
606 page_length);
607 kunmap(page);
608
f60d7f0c 609 return ret ? - EFAULT : 0;
d174bd64
DV
610}
611
b50a5371
AS
612static inline unsigned long
613slow_user_access(struct io_mapping *mapping,
614 uint64_t page_base, int page_offset,
615 char __user *user_data,
616 unsigned long length, bool pwrite)
617{
618 void __iomem *ioaddr;
619 void *vaddr;
620 uint64_t unwritten;
621
622 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
623 /* We can use the cpu mem copy function because this is X86. */
624 vaddr = (void __force *)ioaddr + page_offset;
625 if (pwrite)
626 unwritten = __copy_from_user(vaddr, user_data, length);
627 else
628 unwritten = __copy_to_user(user_data, vaddr, length);
629
630 io_mapping_unmap(ioaddr);
631 return unwritten;
632}
633
634static int
635i915_gem_gtt_pread(struct drm_device *dev,
636 struct drm_i915_gem_object *obj, uint64_t size,
637 uint64_t data_offset, uint64_t data_ptr)
638{
fac5e23e 639 struct drm_i915_private *dev_priv = to_i915(dev);
b50a5371
AS
640 struct i915_ggtt *ggtt = &dev_priv->ggtt;
641 struct drm_mm_node node;
642 char __user *user_data;
643 uint64_t remain;
644 uint64_t offset;
645 int ret;
646
647 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
648 if (ret) {
649 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
650 if (ret)
651 goto out;
652
653 ret = i915_gem_object_get_pages(obj);
654 if (ret) {
655 remove_mappable_node(&node);
656 goto out;
657 }
658
659 i915_gem_object_pin_pages(obj);
660 } else {
661 node.start = i915_gem_obj_ggtt_offset(obj);
662 node.allocated = false;
663 ret = i915_gem_object_put_fence(obj);
664 if (ret)
665 goto out_unpin;
666 }
667
668 ret = i915_gem_object_set_to_gtt_domain(obj, false);
669 if (ret)
670 goto out_unpin;
671
672 user_data = u64_to_user_ptr(data_ptr);
673 remain = size;
674 offset = data_offset;
675
676 mutex_unlock(&dev->struct_mutex);
677 if (likely(!i915.prefault_disable)) {
678 ret = fault_in_multipages_writeable(user_data, remain);
679 if (ret) {
680 mutex_lock(&dev->struct_mutex);
681 goto out_unpin;
682 }
683 }
684
685 while (remain > 0) {
686 /* Operation in this page
687 *
688 * page_base = page offset within aperture
689 * page_offset = offset within page
690 * page_length = bytes to copy for this page
691 */
692 u32 page_base = node.start;
693 unsigned page_offset = offset_in_page(offset);
694 unsigned page_length = PAGE_SIZE - page_offset;
695 page_length = remain < page_length ? remain : page_length;
696 if (node.allocated) {
697 wmb();
698 ggtt->base.insert_page(&ggtt->base,
699 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
700 node.start,
701 I915_CACHE_NONE, 0);
702 wmb();
703 } else {
704 page_base += offset & PAGE_MASK;
705 }
706 /* This is a slow read/write as it tries to read from
707 * and write to user memory which may result into page
708 * faults, and so we cannot perform this under struct_mutex.
709 */
710 if (slow_user_access(ggtt->mappable, page_base,
711 page_offset, user_data,
712 page_length, false)) {
713 ret = -EFAULT;
714 break;
715 }
716
717 remain -= page_length;
718 user_data += page_length;
719 offset += page_length;
720 }
721
722 mutex_lock(&dev->struct_mutex);
723 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
724 /* The user has modified the object whilst we tried
725 * reading from it, and we now have no idea what domain
726 * the pages should be in. As we have just been touching
727 * them directly, flush everything back to the GTT
728 * domain.
729 */
730 ret = i915_gem_object_set_to_gtt_domain(obj, false);
731 }
732
733out_unpin:
734 if (node.allocated) {
735 wmb();
736 ggtt->base.clear_range(&ggtt->base,
737 node.start, node.size,
738 true);
739 i915_gem_object_unpin_pages(obj);
740 remove_mappable_node(&node);
741 } else {
742 i915_gem_object_ggtt_unpin(obj);
743 }
744out:
745 return ret;
746}
747
eb01459f 748static int
dbf7bff0
DV
749i915_gem_shmem_pread(struct drm_device *dev,
750 struct drm_i915_gem_object *obj,
751 struct drm_i915_gem_pread *args,
752 struct drm_file *file)
eb01459f 753{
8461d226 754 char __user *user_data;
eb01459f 755 ssize_t remain;
8461d226 756 loff_t offset;
eb2c0c81 757 int shmem_page_offset, page_length, ret = 0;
8461d226 758 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 759 int prefaulted = 0;
8489731c 760 int needs_clflush = 0;
67d5a50c 761 struct sg_page_iter sg_iter;
eb01459f 762
6eae0059 763 if (!i915_gem_object_has_struct_page(obj))
b50a5371
AS
764 return -ENODEV;
765
3ed605bc 766 user_data = u64_to_user_ptr(args->data_ptr);
eb01459f
EA
767 remain = args->size;
768
8461d226 769 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 770
4c914c0c 771 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
772 if (ret)
773 return ret;
774
8461d226 775 offset = args->offset;
eb01459f 776
67d5a50c
ID
777 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
778 offset >> PAGE_SHIFT) {
2db76d7c 779 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
780
781 if (remain <= 0)
782 break;
783
eb01459f
EA
784 /* Operation in this page
785 *
eb01459f 786 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
787 * page_length = bytes to copy for this page
788 */
c8cbbb8b 789 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
790 page_length = remain;
791 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 793
8461d226
DV
794 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
795 (page_to_phys(page) & (1 << 17)) != 0;
796
d174bd64
DV
797 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
798 user_data, page_do_bit17_swizzling,
799 needs_clflush);
800 if (ret == 0)
801 goto next_page;
dbf7bff0 802
dbf7bff0
DV
803 mutex_unlock(&dev->struct_mutex);
804
d330a953 805 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 806 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
807 /* Userspace is tricking us, but we've already clobbered
808 * its pages with the prefault and promised to write the
809 * data up to the first fault. Hence ignore any errors
810 * and just continue. */
811 (void)ret;
812 prefaulted = 1;
813 }
eb01459f 814
d174bd64
DV
815 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 needs_clflush);
eb01459f 818
dbf7bff0 819 mutex_lock(&dev->struct_mutex);
f60d7f0c 820
f60d7f0c 821 if (ret)
8461d226 822 goto out;
8461d226 823
17793c9a 824next_page:
eb01459f 825 remain -= page_length;
8461d226 826 user_data += page_length;
eb01459f
EA
827 offset += page_length;
828 }
829
4f27b75d 830out:
f60d7f0c
CW
831 i915_gem_object_unpin_pages(obj);
832
eb01459f
EA
833 return ret;
834}
835
673a394b
EA
836/**
837 * Reads data from the object referenced by handle.
14bb2c11
TU
838 * @dev: drm device pointer
839 * @data: ioctl data blob
840 * @file: drm file pointer
673a394b
EA
841 *
842 * On error, the contents of *data are undefined.
843 */
844int
845i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 846 struct drm_file *file)
673a394b
EA
847{
848 struct drm_i915_gem_pread *args = data;
05394f39 849 struct drm_i915_gem_object *obj;
35b62a89 850 int ret = 0;
673a394b 851
51311d0a
CW
852 if (args->size == 0)
853 return 0;
854
855 if (!access_ok(VERIFY_WRITE,
3ed605bc 856 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
857 args->size))
858 return -EFAULT;
859
4f27b75d 860 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 861 if (ret)
4f27b75d 862 return ret;
673a394b 863
a8ad0bd8 864 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 865 if (&obj->base == NULL) {
1d7cfea1
CW
866 ret = -ENOENT;
867 goto unlock;
4f27b75d 868 }
673a394b 869
7dcd2499 870 /* Bounds check source. */
05394f39
CW
871 if (args->offset > obj->base.size ||
872 args->size > obj->base.size - args->offset) {
ce9d419d 873 ret = -EINVAL;
35b62a89 874 goto out;
ce9d419d
CW
875 }
876
db53a302
CW
877 trace_i915_gem_object_pread(obj, args->offset, args->size);
878
dbf7bff0 879 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 880
b50a5371
AS
881 /* pread for non shmem backed objects */
882 if (ret == -EFAULT || ret == -ENODEV)
883 ret = i915_gem_gtt_pread(dev, obj, args->size,
884 args->offset, args->data_ptr);
885
35b62a89 886out:
05394f39 887 drm_gem_object_unreference(&obj->base);
1d7cfea1 888unlock:
4f27b75d 889 mutex_unlock(&dev->struct_mutex);
eb01459f 890 return ret;
673a394b
EA
891}
892
0839ccb8
KP
893/* This is the fast write path which cannot handle
894 * page faults in the source data
9b7530cc 895 */
0839ccb8
KP
896
897static inline int
898fast_user_write(struct io_mapping *mapping,
899 loff_t page_base, int page_offset,
900 char __user *user_data,
901 int length)
9b7530cc 902{
4f0c7cfb
BW
903 void __iomem *vaddr_atomic;
904 void *vaddr;
0839ccb8 905 unsigned long unwritten;
9b7530cc 906
3e4d3af5 907 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
908 /* We can use the cpu mem copy function because this is X86. */
909 vaddr = (void __force*)vaddr_atomic + page_offset;
910 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 911 user_data, length);
3e4d3af5 912 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 913 return unwritten;
0839ccb8
KP
914}
915
3de09aa3
EA
916/**
917 * This is the fast pwrite path, where we copy the data directly from the
918 * user into the GTT, uncached.
14bb2c11
TU
919 * @dev: drm device pointer
920 * @obj: i915 gem object
921 * @args: pwrite arguments structure
922 * @file: drm file pointer
3de09aa3 923 */
673a394b 924static int
4f1959ee 925i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
05394f39 926 struct drm_i915_gem_object *obj,
3de09aa3 927 struct drm_i915_gem_pwrite *args,
05394f39 928 struct drm_file *file)
673a394b 929{
4f1959ee 930 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 931 struct drm_device *dev = obj->base.dev;
4f1959ee
AS
932 struct drm_mm_node node;
933 uint64_t remain, offset;
673a394b 934 char __user *user_data;
4f1959ee 935 int ret;
b50a5371
AS
936 bool hit_slow_path = false;
937
938 if (obj->tiling_mode != I915_TILING_NONE)
939 return -EFAULT;
935aaa69 940
1ec9e26d 941 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
4f1959ee
AS
942 if (ret) {
943 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
944 if (ret)
945 goto out;
946
947 ret = i915_gem_object_get_pages(obj);
948 if (ret) {
949 remove_mappable_node(&node);
950 goto out;
951 }
952
953 i915_gem_object_pin_pages(obj);
954 } else {
955 node.start = i915_gem_obj_ggtt_offset(obj);
956 node.allocated = false;
b50a5371
AS
957 ret = i915_gem_object_put_fence(obj);
958 if (ret)
959 goto out_unpin;
4f1959ee 960 }
935aaa69
DV
961
962 ret = i915_gem_object_set_to_gtt_domain(obj, true);
963 if (ret)
964 goto out_unpin;
965
77a0d1ca 966 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
4f1959ee 967 obj->dirty = true;
063e4e6b 968
4f1959ee
AS
969 user_data = u64_to_user_ptr(args->data_ptr);
970 offset = args->offset;
971 remain = args->size;
972 while (remain) {
673a394b
EA
973 /* Operation in this page
974 *
0839ccb8
KP
975 * page_base = page offset within aperture
976 * page_offset = offset within page
977 * page_length = bytes to copy for this page
673a394b 978 */
4f1959ee
AS
979 u32 page_base = node.start;
980 unsigned page_offset = offset_in_page(offset);
981 unsigned page_length = PAGE_SIZE - page_offset;
982 page_length = remain < page_length ? remain : page_length;
983 if (node.allocated) {
984 wmb(); /* flush the write before we modify the GGTT */
985 ggtt->base.insert_page(&ggtt->base,
986 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
987 node.start, I915_CACHE_NONE, 0);
988 wmb(); /* flush modifications to the GGTT (insert_page) */
989 } else {
990 page_base += offset & PAGE_MASK;
991 }
0839ccb8 992 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
993 * source page isn't available. Return the error and we'll
994 * retry in the slow path.
b50a5371
AS
995 * If the object is non-shmem backed, we retry again with the
996 * path that handles page fault.
0839ccb8 997 */
72e96d64 998 if (fast_user_write(ggtt->mappable, page_base,
935aaa69 999 page_offset, user_data, page_length)) {
b50a5371
AS
1000 hit_slow_path = true;
1001 mutex_unlock(&dev->struct_mutex);
1002 if (slow_user_access(ggtt->mappable,
1003 page_base,
1004 page_offset, user_data,
1005 page_length, true)) {
1006 ret = -EFAULT;
1007 mutex_lock(&dev->struct_mutex);
1008 goto out_flush;
1009 }
1010
1011 mutex_lock(&dev->struct_mutex);
935aaa69 1012 }
673a394b 1013
0839ccb8
KP
1014 remain -= page_length;
1015 user_data += page_length;
1016 offset += page_length;
673a394b 1017 }
673a394b 1018
063e4e6b 1019out_flush:
b50a5371
AS
1020 if (hit_slow_path) {
1021 if (ret == 0 &&
1022 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1023 /* The user has modified the object whilst we tried
1024 * reading from it, and we now have no idea what domain
1025 * the pages should be in. As we have just been touching
1026 * them directly, flush everything back to the GTT
1027 * domain.
1028 */
1029 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030 }
1031 }
1032
de152b62 1033 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 1034out_unpin:
4f1959ee
AS
1035 if (node.allocated) {
1036 wmb();
1037 ggtt->base.clear_range(&ggtt->base,
1038 node.start, node.size,
1039 true);
1040 i915_gem_object_unpin_pages(obj);
1041 remove_mappable_node(&node);
1042 } else {
1043 i915_gem_object_ggtt_unpin(obj);
1044 }
935aaa69 1045out:
3de09aa3 1046 return ret;
673a394b
EA
1047}
1048
d174bd64
DV
1049/* Per-page copy function for the shmem pwrite fastpath.
1050 * Flushes invalid cachelines before writing to the target if
1051 * needs_clflush_before is set and flushes out any written cachelines after
1052 * writing if needs_clflush is set. */
3043c60c 1053static int
d174bd64
DV
1054shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1055 char __user *user_data,
1056 bool page_do_bit17_swizzling,
1057 bool needs_clflush_before,
1058 bool needs_clflush_after)
673a394b 1059{
d174bd64 1060 char *vaddr;
673a394b 1061 int ret;
3de09aa3 1062
e7e58eb5 1063 if (unlikely(page_do_bit17_swizzling))
d174bd64 1064 return -EINVAL;
3de09aa3 1065
d174bd64
DV
1066 vaddr = kmap_atomic(page);
1067 if (needs_clflush_before)
1068 drm_clflush_virt_range(vaddr + shmem_page_offset,
1069 page_length);
c2831a94
CW
1070 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1071 user_data, page_length);
d174bd64
DV
1072 if (needs_clflush_after)
1073 drm_clflush_virt_range(vaddr + shmem_page_offset,
1074 page_length);
1075 kunmap_atomic(vaddr);
3de09aa3 1076
755d2218 1077 return ret ? -EFAULT : 0;
3de09aa3
EA
1078}
1079
d174bd64
DV
1080/* Only difference to the fast-path function is that this can handle bit17
1081 * and uses non-atomic copy and kmap functions. */
3043c60c 1082static int
d174bd64
DV
1083shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1084 char __user *user_data,
1085 bool page_do_bit17_swizzling,
1086 bool needs_clflush_before,
1087 bool needs_clflush_after)
673a394b 1088{
d174bd64
DV
1089 char *vaddr;
1090 int ret;
e5281ccd 1091
d174bd64 1092 vaddr = kmap(page);
e7e58eb5 1093 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
1094 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1095 page_length,
1096 page_do_bit17_swizzling);
d174bd64
DV
1097 if (page_do_bit17_swizzling)
1098 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
1099 user_data,
1100 page_length);
d174bd64
DV
1101 else
1102 ret = __copy_from_user(vaddr + shmem_page_offset,
1103 user_data,
1104 page_length);
1105 if (needs_clflush_after)
23c18c71
DV
1106 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1107 page_length,
1108 page_do_bit17_swizzling);
d174bd64 1109 kunmap(page);
40123c1f 1110
755d2218 1111 return ret ? -EFAULT : 0;
40123c1f
EA
1112}
1113
40123c1f 1114static int
e244a443
DV
1115i915_gem_shmem_pwrite(struct drm_device *dev,
1116 struct drm_i915_gem_object *obj,
1117 struct drm_i915_gem_pwrite *args,
1118 struct drm_file *file)
40123c1f 1119{
40123c1f 1120 ssize_t remain;
8c59967c
DV
1121 loff_t offset;
1122 char __user *user_data;
eb2c0c81 1123 int shmem_page_offset, page_length, ret = 0;
8c59967c 1124 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 1125 int hit_slowpath = 0;
58642885
DV
1126 int needs_clflush_after = 0;
1127 int needs_clflush_before = 0;
67d5a50c 1128 struct sg_page_iter sg_iter;
40123c1f 1129
3ed605bc 1130 user_data = u64_to_user_ptr(args->data_ptr);
40123c1f
EA
1131 remain = args->size;
1132
8c59967c 1133 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 1134
58642885
DV
1135 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1136 /* If we're not in the cpu write domain, set ourself into the gtt
1137 * write domain and manually flush cachelines (if required). This
1138 * optimizes for the case when the gpu will use the data
1139 * right away and we therefore have to clflush anyway. */
2c22569b 1140 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
1141 ret = i915_gem_object_wait_rendering(obj, false);
1142 if (ret)
1143 return ret;
58642885 1144 }
c76ce038
CW
1145 /* Same trick applies to invalidate partially written cachelines read
1146 * before writing. */
1147 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1148 needs_clflush_before =
1149 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 1150
755d2218
CW
1151 ret = i915_gem_object_get_pages(obj);
1152 if (ret)
1153 return ret;
1154
77a0d1ca 1155 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1156
755d2218
CW
1157 i915_gem_object_pin_pages(obj);
1158
673a394b 1159 offset = args->offset;
05394f39 1160 obj->dirty = 1;
673a394b 1161
67d5a50c
ID
1162 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1163 offset >> PAGE_SHIFT) {
2db76d7c 1164 struct page *page = sg_page_iter_page(&sg_iter);
58642885 1165 int partial_cacheline_write;
e5281ccd 1166
9da3da66
CW
1167 if (remain <= 0)
1168 break;
1169
40123c1f
EA
1170 /* Operation in this page
1171 *
40123c1f 1172 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
1173 * page_length = bytes to copy for this page
1174 */
c8cbbb8b 1175 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
1176
1177 page_length = remain;
1178 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1179 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 1180
58642885
DV
1181 /* If we don't overwrite a cacheline completely we need to be
1182 * careful to have up-to-date data by first clflushing. Don't
1183 * overcomplicate things and flush the entire patch. */
1184 partial_cacheline_write = needs_clflush_before &&
1185 ((shmem_page_offset | page_length)
1186 & (boot_cpu_data.x86_clflush_size - 1));
1187
8c59967c
DV
1188 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1189 (page_to_phys(page) & (1 << 17)) != 0;
1190
d174bd64
DV
1191 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1192 user_data, page_do_bit17_swizzling,
1193 partial_cacheline_write,
1194 needs_clflush_after);
1195 if (ret == 0)
1196 goto next_page;
e244a443
DV
1197
1198 hit_slowpath = 1;
e244a443 1199 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1200 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1201 user_data, page_do_bit17_swizzling,
1202 partial_cacheline_write,
1203 needs_clflush_after);
40123c1f 1204
e244a443 1205 mutex_lock(&dev->struct_mutex);
755d2218 1206
755d2218 1207 if (ret)
8c59967c 1208 goto out;
8c59967c 1209
17793c9a 1210next_page:
40123c1f 1211 remain -= page_length;
8c59967c 1212 user_data += page_length;
40123c1f 1213 offset += page_length;
673a394b
EA
1214 }
1215
fbd5a26d 1216out:
755d2218
CW
1217 i915_gem_object_unpin_pages(obj);
1218
e244a443 1219 if (hit_slowpath) {
8dcf015e
DV
1220 /*
1221 * Fixup: Flush cpu caches in case we didn't flush the dirty
1222 * cachelines in-line while writing and the object moved
1223 * out of the cpu write domain while we've dropped the lock.
1224 */
1225 if (!needs_clflush_after &&
1226 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1227 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1228 needs_clflush_after = true;
e244a443 1229 }
8c59967c 1230 }
673a394b 1231
58642885 1232 if (needs_clflush_after)
c033666a 1233 i915_gem_chipset_flush(to_i915(dev));
ed75a55b
VS
1234 else
1235 obj->cache_dirty = true;
58642885 1236
de152b62 1237 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1238 return ret;
673a394b
EA
1239}
1240
1241/**
1242 * Writes data to the object referenced by handle.
14bb2c11
TU
1243 * @dev: drm device
1244 * @data: ioctl data blob
1245 * @file: drm file
673a394b
EA
1246 *
1247 * On error, the contents of the buffer that were to be modified are undefined.
1248 */
1249int
1250i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1251 struct drm_file *file)
673a394b 1252{
fac5e23e 1253 struct drm_i915_private *dev_priv = to_i915(dev);
673a394b 1254 struct drm_i915_gem_pwrite *args = data;
05394f39 1255 struct drm_i915_gem_object *obj;
51311d0a
CW
1256 int ret;
1257
1258 if (args->size == 0)
1259 return 0;
1260
1261 if (!access_ok(VERIFY_READ,
3ed605bc 1262 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1263 args->size))
1264 return -EFAULT;
1265
d330a953 1266 if (likely(!i915.prefault_disable)) {
3ed605bc 1267 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
0b74b508
XZ
1268 args->size);
1269 if (ret)
1270 return -EFAULT;
1271 }
673a394b 1272
5d77d9c5
ID
1273 intel_runtime_pm_get(dev_priv);
1274
fbd5a26d 1275 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1276 if (ret)
5d77d9c5 1277 goto put_rpm;
1d7cfea1 1278
a8ad0bd8 1279 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 1280 if (&obj->base == NULL) {
1d7cfea1
CW
1281 ret = -ENOENT;
1282 goto unlock;
fbd5a26d 1283 }
673a394b 1284
7dcd2499 1285 /* Bounds check destination. */
05394f39
CW
1286 if (args->offset > obj->base.size ||
1287 args->size > obj->base.size - args->offset) {
ce9d419d 1288 ret = -EINVAL;
35b62a89 1289 goto out;
ce9d419d
CW
1290 }
1291
db53a302
CW
1292 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1293
935aaa69 1294 ret = -EFAULT;
673a394b
EA
1295 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1296 * it would end up going through the fenced access, and we'll get
1297 * different detiling behavior between reading and writing.
1298 * pread/pwrite currently are reading and writing from the CPU
1299 * perspective, requiring manual detiling by the client.
1300 */
6eae0059
CW
1301 if (!i915_gem_object_has_struct_page(obj) ||
1302 cpu_write_needs_clflush(obj)) {
4f1959ee 1303 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
935aaa69
DV
1304 /* Note that the gtt paths might fail with non-page-backed user
1305 * pointers (e.g. gtt mappings when moving data between
1306 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1307 }
673a394b 1308
b50a5371 1309 if (ret == -EFAULT) {
6a2c4232
CW
1310 if (obj->phys_handle)
1311 ret = i915_gem_phys_pwrite(obj, args, file);
6eae0059 1312 else if (i915_gem_object_has_struct_page(obj))
6a2c4232 1313 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
b50a5371
AS
1314 else
1315 ret = -ENODEV;
6a2c4232 1316 }
5c0480f2 1317
35b62a89 1318out:
05394f39 1319 drm_gem_object_unreference(&obj->base);
1d7cfea1 1320unlock:
fbd5a26d 1321 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1322put_rpm:
1323 intel_runtime_pm_put(dev_priv);
1324
673a394b
EA
1325 return ret;
1326}
1327
f4457ae7
CW
1328static int
1329i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
b361237b 1330{
f4457ae7
CW
1331 if (__i915_terminally_wedged(reset_counter))
1332 return -EIO;
d98c52cf 1333
f4457ae7 1334 if (__i915_reset_in_progress(reset_counter)) {
b361237b
CW
1335 /* Non-interruptible callers can't handle -EAGAIN, hence return
1336 * -EIO unconditionally for these. */
1337 if (!interruptible)
1338 return -EIO;
1339
d98c52cf 1340 return -EAGAIN;
b361237b
CW
1341 }
1342
1343 return 0;
1344}
1345
ca5b721e
CW
1346static unsigned long local_clock_us(unsigned *cpu)
1347{
1348 unsigned long t;
1349
1350 /* Cheaply and approximately convert from nanoseconds to microseconds.
1351 * The result and subsequent calculations are also defined in the same
1352 * approximate microseconds units. The principal source of timing
1353 * error here is from the simple truncation.
1354 *
1355 * Note that local_clock() is only defined wrt to the current CPU;
1356 * the comparisons are no longer valid if we switch CPUs. Instead of
1357 * blocking preemption for the entire busywait, we can detect the CPU
1358 * switch and use that as indicator of system load and a reason to
1359 * stop busywaiting, see busywait_stop().
1360 */
1361 *cpu = get_cpu();
1362 t = local_clock() >> 10;
1363 put_cpu();
1364
1365 return t;
1366}
1367
1368static bool busywait_stop(unsigned long timeout, unsigned cpu)
1369{
1370 unsigned this_cpu;
1371
1372 if (time_after(local_clock_us(&this_cpu), timeout))
1373 return true;
1374
1375 return this_cpu != cpu;
1376}
1377
f69a02c9
CW
1378bool __i915_spin_request(const struct drm_i915_gem_request *req,
1379 int state, unsigned long timeout_us)
b29c19b6 1380{
ca5b721e
CW
1381 unsigned cpu;
1382
1383 /* When waiting for high frequency requests, e.g. during synchronous
1384 * rendering split between the CPU and GPU, the finite amount of time
1385 * required to set up the irq and wait upon it limits the response
1386 * rate. By busywaiting on the request completion for a short while we
1387 * can service the high frequency waits as quick as possible. However,
1388 * if it is a slow request, we want to sleep as quickly as possible.
1389 * The tradeoff between waiting and sleeping is roughly the time it
1390 * takes to sleep on a request, on the order of a microsecond.
1391 */
2def4ad9 1392
f69a02c9 1393 timeout_us += local_clock_us(&cpu);
688e6c72 1394 do {
f69a02c9 1395 if (i915_gem_request_completed(req))
688e6c72 1396 return true;
2def4ad9 1397
91b0c352
CW
1398 if (signal_pending_state(state, current))
1399 break;
1400
f69a02c9 1401 if (busywait_stop(timeout_us, cpu))
2def4ad9 1402 break;
b29c19b6 1403
2def4ad9 1404 cpu_relax_lowlatency();
688e6c72 1405 } while (!need_resched());
2def4ad9 1406
688e6c72 1407 return false;
b29c19b6
CW
1408}
1409
b361237b 1410/**
9c654818
JH
1411 * __i915_wait_request - wait until execution of request has finished
1412 * @req: duh!
b361237b
CW
1413 * @interruptible: do an interruptible wait (normally yes)
1414 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
14bb2c11 1415 * @rps: RPS client
b361237b 1416 *
f69061be
DV
1417 * Note: It is of utmost importance that the passed in seqno and reset_counter
1418 * values have been read by the caller in an smp safe manner. Where read-side
1419 * locks are involved, it is sufficient to read the reset_counter before
1420 * unlocking the lock that protects the seqno. For lockless tricks, the
1421 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1422 * inserted.
1423 *
9c654818 1424 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1425 * errno with remaining time filled in timeout argument.
1426 */
9c654818 1427int __i915_wait_request(struct drm_i915_gem_request *req,
b29c19b6 1428 bool interruptible,
5ed0bdf2 1429 s64 *timeout,
2e1b8730 1430 struct intel_rps_client *rps)
b361237b 1431{
91b0c352 1432 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1f15b76f 1433 DEFINE_WAIT(reset);
688e6c72
CW
1434 struct intel_wait wait;
1435 unsigned long timeout_remain;
e0313db0 1436 s64 before = 0; /* Only to silence a compiler warning. */
688e6c72 1437 int ret = 0;
b361237b 1438
688e6c72 1439 might_sleep();
c67a470b 1440
b4716185
CW
1441 if (list_empty(&req->list))
1442 return 0;
1443
f69a02c9 1444 if (i915_gem_request_completed(req))
b361237b
CW
1445 return 0;
1446
688e6c72 1447 timeout_remain = MAX_SCHEDULE_TIMEOUT;
bb6d1984
CW
1448 if (timeout) {
1449 if (WARN_ON(*timeout < 0))
1450 return -EINVAL;
1451
1452 if (*timeout == 0)
1453 return -ETIME;
1454
688e6c72 1455 timeout_remain = nsecs_to_jiffies_timeout(*timeout);
e0313db0
TU
1456
1457 /*
1458 * Record current time in case interrupted by signal, or wedged.
1459 */
1460 before = ktime_get_raw_ns();
bb6d1984 1461 }
b361237b 1462
74328ee5 1463 trace_i915_gem_request_wait_begin(req);
2def4ad9 1464
df4ba509
CW
1465 /* This client is about to stall waiting for the GPU. In many cases
1466 * this is undesirable and limits the throughput of the system, as
1467 * many clients cannot continue processing user input/output whilst
1468 * blocked. RPS autotuning may take tens of milliseconds to respond
1469 * to the GPU load and thus incurs additional latency for the client.
1470 * We can circumvent that by promoting the GPU frequency to maximum
1471 * before we wait. This makes the GPU throttle up much more quickly
1472 * (good for benchmarks and user experience, e.g. window animations),
1473 * but at a cost of spending more power processing the workload
1474 * (bad for battery). Not all clients even want their results
1475 * immediately and for them we should just let the GPU select its own
1476 * frequency to maximise efficiency. To prevent a single client from
1477 * forcing the clocks too high for the whole system, we only allow
1478 * each client to waitboost once in a busy period.
1479 */
688e6c72
CW
1480 if (INTEL_INFO(req->i915)->gen >= 6)
1481 gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
2def4ad9 1482
688e6c72 1483 /* Optimistic spin for the next ~jiffie before touching IRQs */
f69a02c9 1484 if (i915_spin_request(req, state, 5))
688e6c72 1485 goto complete;
b361237b 1486
688e6c72
CW
1487 set_current_state(state);
1488 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
b361237b 1489
688e6c72
CW
1490 intel_wait_init(&wait, req->seqno);
1491 if (intel_engine_add_wait(req->engine, &wait))
1492 /* In order to check that we haven't missed the interrupt
1493 * as we enabled it, we need to kick ourselves to do a
1494 * coherent check on the seqno before we sleep.
f4457ae7 1495 */
688e6c72 1496 goto wakeup;
b361237b 1497
688e6c72 1498 for (;;) {
91b0c352 1499 if (signal_pending_state(state, current)) {
094f9a54
CW
1500 ret = -ERESTARTSYS;
1501 break;
1502 }
1503
05535726
CW
1504 /* Ensure that even if the GPU hangs, we get woken up.
1505 *
1506 * However, note that if no one is waiting, we never notice
1507 * a gpu hang. Eventually, we will have to wait for a resource
1508 * held by the GPU and so trigger a hangcheck. In the most
1509 * pathological case, this will be upon memory starvation!
1510 */
688e6c72 1511 i915_queue_hangcheck(req->i915);
47e9766d 1512
688e6c72
CW
1513 timeout_remain = io_schedule_timeout(timeout_remain);
1514 if (timeout_remain == 0) {
1515 ret = -ETIME;
1516 break;
094f9a54
CW
1517 }
1518
688e6c72
CW
1519 if (intel_wait_complete(&wait))
1520 break;
1f15b76f 1521
688e6c72 1522 set_current_state(state);
094f9a54 1523
688e6c72
CW
1524wakeup:
1525 /* Carefully check if the request is complete, giving time
1526 * for the seqno to be visible following the interrupt.
1527 * We also have to check in case we are kicked by the GPU
1528 * reset in order to drop the struct_mutex.
1529 */
1530 if (__i915_request_irq_complete(req))
1531 break;
f69a02c9
CW
1532
1533 /* Only spin if we know the GPU is processing this request */
1534 if (i915_spin_request(req, state, 2))
1535 break;
688e6c72
CW
1536 }
1537 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
b361237b 1538
688e6c72
CW
1539 intel_engine_remove_wait(req->engine, &wait);
1540 __set_current_state(TASK_RUNNING);
1541complete:
2def4ad9
CW
1542 trace_i915_gem_request_wait_end(req);
1543
b361237b 1544 if (timeout) {
e0313db0 1545 s64 tres = *timeout - (ktime_get_raw_ns() - before);
5ed0bdf2
TG
1546
1547 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1548
1549 /*
1550 * Apparently ktime isn't accurate enough and occasionally has a
1551 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1552 * things up to make the test happy. We allow up to 1 jiffy.
1553 *
1554 * This is a regrssion from the timespec->ktime conversion.
1555 */
1556 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1557 *timeout = 0;
b361237b
CW
1558 }
1559
0e6883b0
CW
1560 if (rps && req->seqno == req->engine->last_submitted_seqno) {
1561 /* The GPU is now idle and this client has stalled.
1562 * Since no other client has submitted a request in the
1563 * meantime, assume that this client is the only one
1564 * supplying work to the GPU but is unable to keep that
1565 * work supplied because it is waiting. Since the GPU is
1566 * then never kept fully busy, RPS autoclocking will
1567 * keep the clocks relatively low, causing further delays.
1568 * Compensate by giving the synchronous client credit for
1569 * a waitboost next time.
1570 */
1571 spin_lock(&req->i915->rps.client_lock);
1572 list_del_init(&rps->link);
1573 spin_unlock(&req->i915->rps.client_lock);
1574 }
1575
094f9a54 1576 return ret;
b361237b
CW
1577}
1578
fcfa423c
JH
1579int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1580 struct drm_file *file)
1581{
fcfa423c
JH
1582 struct drm_i915_file_private *file_priv;
1583
1584 WARN_ON(!req || !file || req->file_priv);
1585
1586 if (!req || !file)
1587 return -EINVAL;
1588
1589 if (req->file_priv)
1590 return -EINVAL;
1591
fcfa423c
JH
1592 file_priv = file->driver_priv;
1593
1594 spin_lock(&file_priv->mm.lock);
1595 req->file_priv = file_priv;
1596 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1597 spin_unlock(&file_priv->mm.lock);
1598
1599 req->pid = get_pid(task_pid(current));
1600
1601 return 0;
1602}
1603
b4716185
CW
1604static inline void
1605i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1606{
1607 struct drm_i915_file_private *file_priv = request->file_priv;
1608
1609 if (!file_priv)
1610 return;
1611
1612 spin_lock(&file_priv->mm.lock);
1613 list_del(&request->client_list);
1614 request->file_priv = NULL;
1615 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1616
1617 put_pid(request->pid);
1618 request->pid = NULL;
b4716185
CW
1619}
1620
1621static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1622{
1623 trace_i915_gem_request_retire(request);
1624
1625 /* We know the GPU must have read the request to have
1626 * sent us the seqno + interrupt, so use the position
1627 * of tail of the request to update the last known position
1628 * of the GPU head.
1629 *
1630 * Note this requires that we are always called in request
1631 * completion order.
1632 */
1633 request->ringbuf->last_retired_head = request->postfix;
1634
1635 list_del_init(&request->list);
1636 i915_gem_request_remove_from_client(request);
1637
a16a4052 1638 if (request->previous_context) {
73db04cf 1639 if (i915.enable_execlists)
a16a4052
CW
1640 intel_lr_context_unpin(request->previous_context,
1641 request->engine);
73db04cf
CW
1642 }
1643
a16a4052 1644 i915_gem_context_unreference(request->ctx);
b4716185
CW
1645 i915_gem_request_unreference(request);
1646}
1647
1648static void
1649__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1650{
4a570db5 1651 struct intel_engine_cs *engine = req->engine;
b4716185
CW
1652 struct drm_i915_gem_request *tmp;
1653
91c8a326 1654 lockdep_assert_held(&engine->i915->drm.struct_mutex);
b4716185
CW
1655
1656 if (list_empty(&req->list))
1657 return;
1658
1659 do {
1660 tmp = list_first_entry(&engine->request_list,
1661 typeof(*tmp), list);
1662
1663 i915_gem_request_retire(tmp);
1664 } while (tmp != req);
1665
1666 WARN_ON(i915_verify_lists(engine->dev));
1667}
1668
b361237b 1669/**
a4b3a571 1670 * Waits for a request to be signaled, and cleans up the
b361237b 1671 * request and object lists appropriately for that event.
14bb2c11 1672 * @req: request to wait on
b361237b
CW
1673 */
1674int
a4b3a571 1675i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1676{
791bee12 1677 struct drm_i915_private *dev_priv = req->i915;
a4b3a571 1678 bool interruptible;
b361237b
CW
1679 int ret;
1680
a4b3a571
DV
1681 interruptible = dev_priv->mm.interruptible;
1682
91c8a326 1683 BUG_ON(!mutex_is_locked(&dev_priv->drm.struct_mutex));
b361237b 1684
299259a3 1685 ret = __i915_wait_request(req, interruptible, NULL, NULL);
b4716185
CW
1686 if (ret)
1687 return ret;
d26e3af8 1688
e075a32f 1689 /* If the GPU hung, we want to keep the requests to find the guilty. */
0c5eed65 1690 if (!i915_reset_in_progress(&dev_priv->gpu_error))
e075a32f
CW
1691 __i915_gem_request_retire__upto(req);
1692
d26e3af8
CW
1693 return 0;
1694}
1695
b361237b
CW
1696/**
1697 * Ensures that all rendering to the object has completed and the object is
1698 * safe to unbind from the GTT or access from the CPU.
14bb2c11
TU
1699 * @obj: i915 gem object
1700 * @readonly: waiting for read access or write
b361237b 1701 */
2e2f351d 1702int
b361237b
CW
1703i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1704 bool readonly)
1705{
b4716185 1706 int ret, i;
b361237b 1707
b4716185 1708 if (!obj->active)
b361237b
CW
1709 return 0;
1710
b4716185
CW
1711 if (readonly) {
1712 if (obj->last_write_req != NULL) {
1713 ret = i915_wait_request(obj->last_write_req);
1714 if (ret)
1715 return ret;
b361237b 1716
4a570db5 1717 i = obj->last_write_req->engine->id;
b4716185
CW
1718 if (obj->last_read_req[i] == obj->last_write_req)
1719 i915_gem_object_retire__read(obj, i);
1720 else
1721 i915_gem_object_retire__write(obj);
1722 }
1723 } else {
666796da 1724 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1725 if (obj->last_read_req[i] == NULL)
1726 continue;
1727
1728 ret = i915_wait_request(obj->last_read_req[i]);
1729 if (ret)
1730 return ret;
1731
1732 i915_gem_object_retire__read(obj, i);
1733 }
d501b1d2 1734 GEM_BUG_ON(obj->active);
b4716185
CW
1735 }
1736
1737 return 0;
1738}
1739
1740static void
1741i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1742 struct drm_i915_gem_request *req)
1743{
4a570db5 1744 int ring = req->engine->id;
b4716185
CW
1745
1746 if (obj->last_read_req[ring] == req)
1747 i915_gem_object_retire__read(obj, ring);
1748 else if (obj->last_write_req == req)
1749 i915_gem_object_retire__write(obj);
1750
0c5eed65 1751 if (!i915_reset_in_progress(&req->i915->gpu_error))
e075a32f 1752 __i915_gem_request_retire__upto(req);
b361237b
CW
1753}
1754
3236f57a
CW
1755/* A nonblocking variant of the above wait. This is a highly dangerous routine
1756 * as the object state may change during this call.
1757 */
1758static __must_check int
1759i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1760 struct intel_rps_client *rps,
3236f57a
CW
1761 bool readonly)
1762{
1763 struct drm_device *dev = obj->base.dev;
fac5e23e 1764 struct drm_i915_private *dev_priv = to_i915(dev);
666796da 1765 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
b4716185 1766 int ret, i, n = 0;
3236f57a
CW
1767
1768 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1769 BUG_ON(!dev_priv->mm.interruptible);
1770
b4716185 1771 if (!obj->active)
3236f57a
CW
1772 return 0;
1773
b4716185
CW
1774 if (readonly) {
1775 struct drm_i915_gem_request *req;
1776
1777 req = obj->last_write_req;
1778 if (req == NULL)
1779 return 0;
1780
b4716185
CW
1781 requests[n++] = i915_gem_request_reference(req);
1782 } else {
666796da 1783 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1784 struct drm_i915_gem_request *req;
1785
1786 req = obj->last_read_req[i];
1787 if (req == NULL)
1788 continue;
1789
b4716185
CW
1790 requests[n++] = i915_gem_request_reference(req);
1791 }
1792 }
1793
3236f57a 1794 mutex_unlock(&dev->struct_mutex);
299259a3 1795 ret = 0;
b4716185 1796 for (i = 0; ret == 0 && i < n; i++)
299259a3 1797 ret = __i915_wait_request(requests[i], true, NULL, rps);
3236f57a
CW
1798 mutex_lock(&dev->struct_mutex);
1799
b4716185
CW
1800 for (i = 0; i < n; i++) {
1801 if (ret == 0)
1802 i915_gem_object_retire_request(obj, requests[i]);
1803 i915_gem_request_unreference(requests[i]);
1804 }
1805
1806 return ret;
3236f57a
CW
1807}
1808
2e1b8730
CW
1809static struct intel_rps_client *to_rps_client(struct drm_file *file)
1810{
1811 struct drm_i915_file_private *fpriv = file->driver_priv;
1812 return &fpriv->rps;
1813}
1814
aeecc969
CW
1815static enum fb_op_origin
1816write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1817{
1818 return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1819 ORIGIN_GTT : ORIGIN_CPU;
1820}
1821
673a394b 1822/**
2ef7eeaa
EA
1823 * Called when user space prepares to use an object with the CPU, either
1824 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1825 * @dev: drm device
1826 * @data: ioctl data blob
1827 * @file: drm file
673a394b
EA
1828 */
1829int
1830i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1831 struct drm_file *file)
673a394b
EA
1832{
1833 struct drm_i915_gem_set_domain *args = data;
05394f39 1834 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1835 uint32_t read_domains = args->read_domains;
1836 uint32_t write_domain = args->write_domain;
673a394b
EA
1837 int ret;
1838
2ef7eeaa 1839 /* Only handle setting domains to types used by the CPU. */
21d509e3 1840 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1841 return -EINVAL;
1842
21d509e3 1843 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1844 return -EINVAL;
1845
1846 /* Having something in the write domain implies it's in the read
1847 * domain, and only that read domain. Enforce that in the request.
1848 */
1849 if (write_domain != 0 && read_domains != write_domain)
1850 return -EINVAL;
1851
76c1dec1 1852 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1853 if (ret)
76c1dec1 1854 return ret;
1d7cfea1 1855
a8ad0bd8 1856 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 1857 if (&obj->base == NULL) {
1d7cfea1
CW
1858 ret = -ENOENT;
1859 goto unlock;
76c1dec1 1860 }
673a394b 1861
3236f57a
CW
1862 /* Try to flush the object off the GPU without holding the lock.
1863 * We will repeat the flush holding the lock in the normal manner
1864 * to catch cases where we are gazumped.
1865 */
6e4930f6 1866 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1867 to_rps_client(file),
6e4930f6 1868 !write_domain);
3236f57a
CW
1869 if (ret)
1870 goto unref;
1871
43566ded 1872 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1873 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1874 else
e47c68e9 1875 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1876
031b698a 1877 if (write_domain != 0)
aeecc969 1878 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
031b698a 1879
3236f57a 1880unref:
05394f39 1881 drm_gem_object_unreference(&obj->base);
1d7cfea1 1882unlock:
673a394b
EA
1883 mutex_unlock(&dev->struct_mutex);
1884 return ret;
1885}
1886
1887/**
1888 * Called when user space has done writes to this buffer
14bb2c11
TU
1889 * @dev: drm device
1890 * @data: ioctl data blob
1891 * @file: drm file
673a394b
EA
1892 */
1893int
1894i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1895 struct drm_file *file)
673a394b
EA
1896{
1897 struct drm_i915_gem_sw_finish *args = data;
05394f39 1898 struct drm_i915_gem_object *obj;
673a394b
EA
1899 int ret = 0;
1900
76c1dec1 1901 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1902 if (ret)
76c1dec1 1903 return ret;
1d7cfea1 1904
a8ad0bd8 1905 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 1906 if (&obj->base == NULL) {
1d7cfea1
CW
1907 ret = -ENOENT;
1908 goto unlock;
673a394b
EA
1909 }
1910
673a394b 1911 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1912 if (obj->pin_display)
e62b59e4 1913 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1914
05394f39 1915 drm_gem_object_unreference(&obj->base);
1d7cfea1 1916unlock:
673a394b
EA
1917 mutex_unlock(&dev->struct_mutex);
1918 return ret;
1919}
1920
1921/**
14bb2c11
TU
1922 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1923 * it is mapped to.
1924 * @dev: drm device
1925 * @data: ioctl data blob
1926 * @file: drm file
673a394b
EA
1927 *
1928 * While the mapping holds a reference on the contents of the object, it doesn't
1929 * imply a ref on the object itself.
34367381
DV
1930 *
1931 * IMPORTANT:
1932 *
1933 * DRM driver writers who look a this function as an example for how to do GEM
1934 * mmap support, please don't implement mmap support like here. The modern way
1935 * to implement DRM mmap support is with an mmap offset ioctl (like
1936 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1937 * That way debug tooling like valgrind will understand what's going on, hiding
1938 * the mmap call in a driver private ioctl will break that. The i915 driver only
1939 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1940 */
1941int
1942i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1943 struct drm_file *file)
673a394b
EA
1944{
1945 struct drm_i915_gem_mmap *args = data;
1946 struct drm_gem_object *obj;
673a394b
EA
1947 unsigned long addr;
1948
1816f923
AG
1949 if (args->flags & ~(I915_MMAP_WC))
1950 return -EINVAL;
1951
568a58e5 1952 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1953 return -ENODEV;
1954
a8ad0bd8 1955 obj = drm_gem_object_lookup(file, args->handle);
673a394b 1956 if (obj == NULL)
bf79cb91 1957 return -ENOENT;
673a394b 1958
1286ff73
DV
1959 /* prime objects have no backing filp to GEM mmap
1960 * pages from.
1961 */
1962 if (!obj->filp) {
1963 drm_gem_object_unreference_unlocked(obj);
1964 return -EINVAL;
1965 }
1966
6be5ceb0 1967 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1968 PROT_READ | PROT_WRITE, MAP_SHARED,
1969 args->offset);
1816f923
AG
1970 if (args->flags & I915_MMAP_WC) {
1971 struct mm_struct *mm = current->mm;
1972 struct vm_area_struct *vma;
1973
80a89a5e
MH
1974 if (down_write_killable(&mm->mmap_sem)) {
1975 drm_gem_object_unreference_unlocked(obj);
1976 return -EINTR;
1977 }
1816f923
AG
1978 vma = find_vma(mm, addr);
1979 if (vma)
1980 vma->vm_page_prot =
1981 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1982 else
1983 addr = -ENOMEM;
1984 up_write(&mm->mmap_sem);
aeecc969
CW
1985
1986 /* This may race, but that's ok, it only gets set */
1987 WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1816f923 1988 }
bc9025bd 1989 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1990 if (IS_ERR((void *)addr))
1991 return addr;
1992
1993 args->addr_ptr = (uint64_t) addr;
1994
1995 return 0;
1996}
1997
de151cf6
JB
1998/**
1999 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
2000 * @vma: VMA in question
2001 * @vmf: fault info
de151cf6
JB
2002 *
2003 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2004 * from userspace. The fault handler takes care of binding the object to
2005 * the GTT (if needed), allocating and programming a fence register (again,
2006 * only if needed based on whether the old reg is still valid or the object
2007 * is tiled) and inserting a new PTE into the faulting process.
2008 *
2009 * Note that the faulting process may involve evicting existing objects
2010 * from the GTT and/or fence registers to make room. So performance may
2011 * suffer if the GTT working set is large or there are few fence registers
2012 * left.
2013 */
2014int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2015{
05394f39
CW
2016 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2017 struct drm_device *dev = obj->base.dev;
72e96d64
JL
2018 struct drm_i915_private *dev_priv = to_i915(dev);
2019 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 2020 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
2021 pgoff_t page_offset;
2022 unsigned long pfn;
2023 int ret = 0;
0f973f27 2024 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 2025
f65c9168
PZ
2026 intel_runtime_pm_get(dev_priv);
2027
de151cf6
JB
2028 /* We don't use vmf->pgoff since that has the fake offset */
2029 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2030 PAGE_SHIFT;
2031
d9bc7e9f
CW
2032 ret = i915_mutex_lock_interruptible(dev);
2033 if (ret)
2034 goto out;
a00b10c3 2035
db53a302
CW
2036 trace_i915_gem_object_fault(obj, page_offset, true, write);
2037
6e4930f6
CW
2038 /* Try to flush the object off the GPU first without holding the lock.
2039 * Upon reacquiring the lock, we will perform our sanity checks and then
2040 * repeat the flush holding the lock in the normal manner to catch cases
2041 * where we are gazumped.
2042 */
2043 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2044 if (ret)
2045 goto unlock;
2046
eb119bd6
CW
2047 /* Access to snoopable pages through the GTT is incoherent. */
2048 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 2049 ret = -EFAULT;
eb119bd6
CW
2050 goto unlock;
2051 }
2052
c5ad54cf 2053 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 2054 if (obj->base.size >= ggtt->mappable_end &&
e7ded2d7 2055 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 2056 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 2057
c5ad54cf
JL
2058 memset(&view, 0, sizeof(view));
2059 view.type = I915_GGTT_VIEW_PARTIAL;
2060 view.params.partial.offset = rounddown(page_offset, chunk_size);
2061 view.params.partial.size =
2062 min_t(unsigned int,
2063 chunk_size,
2064 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2065 view.params.partial.offset);
2066 }
2067
2068 /* Now pin it into the GTT if needed */
2069 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
2070 if (ret)
2071 goto unlock;
4a684a41 2072
c9839303
CW
2073 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2074 if (ret)
2075 goto unpin;
74898d7e 2076
06d98131 2077 ret = i915_gem_object_get_fence(obj);
d9e86c0e 2078 if (ret)
c9839303 2079 goto unpin;
7d1c4804 2080
b90b91d8 2081 /* Finally, remap it using the new GTT offset */
72e96d64 2082 pfn = ggtt->mappable_base +
c5ad54cf 2083 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 2084 pfn >>= PAGE_SHIFT;
de151cf6 2085
c5ad54cf
JL
2086 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2087 /* Overriding existing pages in partial view does not cause
2088 * us any trouble as TLBs are still valid because the fault
2089 * is due to userspace losing part of the mapping or never
2090 * having accessed it before (at this partials' range).
2091 */
2092 unsigned long base = vma->vm_start +
2093 (view.params.partial.offset << PAGE_SHIFT);
2094 unsigned int i;
b90b91d8 2095
c5ad54cf
JL
2096 for (i = 0; i < view.params.partial.size; i++) {
2097 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
2098 if (ret)
2099 break;
2100 }
2101
2102 obj->fault_mappable = true;
c5ad54cf
JL
2103 } else {
2104 if (!obj->fault_mappable) {
2105 unsigned long size = min_t(unsigned long,
2106 vma->vm_end - vma->vm_start,
2107 obj->base.size);
2108 int i;
2109
2110 for (i = 0; i < size >> PAGE_SHIFT; i++) {
2111 ret = vm_insert_pfn(vma,
2112 (unsigned long)vma->vm_start + i * PAGE_SIZE,
2113 pfn + i);
2114 if (ret)
2115 break;
2116 }
2117
2118 obj->fault_mappable = true;
2119 } else
2120 ret = vm_insert_pfn(vma,
2121 (unsigned long)vmf->virtual_address,
2122 pfn + page_offset);
2123 }
c9839303 2124unpin:
c5ad54cf 2125 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 2126unlock:
de151cf6 2127 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 2128out:
de151cf6 2129 switch (ret) {
d9bc7e9f 2130 case -EIO:
2232f031
DV
2131 /*
2132 * We eat errors when the gpu is terminally wedged to avoid
2133 * userspace unduly crashing (gl has no provisions for mmaps to
2134 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2135 * and so needs to be reported.
2136 */
2137 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
2138 ret = VM_FAULT_SIGBUS;
2139 break;
2140 }
045e769a 2141 case -EAGAIN:
571c608d
DV
2142 /*
2143 * EAGAIN means the gpu is hung and we'll wait for the error
2144 * handler to reset everything when re-faulting in
2145 * i915_mutex_lock_interruptible.
d9bc7e9f 2146 */
c715089f
CW
2147 case 0:
2148 case -ERESTARTSYS:
bed636ab 2149 case -EINTR:
e79e0fe3
DR
2150 case -EBUSY:
2151 /*
2152 * EBUSY is ok: this just means that another thread
2153 * already did the job.
2154 */
f65c9168
PZ
2155 ret = VM_FAULT_NOPAGE;
2156 break;
de151cf6 2157 case -ENOMEM:
f65c9168
PZ
2158 ret = VM_FAULT_OOM;
2159 break;
a7c2e1aa 2160 case -ENOSPC:
45d67817 2161 case -EFAULT:
f65c9168
PZ
2162 ret = VM_FAULT_SIGBUS;
2163 break;
de151cf6 2164 default:
a7c2e1aa 2165 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
2166 ret = VM_FAULT_SIGBUS;
2167 break;
de151cf6 2168 }
f65c9168
PZ
2169
2170 intel_runtime_pm_put(dev_priv);
2171 return ret;
de151cf6
JB
2172}
2173
901782b2
CW
2174/**
2175 * i915_gem_release_mmap - remove physical page mappings
2176 * @obj: obj in question
2177 *
af901ca1 2178 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
2179 * relinquish ownership of the pages back to the system.
2180 *
2181 * It is vital that we remove the page mapping if we have mapped a tiled
2182 * object through the GTT and then lose the fence register due to
2183 * resource pressure. Similarly if the object has been moved out of the
2184 * aperture, than pages mapped into userspace must be revoked. Removing the
2185 * mapping will then trigger a page fault on the next user access, allowing
2186 * fixup by i915_gem_fault().
2187 */
d05ca301 2188void
05394f39 2189i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 2190{
349f2ccf
CW
2191 /* Serialisation between user GTT access and our code depends upon
2192 * revoking the CPU's PTE whilst the mutex is held. The next user
2193 * pagefault then has to wait until we release the mutex.
2194 */
2195 lockdep_assert_held(&obj->base.dev->struct_mutex);
2196
6299f992
CW
2197 if (!obj->fault_mappable)
2198 return;
901782b2 2199
6796cb16
DH
2200 drm_vma_node_unmap(&obj->base.vma_node,
2201 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
2202
2203 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2204 * memory transactions from userspace before we return. The TLB
2205 * flushing implied above by changing the PTE above *should* be
2206 * sufficient, an extra barrier here just provides us with a bit
2207 * of paranoid documentation about our requirement to serialise
2208 * memory writes before touching registers / GSM.
2209 */
2210 wmb();
2211
6299f992 2212 obj->fault_mappable = false;
901782b2
CW
2213}
2214
eedd10f4
CW
2215void
2216i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2217{
2218 struct drm_i915_gem_object *obj;
2219
2220 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2221 i915_gem_release_mmap(obj);
2222}
2223
0fa87796 2224uint32_t
e28f8711 2225i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 2226{
e28f8711 2227 uint32_t gtt_size;
92b88aeb
CW
2228
2229 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
2230 tiling_mode == I915_TILING_NONE)
2231 return size;
92b88aeb
CW
2232
2233 /* Previous chips need a power-of-two fence region when tiling */
7e22dbbb 2234 if (IS_GEN3(dev))
e28f8711 2235 gtt_size = 1024*1024;
92b88aeb 2236 else
e28f8711 2237 gtt_size = 512*1024;
92b88aeb 2238
e28f8711
CW
2239 while (gtt_size < size)
2240 gtt_size <<= 1;
92b88aeb 2241
e28f8711 2242 return gtt_size;
92b88aeb
CW
2243}
2244
de151cf6
JB
2245/**
2246 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
14bb2c11
TU
2247 * @dev: drm device
2248 * @size: object size
2249 * @tiling_mode: tiling mode
2250 * @fenced: is fenced alignemned required or not
de151cf6
JB
2251 *
2252 * Return the required GTT alignment for an object, taking into account
5e783301 2253 * potential fence register mapping.
de151cf6 2254 */
d865110c
ID
2255uint32_t
2256i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2257 int tiling_mode, bool fenced)
de151cf6 2258{
de151cf6
JB
2259 /*
2260 * Minimum alignment is 4k (GTT page size), but might be greater
2261 * if a fence register is needed for the object.
2262 */
d865110c 2263 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 2264 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2265 return 4096;
2266
a00b10c3
CW
2267 /*
2268 * Previous chips need to be aligned to the size of the smallest
2269 * fence register that can contain the object.
2270 */
e28f8711 2271 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
2272}
2273
d8cb5086
CW
2274static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2275{
fac5e23e 2276 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d8cb5086
CW
2277 int ret;
2278
da494d7c
DV
2279 dev_priv->mm.shrinker_no_lock_stealing = true;
2280
d8cb5086
CW
2281 ret = drm_gem_create_mmap_offset(&obj->base);
2282 if (ret != -ENOSPC)
da494d7c 2283 goto out;
d8cb5086
CW
2284
2285 /* Badly fragmented mmap space? The only way we can recover
2286 * space is by destroying unwanted objects. We can't randomly release
2287 * mmap_offsets as userspace expects them to be persistent for the
2288 * lifetime of the objects. The closest we can is to release the
2289 * offsets on purgeable objects by truncating it and marking it purged,
2290 * which prevents userspace from ever using that object again.
2291 */
21ab4e74
CW
2292 i915_gem_shrink(dev_priv,
2293 obj->base.size >> PAGE_SHIFT,
2294 I915_SHRINK_BOUND |
2295 I915_SHRINK_UNBOUND |
2296 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2297 ret = drm_gem_create_mmap_offset(&obj->base);
2298 if (ret != -ENOSPC)
da494d7c 2299 goto out;
d8cb5086
CW
2300
2301 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2302 ret = drm_gem_create_mmap_offset(&obj->base);
2303out:
2304 dev_priv->mm.shrinker_no_lock_stealing = false;
2305
2306 return ret;
d8cb5086
CW
2307}
2308
2309static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2310{
d8cb5086
CW
2311 drm_gem_free_mmap_offset(&obj->base);
2312}
2313
da6b51d0 2314int
ff72145b
DA
2315i915_gem_mmap_gtt(struct drm_file *file,
2316 struct drm_device *dev,
da6b51d0 2317 uint32_t handle,
ff72145b 2318 uint64_t *offset)
de151cf6 2319{
05394f39 2320 struct drm_i915_gem_object *obj;
de151cf6
JB
2321 int ret;
2322
76c1dec1 2323 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2324 if (ret)
76c1dec1 2325 return ret;
de151cf6 2326
a8ad0bd8 2327 obj = to_intel_bo(drm_gem_object_lookup(file, handle));
c8725226 2328 if (&obj->base == NULL) {
1d7cfea1
CW
2329 ret = -ENOENT;
2330 goto unlock;
2331 }
de151cf6 2332
05394f39 2333 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2334 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2335 ret = -EFAULT;
1d7cfea1 2336 goto out;
ab18282d
CW
2337 }
2338
d8cb5086
CW
2339 ret = i915_gem_object_create_mmap_offset(obj);
2340 if (ret)
2341 goto out;
de151cf6 2342
0de23977 2343 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2344
1d7cfea1 2345out:
05394f39 2346 drm_gem_object_unreference(&obj->base);
1d7cfea1 2347unlock:
de151cf6 2348 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2349 return ret;
de151cf6
JB
2350}
2351
ff72145b
DA
2352/**
2353 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2354 * @dev: DRM device
2355 * @data: GTT mapping ioctl data
2356 * @file: GEM object info
2357 *
2358 * Simply returns the fake offset to userspace so it can mmap it.
2359 * The mmap call will end up in drm_gem_mmap(), which will set things
2360 * up so we can get faults in the handler above.
2361 *
2362 * The fault handler will take care of binding the object into the GTT
2363 * (since it may have been evicted to make room for something), allocating
2364 * a fence register, and mapping the appropriate aperture address into
2365 * userspace.
2366 */
2367int
2368i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2369 struct drm_file *file)
2370{
2371 struct drm_i915_gem_mmap_gtt *args = data;
2372
da6b51d0 2373 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2374}
2375
225067ee
DV
2376/* Immediately discard the backing storage */
2377static void
2378i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2379{
4d6294bf 2380 i915_gem_object_free_mmap_offset(obj);
1286ff73 2381
4d6294bf
CW
2382 if (obj->base.filp == NULL)
2383 return;
e5281ccd 2384
225067ee
DV
2385 /* Our goal here is to return as much of the memory as
2386 * is possible back to the system as we are called from OOM.
2387 * To do this we must instruct the shmfs to drop all of its
2388 * backing pages, *now*.
2389 */
5537252b 2390 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2391 obj->madv = __I915_MADV_PURGED;
2392}
e5281ccd 2393
5537252b
CW
2394/* Try to discard unwanted pages */
2395static void
2396i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2397{
5537252b
CW
2398 struct address_space *mapping;
2399
2400 switch (obj->madv) {
2401 case I915_MADV_DONTNEED:
2402 i915_gem_object_truncate(obj);
2403 case __I915_MADV_PURGED:
2404 return;
2405 }
2406
2407 if (obj->base.filp == NULL)
2408 return;
2409
2410 mapping = file_inode(obj->base.filp)->i_mapping,
2411 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2412}
2413
5cdf5881 2414static void
05394f39 2415i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2416{
85d1225e
DG
2417 struct sgt_iter sgt_iter;
2418 struct page *page;
90797e6d 2419 int ret;
1286ff73 2420
05394f39 2421 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2422
6c085a72 2423 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2424 if (WARN_ON(ret)) {
6c085a72
CW
2425 /* In the event of a disaster, abandon all caches and
2426 * hope for the best.
2427 */
2c22569b 2428 i915_gem_clflush_object(obj, true);
6c085a72
CW
2429 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2430 }
2431
e2273302
ID
2432 i915_gem_gtt_finish_object(obj);
2433
6dacfd2f 2434 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2435 i915_gem_object_save_bit_17_swizzle(obj);
2436
05394f39
CW
2437 if (obj->madv == I915_MADV_DONTNEED)
2438 obj->dirty = 0;
3ef94daa 2439
85d1225e 2440 for_each_sgt_page(page, sgt_iter, obj->pages) {
05394f39 2441 if (obj->dirty)
9da3da66 2442 set_page_dirty(page);
3ef94daa 2443
05394f39 2444 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2445 mark_page_accessed(page);
3ef94daa 2446
09cbfeaf 2447 put_page(page);
3ef94daa 2448 }
05394f39 2449 obj->dirty = 0;
673a394b 2450
9da3da66
CW
2451 sg_free_table(obj->pages);
2452 kfree(obj->pages);
37e680a1 2453}
6c085a72 2454
dd624afd 2455int
37e680a1
CW
2456i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2457{
2458 const struct drm_i915_gem_object_ops *ops = obj->ops;
2459
2f745ad3 2460 if (obj->pages == NULL)
37e680a1
CW
2461 return 0;
2462
a5570178
CW
2463 if (obj->pages_pin_count)
2464 return -EBUSY;
2465
9843877d 2466 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2467
a2165e31
CW
2468 /* ->put_pages might need to allocate memory for the bit17 swizzle
2469 * array, hence protect them from being reaped by removing them from gtt
2470 * lists early. */
35c20a60 2471 list_del(&obj->global_list);
a2165e31 2472
0a798eb9 2473 if (obj->mapping) {
fb8621d3
CW
2474 if (is_vmalloc_addr(obj->mapping))
2475 vunmap(obj->mapping);
2476 else
2477 kunmap(kmap_to_page(obj->mapping));
0a798eb9
CW
2478 obj->mapping = NULL;
2479 }
2480
37e680a1 2481 ops->put_pages(obj);
05394f39 2482 obj->pages = NULL;
37e680a1 2483
5537252b 2484 i915_gem_object_invalidate(obj);
6c085a72
CW
2485
2486 return 0;
2487}
2488
37e680a1 2489static int
6c085a72 2490i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2491{
fac5e23e 2492 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2493 int page_count, i;
2494 struct address_space *mapping;
9da3da66
CW
2495 struct sg_table *st;
2496 struct scatterlist *sg;
85d1225e 2497 struct sgt_iter sgt_iter;
e5281ccd 2498 struct page *page;
90797e6d 2499 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2500 int ret;
6c085a72 2501 gfp_t gfp;
e5281ccd 2502
6c085a72
CW
2503 /* Assert that the object is not currently in any GPU domain. As it
2504 * wasn't in the GTT, there shouldn't be any way it could have been in
2505 * a GPU cache
2506 */
2507 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2508 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2509
9da3da66
CW
2510 st = kmalloc(sizeof(*st), GFP_KERNEL);
2511 if (st == NULL)
2512 return -ENOMEM;
2513
05394f39 2514 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2515 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2516 kfree(st);
e5281ccd 2517 return -ENOMEM;
9da3da66 2518 }
e5281ccd 2519
9da3da66
CW
2520 /* Get the list of pages out of our struct file. They'll be pinned
2521 * at this point until we release them.
2522 *
2523 * Fail silently without starting the shrinker
2524 */
496ad9aa 2525 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2526 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2527 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2528 sg = st->sgl;
2529 st->nents = 0;
2530 for (i = 0; i < page_count; i++) {
6c085a72
CW
2531 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2532 if (IS_ERR(page)) {
21ab4e74
CW
2533 i915_gem_shrink(dev_priv,
2534 page_count,
2535 I915_SHRINK_BOUND |
2536 I915_SHRINK_UNBOUND |
2537 I915_SHRINK_PURGEABLE);
6c085a72
CW
2538 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2539 }
2540 if (IS_ERR(page)) {
2541 /* We've tried hard to allocate the memory by reaping
2542 * our own buffer, now let the real VM do its job and
2543 * go down in flames if truly OOM.
2544 */
6c085a72 2545 i915_gem_shrink_all(dev_priv);
f461d1be 2546 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2547 if (IS_ERR(page)) {
2548 ret = PTR_ERR(page);
6c085a72 2549 goto err_pages;
e2273302 2550 }
6c085a72 2551 }
426729dc
KRW
2552#ifdef CONFIG_SWIOTLB
2553 if (swiotlb_nr_tbl()) {
2554 st->nents++;
2555 sg_set_page(sg, page, PAGE_SIZE, 0);
2556 sg = sg_next(sg);
2557 continue;
2558 }
2559#endif
90797e6d
ID
2560 if (!i || page_to_pfn(page) != last_pfn + 1) {
2561 if (i)
2562 sg = sg_next(sg);
2563 st->nents++;
2564 sg_set_page(sg, page, PAGE_SIZE, 0);
2565 } else {
2566 sg->length += PAGE_SIZE;
2567 }
2568 last_pfn = page_to_pfn(page);
3bbbe706
DV
2569
2570 /* Check that the i965g/gm workaround works. */
2571 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2572 }
426729dc
KRW
2573#ifdef CONFIG_SWIOTLB
2574 if (!swiotlb_nr_tbl())
2575#endif
2576 sg_mark_end(sg);
74ce6b6c
CW
2577 obj->pages = st;
2578
e2273302
ID
2579 ret = i915_gem_gtt_prepare_object(obj);
2580 if (ret)
2581 goto err_pages;
2582
6dacfd2f 2583 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2584 i915_gem_object_do_bit_17_swizzle(obj);
2585
656bfa3a
DV
2586 if (obj->tiling_mode != I915_TILING_NONE &&
2587 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2588 i915_gem_object_pin_pages(obj);
2589
e5281ccd
CW
2590 return 0;
2591
2592err_pages:
90797e6d 2593 sg_mark_end(sg);
85d1225e
DG
2594 for_each_sgt_page(page, sgt_iter, st)
2595 put_page(page);
9da3da66
CW
2596 sg_free_table(st);
2597 kfree(st);
0820baf3
CW
2598
2599 /* shmemfs first checks if there is enough memory to allocate the page
2600 * and reports ENOSPC should there be insufficient, along with the usual
2601 * ENOMEM for a genuine allocation failure.
2602 *
2603 * We use ENOSPC in our driver to mean that we have run out of aperture
2604 * space and so want to translate the error from shmemfs back to our
2605 * usual understanding of ENOMEM.
2606 */
e2273302
ID
2607 if (ret == -ENOSPC)
2608 ret = -ENOMEM;
2609
2610 return ret;
673a394b
EA
2611}
2612
37e680a1
CW
2613/* Ensure that the associated pages are gathered from the backing storage
2614 * and pinned into our object. i915_gem_object_get_pages() may be called
2615 * multiple times before they are released by a single call to
2616 * i915_gem_object_put_pages() - once the pages are no longer referenced
2617 * either as a result of memory pressure (reaping pages under the shrinker)
2618 * or as the object is itself released.
2619 */
2620int
2621i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2622{
fac5e23e 2623 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
37e680a1
CW
2624 const struct drm_i915_gem_object_ops *ops = obj->ops;
2625 int ret;
2626
2f745ad3 2627 if (obj->pages)
37e680a1
CW
2628 return 0;
2629
43e28f09 2630 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2631 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2632 return -EFAULT;
43e28f09
CW
2633 }
2634
a5570178
CW
2635 BUG_ON(obj->pages_pin_count);
2636
37e680a1
CW
2637 ret = ops->get_pages(obj);
2638 if (ret)
2639 return ret;
2640
35c20a60 2641 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2642
2643 obj->get_page.sg = obj->pages->sgl;
2644 obj->get_page.last = 0;
2645
37e680a1 2646 return 0;
673a394b
EA
2647}
2648
dd6034c6
DG
2649/* The 'mapping' part of i915_gem_object_pin_map() below */
2650static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2651{
2652 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2653 struct sg_table *sgt = obj->pages;
85d1225e
DG
2654 struct sgt_iter sgt_iter;
2655 struct page *page;
b338fa47
DG
2656 struct page *stack_pages[32];
2657 struct page **pages = stack_pages;
dd6034c6
DG
2658 unsigned long i = 0;
2659 void *addr;
2660
2661 /* A single page can always be kmapped */
2662 if (n_pages == 1)
2663 return kmap(sg_page(sgt->sgl));
2664
b338fa47
DG
2665 if (n_pages > ARRAY_SIZE(stack_pages)) {
2666 /* Too big for stack -- allocate temporary array instead */
2667 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2668 if (!pages)
2669 return NULL;
2670 }
dd6034c6 2671
85d1225e
DG
2672 for_each_sgt_page(page, sgt_iter, sgt)
2673 pages[i++] = page;
dd6034c6
DG
2674
2675 /* Check that we have the expected number of pages */
2676 GEM_BUG_ON(i != n_pages);
2677
2678 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2679
b338fa47
DG
2680 if (pages != stack_pages)
2681 drm_free_large(pages);
dd6034c6
DG
2682
2683 return addr;
2684}
2685
2686/* get, pin, and map the pages of the object into kernel space */
0a798eb9
CW
2687void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2688{
2689 int ret;
2690
2691 lockdep_assert_held(&obj->base.dev->struct_mutex);
2692
2693 ret = i915_gem_object_get_pages(obj);
2694 if (ret)
2695 return ERR_PTR(ret);
2696
2697 i915_gem_object_pin_pages(obj);
2698
dd6034c6
DG
2699 if (!obj->mapping) {
2700 obj->mapping = i915_gem_object_map(obj);
2701 if (!obj->mapping) {
0a798eb9
CW
2702 i915_gem_object_unpin_pages(obj);
2703 return ERR_PTR(-ENOMEM);
2704 }
2705 }
2706
2707 return obj->mapping;
2708}
2709
b4716185 2710void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2711 struct drm_i915_gem_request *req)
673a394b 2712{
b4716185 2713 struct drm_i915_gem_object *obj = vma->obj;
e2f80391 2714 struct intel_engine_cs *engine;
b2af0376 2715
666796da 2716 engine = i915_gem_request_get_engine(req);
673a394b
EA
2717
2718 /* Add a reference if we're newly entering the active list. */
b4716185 2719 if (obj->active == 0)
05394f39 2720 drm_gem_object_reference(&obj->base);
666796da 2721 obj->active |= intel_engine_flag(engine);
e35a41de 2722
117897f4 2723 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
e2f80391 2724 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
caea7476 2725
1c7f4bca 2726 list_move_tail(&vma->vm_link, &vma->vm->active_list);
caea7476
CW
2727}
2728
b4716185
CW
2729static void
2730i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2731{
d501b1d2
CW
2732 GEM_BUG_ON(obj->last_write_req == NULL);
2733 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
b4716185
CW
2734
2735 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2736 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2737}
2738
caea7476 2739static void
b4716185 2740i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2741{
feb822cf 2742 struct i915_vma *vma;
ce44b0ea 2743
d501b1d2
CW
2744 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2745 GEM_BUG_ON(!(obj->active & (1 << ring)));
b4716185 2746
117897f4 2747 list_del_init(&obj->engine_list[ring]);
b4716185
CW
2748 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2749
4a570db5 2750 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
b4716185
CW
2751 i915_gem_object_retire__write(obj);
2752
2753 obj->active &= ~(1 << ring);
2754 if (obj->active)
2755 return;
caea7476 2756
6c246959
CW
2757 /* Bump our place on the bound list to keep it roughly in LRU order
2758 * so that we don't steal from recently used but inactive objects
2759 * (unless we are forced to ofc!)
2760 */
2761 list_move_tail(&obj->global_list,
2762 &to_i915(obj->base.dev)->mm.bound_list);
2763
1c7f4bca
CW
2764 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2765 if (!list_empty(&vma->vm_link))
2766 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
feb822cf 2767 }
caea7476 2768
97b2a6a1 2769 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2770 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2771}
2772
9d773091 2773static int
c033666a 2774i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
53d227f2 2775{
e2f80391 2776 struct intel_engine_cs *engine;
29dcb570 2777 int ret;
53d227f2 2778
107f27a5 2779 /* Carefully retire all requests without writing to the rings */
b4ac5afc 2780 for_each_engine(engine, dev_priv) {
666796da 2781 ret = intel_engine_idle(engine);
107f27a5
CW
2782 if (ret)
2783 return ret;
9d773091 2784 }
c033666a 2785 i915_gem_retire_requests(dev_priv);
107f27a5 2786
688e6c72
CW
2787 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
2788 if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
c81d4613
CW
2789 while (intel_kick_waiters(dev_priv) ||
2790 intel_kick_signalers(dev_priv))
688e6c72
CW
2791 yield();
2792 }
2793
107f27a5 2794 /* Finally reset hw state */
29dcb570 2795 for_each_engine(engine, dev_priv)
e2f80391 2796 intel_ring_init_seqno(engine, seqno);
498d2ac1 2797
9d773091 2798 return 0;
53d227f2
DV
2799}
2800
fca26bb4
MK
2801int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2802{
fac5e23e 2803 struct drm_i915_private *dev_priv = to_i915(dev);
fca26bb4
MK
2804 int ret;
2805
2806 if (seqno == 0)
2807 return -EINVAL;
2808
2809 /* HWS page needs to be set less than what we
2810 * will inject to ring
2811 */
c033666a 2812 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
fca26bb4
MK
2813 if (ret)
2814 return ret;
2815
2816 /* Carefully set the last_seqno value so that wrap
2817 * detection still works
2818 */
2819 dev_priv->next_seqno = seqno;
2820 dev_priv->last_seqno = seqno - 1;
2821 if (dev_priv->last_seqno == 0)
2822 dev_priv->last_seqno--;
2823
2824 return 0;
2825}
2826
9d773091 2827int
c033666a 2828i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
53d227f2 2829{
9d773091
CW
2830 /* reserve 0 for non-seqno */
2831 if (dev_priv->next_seqno == 0) {
c033666a 2832 int ret = i915_gem_init_seqno(dev_priv, 0);
9d773091
CW
2833 if (ret)
2834 return ret;
53d227f2 2835
9d773091
CW
2836 dev_priv->next_seqno = 1;
2837 }
53d227f2 2838
f72b3435 2839 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2840 return 0;
53d227f2
DV
2841}
2842
67d97da3
CW
2843static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
2844{
2845 struct drm_i915_private *dev_priv = engine->i915;
2846
2847 dev_priv->gt.active_engines |= intel_engine_flag(engine);
2848 if (dev_priv->gt.awake)
2849 return;
2850
2851 intel_runtime_pm_get_noresume(dev_priv);
2852 dev_priv->gt.awake = true;
2853
2854 i915_update_gfx_val(dev_priv);
2855 if (INTEL_GEN(dev_priv) >= 6)
2856 gen6_rps_busy(dev_priv);
2857
2858 queue_delayed_work(dev_priv->wq,
2859 &dev_priv->gt.retire_work,
2860 round_jiffies_up_relative(HZ));
2861}
2862
bf7dc5b7
JH
2863/*
2864 * NB: This function is not allowed to fail. Doing so would mean the the
2865 * request is not being tracked for completion but the work itself is
2866 * going to happen on the hardware. This would be a Bad Thing(tm).
2867 */
75289874 2868void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2869 struct drm_i915_gem_object *obj,
2870 bool flush_caches)
673a394b 2871{
e2f80391 2872 struct intel_engine_cs *engine;
48e29f55 2873 struct intel_ringbuffer *ringbuf;
6d3d8274 2874 u32 request_start;
0251a963 2875 u32 reserved_tail;
3cce469c
CW
2876 int ret;
2877
48e29f55 2878 if (WARN_ON(request == NULL))
bf7dc5b7 2879 return;
48e29f55 2880
4a570db5 2881 engine = request->engine;
75289874
JH
2882 ringbuf = request->ringbuf;
2883
29b1b415
JH
2884 /*
2885 * To ensure that this call will not fail, space for its emissions
2886 * should already have been reserved in the ring buffer. Let the ring
2887 * know that it is time to use that space up.
2888 */
48e29f55 2889 request_start = intel_ring_get_tail(ringbuf);
0251a963
CW
2890 reserved_tail = request->reserved_space;
2891 request->reserved_space = 0;
2892
cc889e0f
DV
2893 /*
2894 * Emit any outstanding flushes - execbuf can fail to emit the flush
2895 * after having emitted the batchbuffer command. Hence we need to fix
2896 * things up similar to emitting the lazy request. The difference here
2897 * is that the flush _must_ happen before the next request, no matter
2898 * what.
2899 */
5b4a60c2
JH
2900 if (flush_caches) {
2901 if (i915.enable_execlists)
4866d729 2902 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2903 else
4866d729 2904 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2905 /* Not allowed to fail! */
2906 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2907 }
cc889e0f 2908
7c90b7de
CW
2909 trace_i915_gem_request_add(request);
2910
2911 request->head = request_start;
2912
2913 /* Whilst this request exists, batch_obj will be on the
2914 * active_list, and so will hold the active reference. Only when this
2915 * request is retired will the the batch_obj be moved onto the
2916 * inactive_list and lose its active reference. Hence we do not need
2917 * to explicitly hold another reference here.
2918 */
2919 request->batch_obj = obj;
2920
2921 /* Seal the request and mark it as pending execution. Note that
2922 * we may inspect this state, without holding any locks, during
2923 * hangcheck. Hence we apply the barrier to ensure that we do not
2924 * see a more recent value in the hws than we are tracking.
2925 */
2926 request->emitted_jiffies = jiffies;
2927 request->previous_seqno = engine->last_submitted_seqno;
2928 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2929 list_add_tail(&request->list, &engine->request_list);
2930
a71d8d94
CW
2931 /* Record the position of the start of the request so that
2932 * should we detect the updated seqno part-way through the
2933 * GPU processing the request, we never over-estimate the
2934 * position of the head.
2935 */
6d3d8274 2936 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2937
bf7dc5b7 2938 if (i915.enable_execlists)
e2f80391 2939 ret = engine->emit_request(request);
bf7dc5b7 2940 else {
e2f80391 2941 ret = engine->add_request(request);
53292cdb
MT
2942
2943 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2944 }
bf7dc5b7
JH
2945 /* Not allowed to fail! */
2946 WARN(ret, "emit|add_request failed: %d!\n", ret);
29b1b415 2947 /* Sanity check that the reserved size was large enough. */
0251a963
CW
2948 ret = intel_ring_get_tail(ringbuf) - request_start;
2949 if (ret < 0)
2950 ret += ringbuf->size;
2951 WARN_ONCE(ret > reserved_tail,
2952 "Not enough space reserved (%d bytes) "
2953 "for adding the request (%d bytes)\n",
2954 reserved_tail, ret);
67d97da3
CW
2955
2956 i915_gem_mark_busy(engine);
673a394b
EA
2957}
2958
7b4d3a16 2959static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2960{
44e2c070 2961 unsigned long elapsed;
be62acb4 2962
44e2c070 2963 if (ctx->hang_stats.banned)
be62acb4
MK
2964 return true;
2965
7b4d3a16 2966 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2967 if (ctx->hang_stats.ban_period_seconds &&
2968 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2969 DRM_DEBUG("context hanging too fast, banning!\n");
2970 return true;
be62acb4
MK
2971 }
2972
2973 return false;
2974}
2975
7b4d3a16 2976static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2977 const bool guilty)
aa60c664 2978{
7b4d3a16 2979 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2980
2981 if (guilty) {
7b4d3a16 2982 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2983 hs->batch_active++;
2984 hs->guilty_ts = get_seconds();
2985 } else {
2986 hs->batch_pending++;
aa60c664
MK
2987 }
2988}
2989
abfe262a
JH
2990void i915_gem_request_free(struct kref *req_ref)
2991{
2992 struct drm_i915_gem_request *req = container_of(req_ref,
2993 typeof(*req), ref);
efab6d8d 2994 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2995}
2996
26827088 2997static inline int
0bc40be8 2998__i915_gem_request_alloc(struct intel_engine_cs *engine,
e2efd130 2999 struct i915_gem_context *ctx,
26827088 3000 struct drm_i915_gem_request **req_out)
6689cb2b 3001{
c033666a 3002 struct drm_i915_private *dev_priv = engine->i915;
299259a3 3003 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
eed29a5b 3004 struct drm_i915_gem_request *req;
6689cb2b 3005 int ret;
6689cb2b 3006
217e46b5
JH
3007 if (!req_out)
3008 return -EINVAL;
3009
bccca494 3010 *req_out = NULL;
6689cb2b 3011
f4457ae7
CW
3012 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
3013 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
3014 * and restart.
3015 */
3016 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
299259a3
CW
3017 if (ret)
3018 return ret;
3019
eed29a5b
DV
3020 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
3021 if (req == NULL)
6689cb2b
JH
3022 return -ENOMEM;
3023
c033666a 3024 ret = i915_gem_get_seqno(engine->i915, &req->seqno);
9a0c1e27
CW
3025 if (ret)
3026 goto err;
6689cb2b 3027
40e895ce
JH
3028 kref_init(&req->ref);
3029 req->i915 = dev_priv;
4a570db5 3030 req->engine = engine;
40e895ce
JH
3031 req->ctx = ctx;
3032 i915_gem_context_reference(req->ctx);
6689cb2b 3033
29b1b415
JH
3034 /*
3035 * Reserve space in the ring buffer for all the commands required to
3036 * eventually emit this request. This is to guarantee that the
3037 * i915_add_request() call can't fail. Note that the reserve may need
3038 * to be redone if the request is not actually submitted straight
3039 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 3040 */
0251a963 3041 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
bfa01200
CW
3042
3043 if (i915.enable_execlists)
3044 ret = intel_logical_ring_alloc_request_extras(req);
3045 else
3046 ret = intel_ring_alloc_request_extras(req);
3047 if (ret)
3048 goto err_ctx;
29b1b415 3049
bccca494 3050 *req_out = req;
6689cb2b 3051 return 0;
9a0c1e27 3052
bfa01200
CW
3053err_ctx:
3054 i915_gem_context_unreference(ctx);
9a0c1e27
CW
3055err:
3056 kmem_cache_free(dev_priv->requests, req);
3057 return ret;
0e50e96b
MK
3058}
3059
26827088
DG
3060/**
3061 * i915_gem_request_alloc - allocate a request structure
3062 *
3063 * @engine: engine that we wish to issue the request on.
3064 * @ctx: context that the request will be associated with.
3065 * This can be NULL if the request is not directly related to
3066 * any specific user context, in which case this function will
3067 * choose an appropriate context to use.
3068 *
3069 * Returns a pointer to the allocated request if successful,
3070 * or an error code if not.
3071 */
3072struct drm_i915_gem_request *
3073i915_gem_request_alloc(struct intel_engine_cs *engine,
e2efd130 3074 struct i915_gem_context *ctx)
26827088
DG
3075{
3076 struct drm_i915_gem_request *req;
3077 int err;
3078
3079 if (ctx == NULL)
c033666a 3080 ctx = engine->i915->kernel_context;
26827088
DG
3081 err = __i915_gem_request_alloc(engine, ctx, &req);
3082 return err ? ERR_PTR(err) : req;
3083}
3084
8d9fc7fd 3085struct drm_i915_gem_request *
0bc40be8 3086i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 3087{
4db080f9
CW
3088 struct drm_i915_gem_request *request;
3089
f69a02c9
CW
3090 /* We are called by the error capture and reset at a random
3091 * point in time. In particular, note that neither is crucially
3092 * ordered with an interrupt. After a hang, the GPU is dead and we
3093 * assume that no more writes can happen (we waited long enough for
3094 * all writes that were in transaction to be flushed) - adding an
3095 * extra delay for a recent interrupt is pointless. Hence, we do
3096 * not need an engine->irq_seqno_barrier() before the seqno reads.
3097 */
0bc40be8 3098 list_for_each_entry(request, &engine->request_list, list) {
f69a02c9 3099 if (i915_gem_request_completed(request))
4db080f9 3100 continue;
aa60c664 3101
b6b0fac0 3102 return request;
4db080f9 3103 }
b6b0fac0
MK
3104
3105 return NULL;
3106}
3107
7b4d3a16 3108static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
b6b0fac0
MK
3109{
3110 struct drm_i915_gem_request *request;
3111 bool ring_hung;
3112
0bc40be8 3113 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
3114 if (request == NULL)
3115 return;
3116
0bc40be8 3117 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 3118
7b4d3a16 3119 i915_set_reset_status(request->ctx, ring_hung);
0bc40be8 3120 list_for_each_entry_continue(request, &engine->request_list, list)
7b4d3a16 3121 i915_set_reset_status(request->ctx, false);
4db080f9 3122}
aa60c664 3123
7b4d3a16 3124static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
4db080f9 3125{
608c1a52
CW
3126 struct intel_ringbuffer *buffer;
3127
0bc40be8 3128 while (!list_empty(&engine->active_list)) {
05394f39 3129 struct drm_i915_gem_object *obj;
9375e446 3130
0bc40be8 3131 obj = list_first_entry(&engine->active_list,
05394f39 3132 struct drm_i915_gem_object,
117897f4 3133 engine_list[engine->id]);
9375e446 3134
0bc40be8 3135 i915_gem_object_retire__read(obj, engine->id);
673a394b 3136 }
1d62beea 3137
dcb4c12a
OM
3138 /*
3139 * Clear the execlists queue up before freeing the requests, as those
3140 * are the ones that keep the context and ringbuffer backing objects
3141 * pinned in place.
3142 */
dcb4c12a 3143
7de1691a 3144 if (i915.enable_execlists) {
27af5eea
TU
3145 /* Ensure irq handler finishes or is cancelled. */
3146 tasklet_kill(&engine->irq_tasklet);
1197b4f2 3147
e39d42fa 3148 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
3149 }
3150
1d62beea
BW
3151 /*
3152 * We must free the requests after all the corresponding objects have
3153 * been moved off active lists. Which is the same order as the normal
3154 * retire_requests function does. This is important if object hold
3155 * implicit references on things like e.g. ppgtt address spaces through
3156 * the request.
3157 */
0bc40be8 3158 while (!list_empty(&engine->request_list)) {
1d62beea
BW
3159 struct drm_i915_gem_request *request;
3160
0bc40be8 3161 request = list_first_entry(&engine->request_list,
1d62beea
BW
3162 struct drm_i915_gem_request,
3163 list);
3164
b4716185 3165 i915_gem_request_retire(request);
1d62beea 3166 }
608c1a52
CW
3167
3168 /* Having flushed all requests from all queues, we know that all
3169 * ringbuffers must now be empty. However, since we do not reclaim
3170 * all space when retiring the request (to prevent HEADs colliding
3171 * with rapid ringbuffer wraparound) the amount of available space
3172 * upon reset is less than when we start. Do one more pass over
3173 * all the ringbuffers to reset last_retired_head.
3174 */
0bc40be8 3175 list_for_each_entry(buffer, &engine->buffers, link) {
608c1a52
CW
3176 buffer->last_retired_head = buffer->tail;
3177 intel_ring_update_space(buffer);
3178 }
2ed53a94
CW
3179
3180 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
673a394b
EA
3181}
3182
069efc1d 3183void i915_gem_reset(struct drm_device *dev)
673a394b 3184{
fac5e23e 3185 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 3186 struct intel_engine_cs *engine;
673a394b 3187
4db080f9
CW
3188 /*
3189 * Before we free the objects from the requests, we need to inspect
3190 * them for finding the guilty party. As the requests only borrow
3191 * their reference to the objects, the inspection must be done first.
3192 */
b4ac5afc 3193 for_each_engine(engine, dev_priv)
7b4d3a16 3194 i915_gem_reset_engine_status(engine);
4db080f9 3195
b4ac5afc 3196 for_each_engine(engine, dev_priv)
7b4d3a16 3197 i915_gem_reset_engine_cleanup(engine);
dfaae392 3198
acce9ffa
BW
3199 i915_gem_context_reset(dev);
3200
19b2dbde 3201 i915_gem_restore_fences(dev);
b4716185
CW
3202
3203 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3204}
3205
3206/**
3207 * This function clears the request list as sequence numbers are passed.
14bb2c11 3208 * @engine: engine to retire requests on
673a394b 3209 */
1cf0ba14 3210void
0bc40be8 3211i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
673a394b 3212{
0bc40be8 3213 WARN_ON(i915_verify_lists(engine->dev));
673a394b 3214
832a3aad
CW
3215 /* Retire requests first as we use it above for the early return.
3216 * If we retire requests last, we may use a later seqno and so clear
3217 * the requests lists without clearing the active list, leading to
3218 * confusion.
e9103038 3219 */
0bc40be8 3220 while (!list_empty(&engine->request_list)) {
673a394b 3221 struct drm_i915_gem_request *request;
673a394b 3222
0bc40be8 3223 request = list_first_entry(&engine->request_list,
673a394b
EA
3224 struct drm_i915_gem_request,
3225 list);
673a394b 3226
f69a02c9 3227 if (!i915_gem_request_completed(request))
b84d5f0c
CW
3228 break;
3229
b4716185 3230 i915_gem_request_retire(request);
b84d5f0c 3231 }
673a394b 3232
832a3aad
CW
3233 /* Move any buffers on the active list that are no longer referenced
3234 * by the ringbuffer to the flushing/inactive lists as appropriate,
3235 * before we free the context associated with the requests.
3236 */
0bc40be8 3237 while (!list_empty(&engine->active_list)) {
832a3aad
CW
3238 struct drm_i915_gem_object *obj;
3239
0bc40be8
TU
3240 obj = list_first_entry(&engine->active_list,
3241 struct drm_i915_gem_object,
117897f4 3242 engine_list[engine->id]);
832a3aad 3243
0bc40be8 3244 if (!list_empty(&obj->last_read_req[engine->id]->list))
832a3aad
CW
3245 break;
3246
0bc40be8 3247 i915_gem_object_retire__read(obj, engine->id);
832a3aad
CW
3248 }
3249
0bc40be8 3250 WARN_ON(i915_verify_lists(engine->dev));
673a394b
EA
3251}
3252
67d97da3 3253void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
b09a1fec 3254{
e2f80391 3255 struct intel_engine_cs *engine;
67d97da3 3256
91c8a326 3257 lockdep_assert_held(&dev_priv->drm.struct_mutex);
67d97da3
CW
3258
3259 if (dev_priv->gt.active_engines == 0)
3260 return;
3261
3262 GEM_BUG_ON(!dev_priv->gt.awake);
b09a1fec 3263
b4ac5afc 3264 for_each_engine(engine, dev_priv) {
e2f80391 3265 i915_gem_retire_requests_ring(engine);
67d97da3
CW
3266 if (list_empty(&engine->request_list))
3267 dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
b29c19b6
CW
3268 }
3269
67d97da3 3270 if (dev_priv->gt.active_engines == 0)
1b51bce2
CW
3271 queue_delayed_work(dev_priv->wq,
3272 &dev_priv->gt.idle_work,
3273 msecs_to_jiffies(100));
b09a1fec
CW
3274}
3275
75ef9da2 3276static void
673a394b
EA
3277i915_gem_retire_work_handler(struct work_struct *work)
3278{
b29c19b6 3279 struct drm_i915_private *dev_priv =
67d97da3 3280 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 3281 struct drm_device *dev = &dev_priv->drm;
673a394b 3282
891b48cf 3283 /* Come back later if the device is busy... */
b29c19b6 3284 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 3285 i915_gem_retire_requests(dev_priv);
b29c19b6 3286 mutex_unlock(&dev->struct_mutex);
673a394b 3287 }
67d97da3
CW
3288
3289 /* Keep the retire handler running until we are finally idle.
3290 * We do not need to do this test under locking as in the worst-case
3291 * we queue the retire worker once too often.
3292 */
b1379d49 3293 if (READ_ONCE(dev_priv->gt.awake))
67d97da3
CW
3294 queue_delayed_work(dev_priv->wq,
3295 &dev_priv->gt.retire_work,
bcb45086 3296 round_jiffies_up_relative(HZ));
b29c19b6 3297}
0a58705b 3298
b29c19b6
CW
3299static void
3300i915_gem_idle_work_handler(struct work_struct *work)
3301{
3302 struct drm_i915_private *dev_priv =
67d97da3 3303 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 3304 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 3305 struct intel_engine_cs *engine;
67d97da3
CW
3306 unsigned int stuck_engines;
3307 bool rearm_hangcheck;
3308
3309 if (!READ_ONCE(dev_priv->gt.awake))
3310 return;
3311
3312 if (READ_ONCE(dev_priv->gt.active_engines))
3313 return;
3314
3315 rearm_hangcheck =
3316 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3317
3318 if (!mutex_trylock(&dev->struct_mutex)) {
3319 /* Currently busy, come back later */
3320 mod_delayed_work(dev_priv->wq,
3321 &dev_priv->gt.idle_work,
3322 msecs_to_jiffies(50));
3323 goto out_rearm;
3324 }
3325
3326 if (dev_priv->gt.active_engines)
3327 goto out_unlock;
b29c19b6 3328
b4ac5afc 3329 for_each_engine(engine, dev_priv)
67d97da3 3330 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 3331
67d97da3
CW
3332 GEM_BUG_ON(!dev_priv->gt.awake);
3333 dev_priv->gt.awake = false;
3334 rearm_hangcheck = false;
30ecad77 3335
67d97da3
CW
3336 stuck_engines = intel_kick_waiters(dev_priv);
3337 if (unlikely(stuck_engines)) {
3338 DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
3339 dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
3340 }
35c94185 3341
67d97da3
CW
3342 if (INTEL_GEN(dev_priv) >= 6)
3343 gen6_rps_idle(dev_priv);
3344 intel_runtime_pm_put(dev_priv);
3345out_unlock:
3346 mutex_unlock(&dev->struct_mutex);
b29c19b6 3347
67d97da3
CW
3348out_rearm:
3349 if (rearm_hangcheck) {
3350 GEM_BUG_ON(!dev_priv->gt.awake);
3351 i915_queue_hangcheck(dev_priv);
35c94185 3352 }
673a394b
EA
3353}
3354
30dfebf3
DV
3355/**
3356 * Ensures that an object will eventually get non-busy by flushing any required
3357 * write domains, emitting any outstanding lazy request and retiring and
3358 * completed requests.
14bb2c11 3359 * @obj: object to flush
30dfebf3
DV
3360 */
3361static int
3362i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3363{
a5ac0f90 3364 int i;
b4716185
CW
3365
3366 if (!obj->active)
3367 return 0;
30dfebf3 3368
666796da 3369 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185 3370 struct drm_i915_gem_request *req;
41c52415 3371
b4716185
CW
3372 req = obj->last_read_req[i];
3373 if (req == NULL)
3374 continue;
3375
f69a02c9 3376 if (i915_gem_request_completed(req))
b4716185 3377 i915_gem_object_retire__read(obj, i);
30dfebf3
DV
3378 }
3379
3380 return 0;
3381}
3382
23ba4fd0
BW
3383/**
3384 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3385 * @dev: drm device pointer
3386 * @data: ioctl data blob
3387 * @file: drm file pointer
23ba4fd0
BW
3388 *
3389 * Returns 0 if successful, else an error is returned with the remaining time in
3390 * the timeout parameter.
3391 * -ETIME: object is still busy after timeout
3392 * -ERESTARTSYS: signal interrupted the wait
3393 * -ENONENT: object doesn't exist
3394 * Also possible, but rare:
3395 * -EAGAIN: GPU wedged
3396 * -ENOMEM: damn
3397 * -ENODEV: Internal IRQ fail
3398 * -E?: The add request failed
3399 *
3400 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3401 * non-zero timeout parameter the wait ioctl will wait for the given number of
3402 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3403 * without holding struct_mutex the object may become re-busied before this
3404 * function completes. A similar but shorter * race condition exists in the busy
3405 * ioctl
3406 */
3407int
3408i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3409{
3410 struct drm_i915_gem_wait *args = data;
3411 struct drm_i915_gem_object *obj;
666796da 3412 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185
CW
3413 int i, n = 0;
3414 int ret;
23ba4fd0 3415
11b5d511
DV
3416 if (args->flags != 0)
3417 return -EINVAL;
3418
23ba4fd0
BW
3419 ret = i915_mutex_lock_interruptible(dev);
3420 if (ret)
3421 return ret;
3422
a8ad0bd8 3423 obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
23ba4fd0
BW
3424 if (&obj->base == NULL) {
3425 mutex_unlock(&dev->struct_mutex);
3426 return -ENOENT;
3427 }
3428
30dfebf3
DV
3429 /* Need to make sure the object gets inactive eventually. */
3430 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3431 if (ret)
3432 goto out;
3433
b4716185 3434 if (!obj->active)
97b2a6a1 3435 goto out;
23ba4fd0 3436
23ba4fd0 3437 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3438 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3439 */
762e4583 3440 if (args->timeout_ns == 0) {
23ba4fd0
BW
3441 ret = -ETIME;
3442 goto out;
3443 }
3444
3445 drm_gem_object_unreference(&obj->base);
b4716185 3446
666796da 3447 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
3448 if (obj->last_read_req[i] == NULL)
3449 continue;
3450
3451 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3452 }
3453
23ba4fd0
BW
3454 mutex_unlock(&dev->struct_mutex);
3455
b4716185
CW
3456 for (i = 0; i < n; i++) {
3457 if (ret == 0)
299259a3 3458 ret = __i915_wait_request(req[i], true,
b4716185 3459 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3460 to_rps_client(file));
73db04cf 3461 i915_gem_request_unreference(req[i]);
b4716185 3462 }
ff865885 3463 return ret;
23ba4fd0
BW
3464
3465out:
3466 drm_gem_object_unreference(&obj->base);
3467 mutex_unlock(&dev->struct_mutex);
3468 return ret;
3469}
3470
b4716185
CW
3471static int
3472__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3473 struct intel_engine_cs *to,
91af127f
JH
3474 struct drm_i915_gem_request *from_req,
3475 struct drm_i915_gem_request **to_req)
b4716185
CW
3476{
3477 struct intel_engine_cs *from;
3478 int ret;
3479
666796da 3480 from = i915_gem_request_get_engine(from_req);
b4716185
CW
3481 if (to == from)
3482 return 0;
3483
f69a02c9 3484 if (i915_gem_request_completed(from_req))
b4716185
CW
3485 return 0;
3486
c033666a 3487 if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
a6f766f3 3488 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3489 ret = __i915_wait_request(from_req,
a6f766f3
CW
3490 i915->mm.interruptible,
3491 NULL,
3492 &i915->rps.semaphores);
b4716185
CW
3493 if (ret)
3494 return ret;
3495
91af127f 3496 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3497 } else {
3498 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3499 u32 seqno = i915_gem_request_get_seqno(from_req);
3500
3501 WARN_ON(!to_req);
b4716185
CW
3502
3503 if (seqno <= from->semaphore.sync_seqno[idx])
3504 return 0;
3505
91af127f 3506 if (*to_req == NULL) {
26827088
DG
3507 struct drm_i915_gem_request *req;
3508
3509 req = i915_gem_request_alloc(to, NULL);
3510 if (IS_ERR(req))
3511 return PTR_ERR(req);
3512
3513 *to_req = req;
91af127f
JH
3514 }
3515
599d924c
JH
3516 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3517 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3518 if (ret)
3519 return ret;
3520
3521 /* We use last_read_req because sync_to()
3522 * might have just caused seqno wrap under
3523 * the radar.
3524 */
3525 from->semaphore.sync_seqno[idx] =
3526 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3527 }
3528
3529 return 0;
3530}
3531
5816d648
BW
3532/**
3533 * i915_gem_object_sync - sync an object to a ring.
3534 *
3535 * @obj: object which may be in use on another ring.
3536 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3537 * @to_req: request we wish to use the object for. See below.
3538 * This will be allocated and returned if a request is
3539 * required but not passed in.
5816d648
BW
3540 *
3541 * This code is meant to abstract object synchronization with the GPU.
3542 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3543 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3544 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3545 * into a buffer at any time, but multiple readers. To ensure each has
3546 * a coherent view of memory, we must:
3547 *
3548 * - If there is an outstanding write request to the object, the new
3549 * request must wait for it to complete (either CPU or in hw, requests
3550 * on the same ring will be naturally ordered).
3551 *
3552 * - If we are a write request (pending_write_domain is set), the new
3553 * request must wait for outstanding read requests to complete.
5816d648 3554 *
91af127f
JH
3555 * For CPU synchronisation (NULL to) no request is required. For syncing with
3556 * rings to_req must be non-NULL. However, a request does not have to be
3557 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3558 * request will be allocated automatically and returned through *to_req. Note
3559 * that it is not guaranteed that commands will be emitted (because the system
3560 * might already be idle). Hence there is no need to create a request that
3561 * might never have any work submitted. Note further that if a request is
3562 * returned in *to_req, it is the responsibility of the caller to submit
3563 * that request (after potentially adding more work to it).
3564 *
5816d648
BW
3565 * Returns 0 if successful, else propagates up the lower layer error.
3566 */
2911a35b
BW
3567int
3568i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3569 struct intel_engine_cs *to,
3570 struct drm_i915_gem_request **to_req)
2911a35b 3571{
b4716185 3572 const bool readonly = obj->base.pending_write_domain == 0;
666796da 3573 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185 3574 int ret, i, n;
41c52415 3575
b4716185 3576 if (!obj->active)
2911a35b
BW
3577 return 0;
3578
b4716185
CW
3579 if (to == NULL)
3580 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3581
b4716185
CW
3582 n = 0;
3583 if (readonly) {
3584 if (obj->last_write_req)
3585 req[n++] = obj->last_write_req;
3586 } else {
666796da 3587 for (i = 0; i < I915_NUM_ENGINES; i++)
b4716185
CW
3588 if (obj->last_read_req[i])
3589 req[n++] = obj->last_read_req[i];
3590 }
3591 for (i = 0; i < n; i++) {
91af127f 3592 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3593 if (ret)
3594 return ret;
3595 }
2911a35b 3596
b4716185 3597 return 0;
2911a35b
BW
3598}
3599
b5ffc9bc
CW
3600static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3601{
3602 u32 old_write_domain, old_read_domains;
3603
b5ffc9bc
CW
3604 /* Force a pagefault for domain tracking on next user access */
3605 i915_gem_release_mmap(obj);
3606
b97c3d9c
KP
3607 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3608 return;
3609
b5ffc9bc
CW
3610 old_read_domains = obj->base.read_domains;
3611 old_write_domain = obj->base.write_domain;
3612
3613 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3614 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3615
3616 trace_i915_gem_object_change_domain(obj,
3617 old_read_domains,
3618 old_write_domain);
3619}
3620
8ef8561f
CW
3621static void __i915_vma_iounmap(struct i915_vma *vma)
3622{
3623 GEM_BUG_ON(vma->pin_count);
3624
3625 if (vma->iomap == NULL)
3626 return;
3627
3628 io_mapping_unmap(vma->iomap);
3629 vma->iomap = NULL;
3630}
3631
e9f24d5f 3632static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3633{
07fe0b12 3634 struct drm_i915_gem_object *obj = vma->obj;
fac5e23e 3635 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
43e28f09 3636 int ret;
673a394b 3637
1c7f4bca 3638 if (list_empty(&vma->obj_link))
673a394b
EA
3639 return 0;
3640
0ff501cb
DV
3641 if (!drm_mm_node_allocated(&vma->node)) {
3642 i915_gem_vma_destroy(vma);
0ff501cb
DV
3643 return 0;
3644 }
433544bd 3645
d7f46fc4 3646 if (vma->pin_count)
31d8d651 3647 return -EBUSY;
673a394b 3648
c4670ad0
CW
3649 BUG_ON(obj->pages == NULL);
3650
e9f24d5f
TU
3651 if (wait) {
3652 ret = i915_gem_object_wait_rendering(obj, false);
3653 if (ret)
3654 return ret;
3655 }
a8198eea 3656
596c5923 3657 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3658 i915_gem_object_finish_gtt(obj);
5323fd04 3659
8b1bc9b4
DV
3660 /* release the fence reg _after_ flushing */
3661 ret = i915_gem_object_put_fence(obj);
3662 if (ret)
3663 return ret;
8ef8561f
CW
3664
3665 __i915_vma_iounmap(vma);
8b1bc9b4 3666 }
96b47b65 3667
07fe0b12 3668 trace_i915_vma_unbind(vma);
db53a302 3669
777dc5bb 3670 vma->vm->unbind_vma(vma);
5e562f1d 3671 vma->bound = 0;
6f65e29a 3672
1c7f4bca 3673 list_del_init(&vma->vm_link);
596c5923 3674 if (vma->is_ggtt) {
fe14d5f4
TU
3675 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3676 obj->map_and_fenceable = false;
3677 } else if (vma->ggtt_view.pages) {
3678 sg_free_table(vma->ggtt_view.pages);
3679 kfree(vma->ggtt_view.pages);
fe14d5f4 3680 }
016a65a3 3681 vma->ggtt_view.pages = NULL;
fe14d5f4 3682 }
673a394b 3683
2f633156
BW
3684 drm_mm_remove_node(&vma->node);
3685 i915_gem_vma_destroy(vma);
3686
3687 /* Since the unbound list is global, only move to that list if
b93dab6e 3688 * no more VMAs exist. */
e2273302 3689 if (list_empty(&obj->vma_list))
2f633156 3690 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3691
70903c3b
CW
3692 /* And finally now the object is completely decoupled from this vma,
3693 * we can drop its hold on the backing storage and allow it to be
3694 * reaped by the shrinker.
3695 */
3696 i915_gem_object_unpin_pages(obj);
3697
88241785 3698 return 0;
54cf91dc
CW
3699}
3700
e9f24d5f
TU
3701int i915_vma_unbind(struct i915_vma *vma)
3702{
3703 return __i915_vma_unbind(vma, true);
3704}
3705
3706int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3707{
3708 return __i915_vma_unbind(vma, false);
3709}
3710
6e5a5beb 3711int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
4df2faf4 3712{
e2f80391 3713 struct intel_engine_cs *engine;
b4ac5afc 3714 int ret;
4df2faf4 3715
91c8a326 3716 lockdep_assert_held(&dev_priv->drm.struct_mutex);
6e5a5beb 3717
b4ac5afc 3718 for_each_engine(engine, dev_priv) {
62e63007
CW
3719 if (engine->last_context == NULL)
3720 continue;
3721
666796da 3722 ret = intel_engine_idle(engine);
1ec14ad3
CW
3723 if (ret)
3724 return ret;
3725 }
4df2faf4 3726
b4716185 3727 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3728 return 0;
4df2faf4
DV
3729}
3730
4144f9b5 3731static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3732 unsigned long cache_level)
3733{
4144f9b5 3734 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3735 struct drm_mm_node *other;
3736
4144f9b5
CW
3737 /*
3738 * On some machines we have to be careful when putting differing types
3739 * of snoopable memory together to avoid the prefetcher crossing memory
3740 * domains and dying. During vm initialisation, we decide whether or not
3741 * these constraints apply and set the drm_mm.color_adjust
3742 * appropriately.
42d6ab48 3743 */
4144f9b5 3744 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3745 return true;
3746
c6cfb325 3747 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3748 return true;
3749
3750 if (list_empty(&gtt_space->node_list))
3751 return true;
3752
3753 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3754 if (other->allocated && !other->hole_follows && other->color != cache_level)
3755 return false;
3756
3757 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3758 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3759 return false;
3760
3761 return true;
3762}
3763
673a394b 3764/**
91e6711e
JL
3765 * Finds free space in the GTT aperture and binds the object or a view of it
3766 * there.
14bb2c11
TU
3767 * @obj: object to bind
3768 * @vm: address space to bind into
3769 * @ggtt_view: global gtt view if applicable
3770 * @alignment: requested alignment
3771 * @flags: mask of PIN_* flags to use
673a394b 3772 */
262de145 3773static struct i915_vma *
07fe0b12
BW
3774i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3775 struct i915_address_space *vm,
ec7adb6e 3776 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3777 unsigned alignment,
ec7adb6e 3778 uint64_t flags)
673a394b 3779{
05394f39 3780 struct drm_device *dev = obj->base.dev;
72e96d64
JL
3781 struct drm_i915_private *dev_priv = to_i915(dev);
3782 struct i915_ggtt *ggtt = &dev_priv->ggtt;
65bd342f 3783 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3784 u32 search_flag, alloc_flag;
3785 u64 start, end;
65bd342f 3786 u64 size, fence_size;
2f633156 3787 struct i915_vma *vma;
07f73f69 3788 int ret;
673a394b 3789
91e6711e
JL
3790 if (i915_is_ggtt(vm)) {
3791 u32 view_size;
3792
3793 if (WARN_ON(!ggtt_view))
3794 return ERR_PTR(-EINVAL);
ec7adb6e 3795
91e6711e
JL
3796 view_size = i915_ggtt_view_size(obj, ggtt_view);
3797
3798 fence_size = i915_gem_get_gtt_size(dev,
3799 view_size,
3800 obj->tiling_mode);
3801 fence_alignment = i915_gem_get_gtt_alignment(dev,
3802 view_size,
3803 obj->tiling_mode,
3804 true);
3805 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3806 view_size,
3807 obj->tiling_mode,
3808 false);
3809 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3810 } else {
3811 fence_size = i915_gem_get_gtt_size(dev,
3812 obj->base.size,
3813 obj->tiling_mode);
3814 fence_alignment = i915_gem_get_gtt_alignment(dev,
3815 obj->base.size,
3816 obj->tiling_mode,
3817 true);
3818 unfenced_alignment =
3819 i915_gem_get_gtt_alignment(dev,
3820 obj->base.size,
3821 obj->tiling_mode,
3822 false);
3823 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3824 }
a00b10c3 3825
101b506a
MT
3826 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3827 end = vm->total;
3828 if (flags & PIN_MAPPABLE)
72e96d64 3829 end = min_t(u64, end, ggtt->mappable_end);
101b506a 3830 if (flags & PIN_ZONE_4G)
48ea1e32 3831 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3832
673a394b 3833 if (alignment == 0)
1ec9e26d 3834 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3835 unfenced_alignment;
1ec9e26d 3836 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3837 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3838 ggtt_view ? ggtt_view->type : 0,
3839 alignment);
262de145 3840 return ERR_PTR(-EINVAL);
673a394b
EA
3841 }
3842
91e6711e
JL
3843 /* If binding the object/GGTT view requires more space than the entire
3844 * aperture has, reject it early before evicting everything in a vain
3845 * attempt to find space.
654fc607 3846 */
91e6711e 3847 if (size > end) {
65bd342f 3848 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3849 ggtt_view ? ggtt_view->type : 0,
3850 size,
1ec9e26d 3851 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3852 end);
262de145 3853 return ERR_PTR(-E2BIG);
654fc607
CW
3854 }
3855
37e680a1 3856 ret = i915_gem_object_get_pages(obj);
6c085a72 3857 if (ret)
262de145 3858 return ERR_PTR(ret);
6c085a72 3859
fbdda6fb
CW
3860 i915_gem_object_pin_pages(obj);
3861
ec7adb6e
JL
3862 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3863 i915_gem_obj_lookup_or_create_vma(obj, vm);
3864
262de145 3865 if (IS_ERR(vma))
bc6bc15b 3866 goto err_unpin;
2f633156 3867
506a8e87
CW
3868 if (flags & PIN_OFFSET_FIXED) {
3869 uint64_t offset = flags & PIN_OFFSET_MASK;
3870
3871 if (offset & (alignment - 1) || offset + size > end) {
3872 ret = -EINVAL;
3873 goto err_free_vma;
3874 }
3875 vma->node.start = offset;
3876 vma->node.size = size;
3877 vma->node.color = obj->cache_level;
3878 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3879 if (ret) {
3880 ret = i915_gem_evict_for_vma(vma);
3881 if (ret == 0)
3882 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3883 }
3884 if (ret)
3885 goto err_free_vma;
101b506a 3886 } else {
506a8e87
CW
3887 if (flags & PIN_HIGH) {
3888 search_flag = DRM_MM_SEARCH_BELOW;
3889 alloc_flag = DRM_MM_CREATE_TOP;
3890 } else {
3891 search_flag = DRM_MM_SEARCH_DEFAULT;
3892 alloc_flag = DRM_MM_CREATE_DEFAULT;
3893 }
101b506a 3894
0a9ae0d7 3895search_free:
506a8e87
CW
3896 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3897 size, alignment,
3898 obj->cache_level,
3899 start, end,
3900 search_flag,
3901 alloc_flag);
3902 if (ret) {
3903 ret = i915_gem_evict_something(dev, vm, size, alignment,
3904 obj->cache_level,
3905 start, end,
3906 flags);
3907 if (ret == 0)
3908 goto search_free;
9731129c 3909
506a8e87
CW
3910 goto err_free_vma;
3911 }
673a394b 3912 }
4144f9b5 3913 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3914 ret = -EINVAL;
bc6bc15b 3915 goto err_remove_node;
673a394b
EA
3916 }
3917
fe14d5f4 3918 trace_i915_vma_bind(vma, flags);
0875546c 3919 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3920 if (ret)
e2273302 3921 goto err_remove_node;
fe14d5f4 3922
35c20a60 3923 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
1c7f4bca 3924 list_add_tail(&vma->vm_link, &vm->inactive_list);
bf1a1092 3925
262de145 3926 return vma;
2f633156 3927
bc6bc15b 3928err_remove_node:
6286ef9b 3929 drm_mm_remove_node(&vma->node);
bc6bc15b 3930err_free_vma:
2f633156 3931 i915_gem_vma_destroy(vma);
262de145 3932 vma = ERR_PTR(ret);
bc6bc15b 3933err_unpin:
2f633156 3934 i915_gem_object_unpin_pages(obj);
262de145 3935 return vma;
673a394b
EA
3936}
3937
000433b6 3938bool
2c22569b
CW
3939i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3940 bool force)
673a394b 3941{
673a394b
EA
3942 /* If we don't have a page list set up, then we're not pinned
3943 * to GPU, and we can ignore the cache flush because it'll happen
3944 * again at bind time.
3945 */
05394f39 3946 if (obj->pages == NULL)
000433b6 3947 return false;
673a394b 3948
769ce464
ID
3949 /*
3950 * Stolen memory is always coherent with the GPU as it is explicitly
3951 * marked as wc by the system, or the system is cache-coherent.
3952 */
6a2c4232 3953 if (obj->stolen || obj->phys_handle)
000433b6 3954 return false;
769ce464 3955
9c23f7fc
CW
3956 /* If the GPU is snooping the contents of the CPU cache,
3957 * we do not need to manually clear the CPU cache lines. However,
3958 * the caches are only snooped when the render cache is
3959 * flushed/invalidated. As we always have to emit invalidations
3960 * and flushes when moving into and out of the RENDER domain, correct
3961 * snooping behaviour occurs naturally as the result of our domain
3962 * tracking.
3963 */
0f71979a
CW
3964 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3965 obj->cache_dirty = true;
000433b6 3966 return false;
0f71979a 3967 }
9c23f7fc 3968
1c5d22f7 3969 trace_i915_gem_object_clflush(obj);
9da3da66 3970 drm_clflush_sg(obj->pages);
0f71979a 3971 obj->cache_dirty = false;
000433b6
CW
3972
3973 return true;
e47c68e9
EA
3974}
3975
3976/** Flushes the GTT write domain for the object if it's dirty. */
3977static void
05394f39 3978i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3979{
1c5d22f7
CW
3980 uint32_t old_write_domain;
3981
05394f39 3982 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3983 return;
3984
63256ec5 3985 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3986 * to it immediately go to main memory as far as we know, so there's
3987 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3988 *
3989 * However, we do have to enforce the order so that all writes through
3990 * the GTT land before any writes to the device, such as updates to
3991 * the GATT itself.
e47c68e9 3992 */
63256ec5
CW
3993 wmb();
3994
05394f39
CW
3995 old_write_domain = obj->base.write_domain;
3996 obj->base.write_domain = 0;
1c5d22f7 3997
de152b62 3998 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3999
1c5d22f7 4000 trace_i915_gem_object_change_domain(obj,
05394f39 4001 obj->base.read_domains,
1c5d22f7 4002 old_write_domain);
e47c68e9
EA
4003}
4004
4005/** Flushes the CPU write domain for the object if it's dirty. */
4006static void
e62b59e4 4007i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 4008{
1c5d22f7 4009 uint32_t old_write_domain;
e47c68e9 4010
05394f39 4011 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
4012 return;
4013
e62b59e4 4014 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 4015 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 4016
05394f39
CW
4017 old_write_domain = obj->base.write_domain;
4018 obj->base.write_domain = 0;
1c5d22f7 4019
de152b62 4020 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 4021
1c5d22f7 4022 trace_i915_gem_object_change_domain(obj,
05394f39 4023 obj->base.read_domains,
1c5d22f7 4024 old_write_domain);
e47c68e9
EA
4025}
4026
2ef7eeaa
EA
4027/**
4028 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
4029 * @obj: object to act on
4030 * @write: ask for write access or read only
2ef7eeaa
EA
4031 *
4032 * This function returns when the move is complete, including waiting on
4033 * flushes to occur.
4034 */
79e53945 4035int
2021746e 4036i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 4037{
72e96d64
JL
4038 struct drm_device *dev = obj->base.dev;
4039 struct drm_i915_private *dev_priv = to_i915(dev);
4040 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1c5d22f7 4041 uint32_t old_write_domain, old_read_domains;
43566ded 4042 struct i915_vma *vma;
e47c68e9 4043 int ret;
2ef7eeaa 4044
8d7e3de1
CW
4045 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4046 return 0;
4047
0201f1ec 4048 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4049 if (ret)
4050 return ret;
4051
43566ded
CW
4052 /* Flush and acquire obj->pages so that we are coherent through
4053 * direct access in memory with previous cached writes through
4054 * shmemfs and that our cache domain tracking remains valid.
4055 * For example, if the obj->filp was moved to swap without us
4056 * being notified and releasing the pages, we would mistakenly
4057 * continue to assume that the obj remained out of the CPU cached
4058 * domain.
4059 */
4060 ret = i915_gem_object_get_pages(obj);
4061 if (ret)
4062 return ret;
4063
e62b59e4 4064 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 4065
d0a57789
CW
4066 /* Serialise direct access to this object with the barriers for
4067 * coherent writes from the GPU, by effectively invalidating the
4068 * GTT domain upon first access.
4069 */
4070 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4071 mb();
4072
05394f39
CW
4073 old_write_domain = obj->base.write_domain;
4074 old_read_domains = obj->base.read_domains;
1c5d22f7 4075
e47c68e9
EA
4076 /* It should now be out of any other write domains, and we can update
4077 * the domain values for our changes.
4078 */
05394f39
CW
4079 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4080 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 4081 if (write) {
05394f39
CW
4082 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4083 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4084 obj->dirty = 1;
2ef7eeaa
EA
4085 }
4086
1c5d22f7
CW
4087 trace_i915_gem_object_change_domain(obj,
4088 old_read_domains,
4089 old_write_domain);
4090
8325a09d 4091 /* And bump the LRU for this access */
43566ded
CW
4092 vma = i915_gem_obj_to_ggtt(obj);
4093 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
1c7f4bca 4094 list_move_tail(&vma->vm_link,
72e96d64 4095 &ggtt->base.inactive_list);
8325a09d 4096
e47c68e9
EA
4097 return 0;
4098}
4099
ef55f92a
CW
4100/**
4101 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
4102 * @obj: object to act on
4103 * @cache_level: new cache level to set for the object
ef55f92a
CW
4104 *
4105 * After this function returns, the object will be in the new cache-level
4106 * across all GTT and the contents of the backing storage will be coherent,
4107 * with respect to the new cache-level. In order to keep the backing storage
4108 * coherent for all users, we only allow a single cache level to be set
4109 * globally on the object and prevent it from being changed whilst the
4110 * hardware is reading from the object. That is if the object is currently
4111 * on the scanout it will be set to uncached (or equivalent display
4112 * cache coherency) and all non-MOCS GPU access will also be uncached so
4113 * that all direct access to the scanout remains coherent.
4114 */
e4ffd173
CW
4115int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4116 enum i915_cache_level cache_level)
4117{
7bddb01f 4118 struct drm_device *dev = obj->base.dev;
df6f783a 4119 struct i915_vma *vma, *next;
ef55f92a 4120 bool bound = false;
ed75a55b 4121 int ret = 0;
e4ffd173
CW
4122
4123 if (obj->cache_level == cache_level)
ed75a55b 4124 goto out;
e4ffd173 4125
ef55f92a
CW
4126 /* Inspect the list of currently bound VMA and unbind any that would
4127 * be invalid given the new cache-level. This is principally to
4128 * catch the issue of the CS prefetch crossing page boundaries and
4129 * reading an invalid PTE on older architectures.
4130 */
1c7f4bca 4131 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
ef55f92a
CW
4132 if (!drm_mm_node_allocated(&vma->node))
4133 continue;
4134
4135 if (vma->pin_count) {
4136 DRM_DEBUG("can not change the cache level of pinned objects\n");
4137 return -EBUSY;
4138 }
4139
4144f9b5 4140 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 4141 ret = i915_vma_unbind(vma);
3089c6f2
BW
4142 if (ret)
4143 return ret;
ef55f92a
CW
4144 } else
4145 bound = true;
42d6ab48
CW
4146 }
4147
ef55f92a
CW
4148 /* We can reuse the existing drm_mm nodes but need to change the
4149 * cache-level on the PTE. We could simply unbind them all and
4150 * rebind with the correct cache-level on next use. However since
4151 * we already have a valid slot, dma mapping, pages etc, we may as
4152 * rewrite the PTE in the belief that doing so tramples upon less
4153 * state and so involves less work.
4154 */
4155 if (bound) {
4156 /* Before we change the PTE, the GPU must not be accessing it.
4157 * If we wait upon the object, we know that all the bound
4158 * VMA are no longer active.
4159 */
2e2f351d 4160 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
4161 if (ret)
4162 return ret;
4163
ef55f92a
CW
4164 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4165 /* Access to snoopable pages through the GTT is
4166 * incoherent and on some machines causes a hard
4167 * lockup. Relinquish the CPU mmaping to force
4168 * userspace to refault in the pages and we can
4169 * then double check if the GTT mapping is still
4170 * valid for that pointer access.
4171 */
4172 i915_gem_release_mmap(obj);
4173
4174 /* As we no longer need a fence for GTT access,
4175 * we can relinquish it now (and so prevent having
4176 * to steal a fence from someone else on the next
4177 * fence request). Note GPU activity would have
4178 * dropped the fence as all snoopable access is
4179 * supposed to be linear.
4180 */
e4ffd173
CW
4181 ret = i915_gem_object_put_fence(obj);
4182 if (ret)
4183 return ret;
ef55f92a
CW
4184 } else {
4185 /* We either have incoherent backing store and
4186 * so no GTT access or the architecture is fully
4187 * coherent. In such cases, existing GTT mmaps
4188 * ignore the cache bit in the PTE and we can
4189 * rewrite it without confusing the GPU or having
4190 * to force userspace to fault back in its mmaps.
4191 */
e4ffd173
CW
4192 }
4193
1c7f4bca 4194 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
4195 if (!drm_mm_node_allocated(&vma->node))
4196 continue;
4197
4198 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4199 if (ret)
4200 return ret;
4201 }
e4ffd173
CW
4202 }
4203
1c7f4bca 4204 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
4205 vma->node.color = cache_level;
4206 obj->cache_level = cache_level;
4207
ed75a55b 4208out:
ef55f92a
CW
4209 /* Flush the dirty CPU caches to the backing storage so that the
4210 * object is now coherent at its new cache level (with respect
4211 * to the access domain).
4212 */
b50a5371 4213 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 4214 if (i915_gem_clflush_object(obj, true))
c033666a 4215 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
4216 }
4217
e4ffd173
CW
4218 return 0;
4219}
4220
199adf40
BW
4221int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4222 struct drm_file *file)
e6994aee 4223{
199adf40 4224 struct drm_i915_gem_caching *args = data;
e6994aee 4225 struct drm_i915_gem_object *obj;
e6994aee 4226
a8ad0bd8 4227 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
432be69d
CW
4228 if (&obj->base == NULL)
4229 return -ENOENT;
e6994aee 4230
651d794f
CW
4231 switch (obj->cache_level) {
4232 case I915_CACHE_LLC:
4233 case I915_CACHE_L3_LLC:
4234 args->caching = I915_CACHING_CACHED;
4235 break;
4236
4257d3ba
CW
4237 case I915_CACHE_WT:
4238 args->caching = I915_CACHING_DISPLAY;
4239 break;
4240
651d794f
CW
4241 default:
4242 args->caching = I915_CACHING_NONE;
4243 break;
4244 }
e6994aee 4245
432be69d
CW
4246 drm_gem_object_unreference_unlocked(&obj->base);
4247 return 0;
e6994aee
CW
4248}
4249
199adf40
BW
4250int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4251 struct drm_file *file)
e6994aee 4252{
fac5e23e 4253 struct drm_i915_private *dev_priv = to_i915(dev);
199adf40 4254 struct drm_i915_gem_caching *args = data;
e6994aee
CW
4255 struct drm_i915_gem_object *obj;
4256 enum i915_cache_level level;
4257 int ret;
4258
199adf40
BW
4259 switch (args->caching) {
4260 case I915_CACHING_NONE:
e6994aee
CW
4261 level = I915_CACHE_NONE;
4262 break;
199adf40 4263 case I915_CACHING_CACHED:
e5756c10
ID
4264 /*
4265 * Due to a HW issue on BXT A stepping, GPU stores via a
4266 * snooped mapping may leave stale data in a corresponding CPU
4267 * cacheline, whereas normally such cachelines would get
4268 * invalidated.
4269 */
ca377809 4270 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
4271 return -ENODEV;
4272
e6994aee
CW
4273 level = I915_CACHE_LLC;
4274 break;
4257d3ba
CW
4275 case I915_CACHING_DISPLAY:
4276 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4277 break;
e6994aee
CW
4278 default:
4279 return -EINVAL;
4280 }
4281
fd0fe6ac
ID
4282 intel_runtime_pm_get(dev_priv);
4283
3bc2913e
BW
4284 ret = i915_mutex_lock_interruptible(dev);
4285 if (ret)
fd0fe6ac 4286 goto rpm_put;
3bc2913e 4287
a8ad0bd8 4288 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
e6994aee
CW
4289 if (&obj->base == NULL) {
4290 ret = -ENOENT;
4291 goto unlock;
4292 }
4293
4294 ret = i915_gem_object_set_cache_level(obj, level);
4295
4296 drm_gem_object_unreference(&obj->base);
4297unlock:
4298 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
4299rpm_put:
4300 intel_runtime_pm_put(dev_priv);
4301
e6994aee
CW
4302 return ret;
4303}
4304
b9241ea3 4305/*
2da3b9b9
CW
4306 * Prepare buffer for display plane (scanout, cursors, etc).
4307 * Can be called from an uninterruptible phase (modesetting) and allows
4308 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4309 */
4310int
2da3b9b9
CW
4311i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4312 u32 alignment,
e6617330 4313 const struct i915_ggtt_view *view)
b9241ea3 4314{
2da3b9b9 4315 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4316 int ret;
4317
cc98b413
CW
4318 /* Mark the pin_display early so that we account for the
4319 * display coherency whilst setting up the cache domains.
4320 */
8a0c39b1 4321 obj->pin_display++;
cc98b413 4322
a7ef0640
EA
4323 /* The display engine is not coherent with the LLC cache on gen6. As
4324 * a result, we make sure that the pinning that is about to occur is
4325 * done with uncached PTEs. This is lowest common denominator for all
4326 * chipsets.
4327 *
4328 * However for gen6+, we could do better by using the GFDT bit instead
4329 * of uncaching, which would allow us to flush all the LLC-cached data
4330 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4331 */
651d794f
CW
4332 ret = i915_gem_object_set_cache_level(obj,
4333 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4334 if (ret)
cc98b413 4335 goto err_unpin_display;
a7ef0640 4336
2da3b9b9
CW
4337 /* As the user may map the buffer once pinned in the display plane
4338 * (e.g. libkms for the bootup splash), we have to ensure that we
4339 * always use map_and_fenceable for all scanout buffers.
4340 */
50470bb0
TU
4341 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4342 view->type == I915_GGTT_VIEW_NORMAL ?
4343 PIN_MAPPABLE : 0);
2da3b9b9 4344 if (ret)
cc98b413 4345 goto err_unpin_display;
2da3b9b9 4346
e62b59e4 4347 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4348
2da3b9b9 4349 old_write_domain = obj->base.write_domain;
05394f39 4350 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4351
4352 /* It should now be out of any other write domains, and we can update
4353 * the domain values for our changes.
4354 */
e5f1d962 4355 obj->base.write_domain = 0;
05394f39 4356 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4357
4358 trace_i915_gem_object_change_domain(obj,
4359 old_read_domains,
2da3b9b9 4360 old_write_domain);
b9241ea3
ZW
4361
4362 return 0;
cc98b413
CW
4363
4364err_unpin_display:
8a0c39b1 4365 obj->pin_display--;
cc98b413
CW
4366 return ret;
4367}
4368
4369void
e6617330
TU
4370i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4371 const struct i915_ggtt_view *view)
cc98b413 4372{
8a0c39b1
TU
4373 if (WARN_ON(obj->pin_display == 0))
4374 return;
4375
e6617330
TU
4376 i915_gem_object_ggtt_unpin_view(obj, view);
4377
8a0c39b1 4378 obj->pin_display--;
b9241ea3
ZW
4379}
4380
e47c68e9
EA
4381/**
4382 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
4383 * @obj: object to act on
4384 * @write: requesting write or read-only access
e47c68e9
EA
4385 *
4386 * This function returns when the move is complete, including waiting on
4387 * flushes to occur.
4388 */
dabdfe02 4389int
919926ae 4390i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4391{
1c5d22f7 4392 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4393 int ret;
4394
8d7e3de1
CW
4395 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4396 return 0;
4397
0201f1ec 4398 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4399 if (ret)
4400 return ret;
4401
e47c68e9 4402 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4403
05394f39
CW
4404 old_write_domain = obj->base.write_domain;
4405 old_read_domains = obj->base.read_domains;
1c5d22f7 4406
e47c68e9 4407 /* Flush the CPU cache if it's still invalid. */
05394f39 4408 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4409 i915_gem_clflush_object(obj, false);
2ef7eeaa 4410
05394f39 4411 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4412 }
4413
4414 /* It should now be out of any other write domains, and we can update
4415 * the domain values for our changes.
4416 */
05394f39 4417 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4418
4419 /* If we're writing through the CPU, then the GPU read domains will
4420 * need to be invalidated at next use.
4421 */
4422 if (write) {
05394f39
CW
4423 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4424 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4425 }
2ef7eeaa 4426
1c5d22f7
CW
4427 trace_i915_gem_object_change_domain(obj,
4428 old_read_domains,
4429 old_write_domain);
4430
2ef7eeaa
EA
4431 return 0;
4432}
4433
673a394b
EA
4434/* Throttle our rendering by waiting until the ring has completed our requests
4435 * emitted over 20 msec ago.
4436 *
b962442e
EA
4437 * Note that if we were to use the current jiffies each time around the loop,
4438 * we wouldn't escape the function with any frames outstanding if the time to
4439 * render a frame was over 20ms.
4440 *
673a394b
EA
4441 * This should get us reasonable parallelism between CPU and GPU but also
4442 * relatively low latency when blocking on a particular request to finish.
4443 */
40a5f0de 4444static int
f787a5f5 4445i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4446{
fac5e23e 4447 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 4448 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4449 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4450 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 4451 int ret;
93533c29 4452
308887aa
DV
4453 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4454 if (ret)
4455 return ret;
4456
f4457ae7
CW
4457 /* ABI: return -EIO if already wedged */
4458 if (i915_terminally_wedged(&dev_priv->gpu_error))
4459 return -EIO;
e110e8d6 4460
1c25595f 4461 spin_lock(&file_priv->mm.lock);
f787a5f5 4462 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4463 if (time_after_eq(request->emitted_jiffies, recent_enough))
4464 break;
40a5f0de 4465
fcfa423c
JH
4466 /*
4467 * Note that the request might not have been submitted yet.
4468 * In which case emitted_jiffies will be zero.
4469 */
4470 if (!request->emitted_jiffies)
4471 continue;
4472
54fb2411 4473 target = request;
b962442e 4474 }
ff865885
JH
4475 if (target)
4476 i915_gem_request_reference(target);
1c25595f 4477 spin_unlock(&file_priv->mm.lock);
40a5f0de 4478
54fb2411 4479 if (target == NULL)
f787a5f5 4480 return 0;
2bc43b5c 4481
299259a3 4482 ret = __i915_wait_request(target, true, NULL, NULL);
73db04cf 4483 i915_gem_request_unreference(target);
ff865885 4484
40a5f0de
EA
4485 return ret;
4486}
4487
d23db88c
CW
4488static bool
4489i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4490{
4491 struct drm_i915_gem_object *obj = vma->obj;
4492
4493 if (alignment &&
4494 vma->node.start & (alignment - 1))
4495 return true;
4496
4497 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4498 return true;
4499
4500 if (flags & PIN_OFFSET_BIAS &&
4501 vma->node.start < (flags & PIN_OFFSET_MASK))
4502 return true;
4503
506a8e87
CW
4504 if (flags & PIN_OFFSET_FIXED &&
4505 vma->node.start != (flags & PIN_OFFSET_MASK))
4506 return true;
4507
d23db88c
CW
4508 return false;
4509}
4510
d0710abb
CW
4511void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4512{
4513 struct drm_i915_gem_object *obj = vma->obj;
4514 bool mappable, fenceable;
4515 u32 fence_size, fence_alignment;
4516
4517 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4518 obj->base.size,
4519 obj->tiling_mode);
4520 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4521 obj->base.size,
4522 obj->tiling_mode,
4523 true);
4524
4525 fenceable = (vma->node.size == fence_size &&
4526 (vma->node.start & (fence_alignment - 1)) == 0);
4527
4528 mappable = (vma->node.start + fence_size <=
62106b4f 4529 to_i915(obj->base.dev)->ggtt.mappable_end);
d0710abb
CW
4530
4531 obj->map_and_fenceable = mappable && fenceable;
4532}
4533
ec7adb6e
JL
4534static int
4535i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4536 struct i915_address_space *vm,
4537 const struct i915_ggtt_view *ggtt_view,
4538 uint32_t alignment,
4539 uint64_t flags)
673a394b 4540{
fac5e23e 4541 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
07fe0b12 4542 struct i915_vma *vma;
ef79e17c 4543 unsigned bound;
673a394b
EA
4544 int ret;
4545
6e7186af
BW
4546 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4547 return -ENODEV;
4548
bf3d149b 4549 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4550 return -EINVAL;
07fe0b12 4551
c826c449
CW
4552 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4553 return -EINVAL;
4554
ec7adb6e
JL
4555 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4556 return -EINVAL;
4557
4558 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4559 i915_gem_obj_to_vma(obj, vm);
4560
07fe0b12 4561 if (vma) {
d7f46fc4
BW
4562 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4563 return -EBUSY;
4564
d23db88c 4565 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4566 WARN(vma->pin_count,
ec7adb6e 4567 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4568 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4569 " obj->map_and_fenceable=%d\n",
ec7adb6e 4570 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4571 upper_32_bits(vma->node.start),
4572 lower_32_bits(vma->node.start),
fe14d5f4 4573 alignment,
d23db88c 4574 !!(flags & PIN_MAPPABLE),
05394f39 4575 obj->map_and_fenceable);
07fe0b12 4576 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4577 if (ret)
4578 return ret;
8ea99c92
DV
4579
4580 vma = NULL;
ac0c6b5a
CW
4581 }
4582 }
4583
ef79e17c 4584 bound = vma ? vma->bound : 0;
8ea99c92 4585 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4586 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4587 flags);
262de145
DV
4588 if (IS_ERR(vma))
4589 return PTR_ERR(vma);
0875546c
DV
4590 } else {
4591 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4592 if (ret)
4593 return ret;
4594 }
74898d7e 4595
91e6711e
JL
4596 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4597 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4598 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4599 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4600 }
ef79e17c 4601
8ea99c92 4602 vma->pin_count++;
673a394b
EA
4603 return 0;
4604}
4605
ec7adb6e
JL
4606int
4607i915_gem_object_pin(struct drm_i915_gem_object *obj,
4608 struct i915_address_space *vm,
4609 uint32_t alignment,
4610 uint64_t flags)
4611{
4612 return i915_gem_object_do_pin(obj, vm,
4613 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4614 alignment, flags);
4615}
4616
4617int
4618i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4619 const struct i915_ggtt_view *view,
4620 uint32_t alignment,
4621 uint64_t flags)
4622{
72e96d64
JL
4623 struct drm_device *dev = obj->base.dev;
4624 struct drm_i915_private *dev_priv = to_i915(dev);
4625 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4626
ade7daa1 4627 BUG_ON(!view);
ec7adb6e 4628
72e96d64 4629 return i915_gem_object_do_pin(obj, &ggtt->base, view,
6fafab76 4630 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4631}
4632
673a394b 4633void
e6617330
TU
4634i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4635 const struct i915_ggtt_view *view)
673a394b 4636{
e6617330 4637 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4638
e6617330 4639 WARN_ON(vma->pin_count == 0);
9abc4648 4640 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4641
30154650 4642 --vma->pin_count;
673a394b
EA
4643}
4644
673a394b
EA
4645int
4646i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4647 struct drm_file *file)
673a394b
EA
4648{
4649 struct drm_i915_gem_busy *args = data;
05394f39 4650 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4651 int ret;
4652
76c1dec1 4653 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4654 if (ret)
76c1dec1 4655 return ret;
673a394b 4656
a8ad0bd8 4657 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
c8725226 4658 if (&obj->base == NULL) {
1d7cfea1
CW
4659 ret = -ENOENT;
4660 goto unlock;
673a394b 4661 }
d1b851fc 4662
0be555b6
CW
4663 /* Count all active objects as busy, even if they are currently not used
4664 * by the gpu. Users of this interface expect objects to eventually
4665 * become non-busy without any further actions, therefore emit any
4666 * necessary flushes here.
c4de0a5d 4667 */
30dfebf3 4668 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4669 if (ret)
4670 goto unref;
0be555b6 4671
426960be
CW
4672 args->busy = 0;
4673 if (obj->active) {
4674 int i;
4675
666796da 4676 for (i = 0; i < I915_NUM_ENGINES; i++) {
426960be
CW
4677 struct drm_i915_gem_request *req;
4678
4679 req = obj->last_read_req[i];
4680 if (req)
4a570db5 4681 args->busy |= 1 << (16 + req->engine->exec_id);
426960be
CW
4682 }
4683 if (obj->last_write_req)
4a570db5 4684 args->busy |= obj->last_write_req->engine->exec_id;
426960be 4685 }
673a394b 4686
b4716185 4687unref:
05394f39 4688 drm_gem_object_unreference(&obj->base);
1d7cfea1 4689unlock:
673a394b 4690 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4691 return ret;
673a394b
EA
4692}
4693
4694int
4695i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4696 struct drm_file *file_priv)
4697{
0206e353 4698 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4699}
4700
3ef94daa
CW
4701int
4702i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4703 struct drm_file *file_priv)
4704{
fac5e23e 4705 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4706 struct drm_i915_gem_madvise *args = data;
05394f39 4707 struct drm_i915_gem_object *obj;
76c1dec1 4708 int ret;
3ef94daa
CW
4709
4710 switch (args->madv) {
4711 case I915_MADV_DONTNEED:
4712 case I915_MADV_WILLNEED:
4713 break;
4714 default:
4715 return -EINVAL;
4716 }
4717
1d7cfea1
CW
4718 ret = i915_mutex_lock_interruptible(dev);
4719 if (ret)
4720 return ret;
4721
a8ad0bd8 4722 obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
c8725226 4723 if (&obj->base == NULL) {
1d7cfea1
CW
4724 ret = -ENOENT;
4725 goto unlock;
3ef94daa 4726 }
3ef94daa 4727
d7f46fc4 4728 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4729 ret = -EINVAL;
4730 goto out;
3ef94daa
CW
4731 }
4732
656bfa3a
DV
4733 if (obj->pages &&
4734 obj->tiling_mode != I915_TILING_NONE &&
4735 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4736 if (obj->madv == I915_MADV_WILLNEED)
4737 i915_gem_object_unpin_pages(obj);
4738 if (args->madv == I915_MADV_WILLNEED)
4739 i915_gem_object_pin_pages(obj);
4740 }
4741
05394f39
CW
4742 if (obj->madv != __I915_MADV_PURGED)
4743 obj->madv = args->madv;
3ef94daa 4744
6c085a72 4745 /* if the object is no longer attached, discard its backing storage */
be6a0376 4746 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4747 i915_gem_object_truncate(obj);
4748
05394f39 4749 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4750
1d7cfea1 4751out:
05394f39 4752 drm_gem_object_unreference(&obj->base);
1d7cfea1 4753unlock:
3ef94daa 4754 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4755 return ret;
3ef94daa
CW
4756}
4757
37e680a1
CW
4758void i915_gem_object_init(struct drm_i915_gem_object *obj,
4759 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4760{
b4716185
CW
4761 int i;
4762
35c20a60 4763 INIT_LIST_HEAD(&obj->global_list);
666796da 4764 for (i = 0; i < I915_NUM_ENGINES; i++)
117897f4 4765 INIT_LIST_HEAD(&obj->engine_list[i]);
b25cb2f8 4766 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4767 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4768 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4769
37e680a1
CW
4770 obj->ops = ops;
4771
0327d6ba
CW
4772 obj->fence_reg = I915_FENCE_REG_NONE;
4773 obj->madv = I915_MADV_WILLNEED;
0327d6ba 4774
f19ec8cb 4775 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4776}
4777
37e680a1 4778static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4779 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4780 .get_pages = i915_gem_object_get_pages_gtt,
4781 .put_pages = i915_gem_object_put_pages_gtt,
4782};
4783
d37cd8a8 4784struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 4785 size_t size)
ac52bc56 4786{
c397b908 4787 struct drm_i915_gem_object *obj;
5949eac4 4788 struct address_space *mapping;
1a240d4d 4789 gfp_t mask;
fe3db79b 4790 int ret;
ac52bc56 4791
42dcedd4 4792 obj = i915_gem_object_alloc(dev);
c397b908 4793 if (obj == NULL)
fe3db79b 4794 return ERR_PTR(-ENOMEM);
673a394b 4795
fe3db79b
CW
4796 ret = drm_gem_object_init(dev, &obj->base, size);
4797 if (ret)
4798 goto fail;
673a394b 4799
bed1ea95
CW
4800 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4801 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4802 /* 965gm cannot relocate objects above 4GiB. */
4803 mask &= ~__GFP_HIGHMEM;
4804 mask |= __GFP_DMA32;
4805 }
4806
496ad9aa 4807 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4808 mapping_set_gfp_mask(mapping, mask);
5949eac4 4809
37e680a1 4810 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4811
c397b908
DV
4812 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4813 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4814
3d29b842
ED
4815 if (HAS_LLC(dev)) {
4816 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4817 * cache) for about a 10% performance improvement
4818 * compared to uncached. Graphics requests other than
4819 * display scanout are coherent with the CPU in
4820 * accessing this cache. This means in this mode we
4821 * don't need to clflush on the CPU side, and on the
4822 * GPU side we only need to flush internal caches to
4823 * get data visible to the CPU.
4824 *
4825 * However, we maintain the display planes as UC, and so
4826 * need to rebind when first used as such.
4827 */
4828 obj->cache_level = I915_CACHE_LLC;
4829 } else
4830 obj->cache_level = I915_CACHE_NONE;
4831
d861e338
DV
4832 trace_i915_gem_object_create(obj);
4833
05394f39 4834 return obj;
fe3db79b
CW
4835
4836fail:
4837 i915_gem_object_free(obj);
4838
4839 return ERR_PTR(ret);
c397b908
DV
4840}
4841
340fbd8c
CW
4842static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4843{
4844 /* If we are the last user of the backing storage (be it shmemfs
4845 * pages or stolen etc), we know that the pages are going to be
4846 * immediately released. In this case, we can then skip copying
4847 * back the contents from the GPU.
4848 */
4849
4850 if (obj->madv != I915_MADV_WILLNEED)
4851 return false;
4852
4853 if (obj->base.filp == NULL)
4854 return true;
4855
4856 /* At first glance, this looks racy, but then again so would be
4857 * userspace racing mmap against close. However, the first external
4858 * reference to the filp can only be obtained through the
4859 * i915_gem_mmap_ioctl() which safeguards us against the user
4860 * acquiring such a reference whilst we are in the middle of
4861 * freeing the object.
4862 */
4863 return atomic_long_read(&obj->base.filp->f_count) == 1;
4864}
4865
1488fc08 4866void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4867{
1488fc08 4868 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4869 struct drm_device *dev = obj->base.dev;
fac5e23e 4870 struct drm_i915_private *dev_priv = to_i915(dev);
07fe0b12 4871 struct i915_vma *vma, *next;
673a394b 4872
f65c9168
PZ
4873 intel_runtime_pm_get(dev_priv);
4874
26e12f89
CW
4875 trace_i915_gem_object_destroy(obj);
4876
1c7f4bca 4877 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
d7f46fc4
BW
4878 int ret;
4879
4880 vma->pin_count = 0;
4881 ret = i915_vma_unbind(vma);
07fe0b12
BW
4882 if (WARN_ON(ret == -ERESTARTSYS)) {
4883 bool was_interruptible;
1488fc08 4884
07fe0b12
BW
4885 was_interruptible = dev_priv->mm.interruptible;
4886 dev_priv->mm.interruptible = false;
1488fc08 4887
07fe0b12 4888 WARN_ON(i915_vma_unbind(vma));
1488fc08 4889
07fe0b12
BW
4890 dev_priv->mm.interruptible = was_interruptible;
4891 }
1488fc08
CW
4892 }
4893
1d64ae71
BW
4894 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4895 * before progressing. */
4896 if (obj->stolen)
4897 i915_gem_object_unpin_pages(obj);
4898
a071fa00
DV
4899 WARN_ON(obj->frontbuffer_bits);
4900
656bfa3a
DV
4901 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4902 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4903 obj->tiling_mode != I915_TILING_NONE)
4904 i915_gem_object_unpin_pages(obj);
4905
401c29f6
BW
4906 if (WARN_ON(obj->pages_pin_count))
4907 obj->pages_pin_count = 0;
340fbd8c 4908 if (discard_backing_storage(obj))
5537252b 4909 obj->madv = I915_MADV_DONTNEED;
37e680a1 4910 i915_gem_object_put_pages(obj);
d8cb5086 4911 i915_gem_object_free_mmap_offset(obj);
de151cf6 4912
9da3da66
CW
4913 BUG_ON(obj->pages);
4914
2f745ad3
CW
4915 if (obj->base.import_attach)
4916 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4917
5cc9ed4b
CW
4918 if (obj->ops->release)
4919 obj->ops->release(obj);
4920
05394f39
CW
4921 drm_gem_object_release(&obj->base);
4922 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4923
05394f39 4924 kfree(obj->bit_17);
42dcedd4 4925 i915_gem_object_free(obj);
f65c9168
PZ
4926
4927 intel_runtime_pm_put(dev_priv);
673a394b
EA
4928}
4929
ec7adb6e
JL
4930struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4931 struct i915_address_space *vm)
e656a6cb
DV
4932{
4933 struct i915_vma *vma;
1c7f4bca 4934 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4935 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4936 vma->vm == vm)
e656a6cb 4937 return vma;
ec7adb6e
JL
4938 }
4939 return NULL;
4940}
4941
4942struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4943 const struct i915_ggtt_view *view)
4944{
ec7adb6e 4945 struct i915_vma *vma;
e656a6cb 4946
598b9ec8 4947 GEM_BUG_ON(!view);
ec7adb6e 4948
1c7f4bca 4949 list_for_each_entry(vma, &obj->vma_list, obj_link)
598b9ec8 4950 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4951 return vma;
e656a6cb
DV
4952 return NULL;
4953}
4954
2f633156
BW
4955void i915_gem_vma_destroy(struct i915_vma *vma)
4956{
4957 WARN_ON(vma->node.allocated);
aaa05667
CW
4958
4959 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4960 if (!list_empty(&vma->exec_list))
4961 return;
4962
596c5923
CW
4963 if (!vma->is_ggtt)
4964 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
b9d06dd9 4965
1c7f4bca 4966 list_del(&vma->obj_link);
b93dab6e 4967
e20d2ab7 4968 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4969}
4970
e3efda49 4971static void
117897f4 4972i915_gem_stop_engines(struct drm_device *dev)
e3efda49 4973{
fac5e23e 4974 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4975 struct intel_engine_cs *engine;
e3efda49 4976
b4ac5afc 4977 for_each_engine(engine, dev_priv)
117897f4 4978 dev_priv->gt.stop_engine(engine);
e3efda49
CW
4979}
4980
29105ccc 4981int
45c5f202 4982i915_gem_suspend(struct drm_device *dev)
29105ccc 4983{
fac5e23e 4984 struct drm_i915_private *dev_priv = to_i915(dev);
45c5f202 4985 int ret = 0;
28dfe52a 4986
45c5f202 4987 mutex_lock(&dev->struct_mutex);
6e5a5beb 4988 ret = i915_gem_wait_for_idle(dev_priv);
f7403347 4989 if (ret)
45c5f202 4990 goto err;
f7403347 4991
c033666a 4992 i915_gem_retire_requests(dev_priv);
673a394b 4993
117897f4 4994 i915_gem_stop_engines(dev);
b2e862d0 4995 i915_gem_context_lost(dev_priv);
45c5f202
CW
4996 mutex_unlock(&dev->struct_mutex);
4997
737b1506 4998 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4999 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
5000 flush_delayed_work(&dev_priv->gt.idle_work);
29105ccc 5001
bdcf120b
CW
5002 /* Assert that we sucessfully flushed all the work and
5003 * reset the GPU back to its idle, low power state.
5004 */
67d97da3 5005 WARN_ON(dev_priv->gt.awake);
bdcf120b 5006
673a394b 5007 return 0;
45c5f202
CW
5008
5009err:
5010 mutex_unlock(&dev->struct_mutex);
5011 return ret;
673a394b
EA
5012}
5013
f691e2f4
DV
5014void i915_gem_init_swizzling(struct drm_device *dev)
5015{
fac5e23e 5016 struct drm_i915_private *dev_priv = to_i915(dev);
f691e2f4 5017
11782b02 5018 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
5019 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5020 return;
5021
5022 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5023 DISP_TILE_SURFACE_SWIZZLING);
5024
11782b02
DV
5025 if (IS_GEN5(dev))
5026 return;
5027
f691e2f4
DV
5028 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5029 if (IS_GEN6(dev))
6b26c86d 5030 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 5031 else if (IS_GEN7(dev))
6b26c86d 5032 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
5033 else if (IS_GEN8(dev))
5034 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
5035 else
5036 BUG();
f691e2f4 5037}
e21af88d 5038
81e7f200
VS
5039static void init_unused_ring(struct drm_device *dev, u32 base)
5040{
fac5e23e 5041 struct drm_i915_private *dev_priv = to_i915(dev);
81e7f200
VS
5042
5043 I915_WRITE(RING_CTL(base), 0);
5044 I915_WRITE(RING_HEAD(base), 0);
5045 I915_WRITE(RING_TAIL(base), 0);
5046 I915_WRITE(RING_START(base), 0);
5047}
5048
5049static void init_unused_rings(struct drm_device *dev)
5050{
5051 if (IS_I830(dev)) {
5052 init_unused_ring(dev, PRB1_BASE);
5053 init_unused_ring(dev, SRB0_BASE);
5054 init_unused_ring(dev, SRB1_BASE);
5055 init_unused_ring(dev, SRB2_BASE);
5056 init_unused_ring(dev, SRB3_BASE);
5057 } else if (IS_GEN2(dev)) {
5058 init_unused_ring(dev, SRB0_BASE);
5059 init_unused_ring(dev, SRB1_BASE);
5060 } else if (IS_GEN3(dev)) {
5061 init_unused_ring(dev, PRB1_BASE);
5062 init_unused_ring(dev, PRB2_BASE);
5063 }
5064}
5065
117897f4 5066int i915_gem_init_engines(struct drm_device *dev)
8187a2b7 5067{
fac5e23e 5068 struct drm_i915_private *dev_priv = to_i915(dev);
8187a2b7 5069 int ret;
68f95ba9 5070
5c1143bb 5071 ret = intel_init_render_ring_buffer(dev);
68f95ba9 5072 if (ret)
b6913e4b 5073 return ret;
68f95ba9
CW
5074
5075 if (HAS_BSD(dev)) {
5c1143bb 5076 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
5077 if (ret)
5078 goto cleanup_render_ring;
d1b851fc 5079 }
68f95ba9 5080
d39398f5 5081 if (HAS_BLT(dev)) {
549f7365
CW
5082 ret = intel_init_blt_ring_buffer(dev);
5083 if (ret)
5084 goto cleanup_bsd_ring;
5085 }
5086
9a8a2213
BW
5087 if (HAS_VEBOX(dev)) {
5088 ret = intel_init_vebox_ring_buffer(dev);
5089 if (ret)
5090 goto cleanup_blt_ring;
5091 }
5092
845f74a7
ZY
5093 if (HAS_BSD2(dev)) {
5094 ret = intel_init_bsd2_ring_buffer(dev);
5095 if (ret)
5096 goto cleanup_vebox_ring;
5097 }
9a8a2213 5098
4fc7c971
BW
5099 return 0;
5100
9a8a2213 5101cleanup_vebox_ring:
117897f4 5102 intel_cleanup_engine(&dev_priv->engine[VECS]);
4fc7c971 5103cleanup_blt_ring:
117897f4 5104 intel_cleanup_engine(&dev_priv->engine[BCS]);
4fc7c971 5105cleanup_bsd_ring:
117897f4 5106 intel_cleanup_engine(&dev_priv->engine[VCS]);
4fc7c971 5107cleanup_render_ring:
117897f4 5108 intel_cleanup_engine(&dev_priv->engine[RCS]);
4fc7c971
BW
5109
5110 return ret;
5111}
5112
5113int
5114i915_gem_init_hw(struct drm_device *dev)
5115{
fac5e23e 5116 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 5117 struct intel_engine_cs *engine;
d200cda6 5118 int ret;
4fc7c971 5119
5e4f5189
CW
5120 /* Double layer security blanket, see i915_gem_init() */
5121 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5122
3accaf7e 5123 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 5124 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 5125
0bf21347
VS
5126 if (IS_HASWELL(dev))
5127 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5128 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 5129
88a2b2a3 5130 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
5131 if (IS_IVYBRIDGE(dev)) {
5132 u32 temp = I915_READ(GEN7_MSG_CTL);
5133 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5134 I915_WRITE(GEN7_MSG_CTL, temp);
5135 } else if (INTEL_INFO(dev)->gen >= 7) {
5136 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5137 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5138 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5139 }
88a2b2a3
BW
5140 }
5141
4fc7c971
BW
5142 i915_gem_init_swizzling(dev);
5143
d5abdfda
DV
5144 /*
5145 * At least 830 can leave some of the unused rings
5146 * "active" (ie. head != tail) after resume which
5147 * will prevent c3 entry. Makes sure all unused rings
5148 * are totally idle.
5149 */
5150 init_unused_rings(dev);
5151
ed54c1a1 5152 BUG_ON(!dev_priv->kernel_context);
90638cc1 5153
4ad2fd88
JH
5154 ret = i915_ppgtt_init_hw(dev);
5155 if (ret) {
5156 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5157 goto out;
5158 }
5159
5160 /* Need to do basic initialisation of all rings first: */
b4ac5afc 5161 for_each_engine(engine, dev_priv) {
e2f80391 5162 ret = engine->init_hw(engine);
35a57ffb 5163 if (ret)
5e4f5189 5164 goto out;
35a57ffb 5165 }
99433931 5166
0ccdacf6
PA
5167 intel_mocs_init_l3cc_table(dev);
5168
33a732f4 5169 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
5170 ret = intel_guc_setup(dev);
5171 if (ret)
5172 goto out;
33a732f4 5173
5e4f5189
CW
5174out:
5175 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 5176 return ret;
8187a2b7
ZN
5177}
5178
1070a42b
CW
5179int i915_gem_init(struct drm_device *dev)
5180{
fac5e23e 5181 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
5182 int ret;
5183
1070a42b 5184 mutex_lock(&dev->struct_mutex);
d62b4892 5185
a83014d3 5186 if (!i915.enable_execlists) {
f3dc74c0 5187 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
117897f4
TU
5188 dev_priv->gt.init_engines = i915_gem_init_engines;
5189 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5190 dev_priv->gt.stop_engine = intel_stop_engine;
454afebd 5191 } else {
f3dc74c0 5192 dev_priv->gt.execbuf_submit = intel_execlists_submission;
117897f4
TU
5193 dev_priv->gt.init_engines = intel_logical_rings_init;
5194 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5195 dev_priv->gt.stop_engine = intel_logical_ring_stop;
a83014d3
OM
5196 }
5197
5e4f5189
CW
5198 /* This is just a security blanket to placate dragons.
5199 * On some systems, we very sporadically observe that the first TLBs
5200 * used by the CS may be stale, despite us poking the TLB reset. If
5201 * we hold the forcewake during initialisation these problems
5202 * just magically go away.
5203 */
5204 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5205
72778cb2 5206 i915_gem_init_userptr(dev_priv);
d85489d3 5207 i915_gem_init_ggtt(dev);
d62b4892 5208
2fa48d8d 5209 ret = i915_gem_context_init(dev);
7bcc3777
JN
5210 if (ret)
5211 goto out_unlock;
2fa48d8d 5212
117897f4 5213 ret = dev_priv->gt.init_engines(dev);
35a57ffb 5214 if (ret)
7bcc3777 5215 goto out_unlock;
2fa48d8d 5216
1070a42b 5217 ret = i915_gem_init_hw(dev);
60990320
CW
5218 if (ret == -EIO) {
5219 /* Allow ring initialisation to fail by marking the GPU as
5220 * wedged. But we only want to do this where the GPU is angry,
5221 * for all other failure, such as an allocation failure, bail.
5222 */
5223 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 5224 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 5225 ret = 0;
1070a42b 5226 }
7bcc3777
JN
5227
5228out_unlock:
5e4f5189 5229 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 5230 mutex_unlock(&dev->struct_mutex);
1070a42b 5231
60990320 5232 return ret;
1070a42b
CW
5233}
5234
8187a2b7 5235void
117897f4 5236i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 5237{
fac5e23e 5238 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 5239 struct intel_engine_cs *engine;
8187a2b7 5240
b4ac5afc 5241 for_each_engine(engine, dev_priv)
117897f4 5242 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
5243}
5244
64193406 5245static void
666796da 5246init_engine_lists(struct intel_engine_cs *engine)
64193406 5247{
0bc40be8
TU
5248 INIT_LIST_HEAD(&engine->active_list);
5249 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
5250}
5251
40ae4e16
ID
5252void
5253i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5254{
91c8a326 5255 struct drm_device *dev = &dev_priv->drm;
40ae4e16
ID
5256
5257 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5258 !IS_CHERRYVIEW(dev_priv))
5259 dev_priv->num_fence_regs = 32;
5260 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5261 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5262 dev_priv->num_fence_regs = 16;
5263 else
5264 dev_priv->num_fence_regs = 8;
5265
c033666a 5266 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
5267 dev_priv->num_fence_regs =
5268 I915_READ(vgtif_reg(avail_rs.fence_num));
5269
5270 /* Initialize fence registers to zero */
5271 i915_gem_restore_fences(dev);
5272
5273 i915_gem_detect_bit_6_swizzle(dev);
5274}
5275
673a394b 5276void
d64aa096 5277i915_gem_load_init(struct drm_device *dev)
673a394b 5278{
fac5e23e 5279 struct drm_i915_private *dev_priv = to_i915(dev);
42dcedd4
CW
5280 int i;
5281
efab6d8d 5282 dev_priv->objects =
42dcedd4
CW
5283 kmem_cache_create("i915_gem_object",
5284 sizeof(struct drm_i915_gem_object), 0,
5285 SLAB_HWCACHE_ALIGN,
5286 NULL);
e20d2ab7
CW
5287 dev_priv->vmas =
5288 kmem_cache_create("i915_gem_vma",
5289 sizeof(struct i915_vma), 0,
5290 SLAB_HWCACHE_ALIGN,
5291 NULL);
efab6d8d
CW
5292 dev_priv->requests =
5293 kmem_cache_create("i915_gem_request",
5294 sizeof(struct drm_i915_gem_request), 0,
5295 SLAB_HWCACHE_ALIGN,
5296 NULL);
673a394b 5297
fc8c067e 5298 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 5299 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5300 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5301 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5302 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
5303 for (i = 0; i < I915_NUM_ENGINES; i++)
5304 init_engine_lists(&dev_priv->engine[i]);
4b9de737 5305 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5306 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
67d97da3 5307 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 5308 i915_gem_retire_work_handler);
67d97da3 5309 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 5310 i915_gem_idle_work_handler);
1f15b76f 5311 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 5312 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5313
72bfa19c
CW
5314 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5315
19b2dbde 5316 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 5317
6b95a207 5318 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5319
ce453d81
CW
5320 dev_priv->mm.interruptible = true;
5321
f99d7069 5322 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5323}
71acb5eb 5324
d64aa096
ID
5325void i915_gem_load_cleanup(struct drm_device *dev)
5326{
5327 struct drm_i915_private *dev_priv = to_i915(dev);
5328
5329 kmem_cache_destroy(dev_priv->requests);
5330 kmem_cache_destroy(dev_priv->vmas);
5331 kmem_cache_destroy(dev_priv->objects);
5332}
5333
461fb99c
CW
5334int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5335{
5336 struct drm_i915_gem_object *obj;
5337
5338 /* Called just before we write the hibernation image.
5339 *
5340 * We need to update the domain tracking to reflect that the CPU
5341 * will be accessing all the pages to create and restore from the
5342 * hibernation, and so upon restoration those pages will be in the
5343 * CPU domain.
5344 *
5345 * To make sure the hibernation image contains the latest state,
5346 * we update that state just before writing out the image.
5347 */
5348
5349 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5350 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5351 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5352 }
5353
5354 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5355 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5356 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5357 }
5358
5359 return 0;
5360}
5361
f787a5f5 5362void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5363{
f787a5f5 5364 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5365
5366 /* Clean up our request list when the client is going away, so that
5367 * later retire_requests won't dereference our soon-to-be-gone
5368 * file_priv.
5369 */
1c25595f 5370 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5371 while (!list_empty(&file_priv->mm.request_list)) {
5372 struct drm_i915_gem_request *request;
5373
5374 request = list_first_entry(&file_priv->mm.request_list,
5375 struct drm_i915_gem_request,
5376 client_list);
5377 list_del(&request->client_list);
5378 request->file_priv = NULL;
5379 }
1c25595f 5380 spin_unlock(&file_priv->mm.lock);
b29c19b6 5381
2e1b8730 5382 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5383 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5384 list_del(&file_priv->rps.link);
8d3afd7d 5385 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5386 }
b29c19b6
CW
5387}
5388
5389int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5390{
5391 struct drm_i915_file_private *file_priv;
e422b888 5392 int ret;
b29c19b6
CW
5393
5394 DRM_DEBUG_DRIVER("\n");
5395
5396 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5397 if (!file_priv)
5398 return -ENOMEM;
5399
5400 file->driver_priv = file_priv;
f19ec8cb 5401 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 5402 file_priv->file = file;
2e1b8730 5403 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5404
5405 spin_lock_init(&file_priv->mm.lock);
5406 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5407
de1add36
TU
5408 file_priv->bsd_ring = -1;
5409
e422b888
BW
5410 ret = i915_gem_context_open(dev, file);
5411 if (ret)
5412 kfree(file_priv);
b29c19b6 5413
e422b888 5414 return ret;
b29c19b6
CW
5415}
5416
b680c37a
DV
5417/**
5418 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5419 * @old: current GEM buffer for the frontbuffer slots
5420 * @new: new GEM buffer for the frontbuffer slots
5421 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5422 *
5423 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5424 * from @old and setting them in @new. Both @old and @new can be NULL.
5425 */
a071fa00
DV
5426void i915_gem_track_fb(struct drm_i915_gem_object *old,
5427 struct drm_i915_gem_object *new,
5428 unsigned frontbuffer_bits)
5429{
5430 if (old) {
5431 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5432 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5433 old->frontbuffer_bits &= ~frontbuffer_bits;
5434 }
5435
5436 if (new) {
5437 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5438 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5439 new->frontbuffer_bits |= frontbuffer_bits;
5440 }
5441}
5442
a70a3148 5443/* All the new VM stuff */
088e0df4
MT
5444u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5445 struct i915_address_space *vm)
a70a3148 5446{
fac5e23e 5447 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
a70a3148
BW
5448 struct i915_vma *vma;
5449
896ab1a5 5450 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5451
1c7f4bca 5452 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5453 if (vma->is_ggtt &&
ec7adb6e
JL
5454 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5455 continue;
5456 if (vma->vm == vm)
a70a3148 5457 return vma->node.start;
a70a3148 5458 }
ec7adb6e 5459
f25748ea
DV
5460 WARN(1, "%s vma for this object not found.\n",
5461 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5462 return -1;
5463}
5464
088e0df4
MT
5465u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5466 const struct i915_ggtt_view *view)
a70a3148
BW
5467{
5468 struct i915_vma *vma;
5469
1c7f4bca 5470 list_for_each_entry(vma, &o->vma_list, obj_link)
8aac2220 5471 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5472 return vma->node.start;
5473
5678ad73 5474 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5475 return -1;
5476}
5477
5478bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5479 struct i915_address_space *vm)
5480{
5481 struct i915_vma *vma;
5482
1c7f4bca 5483 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5484 if (vma->is_ggtt &&
ec7adb6e
JL
5485 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5486 continue;
5487 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5488 return true;
5489 }
5490
5491 return false;
5492}
5493
5494bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5495 const struct i915_ggtt_view *view)
ec7adb6e 5496{
ec7adb6e
JL
5497 struct i915_vma *vma;
5498
1c7f4bca 5499 list_for_each_entry(vma, &o->vma_list, obj_link)
ff5ec22d 5500 if (vma->is_ggtt &&
9abc4648 5501 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5502 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5503 return true;
5504
5505 return false;
5506}
5507
5508bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5509{
5a1d5eb0 5510 struct i915_vma *vma;
a70a3148 5511
1c7f4bca 5512 list_for_each_entry(vma, &o->vma_list, obj_link)
5a1d5eb0 5513 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5514 return true;
5515
5516 return false;
5517}
5518
8da32727 5519unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
a70a3148 5520{
a70a3148
BW
5521 struct i915_vma *vma;
5522
8da32727 5523 GEM_BUG_ON(list_empty(&o->vma_list));
a70a3148 5524
1c7f4bca 5525 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5526 if (vma->is_ggtt &&
8da32727 5527 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
a70a3148 5528 return vma->node.size;
ec7adb6e 5529 }
8da32727 5530
a70a3148
BW
5531 return 0;
5532}
5533
ec7adb6e 5534bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5535{
5536 struct i915_vma *vma;
1c7f4bca 5537 list_for_each_entry(vma, &obj->vma_list, obj_link)
ec7adb6e
JL
5538 if (vma->pin_count > 0)
5539 return true;
a6631ae1 5540
ec7adb6e 5541 return false;
5c2abbea 5542}
ea70299d 5543
033908ae
DG
5544/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5545struct page *
5546i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5547{
5548 struct page *page;
5549
5550 /* Only default objects have per-page dirty tracking */
b9bcd14a 5551 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
033908ae
DG
5552 return NULL;
5553
5554 page = i915_gem_object_get_page(obj, n);
5555 set_page_dirty(page);
5556 return page;
5557}
5558
ea70299d
DG
5559/* Allocate a new GEM object and fill it with the supplied data */
5560struct drm_i915_gem_object *
5561i915_gem_object_create_from_data(struct drm_device *dev,
5562 const void *data, size_t size)
5563{
5564 struct drm_i915_gem_object *obj;
5565 struct sg_table *sg;
5566 size_t bytes;
5567 int ret;
5568
d37cd8a8 5569 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 5570 if (IS_ERR(obj))
ea70299d
DG
5571 return obj;
5572
5573 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5574 if (ret)
5575 goto fail;
5576
5577 ret = i915_gem_object_get_pages(obj);
5578 if (ret)
5579 goto fail;
5580
5581 i915_gem_object_pin_pages(obj);
5582 sg = obj->pages;
5583 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5584 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5585 i915_gem_object_unpin_pages(obj);
5586
5587 if (WARN_ON(bytes != size)) {
5588 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5589 ret = -EFAULT;
5590 goto fail;
5591 }
5592
5593 return obj;
5594
5595fail:
5596 drm_gem_object_unreference(&obj->base);
5597 return ERR_PTR(ret);
5598}