]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Use vblank evade mechanism in mmio_flip
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43 63static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 64
c76ce038
CW
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
2c22569b
CW
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
61050808
CW
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
5d82e3e6 87 obj->fence_dirty = false;
61050808
CW
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
73aa808f
CW
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
c20e8355 104 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
c20e8355 107 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108}
109
21dd3734 110static int
33196ded 111i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 112{
30dbf0c0
CW
113 int ret;
114
7abb690a
DV
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
1f83fee0 117 if (EXIT_COND)
30dbf0c0
CW
118 return 0;
119
0a6759c6
DV
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
1f83fee0
DV
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
0a6759c6
DV
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
30dbf0c0 132 return ret;
0a6759c6 133 }
1f83fee0 134#undef EXIT_COND
30dbf0c0 135
21dd3734 136 return 0;
30dbf0c0
CW
137}
138
54cf91dc 139int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 140{
33196ded 141 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
142 int ret;
143
33196ded 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
23bc5982 152 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
153 return 0;
154}
30dbf0c0 155
7d1c4804 156static inline bool
05394f39 157i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 158{
9843877d 159 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
160}
161
79e53945
JB
162int
163i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 164 struct drm_file *file)
79e53945 165{
93d18799 166 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 167 struct drm_i915_gem_init *args = data;
2021746e 168
7bb6fb8d
DV
169 if (drm_core_check_feature(dev, DRIVER_MODESET))
170 return -ENODEV;
171
2021746e
CW
172 if (args->gtt_start >= args->gtt_end ||
173 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174 return -EINVAL;
79e53945 175
f534bc0b
DV
176 /* GEM with user mode setting was never supported on ilk and later. */
177 if (INTEL_INFO(dev)->gen >= 5)
178 return -ENODEV;
179
79e53945 180 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
181 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182 args->gtt_end);
93d18799 183 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
184 mutex_unlock(&dev->struct_mutex);
185
2021746e 186 return 0;
673a394b
EA
187}
188
5a125c3c
EA
189int
190i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 191 struct drm_file *file)
5a125c3c 192{
73aa808f 193 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 194 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
195 struct drm_i915_gem_object *obj;
196 size_t pinned;
5a125c3c 197
6299f992 198 pinned = 0;
73aa808f 199 mutex_lock(&dev->struct_mutex);
35c20a60 200 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 201 if (i915_gem_obj_is_pinned(obj))
f343c5f6 202 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 203 mutex_unlock(&dev->struct_mutex);
5a125c3c 204
853ba5d2 205 args->aper_size = dev_priv->gtt.base.total;
0206e353 206 args->aper_available_size = args->aper_size - pinned;
6299f992 207
5a125c3c
EA
208 return 0;
209}
210
00731155
CW
211static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
212{
213 drm_dma_handle_t *phys = obj->phys_handle;
214
215 if (!phys)
216 return;
217
218 if (obj->madv == I915_MADV_WILLNEED) {
219 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
220 char *vaddr = phys->vaddr;
221 int i;
222
223 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
224 struct page *page = shmem_read_mapping_page(mapping, i);
225 if (!IS_ERR(page)) {
226 char *dst = kmap_atomic(page);
227 memcpy(dst, vaddr, PAGE_SIZE);
228 drm_clflush_virt_range(dst, PAGE_SIZE);
229 kunmap_atomic(dst);
230
231 set_page_dirty(page);
232 mark_page_accessed(page);
233 page_cache_release(page);
234 }
235 vaddr += PAGE_SIZE;
236 }
237 i915_gem_chipset_flush(obj->base.dev);
238 }
239
240#ifdef CONFIG_X86
241 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
242#endif
243 drm_pci_free(obj->base.dev, phys);
244 obj->phys_handle = NULL;
245}
246
247int
248i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
249 int align)
250{
251 drm_dma_handle_t *phys;
252 struct address_space *mapping;
253 char *vaddr;
254 int i;
255
256 if (obj->phys_handle) {
257 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
258 return -EBUSY;
259
260 return 0;
261 }
262
263 if (obj->madv != I915_MADV_WILLNEED)
264 return -EFAULT;
265
266 if (obj->base.filp == NULL)
267 return -EINVAL;
268
269 /* create a new object */
270 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
271 if (!phys)
272 return -ENOMEM;
273
274 vaddr = phys->vaddr;
275#ifdef CONFIG_X86
276 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
277#endif
278 mapping = file_inode(obj->base.filp)->i_mapping;
279 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
280 struct page *page;
281 char *src;
282
283 page = shmem_read_mapping_page(mapping, i);
284 if (IS_ERR(page)) {
285#ifdef CONFIG_X86
286 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
287#endif
288 drm_pci_free(obj->base.dev, phys);
289 return PTR_ERR(page);
290 }
291
292 src = kmap_atomic(page);
293 memcpy(vaddr, src, PAGE_SIZE);
294 kunmap_atomic(src);
295
296 mark_page_accessed(page);
297 page_cache_release(page);
298
299 vaddr += PAGE_SIZE;
300 }
301
302 obj->phys_handle = phys;
303 return 0;
304}
305
306static int
307i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
308 struct drm_i915_gem_pwrite *args,
309 struct drm_file *file_priv)
310{
311 struct drm_device *dev = obj->base.dev;
312 void *vaddr = obj->phys_handle->vaddr + args->offset;
313 char __user *user_data = to_user_ptr(args->data_ptr);
314
315 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
316 unsigned long unwritten;
317
318 /* The physical object once assigned is fixed for the lifetime
319 * of the obj, so we can safely drop the lock and continue
320 * to access vaddr.
321 */
322 mutex_unlock(&dev->struct_mutex);
323 unwritten = copy_from_user(vaddr, user_data, args->size);
324 mutex_lock(&dev->struct_mutex);
325 if (unwritten)
326 return -EFAULT;
327 }
328
329 i915_gem_chipset_flush(dev);
330 return 0;
331}
332
42dcedd4
CW
333void *i915_gem_object_alloc(struct drm_device *dev)
334{
335 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 336 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
337}
338
339void i915_gem_object_free(struct drm_i915_gem_object *obj)
340{
341 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
342 kmem_cache_free(dev_priv->slab, obj);
343}
344
ff72145b
DA
345static int
346i915_gem_create(struct drm_file *file,
347 struct drm_device *dev,
348 uint64_t size,
349 uint32_t *handle_p)
673a394b 350{
05394f39 351 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
352 int ret;
353 u32 handle;
673a394b 354
ff72145b 355 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
356 if (size == 0)
357 return -EINVAL;
673a394b
EA
358
359 /* Allocate the new object */
ff72145b 360 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
361 if (obj == NULL)
362 return -ENOMEM;
363
05394f39 364 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 365 /* drop reference from allocate - handle holds it now */
d861e338
DV
366 drm_gem_object_unreference_unlocked(&obj->base);
367 if (ret)
368 return ret;
202f2fef 369
ff72145b 370 *handle_p = handle;
673a394b
EA
371 return 0;
372}
373
ff72145b
DA
374int
375i915_gem_dumb_create(struct drm_file *file,
376 struct drm_device *dev,
377 struct drm_mode_create_dumb *args)
378{
379 /* have to work out size/pitch and return them */
de45eaf7 380 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
381 args->size = args->pitch * args->height;
382 return i915_gem_create(file, dev,
383 args->size, &args->handle);
384}
385
ff72145b
DA
386/**
387 * Creates a new mm object and returns a handle to it.
388 */
389int
390i915_gem_create_ioctl(struct drm_device *dev, void *data,
391 struct drm_file *file)
392{
393 struct drm_i915_gem_create *args = data;
63ed2cb2 394
ff72145b
DA
395 return i915_gem_create(file, dev,
396 args->size, &args->handle);
397}
398
8461d226
DV
399static inline int
400__copy_to_user_swizzled(char __user *cpu_vaddr,
401 const char *gpu_vaddr, int gpu_offset,
402 int length)
403{
404 int ret, cpu_offset = 0;
405
406 while (length > 0) {
407 int cacheline_end = ALIGN(gpu_offset + 1, 64);
408 int this_length = min(cacheline_end - gpu_offset, length);
409 int swizzled_gpu_offset = gpu_offset ^ 64;
410
411 ret = __copy_to_user(cpu_vaddr + cpu_offset,
412 gpu_vaddr + swizzled_gpu_offset,
413 this_length);
414 if (ret)
415 return ret + length;
416
417 cpu_offset += this_length;
418 gpu_offset += this_length;
419 length -= this_length;
420 }
421
422 return 0;
423}
424
8c59967c 425static inline int
4f0c7cfb
BW
426__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
427 const char __user *cpu_vaddr,
8c59967c
DV
428 int length)
429{
430 int ret, cpu_offset = 0;
431
432 while (length > 0) {
433 int cacheline_end = ALIGN(gpu_offset + 1, 64);
434 int this_length = min(cacheline_end - gpu_offset, length);
435 int swizzled_gpu_offset = gpu_offset ^ 64;
436
437 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
438 cpu_vaddr + cpu_offset,
439 this_length);
440 if (ret)
441 return ret + length;
442
443 cpu_offset += this_length;
444 gpu_offset += this_length;
445 length -= this_length;
446 }
447
448 return 0;
449}
450
4c914c0c
BV
451/*
452 * Pins the specified object's pages and synchronizes the object with
453 * GPU accesses. Sets needs_clflush to non-zero if the caller should
454 * flush the object from the CPU cache.
455 */
456int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
457 int *needs_clflush)
458{
459 int ret;
460
461 *needs_clflush = 0;
462
463 if (!obj->base.filp)
464 return -EINVAL;
465
466 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
467 /* If we're not in the cpu read domain, set ourself into the gtt
468 * read domain and manually flush cachelines (if required). This
469 * optimizes for the case when the gpu will dirty the data
470 * anyway again before the next pread happens. */
471 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
472 obj->cache_level);
473 ret = i915_gem_object_wait_rendering(obj, true);
474 if (ret)
475 return ret;
c8725f3d
CW
476
477 i915_gem_object_retire(obj);
4c914c0c
BV
478 }
479
480 ret = i915_gem_object_get_pages(obj);
481 if (ret)
482 return ret;
483
484 i915_gem_object_pin_pages(obj);
485
486 return ret;
487}
488
d174bd64
DV
489/* Per-page copy function for the shmem pread fastpath.
490 * Flushes invalid cachelines before reading the target if
491 * needs_clflush is set. */
eb01459f 492static int
d174bd64
DV
493shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
494 char __user *user_data,
495 bool page_do_bit17_swizzling, bool needs_clflush)
496{
497 char *vaddr;
498 int ret;
499
e7e58eb5 500 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
501 return -EINVAL;
502
503 vaddr = kmap_atomic(page);
504 if (needs_clflush)
505 drm_clflush_virt_range(vaddr + shmem_page_offset,
506 page_length);
507 ret = __copy_to_user_inatomic(user_data,
508 vaddr + shmem_page_offset,
509 page_length);
510 kunmap_atomic(vaddr);
511
f60d7f0c 512 return ret ? -EFAULT : 0;
d174bd64
DV
513}
514
23c18c71
DV
515static void
516shmem_clflush_swizzled_range(char *addr, unsigned long length,
517 bool swizzled)
518{
e7e58eb5 519 if (unlikely(swizzled)) {
23c18c71
DV
520 unsigned long start = (unsigned long) addr;
521 unsigned long end = (unsigned long) addr + length;
522
523 /* For swizzling simply ensure that we always flush both
524 * channels. Lame, but simple and it works. Swizzled
525 * pwrite/pread is far from a hotpath - current userspace
526 * doesn't use it at all. */
527 start = round_down(start, 128);
528 end = round_up(end, 128);
529
530 drm_clflush_virt_range((void *)start, end - start);
531 } else {
532 drm_clflush_virt_range(addr, length);
533 }
534
535}
536
d174bd64
DV
537/* Only difference to the fast-path function is that this can handle bit17
538 * and uses non-atomic copy and kmap functions. */
539static int
540shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
541 char __user *user_data,
542 bool page_do_bit17_swizzling, bool needs_clflush)
543{
544 char *vaddr;
545 int ret;
546
547 vaddr = kmap(page);
548 if (needs_clflush)
23c18c71
DV
549 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
550 page_length,
551 page_do_bit17_swizzling);
d174bd64
DV
552
553 if (page_do_bit17_swizzling)
554 ret = __copy_to_user_swizzled(user_data,
555 vaddr, shmem_page_offset,
556 page_length);
557 else
558 ret = __copy_to_user(user_data,
559 vaddr + shmem_page_offset,
560 page_length);
561 kunmap(page);
562
f60d7f0c 563 return ret ? - EFAULT : 0;
d174bd64
DV
564}
565
eb01459f 566static int
dbf7bff0
DV
567i915_gem_shmem_pread(struct drm_device *dev,
568 struct drm_i915_gem_object *obj,
569 struct drm_i915_gem_pread *args,
570 struct drm_file *file)
eb01459f 571{
8461d226 572 char __user *user_data;
eb01459f 573 ssize_t remain;
8461d226 574 loff_t offset;
eb2c0c81 575 int shmem_page_offset, page_length, ret = 0;
8461d226 576 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 577 int prefaulted = 0;
8489731c 578 int needs_clflush = 0;
67d5a50c 579 struct sg_page_iter sg_iter;
eb01459f 580
2bb4629a 581 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
582 remain = args->size;
583
8461d226 584 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 585
4c914c0c 586 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
587 if (ret)
588 return ret;
589
8461d226 590 offset = args->offset;
eb01459f 591
67d5a50c
ID
592 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
593 offset >> PAGE_SHIFT) {
2db76d7c 594 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
595
596 if (remain <= 0)
597 break;
598
eb01459f
EA
599 /* Operation in this page
600 *
eb01459f 601 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
602 * page_length = bytes to copy for this page
603 */
c8cbbb8b 604 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
605 page_length = remain;
606 if ((shmem_page_offset + page_length) > PAGE_SIZE)
607 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 608
8461d226
DV
609 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
610 (page_to_phys(page) & (1 << 17)) != 0;
611
d174bd64
DV
612 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
613 user_data, page_do_bit17_swizzling,
614 needs_clflush);
615 if (ret == 0)
616 goto next_page;
dbf7bff0 617
dbf7bff0
DV
618 mutex_unlock(&dev->struct_mutex);
619
d330a953 620 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 621 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
622 /* Userspace is tricking us, but we've already clobbered
623 * its pages with the prefault and promised to write the
624 * data up to the first fault. Hence ignore any errors
625 * and just continue. */
626 (void)ret;
627 prefaulted = 1;
628 }
eb01459f 629
d174bd64
DV
630 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
631 user_data, page_do_bit17_swizzling,
632 needs_clflush);
eb01459f 633
dbf7bff0 634 mutex_lock(&dev->struct_mutex);
f60d7f0c 635
f60d7f0c 636 if (ret)
8461d226 637 goto out;
8461d226 638
17793c9a 639next_page:
eb01459f 640 remain -= page_length;
8461d226 641 user_data += page_length;
eb01459f
EA
642 offset += page_length;
643 }
644
4f27b75d 645out:
f60d7f0c
CW
646 i915_gem_object_unpin_pages(obj);
647
eb01459f
EA
648 return ret;
649}
650
673a394b
EA
651/**
652 * Reads data from the object referenced by handle.
653 *
654 * On error, the contents of *data are undefined.
655 */
656int
657i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 658 struct drm_file *file)
673a394b
EA
659{
660 struct drm_i915_gem_pread *args = data;
05394f39 661 struct drm_i915_gem_object *obj;
35b62a89 662 int ret = 0;
673a394b 663
51311d0a
CW
664 if (args->size == 0)
665 return 0;
666
667 if (!access_ok(VERIFY_WRITE,
2bb4629a 668 to_user_ptr(args->data_ptr),
51311d0a
CW
669 args->size))
670 return -EFAULT;
671
4f27b75d 672 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 673 if (ret)
4f27b75d 674 return ret;
673a394b 675
05394f39 676 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 677 if (&obj->base == NULL) {
1d7cfea1
CW
678 ret = -ENOENT;
679 goto unlock;
4f27b75d 680 }
673a394b 681
7dcd2499 682 /* Bounds check source. */
05394f39
CW
683 if (args->offset > obj->base.size ||
684 args->size > obj->base.size - args->offset) {
ce9d419d 685 ret = -EINVAL;
35b62a89 686 goto out;
ce9d419d
CW
687 }
688
1286ff73
DV
689 /* prime objects have no backing filp to GEM pread/pwrite
690 * pages from.
691 */
692 if (!obj->base.filp) {
693 ret = -EINVAL;
694 goto out;
695 }
696
db53a302
CW
697 trace_i915_gem_object_pread(obj, args->offset, args->size);
698
dbf7bff0 699 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 700
35b62a89 701out:
05394f39 702 drm_gem_object_unreference(&obj->base);
1d7cfea1 703unlock:
4f27b75d 704 mutex_unlock(&dev->struct_mutex);
eb01459f 705 return ret;
673a394b
EA
706}
707
0839ccb8
KP
708/* This is the fast write path which cannot handle
709 * page faults in the source data
9b7530cc 710 */
0839ccb8
KP
711
712static inline int
713fast_user_write(struct io_mapping *mapping,
714 loff_t page_base, int page_offset,
715 char __user *user_data,
716 int length)
9b7530cc 717{
4f0c7cfb
BW
718 void __iomem *vaddr_atomic;
719 void *vaddr;
0839ccb8 720 unsigned long unwritten;
9b7530cc 721
3e4d3af5 722 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
723 /* We can use the cpu mem copy function because this is X86. */
724 vaddr = (void __force*)vaddr_atomic + page_offset;
725 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 726 user_data, length);
3e4d3af5 727 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 728 return unwritten;
0839ccb8
KP
729}
730
3de09aa3
EA
731/**
732 * This is the fast pwrite path, where we copy the data directly from the
733 * user into the GTT, uncached.
734 */
673a394b 735static int
05394f39
CW
736i915_gem_gtt_pwrite_fast(struct drm_device *dev,
737 struct drm_i915_gem_object *obj,
3de09aa3 738 struct drm_i915_gem_pwrite *args,
05394f39 739 struct drm_file *file)
673a394b 740{
3e31c6c0 741 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 742 ssize_t remain;
0839ccb8 743 loff_t offset, page_base;
673a394b 744 char __user *user_data;
935aaa69
DV
745 int page_offset, page_length, ret;
746
1ec9e26d 747 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
748 if (ret)
749 goto out;
750
751 ret = i915_gem_object_set_to_gtt_domain(obj, true);
752 if (ret)
753 goto out_unpin;
754
755 ret = i915_gem_object_put_fence(obj);
756 if (ret)
757 goto out_unpin;
673a394b 758
2bb4629a 759 user_data = to_user_ptr(args->data_ptr);
673a394b 760 remain = args->size;
673a394b 761
f343c5f6 762 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
763
764 while (remain > 0) {
765 /* Operation in this page
766 *
0839ccb8
KP
767 * page_base = page offset within aperture
768 * page_offset = offset within page
769 * page_length = bytes to copy for this page
673a394b 770 */
c8cbbb8b
CW
771 page_base = offset & PAGE_MASK;
772 page_offset = offset_in_page(offset);
0839ccb8
KP
773 page_length = remain;
774 if ((page_offset + remain) > PAGE_SIZE)
775 page_length = PAGE_SIZE - page_offset;
776
0839ccb8 777 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
778 * source page isn't available. Return the error and we'll
779 * retry in the slow path.
0839ccb8 780 */
5d4545ae 781 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
782 page_offset, user_data, page_length)) {
783 ret = -EFAULT;
784 goto out_unpin;
785 }
673a394b 786
0839ccb8
KP
787 remain -= page_length;
788 user_data += page_length;
789 offset += page_length;
673a394b 790 }
673a394b 791
935aaa69 792out_unpin:
d7f46fc4 793 i915_gem_object_ggtt_unpin(obj);
935aaa69 794out:
3de09aa3 795 return ret;
673a394b
EA
796}
797
d174bd64
DV
798/* Per-page copy function for the shmem pwrite fastpath.
799 * Flushes invalid cachelines before writing to the target if
800 * needs_clflush_before is set and flushes out any written cachelines after
801 * writing if needs_clflush is set. */
3043c60c 802static int
d174bd64
DV
803shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
804 char __user *user_data,
805 bool page_do_bit17_swizzling,
806 bool needs_clflush_before,
807 bool needs_clflush_after)
673a394b 808{
d174bd64 809 char *vaddr;
673a394b 810 int ret;
3de09aa3 811
e7e58eb5 812 if (unlikely(page_do_bit17_swizzling))
d174bd64 813 return -EINVAL;
3de09aa3 814
d174bd64
DV
815 vaddr = kmap_atomic(page);
816 if (needs_clflush_before)
817 drm_clflush_virt_range(vaddr + shmem_page_offset,
818 page_length);
c2831a94
CW
819 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
820 user_data, page_length);
d174bd64
DV
821 if (needs_clflush_after)
822 drm_clflush_virt_range(vaddr + shmem_page_offset,
823 page_length);
824 kunmap_atomic(vaddr);
3de09aa3 825
755d2218 826 return ret ? -EFAULT : 0;
3de09aa3
EA
827}
828
d174bd64
DV
829/* Only difference to the fast-path function is that this can handle bit17
830 * and uses non-atomic copy and kmap functions. */
3043c60c 831static int
d174bd64
DV
832shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
833 char __user *user_data,
834 bool page_do_bit17_swizzling,
835 bool needs_clflush_before,
836 bool needs_clflush_after)
673a394b 837{
d174bd64
DV
838 char *vaddr;
839 int ret;
e5281ccd 840
d174bd64 841 vaddr = kmap(page);
e7e58eb5 842 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
843 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
844 page_length,
845 page_do_bit17_swizzling);
d174bd64
DV
846 if (page_do_bit17_swizzling)
847 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
848 user_data,
849 page_length);
d174bd64
DV
850 else
851 ret = __copy_from_user(vaddr + shmem_page_offset,
852 user_data,
853 page_length);
854 if (needs_clflush_after)
23c18c71
DV
855 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
856 page_length,
857 page_do_bit17_swizzling);
d174bd64 858 kunmap(page);
40123c1f 859
755d2218 860 return ret ? -EFAULT : 0;
40123c1f
EA
861}
862
40123c1f 863static int
e244a443
DV
864i915_gem_shmem_pwrite(struct drm_device *dev,
865 struct drm_i915_gem_object *obj,
866 struct drm_i915_gem_pwrite *args,
867 struct drm_file *file)
40123c1f 868{
40123c1f 869 ssize_t remain;
8c59967c
DV
870 loff_t offset;
871 char __user *user_data;
eb2c0c81 872 int shmem_page_offset, page_length, ret = 0;
8c59967c 873 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 874 int hit_slowpath = 0;
58642885
DV
875 int needs_clflush_after = 0;
876 int needs_clflush_before = 0;
67d5a50c 877 struct sg_page_iter sg_iter;
40123c1f 878
2bb4629a 879 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
880 remain = args->size;
881
8c59967c 882 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 883
58642885
DV
884 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
885 /* If we're not in the cpu write domain, set ourself into the gtt
886 * write domain and manually flush cachelines (if required). This
887 * optimizes for the case when the gpu will use the data
888 * right away and we therefore have to clflush anyway. */
2c22569b 889 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
890 ret = i915_gem_object_wait_rendering(obj, false);
891 if (ret)
892 return ret;
c8725f3d
CW
893
894 i915_gem_object_retire(obj);
58642885 895 }
c76ce038
CW
896 /* Same trick applies to invalidate partially written cachelines read
897 * before writing. */
898 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
899 needs_clflush_before =
900 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 901
755d2218
CW
902 ret = i915_gem_object_get_pages(obj);
903 if (ret)
904 return ret;
905
906 i915_gem_object_pin_pages(obj);
907
673a394b 908 offset = args->offset;
05394f39 909 obj->dirty = 1;
673a394b 910
67d5a50c
ID
911 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
912 offset >> PAGE_SHIFT) {
2db76d7c 913 struct page *page = sg_page_iter_page(&sg_iter);
58642885 914 int partial_cacheline_write;
e5281ccd 915
9da3da66
CW
916 if (remain <= 0)
917 break;
918
40123c1f
EA
919 /* Operation in this page
920 *
40123c1f 921 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
922 * page_length = bytes to copy for this page
923 */
c8cbbb8b 924 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
925
926 page_length = remain;
927 if ((shmem_page_offset + page_length) > PAGE_SIZE)
928 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 929
58642885
DV
930 /* If we don't overwrite a cacheline completely we need to be
931 * careful to have up-to-date data by first clflushing. Don't
932 * overcomplicate things and flush the entire patch. */
933 partial_cacheline_write = needs_clflush_before &&
934 ((shmem_page_offset | page_length)
935 & (boot_cpu_data.x86_clflush_size - 1));
936
8c59967c
DV
937 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
938 (page_to_phys(page) & (1 << 17)) != 0;
939
d174bd64
DV
940 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
941 user_data, page_do_bit17_swizzling,
942 partial_cacheline_write,
943 needs_clflush_after);
944 if (ret == 0)
945 goto next_page;
e244a443
DV
946
947 hit_slowpath = 1;
e244a443 948 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
949 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
950 user_data, page_do_bit17_swizzling,
951 partial_cacheline_write,
952 needs_clflush_after);
40123c1f 953
e244a443 954 mutex_lock(&dev->struct_mutex);
755d2218 955
755d2218 956 if (ret)
8c59967c 957 goto out;
8c59967c 958
17793c9a 959next_page:
40123c1f 960 remain -= page_length;
8c59967c 961 user_data += page_length;
40123c1f 962 offset += page_length;
673a394b
EA
963 }
964
fbd5a26d 965out:
755d2218
CW
966 i915_gem_object_unpin_pages(obj);
967
e244a443 968 if (hit_slowpath) {
8dcf015e
DV
969 /*
970 * Fixup: Flush cpu caches in case we didn't flush the dirty
971 * cachelines in-line while writing and the object moved
972 * out of the cpu write domain while we've dropped the lock.
973 */
974 if (!needs_clflush_after &&
975 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
976 if (i915_gem_clflush_object(obj, obj->pin_display))
977 i915_gem_chipset_flush(dev);
e244a443 978 }
8c59967c 979 }
673a394b 980
58642885 981 if (needs_clflush_after)
e76e9aeb 982 i915_gem_chipset_flush(dev);
58642885 983
40123c1f 984 return ret;
673a394b
EA
985}
986
987/**
988 * Writes data to the object referenced by handle.
989 *
990 * On error, the contents of the buffer that were to be modified are undefined.
991 */
992int
993i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 994 struct drm_file *file)
673a394b
EA
995{
996 struct drm_i915_gem_pwrite *args = data;
05394f39 997 struct drm_i915_gem_object *obj;
51311d0a
CW
998 int ret;
999
1000 if (args->size == 0)
1001 return 0;
1002
1003 if (!access_ok(VERIFY_READ,
2bb4629a 1004 to_user_ptr(args->data_ptr),
51311d0a
CW
1005 args->size))
1006 return -EFAULT;
1007
d330a953 1008 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1009 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1010 args->size);
1011 if (ret)
1012 return -EFAULT;
1013 }
673a394b 1014
fbd5a26d 1015 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1016 if (ret)
fbd5a26d 1017 return ret;
1d7cfea1 1018
05394f39 1019 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1020 if (&obj->base == NULL) {
1d7cfea1
CW
1021 ret = -ENOENT;
1022 goto unlock;
fbd5a26d 1023 }
673a394b 1024
7dcd2499 1025 /* Bounds check destination. */
05394f39
CW
1026 if (args->offset > obj->base.size ||
1027 args->size > obj->base.size - args->offset) {
ce9d419d 1028 ret = -EINVAL;
35b62a89 1029 goto out;
ce9d419d
CW
1030 }
1031
1286ff73
DV
1032 /* prime objects have no backing filp to GEM pread/pwrite
1033 * pages from.
1034 */
1035 if (!obj->base.filp) {
1036 ret = -EINVAL;
1037 goto out;
1038 }
1039
db53a302
CW
1040 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1041
935aaa69 1042 ret = -EFAULT;
673a394b
EA
1043 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1044 * it would end up going through the fenced access, and we'll get
1045 * different detiling behavior between reading and writing.
1046 * pread/pwrite currently are reading and writing from the CPU
1047 * perspective, requiring manual detiling by the client.
1048 */
00731155
CW
1049 if (obj->phys_handle) {
1050 ret = i915_gem_phys_pwrite(obj, args, file);
5c0480f2
DV
1051 goto out;
1052 }
1053
2c22569b
CW
1054 if (obj->tiling_mode == I915_TILING_NONE &&
1055 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1056 cpu_write_needs_clflush(obj)) {
fbd5a26d 1057 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1058 /* Note that the gtt paths might fail with non-page-backed user
1059 * pointers (e.g. gtt mappings when moving data between
1060 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1061 }
673a394b 1062
86a1ee26 1063 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 1064 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 1065
35b62a89 1066out:
05394f39 1067 drm_gem_object_unreference(&obj->base);
1d7cfea1 1068unlock:
fbd5a26d 1069 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1070 return ret;
1071}
1072
b361237b 1073int
33196ded 1074i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1075 bool interruptible)
1076{
1f83fee0 1077 if (i915_reset_in_progress(error)) {
b361237b
CW
1078 /* Non-interruptible callers can't handle -EAGAIN, hence return
1079 * -EIO unconditionally for these. */
1080 if (!interruptible)
1081 return -EIO;
1082
1f83fee0
DV
1083 /* Recovery complete, but the reset failed ... */
1084 if (i915_terminally_wedged(error))
b361237b
CW
1085 return -EIO;
1086
6689c167
MA
1087 /*
1088 * Check if GPU Reset is in progress - we need intel_ring_begin
1089 * to work properly to reinit the hw state while the gpu is
1090 * still marked as reset-in-progress. Handle this with a flag.
1091 */
1092 if (!error->reload_in_reset)
1093 return -EAGAIN;
b361237b
CW
1094 }
1095
1096 return 0;
1097}
1098
1099/*
1100 * Compare seqno against outstanding lazy request. Emit a request if they are
1101 * equal.
1102 */
84c33a64 1103int
a4872ba6 1104i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
b361237b
CW
1105{
1106 int ret;
1107
1108 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1109
1110 ret = 0;
1823521d 1111 if (seqno == ring->outstanding_lazy_seqno)
0025c077 1112 ret = i915_add_request(ring, NULL);
b361237b
CW
1113
1114 return ret;
1115}
1116
094f9a54
CW
1117static void fake_irq(unsigned long data)
1118{
1119 wake_up_process((struct task_struct *)data);
1120}
1121
1122static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1123 struct intel_engine_cs *ring)
094f9a54
CW
1124{
1125 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1126}
1127
b29c19b6
CW
1128static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1129{
1130 if (file_priv == NULL)
1131 return true;
1132
1133 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1134}
1135
b361237b
CW
1136/**
1137 * __wait_seqno - wait until execution of seqno has finished
1138 * @ring: the ring expected to report seqno
1139 * @seqno: duh!
f69061be 1140 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1141 * @interruptible: do an interruptible wait (normally yes)
1142 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1143 *
f69061be
DV
1144 * Note: It is of utmost importance that the passed in seqno and reset_counter
1145 * values have been read by the caller in an smp safe manner. Where read-side
1146 * locks are involved, it is sufficient to read the reset_counter before
1147 * unlocking the lock that protects the seqno. For lockless tricks, the
1148 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1149 * inserted.
1150 *
b361237b
CW
1151 * Returns 0 if the seqno was found within the alloted time. Else returns the
1152 * errno with remaining time filled in timeout argument.
1153 */
a4872ba6 1154static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
f69061be 1155 unsigned reset_counter,
b29c19b6 1156 bool interruptible,
5ed0bdf2 1157 s64 *timeout,
b29c19b6 1158 struct drm_i915_file_private *file_priv)
b361237b 1159{
3d13ef2e 1160 struct drm_device *dev = ring->dev;
3e31c6c0 1161 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1162 const bool irq_test_in_progress =
1163 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1164 DEFINE_WAIT(wait);
47e9766d 1165 unsigned long timeout_expire;
5ed0bdf2 1166 s64 before, now;
b361237b
CW
1167 int ret;
1168
9df7575f 1169 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1170
b361237b
CW
1171 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1172 return 0;
1173
5ed0bdf2 1174 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
b361237b 1175
ec5cc0f9 1176 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1177 gen6_rps_boost(dev_priv);
1178 if (file_priv)
1179 mod_delayed_work(dev_priv->wq,
1180 &file_priv->mm.idle_work,
1181 msecs_to_jiffies(100));
1182 }
1183
168c3f21 1184 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1185 return -ENODEV;
1186
094f9a54
CW
1187 /* Record current time in case interrupted by signal, or wedged */
1188 trace_i915_gem_request_wait_begin(ring, seqno);
5ed0bdf2 1189 before = ktime_get_raw_ns();
094f9a54
CW
1190 for (;;) {
1191 struct timer_list timer;
b361237b 1192
094f9a54
CW
1193 prepare_to_wait(&ring->irq_queue, &wait,
1194 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1195
f69061be
DV
1196 /* We need to check whether any gpu reset happened in between
1197 * the caller grabbing the seqno and now ... */
094f9a54
CW
1198 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1199 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1200 * is truely gone. */
1201 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1202 if (ret == 0)
1203 ret = -EAGAIN;
1204 break;
1205 }
f69061be 1206
094f9a54
CW
1207 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1208 ret = 0;
1209 break;
1210 }
b361237b 1211
094f9a54
CW
1212 if (interruptible && signal_pending(current)) {
1213 ret = -ERESTARTSYS;
1214 break;
1215 }
1216
47e9766d 1217 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1218 ret = -ETIME;
1219 break;
1220 }
1221
1222 timer.function = NULL;
1223 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1224 unsigned long expire;
1225
094f9a54 1226 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1227 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1228 mod_timer(&timer, expire);
1229 }
1230
5035c275 1231 io_schedule();
094f9a54 1232
094f9a54
CW
1233 if (timer.function) {
1234 del_singleshot_timer_sync(&timer);
1235 destroy_timer_on_stack(&timer);
1236 }
1237 }
5ed0bdf2 1238 now = ktime_get_raw_ns();
094f9a54 1239 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1240
168c3f21
MK
1241 if (!irq_test_in_progress)
1242 ring->irq_put(ring);
094f9a54
CW
1243
1244 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1245
1246 if (timeout) {
5ed0bdf2
TG
1247 s64 tres = *timeout - (now - before);
1248
1249 *timeout = tres < 0 ? 0 : tres;
b361237b
CW
1250 }
1251
094f9a54 1252 return ret;
b361237b
CW
1253}
1254
1255/**
1256 * Waits for a sequence number to be signaled, and cleans up the
1257 * request and object lists appropriately for that event.
1258 */
1259int
a4872ba6 1260i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
b361237b
CW
1261{
1262 struct drm_device *dev = ring->dev;
1263 struct drm_i915_private *dev_priv = dev->dev_private;
1264 bool interruptible = dev_priv->mm.interruptible;
1265 int ret;
1266
1267 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1268 BUG_ON(seqno == 0);
1269
33196ded 1270 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1271 if (ret)
1272 return ret;
1273
1274 ret = i915_gem_check_olr(ring, seqno);
1275 if (ret)
1276 return ret;
1277
f69061be
DV
1278 return __wait_seqno(ring, seqno,
1279 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1280 interruptible, NULL, NULL);
b361237b
CW
1281}
1282
d26e3af8 1283static int
8e639549 1284i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
d26e3af8 1285{
c8725f3d
CW
1286 if (!obj->active)
1287 return 0;
d26e3af8
CW
1288
1289 /* Manually manage the write flush as we may have not yet
1290 * retired the buffer.
1291 *
1292 * Note that the last_write_seqno is always the earlier of
1293 * the two (read/write) seqno, so if we haved successfully waited,
1294 * we know we have passed the last write.
1295 */
1296 obj->last_write_seqno = 0;
d26e3af8
CW
1297
1298 return 0;
1299}
1300
b361237b
CW
1301/**
1302 * Ensures that all rendering to the object has completed and the object is
1303 * safe to unbind from the GTT or access from the CPU.
1304 */
1305static __must_check int
1306i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1307 bool readonly)
1308{
a4872ba6 1309 struct intel_engine_cs *ring = obj->ring;
b361237b
CW
1310 u32 seqno;
1311 int ret;
1312
1313 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1314 if (seqno == 0)
1315 return 0;
1316
1317 ret = i915_wait_seqno(ring, seqno);
1318 if (ret)
1319 return ret;
1320
8e639549 1321 return i915_gem_object_wait_rendering__tail(obj);
b361237b
CW
1322}
1323
3236f57a
CW
1324/* A nonblocking variant of the above wait. This is a highly dangerous routine
1325 * as the object state may change during this call.
1326 */
1327static __must_check int
1328i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1329 struct drm_i915_file_private *file_priv,
3236f57a
CW
1330 bool readonly)
1331{
1332 struct drm_device *dev = obj->base.dev;
1333 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 1334 struct intel_engine_cs *ring = obj->ring;
f69061be 1335 unsigned reset_counter;
3236f57a
CW
1336 u32 seqno;
1337 int ret;
1338
1339 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1340 BUG_ON(!dev_priv->mm.interruptible);
1341
1342 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1343 if (seqno == 0)
1344 return 0;
1345
33196ded 1346 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1347 if (ret)
1348 return ret;
1349
1350 ret = i915_gem_check_olr(ring, seqno);
1351 if (ret)
1352 return ret;
1353
f69061be 1354 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1355 mutex_unlock(&dev->struct_mutex);
6e4930f6 1356 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1357 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1358 if (ret)
1359 return ret;
3236f57a 1360
8e639549 1361 return i915_gem_object_wait_rendering__tail(obj);
3236f57a
CW
1362}
1363
673a394b 1364/**
2ef7eeaa
EA
1365 * Called when user space prepares to use an object with the CPU, either
1366 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1367 */
1368int
1369i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1370 struct drm_file *file)
673a394b
EA
1371{
1372 struct drm_i915_gem_set_domain *args = data;
05394f39 1373 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1374 uint32_t read_domains = args->read_domains;
1375 uint32_t write_domain = args->write_domain;
673a394b
EA
1376 int ret;
1377
2ef7eeaa 1378 /* Only handle setting domains to types used by the CPU. */
21d509e3 1379 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1380 return -EINVAL;
1381
21d509e3 1382 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1383 return -EINVAL;
1384
1385 /* Having something in the write domain implies it's in the read
1386 * domain, and only that read domain. Enforce that in the request.
1387 */
1388 if (write_domain != 0 && read_domains != write_domain)
1389 return -EINVAL;
1390
76c1dec1 1391 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1392 if (ret)
76c1dec1 1393 return ret;
1d7cfea1 1394
05394f39 1395 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1396 if (&obj->base == NULL) {
1d7cfea1
CW
1397 ret = -ENOENT;
1398 goto unlock;
76c1dec1 1399 }
673a394b 1400
3236f57a
CW
1401 /* Try to flush the object off the GPU without holding the lock.
1402 * We will repeat the flush holding the lock in the normal manner
1403 * to catch cases where we are gazumped.
1404 */
6e4930f6
CW
1405 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1406 file->driver_priv,
1407 !write_domain);
3236f57a
CW
1408 if (ret)
1409 goto unref;
1410
2ef7eeaa
EA
1411 if (read_domains & I915_GEM_DOMAIN_GTT) {
1412 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1413
1414 /* Silently promote "you're not bound, there was nothing to do"
1415 * to success, since the client was just asking us to
1416 * make sure everything was done.
1417 */
1418 if (ret == -EINVAL)
1419 ret = 0;
2ef7eeaa 1420 } else {
e47c68e9 1421 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1422 }
1423
3236f57a 1424unref:
05394f39 1425 drm_gem_object_unreference(&obj->base);
1d7cfea1 1426unlock:
673a394b
EA
1427 mutex_unlock(&dev->struct_mutex);
1428 return ret;
1429}
1430
1431/**
1432 * Called when user space has done writes to this buffer
1433 */
1434int
1435i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1436 struct drm_file *file)
673a394b
EA
1437{
1438 struct drm_i915_gem_sw_finish *args = data;
05394f39 1439 struct drm_i915_gem_object *obj;
673a394b
EA
1440 int ret = 0;
1441
76c1dec1 1442 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1443 if (ret)
76c1dec1 1444 return ret;
1d7cfea1 1445
05394f39 1446 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1447 if (&obj->base == NULL) {
1d7cfea1
CW
1448 ret = -ENOENT;
1449 goto unlock;
673a394b
EA
1450 }
1451
673a394b 1452 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1453 if (obj->pin_display)
1454 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1455
05394f39 1456 drm_gem_object_unreference(&obj->base);
1d7cfea1 1457unlock:
673a394b
EA
1458 mutex_unlock(&dev->struct_mutex);
1459 return ret;
1460}
1461
1462/**
1463 * Maps the contents of an object, returning the address it is mapped
1464 * into.
1465 *
1466 * While the mapping holds a reference on the contents of the object, it doesn't
1467 * imply a ref on the object itself.
34367381
DV
1468 *
1469 * IMPORTANT:
1470 *
1471 * DRM driver writers who look a this function as an example for how to do GEM
1472 * mmap support, please don't implement mmap support like here. The modern way
1473 * to implement DRM mmap support is with an mmap offset ioctl (like
1474 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1475 * That way debug tooling like valgrind will understand what's going on, hiding
1476 * the mmap call in a driver private ioctl will break that. The i915 driver only
1477 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1478 */
1479int
1480i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1481 struct drm_file *file)
673a394b
EA
1482{
1483 struct drm_i915_gem_mmap *args = data;
1484 struct drm_gem_object *obj;
673a394b
EA
1485 unsigned long addr;
1486
05394f39 1487 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1488 if (obj == NULL)
bf79cb91 1489 return -ENOENT;
673a394b 1490
1286ff73
DV
1491 /* prime objects have no backing filp to GEM mmap
1492 * pages from.
1493 */
1494 if (!obj->filp) {
1495 drm_gem_object_unreference_unlocked(obj);
1496 return -EINVAL;
1497 }
1498
6be5ceb0 1499 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1500 PROT_READ | PROT_WRITE, MAP_SHARED,
1501 args->offset);
bc9025bd 1502 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1503 if (IS_ERR((void *)addr))
1504 return addr;
1505
1506 args->addr_ptr = (uint64_t) addr;
1507
1508 return 0;
1509}
1510
de151cf6
JB
1511/**
1512 * i915_gem_fault - fault a page into the GTT
1513 * vma: VMA in question
1514 * vmf: fault info
1515 *
1516 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1517 * from userspace. The fault handler takes care of binding the object to
1518 * the GTT (if needed), allocating and programming a fence register (again,
1519 * only if needed based on whether the old reg is still valid or the object
1520 * is tiled) and inserting a new PTE into the faulting process.
1521 *
1522 * Note that the faulting process may involve evicting existing objects
1523 * from the GTT and/or fence registers to make room. So performance may
1524 * suffer if the GTT working set is large or there are few fence registers
1525 * left.
1526 */
1527int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1528{
05394f39
CW
1529 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1530 struct drm_device *dev = obj->base.dev;
3e31c6c0 1531 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1532 pgoff_t page_offset;
1533 unsigned long pfn;
1534 int ret = 0;
0f973f27 1535 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1536
f65c9168
PZ
1537 intel_runtime_pm_get(dev_priv);
1538
de151cf6
JB
1539 /* We don't use vmf->pgoff since that has the fake offset */
1540 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1541 PAGE_SHIFT;
1542
d9bc7e9f
CW
1543 ret = i915_mutex_lock_interruptible(dev);
1544 if (ret)
1545 goto out;
a00b10c3 1546
db53a302
CW
1547 trace_i915_gem_object_fault(obj, page_offset, true, write);
1548
6e4930f6
CW
1549 /* Try to flush the object off the GPU first without holding the lock.
1550 * Upon reacquiring the lock, we will perform our sanity checks and then
1551 * repeat the flush holding the lock in the normal manner to catch cases
1552 * where we are gazumped.
1553 */
1554 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1555 if (ret)
1556 goto unlock;
1557
eb119bd6
CW
1558 /* Access to snoopable pages through the GTT is incoherent. */
1559 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1560 ret = -EFAULT;
eb119bd6
CW
1561 goto unlock;
1562 }
1563
d9bc7e9f 1564 /* Now bind it into the GTT if needed */
1ec9e26d 1565 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1566 if (ret)
1567 goto unlock;
4a684a41 1568
c9839303
CW
1569 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1570 if (ret)
1571 goto unpin;
74898d7e 1572
06d98131 1573 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1574 if (ret)
c9839303 1575 goto unpin;
7d1c4804 1576
b90b91d8 1577 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1578 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1579 pfn >>= PAGE_SHIFT;
de151cf6 1580
b90b91d8 1581 if (!obj->fault_mappable) {
beff0d0f
VS
1582 unsigned long size = min_t(unsigned long,
1583 vma->vm_end - vma->vm_start,
1584 obj->base.size);
b90b91d8
CW
1585 int i;
1586
beff0d0f 1587 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1588 ret = vm_insert_pfn(vma,
1589 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1590 pfn + i);
1591 if (ret)
1592 break;
1593 }
1594
1595 obj->fault_mappable = true;
1596 } else
1597 ret = vm_insert_pfn(vma,
1598 (unsigned long)vmf->virtual_address,
1599 pfn + page_offset);
c9839303 1600unpin:
d7f46fc4 1601 i915_gem_object_ggtt_unpin(obj);
c715089f 1602unlock:
de151cf6 1603 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1604out:
de151cf6 1605 switch (ret) {
d9bc7e9f 1606 case -EIO:
2232f031
DV
1607 /*
1608 * We eat errors when the gpu is terminally wedged to avoid
1609 * userspace unduly crashing (gl has no provisions for mmaps to
1610 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1611 * and so needs to be reported.
1612 */
1613 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1614 ret = VM_FAULT_SIGBUS;
1615 break;
1616 }
045e769a 1617 case -EAGAIN:
571c608d
DV
1618 /*
1619 * EAGAIN means the gpu is hung and we'll wait for the error
1620 * handler to reset everything when re-faulting in
1621 * i915_mutex_lock_interruptible.
d9bc7e9f 1622 */
c715089f
CW
1623 case 0:
1624 case -ERESTARTSYS:
bed636ab 1625 case -EINTR:
e79e0fe3
DR
1626 case -EBUSY:
1627 /*
1628 * EBUSY is ok: this just means that another thread
1629 * already did the job.
1630 */
f65c9168
PZ
1631 ret = VM_FAULT_NOPAGE;
1632 break;
de151cf6 1633 case -ENOMEM:
f65c9168
PZ
1634 ret = VM_FAULT_OOM;
1635 break;
a7c2e1aa 1636 case -ENOSPC:
45d67817 1637 case -EFAULT:
f65c9168
PZ
1638 ret = VM_FAULT_SIGBUS;
1639 break;
de151cf6 1640 default:
a7c2e1aa 1641 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1642 ret = VM_FAULT_SIGBUS;
1643 break;
de151cf6 1644 }
f65c9168
PZ
1645
1646 intel_runtime_pm_put(dev_priv);
1647 return ret;
de151cf6
JB
1648}
1649
901782b2
CW
1650/**
1651 * i915_gem_release_mmap - remove physical page mappings
1652 * @obj: obj in question
1653 *
af901ca1 1654 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1655 * relinquish ownership of the pages back to the system.
1656 *
1657 * It is vital that we remove the page mapping if we have mapped a tiled
1658 * object through the GTT and then lose the fence register due to
1659 * resource pressure. Similarly if the object has been moved out of the
1660 * aperture, than pages mapped into userspace must be revoked. Removing the
1661 * mapping will then trigger a page fault on the next user access, allowing
1662 * fixup by i915_gem_fault().
1663 */
d05ca301 1664void
05394f39 1665i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1666{
6299f992
CW
1667 if (!obj->fault_mappable)
1668 return;
901782b2 1669
6796cb16
DH
1670 drm_vma_node_unmap(&obj->base.vma_node,
1671 obj->base.dev->anon_inode->i_mapping);
6299f992 1672 obj->fault_mappable = false;
901782b2
CW
1673}
1674
eedd10f4
CW
1675void
1676i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1677{
1678 struct drm_i915_gem_object *obj;
1679
1680 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1681 i915_gem_release_mmap(obj);
1682}
1683
0fa87796 1684uint32_t
e28f8711 1685i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1686{
e28f8711 1687 uint32_t gtt_size;
92b88aeb
CW
1688
1689 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1690 tiling_mode == I915_TILING_NONE)
1691 return size;
92b88aeb
CW
1692
1693 /* Previous chips need a power-of-two fence region when tiling */
1694 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1695 gtt_size = 1024*1024;
92b88aeb 1696 else
e28f8711 1697 gtt_size = 512*1024;
92b88aeb 1698
e28f8711
CW
1699 while (gtt_size < size)
1700 gtt_size <<= 1;
92b88aeb 1701
e28f8711 1702 return gtt_size;
92b88aeb
CW
1703}
1704
de151cf6
JB
1705/**
1706 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1707 * @obj: object to check
1708 *
1709 * Return the required GTT alignment for an object, taking into account
5e783301 1710 * potential fence register mapping.
de151cf6 1711 */
d865110c
ID
1712uint32_t
1713i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1714 int tiling_mode, bool fenced)
de151cf6 1715{
de151cf6
JB
1716 /*
1717 * Minimum alignment is 4k (GTT page size), but might be greater
1718 * if a fence register is needed for the object.
1719 */
d865110c 1720 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1721 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1722 return 4096;
1723
a00b10c3
CW
1724 /*
1725 * Previous chips need to be aligned to the size of the smallest
1726 * fence register that can contain the object.
1727 */
e28f8711 1728 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1729}
1730
d8cb5086
CW
1731static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1732{
1733 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1734 int ret;
1735
0de23977 1736 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1737 return 0;
1738
da494d7c
DV
1739 dev_priv->mm.shrinker_no_lock_stealing = true;
1740
d8cb5086
CW
1741 ret = drm_gem_create_mmap_offset(&obj->base);
1742 if (ret != -ENOSPC)
da494d7c 1743 goto out;
d8cb5086
CW
1744
1745 /* Badly fragmented mmap space? The only way we can recover
1746 * space is by destroying unwanted objects. We can't randomly release
1747 * mmap_offsets as userspace expects them to be persistent for the
1748 * lifetime of the objects. The closest we can is to release the
1749 * offsets on purgeable objects by truncating it and marking it purged,
1750 * which prevents userspace from ever using that object again.
1751 */
21ab4e74
CW
1752 i915_gem_shrink(dev_priv,
1753 obj->base.size >> PAGE_SHIFT,
1754 I915_SHRINK_BOUND |
1755 I915_SHRINK_UNBOUND |
1756 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1757 ret = drm_gem_create_mmap_offset(&obj->base);
1758 if (ret != -ENOSPC)
da494d7c 1759 goto out;
d8cb5086
CW
1760
1761 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1762 ret = drm_gem_create_mmap_offset(&obj->base);
1763out:
1764 dev_priv->mm.shrinker_no_lock_stealing = false;
1765
1766 return ret;
d8cb5086
CW
1767}
1768
1769static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1770{
d8cb5086
CW
1771 drm_gem_free_mmap_offset(&obj->base);
1772}
1773
de151cf6 1774int
ff72145b
DA
1775i915_gem_mmap_gtt(struct drm_file *file,
1776 struct drm_device *dev,
1777 uint32_t handle,
1778 uint64_t *offset)
de151cf6 1779{
da761a6e 1780 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1781 struct drm_i915_gem_object *obj;
de151cf6
JB
1782 int ret;
1783
76c1dec1 1784 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1785 if (ret)
76c1dec1 1786 return ret;
de151cf6 1787
ff72145b 1788 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1789 if (&obj->base == NULL) {
1d7cfea1
CW
1790 ret = -ENOENT;
1791 goto unlock;
1792 }
de151cf6 1793
5d4545ae 1794 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1795 ret = -E2BIG;
ff56b0bc 1796 goto out;
da761a6e
CW
1797 }
1798
05394f39 1799 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1800 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1801 ret = -EFAULT;
1d7cfea1 1802 goto out;
ab18282d
CW
1803 }
1804
d8cb5086
CW
1805 ret = i915_gem_object_create_mmap_offset(obj);
1806 if (ret)
1807 goto out;
de151cf6 1808
0de23977 1809 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1810
1d7cfea1 1811out:
05394f39 1812 drm_gem_object_unreference(&obj->base);
1d7cfea1 1813unlock:
de151cf6 1814 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1815 return ret;
de151cf6
JB
1816}
1817
ff72145b
DA
1818/**
1819 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1820 * @dev: DRM device
1821 * @data: GTT mapping ioctl data
1822 * @file: GEM object info
1823 *
1824 * Simply returns the fake offset to userspace so it can mmap it.
1825 * The mmap call will end up in drm_gem_mmap(), which will set things
1826 * up so we can get faults in the handler above.
1827 *
1828 * The fault handler will take care of binding the object into the GTT
1829 * (since it may have been evicted to make room for something), allocating
1830 * a fence register, and mapping the appropriate aperture address into
1831 * userspace.
1832 */
1833int
1834i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1835 struct drm_file *file)
1836{
1837 struct drm_i915_gem_mmap_gtt *args = data;
1838
ff72145b
DA
1839 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1840}
1841
5537252b
CW
1842static inline int
1843i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1844{
1845 return obj->madv == I915_MADV_DONTNEED;
1846}
1847
225067ee
DV
1848/* Immediately discard the backing storage */
1849static void
1850i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1851{
4d6294bf 1852 i915_gem_object_free_mmap_offset(obj);
1286ff73 1853
4d6294bf
CW
1854 if (obj->base.filp == NULL)
1855 return;
e5281ccd 1856
225067ee
DV
1857 /* Our goal here is to return as much of the memory as
1858 * is possible back to the system as we are called from OOM.
1859 * To do this we must instruct the shmfs to drop all of its
1860 * backing pages, *now*.
1861 */
5537252b 1862 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1863 obj->madv = __I915_MADV_PURGED;
1864}
e5281ccd 1865
5537252b
CW
1866/* Try to discard unwanted pages */
1867static void
1868i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1869{
5537252b
CW
1870 struct address_space *mapping;
1871
1872 switch (obj->madv) {
1873 case I915_MADV_DONTNEED:
1874 i915_gem_object_truncate(obj);
1875 case __I915_MADV_PURGED:
1876 return;
1877 }
1878
1879 if (obj->base.filp == NULL)
1880 return;
1881
1882 mapping = file_inode(obj->base.filp)->i_mapping,
1883 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1884}
1885
5cdf5881 1886static void
05394f39 1887i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1888{
90797e6d
ID
1889 struct sg_page_iter sg_iter;
1890 int ret;
1286ff73 1891
05394f39 1892 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1893
6c085a72
CW
1894 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1895 if (ret) {
1896 /* In the event of a disaster, abandon all caches and
1897 * hope for the best.
1898 */
1899 WARN_ON(ret != -EIO);
2c22569b 1900 i915_gem_clflush_object(obj, true);
6c085a72
CW
1901 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1902 }
1903
6dacfd2f 1904 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1905 i915_gem_object_save_bit_17_swizzle(obj);
1906
05394f39
CW
1907 if (obj->madv == I915_MADV_DONTNEED)
1908 obj->dirty = 0;
3ef94daa 1909
90797e6d 1910 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1911 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1912
05394f39 1913 if (obj->dirty)
9da3da66 1914 set_page_dirty(page);
3ef94daa 1915
05394f39 1916 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1917 mark_page_accessed(page);
3ef94daa 1918
9da3da66 1919 page_cache_release(page);
3ef94daa 1920 }
05394f39 1921 obj->dirty = 0;
673a394b 1922
9da3da66
CW
1923 sg_free_table(obj->pages);
1924 kfree(obj->pages);
37e680a1 1925}
6c085a72 1926
dd624afd 1927int
37e680a1
CW
1928i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1929{
1930 const struct drm_i915_gem_object_ops *ops = obj->ops;
1931
2f745ad3 1932 if (obj->pages == NULL)
37e680a1
CW
1933 return 0;
1934
a5570178
CW
1935 if (obj->pages_pin_count)
1936 return -EBUSY;
1937
9843877d 1938 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1939
a2165e31
CW
1940 /* ->put_pages might need to allocate memory for the bit17 swizzle
1941 * array, hence protect them from being reaped by removing them from gtt
1942 * lists early. */
35c20a60 1943 list_del(&obj->global_list);
a2165e31 1944
37e680a1 1945 ops->put_pages(obj);
05394f39 1946 obj->pages = NULL;
37e680a1 1947
5537252b 1948 i915_gem_object_invalidate(obj);
6c085a72
CW
1949
1950 return 0;
1951}
1952
21ab4e74
CW
1953unsigned long
1954i915_gem_shrink(struct drm_i915_private *dev_priv,
1955 long target, unsigned flags)
6c085a72 1956{
60a53727
CW
1957 const struct {
1958 struct list_head *list;
1959 unsigned int bit;
1960 } phases[] = {
1961 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
1962 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
1963 { NULL, 0 },
1964 }, *phase;
d9973b43 1965 unsigned long count = 0;
6c085a72 1966
57094f82 1967 /*
c8725f3d 1968 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
1969 * (due to retiring requests) we have to strictly process only
1970 * one element of the list at the time, and recheck the list
1971 * on every iteration.
c8725f3d
CW
1972 *
1973 * In particular, we must hold a reference whilst removing the
1974 * object as we may end up waiting for and/or retiring the objects.
1975 * This might release the final reference (held by the active list)
1976 * and result in the object being freed from under us. This is
1977 * similar to the precautions the eviction code must take whilst
1978 * removing objects.
1979 *
1980 * Also note that although these lists do not hold a reference to
1981 * the object we can safely grab one here: The final object
1982 * unreferencing and the bound_list are both protected by the
1983 * dev->struct_mutex and so we won't ever be able to observe an
1984 * object on the bound_list with a reference count equals 0.
57094f82 1985 */
60a53727 1986 for (phase = phases; phase->list; phase++) {
21ab4e74 1987 struct list_head still_in_list;
c8725f3d 1988
60a53727
CW
1989 if ((flags & phase->bit) == 0)
1990 continue;
80dcfdbd 1991
21ab4e74 1992 INIT_LIST_HEAD(&still_in_list);
60a53727 1993 while (count < target && !list_empty(phase->list)) {
21ab4e74
CW
1994 struct drm_i915_gem_object *obj;
1995 struct i915_vma *vma, *v;
57094f82 1996
60a53727 1997 obj = list_first_entry(phase->list,
21ab4e74
CW
1998 typeof(*obj), global_list);
1999 list_move_tail(&obj->global_list, &still_in_list);
80dcfdbd 2000
60a53727
CW
2001 if (flags & I915_SHRINK_PURGEABLE &&
2002 !i915_gem_object_is_purgeable(obj))
21ab4e74 2003 continue;
57094f82 2004
21ab4e74 2005 drm_gem_object_reference(&obj->base);
80dcfdbd 2006
60a53727
CW
2007 /* For the unbound phase, this should be a no-op! */
2008 list_for_each_entry_safe(vma, v,
2009 &obj->vma_list, vma_link)
21ab4e74
CW
2010 if (i915_vma_unbind(vma))
2011 break;
57094f82 2012
21ab4e74
CW
2013 if (i915_gem_object_put_pages(obj) == 0)
2014 count += obj->base.size >> PAGE_SHIFT;
2015
2016 drm_gem_object_unreference(&obj->base);
2017 }
60a53727 2018 list_splice(&still_in_list, phase->list);
6c085a72
CW
2019 }
2020
2021 return count;
2022}
2023
d9973b43 2024static unsigned long
6c085a72
CW
2025i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2026{
6c085a72 2027 i915_gem_evict_everything(dev_priv->dev);
21ab4e74
CW
2028 return i915_gem_shrink(dev_priv, LONG_MAX,
2029 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
225067ee
DV
2030}
2031
37e680a1 2032static int
6c085a72 2033i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2034{
6c085a72 2035 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2036 int page_count, i;
2037 struct address_space *mapping;
9da3da66
CW
2038 struct sg_table *st;
2039 struct scatterlist *sg;
90797e6d 2040 struct sg_page_iter sg_iter;
e5281ccd 2041 struct page *page;
90797e6d 2042 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2043 gfp_t gfp;
e5281ccd 2044
6c085a72
CW
2045 /* Assert that the object is not currently in any GPU domain. As it
2046 * wasn't in the GTT, there shouldn't be any way it could have been in
2047 * a GPU cache
2048 */
2049 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2050 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2051
9da3da66
CW
2052 st = kmalloc(sizeof(*st), GFP_KERNEL);
2053 if (st == NULL)
2054 return -ENOMEM;
2055
05394f39 2056 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2057 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2058 kfree(st);
e5281ccd 2059 return -ENOMEM;
9da3da66 2060 }
e5281ccd 2061
9da3da66
CW
2062 /* Get the list of pages out of our struct file. They'll be pinned
2063 * at this point until we release them.
2064 *
2065 * Fail silently without starting the shrinker
2066 */
496ad9aa 2067 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2068 gfp = mapping_gfp_mask(mapping);
caf49191 2069 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2070 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2071 sg = st->sgl;
2072 st->nents = 0;
2073 for (i = 0; i < page_count; i++) {
6c085a72
CW
2074 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2075 if (IS_ERR(page)) {
21ab4e74
CW
2076 i915_gem_shrink(dev_priv,
2077 page_count,
2078 I915_SHRINK_BOUND |
2079 I915_SHRINK_UNBOUND |
2080 I915_SHRINK_PURGEABLE);
6c085a72
CW
2081 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2082 }
2083 if (IS_ERR(page)) {
2084 /* We've tried hard to allocate the memory by reaping
2085 * our own buffer, now let the real VM do its job and
2086 * go down in flames if truly OOM.
2087 */
6c085a72 2088 i915_gem_shrink_all(dev_priv);
f461d1be 2089 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2090 if (IS_ERR(page))
2091 goto err_pages;
6c085a72 2092 }
426729dc
KRW
2093#ifdef CONFIG_SWIOTLB
2094 if (swiotlb_nr_tbl()) {
2095 st->nents++;
2096 sg_set_page(sg, page, PAGE_SIZE, 0);
2097 sg = sg_next(sg);
2098 continue;
2099 }
2100#endif
90797e6d
ID
2101 if (!i || page_to_pfn(page) != last_pfn + 1) {
2102 if (i)
2103 sg = sg_next(sg);
2104 st->nents++;
2105 sg_set_page(sg, page, PAGE_SIZE, 0);
2106 } else {
2107 sg->length += PAGE_SIZE;
2108 }
2109 last_pfn = page_to_pfn(page);
3bbbe706
DV
2110
2111 /* Check that the i965g/gm workaround works. */
2112 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2113 }
426729dc
KRW
2114#ifdef CONFIG_SWIOTLB
2115 if (!swiotlb_nr_tbl())
2116#endif
2117 sg_mark_end(sg);
74ce6b6c
CW
2118 obj->pages = st;
2119
6dacfd2f 2120 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2121 i915_gem_object_do_bit_17_swizzle(obj);
2122
2123 return 0;
2124
2125err_pages:
90797e6d
ID
2126 sg_mark_end(sg);
2127 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2128 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2129 sg_free_table(st);
2130 kfree(st);
0820baf3
CW
2131
2132 /* shmemfs first checks if there is enough memory to allocate the page
2133 * and reports ENOSPC should there be insufficient, along with the usual
2134 * ENOMEM for a genuine allocation failure.
2135 *
2136 * We use ENOSPC in our driver to mean that we have run out of aperture
2137 * space and so want to translate the error from shmemfs back to our
2138 * usual understanding of ENOMEM.
2139 */
2140 if (PTR_ERR(page) == -ENOSPC)
2141 return -ENOMEM;
2142 else
2143 return PTR_ERR(page);
673a394b
EA
2144}
2145
37e680a1
CW
2146/* Ensure that the associated pages are gathered from the backing storage
2147 * and pinned into our object. i915_gem_object_get_pages() may be called
2148 * multiple times before they are released by a single call to
2149 * i915_gem_object_put_pages() - once the pages are no longer referenced
2150 * either as a result of memory pressure (reaping pages under the shrinker)
2151 * or as the object is itself released.
2152 */
2153int
2154i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2155{
2156 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2157 const struct drm_i915_gem_object_ops *ops = obj->ops;
2158 int ret;
2159
2f745ad3 2160 if (obj->pages)
37e680a1
CW
2161 return 0;
2162
43e28f09 2163 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2164 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2165 return -EFAULT;
43e28f09
CW
2166 }
2167
a5570178
CW
2168 BUG_ON(obj->pages_pin_count);
2169
37e680a1
CW
2170 ret = ops->get_pages(obj);
2171 if (ret)
2172 return ret;
2173
35c20a60 2174 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2175 return 0;
673a394b
EA
2176}
2177
e2d05a8b 2178static void
05394f39 2179i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2180 struct intel_engine_cs *ring)
673a394b 2181{
9d773091 2182 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2183
852835f3 2184 BUG_ON(ring == NULL);
02978ff5
CW
2185 if (obj->ring != ring && obj->last_write_seqno) {
2186 /* Keep the seqno relative to the current ring */
2187 obj->last_write_seqno = seqno;
2188 }
05394f39 2189 obj->ring = ring;
673a394b
EA
2190
2191 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2192 if (!obj->active) {
2193 drm_gem_object_reference(&obj->base);
2194 obj->active = 1;
673a394b 2195 }
e35a41de 2196
05394f39 2197 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2198
0201f1ec 2199 obj->last_read_seqno = seqno;
caea7476
CW
2200}
2201
e2d05a8b 2202void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2203 struct intel_engine_cs *ring)
e2d05a8b
BW
2204{
2205 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2206 return i915_gem_object_move_to_active(vma->obj, ring);
2207}
2208
caea7476 2209static void
caea7476 2210i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2211{
ca191b13 2212 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2213 struct i915_address_space *vm;
2214 struct i915_vma *vma;
ce44b0ea 2215
65ce3027 2216 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2217 BUG_ON(!obj->active);
caea7476 2218
feb822cf
BW
2219 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2220 vma = i915_gem_obj_to_vma(obj, vm);
2221 if (vma && !list_empty(&vma->mm_list))
2222 list_move_tail(&vma->mm_list, &vm->inactive_list);
2223 }
caea7476 2224
f99d7069
DV
2225 intel_fb_obj_flush(obj, true);
2226
65ce3027 2227 list_del_init(&obj->ring_list);
caea7476
CW
2228 obj->ring = NULL;
2229
65ce3027
CW
2230 obj->last_read_seqno = 0;
2231 obj->last_write_seqno = 0;
2232 obj->base.write_domain = 0;
2233
2234 obj->last_fenced_seqno = 0;
caea7476
CW
2235
2236 obj->active = 0;
2237 drm_gem_object_unreference(&obj->base);
2238
2239 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2240}
673a394b 2241
c8725f3d
CW
2242static void
2243i915_gem_object_retire(struct drm_i915_gem_object *obj)
2244{
a4872ba6 2245 struct intel_engine_cs *ring = obj->ring;
c8725f3d
CW
2246
2247 if (ring == NULL)
2248 return;
2249
2250 if (i915_seqno_passed(ring->get_seqno(ring, true),
2251 obj->last_read_seqno))
2252 i915_gem_object_move_to_inactive(obj);
2253}
2254
9d773091 2255static int
fca26bb4 2256i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2257{
9d773091 2258 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2259 struct intel_engine_cs *ring;
9d773091 2260 int ret, i, j;
53d227f2 2261
107f27a5 2262 /* Carefully retire all requests without writing to the rings */
9d773091 2263 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2264 ret = intel_ring_idle(ring);
2265 if (ret)
2266 return ret;
9d773091 2267 }
9d773091 2268 i915_gem_retire_requests(dev);
107f27a5
CW
2269
2270 /* Finally reset hw state */
9d773091 2271 for_each_ring(ring, dev_priv, i) {
fca26bb4 2272 intel_ring_init_seqno(ring, seqno);
498d2ac1 2273
ebc348b2
BW
2274 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2275 ring->semaphore.sync_seqno[j] = 0;
9d773091 2276 }
53d227f2 2277
9d773091 2278 return 0;
53d227f2
DV
2279}
2280
fca26bb4
MK
2281int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2282{
2283 struct drm_i915_private *dev_priv = dev->dev_private;
2284 int ret;
2285
2286 if (seqno == 0)
2287 return -EINVAL;
2288
2289 /* HWS page needs to be set less than what we
2290 * will inject to ring
2291 */
2292 ret = i915_gem_init_seqno(dev, seqno - 1);
2293 if (ret)
2294 return ret;
2295
2296 /* Carefully set the last_seqno value so that wrap
2297 * detection still works
2298 */
2299 dev_priv->next_seqno = seqno;
2300 dev_priv->last_seqno = seqno - 1;
2301 if (dev_priv->last_seqno == 0)
2302 dev_priv->last_seqno--;
2303
2304 return 0;
2305}
2306
9d773091
CW
2307int
2308i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2309{
9d773091
CW
2310 struct drm_i915_private *dev_priv = dev->dev_private;
2311
2312 /* reserve 0 for non-seqno */
2313 if (dev_priv->next_seqno == 0) {
fca26bb4 2314 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2315 if (ret)
2316 return ret;
53d227f2 2317
9d773091
CW
2318 dev_priv->next_seqno = 1;
2319 }
53d227f2 2320
f72b3435 2321 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2322 return 0;
53d227f2
DV
2323}
2324
a4872ba6 2325int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2326 struct drm_file *file,
7d736f4f 2327 struct drm_i915_gem_object *obj,
0025c077 2328 u32 *out_seqno)
673a394b 2329{
3e31c6c0 2330 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2331 struct drm_i915_gem_request *request;
48e29f55 2332 struct intel_ringbuffer *ringbuf;
7d736f4f 2333 u32 request_ring_position, request_start;
3cce469c
CW
2334 int ret;
2335
48e29f55
OM
2336 request = ring->preallocated_lazy_request;
2337 if (WARN_ON(request == NULL))
2338 return -ENOMEM;
2339
2340 if (i915.enable_execlists) {
2341 struct intel_context *ctx = request->ctx;
2342 ringbuf = ctx->engine[ring->id].ringbuf;
2343 } else
2344 ringbuf = ring->buffer;
2345
2346 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2347 /*
2348 * Emit any outstanding flushes - execbuf can fail to emit the flush
2349 * after having emitted the batchbuffer command. Hence we need to fix
2350 * things up similar to emitting the lazy request. The difference here
2351 * is that the flush _must_ happen before the next request, no matter
2352 * what.
2353 */
48e29f55
OM
2354 if (i915.enable_execlists) {
2355 ret = logical_ring_flush_all_caches(ringbuf);
2356 if (ret)
2357 return ret;
2358 } else {
2359 ret = intel_ring_flush_all_caches(ring);
2360 if (ret)
2361 return ret;
2362 }
cc889e0f 2363
a71d8d94
CW
2364 /* Record the position of the start of the request so that
2365 * should we detect the updated seqno part-way through the
2366 * GPU processing the request, we never over-estimate the
2367 * position of the head.
2368 */
48e29f55 2369 request_ring_position = intel_ring_get_tail(ringbuf);
a71d8d94 2370
48e29f55
OM
2371 if (i915.enable_execlists) {
2372 ret = ring->emit_request(ringbuf);
2373 if (ret)
2374 return ret;
2375 } else {
2376 ret = ring->add_request(ring);
2377 if (ret)
2378 return ret;
2379 }
673a394b 2380
9d773091 2381 request->seqno = intel_ring_get_seqno(ring);
852835f3 2382 request->ring = ring;
7d736f4f 2383 request->head = request_start;
a71d8d94 2384 request->tail = request_ring_position;
7d736f4f
MK
2385
2386 /* Whilst this request exists, batch_obj will be on the
2387 * active_list, and so will hold the active reference. Only when this
2388 * request is retired will the the batch_obj be moved onto the
2389 * inactive_list and lose its active reference. Hence we do not need
2390 * to explicitly hold another reference here.
2391 */
9a7e0c2a 2392 request->batch_obj = obj;
0e50e96b 2393
48e29f55
OM
2394 if (!i915.enable_execlists) {
2395 /* Hold a reference to the current context so that we can inspect
2396 * it later in case a hangcheck error event fires.
2397 */
2398 request->ctx = ring->last_context;
2399 if (request->ctx)
2400 i915_gem_context_reference(request->ctx);
2401 }
0e50e96b 2402
673a394b 2403 request->emitted_jiffies = jiffies;
852835f3 2404 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2405 request->file_priv = NULL;
852835f3 2406
db53a302
CW
2407 if (file) {
2408 struct drm_i915_file_private *file_priv = file->driver_priv;
2409
1c25595f 2410 spin_lock(&file_priv->mm.lock);
f787a5f5 2411 request->file_priv = file_priv;
b962442e 2412 list_add_tail(&request->client_list,
f787a5f5 2413 &file_priv->mm.request_list);
1c25595f 2414 spin_unlock(&file_priv->mm.lock);
b962442e 2415 }
673a394b 2416
9d773091 2417 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2418 ring->outstanding_lazy_seqno = 0;
3c0e234c 2419 ring->preallocated_lazy_request = NULL;
db53a302 2420
db1b76ca 2421 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2422 i915_queue_hangcheck(ring->dev);
2423
f62a0076
CW
2424 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2425 queue_delayed_work(dev_priv->wq,
2426 &dev_priv->mm.retire_work,
2427 round_jiffies_up_relative(HZ));
2428 intel_mark_busy(dev_priv->dev);
f65d9421 2429 }
cc889e0f 2430
acb868d3 2431 if (out_seqno)
9d773091 2432 *out_seqno = request->seqno;
3cce469c 2433 return 0;
673a394b
EA
2434}
2435
f787a5f5
CW
2436static inline void
2437i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2438{
1c25595f 2439 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2440
1c25595f
CW
2441 if (!file_priv)
2442 return;
1c5d22f7 2443
1c25595f 2444 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2445 list_del(&request->client_list);
2446 request->file_priv = NULL;
1c25595f 2447 spin_unlock(&file_priv->mm.lock);
673a394b 2448}
673a394b 2449
939fd762 2450static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2451 const struct intel_context *ctx)
be62acb4 2452{
44e2c070 2453 unsigned long elapsed;
be62acb4 2454
44e2c070
MK
2455 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2456
2457 if (ctx->hang_stats.banned)
be62acb4
MK
2458 return true;
2459
2460 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2461 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2462 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2463 return true;
88b4aa87
MK
2464 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2465 if (i915_stop_ring_allow_warn(dev_priv))
2466 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2467 return true;
3fac8978 2468 }
be62acb4
MK
2469 }
2470
2471 return false;
2472}
2473
939fd762 2474static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2475 struct intel_context *ctx,
b6b0fac0 2476 const bool guilty)
aa60c664 2477{
44e2c070
MK
2478 struct i915_ctx_hang_stats *hs;
2479
2480 if (WARN_ON(!ctx))
2481 return;
aa60c664 2482
44e2c070
MK
2483 hs = &ctx->hang_stats;
2484
2485 if (guilty) {
939fd762 2486 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2487 hs->batch_active++;
2488 hs->guilty_ts = get_seconds();
2489 } else {
2490 hs->batch_pending++;
aa60c664
MK
2491 }
2492}
2493
0e50e96b
MK
2494static void i915_gem_free_request(struct drm_i915_gem_request *request)
2495{
2496 list_del(&request->list);
2497 i915_gem_request_remove_from_client(request);
2498
2499 if (request->ctx)
2500 i915_gem_context_unreference(request->ctx);
2501
2502 kfree(request);
2503}
2504
8d9fc7fd 2505struct drm_i915_gem_request *
a4872ba6 2506i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2507{
4db080f9 2508 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2509 u32 completed_seqno;
2510
2511 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2512
2513 list_for_each_entry(request, &ring->request_list, list) {
2514 if (i915_seqno_passed(completed_seqno, request->seqno))
2515 continue;
aa60c664 2516
b6b0fac0 2517 return request;
4db080f9 2518 }
b6b0fac0
MK
2519
2520 return NULL;
2521}
2522
2523static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2524 struct intel_engine_cs *ring)
b6b0fac0
MK
2525{
2526 struct drm_i915_gem_request *request;
2527 bool ring_hung;
2528
8d9fc7fd 2529 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2530
2531 if (request == NULL)
2532 return;
2533
2534 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2535
939fd762 2536 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2537
2538 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2539 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2540}
aa60c664 2541
4db080f9 2542static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2543 struct intel_engine_cs *ring)
4db080f9 2544{
dfaae392 2545 while (!list_empty(&ring->active_list)) {
05394f39 2546 struct drm_i915_gem_object *obj;
9375e446 2547
05394f39
CW
2548 obj = list_first_entry(&ring->active_list,
2549 struct drm_i915_gem_object,
2550 ring_list);
9375e446 2551
05394f39 2552 i915_gem_object_move_to_inactive(obj);
673a394b 2553 }
1d62beea
BW
2554
2555 /*
2556 * We must free the requests after all the corresponding objects have
2557 * been moved off active lists. Which is the same order as the normal
2558 * retire_requests function does. This is important if object hold
2559 * implicit references on things like e.g. ppgtt address spaces through
2560 * the request.
2561 */
2562 while (!list_empty(&ring->request_list)) {
2563 struct drm_i915_gem_request *request;
2564
2565 request = list_first_entry(&ring->request_list,
2566 struct drm_i915_gem_request,
2567 list);
2568
2569 i915_gem_free_request(request);
2570 }
e3efda49 2571
cc9130be
OM
2572 while (!list_empty(&ring->execlist_queue)) {
2573 struct intel_ctx_submit_request *submit_req;
2574
2575 submit_req = list_first_entry(&ring->execlist_queue,
2576 struct intel_ctx_submit_request,
2577 execlist_link);
2578 list_del(&submit_req->execlist_link);
2579 intel_runtime_pm_put(dev_priv);
2580 i915_gem_context_unreference(submit_req->ctx);
2581 kfree(submit_req);
2582 }
2583
e3efda49
CW
2584 /* These may not have been flush before the reset, do so now */
2585 kfree(ring->preallocated_lazy_request);
2586 ring->preallocated_lazy_request = NULL;
2587 ring->outstanding_lazy_seqno = 0;
673a394b
EA
2588}
2589
19b2dbde 2590void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2591{
2592 struct drm_i915_private *dev_priv = dev->dev_private;
2593 int i;
2594
4b9de737 2595 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2596 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2597
94a335db
DV
2598 /*
2599 * Commit delayed tiling changes if we have an object still
2600 * attached to the fence, otherwise just clear the fence.
2601 */
2602 if (reg->obj) {
2603 i915_gem_object_update_fence(reg->obj, reg,
2604 reg->obj->tiling_mode);
2605 } else {
2606 i915_gem_write_fence(dev, i, NULL);
2607 }
312817a3
CW
2608 }
2609}
2610
069efc1d 2611void i915_gem_reset(struct drm_device *dev)
673a394b 2612{
77f01230 2613 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2614 struct intel_engine_cs *ring;
1ec14ad3 2615 int i;
673a394b 2616
4db080f9
CW
2617 /*
2618 * Before we free the objects from the requests, we need to inspect
2619 * them for finding the guilty party. As the requests only borrow
2620 * their reference to the objects, the inspection must be done first.
2621 */
2622 for_each_ring(ring, dev_priv, i)
2623 i915_gem_reset_ring_status(dev_priv, ring);
2624
b4519513 2625 for_each_ring(ring, dev_priv, i)
4db080f9 2626 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2627
acce9ffa
BW
2628 i915_gem_context_reset(dev);
2629
19b2dbde 2630 i915_gem_restore_fences(dev);
673a394b
EA
2631}
2632
2633/**
2634 * This function clears the request list as sequence numbers are passed.
2635 */
1cf0ba14 2636void
a4872ba6 2637i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2638{
673a394b
EA
2639 uint32_t seqno;
2640
db53a302 2641 if (list_empty(&ring->request_list))
6c0594a3
KW
2642 return;
2643
db53a302 2644 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2645
b2eadbc8 2646 seqno = ring->get_seqno(ring, true);
1ec14ad3 2647
e9103038
CW
2648 /* Move any buffers on the active list that are no longer referenced
2649 * by the ringbuffer to the flushing/inactive lists as appropriate,
2650 * before we free the context associated with the requests.
2651 */
2652 while (!list_empty(&ring->active_list)) {
2653 struct drm_i915_gem_object *obj;
2654
2655 obj = list_first_entry(&ring->active_list,
2656 struct drm_i915_gem_object,
2657 ring_list);
2658
2659 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2660 break;
2661
2662 i915_gem_object_move_to_inactive(obj);
2663 }
2664
2665
852835f3 2666 while (!list_empty(&ring->request_list)) {
673a394b 2667 struct drm_i915_gem_request *request;
48e29f55 2668 struct intel_ringbuffer *ringbuf;
673a394b 2669
852835f3 2670 request = list_first_entry(&ring->request_list,
673a394b
EA
2671 struct drm_i915_gem_request,
2672 list);
673a394b 2673
dfaae392 2674 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2675 break;
2676
db53a302 2677 trace_i915_gem_request_retire(ring, request->seqno);
48e29f55
OM
2678
2679 /* This is one of the few common intersection points
2680 * between legacy ringbuffer submission and execlists:
2681 * we need to tell them apart in order to find the correct
2682 * ringbuffer to which the request belongs to.
2683 */
2684 if (i915.enable_execlists) {
2685 struct intel_context *ctx = request->ctx;
2686 ringbuf = ctx->engine[ring->id].ringbuf;
2687 } else
2688 ringbuf = ring->buffer;
2689
a71d8d94
CW
2690 /* We know the GPU must have read the request to have
2691 * sent us the seqno + interrupt, so use the position
2692 * of tail of the request to update the last known position
2693 * of the GPU head.
2694 */
48e29f55 2695 ringbuf->last_retired_head = request->tail;
b84d5f0c 2696
0e50e96b 2697 i915_gem_free_request(request);
b84d5f0c 2698 }
673a394b 2699
db53a302
CW
2700 if (unlikely(ring->trace_irq_seqno &&
2701 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2702 ring->irq_put(ring);
db53a302 2703 ring->trace_irq_seqno = 0;
9d34e5db 2704 }
23bc5982 2705
db53a302 2706 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2707}
2708
b29c19b6 2709bool
b09a1fec
CW
2710i915_gem_retire_requests(struct drm_device *dev)
2711{
3e31c6c0 2712 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2713 struct intel_engine_cs *ring;
b29c19b6 2714 bool idle = true;
1ec14ad3 2715 int i;
b09a1fec 2716
b29c19b6 2717 for_each_ring(ring, dev_priv, i) {
b4519513 2718 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2719 idle &= list_empty(&ring->request_list);
2720 }
2721
2722 if (idle)
2723 mod_delayed_work(dev_priv->wq,
2724 &dev_priv->mm.idle_work,
2725 msecs_to_jiffies(100));
2726
2727 return idle;
b09a1fec
CW
2728}
2729
75ef9da2 2730static void
673a394b
EA
2731i915_gem_retire_work_handler(struct work_struct *work)
2732{
b29c19b6
CW
2733 struct drm_i915_private *dev_priv =
2734 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2735 struct drm_device *dev = dev_priv->dev;
0a58705b 2736 bool idle;
673a394b 2737
891b48cf 2738 /* Come back later if the device is busy... */
b29c19b6
CW
2739 idle = false;
2740 if (mutex_trylock(&dev->struct_mutex)) {
2741 idle = i915_gem_retire_requests(dev);
2742 mutex_unlock(&dev->struct_mutex);
673a394b 2743 }
b29c19b6 2744 if (!idle)
bcb45086
CW
2745 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2746 round_jiffies_up_relative(HZ));
b29c19b6 2747}
0a58705b 2748
b29c19b6
CW
2749static void
2750i915_gem_idle_work_handler(struct work_struct *work)
2751{
2752 struct drm_i915_private *dev_priv =
2753 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2754
2755 intel_mark_idle(dev_priv->dev);
673a394b
EA
2756}
2757
30dfebf3
DV
2758/**
2759 * Ensures that an object will eventually get non-busy by flushing any required
2760 * write domains, emitting any outstanding lazy request and retiring and
2761 * completed requests.
2762 */
2763static int
2764i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2765{
2766 int ret;
2767
2768 if (obj->active) {
0201f1ec 2769 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2770 if (ret)
2771 return ret;
2772
30dfebf3
DV
2773 i915_gem_retire_requests_ring(obj->ring);
2774 }
2775
2776 return 0;
2777}
2778
23ba4fd0
BW
2779/**
2780 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2781 * @DRM_IOCTL_ARGS: standard ioctl arguments
2782 *
2783 * Returns 0 if successful, else an error is returned with the remaining time in
2784 * the timeout parameter.
2785 * -ETIME: object is still busy after timeout
2786 * -ERESTARTSYS: signal interrupted the wait
2787 * -ENONENT: object doesn't exist
2788 * Also possible, but rare:
2789 * -EAGAIN: GPU wedged
2790 * -ENOMEM: damn
2791 * -ENODEV: Internal IRQ fail
2792 * -E?: The add request failed
2793 *
2794 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2795 * non-zero timeout parameter the wait ioctl will wait for the given number of
2796 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2797 * without holding struct_mutex the object may become re-busied before this
2798 * function completes. A similar but shorter * race condition exists in the busy
2799 * ioctl
2800 */
2801int
2802i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2803{
3e31c6c0 2804 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2805 struct drm_i915_gem_wait *args = data;
2806 struct drm_i915_gem_object *obj;
a4872ba6 2807 struct intel_engine_cs *ring = NULL;
f69061be 2808 unsigned reset_counter;
23ba4fd0
BW
2809 u32 seqno = 0;
2810 int ret = 0;
2811
11b5d511
DV
2812 if (args->flags != 0)
2813 return -EINVAL;
2814
23ba4fd0
BW
2815 ret = i915_mutex_lock_interruptible(dev);
2816 if (ret)
2817 return ret;
2818
2819 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2820 if (&obj->base == NULL) {
2821 mutex_unlock(&dev->struct_mutex);
2822 return -ENOENT;
2823 }
2824
30dfebf3
DV
2825 /* Need to make sure the object gets inactive eventually. */
2826 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2827 if (ret)
2828 goto out;
2829
2830 if (obj->active) {
0201f1ec 2831 seqno = obj->last_read_seqno;
23ba4fd0
BW
2832 ring = obj->ring;
2833 }
2834
2835 if (seqno == 0)
2836 goto out;
2837
23ba4fd0 2838 /* Do this after OLR check to make sure we make forward progress polling
5ed0bdf2 2839 * on this IOCTL with a timeout <=0 (like busy ioctl)
23ba4fd0 2840 */
5ed0bdf2 2841 if (args->timeout_ns <= 0) {
23ba4fd0
BW
2842 ret = -ETIME;
2843 goto out;
2844 }
2845
2846 drm_gem_object_unreference(&obj->base);
f69061be 2847 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2848 mutex_unlock(&dev->struct_mutex);
2849
5ed0bdf2
TG
2850 return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
2851 file->driver_priv);
23ba4fd0
BW
2852
2853out:
2854 drm_gem_object_unreference(&obj->base);
2855 mutex_unlock(&dev->struct_mutex);
2856 return ret;
2857}
2858
5816d648
BW
2859/**
2860 * i915_gem_object_sync - sync an object to a ring.
2861 *
2862 * @obj: object which may be in use on another ring.
2863 * @to: ring we wish to use the object on. May be NULL.
2864 *
2865 * This code is meant to abstract object synchronization with the GPU.
2866 * Calling with NULL implies synchronizing the object with the CPU
2867 * rather than a particular GPU ring.
2868 *
2869 * Returns 0 if successful, else propagates up the lower layer error.
2870 */
2911a35b
BW
2871int
2872i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2873 struct intel_engine_cs *to)
2911a35b 2874{
a4872ba6 2875 struct intel_engine_cs *from = obj->ring;
2911a35b
BW
2876 u32 seqno;
2877 int ret, idx;
2878
2879 if (from == NULL || to == from)
2880 return 0;
2881
5816d648 2882 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2883 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2884
2885 idx = intel_ring_sync_index(from, to);
2886
0201f1ec 2887 seqno = obj->last_read_seqno;
ddd4dbc6
RV
2888 /* Optimization: Avoid semaphore sync when we are sure we already
2889 * waited for an object with higher seqno */
ebc348b2 2890 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2891 return 0;
2892
b4aca010
BW
2893 ret = i915_gem_check_olr(obj->ring, seqno);
2894 if (ret)
2895 return ret;
2911a35b 2896
b52b89da 2897 trace_i915_gem_ring_sync_to(from, to, seqno);
ebc348b2 2898 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2899 if (!ret)
7b01e260
MK
2900 /* We use last_read_seqno because sync_to()
2901 * might have just caused seqno wrap under
2902 * the radar.
2903 */
ebc348b2 2904 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2905
e3a5a225 2906 return ret;
2911a35b
BW
2907}
2908
b5ffc9bc
CW
2909static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2910{
2911 u32 old_write_domain, old_read_domains;
2912
b5ffc9bc
CW
2913 /* Force a pagefault for domain tracking on next user access */
2914 i915_gem_release_mmap(obj);
2915
b97c3d9c
KP
2916 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2917 return;
2918
97c809fd
CW
2919 /* Wait for any direct GTT access to complete */
2920 mb();
2921
b5ffc9bc
CW
2922 old_read_domains = obj->base.read_domains;
2923 old_write_domain = obj->base.write_domain;
2924
2925 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2926 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2927
2928 trace_i915_gem_object_change_domain(obj,
2929 old_read_domains,
2930 old_write_domain);
2931}
2932
07fe0b12 2933int i915_vma_unbind(struct i915_vma *vma)
673a394b 2934{
07fe0b12 2935 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 2936 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 2937 int ret;
673a394b 2938
07fe0b12 2939 if (list_empty(&vma->vma_link))
673a394b
EA
2940 return 0;
2941
0ff501cb
DV
2942 if (!drm_mm_node_allocated(&vma->node)) {
2943 i915_gem_vma_destroy(vma);
0ff501cb
DV
2944 return 0;
2945 }
433544bd 2946
d7f46fc4 2947 if (vma->pin_count)
31d8d651 2948 return -EBUSY;
673a394b 2949
c4670ad0
CW
2950 BUG_ON(obj->pages == NULL);
2951
a8198eea 2952 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2953 if (ret)
a8198eea
CW
2954 return ret;
2955 /* Continue on if we fail due to EIO, the GPU is hung so we
2956 * should be safe and we need to cleanup or else we might
2957 * cause memory corruption through use-after-free.
2958 */
2959
1d1ef21d
CW
2960 /* Throw away the active reference before moving to the unbound list */
2961 i915_gem_object_retire(obj);
2962
8b1bc9b4
DV
2963 if (i915_is_ggtt(vma->vm)) {
2964 i915_gem_object_finish_gtt(obj);
5323fd04 2965
8b1bc9b4
DV
2966 /* release the fence reg _after_ flushing */
2967 ret = i915_gem_object_put_fence(obj);
2968 if (ret)
2969 return ret;
2970 }
96b47b65 2971
07fe0b12 2972 trace_i915_vma_unbind(vma);
db53a302 2973
6f65e29a
BW
2974 vma->unbind_vma(vma);
2975
64bf9303 2976 list_del_init(&vma->mm_list);
5cacaac7 2977 if (i915_is_ggtt(vma->vm))
e6a84468 2978 obj->map_and_fenceable = false;
673a394b 2979
2f633156
BW
2980 drm_mm_remove_node(&vma->node);
2981 i915_gem_vma_destroy(vma);
2982
2983 /* Since the unbound list is global, only move to that list if
b93dab6e 2984 * no more VMAs exist. */
9490edb5
AR
2985 if (list_empty(&obj->vma_list)) {
2986 i915_gem_gtt_finish_object(obj);
2f633156 2987 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 2988 }
673a394b 2989
70903c3b
CW
2990 /* And finally now the object is completely decoupled from this vma,
2991 * we can drop its hold on the backing storage and allow it to be
2992 * reaped by the shrinker.
2993 */
2994 i915_gem_object_unpin_pages(obj);
2995
88241785 2996 return 0;
54cf91dc
CW
2997}
2998
b2da9fe5 2999int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3000{
3e31c6c0 3001 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3002 struct intel_engine_cs *ring;
1ec14ad3 3003 int ret, i;
4df2faf4 3004
4df2faf4 3005 /* Flush everything onto the inactive list. */
b4519513 3006 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3007 if (!i915.enable_execlists) {
3008 ret = i915_switch_context(ring, ring->default_context);
3009 if (ret)
3010 return ret;
3011 }
b6c7488d 3012
3e960501 3013 ret = intel_ring_idle(ring);
1ec14ad3
CW
3014 if (ret)
3015 return ret;
3016 }
4df2faf4 3017
8a1a49f9 3018 return 0;
4df2faf4
DV
3019}
3020
9ce079e4
CW
3021static void i965_write_fence_reg(struct drm_device *dev, int reg,
3022 struct drm_i915_gem_object *obj)
de151cf6 3023{
3e31c6c0 3024 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3025 int fence_reg;
3026 int fence_pitch_shift;
de151cf6 3027
56c844e5
ID
3028 if (INTEL_INFO(dev)->gen >= 6) {
3029 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3030 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3031 } else {
3032 fence_reg = FENCE_REG_965_0;
3033 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3034 }
3035
d18b9619
CW
3036 fence_reg += reg * 8;
3037
3038 /* To w/a incoherency with non-atomic 64-bit register updates,
3039 * we split the 64-bit update into two 32-bit writes. In order
3040 * for a partial fence not to be evaluated between writes, we
3041 * precede the update with write to turn off the fence register,
3042 * and only enable the fence as the last step.
3043 *
3044 * For extra levels of paranoia, we make sure each step lands
3045 * before applying the next step.
3046 */
3047 I915_WRITE(fence_reg, 0);
3048 POSTING_READ(fence_reg);
3049
9ce079e4 3050 if (obj) {
f343c5f6 3051 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3052 uint64_t val;
de151cf6 3053
f343c5f6 3054 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3055 0xfffff000) << 32;
f343c5f6 3056 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3057 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3058 if (obj->tiling_mode == I915_TILING_Y)
3059 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3060 val |= I965_FENCE_REG_VALID;
c6642782 3061
d18b9619
CW
3062 I915_WRITE(fence_reg + 4, val >> 32);
3063 POSTING_READ(fence_reg + 4);
3064
3065 I915_WRITE(fence_reg + 0, val);
3066 POSTING_READ(fence_reg);
3067 } else {
3068 I915_WRITE(fence_reg + 4, 0);
3069 POSTING_READ(fence_reg + 4);
3070 }
de151cf6
JB
3071}
3072
9ce079e4
CW
3073static void i915_write_fence_reg(struct drm_device *dev, int reg,
3074 struct drm_i915_gem_object *obj)
de151cf6 3075{
3e31c6c0 3076 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3077 u32 val;
de151cf6 3078
9ce079e4 3079 if (obj) {
f343c5f6 3080 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3081 int pitch_val;
3082 int tile_width;
c6642782 3083
f343c5f6 3084 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3085 (size & -size) != size ||
f343c5f6
BW
3086 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3087 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3088 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3089
9ce079e4
CW
3090 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3091 tile_width = 128;
3092 else
3093 tile_width = 512;
3094
3095 /* Note: pitch better be a power of two tile widths */
3096 pitch_val = obj->stride / tile_width;
3097 pitch_val = ffs(pitch_val) - 1;
3098
f343c5f6 3099 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3100 if (obj->tiling_mode == I915_TILING_Y)
3101 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3102 val |= I915_FENCE_SIZE_BITS(size);
3103 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3104 val |= I830_FENCE_REG_VALID;
3105 } else
3106 val = 0;
3107
3108 if (reg < 8)
3109 reg = FENCE_REG_830_0 + reg * 4;
3110 else
3111 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3112
3113 I915_WRITE(reg, val);
3114 POSTING_READ(reg);
de151cf6
JB
3115}
3116
9ce079e4
CW
3117static void i830_write_fence_reg(struct drm_device *dev, int reg,
3118 struct drm_i915_gem_object *obj)
de151cf6 3119{
3e31c6c0 3120 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3121 uint32_t val;
de151cf6 3122
9ce079e4 3123 if (obj) {
f343c5f6 3124 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3125 uint32_t pitch_val;
de151cf6 3126
f343c5f6 3127 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3128 (size & -size) != size ||
f343c5f6
BW
3129 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3130 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3131 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3132
9ce079e4
CW
3133 pitch_val = obj->stride / 128;
3134 pitch_val = ffs(pitch_val) - 1;
de151cf6 3135
f343c5f6 3136 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3137 if (obj->tiling_mode == I915_TILING_Y)
3138 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3139 val |= I830_FENCE_SIZE_BITS(size);
3140 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3141 val |= I830_FENCE_REG_VALID;
3142 } else
3143 val = 0;
c6642782 3144
9ce079e4
CW
3145 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3146 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3147}
3148
d0a57789
CW
3149inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3150{
3151 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3152}
3153
9ce079e4
CW
3154static void i915_gem_write_fence(struct drm_device *dev, int reg,
3155 struct drm_i915_gem_object *obj)
3156{
d0a57789
CW
3157 struct drm_i915_private *dev_priv = dev->dev_private;
3158
3159 /* Ensure that all CPU reads are completed before installing a fence
3160 * and all writes before removing the fence.
3161 */
3162 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3163 mb();
3164
94a335db
DV
3165 WARN(obj && (!obj->stride || !obj->tiling_mode),
3166 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3167 obj->stride, obj->tiling_mode);
3168
9ce079e4 3169 switch (INTEL_INFO(dev)->gen) {
01209dd5 3170 case 9:
5ab31333 3171 case 8:
9ce079e4 3172 case 7:
56c844e5 3173 case 6:
9ce079e4
CW
3174 case 5:
3175 case 4: i965_write_fence_reg(dev, reg, obj); break;
3176 case 3: i915_write_fence_reg(dev, reg, obj); break;
3177 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3178 default: BUG();
9ce079e4 3179 }
d0a57789
CW
3180
3181 /* And similarly be paranoid that no direct access to this region
3182 * is reordered to before the fence is installed.
3183 */
3184 if (i915_gem_object_needs_mb(obj))
3185 mb();
de151cf6
JB
3186}
3187
61050808
CW
3188static inline int fence_number(struct drm_i915_private *dev_priv,
3189 struct drm_i915_fence_reg *fence)
3190{
3191 return fence - dev_priv->fence_regs;
3192}
3193
3194static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3195 struct drm_i915_fence_reg *fence,
3196 bool enable)
3197{
2dc8aae0 3198 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3199 int reg = fence_number(dev_priv, fence);
3200
3201 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3202
3203 if (enable) {
46a0b638 3204 obj->fence_reg = reg;
61050808
CW
3205 fence->obj = obj;
3206 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3207 } else {
3208 obj->fence_reg = I915_FENCE_REG_NONE;
3209 fence->obj = NULL;
3210 list_del_init(&fence->lru_list);
3211 }
94a335db 3212 obj->fence_dirty = false;
61050808
CW
3213}
3214
d9e86c0e 3215static int
d0a57789 3216i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3217{
1c293ea3 3218 if (obj->last_fenced_seqno) {
86d5bc37 3219 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3220 if (ret)
3221 return ret;
d9e86c0e
CW
3222
3223 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3224 }
3225
3226 return 0;
3227}
3228
3229int
3230i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3231{
61050808 3232 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3233 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3234 int ret;
3235
d0a57789 3236 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3237 if (ret)
3238 return ret;
3239
61050808
CW
3240 if (obj->fence_reg == I915_FENCE_REG_NONE)
3241 return 0;
d9e86c0e 3242
f9c513e9
CW
3243 fence = &dev_priv->fence_regs[obj->fence_reg];
3244
aff10b30
DV
3245 if (WARN_ON(fence->pin_count))
3246 return -EBUSY;
3247
61050808 3248 i915_gem_object_fence_lost(obj);
f9c513e9 3249 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3250
3251 return 0;
3252}
3253
3254static struct drm_i915_fence_reg *
a360bb1a 3255i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3256{
ae3db24a 3257 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3258 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3259 int i;
ae3db24a
DV
3260
3261 /* First try to find a free reg */
d9e86c0e 3262 avail = NULL;
ae3db24a
DV
3263 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3264 reg = &dev_priv->fence_regs[i];
3265 if (!reg->obj)
d9e86c0e 3266 return reg;
ae3db24a 3267
1690e1eb 3268 if (!reg->pin_count)
d9e86c0e 3269 avail = reg;
ae3db24a
DV
3270 }
3271
d9e86c0e 3272 if (avail == NULL)
5dce5b93 3273 goto deadlock;
ae3db24a
DV
3274
3275 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3276 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3277 if (reg->pin_count)
ae3db24a
DV
3278 continue;
3279
8fe301ad 3280 return reg;
ae3db24a
DV
3281 }
3282
5dce5b93
CW
3283deadlock:
3284 /* Wait for completion of pending flips which consume fences */
3285 if (intel_has_pending_fb_unpin(dev))
3286 return ERR_PTR(-EAGAIN);
3287
3288 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3289}
3290
de151cf6 3291/**
9a5a53b3 3292 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3293 * @obj: object to map through a fence reg
3294 *
3295 * When mapping objects through the GTT, userspace wants to be able to write
3296 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3297 * This function walks the fence regs looking for a free one for @obj,
3298 * stealing one if it can't find any.
3299 *
3300 * It then sets up the reg based on the object's properties: address, pitch
3301 * and tiling format.
9a5a53b3
CW
3302 *
3303 * For an untiled surface, this removes any existing fence.
de151cf6 3304 */
8c4b8c3f 3305int
06d98131 3306i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3307{
05394f39 3308 struct drm_device *dev = obj->base.dev;
79e53945 3309 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3310 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3311 struct drm_i915_fence_reg *reg;
ae3db24a 3312 int ret;
de151cf6 3313
14415745
CW
3314 /* Have we updated the tiling parameters upon the object and so
3315 * will need to serialise the write to the associated fence register?
3316 */
5d82e3e6 3317 if (obj->fence_dirty) {
d0a57789 3318 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3319 if (ret)
3320 return ret;
3321 }
9a5a53b3 3322
d9e86c0e 3323 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3324 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3325 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3326 if (!obj->fence_dirty) {
14415745
CW
3327 list_move_tail(&reg->lru_list,
3328 &dev_priv->mm.fence_list);
3329 return 0;
3330 }
3331 } else if (enable) {
e6a84468
CW
3332 if (WARN_ON(!obj->map_and_fenceable))
3333 return -EINVAL;
3334
14415745 3335 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3336 if (IS_ERR(reg))
3337 return PTR_ERR(reg);
d9e86c0e 3338
14415745
CW
3339 if (reg->obj) {
3340 struct drm_i915_gem_object *old = reg->obj;
3341
d0a57789 3342 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3343 if (ret)
3344 return ret;
3345
14415745 3346 i915_gem_object_fence_lost(old);
29c5a587 3347 }
14415745 3348 } else
a09ba7fa 3349 return 0;
a09ba7fa 3350
14415745 3351 i915_gem_object_update_fence(obj, reg, enable);
14415745 3352
9ce079e4 3353 return 0;
de151cf6
JB
3354}
3355
4144f9b5 3356static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3357 unsigned long cache_level)
3358{
4144f9b5 3359 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3360 struct drm_mm_node *other;
3361
4144f9b5
CW
3362 /*
3363 * On some machines we have to be careful when putting differing types
3364 * of snoopable memory together to avoid the prefetcher crossing memory
3365 * domains and dying. During vm initialisation, we decide whether or not
3366 * these constraints apply and set the drm_mm.color_adjust
3367 * appropriately.
42d6ab48 3368 */
4144f9b5 3369 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3370 return true;
3371
c6cfb325 3372 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3373 return true;
3374
3375 if (list_empty(&gtt_space->node_list))
3376 return true;
3377
3378 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3379 if (other->allocated && !other->hole_follows && other->color != cache_level)
3380 return false;
3381
3382 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3383 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3384 return false;
3385
3386 return true;
3387}
3388
673a394b
EA
3389/**
3390 * Finds free space in the GTT aperture and binds the object there.
3391 */
262de145 3392static struct i915_vma *
07fe0b12
BW
3393i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3394 struct i915_address_space *vm,
3395 unsigned alignment,
d23db88c 3396 uint64_t flags)
673a394b 3397{
05394f39 3398 struct drm_device *dev = obj->base.dev;
3e31c6c0 3399 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3400 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3401 unsigned long start =
3402 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3403 unsigned long end =
1ec9e26d 3404 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3405 struct i915_vma *vma;
07f73f69 3406 int ret;
673a394b 3407
e28f8711
CW
3408 fence_size = i915_gem_get_gtt_size(dev,
3409 obj->base.size,
3410 obj->tiling_mode);
3411 fence_alignment = i915_gem_get_gtt_alignment(dev,
3412 obj->base.size,
d865110c 3413 obj->tiling_mode, true);
e28f8711 3414 unfenced_alignment =
d865110c 3415 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3416 obj->base.size,
3417 obj->tiling_mode, false);
a00b10c3 3418
673a394b 3419 if (alignment == 0)
1ec9e26d 3420 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3421 unfenced_alignment;
1ec9e26d 3422 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3423 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3424 return ERR_PTR(-EINVAL);
673a394b
EA
3425 }
3426
1ec9e26d 3427 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3428
654fc607
CW
3429 /* If the object is bigger than the entire aperture, reject it early
3430 * before evicting everything in a vain attempt to find space.
3431 */
d23db88c
CW
3432 if (obj->base.size > end) {
3433 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3434 obj->base.size,
1ec9e26d 3435 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3436 end);
262de145 3437 return ERR_PTR(-E2BIG);
654fc607
CW
3438 }
3439
37e680a1 3440 ret = i915_gem_object_get_pages(obj);
6c085a72 3441 if (ret)
262de145 3442 return ERR_PTR(ret);
6c085a72 3443
fbdda6fb
CW
3444 i915_gem_object_pin_pages(obj);
3445
accfef2e 3446 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3447 if (IS_ERR(vma))
bc6bc15b 3448 goto err_unpin;
2f633156 3449
0a9ae0d7 3450search_free:
07fe0b12 3451 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3452 size, alignment,
d23db88c
CW
3453 obj->cache_level,
3454 start, end,
62347f9e
LK
3455 DRM_MM_SEARCH_DEFAULT,
3456 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3457 if (ret) {
f6cd1f15 3458 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3459 obj->cache_level,
3460 start, end,
3461 flags);
dc9dd7a2
CW
3462 if (ret == 0)
3463 goto search_free;
9731129c 3464
bc6bc15b 3465 goto err_free_vma;
673a394b 3466 }
4144f9b5 3467 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3468 ret = -EINVAL;
bc6bc15b 3469 goto err_remove_node;
673a394b
EA
3470 }
3471
74163907 3472 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3473 if (ret)
bc6bc15b 3474 goto err_remove_node;
673a394b 3475
35c20a60 3476 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3477 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3478
4bd561b3
BW
3479 if (i915_is_ggtt(vm)) {
3480 bool mappable, fenceable;
a00b10c3 3481
49987099
DV
3482 fenceable = (vma->node.size == fence_size &&
3483 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3484
49987099
DV
3485 mappable = (vma->node.start + obj->base.size <=
3486 dev_priv->gtt.mappable_end);
a00b10c3 3487
5cacaac7 3488 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3489 }
75e9e915 3490
1ec9e26d 3491 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3492
1ec9e26d 3493 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3494 vma->bind_vma(vma, obj->cache_level,
3495 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3496
262de145 3497 return vma;
2f633156 3498
bc6bc15b 3499err_remove_node:
6286ef9b 3500 drm_mm_remove_node(&vma->node);
bc6bc15b 3501err_free_vma:
2f633156 3502 i915_gem_vma_destroy(vma);
262de145 3503 vma = ERR_PTR(ret);
bc6bc15b 3504err_unpin:
2f633156 3505 i915_gem_object_unpin_pages(obj);
262de145 3506 return vma;
673a394b
EA
3507}
3508
000433b6 3509bool
2c22569b
CW
3510i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3511 bool force)
673a394b 3512{
673a394b
EA
3513 /* If we don't have a page list set up, then we're not pinned
3514 * to GPU, and we can ignore the cache flush because it'll happen
3515 * again at bind time.
3516 */
05394f39 3517 if (obj->pages == NULL)
000433b6 3518 return false;
673a394b 3519
769ce464
ID
3520 /*
3521 * Stolen memory is always coherent with the GPU as it is explicitly
3522 * marked as wc by the system, or the system is cache-coherent.
3523 */
3524 if (obj->stolen)
000433b6 3525 return false;
769ce464 3526
9c23f7fc
CW
3527 /* If the GPU is snooping the contents of the CPU cache,
3528 * we do not need to manually clear the CPU cache lines. However,
3529 * the caches are only snooped when the render cache is
3530 * flushed/invalidated. As we always have to emit invalidations
3531 * and flushes when moving into and out of the RENDER domain, correct
3532 * snooping behaviour occurs naturally as the result of our domain
3533 * tracking.
3534 */
2c22569b 3535 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3536 return false;
9c23f7fc 3537
1c5d22f7 3538 trace_i915_gem_object_clflush(obj);
9da3da66 3539 drm_clflush_sg(obj->pages);
000433b6
CW
3540
3541 return true;
e47c68e9
EA
3542}
3543
3544/** Flushes the GTT write domain for the object if it's dirty. */
3545static void
05394f39 3546i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3547{
1c5d22f7
CW
3548 uint32_t old_write_domain;
3549
05394f39 3550 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3551 return;
3552
63256ec5 3553 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3554 * to it immediately go to main memory as far as we know, so there's
3555 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3556 *
3557 * However, we do have to enforce the order so that all writes through
3558 * the GTT land before any writes to the device, such as updates to
3559 * the GATT itself.
e47c68e9 3560 */
63256ec5
CW
3561 wmb();
3562
05394f39
CW
3563 old_write_domain = obj->base.write_domain;
3564 obj->base.write_domain = 0;
1c5d22f7 3565
f99d7069
DV
3566 intel_fb_obj_flush(obj, false);
3567
1c5d22f7 3568 trace_i915_gem_object_change_domain(obj,
05394f39 3569 obj->base.read_domains,
1c5d22f7 3570 old_write_domain);
e47c68e9
EA
3571}
3572
3573/** Flushes the CPU write domain for the object if it's dirty. */
3574static void
2c22569b
CW
3575i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3576 bool force)
e47c68e9 3577{
1c5d22f7 3578 uint32_t old_write_domain;
e47c68e9 3579
05394f39 3580 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3581 return;
3582
000433b6
CW
3583 if (i915_gem_clflush_object(obj, force))
3584 i915_gem_chipset_flush(obj->base.dev);
3585
05394f39
CW
3586 old_write_domain = obj->base.write_domain;
3587 obj->base.write_domain = 0;
1c5d22f7 3588
f99d7069
DV
3589 intel_fb_obj_flush(obj, false);
3590
1c5d22f7 3591 trace_i915_gem_object_change_domain(obj,
05394f39 3592 obj->base.read_domains,
1c5d22f7 3593 old_write_domain);
e47c68e9
EA
3594}
3595
2ef7eeaa
EA
3596/**
3597 * Moves a single object to the GTT read, and possibly write domain.
3598 *
3599 * This function returns when the move is complete, including waiting on
3600 * flushes to occur.
3601 */
79e53945 3602int
2021746e 3603i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3604{
3e31c6c0 3605 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
dc8cd1e7 3606 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
1c5d22f7 3607 uint32_t old_write_domain, old_read_domains;
e47c68e9 3608 int ret;
2ef7eeaa 3609
02354392 3610 /* Not valid to be called on unbound objects. */
dc8cd1e7 3611 if (vma == NULL)
02354392
EA
3612 return -EINVAL;
3613
8d7e3de1
CW
3614 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3615 return 0;
3616
0201f1ec 3617 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3618 if (ret)
3619 return ret;
3620
c8725f3d 3621 i915_gem_object_retire(obj);
2c22569b 3622 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3623
d0a57789
CW
3624 /* Serialise direct access to this object with the barriers for
3625 * coherent writes from the GPU, by effectively invalidating the
3626 * GTT domain upon first access.
3627 */
3628 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3629 mb();
3630
05394f39
CW
3631 old_write_domain = obj->base.write_domain;
3632 old_read_domains = obj->base.read_domains;
1c5d22f7 3633
e47c68e9
EA
3634 /* It should now be out of any other write domains, and we can update
3635 * the domain values for our changes.
3636 */
05394f39
CW
3637 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3638 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3639 if (write) {
05394f39
CW
3640 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3641 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3642 obj->dirty = 1;
2ef7eeaa
EA
3643 }
3644
f99d7069
DV
3645 if (write)
3646 intel_fb_obj_invalidate(obj, NULL);
3647
1c5d22f7
CW
3648 trace_i915_gem_object_change_domain(obj,
3649 old_read_domains,
3650 old_write_domain);
3651
8325a09d 3652 /* And bump the LRU for this access */
dc8cd1e7
CW
3653 if (i915_gem_object_is_inactive(obj))
3654 list_move_tail(&vma->mm_list,
3655 &dev_priv->gtt.base.inactive_list);
8325a09d 3656
e47c68e9
EA
3657 return 0;
3658}
3659
e4ffd173
CW
3660int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3661 enum i915_cache_level cache_level)
3662{
7bddb01f 3663 struct drm_device *dev = obj->base.dev;
df6f783a 3664 struct i915_vma *vma, *next;
e4ffd173
CW
3665 int ret;
3666
3667 if (obj->cache_level == cache_level)
3668 return 0;
3669
d7f46fc4 3670 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3671 DRM_DEBUG("can not change the cache level of pinned objects\n");
3672 return -EBUSY;
3673 }
3674
df6f783a 3675 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3676 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3677 ret = i915_vma_unbind(vma);
3089c6f2
BW
3678 if (ret)
3679 return ret;
3089c6f2 3680 }
42d6ab48
CW
3681 }
3682
3089c6f2 3683 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3684 ret = i915_gem_object_finish_gpu(obj);
3685 if (ret)
3686 return ret;
3687
3688 i915_gem_object_finish_gtt(obj);
3689
3690 /* Before SandyBridge, you could not use tiling or fence
3691 * registers with snooped memory, so relinquish any fences
3692 * currently pointing to our region in the aperture.
3693 */
42d6ab48 3694 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3695 ret = i915_gem_object_put_fence(obj);
3696 if (ret)
3697 return ret;
3698 }
3699
6f65e29a 3700 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3701 if (drm_mm_node_allocated(&vma->node))
3702 vma->bind_vma(vma, cache_level,
aff43766 3703 vma->bound & GLOBAL_BIND);
e4ffd173
CW
3704 }
3705
2c22569b
CW
3706 list_for_each_entry(vma, &obj->vma_list, vma_link)
3707 vma->node.color = cache_level;
3708 obj->cache_level = cache_level;
3709
3710 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3711 u32 old_read_domains, old_write_domain;
3712
3713 /* If we're coming from LLC cached, then we haven't
3714 * actually been tracking whether the data is in the
3715 * CPU cache or not, since we only allow one bit set
3716 * in obj->write_domain and have been skipping the clflushes.
3717 * Just set it to the CPU cache for now.
3718 */
c8725f3d 3719 i915_gem_object_retire(obj);
e4ffd173 3720 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3721
3722 old_read_domains = obj->base.read_domains;
3723 old_write_domain = obj->base.write_domain;
3724
3725 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3726 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3727
3728 trace_i915_gem_object_change_domain(obj,
3729 old_read_domains,
3730 old_write_domain);
3731 }
3732
e4ffd173
CW
3733 return 0;
3734}
3735
199adf40
BW
3736int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3737 struct drm_file *file)
e6994aee 3738{
199adf40 3739 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3740 struct drm_i915_gem_object *obj;
3741 int ret;
3742
3743 ret = i915_mutex_lock_interruptible(dev);
3744 if (ret)
3745 return ret;
3746
3747 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3748 if (&obj->base == NULL) {
3749 ret = -ENOENT;
3750 goto unlock;
3751 }
3752
651d794f
CW
3753 switch (obj->cache_level) {
3754 case I915_CACHE_LLC:
3755 case I915_CACHE_L3_LLC:
3756 args->caching = I915_CACHING_CACHED;
3757 break;
3758
4257d3ba
CW
3759 case I915_CACHE_WT:
3760 args->caching = I915_CACHING_DISPLAY;
3761 break;
3762
651d794f
CW
3763 default:
3764 args->caching = I915_CACHING_NONE;
3765 break;
3766 }
e6994aee
CW
3767
3768 drm_gem_object_unreference(&obj->base);
3769unlock:
3770 mutex_unlock(&dev->struct_mutex);
3771 return ret;
3772}
3773
199adf40
BW
3774int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3775 struct drm_file *file)
e6994aee 3776{
199adf40 3777 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3778 struct drm_i915_gem_object *obj;
3779 enum i915_cache_level level;
3780 int ret;
3781
199adf40
BW
3782 switch (args->caching) {
3783 case I915_CACHING_NONE:
e6994aee
CW
3784 level = I915_CACHE_NONE;
3785 break;
199adf40 3786 case I915_CACHING_CACHED:
e6994aee
CW
3787 level = I915_CACHE_LLC;
3788 break;
4257d3ba
CW
3789 case I915_CACHING_DISPLAY:
3790 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3791 break;
e6994aee
CW
3792 default:
3793 return -EINVAL;
3794 }
3795
3bc2913e
BW
3796 ret = i915_mutex_lock_interruptible(dev);
3797 if (ret)
3798 return ret;
3799
e6994aee
CW
3800 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3801 if (&obj->base == NULL) {
3802 ret = -ENOENT;
3803 goto unlock;
3804 }
3805
3806 ret = i915_gem_object_set_cache_level(obj, level);
3807
3808 drm_gem_object_unreference(&obj->base);
3809unlock:
3810 mutex_unlock(&dev->struct_mutex);
3811 return ret;
3812}
3813
cc98b413
CW
3814static bool is_pin_display(struct drm_i915_gem_object *obj)
3815{
19656430
OM
3816 struct i915_vma *vma;
3817
19656430
OM
3818 vma = i915_gem_obj_to_ggtt(obj);
3819 if (!vma)
3820 return false;
3821
cc98b413
CW
3822 /* There are 3 sources that pin objects:
3823 * 1. The display engine (scanouts, sprites, cursors);
3824 * 2. Reservations for execbuffer;
3825 * 3. The user.
3826 *
3827 * We can ignore reservations as we hold the struct_mutex and
3828 * are only called outside of the reservation path. The user
3829 * can only increment pin_count once, and so if after
3830 * subtracting the potential reference by the user, any pin_count
3831 * remains, it must be due to another use by the display engine.
3832 */
19656430 3833 return vma->pin_count - !!obj->user_pin_count;
cc98b413
CW
3834}
3835
b9241ea3 3836/*
2da3b9b9
CW
3837 * Prepare buffer for display plane (scanout, cursors, etc).
3838 * Can be called from an uninterruptible phase (modesetting) and allows
3839 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3840 */
3841int
2da3b9b9
CW
3842i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3843 u32 alignment,
a4872ba6 3844 struct intel_engine_cs *pipelined)
b9241ea3 3845{
2da3b9b9 3846 u32 old_read_domains, old_write_domain;
19656430 3847 bool was_pin_display;
b9241ea3
ZW
3848 int ret;
3849
0be73284 3850 if (pipelined != obj->ring) {
2911a35b
BW
3851 ret = i915_gem_object_sync(obj, pipelined);
3852 if (ret)
b9241ea3
ZW
3853 return ret;
3854 }
3855
cc98b413
CW
3856 /* Mark the pin_display early so that we account for the
3857 * display coherency whilst setting up the cache domains.
3858 */
19656430 3859 was_pin_display = obj->pin_display;
cc98b413
CW
3860 obj->pin_display = true;
3861
a7ef0640
EA
3862 /* The display engine is not coherent with the LLC cache on gen6. As
3863 * a result, we make sure that the pinning that is about to occur is
3864 * done with uncached PTEs. This is lowest common denominator for all
3865 * chipsets.
3866 *
3867 * However for gen6+, we could do better by using the GFDT bit instead
3868 * of uncaching, which would allow us to flush all the LLC-cached data
3869 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3870 */
651d794f
CW
3871 ret = i915_gem_object_set_cache_level(obj,
3872 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3873 if (ret)
cc98b413 3874 goto err_unpin_display;
a7ef0640 3875
2da3b9b9
CW
3876 /* As the user may map the buffer once pinned in the display plane
3877 * (e.g. libkms for the bootup splash), we have to ensure that we
3878 * always use map_and_fenceable for all scanout buffers.
3879 */
1ec9e26d 3880 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3881 if (ret)
cc98b413 3882 goto err_unpin_display;
2da3b9b9 3883
2c22569b 3884 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3885
2da3b9b9 3886 old_write_domain = obj->base.write_domain;
05394f39 3887 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3888
3889 /* It should now be out of any other write domains, and we can update
3890 * the domain values for our changes.
3891 */
e5f1d962 3892 obj->base.write_domain = 0;
05394f39 3893 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3894
3895 trace_i915_gem_object_change_domain(obj,
3896 old_read_domains,
2da3b9b9 3897 old_write_domain);
b9241ea3
ZW
3898
3899 return 0;
cc98b413
CW
3900
3901err_unpin_display:
19656430
OM
3902 WARN_ON(was_pin_display != is_pin_display(obj));
3903 obj->pin_display = was_pin_display;
cc98b413
CW
3904 return ret;
3905}
3906
3907void
3908i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3909{
d7f46fc4 3910 i915_gem_object_ggtt_unpin(obj);
cc98b413 3911 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3912}
3913
85345517 3914int
a8198eea 3915i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3916{
88241785
CW
3917 int ret;
3918
a8198eea 3919 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3920 return 0;
3921
0201f1ec 3922 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3923 if (ret)
3924 return ret;
3925
a8198eea
CW
3926 /* Ensure that we invalidate the GPU's caches and TLBs. */
3927 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3928 return 0;
85345517
CW
3929}
3930
e47c68e9
EA
3931/**
3932 * Moves a single object to the CPU read, and possibly write domain.
3933 *
3934 * This function returns when the move is complete, including waiting on
3935 * flushes to occur.
3936 */
dabdfe02 3937int
919926ae 3938i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3939{
1c5d22f7 3940 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3941 int ret;
3942
8d7e3de1
CW
3943 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3944 return 0;
3945
0201f1ec 3946 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3947 if (ret)
3948 return ret;
3949
c8725f3d 3950 i915_gem_object_retire(obj);
e47c68e9 3951 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3952
05394f39
CW
3953 old_write_domain = obj->base.write_domain;
3954 old_read_domains = obj->base.read_domains;
1c5d22f7 3955
e47c68e9 3956 /* Flush the CPU cache if it's still invalid. */
05394f39 3957 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3958 i915_gem_clflush_object(obj, false);
2ef7eeaa 3959
05394f39 3960 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3961 }
3962
3963 /* It should now be out of any other write domains, and we can update
3964 * the domain values for our changes.
3965 */
05394f39 3966 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3967
3968 /* If we're writing through the CPU, then the GPU read domains will
3969 * need to be invalidated at next use.
3970 */
3971 if (write) {
05394f39
CW
3972 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3973 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3974 }
2ef7eeaa 3975
f99d7069
DV
3976 if (write)
3977 intel_fb_obj_invalidate(obj, NULL);
3978
1c5d22f7
CW
3979 trace_i915_gem_object_change_domain(obj,
3980 old_read_domains,
3981 old_write_domain);
3982
2ef7eeaa
EA
3983 return 0;
3984}
3985
673a394b
EA
3986/* Throttle our rendering by waiting until the ring has completed our requests
3987 * emitted over 20 msec ago.
3988 *
b962442e
EA
3989 * Note that if we were to use the current jiffies each time around the loop,
3990 * we wouldn't escape the function with any frames outstanding if the time to
3991 * render a frame was over 20ms.
3992 *
673a394b
EA
3993 * This should get us reasonable parallelism between CPU and GPU but also
3994 * relatively low latency when blocking on a particular request to finish.
3995 */
40a5f0de 3996static int
f787a5f5 3997i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3998{
f787a5f5
CW
3999 struct drm_i915_private *dev_priv = dev->dev_private;
4000 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4001 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5 4002 struct drm_i915_gem_request *request;
a4872ba6 4003 struct intel_engine_cs *ring = NULL;
f69061be 4004 unsigned reset_counter;
f787a5f5
CW
4005 u32 seqno = 0;
4006 int ret;
93533c29 4007
308887aa
DV
4008 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4009 if (ret)
4010 return ret;
4011
4012 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4013 if (ret)
4014 return ret;
e110e8d6 4015
1c25595f 4016 spin_lock(&file_priv->mm.lock);
f787a5f5 4017 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4018 if (time_after_eq(request->emitted_jiffies, recent_enough))
4019 break;
40a5f0de 4020
f787a5f5
CW
4021 ring = request->ring;
4022 seqno = request->seqno;
b962442e 4023 }
f69061be 4024 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 4025 spin_unlock(&file_priv->mm.lock);
40a5f0de 4026
f787a5f5
CW
4027 if (seqno == 0)
4028 return 0;
2bc43b5c 4029
b29c19b6 4030 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
4031 if (ret == 0)
4032 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
4033
4034 return ret;
4035}
4036
d23db88c
CW
4037static bool
4038i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4039{
4040 struct drm_i915_gem_object *obj = vma->obj;
4041
4042 if (alignment &&
4043 vma->node.start & (alignment - 1))
4044 return true;
4045
4046 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4047 return true;
4048
4049 if (flags & PIN_OFFSET_BIAS &&
4050 vma->node.start < (flags & PIN_OFFSET_MASK))
4051 return true;
4052
4053 return false;
4054}
4055
673a394b 4056int
05394f39 4057i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 4058 struct i915_address_space *vm,
05394f39 4059 uint32_t alignment,
d23db88c 4060 uint64_t flags)
673a394b 4061{
6e7186af 4062 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4063 struct i915_vma *vma;
673a394b
EA
4064 int ret;
4065
6e7186af
BW
4066 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4067 return -ENODEV;
4068
bf3d149b 4069 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4070 return -EINVAL;
07fe0b12
BW
4071
4072 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 4073 if (vma) {
d7f46fc4
BW
4074 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4075 return -EBUSY;
4076
d23db88c 4077 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4078 WARN(vma->pin_count,
ae7d49d8 4079 "bo is already pinned with incorrect alignment:"
f343c5f6 4080 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4081 " obj->map_and_fenceable=%d\n",
07fe0b12 4082 i915_gem_obj_offset(obj, vm), alignment,
d23db88c 4083 !!(flags & PIN_MAPPABLE),
05394f39 4084 obj->map_and_fenceable);
07fe0b12 4085 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4086 if (ret)
4087 return ret;
8ea99c92
DV
4088
4089 vma = NULL;
ac0c6b5a
CW
4090 }
4091 }
4092
8ea99c92 4093 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
4094 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4095 if (IS_ERR(vma))
4096 return PTR_ERR(vma);
22c344e9 4097 }
76446cac 4098
aff43766 4099 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
8ea99c92 4100 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 4101
8ea99c92 4102 vma->pin_count++;
1ec9e26d
DV
4103 if (flags & PIN_MAPPABLE)
4104 obj->pin_mappable |= true;
673a394b
EA
4105
4106 return 0;
4107}
4108
4109void
d7f46fc4 4110i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4111{
d7f46fc4 4112 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4113
d7f46fc4
BW
4114 BUG_ON(!vma);
4115 BUG_ON(vma->pin_count == 0);
4116 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4117
4118 if (--vma->pin_count == 0)
6299f992 4119 obj->pin_mappable = false;
673a394b
EA
4120}
4121
d8ffa60b
DV
4122bool
4123i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4124{
4125 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4126 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4127 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4128
4129 WARN_ON(!ggtt_vma ||
4130 dev_priv->fence_regs[obj->fence_reg].pin_count >
4131 ggtt_vma->pin_count);
4132 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4133 return true;
4134 } else
4135 return false;
4136}
4137
4138void
4139i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4140{
4141 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4142 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4143 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4144 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4145 }
4146}
4147
673a394b
EA
4148int
4149i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 4150 struct drm_file *file)
673a394b
EA
4151{
4152 struct drm_i915_gem_pin *args = data;
05394f39 4153 struct drm_i915_gem_object *obj;
673a394b
EA
4154 int ret;
4155
02f6bccc
DV
4156 if (INTEL_INFO(dev)->gen >= 6)
4157 return -ENODEV;
4158
1d7cfea1
CW
4159 ret = i915_mutex_lock_interruptible(dev);
4160 if (ret)
4161 return ret;
673a394b 4162
05394f39 4163 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4164 if (&obj->base == NULL) {
1d7cfea1
CW
4165 ret = -ENOENT;
4166 goto unlock;
673a394b 4167 }
673a394b 4168
05394f39 4169 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 4170 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 4171 ret = -EFAULT;
1d7cfea1 4172 goto out;
3ef94daa
CW
4173 }
4174
05394f39 4175 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 4176 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 4177 args->handle);
1d7cfea1
CW
4178 ret = -EINVAL;
4179 goto out;
79e53945
JB
4180 }
4181
aa5f8021
DV
4182 if (obj->user_pin_count == ULONG_MAX) {
4183 ret = -EBUSY;
4184 goto out;
4185 }
4186
93be8788 4187 if (obj->user_pin_count == 0) {
1ec9e26d 4188 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
4189 if (ret)
4190 goto out;
673a394b
EA
4191 }
4192
93be8788
CW
4193 obj->user_pin_count++;
4194 obj->pin_filp = file;
4195
f343c5f6 4196 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 4197out:
05394f39 4198 drm_gem_object_unreference(&obj->base);
1d7cfea1 4199unlock:
673a394b 4200 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4201 return ret;
673a394b
EA
4202}
4203
4204int
4205i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4206 struct drm_file *file)
673a394b
EA
4207{
4208 struct drm_i915_gem_pin *args = data;
05394f39 4209 struct drm_i915_gem_object *obj;
76c1dec1 4210 int ret;
673a394b 4211
1d7cfea1
CW
4212 ret = i915_mutex_lock_interruptible(dev);
4213 if (ret)
4214 return ret;
673a394b 4215
05394f39 4216 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4217 if (&obj->base == NULL) {
1d7cfea1
CW
4218 ret = -ENOENT;
4219 goto unlock;
673a394b 4220 }
76c1dec1 4221
05394f39 4222 if (obj->pin_filp != file) {
bd9b6a4e 4223 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 4224 args->handle);
1d7cfea1
CW
4225 ret = -EINVAL;
4226 goto out;
79e53945 4227 }
05394f39
CW
4228 obj->user_pin_count--;
4229 if (obj->user_pin_count == 0) {
4230 obj->pin_filp = NULL;
d7f46fc4 4231 i915_gem_object_ggtt_unpin(obj);
79e53945 4232 }
673a394b 4233
1d7cfea1 4234out:
05394f39 4235 drm_gem_object_unreference(&obj->base);
1d7cfea1 4236unlock:
673a394b 4237 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4238 return ret;
673a394b
EA
4239}
4240
4241int
4242i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4243 struct drm_file *file)
673a394b
EA
4244{
4245 struct drm_i915_gem_busy *args = data;
05394f39 4246 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4247 int ret;
4248
76c1dec1 4249 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4250 if (ret)
76c1dec1 4251 return ret;
673a394b 4252
05394f39 4253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4254 if (&obj->base == NULL) {
1d7cfea1
CW
4255 ret = -ENOENT;
4256 goto unlock;
673a394b 4257 }
d1b851fc 4258
0be555b6
CW
4259 /* Count all active objects as busy, even if they are currently not used
4260 * by the gpu. Users of this interface expect objects to eventually
4261 * become non-busy without any further actions, therefore emit any
4262 * necessary flushes here.
c4de0a5d 4263 */
30dfebf3 4264 ret = i915_gem_object_flush_active(obj);
0be555b6 4265
30dfebf3 4266 args->busy = obj->active;
e9808edd
CW
4267 if (obj->ring) {
4268 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4269 args->busy |= intel_ring_flag(obj->ring) << 16;
4270 }
673a394b 4271
05394f39 4272 drm_gem_object_unreference(&obj->base);
1d7cfea1 4273unlock:
673a394b 4274 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4275 return ret;
673a394b
EA
4276}
4277
4278int
4279i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4280 struct drm_file *file_priv)
4281{
0206e353 4282 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4283}
4284
3ef94daa
CW
4285int
4286i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4287 struct drm_file *file_priv)
4288{
4289 struct drm_i915_gem_madvise *args = data;
05394f39 4290 struct drm_i915_gem_object *obj;
76c1dec1 4291 int ret;
3ef94daa
CW
4292
4293 switch (args->madv) {
4294 case I915_MADV_DONTNEED:
4295 case I915_MADV_WILLNEED:
4296 break;
4297 default:
4298 return -EINVAL;
4299 }
4300
1d7cfea1
CW
4301 ret = i915_mutex_lock_interruptible(dev);
4302 if (ret)
4303 return ret;
4304
05394f39 4305 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4306 if (&obj->base == NULL) {
1d7cfea1
CW
4307 ret = -ENOENT;
4308 goto unlock;
3ef94daa 4309 }
3ef94daa 4310
d7f46fc4 4311 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4312 ret = -EINVAL;
4313 goto out;
3ef94daa
CW
4314 }
4315
05394f39
CW
4316 if (obj->madv != __I915_MADV_PURGED)
4317 obj->madv = args->madv;
3ef94daa 4318
6c085a72
CW
4319 /* if the object is no longer attached, discard its backing storage */
4320 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4321 i915_gem_object_truncate(obj);
4322
05394f39 4323 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4324
1d7cfea1 4325out:
05394f39 4326 drm_gem_object_unreference(&obj->base);
1d7cfea1 4327unlock:
3ef94daa 4328 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4329 return ret;
3ef94daa
CW
4330}
4331
37e680a1
CW
4332void i915_gem_object_init(struct drm_i915_gem_object *obj,
4333 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4334{
35c20a60 4335 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4336 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4337 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4338 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4339
37e680a1
CW
4340 obj->ops = ops;
4341
0327d6ba
CW
4342 obj->fence_reg = I915_FENCE_REG_NONE;
4343 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4344
4345 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4346}
4347
37e680a1
CW
4348static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4349 .get_pages = i915_gem_object_get_pages_gtt,
4350 .put_pages = i915_gem_object_put_pages_gtt,
4351};
4352
05394f39
CW
4353struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4354 size_t size)
ac52bc56 4355{
c397b908 4356 struct drm_i915_gem_object *obj;
5949eac4 4357 struct address_space *mapping;
1a240d4d 4358 gfp_t mask;
ac52bc56 4359
42dcedd4 4360 obj = i915_gem_object_alloc(dev);
c397b908
DV
4361 if (obj == NULL)
4362 return NULL;
673a394b 4363
c397b908 4364 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4365 i915_gem_object_free(obj);
c397b908
DV
4366 return NULL;
4367 }
673a394b 4368
bed1ea95
CW
4369 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4370 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4371 /* 965gm cannot relocate objects above 4GiB. */
4372 mask &= ~__GFP_HIGHMEM;
4373 mask |= __GFP_DMA32;
4374 }
4375
496ad9aa 4376 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4377 mapping_set_gfp_mask(mapping, mask);
5949eac4 4378
37e680a1 4379 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4380
c397b908
DV
4381 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4382 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4383
3d29b842
ED
4384 if (HAS_LLC(dev)) {
4385 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4386 * cache) for about a 10% performance improvement
4387 * compared to uncached. Graphics requests other than
4388 * display scanout are coherent with the CPU in
4389 * accessing this cache. This means in this mode we
4390 * don't need to clflush on the CPU side, and on the
4391 * GPU side we only need to flush internal caches to
4392 * get data visible to the CPU.
4393 *
4394 * However, we maintain the display planes as UC, and so
4395 * need to rebind when first used as such.
4396 */
4397 obj->cache_level = I915_CACHE_LLC;
4398 } else
4399 obj->cache_level = I915_CACHE_NONE;
4400
d861e338
DV
4401 trace_i915_gem_object_create(obj);
4402
05394f39 4403 return obj;
c397b908
DV
4404}
4405
340fbd8c
CW
4406static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4407{
4408 /* If we are the last user of the backing storage (be it shmemfs
4409 * pages or stolen etc), we know that the pages are going to be
4410 * immediately released. In this case, we can then skip copying
4411 * back the contents from the GPU.
4412 */
4413
4414 if (obj->madv != I915_MADV_WILLNEED)
4415 return false;
4416
4417 if (obj->base.filp == NULL)
4418 return true;
4419
4420 /* At first glance, this looks racy, but then again so would be
4421 * userspace racing mmap against close. However, the first external
4422 * reference to the filp can only be obtained through the
4423 * i915_gem_mmap_ioctl() which safeguards us against the user
4424 * acquiring such a reference whilst we are in the middle of
4425 * freeing the object.
4426 */
4427 return atomic_long_read(&obj->base.filp->f_count) == 1;
4428}
4429
1488fc08 4430void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4431{
1488fc08 4432 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4433 struct drm_device *dev = obj->base.dev;
3e31c6c0 4434 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4435 struct i915_vma *vma, *next;
673a394b 4436
f65c9168
PZ
4437 intel_runtime_pm_get(dev_priv);
4438
26e12f89
CW
4439 trace_i915_gem_object_destroy(obj);
4440
07fe0b12 4441 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4442 int ret;
4443
4444 vma->pin_count = 0;
4445 ret = i915_vma_unbind(vma);
07fe0b12
BW
4446 if (WARN_ON(ret == -ERESTARTSYS)) {
4447 bool was_interruptible;
1488fc08 4448
07fe0b12
BW
4449 was_interruptible = dev_priv->mm.interruptible;
4450 dev_priv->mm.interruptible = false;
1488fc08 4451
07fe0b12 4452 WARN_ON(i915_vma_unbind(vma));
1488fc08 4453
07fe0b12
BW
4454 dev_priv->mm.interruptible = was_interruptible;
4455 }
1488fc08
CW
4456 }
4457
00731155
CW
4458 i915_gem_object_detach_phys(obj);
4459
1d64ae71
BW
4460 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4461 * before progressing. */
4462 if (obj->stolen)
4463 i915_gem_object_unpin_pages(obj);
4464
a071fa00
DV
4465 WARN_ON(obj->frontbuffer_bits);
4466
401c29f6
BW
4467 if (WARN_ON(obj->pages_pin_count))
4468 obj->pages_pin_count = 0;
340fbd8c 4469 if (discard_backing_storage(obj))
5537252b 4470 obj->madv = I915_MADV_DONTNEED;
37e680a1 4471 i915_gem_object_put_pages(obj);
d8cb5086 4472 i915_gem_object_free_mmap_offset(obj);
de151cf6 4473
9da3da66
CW
4474 BUG_ON(obj->pages);
4475
2f745ad3
CW
4476 if (obj->base.import_attach)
4477 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4478
5cc9ed4b
CW
4479 if (obj->ops->release)
4480 obj->ops->release(obj);
4481
05394f39
CW
4482 drm_gem_object_release(&obj->base);
4483 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4484
05394f39 4485 kfree(obj->bit_17);
42dcedd4 4486 i915_gem_object_free(obj);
f65c9168
PZ
4487
4488 intel_runtime_pm_put(dev_priv);
673a394b
EA
4489}
4490
e656a6cb 4491struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4492 struct i915_address_space *vm)
e656a6cb
DV
4493{
4494 struct i915_vma *vma;
4495 list_for_each_entry(vma, &obj->vma_list, vma_link)
4496 if (vma->vm == vm)
4497 return vma;
4498
4499 return NULL;
4500}
4501
2f633156
BW
4502void i915_gem_vma_destroy(struct i915_vma *vma)
4503{
b9d06dd9 4504 struct i915_address_space *vm = NULL;
2f633156 4505 WARN_ON(vma->node.allocated);
aaa05667
CW
4506
4507 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4508 if (!list_empty(&vma->exec_list))
4509 return;
4510
b9d06dd9 4511 vm = vma->vm;
b9d06dd9 4512
841cd773
DV
4513 if (!i915_is_ggtt(vm))
4514 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4515
8b9c2b94 4516 list_del(&vma->vma_link);
b93dab6e 4517
2f633156
BW
4518 kfree(vma);
4519}
4520
e3efda49
CW
4521static void
4522i915_gem_stop_ringbuffers(struct drm_device *dev)
4523{
4524 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4525 struct intel_engine_cs *ring;
e3efda49
CW
4526 int i;
4527
4528 for_each_ring(ring, dev_priv, i)
a83014d3 4529 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4530}
4531
29105ccc 4532int
45c5f202 4533i915_gem_suspend(struct drm_device *dev)
29105ccc 4534{
3e31c6c0 4535 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4536 int ret = 0;
28dfe52a 4537
45c5f202 4538 mutex_lock(&dev->struct_mutex);
f7403347 4539 if (dev_priv->ums.mm_suspended)
45c5f202 4540 goto err;
28dfe52a 4541
b2da9fe5 4542 ret = i915_gpu_idle(dev);
f7403347 4543 if (ret)
45c5f202 4544 goto err;
f7403347 4545
b2da9fe5 4546 i915_gem_retire_requests(dev);
673a394b 4547
29105ccc 4548 /* Under UMS, be paranoid and evict. */
a39d7efc 4549 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4550 i915_gem_evict_everything(dev);
29105ccc 4551
29105ccc 4552 i915_kernel_lost_context(dev);
e3efda49 4553 i915_gem_stop_ringbuffers(dev);
29105ccc 4554
45c5f202
CW
4555 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4556 * We need to replace this with a semaphore, or something.
4557 * And not confound ums.mm_suspended!
4558 */
4559 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4560 DRIVER_MODESET);
4561 mutex_unlock(&dev->struct_mutex);
4562
4563 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4564 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4565 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4566
673a394b 4567 return 0;
45c5f202
CW
4568
4569err:
4570 mutex_unlock(&dev->struct_mutex);
4571 return ret;
673a394b
EA
4572}
4573
a4872ba6 4574int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4575{
c3787e2e 4576 struct drm_device *dev = ring->dev;
3e31c6c0 4577 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4578 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4579 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4580 int i, ret;
b9524a1e 4581
040d2baa 4582 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4583 return 0;
b9524a1e 4584
c3787e2e
BW
4585 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4586 if (ret)
4587 return ret;
b9524a1e 4588
c3787e2e
BW
4589 /*
4590 * Note: We do not worry about the concurrent register cacheline hang
4591 * here because no other code should access these registers other than
4592 * at initialization time.
4593 */
b9524a1e 4594 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4595 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4596 intel_ring_emit(ring, reg_base + i);
4597 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4598 }
4599
c3787e2e 4600 intel_ring_advance(ring);
b9524a1e 4601
c3787e2e 4602 return ret;
b9524a1e
BW
4603}
4604
f691e2f4
DV
4605void i915_gem_init_swizzling(struct drm_device *dev)
4606{
3e31c6c0 4607 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4608
11782b02 4609 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4610 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4611 return;
4612
4613 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4614 DISP_TILE_SURFACE_SWIZZLING);
4615
11782b02
DV
4616 if (IS_GEN5(dev))
4617 return;
4618
f691e2f4
DV
4619 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4620 if (IS_GEN6(dev))
6b26c86d 4621 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4622 else if (IS_GEN7(dev))
6b26c86d 4623 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4624 else if (IS_GEN8(dev))
4625 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4626 else
4627 BUG();
f691e2f4 4628}
e21af88d 4629
67b1b571
CW
4630static bool
4631intel_enable_blt(struct drm_device *dev)
4632{
4633 if (!HAS_BLT(dev))
4634 return false;
4635
4636 /* The blitter was dysfunctional on early prototypes */
4637 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4638 DRM_INFO("BLT not supported on this pre-production hardware;"
4639 " graphics performance will be degraded.\n");
4640 return false;
4641 }
4642
4643 return true;
4644}
4645
81e7f200
VS
4646static void init_unused_ring(struct drm_device *dev, u32 base)
4647{
4648 struct drm_i915_private *dev_priv = dev->dev_private;
4649
4650 I915_WRITE(RING_CTL(base), 0);
4651 I915_WRITE(RING_HEAD(base), 0);
4652 I915_WRITE(RING_TAIL(base), 0);
4653 I915_WRITE(RING_START(base), 0);
4654}
4655
4656static void init_unused_rings(struct drm_device *dev)
4657{
4658 if (IS_I830(dev)) {
4659 init_unused_ring(dev, PRB1_BASE);
4660 init_unused_ring(dev, SRB0_BASE);
4661 init_unused_ring(dev, SRB1_BASE);
4662 init_unused_ring(dev, SRB2_BASE);
4663 init_unused_ring(dev, SRB3_BASE);
4664 } else if (IS_GEN2(dev)) {
4665 init_unused_ring(dev, SRB0_BASE);
4666 init_unused_ring(dev, SRB1_BASE);
4667 } else if (IS_GEN3(dev)) {
4668 init_unused_ring(dev, PRB1_BASE);
4669 init_unused_ring(dev, PRB2_BASE);
4670 }
4671}
4672
a83014d3 4673int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4674{
4fc7c971 4675 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4676 int ret;
68f95ba9 4677
81e7f200
VS
4678 /*
4679 * At least 830 can leave some of the unused rings
4680 * "active" (ie. head != tail) after resume which
4681 * will prevent c3 entry. Makes sure all unused rings
4682 * are totally idle.
4683 */
4684 init_unused_rings(dev);
4685
5c1143bb 4686 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4687 if (ret)
b6913e4b 4688 return ret;
68f95ba9
CW
4689
4690 if (HAS_BSD(dev)) {
5c1143bb 4691 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4692 if (ret)
4693 goto cleanup_render_ring;
d1b851fc 4694 }
68f95ba9 4695
67b1b571 4696 if (intel_enable_blt(dev)) {
549f7365
CW
4697 ret = intel_init_blt_ring_buffer(dev);
4698 if (ret)
4699 goto cleanup_bsd_ring;
4700 }
4701
9a8a2213
BW
4702 if (HAS_VEBOX(dev)) {
4703 ret = intel_init_vebox_ring_buffer(dev);
4704 if (ret)
4705 goto cleanup_blt_ring;
4706 }
4707
845f74a7
ZY
4708 if (HAS_BSD2(dev)) {
4709 ret = intel_init_bsd2_ring_buffer(dev);
4710 if (ret)
4711 goto cleanup_vebox_ring;
4712 }
9a8a2213 4713
99433931 4714 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4715 if (ret)
845f74a7 4716 goto cleanup_bsd2_ring;
4fc7c971
BW
4717
4718 return 0;
4719
845f74a7
ZY
4720cleanup_bsd2_ring:
4721 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4722cleanup_vebox_ring:
4723 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4724cleanup_blt_ring:
4725 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4726cleanup_bsd_ring:
4727 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4728cleanup_render_ring:
4729 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4730
4731 return ret;
4732}
4733
4734int
4735i915_gem_init_hw(struct drm_device *dev)
4736{
3e31c6c0 4737 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4738 int ret, i;
4fc7c971
BW
4739
4740 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4741 return -EIO;
4742
59124506 4743 if (dev_priv->ellc_size)
05e21cc4 4744 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4745
0bf21347
VS
4746 if (IS_HASWELL(dev))
4747 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4748 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4749
88a2b2a3 4750 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4751 if (IS_IVYBRIDGE(dev)) {
4752 u32 temp = I915_READ(GEN7_MSG_CTL);
4753 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4754 I915_WRITE(GEN7_MSG_CTL, temp);
4755 } else if (INTEL_INFO(dev)->gen >= 7) {
4756 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4757 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4758 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4759 }
88a2b2a3
BW
4760 }
4761
4fc7c971
BW
4762 i915_gem_init_swizzling(dev);
4763
a83014d3 4764 ret = dev_priv->gt.init_rings(dev);
99433931
MK
4765 if (ret)
4766 return ret;
4767
c3787e2e
BW
4768 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4769 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4770
254f965c 4771 /*
2fa48d8d
BW
4772 * XXX: Contexts should only be initialized once. Doing a switch to the
4773 * default context switch however is something we'd like to do after
4774 * reset or thaw (the latter may not actually be necessary for HW, but
4775 * goes with our code better). Context switching requires rings (for
4776 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4777 */
2fa48d8d 4778 ret = i915_gem_context_enable(dev_priv);
60990320 4779 if (ret && ret != -EIO) {
2fa48d8d 4780 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4781 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4782
4783 return ret;
4784 }
4785
4786 ret = i915_ppgtt_init_hw(dev);
4787 if (ret && ret != -EIO) {
4788 DRM_ERROR("PPGTT enable failed %d\n", ret);
4789 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4790 }
e21af88d 4791
2fa48d8d 4792 return ret;
8187a2b7
ZN
4793}
4794
1070a42b
CW
4795int i915_gem_init(struct drm_device *dev)
4796{
4797 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4798 int ret;
4799
127f1003
OM
4800 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4801 i915.enable_execlists);
4802
1070a42b 4803 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4804
4805 if (IS_VALLEYVIEW(dev)) {
4806 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4807 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4808 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4809 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4810 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4811 }
4812
a83014d3
OM
4813 if (!i915.enable_execlists) {
4814 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4815 dev_priv->gt.init_rings = i915_gem_init_rings;
4816 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4817 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd
OM
4818 } else {
4819 dev_priv->gt.do_execbuf = intel_execlists_submission;
4820 dev_priv->gt.init_rings = intel_logical_rings_init;
4821 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4822 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4823 }
4824
6c5566a8
DV
4825 ret = i915_gem_init_userptr(dev);
4826 if (ret) {
4827 mutex_unlock(&dev->struct_mutex);
4828 return ret;
4829 }
4830
d7e5008f 4831 i915_gem_init_global_gtt(dev);
d62b4892 4832
2fa48d8d 4833 ret = i915_gem_context_init(dev);
e3848694
MK
4834 if (ret) {
4835 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4836 return ret;
e3848694 4837 }
2fa48d8d 4838
1070a42b 4839 ret = i915_gem_init_hw(dev);
60990320
CW
4840 if (ret == -EIO) {
4841 /* Allow ring initialisation to fail by marking the GPU as
4842 * wedged. But we only want to do this where the GPU is angry,
4843 * for all other failure, such as an allocation failure, bail.
4844 */
4845 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4846 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4847 ret = 0;
1070a42b 4848 }
60990320 4849 mutex_unlock(&dev->struct_mutex);
1070a42b 4850
53ca26ca
DV
4851 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4852 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4853 dev_priv->dri1.allow_batchbuffer = 1;
60990320 4854 return ret;
1070a42b
CW
4855}
4856
8187a2b7
ZN
4857void
4858i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4859{
3e31c6c0 4860 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4861 struct intel_engine_cs *ring;
1ec14ad3 4862 int i;
8187a2b7 4863
b4519513 4864 for_each_ring(ring, dev_priv, i)
a83014d3 4865 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4866}
4867
673a394b
EA
4868int
4869i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4870 struct drm_file *file_priv)
4871{
db1b76ca 4872 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4873 int ret;
673a394b 4874
79e53945
JB
4875 if (drm_core_check_feature(dev, DRIVER_MODESET))
4876 return 0;
4877
1f83fee0 4878 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4879 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4880 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4881 }
4882
673a394b 4883 mutex_lock(&dev->struct_mutex);
db1b76ca 4884 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4885
f691e2f4 4886 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4887 if (ret != 0) {
4888 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4889 return ret;
d816f6ac 4890 }
9bb2d6f9 4891
5cef07e1 4892 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
dbb19d30 4893
bb0f1b5c 4894 ret = drm_irq_install(dev, dev->pdev->irq);
5f35308b
CW
4895 if (ret)
4896 goto cleanup_ringbuffer;
e090c53b 4897 mutex_unlock(&dev->struct_mutex);
dbb19d30 4898
673a394b 4899 return 0;
5f35308b
CW
4900
4901cleanup_ringbuffer:
5f35308b 4902 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4903 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4904 mutex_unlock(&dev->struct_mutex);
4905
4906 return ret;
673a394b
EA
4907}
4908
4909int
4910i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4911 struct drm_file *file_priv)
4912{
79e53945
JB
4913 if (drm_core_check_feature(dev, DRIVER_MODESET))
4914 return 0;
4915
e090c53b 4916 mutex_lock(&dev->struct_mutex);
dbb19d30 4917 drm_irq_uninstall(dev);
e090c53b 4918 mutex_unlock(&dev->struct_mutex);
db1b76ca 4919
45c5f202 4920 return i915_gem_suspend(dev);
673a394b
EA
4921}
4922
4923void
4924i915_gem_lastclose(struct drm_device *dev)
4925{
4926 int ret;
673a394b 4927
e806b495
EA
4928 if (drm_core_check_feature(dev, DRIVER_MODESET))
4929 return;
4930
45c5f202 4931 ret = i915_gem_suspend(dev);
6dbe2772
KP
4932 if (ret)
4933 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4934}
4935
64193406 4936static void
a4872ba6 4937init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4938{
4939 INIT_LIST_HEAD(&ring->active_list);
4940 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4941}
4942
7e0d96bc
BW
4943void i915_init_vm(struct drm_i915_private *dev_priv,
4944 struct i915_address_space *vm)
fc8c067e 4945{
7e0d96bc
BW
4946 if (!i915_is_ggtt(vm))
4947 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4948 vm->dev = dev_priv->dev;
4949 INIT_LIST_HEAD(&vm->active_list);
4950 INIT_LIST_HEAD(&vm->inactive_list);
4951 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4952 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4953}
4954
673a394b
EA
4955void
4956i915_gem_load(struct drm_device *dev)
4957{
3e31c6c0 4958 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4959 int i;
4960
4961 dev_priv->slab =
4962 kmem_cache_create("i915_gem_object",
4963 sizeof(struct drm_i915_gem_object), 0,
4964 SLAB_HWCACHE_ALIGN,
4965 NULL);
673a394b 4966
fc8c067e
BW
4967 INIT_LIST_HEAD(&dev_priv->vm_list);
4968 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4969
a33afea5 4970 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4971 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4972 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4973 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4974 for (i = 0; i < I915_NUM_RINGS; i++)
4975 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4976 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4977 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4978 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4979 i915_gem_retire_work_handler);
b29c19b6
CW
4980 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4981 i915_gem_idle_work_handler);
1f83fee0 4982 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4983
94400120 4984 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4985 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4986 I915_WRITE(MI_ARB_STATE,
4987 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4988 }
4989
72bfa19c
CW
4990 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4991
de151cf6 4992 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4993 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4994 dev_priv->fence_reg_start = 3;
de151cf6 4995
42b5aeab
VS
4996 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4997 dev_priv->num_fence_regs = 32;
4998 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4999 dev_priv->num_fence_regs = 16;
5000 else
5001 dev_priv->num_fence_regs = 8;
5002
b5aa8a0f 5003 /* Initialize fence registers to zero */
19b2dbde
CW
5004 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5005 i915_gem_restore_fences(dev);
10ed13e4 5006
673a394b 5007 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5008 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5009
ce453d81
CW
5010 dev_priv->mm.interruptible = true;
5011
ceabbba5
CW
5012 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5013 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5014 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5015 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
5016
5017 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5018 register_oom_notifier(&dev_priv->mm.oom_notifier);
f99d7069
DV
5019
5020 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5021}
71acb5eb 5022
f787a5f5 5023void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5024{
f787a5f5 5025 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 5026
b29c19b6
CW
5027 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5028
b962442e
EA
5029 /* Clean up our request list when the client is going away, so that
5030 * later retire_requests won't dereference our soon-to-be-gone
5031 * file_priv.
5032 */
1c25595f 5033 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5034 while (!list_empty(&file_priv->mm.request_list)) {
5035 struct drm_i915_gem_request *request;
5036
5037 request = list_first_entry(&file_priv->mm.request_list,
5038 struct drm_i915_gem_request,
5039 client_list);
5040 list_del(&request->client_list);
5041 request->file_priv = NULL;
5042 }
1c25595f 5043 spin_unlock(&file_priv->mm.lock);
b962442e 5044}
31169714 5045
b29c19b6
CW
5046static void
5047i915_gem_file_idle_work_handler(struct work_struct *work)
5048{
5049 struct drm_i915_file_private *file_priv =
5050 container_of(work, typeof(*file_priv), mm.idle_work.work);
5051
5052 atomic_set(&file_priv->rps_wait_boost, false);
5053}
5054
5055int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5056{
5057 struct drm_i915_file_private *file_priv;
e422b888 5058 int ret;
b29c19b6
CW
5059
5060 DRM_DEBUG_DRIVER("\n");
5061
5062 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5063 if (!file_priv)
5064 return -ENOMEM;
5065
5066 file->driver_priv = file_priv;
5067 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5068 file_priv->file = file;
b29c19b6
CW
5069
5070 spin_lock_init(&file_priv->mm.lock);
5071 INIT_LIST_HEAD(&file_priv->mm.request_list);
5072 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5073 i915_gem_file_idle_work_handler);
5074
e422b888
BW
5075 ret = i915_gem_context_open(dev, file);
5076 if (ret)
5077 kfree(file_priv);
b29c19b6 5078
e422b888 5079 return ret;
b29c19b6
CW
5080}
5081
b680c37a
DV
5082/**
5083 * i915_gem_track_fb - update frontbuffer tracking
5084 * old: current GEM buffer for the frontbuffer slots
5085 * new: new GEM buffer for the frontbuffer slots
5086 * frontbuffer_bits: bitmask of frontbuffer slots
5087 *
5088 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5089 * from @old and setting them in @new. Both @old and @new can be NULL.
5090 */
a071fa00
DV
5091void i915_gem_track_fb(struct drm_i915_gem_object *old,
5092 struct drm_i915_gem_object *new,
5093 unsigned frontbuffer_bits)
5094{
5095 if (old) {
5096 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5097 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5098 old->frontbuffer_bits &= ~frontbuffer_bits;
5099 }
5100
5101 if (new) {
5102 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5103 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5104 new->frontbuffer_bits |= frontbuffer_bits;
5105 }
5106}
5107
5774506f
CW
5108static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5109{
5110 if (!mutex_is_locked(mutex))
5111 return false;
5112
5113#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5114 return mutex->owner == task;
5115#else
5116 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5117 return false;
5118#endif
5119}
5120
b453c4db
CW
5121static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5122{
5123 if (!mutex_trylock(&dev->struct_mutex)) {
5124 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5125 return false;
5126
5127 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5128 return false;
5129
5130 *unlock = false;
5131 } else
5132 *unlock = true;
5133
5134 return true;
5135}
5136
ceabbba5
CW
5137static int num_vma_bound(struct drm_i915_gem_object *obj)
5138{
5139 struct i915_vma *vma;
5140 int count = 0;
5141
5142 list_for_each_entry(vma, &obj->vma_list, vma_link)
5143 if (drm_mm_node_allocated(&vma->node))
5144 count++;
5145
5146 return count;
5147}
5148
7dc19d5a 5149static unsigned long
ceabbba5 5150i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5151{
17250b71 5152 struct drm_i915_private *dev_priv =
ceabbba5 5153 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5154 struct drm_device *dev = dev_priv->dev;
6c085a72 5155 struct drm_i915_gem_object *obj;
7dc19d5a 5156 unsigned long count;
b453c4db 5157 bool unlock;
17250b71 5158
b453c4db
CW
5159 if (!i915_gem_shrinker_lock(dev, &unlock))
5160 return 0;
31169714 5161
7dc19d5a 5162 count = 0;
35c20a60 5163 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5164 if (obj->pages_pin_count == 0)
7dc19d5a 5165 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5166
5167 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5168 if (!i915_gem_obj_is_pinned(obj) &&
5169 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5170 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5171 }
17250b71 5172
5774506f
CW
5173 if (unlock)
5174 mutex_unlock(&dev->struct_mutex);
d9973b43 5175
7dc19d5a 5176 return count;
31169714 5177}
a70a3148
BW
5178
5179/* All the new VM stuff */
5180unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5181 struct i915_address_space *vm)
5182{
5183 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5184 struct i915_vma *vma;
5185
896ab1a5 5186 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5187
a70a3148
BW
5188 list_for_each_entry(vma, &o->vma_list, vma_link) {
5189 if (vma->vm == vm)
5190 return vma->node.start;
5191
5192 }
f25748ea
DV
5193 WARN(1, "%s vma for this object not found.\n",
5194 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5195 return -1;
5196}
5197
5198bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5199 struct i915_address_space *vm)
5200{
5201 struct i915_vma *vma;
5202
5203 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5204 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5205 return true;
5206
5207 return false;
5208}
5209
5210bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5211{
5a1d5eb0 5212 struct i915_vma *vma;
a70a3148 5213
5a1d5eb0
CW
5214 list_for_each_entry(vma, &o->vma_list, vma_link)
5215 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5216 return true;
5217
5218 return false;
5219}
5220
5221unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5222 struct i915_address_space *vm)
5223{
5224 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5225 struct i915_vma *vma;
5226
896ab1a5 5227 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5228
5229 BUG_ON(list_empty(&o->vma_list));
5230
5231 list_for_each_entry(vma, &o->vma_list, vma_link)
5232 if (vma->vm == vm)
5233 return vma->node.size;
5234
5235 return 0;
5236}
5237
7dc19d5a 5238static unsigned long
ceabbba5 5239i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5240{
5241 struct drm_i915_private *dev_priv =
ceabbba5 5242 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5243 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5244 unsigned long freed;
b453c4db 5245 bool unlock;
7dc19d5a 5246
b453c4db
CW
5247 if (!i915_gem_shrinker_lock(dev, &unlock))
5248 return SHRINK_STOP;
7dc19d5a 5249
21ab4e74
CW
5250 freed = i915_gem_shrink(dev_priv,
5251 sc->nr_to_scan,
5252 I915_SHRINK_BOUND |
5253 I915_SHRINK_UNBOUND |
5254 I915_SHRINK_PURGEABLE);
d9973b43 5255 if (freed < sc->nr_to_scan)
21ab4e74
CW
5256 freed += i915_gem_shrink(dev_priv,
5257 sc->nr_to_scan - freed,
5258 I915_SHRINK_BOUND |
5259 I915_SHRINK_UNBOUND);
7dc19d5a
DC
5260 if (unlock)
5261 mutex_unlock(&dev->struct_mutex);
d9973b43 5262
7dc19d5a
DC
5263 return freed;
5264}
5c2abbea 5265
2cfcd32a
CW
5266static int
5267i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5268{
5269 struct drm_i915_private *dev_priv =
5270 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5271 struct drm_device *dev = dev_priv->dev;
5272 struct drm_i915_gem_object *obj;
5273 unsigned long timeout = msecs_to_jiffies(5000) + 1;
005445c5 5274 unsigned long pinned, bound, unbound, freed_pages;
2cfcd32a
CW
5275 bool was_interruptible;
5276 bool unlock;
5277
a1db2fa7 5278 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
2cfcd32a 5279 schedule_timeout_killable(1);
a1db2fa7
CW
5280 if (fatal_signal_pending(current))
5281 return NOTIFY_DONE;
5282 }
2cfcd32a
CW
5283 if (timeout == 0) {
5284 pr_err("Unable to purge GPU memory due lock contention.\n");
5285 return NOTIFY_DONE;
5286 }
5287
5288 was_interruptible = dev_priv->mm.interruptible;
5289 dev_priv->mm.interruptible = false;
5290
005445c5 5291 freed_pages = i915_gem_shrink_all(dev_priv);
2cfcd32a
CW
5292
5293 dev_priv->mm.interruptible = was_interruptible;
5294
5295 /* Because we may be allocating inside our own driver, we cannot
5296 * assert that there are no objects with pinned pages that are not
5297 * being pointed to by hardware.
5298 */
5299 unbound = bound = pinned = 0;
5300 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5301 if (!obj->base.filp) /* not backed by a freeable object */
5302 continue;
5303
5304 if (obj->pages_pin_count)
5305 pinned += obj->base.size;
5306 else
5307 unbound += obj->base.size;
5308 }
5309 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5310 if (!obj->base.filp)
5311 continue;
5312
5313 if (obj->pages_pin_count)
5314 pinned += obj->base.size;
5315 else
5316 bound += obj->base.size;
5317 }
5318
5319 if (unlock)
5320 mutex_unlock(&dev->struct_mutex);
5321
bb9059d3
CW
5322 if (freed_pages || unbound || bound)
5323 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5324 freed_pages << PAGE_SHIFT, pinned);
2cfcd32a
CW
5325 if (unbound || bound)
5326 pr_err("%lu and %lu bytes still available in the "
5327 "bound and unbound GPU page lists.\n",
5328 bound, unbound);
5329
005445c5 5330 *(unsigned long *)ptr += freed_pages;
2cfcd32a
CW
5331 return NOTIFY_DONE;
5332}
5333
5c2abbea
BW
5334struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5335{
5336 struct i915_vma *vma;
5337
5c2abbea 5338 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5dc383b0 5339 if (vma->vm != i915_obj_to_ggtt(obj))
5c2abbea
BW
5340 return NULL;
5341
5342 return vma;
5343}