]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Support readback of stolen objects upon error
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
86a1ee26
CW
43 bool map_and_fenceable,
44 bool nonblocking);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
21dd3734
CW
89static int
90i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
91{
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
0a6759c6
DV
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
30dbf0c0 110 return ret;
0a6759c6 111 }
30dbf0c0 112
21dd3734
CW
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
30dbf0c0
CW
124}
125
54cf91dc 126int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 127{
76c1dec1
CW
128 int ret;
129
21dd3734 130 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
23bc5982 138 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
139 return 0;
140}
30dbf0c0 141
7d1c4804 142static inline bool
05394f39 143i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 144{
6c085a72 145 return obj->gtt_space && !obj->active;
7d1c4804
CW
146}
147
79e53945
JB
148int
149i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 150 struct drm_file *file)
79e53945
JB
151{
152 struct drm_i915_gem_init *args = data;
2021746e 153
7bb6fb8d
DV
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
2021746e
CW
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
79e53945 160
f534bc0b
DV
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
79e53945 165 mutex_lock(&dev->struct_mutex);
644ec02b
DV
166 i915_gem_init_global_gtt(dev, args->gtt_start,
167 args->gtt_end, args->gtt_end);
673a394b
EA
168 mutex_unlock(&dev->struct_mutex);
169
2021746e 170 return 0;
673a394b
EA
171}
172
5a125c3c
EA
173int
174i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 175 struct drm_file *file)
5a125c3c 176{
73aa808f 177 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 178 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
5a125c3c 181
6299f992 182 pinned = 0;
73aa808f 183 mutex_lock(&dev->struct_mutex);
6c085a72 184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
73aa808f 187 mutex_unlock(&dev->struct_mutex);
5a125c3c 188
6299f992 189 args->aper_size = dev_priv->mm.gtt_total;
0206e353 190 args->aper_available_size = args->aper_size - pinned;
6299f992 191
5a125c3c
EA
192 return 0;
193}
194
ff72145b
DA
195static int
196i915_gem_create(struct drm_file *file,
197 struct drm_device *dev,
198 uint64_t size,
199 uint32_t *handle_p)
673a394b 200{
05394f39 201 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
202 int ret;
203 u32 handle;
673a394b 204
ff72145b 205 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
206 if (size == 0)
207 return -EINVAL;
673a394b
EA
208
209 /* Allocate the new object */
ff72145b 210 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
211 if (obj == NULL)
212 return -ENOMEM;
213
05394f39 214 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 215 if (ret) {
05394f39
CW
216 drm_gem_object_release(&obj->base);
217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 218 kfree(obj);
673a394b 219 return ret;
1dfd9754 220 }
673a394b 221
202f2fef 222 /* drop reference from allocate - handle holds it now */
05394f39 223 drm_gem_object_unreference(&obj->base);
202f2fef
CW
224 trace_i915_gem_object_create(obj);
225
ff72145b 226 *handle_p = handle;
673a394b
EA
227 return 0;
228}
229
ff72145b
DA
230int
231i915_gem_dumb_create(struct drm_file *file,
232 struct drm_device *dev,
233 struct drm_mode_create_dumb *args)
234{
235 /* have to work out size/pitch and return them */
ed0291fd 236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
237 args->size = args->pitch * args->height;
238 return i915_gem_create(file, dev,
239 args->size, &args->handle);
240}
241
242int i915_gem_dumb_destroy(struct drm_file *file,
243 struct drm_device *dev,
244 uint32_t handle)
245{
246 return drm_gem_handle_delete(file, handle);
247}
248
249/**
250 * Creates a new mm object and returns a handle to it.
251 */
252int
253i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 struct drm_file *file)
255{
256 struct drm_i915_gem_create *args = data;
63ed2cb2 257
ff72145b
DA
258 return i915_gem_create(file, dev,
259 args->size, &args->handle);
260}
261
05394f39 262static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 263{
05394f39 264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
265
266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 267 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
268}
269
8461d226
DV
270static inline int
271__copy_to_user_swizzled(char __user *cpu_vaddr,
272 const char *gpu_vaddr, int gpu_offset,
273 int length)
274{
275 int ret, cpu_offset = 0;
276
277 while (length > 0) {
278 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 int this_length = min(cacheline_end - gpu_offset, length);
280 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 gpu_vaddr + swizzled_gpu_offset,
284 this_length);
285 if (ret)
286 return ret + length;
287
288 cpu_offset += this_length;
289 gpu_offset += this_length;
290 length -= this_length;
291 }
292
293 return 0;
294}
295
8c59967c 296static inline int
4f0c7cfb
BW
297__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 const char __user *cpu_vaddr,
8c59967c
DV
299 int length)
300{
301 int ret, cpu_offset = 0;
302
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 cpu_vaddr + cpu_offset,
310 this_length);
311 if (ret)
312 return ret + length;
313
314 cpu_offset += this_length;
315 gpu_offset += this_length;
316 length -= this_length;
317 }
318
319 return 0;
320}
321
d174bd64
DV
322/* Per-page copy function for the shmem pread fastpath.
323 * Flushes invalid cachelines before reading the target if
324 * needs_clflush is set. */
eb01459f 325static int
d174bd64
DV
326shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 char __user *user_data,
328 bool page_do_bit17_swizzling, bool needs_clflush)
329{
330 char *vaddr;
331 int ret;
332
e7e58eb5 333 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
334 return -EINVAL;
335
336 vaddr = kmap_atomic(page);
337 if (needs_clflush)
338 drm_clflush_virt_range(vaddr + shmem_page_offset,
339 page_length);
340 ret = __copy_to_user_inatomic(user_data,
341 vaddr + shmem_page_offset,
342 page_length);
343 kunmap_atomic(vaddr);
344
f60d7f0c 345 return ret ? -EFAULT : 0;
d174bd64
DV
346}
347
23c18c71
DV
348static void
349shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 bool swizzled)
351{
e7e58eb5 352 if (unlikely(swizzled)) {
23c18c71
DV
353 unsigned long start = (unsigned long) addr;
354 unsigned long end = (unsigned long) addr + length;
355
356 /* For swizzling simply ensure that we always flush both
357 * channels. Lame, but simple and it works. Swizzled
358 * pwrite/pread is far from a hotpath - current userspace
359 * doesn't use it at all. */
360 start = round_down(start, 128);
361 end = round_up(end, 128);
362
363 drm_clflush_virt_range((void *)start, end - start);
364 } else {
365 drm_clflush_virt_range(addr, length);
366 }
367
368}
369
d174bd64
DV
370/* Only difference to the fast-path function is that this can handle bit17
371 * and uses non-atomic copy and kmap functions. */
372static int
373shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 char __user *user_data,
375 bool page_do_bit17_swizzling, bool needs_clflush)
376{
377 char *vaddr;
378 int ret;
379
380 vaddr = kmap(page);
381 if (needs_clflush)
23c18c71
DV
382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 page_length,
384 page_do_bit17_swizzling);
d174bd64
DV
385
386 if (page_do_bit17_swizzling)
387 ret = __copy_to_user_swizzled(user_data,
388 vaddr, shmem_page_offset,
389 page_length);
390 else
391 ret = __copy_to_user(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap(page);
395
f60d7f0c 396 return ret ? - EFAULT : 0;
d174bd64
DV
397}
398
eb01459f 399static int
dbf7bff0
DV
400i915_gem_shmem_pread(struct drm_device *dev,
401 struct drm_i915_gem_object *obj,
402 struct drm_i915_gem_pread *args,
403 struct drm_file *file)
eb01459f 404{
8461d226 405 char __user *user_data;
eb01459f 406 ssize_t remain;
8461d226 407 loff_t offset;
eb2c0c81 408 int shmem_page_offset, page_length, ret = 0;
8461d226 409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 410 int prefaulted = 0;
8489731c 411 int needs_clflush = 0;
9da3da66
CW
412 struct scatterlist *sg;
413 int i;
eb01459f 414
8461d226 415 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
416 remain = args->size;
417
8461d226 418 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 419
8489731c
DV
420 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
421 /* If we're not in the cpu read domain, set ourself into the gtt
422 * read domain and manually flush cachelines (if required). This
423 * optimizes for the case when the gpu will dirty the data
424 * anyway again before the next pread happens. */
425 if (obj->cache_level == I915_CACHE_NONE)
426 needs_clflush = 1;
6c085a72
CW
427 if (obj->gtt_space) {
428 ret = i915_gem_object_set_to_gtt_domain(obj, false);
429 if (ret)
430 return ret;
431 }
8489731c 432 }
eb01459f 433
f60d7f0c
CW
434 ret = i915_gem_object_get_pages(obj);
435 if (ret)
436 return ret;
437
438 i915_gem_object_pin_pages(obj);
439
8461d226 440 offset = args->offset;
eb01459f 441
9da3da66 442 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd
CW
443 struct page *page;
444
9da3da66
CW
445 if (i < offset >> PAGE_SHIFT)
446 continue;
447
448 if (remain <= 0)
449 break;
450
eb01459f
EA
451 /* Operation in this page
452 *
eb01459f 453 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
454 * page_length = bytes to copy for this page
455 */
c8cbbb8b 456 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
457 page_length = remain;
458 if ((shmem_page_offset + page_length) > PAGE_SIZE)
459 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 460
9da3da66 461 page = sg_page(sg);
8461d226
DV
462 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
463 (page_to_phys(page) & (1 << 17)) != 0;
464
d174bd64
DV
465 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
466 user_data, page_do_bit17_swizzling,
467 needs_clflush);
468 if (ret == 0)
469 goto next_page;
dbf7bff0 470
dbf7bff0
DV
471 mutex_unlock(&dev->struct_mutex);
472
96d79b52 473 if (!prefaulted) {
f56f821f 474 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
475 /* Userspace is tricking us, but we've already clobbered
476 * its pages with the prefault and promised to write the
477 * data up to the first fault. Hence ignore any errors
478 * and just continue. */
479 (void)ret;
480 prefaulted = 1;
481 }
eb01459f 482
d174bd64
DV
483 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
484 user_data, page_do_bit17_swizzling,
485 needs_clflush);
eb01459f 486
dbf7bff0 487 mutex_lock(&dev->struct_mutex);
f60d7f0c 488
dbf7bff0 489next_page:
e5281ccd 490 mark_page_accessed(page);
e5281ccd 491
f60d7f0c 492 if (ret)
8461d226 493 goto out;
8461d226 494
eb01459f 495 remain -= page_length;
8461d226 496 user_data += page_length;
eb01459f
EA
497 offset += page_length;
498 }
499
4f27b75d 500out:
f60d7f0c
CW
501 i915_gem_object_unpin_pages(obj);
502
eb01459f
EA
503 return ret;
504}
505
673a394b
EA
506/**
507 * Reads data from the object referenced by handle.
508 *
509 * On error, the contents of *data are undefined.
510 */
511int
512i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 513 struct drm_file *file)
673a394b
EA
514{
515 struct drm_i915_gem_pread *args = data;
05394f39 516 struct drm_i915_gem_object *obj;
35b62a89 517 int ret = 0;
673a394b 518
51311d0a
CW
519 if (args->size == 0)
520 return 0;
521
522 if (!access_ok(VERIFY_WRITE,
523 (char __user *)(uintptr_t)args->data_ptr,
524 args->size))
525 return -EFAULT;
526
4f27b75d 527 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 528 if (ret)
4f27b75d 529 return ret;
673a394b 530
05394f39 531 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 532 if (&obj->base == NULL) {
1d7cfea1
CW
533 ret = -ENOENT;
534 goto unlock;
4f27b75d 535 }
673a394b 536
7dcd2499 537 /* Bounds check source. */
05394f39
CW
538 if (args->offset > obj->base.size ||
539 args->size > obj->base.size - args->offset) {
ce9d419d 540 ret = -EINVAL;
35b62a89 541 goto out;
ce9d419d
CW
542 }
543
1286ff73
DV
544 /* prime objects have no backing filp to GEM pread/pwrite
545 * pages from.
546 */
547 if (!obj->base.filp) {
548 ret = -EINVAL;
549 goto out;
550 }
551
db53a302
CW
552 trace_i915_gem_object_pread(obj, args->offset, args->size);
553
dbf7bff0 554 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 555
35b62a89 556out:
05394f39 557 drm_gem_object_unreference(&obj->base);
1d7cfea1 558unlock:
4f27b75d 559 mutex_unlock(&dev->struct_mutex);
eb01459f 560 return ret;
673a394b
EA
561}
562
0839ccb8
KP
563/* This is the fast write path which cannot handle
564 * page faults in the source data
9b7530cc 565 */
0839ccb8
KP
566
567static inline int
568fast_user_write(struct io_mapping *mapping,
569 loff_t page_base, int page_offset,
570 char __user *user_data,
571 int length)
9b7530cc 572{
4f0c7cfb
BW
573 void __iomem *vaddr_atomic;
574 void *vaddr;
0839ccb8 575 unsigned long unwritten;
9b7530cc 576
3e4d3af5 577 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
578 /* We can use the cpu mem copy function because this is X86. */
579 vaddr = (void __force*)vaddr_atomic + page_offset;
580 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 581 user_data, length);
3e4d3af5 582 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 583 return unwritten;
0839ccb8
KP
584}
585
3de09aa3
EA
586/**
587 * This is the fast pwrite path, where we copy the data directly from the
588 * user into the GTT, uncached.
589 */
673a394b 590static int
05394f39
CW
591i915_gem_gtt_pwrite_fast(struct drm_device *dev,
592 struct drm_i915_gem_object *obj,
3de09aa3 593 struct drm_i915_gem_pwrite *args,
05394f39 594 struct drm_file *file)
673a394b 595{
0839ccb8 596 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 597 ssize_t remain;
0839ccb8 598 loff_t offset, page_base;
673a394b 599 char __user *user_data;
935aaa69
DV
600 int page_offset, page_length, ret;
601
86a1ee26 602 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
603 if (ret)
604 goto out;
605
606 ret = i915_gem_object_set_to_gtt_domain(obj, true);
607 if (ret)
608 goto out_unpin;
609
610 ret = i915_gem_object_put_fence(obj);
611 if (ret)
612 goto out_unpin;
673a394b
EA
613
614 user_data = (char __user *) (uintptr_t) args->data_ptr;
615 remain = args->size;
673a394b 616
05394f39 617 offset = obj->gtt_offset + args->offset;
673a394b
EA
618
619 while (remain > 0) {
620 /* Operation in this page
621 *
0839ccb8
KP
622 * page_base = page offset within aperture
623 * page_offset = offset within page
624 * page_length = bytes to copy for this page
673a394b 625 */
c8cbbb8b
CW
626 page_base = offset & PAGE_MASK;
627 page_offset = offset_in_page(offset);
0839ccb8
KP
628 page_length = remain;
629 if ((page_offset + remain) > PAGE_SIZE)
630 page_length = PAGE_SIZE - page_offset;
631
0839ccb8 632 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
633 * source page isn't available. Return the error and we'll
634 * retry in the slow path.
0839ccb8 635 */
fbd5a26d 636 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
637 page_offset, user_data, page_length)) {
638 ret = -EFAULT;
639 goto out_unpin;
640 }
673a394b 641
0839ccb8
KP
642 remain -= page_length;
643 user_data += page_length;
644 offset += page_length;
673a394b 645 }
673a394b 646
935aaa69
DV
647out_unpin:
648 i915_gem_object_unpin(obj);
649out:
3de09aa3 650 return ret;
673a394b
EA
651}
652
d174bd64
DV
653/* Per-page copy function for the shmem pwrite fastpath.
654 * Flushes invalid cachelines before writing to the target if
655 * needs_clflush_before is set and flushes out any written cachelines after
656 * writing if needs_clflush is set. */
3043c60c 657static int
d174bd64
DV
658shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
659 char __user *user_data,
660 bool page_do_bit17_swizzling,
661 bool needs_clflush_before,
662 bool needs_clflush_after)
673a394b 663{
d174bd64 664 char *vaddr;
673a394b 665 int ret;
3de09aa3 666
e7e58eb5 667 if (unlikely(page_do_bit17_swizzling))
d174bd64 668 return -EINVAL;
3de09aa3 669
d174bd64
DV
670 vaddr = kmap_atomic(page);
671 if (needs_clflush_before)
672 drm_clflush_virt_range(vaddr + shmem_page_offset,
673 page_length);
674 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
675 user_data,
676 page_length);
677 if (needs_clflush_after)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 kunmap_atomic(vaddr);
3de09aa3 681
755d2218 682 return ret ? -EFAULT : 0;
3de09aa3
EA
683}
684
d174bd64
DV
685/* Only difference to the fast-path function is that this can handle bit17
686 * and uses non-atomic copy and kmap functions. */
3043c60c 687static int
d174bd64
DV
688shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
689 char __user *user_data,
690 bool page_do_bit17_swizzling,
691 bool needs_clflush_before,
692 bool needs_clflush_after)
673a394b 693{
d174bd64
DV
694 char *vaddr;
695 int ret;
e5281ccd 696
d174bd64 697 vaddr = kmap(page);
e7e58eb5 698 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
699 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
700 page_length,
701 page_do_bit17_swizzling);
d174bd64
DV
702 if (page_do_bit17_swizzling)
703 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
704 user_data,
705 page_length);
d174bd64
DV
706 else
707 ret = __copy_from_user(vaddr + shmem_page_offset,
708 user_data,
709 page_length);
710 if (needs_clflush_after)
23c18c71
DV
711 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
712 page_length,
713 page_do_bit17_swizzling);
d174bd64 714 kunmap(page);
40123c1f 715
755d2218 716 return ret ? -EFAULT : 0;
40123c1f
EA
717}
718
40123c1f 719static int
e244a443
DV
720i915_gem_shmem_pwrite(struct drm_device *dev,
721 struct drm_i915_gem_object *obj,
722 struct drm_i915_gem_pwrite *args,
723 struct drm_file *file)
40123c1f 724{
40123c1f 725 ssize_t remain;
8c59967c
DV
726 loff_t offset;
727 char __user *user_data;
eb2c0c81 728 int shmem_page_offset, page_length, ret = 0;
8c59967c 729 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 730 int hit_slowpath = 0;
58642885
DV
731 int needs_clflush_after = 0;
732 int needs_clflush_before = 0;
9da3da66
CW
733 int i;
734 struct scatterlist *sg;
40123c1f 735
8c59967c 736 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
737 remain = args->size;
738
8c59967c 739 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 740
58642885
DV
741 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
742 /* If we're not in the cpu write domain, set ourself into the gtt
743 * write domain and manually flush cachelines (if required). This
744 * optimizes for the case when the gpu will use the data
745 * right away and we therefore have to clflush anyway. */
746 if (obj->cache_level == I915_CACHE_NONE)
747 needs_clflush_after = 1;
6c085a72
CW
748 if (obj->gtt_space) {
749 ret = i915_gem_object_set_to_gtt_domain(obj, true);
750 if (ret)
751 return ret;
752 }
58642885
DV
753 }
754 /* Same trick applies for invalidate partially written cachelines before
755 * writing. */
756 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
757 && obj->cache_level == I915_CACHE_NONE)
758 needs_clflush_before = 1;
759
755d2218
CW
760 ret = i915_gem_object_get_pages(obj);
761 if (ret)
762 return ret;
763
764 i915_gem_object_pin_pages(obj);
765
673a394b 766 offset = args->offset;
05394f39 767 obj->dirty = 1;
673a394b 768
9da3da66 769 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd 770 struct page *page;
58642885 771 int partial_cacheline_write;
e5281ccd 772
9da3da66
CW
773 if (i < offset >> PAGE_SHIFT)
774 continue;
775
776 if (remain <= 0)
777 break;
778
40123c1f
EA
779 /* Operation in this page
780 *
40123c1f 781 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
782 * page_length = bytes to copy for this page
783 */
c8cbbb8b 784 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 789
58642885
DV
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
9da3da66 797 page = sg_page(sg);
8c59967c
DV
798 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
799 (page_to_phys(page) & (1 << 17)) != 0;
800
d174bd64
DV
801 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
805 if (ret == 0)
806 goto next_page;
e244a443
DV
807
808 hit_slowpath = 1;
e244a443 809 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
810 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
811 user_data, page_do_bit17_swizzling,
812 partial_cacheline_write,
813 needs_clflush_after);
40123c1f 814
e244a443 815 mutex_lock(&dev->struct_mutex);
755d2218 816
e244a443 817next_page:
e5281ccd
CW
818 set_page_dirty(page);
819 mark_page_accessed(page);
e5281ccd 820
755d2218 821 if (ret)
8c59967c 822 goto out;
8c59967c 823
40123c1f 824 remain -= page_length;
8c59967c 825 user_data += page_length;
40123c1f 826 offset += page_length;
673a394b
EA
827 }
828
fbd5a26d 829out:
755d2218
CW
830 i915_gem_object_unpin_pages(obj);
831
e244a443 832 if (hit_slowpath) {
8dcf015e
DV
833 /*
834 * Fixup: Flush cpu caches in case we didn't flush the dirty
835 * cachelines in-line while writing and the object moved
836 * out of the cpu write domain while we've dropped the lock.
837 */
838 if (!needs_clflush_after &&
839 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
e244a443 840 i915_gem_clflush_object(obj);
e76e9aeb 841 i915_gem_chipset_flush(dev);
e244a443 842 }
8c59967c 843 }
673a394b 844
58642885 845 if (needs_clflush_after)
e76e9aeb 846 i915_gem_chipset_flush(dev);
58642885 847
40123c1f 848 return ret;
673a394b
EA
849}
850
851/**
852 * Writes data to the object referenced by handle.
853 *
854 * On error, the contents of the buffer that were to be modified are undefined.
855 */
856int
857i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 858 struct drm_file *file)
673a394b
EA
859{
860 struct drm_i915_gem_pwrite *args = data;
05394f39 861 struct drm_i915_gem_object *obj;
51311d0a
CW
862 int ret;
863
864 if (args->size == 0)
865 return 0;
866
867 if (!access_ok(VERIFY_READ,
868 (char __user *)(uintptr_t)args->data_ptr,
869 args->size))
870 return -EFAULT;
871
f56f821f
DV
872 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
873 args->size);
51311d0a
CW
874 if (ret)
875 return -EFAULT;
673a394b 876
fbd5a26d 877 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 878 if (ret)
fbd5a26d 879 return ret;
1d7cfea1 880
05394f39 881 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 882 if (&obj->base == NULL) {
1d7cfea1
CW
883 ret = -ENOENT;
884 goto unlock;
fbd5a26d 885 }
673a394b 886
7dcd2499 887 /* Bounds check destination. */
05394f39
CW
888 if (args->offset > obj->base.size ||
889 args->size > obj->base.size - args->offset) {
ce9d419d 890 ret = -EINVAL;
35b62a89 891 goto out;
ce9d419d
CW
892 }
893
1286ff73
DV
894 /* prime objects have no backing filp to GEM pread/pwrite
895 * pages from.
896 */
897 if (!obj->base.filp) {
898 ret = -EINVAL;
899 goto out;
900 }
901
db53a302
CW
902 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
903
935aaa69 904 ret = -EFAULT;
673a394b
EA
905 /* We can only do the GTT pwrite on untiled buffers, as otherwise
906 * it would end up going through the fenced access, and we'll get
907 * different detiling behavior between reading and writing.
908 * pread/pwrite currently are reading and writing from the CPU
909 * perspective, requiring manual detiling by the client.
910 */
5c0480f2 911 if (obj->phys_obj) {
fbd5a26d 912 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
913 goto out;
914 }
915
86a1ee26 916 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 917 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 918 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 919 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
920 /* Note that the gtt paths might fail with non-page-backed user
921 * pointers (e.g. gtt mappings when moving data between
922 * textures). Fallback to the shmem path in that case. */
fbd5a26d 923 }
673a394b 924
86a1ee26 925 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 926 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 927
35b62a89 928out:
05394f39 929 drm_gem_object_unreference(&obj->base);
1d7cfea1 930unlock:
fbd5a26d 931 mutex_unlock(&dev->struct_mutex);
673a394b
EA
932 return ret;
933}
934
b361237b
CW
935int
936i915_gem_check_wedge(struct drm_i915_private *dev_priv,
937 bool interruptible)
938{
939 if (atomic_read(&dev_priv->mm.wedged)) {
940 struct completion *x = &dev_priv->error_completion;
941 bool recovery_complete;
942 unsigned long flags;
943
944 /* Give the error handler a chance to run. */
945 spin_lock_irqsave(&x->wait.lock, flags);
946 recovery_complete = x->done > 0;
947 spin_unlock_irqrestore(&x->wait.lock, flags);
948
949 /* Non-interruptible callers can't handle -EAGAIN, hence return
950 * -EIO unconditionally for these. */
951 if (!interruptible)
952 return -EIO;
953
954 /* Recovery complete, but still wedged means reset failure. */
955 if (recovery_complete)
956 return -EIO;
957
958 return -EAGAIN;
959 }
960
961 return 0;
962}
963
964/*
965 * Compare seqno against outstanding lazy request. Emit a request if they are
966 * equal.
967 */
968static int
969i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
970{
971 int ret;
972
973 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
974
975 ret = 0;
976 if (seqno == ring->outstanding_lazy_request)
977 ret = i915_add_request(ring, NULL, NULL);
978
979 return ret;
980}
981
982/**
983 * __wait_seqno - wait until execution of seqno has finished
984 * @ring: the ring expected to report seqno
985 * @seqno: duh!
986 * @interruptible: do an interruptible wait (normally yes)
987 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
988 *
989 * Returns 0 if the seqno was found within the alloted time. Else returns the
990 * errno with remaining time filled in timeout argument.
991 */
992static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
993 bool interruptible, struct timespec *timeout)
994{
995 drm_i915_private_t *dev_priv = ring->dev->dev_private;
996 struct timespec before, now, wait_time={1,0};
997 unsigned long timeout_jiffies;
998 long end;
999 bool wait_forever = true;
1000 int ret;
1001
1002 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1003 return 0;
1004
1005 trace_i915_gem_request_wait_begin(ring, seqno);
1006
1007 if (timeout != NULL) {
1008 wait_time = *timeout;
1009 wait_forever = false;
1010 }
1011
1012 timeout_jiffies = timespec_to_jiffies(&wait_time);
1013
1014 if (WARN_ON(!ring->irq_get(ring)))
1015 return -ENODEV;
1016
1017 /* Record current time in case interrupted by signal, or wedged * */
1018 getrawmonotonic(&before);
1019
1020#define EXIT_COND \
1021 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1022 atomic_read(&dev_priv->mm.wedged))
1023 do {
1024 if (interruptible)
1025 end = wait_event_interruptible_timeout(ring->irq_queue,
1026 EXIT_COND,
1027 timeout_jiffies);
1028 else
1029 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1030 timeout_jiffies);
1031
1032 ret = i915_gem_check_wedge(dev_priv, interruptible);
1033 if (ret)
1034 end = ret;
1035 } while (end == 0 && wait_forever);
1036
1037 getrawmonotonic(&now);
1038
1039 ring->irq_put(ring);
1040 trace_i915_gem_request_wait_end(ring, seqno);
1041#undef EXIT_COND
1042
1043 if (timeout) {
1044 struct timespec sleep_time = timespec_sub(now, before);
1045 *timeout = timespec_sub(*timeout, sleep_time);
1046 }
1047
1048 switch (end) {
1049 case -EIO:
1050 case -EAGAIN: /* Wedged */
1051 case -ERESTARTSYS: /* Signal */
1052 return (int)end;
1053 case 0: /* Timeout */
1054 if (timeout)
1055 set_normalized_timespec(timeout, 0, 0);
1056 return -ETIME;
1057 default: /* Completed */
1058 WARN_ON(end < 0); /* We're not aware of other errors */
1059 return 0;
1060 }
1061}
1062
1063/**
1064 * Waits for a sequence number to be signaled, and cleans up the
1065 * request and object lists appropriately for that event.
1066 */
1067int
1068i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1069{
1070 struct drm_device *dev = ring->dev;
1071 struct drm_i915_private *dev_priv = dev->dev_private;
1072 bool interruptible = dev_priv->mm.interruptible;
1073 int ret;
1074
1075 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1076 BUG_ON(seqno == 0);
1077
1078 ret = i915_gem_check_wedge(dev_priv, interruptible);
1079 if (ret)
1080 return ret;
1081
1082 ret = i915_gem_check_olr(ring, seqno);
1083 if (ret)
1084 return ret;
1085
1086 return __wait_seqno(ring, seqno, interruptible, NULL);
1087}
1088
1089/**
1090 * Ensures that all rendering to the object has completed and the object is
1091 * safe to unbind from the GTT or access from the CPU.
1092 */
1093static __must_check int
1094i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1095 bool readonly)
1096{
1097 struct intel_ring_buffer *ring = obj->ring;
1098 u32 seqno;
1099 int ret;
1100
1101 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1102 if (seqno == 0)
1103 return 0;
1104
1105 ret = i915_wait_seqno(ring, seqno);
1106 if (ret)
1107 return ret;
1108
1109 i915_gem_retire_requests_ring(ring);
1110
1111 /* Manually manage the write flush as we may have not yet
1112 * retired the buffer.
1113 */
1114 if (obj->last_write_seqno &&
1115 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1116 obj->last_write_seqno = 0;
1117 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1118 }
1119
1120 return 0;
1121}
1122
3236f57a
CW
1123/* A nonblocking variant of the above wait. This is a highly dangerous routine
1124 * as the object state may change during this call.
1125 */
1126static __must_check int
1127i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1128 bool readonly)
1129{
1130 struct drm_device *dev = obj->base.dev;
1131 struct drm_i915_private *dev_priv = dev->dev_private;
1132 struct intel_ring_buffer *ring = obj->ring;
1133 u32 seqno;
1134 int ret;
1135
1136 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1137 BUG_ON(!dev_priv->mm.interruptible);
1138
1139 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1140 if (seqno == 0)
1141 return 0;
1142
1143 ret = i915_gem_check_wedge(dev_priv, true);
1144 if (ret)
1145 return ret;
1146
1147 ret = i915_gem_check_olr(ring, seqno);
1148 if (ret)
1149 return ret;
1150
1151 mutex_unlock(&dev->struct_mutex);
1152 ret = __wait_seqno(ring, seqno, true, NULL);
1153 mutex_lock(&dev->struct_mutex);
1154
1155 i915_gem_retire_requests_ring(ring);
1156
1157 /* Manually manage the write flush as we may have not yet
1158 * retired the buffer.
1159 */
1160 if (obj->last_write_seqno &&
1161 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1162 obj->last_write_seqno = 0;
1163 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1164 }
1165
1166 return ret;
1167}
1168
673a394b 1169/**
2ef7eeaa
EA
1170 * Called when user space prepares to use an object with the CPU, either
1171 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1172 */
1173int
1174i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1175 struct drm_file *file)
673a394b
EA
1176{
1177 struct drm_i915_gem_set_domain *args = data;
05394f39 1178 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1179 uint32_t read_domains = args->read_domains;
1180 uint32_t write_domain = args->write_domain;
673a394b
EA
1181 int ret;
1182
2ef7eeaa 1183 /* Only handle setting domains to types used by the CPU. */
21d509e3 1184 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1185 return -EINVAL;
1186
21d509e3 1187 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1188 return -EINVAL;
1189
1190 /* Having something in the write domain implies it's in the read
1191 * domain, and only that read domain. Enforce that in the request.
1192 */
1193 if (write_domain != 0 && read_domains != write_domain)
1194 return -EINVAL;
1195
76c1dec1 1196 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1197 if (ret)
76c1dec1 1198 return ret;
1d7cfea1 1199
05394f39 1200 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1201 if (&obj->base == NULL) {
1d7cfea1
CW
1202 ret = -ENOENT;
1203 goto unlock;
76c1dec1 1204 }
673a394b 1205
3236f57a
CW
1206 /* Try to flush the object off the GPU without holding the lock.
1207 * We will repeat the flush holding the lock in the normal manner
1208 * to catch cases where we are gazumped.
1209 */
1210 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1211 if (ret)
1212 goto unref;
1213
2ef7eeaa
EA
1214 if (read_domains & I915_GEM_DOMAIN_GTT) {
1215 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1216
1217 /* Silently promote "you're not bound, there was nothing to do"
1218 * to success, since the client was just asking us to
1219 * make sure everything was done.
1220 */
1221 if (ret == -EINVAL)
1222 ret = 0;
2ef7eeaa 1223 } else {
e47c68e9 1224 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1225 }
1226
3236f57a 1227unref:
05394f39 1228 drm_gem_object_unreference(&obj->base);
1d7cfea1 1229unlock:
673a394b
EA
1230 mutex_unlock(&dev->struct_mutex);
1231 return ret;
1232}
1233
1234/**
1235 * Called when user space has done writes to this buffer
1236 */
1237int
1238i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1239 struct drm_file *file)
673a394b
EA
1240{
1241 struct drm_i915_gem_sw_finish *args = data;
05394f39 1242 struct drm_i915_gem_object *obj;
673a394b
EA
1243 int ret = 0;
1244
76c1dec1 1245 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1246 if (ret)
76c1dec1 1247 return ret;
1d7cfea1 1248
05394f39 1249 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1250 if (&obj->base == NULL) {
1d7cfea1
CW
1251 ret = -ENOENT;
1252 goto unlock;
673a394b
EA
1253 }
1254
673a394b 1255 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1256 if (obj->pin_count)
e47c68e9
EA
1257 i915_gem_object_flush_cpu_write_domain(obj);
1258
05394f39 1259 drm_gem_object_unreference(&obj->base);
1d7cfea1 1260unlock:
673a394b
EA
1261 mutex_unlock(&dev->struct_mutex);
1262 return ret;
1263}
1264
1265/**
1266 * Maps the contents of an object, returning the address it is mapped
1267 * into.
1268 *
1269 * While the mapping holds a reference on the contents of the object, it doesn't
1270 * imply a ref on the object itself.
1271 */
1272int
1273i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1274 struct drm_file *file)
673a394b
EA
1275{
1276 struct drm_i915_gem_mmap *args = data;
1277 struct drm_gem_object *obj;
673a394b
EA
1278 unsigned long addr;
1279
05394f39 1280 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1281 if (obj == NULL)
bf79cb91 1282 return -ENOENT;
673a394b 1283
1286ff73
DV
1284 /* prime objects have no backing filp to GEM mmap
1285 * pages from.
1286 */
1287 if (!obj->filp) {
1288 drm_gem_object_unreference_unlocked(obj);
1289 return -EINVAL;
1290 }
1291
6be5ceb0 1292 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1293 PROT_READ | PROT_WRITE, MAP_SHARED,
1294 args->offset);
bc9025bd 1295 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1296 if (IS_ERR((void *)addr))
1297 return addr;
1298
1299 args->addr_ptr = (uint64_t) addr;
1300
1301 return 0;
1302}
1303
de151cf6
JB
1304/**
1305 * i915_gem_fault - fault a page into the GTT
1306 * vma: VMA in question
1307 * vmf: fault info
1308 *
1309 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1310 * from userspace. The fault handler takes care of binding the object to
1311 * the GTT (if needed), allocating and programming a fence register (again,
1312 * only if needed based on whether the old reg is still valid or the object
1313 * is tiled) and inserting a new PTE into the faulting process.
1314 *
1315 * Note that the faulting process may involve evicting existing objects
1316 * from the GTT and/or fence registers to make room. So performance may
1317 * suffer if the GTT working set is large or there are few fence registers
1318 * left.
1319 */
1320int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1321{
05394f39
CW
1322 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1323 struct drm_device *dev = obj->base.dev;
7d1c4804 1324 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1325 pgoff_t page_offset;
1326 unsigned long pfn;
1327 int ret = 0;
0f973f27 1328 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1329
1330 /* We don't use vmf->pgoff since that has the fake offset */
1331 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1332 PAGE_SHIFT;
1333
d9bc7e9f
CW
1334 ret = i915_mutex_lock_interruptible(dev);
1335 if (ret)
1336 goto out;
a00b10c3 1337
db53a302
CW
1338 trace_i915_gem_object_fault(obj, page_offset, true, write);
1339
d9bc7e9f 1340 /* Now bind it into the GTT if needed */
c9839303
CW
1341 ret = i915_gem_object_pin(obj, 0, true, false);
1342 if (ret)
1343 goto unlock;
4a684a41 1344
c9839303
CW
1345 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1346 if (ret)
1347 goto unpin;
74898d7e 1348
06d98131 1349 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1350 if (ret)
c9839303 1351 goto unpin;
7d1c4804 1352
6299f992
CW
1353 obj->fault_mappable = true;
1354
dd2757f8 1355 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1356 page_offset;
1357
1358 /* Finally, remap it using the new GTT offset */
1359 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1360unpin:
1361 i915_gem_object_unpin(obj);
c715089f 1362unlock:
de151cf6 1363 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1364out:
de151cf6 1365 switch (ret) {
d9bc7e9f 1366 case -EIO:
a9340cca
DV
1367 /* If this -EIO is due to a gpu hang, give the reset code a
1368 * chance to clean up the mess. Otherwise return the proper
1369 * SIGBUS. */
1370 if (!atomic_read(&dev_priv->mm.wedged))
1371 return VM_FAULT_SIGBUS;
045e769a 1372 case -EAGAIN:
d9bc7e9f
CW
1373 /* Give the error handler a chance to run and move the
1374 * objects off the GPU active list. Next time we service the
1375 * fault, we should be able to transition the page into the
1376 * GTT without touching the GPU (and so avoid further
1377 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1378 * with coherency, just lost writes.
1379 */
045e769a 1380 set_need_resched();
c715089f
CW
1381 case 0:
1382 case -ERESTARTSYS:
bed636ab 1383 case -EINTR:
e79e0fe3
DR
1384 case -EBUSY:
1385 /*
1386 * EBUSY is ok: this just means that another thread
1387 * already did the job.
1388 */
c715089f 1389 return VM_FAULT_NOPAGE;
de151cf6 1390 case -ENOMEM:
de151cf6 1391 return VM_FAULT_OOM;
a7c2e1aa
DV
1392 case -ENOSPC:
1393 return VM_FAULT_SIGBUS;
de151cf6 1394 default:
a7c2e1aa 1395 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1396 return VM_FAULT_SIGBUS;
de151cf6
JB
1397 }
1398}
1399
901782b2
CW
1400/**
1401 * i915_gem_release_mmap - remove physical page mappings
1402 * @obj: obj in question
1403 *
af901ca1 1404 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1405 * relinquish ownership of the pages back to the system.
1406 *
1407 * It is vital that we remove the page mapping if we have mapped a tiled
1408 * object through the GTT and then lose the fence register due to
1409 * resource pressure. Similarly if the object has been moved out of the
1410 * aperture, than pages mapped into userspace must be revoked. Removing the
1411 * mapping will then trigger a page fault on the next user access, allowing
1412 * fixup by i915_gem_fault().
1413 */
d05ca301 1414void
05394f39 1415i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1416{
6299f992
CW
1417 if (!obj->fault_mappable)
1418 return;
901782b2 1419
f6e47884
CW
1420 if (obj->base.dev->dev_mapping)
1421 unmap_mapping_range(obj->base.dev->dev_mapping,
1422 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1423 obj->base.size, 1);
fb7d516a 1424
6299f992 1425 obj->fault_mappable = false;
901782b2
CW
1426}
1427
92b88aeb 1428static uint32_t
e28f8711 1429i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1430{
e28f8711 1431 uint32_t gtt_size;
92b88aeb
CW
1432
1433 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1434 tiling_mode == I915_TILING_NONE)
1435 return size;
92b88aeb
CW
1436
1437 /* Previous chips need a power-of-two fence region when tiling */
1438 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1439 gtt_size = 1024*1024;
92b88aeb 1440 else
e28f8711 1441 gtt_size = 512*1024;
92b88aeb 1442
e28f8711
CW
1443 while (gtt_size < size)
1444 gtt_size <<= 1;
92b88aeb 1445
e28f8711 1446 return gtt_size;
92b88aeb
CW
1447}
1448
de151cf6
JB
1449/**
1450 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1451 * @obj: object to check
1452 *
1453 * Return the required GTT alignment for an object, taking into account
5e783301 1454 * potential fence register mapping.
de151cf6
JB
1455 */
1456static uint32_t
e28f8711
CW
1457i915_gem_get_gtt_alignment(struct drm_device *dev,
1458 uint32_t size,
1459 int tiling_mode)
de151cf6 1460{
de151cf6
JB
1461 /*
1462 * Minimum alignment is 4k (GTT page size), but might be greater
1463 * if a fence register is needed for the object.
1464 */
a00b10c3 1465 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1466 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1467 return 4096;
1468
a00b10c3
CW
1469 /*
1470 * Previous chips need to be aligned to the size of the smallest
1471 * fence register that can contain the object.
1472 */
e28f8711 1473 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1474}
1475
5e783301
DV
1476/**
1477 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1478 * unfenced object
e28f8711
CW
1479 * @dev: the device
1480 * @size: size of the object
1481 * @tiling_mode: tiling mode of the object
5e783301
DV
1482 *
1483 * Return the required GTT alignment for an object, only taking into account
1484 * unfenced tiled surface requirements.
1485 */
467cffba 1486uint32_t
e28f8711
CW
1487i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1488 uint32_t size,
1489 int tiling_mode)
5e783301 1490{
5e783301
DV
1491 /*
1492 * Minimum alignment is 4k (GTT page size) for sane hw.
1493 */
1494 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1495 tiling_mode == I915_TILING_NONE)
5e783301
DV
1496 return 4096;
1497
e28f8711
CW
1498 /* Previous hardware however needs to be aligned to a power-of-two
1499 * tile height. The simplest method for determining this is to reuse
1500 * the power-of-tile object size.
5e783301 1501 */
e28f8711 1502 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1503}
1504
d8cb5086
CW
1505static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1506{
1507 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1508 int ret;
1509
1510 if (obj->base.map_list.map)
1511 return 0;
1512
1513 ret = drm_gem_create_mmap_offset(&obj->base);
1514 if (ret != -ENOSPC)
1515 return ret;
1516
1517 /* Badly fragmented mmap space? The only way we can recover
1518 * space is by destroying unwanted objects. We can't randomly release
1519 * mmap_offsets as userspace expects them to be persistent for the
1520 * lifetime of the objects. The closest we can is to release the
1521 * offsets on purgeable objects by truncating it and marking it purged,
1522 * which prevents userspace from ever using that object again.
1523 */
1524 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1525 ret = drm_gem_create_mmap_offset(&obj->base);
1526 if (ret != -ENOSPC)
1527 return ret;
1528
1529 i915_gem_shrink_all(dev_priv);
1530 return drm_gem_create_mmap_offset(&obj->base);
1531}
1532
1533static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1534{
1535 if (!obj->base.map_list.map)
1536 return;
1537
1538 drm_gem_free_mmap_offset(&obj->base);
1539}
1540
de151cf6 1541int
ff72145b
DA
1542i915_gem_mmap_gtt(struct drm_file *file,
1543 struct drm_device *dev,
1544 uint32_t handle,
1545 uint64_t *offset)
de151cf6 1546{
da761a6e 1547 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1548 struct drm_i915_gem_object *obj;
de151cf6
JB
1549 int ret;
1550
76c1dec1 1551 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1552 if (ret)
76c1dec1 1553 return ret;
de151cf6 1554
ff72145b 1555 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1556 if (&obj->base == NULL) {
1d7cfea1
CW
1557 ret = -ENOENT;
1558 goto unlock;
1559 }
de151cf6 1560
05394f39 1561 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1562 ret = -E2BIG;
ff56b0bc 1563 goto out;
da761a6e
CW
1564 }
1565
05394f39 1566 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1567 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1568 ret = -EINVAL;
1569 goto out;
ab18282d
CW
1570 }
1571
d8cb5086
CW
1572 ret = i915_gem_object_create_mmap_offset(obj);
1573 if (ret)
1574 goto out;
de151cf6 1575
ff72145b 1576 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1577
1d7cfea1 1578out:
05394f39 1579 drm_gem_object_unreference(&obj->base);
1d7cfea1 1580unlock:
de151cf6 1581 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1582 return ret;
de151cf6
JB
1583}
1584
ff72145b
DA
1585/**
1586 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1587 * @dev: DRM device
1588 * @data: GTT mapping ioctl data
1589 * @file: GEM object info
1590 *
1591 * Simply returns the fake offset to userspace so it can mmap it.
1592 * The mmap call will end up in drm_gem_mmap(), which will set things
1593 * up so we can get faults in the handler above.
1594 *
1595 * The fault handler will take care of binding the object into the GTT
1596 * (since it may have been evicted to make room for something), allocating
1597 * a fence register, and mapping the appropriate aperture address into
1598 * userspace.
1599 */
1600int
1601i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1602 struct drm_file *file)
1603{
1604 struct drm_i915_gem_mmap_gtt *args = data;
1605
ff72145b
DA
1606 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1607}
1608
225067ee
DV
1609/* Immediately discard the backing storage */
1610static void
1611i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1612{
e5281ccd 1613 struct inode *inode;
e5281ccd 1614
4d6294bf 1615 i915_gem_object_free_mmap_offset(obj);
1286ff73 1616
4d6294bf
CW
1617 if (obj->base.filp == NULL)
1618 return;
e5281ccd 1619
225067ee
DV
1620 /* Our goal here is to return as much of the memory as
1621 * is possible back to the system as we are called from OOM.
1622 * To do this we must instruct the shmfs to drop all of its
1623 * backing pages, *now*.
1624 */
05394f39 1625 inode = obj->base.filp->f_path.dentry->d_inode;
225067ee 1626 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1627
225067ee
DV
1628 obj->madv = __I915_MADV_PURGED;
1629}
e5281ccd 1630
225067ee
DV
1631static inline int
1632i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1633{
1634 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1635}
1636
5cdf5881 1637static void
05394f39 1638i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1639{
05394f39 1640 int page_count = obj->base.size / PAGE_SIZE;
9da3da66 1641 struct scatterlist *sg;
6c085a72 1642 int ret, i;
1286ff73 1643
05394f39 1644 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1645
6c085a72
CW
1646 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1647 if (ret) {
1648 /* In the event of a disaster, abandon all caches and
1649 * hope for the best.
1650 */
1651 WARN_ON(ret != -EIO);
1652 i915_gem_clflush_object(obj);
1653 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1654 }
1655
6dacfd2f 1656 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1657 i915_gem_object_save_bit_17_swizzle(obj);
1658
05394f39
CW
1659 if (obj->madv == I915_MADV_DONTNEED)
1660 obj->dirty = 0;
3ef94daa 1661
9da3da66
CW
1662 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1663 struct page *page = sg_page(sg);
1664
05394f39 1665 if (obj->dirty)
9da3da66 1666 set_page_dirty(page);
3ef94daa 1667
05394f39 1668 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1669 mark_page_accessed(page);
3ef94daa 1670
9da3da66 1671 page_cache_release(page);
3ef94daa 1672 }
05394f39 1673 obj->dirty = 0;
673a394b 1674
9da3da66
CW
1675 sg_free_table(obj->pages);
1676 kfree(obj->pages);
37e680a1 1677}
6c085a72 1678
37e680a1
CW
1679static int
1680i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1681{
1682 const struct drm_i915_gem_object_ops *ops = obj->ops;
1683
2f745ad3 1684 if (obj->pages == NULL)
37e680a1
CW
1685 return 0;
1686
1687 BUG_ON(obj->gtt_space);
6c085a72 1688
a5570178
CW
1689 if (obj->pages_pin_count)
1690 return -EBUSY;
1691
37e680a1 1692 ops->put_pages(obj);
05394f39 1693 obj->pages = NULL;
37e680a1
CW
1694
1695 list_del(&obj->gtt_list);
6c085a72
CW
1696 if (i915_gem_object_is_purgeable(obj))
1697 i915_gem_object_truncate(obj);
1698
1699 return 0;
1700}
1701
1702static long
1703i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1704{
1705 struct drm_i915_gem_object *obj, *next;
1706 long count = 0;
1707
1708 list_for_each_entry_safe(obj, next,
1709 &dev_priv->mm.unbound_list,
1710 gtt_list) {
1711 if (i915_gem_object_is_purgeable(obj) &&
37e680a1 1712 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1713 count += obj->base.size >> PAGE_SHIFT;
1714 if (count >= target)
1715 return count;
1716 }
1717 }
1718
1719 list_for_each_entry_safe(obj, next,
1720 &dev_priv->mm.inactive_list,
1721 mm_list) {
1722 if (i915_gem_object_is_purgeable(obj) &&
1723 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1724 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1725 count += obj->base.size >> PAGE_SHIFT;
1726 if (count >= target)
1727 return count;
1728 }
1729 }
1730
1731 return count;
1732}
1733
1734static void
1735i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1736{
1737 struct drm_i915_gem_object *obj, *next;
1738
1739 i915_gem_evict_everything(dev_priv->dev);
1740
1741 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
37e680a1 1742 i915_gem_object_put_pages(obj);
225067ee
DV
1743}
1744
37e680a1 1745static int
6c085a72 1746i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1747{
6c085a72 1748 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1749 int page_count, i;
1750 struct address_space *mapping;
9da3da66
CW
1751 struct sg_table *st;
1752 struct scatterlist *sg;
e5281ccd 1753 struct page *page;
6c085a72 1754 gfp_t gfp;
e5281ccd 1755
6c085a72
CW
1756 /* Assert that the object is not currently in any GPU domain. As it
1757 * wasn't in the GTT, there shouldn't be any way it could have been in
1758 * a GPU cache
1759 */
1760 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1761 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1762
9da3da66
CW
1763 st = kmalloc(sizeof(*st), GFP_KERNEL);
1764 if (st == NULL)
1765 return -ENOMEM;
1766
05394f39 1767 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1768 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1769 sg_free_table(st);
1770 kfree(st);
e5281ccd 1771 return -ENOMEM;
9da3da66 1772 }
e5281ccd 1773
9da3da66
CW
1774 /* Get the list of pages out of our struct file. They'll be pinned
1775 * at this point until we release them.
1776 *
1777 * Fail silently without starting the shrinker
1778 */
6c085a72
CW
1779 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1780 gfp = mapping_gfp_mask(mapping);
d7c3b937 1781 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72 1782 gfp &= ~(__GFP_IO | __GFP_WAIT);
9da3da66 1783 for_each_sg(st->sgl, sg, page_count, i) {
6c085a72
CW
1784 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1785 if (IS_ERR(page)) {
1786 i915_gem_purge(dev_priv, page_count);
1787 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1788 }
1789 if (IS_ERR(page)) {
1790 /* We've tried hard to allocate the memory by reaping
1791 * our own buffer, now let the real VM do its job and
1792 * go down in flames if truly OOM.
1793 */
d7c3b937 1794 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
6c085a72
CW
1795 gfp |= __GFP_IO | __GFP_WAIT;
1796
1797 i915_gem_shrink_all(dev_priv);
1798 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1799 if (IS_ERR(page))
1800 goto err_pages;
1801
d7c3b937 1802 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72
CW
1803 gfp &= ~(__GFP_IO | __GFP_WAIT);
1804 }
e5281ccd 1805
9da3da66 1806 sg_set_page(sg, page, PAGE_SIZE, 0);
e5281ccd
CW
1807 }
1808
74ce6b6c
CW
1809 obj->pages = st;
1810
6dacfd2f 1811 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1812 i915_gem_object_do_bit_17_swizzle(obj);
1813
1814 return 0;
1815
1816err_pages:
9da3da66
CW
1817 for_each_sg(st->sgl, sg, i, page_count)
1818 page_cache_release(sg_page(sg));
1819 sg_free_table(st);
1820 kfree(st);
e5281ccd 1821 return PTR_ERR(page);
673a394b
EA
1822}
1823
37e680a1
CW
1824/* Ensure that the associated pages are gathered from the backing storage
1825 * and pinned into our object. i915_gem_object_get_pages() may be called
1826 * multiple times before they are released by a single call to
1827 * i915_gem_object_put_pages() - once the pages are no longer referenced
1828 * either as a result of memory pressure (reaping pages under the shrinker)
1829 * or as the object is itself released.
1830 */
1831int
1832i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1833{
1834 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1835 const struct drm_i915_gem_object_ops *ops = obj->ops;
1836 int ret;
1837
2f745ad3 1838 if (obj->pages)
37e680a1
CW
1839 return 0;
1840
a5570178
CW
1841 BUG_ON(obj->pages_pin_count);
1842
37e680a1
CW
1843 ret = ops->get_pages(obj);
1844 if (ret)
1845 return ret;
1846
1847 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1848 return 0;
673a394b
EA
1849}
1850
54cf91dc 1851void
05394f39 1852i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1853 struct intel_ring_buffer *ring)
673a394b 1854{
05394f39 1855 struct drm_device *dev = obj->base.dev;
69dc4987 1856 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1857 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1858
852835f3 1859 BUG_ON(ring == NULL);
05394f39 1860 obj->ring = ring;
673a394b
EA
1861
1862 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1863 if (!obj->active) {
1864 drm_gem_object_reference(&obj->base);
1865 obj->active = 1;
673a394b 1866 }
e35a41de 1867
673a394b 1868 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1869 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1870 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1871
0201f1ec 1872 obj->last_read_seqno = seqno;
caea7476 1873
7dd49065 1874 if (obj->fenced_gpu_access) {
caea7476 1875 obj->last_fenced_seqno = seqno;
caea7476 1876
7dd49065
CW
1877 /* Bump MRU to take account of the delayed flush */
1878 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1879 struct drm_i915_fence_reg *reg;
1880
1881 reg = &dev_priv->fence_regs[obj->fence_reg];
1882 list_move_tail(&reg->lru_list,
1883 &dev_priv->mm.fence_list);
1884 }
caea7476
CW
1885 }
1886}
1887
1888static void
caea7476 1889i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1890{
05394f39 1891 struct drm_device *dev = obj->base.dev;
caea7476 1892 struct drm_i915_private *dev_priv = dev->dev_private;
ce44b0ea 1893
65ce3027 1894 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1895 BUG_ON(!obj->active);
caea7476 1896
f047e395
CW
1897 if (obj->pin_count) /* are we a framebuffer? */
1898 intel_mark_fb_idle(obj);
caea7476 1899
1b50247a 1900 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476 1901
65ce3027 1902 list_del_init(&obj->ring_list);
caea7476
CW
1903 obj->ring = NULL;
1904
65ce3027
CW
1905 obj->last_read_seqno = 0;
1906 obj->last_write_seqno = 0;
1907 obj->base.write_domain = 0;
1908
1909 obj->last_fenced_seqno = 0;
caea7476 1910 obj->fenced_gpu_access = false;
caea7476
CW
1911
1912 obj->active = 0;
1913 drm_gem_object_unreference(&obj->base);
1914
1915 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1916}
673a394b 1917
9d773091
CW
1918static int
1919i915_gem_handle_seqno_wrap(struct drm_device *dev)
53d227f2 1920{
9d773091
CW
1921 struct drm_i915_private *dev_priv = dev->dev_private;
1922 struct intel_ring_buffer *ring;
1923 int ret, i, j;
53d227f2 1924
9d773091
CW
1925 /* The hardware uses various monotonic 32-bit counters, if we
1926 * detect that they will wraparound we need to idle the GPU
1927 * and reset those counters.
1928 */
1929 ret = 0;
1930 for_each_ring(ring, dev_priv, i) {
1931 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1932 ret |= ring->sync_seqno[j] != 0;
1933 }
1934 if (ret == 0)
1935 return ret;
1936
1937 ret = i915_gpu_idle(dev);
1938 if (ret)
1939 return ret;
1940
1941 i915_gem_retire_requests(dev);
1942 for_each_ring(ring, dev_priv, i) {
1943 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1944 ring->sync_seqno[j] = 0;
1945 }
53d227f2 1946
9d773091 1947 return 0;
53d227f2
DV
1948}
1949
9d773091
CW
1950int
1951i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 1952{
9d773091
CW
1953 struct drm_i915_private *dev_priv = dev->dev_private;
1954
1955 /* reserve 0 for non-seqno */
1956 if (dev_priv->next_seqno == 0) {
1957 int ret = i915_gem_handle_seqno_wrap(dev);
1958 if (ret)
1959 return ret;
1960
1961 dev_priv->next_seqno = 1;
1962 }
53d227f2 1963
9d773091
CW
1964 *seqno = dev_priv->next_seqno++;
1965 return 0;
53d227f2
DV
1966}
1967
3cce469c 1968int
db53a302 1969i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1970 struct drm_file *file,
acb868d3 1971 u32 *out_seqno)
673a394b 1972{
db53a302 1973 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 1974 struct drm_i915_gem_request *request;
a71d8d94 1975 u32 request_ring_position;
673a394b 1976 int was_empty;
3cce469c
CW
1977 int ret;
1978
cc889e0f
DV
1979 /*
1980 * Emit any outstanding flushes - execbuf can fail to emit the flush
1981 * after having emitted the batchbuffer command. Hence we need to fix
1982 * things up similar to emitting the lazy request. The difference here
1983 * is that the flush _must_ happen before the next request, no matter
1984 * what.
1985 */
a7b9761d
CW
1986 ret = intel_ring_flush_all_caches(ring);
1987 if (ret)
1988 return ret;
cc889e0f 1989
acb868d3
CW
1990 request = kmalloc(sizeof(*request), GFP_KERNEL);
1991 if (request == NULL)
1992 return -ENOMEM;
cc889e0f 1993
673a394b 1994
a71d8d94
CW
1995 /* Record the position of the start of the request so that
1996 * should we detect the updated seqno part-way through the
1997 * GPU processing the request, we never over-estimate the
1998 * position of the head.
1999 */
2000 request_ring_position = intel_ring_get_tail(ring);
2001
9d773091 2002 ret = ring->add_request(ring);
3bb73aba
CW
2003 if (ret) {
2004 kfree(request);
2005 return ret;
2006 }
673a394b 2007
9d773091 2008 request->seqno = intel_ring_get_seqno(ring);
852835f3 2009 request->ring = ring;
a71d8d94 2010 request->tail = request_ring_position;
673a394b 2011 request->emitted_jiffies = jiffies;
852835f3
ZN
2012 was_empty = list_empty(&ring->request_list);
2013 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2014 request->file_priv = NULL;
852835f3 2015
db53a302
CW
2016 if (file) {
2017 struct drm_i915_file_private *file_priv = file->driver_priv;
2018
1c25595f 2019 spin_lock(&file_priv->mm.lock);
f787a5f5 2020 request->file_priv = file_priv;
b962442e 2021 list_add_tail(&request->client_list,
f787a5f5 2022 &file_priv->mm.request_list);
1c25595f 2023 spin_unlock(&file_priv->mm.lock);
b962442e 2024 }
673a394b 2025
9d773091 2026 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2027 ring->outstanding_lazy_request = 0;
db53a302 2028
f65d9421 2029 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
2030 if (i915_enable_hangcheck) {
2031 mod_timer(&dev_priv->hangcheck_timer,
cecc21fe 2032 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3e0dc6b0 2033 }
f047e395 2034 if (was_empty) {
b3b079db 2035 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2036 &dev_priv->mm.retire_work,
2037 round_jiffies_up_relative(HZ));
f047e395
CW
2038 intel_mark_busy(dev_priv->dev);
2039 }
f65d9421 2040 }
cc889e0f 2041
acb868d3 2042 if (out_seqno)
9d773091 2043 *out_seqno = request->seqno;
3cce469c 2044 return 0;
673a394b
EA
2045}
2046
f787a5f5
CW
2047static inline void
2048i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2049{
1c25595f 2050 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2051
1c25595f
CW
2052 if (!file_priv)
2053 return;
1c5d22f7 2054
1c25595f 2055 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2056 if (request->file_priv) {
2057 list_del(&request->client_list);
2058 request->file_priv = NULL;
2059 }
1c25595f 2060 spin_unlock(&file_priv->mm.lock);
673a394b 2061}
673a394b 2062
dfaae392
CW
2063static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2064 struct intel_ring_buffer *ring)
9375e446 2065{
dfaae392
CW
2066 while (!list_empty(&ring->request_list)) {
2067 struct drm_i915_gem_request *request;
673a394b 2068
dfaae392
CW
2069 request = list_first_entry(&ring->request_list,
2070 struct drm_i915_gem_request,
2071 list);
de151cf6 2072
dfaae392 2073 list_del(&request->list);
f787a5f5 2074 i915_gem_request_remove_from_client(request);
dfaae392
CW
2075 kfree(request);
2076 }
673a394b 2077
dfaae392 2078 while (!list_empty(&ring->active_list)) {
05394f39 2079 struct drm_i915_gem_object *obj;
9375e446 2080
05394f39
CW
2081 obj = list_first_entry(&ring->active_list,
2082 struct drm_i915_gem_object,
2083 ring_list);
9375e446 2084
05394f39 2085 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2086 }
2087}
2088
312817a3
CW
2089static void i915_gem_reset_fences(struct drm_device *dev)
2090{
2091 struct drm_i915_private *dev_priv = dev->dev_private;
2092 int i;
2093
4b9de737 2094 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2095 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2096
ada726c7 2097 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 2098
ada726c7
CW
2099 if (reg->obj)
2100 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2101
ada726c7
CW
2102 reg->pin_count = 0;
2103 reg->obj = NULL;
2104 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2105 }
ada726c7
CW
2106
2107 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2108}
2109
069efc1d 2110void i915_gem_reset(struct drm_device *dev)
673a394b 2111{
77f01230 2112 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2113 struct drm_i915_gem_object *obj;
b4519513 2114 struct intel_ring_buffer *ring;
1ec14ad3 2115 int i;
673a394b 2116
b4519513
CW
2117 for_each_ring(ring, dev_priv, i)
2118 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2119
dfaae392
CW
2120 /* Move everything out of the GPU domains to ensure we do any
2121 * necessary invalidation upon reuse.
2122 */
05394f39 2123 list_for_each_entry(obj,
77f01230 2124 &dev_priv->mm.inactive_list,
69dc4987 2125 mm_list)
77f01230 2126 {
05394f39 2127 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2128 }
069efc1d
CW
2129
2130 /* The fence registers are invalidated so clear them out */
312817a3 2131 i915_gem_reset_fences(dev);
673a394b
EA
2132}
2133
2134/**
2135 * This function clears the request list as sequence numbers are passed.
2136 */
a71d8d94 2137void
db53a302 2138i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2139{
673a394b
EA
2140 uint32_t seqno;
2141
db53a302 2142 if (list_empty(&ring->request_list))
6c0594a3
KW
2143 return;
2144
db53a302 2145 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2146
b2eadbc8 2147 seqno = ring->get_seqno(ring, true);
1ec14ad3 2148
852835f3 2149 while (!list_empty(&ring->request_list)) {
673a394b 2150 struct drm_i915_gem_request *request;
673a394b 2151
852835f3 2152 request = list_first_entry(&ring->request_list,
673a394b
EA
2153 struct drm_i915_gem_request,
2154 list);
673a394b 2155
dfaae392 2156 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2157 break;
2158
db53a302 2159 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2160 /* We know the GPU must have read the request to have
2161 * sent us the seqno + interrupt, so use the position
2162 * of tail of the request to update the last known position
2163 * of the GPU head.
2164 */
2165 ring->last_retired_head = request->tail;
b84d5f0c
CW
2166
2167 list_del(&request->list);
f787a5f5 2168 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
2169 kfree(request);
2170 }
673a394b 2171
b84d5f0c
CW
2172 /* Move any buffers on the active list that are no longer referenced
2173 * by the ringbuffer to the flushing/inactive lists as appropriate.
2174 */
2175 while (!list_empty(&ring->active_list)) {
05394f39 2176 struct drm_i915_gem_object *obj;
b84d5f0c 2177
0206e353 2178 obj = list_first_entry(&ring->active_list,
05394f39
CW
2179 struct drm_i915_gem_object,
2180 ring_list);
673a394b 2181
0201f1ec 2182 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2183 break;
b84d5f0c 2184
65ce3027 2185 i915_gem_object_move_to_inactive(obj);
673a394b 2186 }
9d34e5db 2187
db53a302
CW
2188 if (unlikely(ring->trace_irq_seqno &&
2189 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2190 ring->irq_put(ring);
db53a302 2191 ring->trace_irq_seqno = 0;
9d34e5db 2192 }
23bc5982 2193
db53a302 2194 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2195}
2196
b09a1fec
CW
2197void
2198i915_gem_retire_requests(struct drm_device *dev)
2199{
2200 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2201 struct intel_ring_buffer *ring;
1ec14ad3 2202 int i;
b09a1fec 2203
b4519513
CW
2204 for_each_ring(ring, dev_priv, i)
2205 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2206}
2207
75ef9da2 2208static void
673a394b
EA
2209i915_gem_retire_work_handler(struct work_struct *work)
2210{
2211 drm_i915_private_t *dev_priv;
2212 struct drm_device *dev;
b4519513 2213 struct intel_ring_buffer *ring;
0a58705b
CW
2214 bool idle;
2215 int i;
673a394b
EA
2216
2217 dev_priv = container_of(work, drm_i915_private_t,
2218 mm.retire_work.work);
2219 dev = dev_priv->dev;
2220
891b48cf
CW
2221 /* Come back later if the device is busy... */
2222 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2223 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2224 round_jiffies_up_relative(HZ));
891b48cf
CW
2225 return;
2226 }
673a394b 2227
b09a1fec 2228 i915_gem_retire_requests(dev);
673a394b 2229
0a58705b
CW
2230 /* Send a periodic flush down the ring so we don't hold onto GEM
2231 * objects indefinitely.
673a394b 2232 */
0a58705b 2233 idle = true;
b4519513 2234 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
2235 if (ring->gpu_caches_dirty)
2236 i915_add_request(ring, NULL, NULL);
0a58705b
CW
2237
2238 idle &= list_empty(&ring->request_list);
673a394b
EA
2239 }
2240
0a58705b 2241 if (!dev_priv->mm.suspended && !idle)
bcb45086
CW
2242 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2243 round_jiffies_up_relative(HZ));
f047e395
CW
2244 if (idle)
2245 intel_mark_idle(dev);
0a58705b 2246
673a394b 2247 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2248}
2249
30dfebf3
DV
2250/**
2251 * Ensures that an object will eventually get non-busy by flushing any required
2252 * write domains, emitting any outstanding lazy request and retiring and
2253 * completed requests.
2254 */
2255static int
2256i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2257{
2258 int ret;
2259
2260 if (obj->active) {
0201f1ec 2261 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2262 if (ret)
2263 return ret;
2264
30dfebf3
DV
2265 i915_gem_retire_requests_ring(obj->ring);
2266 }
2267
2268 return 0;
2269}
2270
23ba4fd0
BW
2271/**
2272 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2273 * @DRM_IOCTL_ARGS: standard ioctl arguments
2274 *
2275 * Returns 0 if successful, else an error is returned with the remaining time in
2276 * the timeout parameter.
2277 * -ETIME: object is still busy after timeout
2278 * -ERESTARTSYS: signal interrupted the wait
2279 * -ENONENT: object doesn't exist
2280 * Also possible, but rare:
2281 * -EAGAIN: GPU wedged
2282 * -ENOMEM: damn
2283 * -ENODEV: Internal IRQ fail
2284 * -E?: The add request failed
2285 *
2286 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2287 * non-zero timeout parameter the wait ioctl will wait for the given number of
2288 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2289 * without holding struct_mutex the object may become re-busied before this
2290 * function completes. A similar but shorter * race condition exists in the busy
2291 * ioctl
2292 */
2293int
2294i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2295{
2296 struct drm_i915_gem_wait *args = data;
2297 struct drm_i915_gem_object *obj;
2298 struct intel_ring_buffer *ring = NULL;
eac1f14f 2299 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2300 u32 seqno = 0;
2301 int ret = 0;
2302
eac1f14f
BW
2303 if (args->timeout_ns >= 0) {
2304 timeout_stack = ns_to_timespec(args->timeout_ns);
2305 timeout = &timeout_stack;
2306 }
23ba4fd0
BW
2307
2308 ret = i915_mutex_lock_interruptible(dev);
2309 if (ret)
2310 return ret;
2311
2312 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2313 if (&obj->base == NULL) {
2314 mutex_unlock(&dev->struct_mutex);
2315 return -ENOENT;
2316 }
2317
30dfebf3
DV
2318 /* Need to make sure the object gets inactive eventually. */
2319 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2320 if (ret)
2321 goto out;
2322
2323 if (obj->active) {
0201f1ec 2324 seqno = obj->last_read_seqno;
23ba4fd0
BW
2325 ring = obj->ring;
2326 }
2327
2328 if (seqno == 0)
2329 goto out;
2330
23ba4fd0
BW
2331 /* Do this after OLR check to make sure we make forward progress polling
2332 * on this IOCTL with a 0 timeout (like busy ioctl)
2333 */
2334 if (!args->timeout_ns) {
2335 ret = -ETIME;
2336 goto out;
2337 }
2338
2339 drm_gem_object_unreference(&obj->base);
2340 mutex_unlock(&dev->struct_mutex);
2341
eac1f14f
BW
2342 ret = __wait_seqno(ring, seqno, true, timeout);
2343 if (timeout) {
2344 WARN_ON(!timespec_valid(timeout));
2345 args->timeout_ns = timespec_to_ns(timeout);
2346 }
23ba4fd0
BW
2347 return ret;
2348
2349out:
2350 drm_gem_object_unreference(&obj->base);
2351 mutex_unlock(&dev->struct_mutex);
2352 return ret;
2353}
2354
5816d648
BW
2355/**
2356 * i915_gem_object_sync - sync an object to a ring.
2357 *
2358 * @obj: object which may be in use on another ring.
2359 * @to: ring we wish to use the object on. May be NULL.
2360 *
2361 * This code is meant to abstract object synchronization with the GPU.
2362 * Calling with NULL implies synchronizing the object with the CPU
2363 * rather than a particular GPU ring.
2364 *
2365 * Returns 0 if successful, else propagates up the lower layer error.
2366 */
2911a35b
BW
2367int
2368i915_gem_object_sync(struct drm_i915_gem_object *obj,
2369 struct intel_ring_buffer *to)
2370{
2371 struct intel_ring_buffer *from = obj->ring;
2372 u32 seqno;
2373 int ret, idx;
2374
2375 if (from == NULL || to == from)
2376 return 0;
2377
5816d648 2378 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2379 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2380
2381 idx = intel_ring_sync_index(from, to);
2382
0201f1ec 2383 seqno = obj->last_read_seqno;
2911a35b
BW
2384 if (seqno <= from->sync_seqno[idx])
2385 return 0;
2386
b4aca010
BW
2387 ret = i915_gem_check_olr(obj->ring, seqno);
2388 if (ret)
2389 return ret;
2911a35b 2390
1500f7ea 2391 ret = to->sync_to(to, from, seqno);
e3a5a225 2392 if (!ret)
7b01e260
MK
2393 /* We use last_read_seqno because sync_to()
2394 * might have just caused seqno wrap under
2395 * the radar.
2396 */
2397 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2398
e3a5a225 2399 return ret;
2911a35b
BW
2400}
2401
b5ffc9bc
CW
2402static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2403{
2404 u32 old_write_domain, old_read_domains;
2405
b5ffc9bc
CW
2406 /* Act a barrier for all accesses through the GTT */
2407 mb();
2408
2409 /* Force a pagefault for domain tracking on next user access */
2410 i915_gem_release_mmap(obj);
2411
b97c3d9c
KP
2412 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2413 return;
2414
b5ffc9bc
CW
2415 old_read_domains = obj->base.read_domains;
2416 old_write_domain = obj->base.write_domain;
2417
2418 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2419 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2420
2421 trace_i915_gem_object_change_domain(obj,
2422 old_read_domains,
2423 old_write_domain);
2424}
2425
673a394b
EA
2426/**
2427 * Unbinds an object from the GTT aperture.
2428 */
0f973f27 2429int
05394f39 2430i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2431{
7bddb01f 2432 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2433 int ret = 0;
2434
05394f39 2435 if (obj->gtt_space == NULL)
673a394b
EA
2436 return 0;
2437
31d8d651
CW
2438 if (obj->pin_count)
2439 return -EBUSY;
673a394b 2440
c4670ad0
CW
2441 BUG_ON(obj->pages == NULL);
2442
a8198eea 2443 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2444 if (ret)
a8198eea
CW
2445 return ret;
2446 /* Continue on if we fail due to EIO, the GPU is hung so we
2447 * should be safe and we need to cleanup or else we might
2448 * cause memory corruption through use-after-free.
2449 */
2450
b5ffc9bc 2451 i915_gem_object_finish_gtt(obj);
5323fd04 2452
96b47b65 2453 /* release the fence reg _after_ flushing */
d9e86c0e 2454 ret = i915_gem_object_put_fence(obj);
1488fc08 2455 if (ret)
d9e86c0e 2456 return ret;
96b47b65 2457
db53a302
CW
2458 trace_i915_gem_object_unbind(obj);
2459
74898d7e
DV
2460 if (obj->has_global_gtt_mapping)
2461 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2462 if (obj->has_aliasing_ppgtt_mapping) {
2463 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2464 obj->has_aliasing_ppgtt_mapping = 0;
2465 }
74163907 2466 i915_gem_gtt_finish_object(obj);
7bddb01f 2467
6c085a72
CW
2468 list_del(&obj->mm_list);
2469 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2470 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2471 obj->map_and_fenceable = true;
673a394b 2472
05394f39
CW
2473 drm_mm_put_block(obj->gtt_space);
2474 obj->gtt_space = NULL;
2475 obj->gtt_offset = 0;
673a394b 2476
88241785 2477 return 0;
54cf91dc
CW
2478}
2479
b2da9fe5 2480int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2481{
2482 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2483 struct intel_ring_buffer *ring;
1ec14ad3 2484 int ret, i;
4df2faf4 2485
4df2faf4 2486 /* Flush everything onto the inactive list. */
b4519513 2487 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2488 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2489 if (ret)
2490 return ret;
2491
3e960501 2492 ret = intel_ring_idle(ring);
1ec14ad3
CW
2493 if (ret)
2494 return ret;
2495 }
4df2faf4 2496
8a1a49f9 2497 return 0;
4df2faf4
DV
2498}
2499
9ce079e4
CW
2500static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2501 struct drm_i915_gem_object *obj)
4e901fdc 2502{
4e901fdc 2503 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2504 uint64_t val;
2505
9ce079e4
CW
2506 if (obj) {
2507 u32 size = obj->gtt_space->size;
4e901fdc 2508
9ce079e4
CW
2509 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2510 0xfffff000) << 32;
2511 val |= obj->gtt_offset & 0xfffff000;
2512 val |= (uint64_t)((obj->stride / 128) - 1) <<
2513 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2514
9ce079e4
CW
2515 if (obj->tiling_mode == I915_TILING_Y)
2516 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2517 val |= I965_FENCE_REG_VALID;
2518 } else
2519 val = 0;
c6642782 2520
9ce079e4
CW
2521 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2522 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2523}
2524
9ce079e4
CW
2525static void i965_write_fence_reg(struct drm_device *dev, int reg,
2526 struct drm_i915_gem_object *obj)
de151cf6 2527{
de151cf6 2528 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2529 uint64_t val;
2530
9ce079e4
CW
2531 if (obj) {
2532 u32 size = obj->gtt_space->size;
de151cf6 2533
9ce079e4
CW
2534 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2535 0xfffff000) << 32;
2536 val |= obj->gtt_offset & 0xfffff000;
2537 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2538 if (obj->tiling_mode == I915_TILING_Y)
2539 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2540 val |= I965_FENCE_REG_VALID;
2541 } else
2542 val = 0;
c6642782 2543
9ce079e4
CW
2544 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2545 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2546}
2547
9ce079e4
CW
2548static void i915_write_fence_reg(struct drm_device *dev, int reg,
2549 struct drm_i915_gem_object *obj)
de151cf6 2550{
de151cf6 2551 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2552 u32 val;
de151cf6 2553
9ce079e4
CW
2554 if (obj) {
2555 u32 size = obj->gtt_space->size;
2556 int pitch_val;
2557 int tile_width;
c6642782 2558
9ce079e4
CW
2559 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2560 (size & -size) != size ||
2561 (obj->gtt_offset & (size - 1)),
2562 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2563 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2564
9ce079e4
CW
2565 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2566 tile_width = 128;
2567 else
2568 tile_width = 512;
2569
2570 /* Note: pitch better be a power of two tile widths */
2571 pitch_val = obj->stride / tile_width;
2572 pitch_val = ffs(pitch_val) - 1;
2573
2574 val = obj->gtt_offset;
2575 if (obj->tiling_mode == I915_TILING_Y)
2576 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2577 val |= I915_FENCE_SIZE_BITS(size);
2578 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2579 val |= I830_FENCE_REG_VALID;
2580 } else
2581 val = 0;
2582
2583 if (reg < 8)
2584 reg = FENCE_REG_830_0 + reg * 4;
2585 else
2586 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2587
2588 I915_WRITE(reg, val);
2589 POSTING_READ(reg);
de151cf6
JB
2590}
2591
9ce079e4
CW
2592static void i830_write_fence_reg(struct drm_device *dev, int reg,
2593 struct drm_i915_gem_object *obj)
de151cf6 2594{
de151cf6 2595 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2596 uint32_t val;
de151cf6 2597
9ce079e4
CW
2598 if (obj) {
2599 u32 size = obj->gtt_space->size;
2600 uint32_t pitch_val;
de151cf6 2601
9ce079e4
CW
2602 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2603 (size & -size) != size ||
2604 (obj->gtt_offset & (size - 1)),
2605 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2606 obj->gtt_offset, size);
e76a16de 2607
9ce079e4
CW
2608 pitch_val = obj->stride / 128;
2609 pitch_val = ffs(pitch_val) - 1;
de151cf6 2610
9ce079e4
CW
2611 val = obj->gtt_offset;
2612 if (obj->tiling_mode == I915_TILING_Y)
2613 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2614 val |= I830_FENCE_SIZE_BITS(size);
2615 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2616 val |= I830_FENCE_REG_VALID;
2617 } else
2618 val = 0;
c6642782 2619
9ce079e4
CW
2620 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2621 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2622}
2623
2624static void i915_gem_write_fence(struct drm_device *dev, int reg,
2625 struct drm_i915_gem_object *obj)
2626{
2627 switch (INTEL_INFO(dev)->gen) {
2628 case 7:
2629 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2630 case 5:
2631 case 4: i965_write_fence_reg(dev, reg, obj); break;
2632 case 3: i915_write_fence_reg(dev, reg, obj); break;
2633 case 2: i830_write_fence_reg(dev, reg, obj); break;
2634 default: break;
2635 }
de151cf6
JB
2636}
2637
61050808
CW
2638static inline int fence_number(struct drm_i915_private *dev_priv,
2639 struct drm_i915_fence_reg *fence)
2640{
2641 return fence - dev_priv->fence_regs;
2642}
2643
2644static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2645 struct drm_i915_fence_reg *fence,
2646 bool enable)
2647{
2648 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2649 int reg = fence_number(dev_priv, fence);
2650
2651 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2652
2653 if (enable) {
2654 obj->fence_reg = reg;
2655 fence->obj = obj;
2656 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2657 } else {
2658 obj->fence_reg = I915_FENCE_REG_NONE;
2659 fence->obj = NULL;
2660 list_del_init(&fence->lru_list);
2661 }
2662}
2663
d9e86c0e 2664static int
a360bb1a 2665i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2666{
1c293ea3 2667 if (obj->last_fenced_seqno) {
86d5bc37 2668 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2669 if (ret)
2670 return ret;
d9e86c0e
CW
2671
2672 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2673 }
2674
63256ec5
CW
2675 /* Ensure that all CPU reads are completed before installing a fence
2676 * and all writes before removing the fence.
2677 */
2678 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2679 mb();
2680
86d5bc37 2681 obj->fenced_gpu_access = false;
d9e86c0e
CW
2682 return 0;
2683}
2684
2685int
2686i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2687{
61050808 2688 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2689 int ret;
2690
a360bb1a 2691 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2692 if (ret)
2693 return ret;
2694
61050808
CW
2695 if (obj->fence_reg == I915_FENCE_REG_NONE)
2696 return 0;
d9e86c0e 2697
61050808
CW
2698 i915_gem_object_update_fence(obj,
2699 &dev_priv->fence_regs[obj->fence_reg],
2700 false);
2701 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2702
2703 return 0;
2704}
2705
2706static struct drm_i915_fence_reg *
a360bb1a 2707i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2708{
ae3db24a 2709 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2710 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2711 int i;
ae3db24a
DV
2712
2713 /* First try to find a free reg */
d9e86c0e 2714 avail = NULL;
ae3db24a
DV
2715 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2716 reg = &dev_priv->fence_regs[i];
2717 if (!reg->obj)
d9e86c0e 2718 return reg;
ae3db24a 2719
1690e1eb 2720 if (!reg->pin_count)
d9e86c0e 2721 avail = reg;
ae3db24a
DV
2722 }
2723
d9e86c0e
CW
2724 if (avail == NULL)
2725 return NULL;
ae3db24a
DV
2726
2727 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2728 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2729 if (reg->pin_count)
ae3db24a
DV
2730 continue;
2731
8fe301ad 2732 return reg;
ae3db24a
DV
2733 }
2734
8fe301ad 2735 return NULL;
ae3db24a
DV
2736}
2737
de151cf6 2738/**
9a5a53b3 2739 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2740 * @obj: object to map through a fence reg
2741 *
2742 * When mapping objects through the GTT, userspace wants to be able to write
2743 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2744 * This function walks the fence regs looking for a free one for @obj,
2745 * stealing one if it can't find any.
2746 *
2747 * It then sets up the reg based on the object's properties: address, pitch
2748 * and tiling format.
9a5a53b3
CW
2749 *
2750 * For an untiled surface, this removes any existing fence.
de151cf6 2751 */
8c4b8c3f 2752int
06d98131 2753i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2754{
05394f39 2755 struct drm_device *dev = obj->base.dev;
79e53945 2756 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2757 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2758 struct drm_i915_fence_reg *reg;
ae3db24a 2759 int ret;
de151cf6 2760
14415745
CW
2761 /* Have we updated the tiling parameters upon the object and so
2762 * will need to serialise the write to the associated fence register?
2763 */
5d82e3e6 2764 if (obj->fence_dirty) {
14415745
CW
2765 ret = i915_gem_object_flush_fence(obj);
2766 if (ret)
2767 return ret;
2768 }
9a5a53b3 2769
d9e86c0e 2770 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2771 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2772 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2773 if (!obj->fence_dirty) {
14415745
CW
2774 list_move_tail(&reg->lru_list,
2775 &dev_priv->mm.fence_list);
2776 return 0;
2777 }
2778 } else if (enable) {
2779 reg = i915_find_fence_reg(dev);
2780 if (reg == NULL)
2781 return -EDEADLK;
d9e86c0e 2782
14415745
CW
2783 if (reg->obj) {
2784 struct drm_i915_gem_object *old = reg->obj;
2785
2786 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2787 if (ret)
2788 return ret;
2789
14415745 2790 i915_gem_object_fence_lost(old);
29c5a587 2791 }
14415745 2792 } else
a09ba7fa 2793 return 0;
a09ba7fa 2794
14415745 2795 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2796 obj->fence_dirty = false;
14415745 2797
9ce079e4 2798 return 0;
de151cf6
JB
2799}
2800
42d6ab48
CW
2801static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2802 struct drm_mm_node *gtt_space,
2803 unsigned long cache_level)
2804{
2805 struct drm_mm_node *other;
2806
2807 /* On non-LLC machines we have to be careful when putting differing
2808 * types of snoopable memory together to avoid the prefetcher
2809 * crossing memory domains and dieing.
2810 */
2811 if (HAS_LLC(dev))
2812 return true;
2813
2814 if (gtt_space == NULL)
2815 return true;
2816
2817 if (list_empty(&gtt_space->node_list))
2818 return true;
2819
2820 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2821 if (other->allocated && !other->hole_follows && other->color != cache_level)
2822 return false;
2823
2824 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2825 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2826 return false;
2827
2828 return true;
2829}
2830
2831static void i915_gem_verify_gtt(struct drm_device *dev)
2832{
2833#if WATCH_GTT
2834 struct drm_i915_private *dev_priv = dev->dev_private;
2835 struct drm_i915_gem_object *obj;
2836 int err = 0;
2837
2838 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2839 if (obj->gtt_space == NULL) {
2840 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2841 err++;
2842 continue;
2843 }
2844
2845 if (obj->cache_level != obj->gtt_space->color) {
2846 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2847 obj->gtt_space->start,
2848 obj->gtt_space->start + obj->gtt_space->size,
2849 obj->cache_level,
2850 obj->gtt_space->color);
2851 err++;
2852 continue;
2853 }
2854
2855 if (!i915_gem_valid_gtt_space(dev,
2856 obj->gtt_space,
2857 obj->cache_level)) {
2858 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2859 obj->gtt_space->start,
2860 obj->gtt_space->start + obj->gtt_space->size,
2861 obj->cache_level);
2862 err++;
2863 continue;
2864 }
2865 }
2866
2867 WARN_ON(err);
2868#endif
2869}
2870
673a394b
EA
2871/**
2872 * Finds free space in the GTT aperture and binds the object there.
2873 */
2874static int
05394f39 2875i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2876 unsigned alignment,
86a1ee26
CW
2877 bool map_and_fenceable,
2878 bool nonblocking)
673a394b 2879{
05394f39 2880 struct drm_device *dev = obj->base.dev;
673a394b 2881 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2882 struct drm_mm_node *free_space;
5e783301 2883 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2884 bool mappable, fenceable;
07f73f69 2885 int ret;
673a394b 2886
05394f39 2887 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2888 DRM_ERROR("Attempting to bind a purgeable object\n");
2889 return -EINVAL;
2890 }
2891
e28f8711
CW
2892 fence_size = i915_gem_get_gtt_size(dev,
2893 obj->base.size,
2894 obj->tiling_mode);
2895 fence_alignment = i915_gem_get_gtt_alignment(dev,
2896 obj->base.size,
2897 obj->tiling_mode);
2898 unfenced_alignment =
2899 i915_gem_get_unfenced_gtt_alignment(dev,
2900 obj->base.size,
2901 obj->tiling_mode);
a00b10c3 2902
673a394b 2903 if (alignment == 0)
5e783301
DV
2904 alignment = map_and_fenceable ? fence_alignment :
2905 unfenced_alignment;
75e9e915 2906 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2907 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2908 return -EINVAL;
2909 }
2910
05394f39 2911 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2912
654fc607
CW
2913 /* If the object is bigger than the entire aperture, reject it early
2914 * before evicting everything in a vain attempt to find space.
2915 */
05394f39 2916 if (obj->base.size >
75e9e915 2917 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2918 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2919 return -E2BIG;
2920 }
2921
37e680a1 2922 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
2923 if (ret)
2924 return ret;
2925
fbdda6fb
CW
2926 i915_gem_object_pin_pages(obj);
2927
673a394b 2928 search_free:
75e9e915 2929 if (map_and_fenceable)
8742267a
CW
2930 free_space = drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2931 size, alignment, obj->cache_level,
2932 0, dev_priv->mm.gtt_mappable_end,
2933 false);
920afa77 2934 else
42d6ab48
CW
2935 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2936 size, alignment, obj->cache_level,
2937 false);
920afa77
DV
2938
2939 if (free_space != NULL) {
75e9e915 2940 if (map_and_fenceable)
8742267a 2941 free_space =
920afa77 2942 drm_mm_get_block_range_generic(free_space,
42d6ab48 2943 size, alignment, obj->cache_level,
6b9d89b4 2944 0, dev_priv->mm.gtt_mappable_end,
42d6ab48 2945 false);
920afa77 2946 else
8742267a 2947 free_space =
42d6ab48
CW
2948 drm_mm_get_block_generic(free_space,
2949 size, alignment, obj->cache_level,
2950 false);
920afa77 2951 }
8742267a 2952 if (free_space == NULL) {
75e9e915 2953 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 2954 obj->cache_level,
86a1ee26
CW
2955 map_and_fenceable,
2956 nonblocking);
fbdda6fb
CW
2957 if (ret) {
2958 i915_gem_object_unpin_pages(obj);
673a394b 2959 return ret;
fbdda6fb 2960 }
9731129c 2961
673a394b
EA
2962 goto search_free;
2963 }
42d6ab48 2964 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
8742267a 2965 free_space,
42d6ab48 2966 obj->cache_level))) {
fbdda6fb 2967 i915_gem_object_unpin_pages(obj);
8742267a 2968 drm_mm_put_block(free_space);
42d6ab48 2969 return -EINVAL;
673a394b
EA
2970 }
2971
74163907 2972 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2973 if (ret) {
fbdda6fb 2974 i915_gem_object_unpin_pages(obj);
8742267a 2975 drm_mm_put_block(free_space);
6c085a72 2976 return ret;
673a394b 2977 }
673a394b 2978
6c085a72 2979 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 2980 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2981
8742267a
CW
2982 obj->gtt_space = free_space;
2983 obj->gtt_offset = free_space->start;
1c5d22f7 2984
75e9e915 2985 fenceable =
8742267a
CW
2986 free_space->size == fence_size &&
2987 (free_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2988
75e9e915 2989 mappable =
05394f39 2990 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2991
05394f39 2992 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2993
fbdda6fb 2994 i915_gem_object_unpin_pages(obj);
db53a302 2995 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 2996 i915_gem_verify_gtt(dev);
673a394b
EA
2997 return 0;
2998}
2999
3000void
05394f39 3001i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3002{
673a394b
EA
3003 /* If we don't have a page list set up, then we're not pinned
3004 * to GPU, and we can ignore the cache flush because it'll happen
3005 * again at bind time.
3006 */
05394f39 3007 if (obj->pages == NULL)
673a394b
EA
3008 return;
3009
9c23f7fc
CW
3010 /* If the GPU is snooping the contents of the CPU cache,
3011 * we do not need to manually clear the CPU cache lines. However,
3012 * the caches are only snooped when the render cache is
3013 * flushed/invalidated. As we always have to emit invalidations
3014 * and flushes when moving into and out of the RENDER domain, correct
3015 * snooping behaviour occurs naturally as the result of our domain
3016 * tracking.
3017 */
3018 if (obj->cache_level != I915_CACHE_NONE)
3019 return;
3020
1c5d22f7 3021 trace_i915_gem_object_clflush(obj);
cfa16a0d 3022
9da3da66 3023 drm_clflush_sg(obj->pages);
e47c68e9
EA
3024}
3025
3026/** Flushes the GTT write domain for the object if it's dirty. */
3027static void
05394f39 3028i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3029{
1c5d22f7
CW
3030 uint32_t old_write_domain;
3031
05394f39 3032 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3033 return;
3034
63256ec5 3035 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3036 * to it immediately go to main memory as far as we know, so there's
3037 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3038 *
3039 * However, we do have to enforce the order so that all writes through
3040 * the GTT land before any writes to the device, such as updates to
3041 * the GATT itself.
e47c68e9 3042 */
63256ec5
CW
3043 wmb();
3044
05394f39
CW
3045 old_write_domain = obj->base.write_domain;
3046 obj->base.write_domain = 0;
1c5d22f7
CW
3047
3048 trace_i915_gem_object_change_domain(obj,
05394f39 3049 obj->base.read_domains,
1c5d22f7 3050 old_write_domain);
e47c68e9
EA
3051}
3052
3053/** Flushes the CPU write domain for the object if it's dirty. */
3054static void
05394f39 3055i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3056{
1c5d22f7 3057 uint32_t old_write_domain;
e47c68e9 3058
05394f39 3059 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3060 return;
3061
3062 i915_gem_clflush_object(obj);
e76e9aeb 3063 i915_gem_chipset_flush(obj->base.dev);
05394f39
CW
3064 old_write_domain = obj->base.write_domain;
3065 obj->base.write_domain = 0;
1c5d22f7
CW
3066
3067 trace_i915_gem_object_change_domain(obj,
05394f39 3068 obj->base.read_domains,
1c5d22f7 3069 old_write_domain);
e47c68e9
EA
3070}
3071
2ef7eeaa
EA
3072/**
3073 * Moves a single object to the GTT read, and possibly write domain.
3074 *
3075 * This function returns when the move is complete, including waiting on
3076 * flushes to occur.
3077 */
79e53945 3078int
2021746e 3079i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3080{
8325a09d 3081 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3082 uint32_t old_write_domain, old_read_domains;
e47c68e9 3083 int ret;
2ef7eeaa 3084
02354392 3085 /* Not valid to be called on unbound objects. */
05394f39 3086 if (obj->gtt_space == NULL)
02354392
EA
3087 return -EINVAL;
3088
8d7e3de1
CW
3089 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3090 return 0;
3091
0201f1ec 3092 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3093 if (ret)
3094 return ret;
3095
7213342d 3096 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3097
05394f39
CW
3098 old_write_domain = obj->base.write_domain;
3099 old_read_domains = obj->base.read_domains;
1c5d22f7 3100
e47c68e9
EA
3101 /* It should now be out of any other write domains, and we can update
3102 * the domain values for our changes.
3103 */
05394f39
CW
3104 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3105 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3106 if (write) {
05394f39
CW
3107 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3108 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3109 obj->dirty = 1;
2ef7eeaa
EA
3110 }
3111
1c5d22f7
CW
3112 trace_i915_gem_object_change_domain(obj,
3113 old_read_domains,
3114 old_write_domain);
3115
8325a09d
CW
3116 /* And bump the LRU for this access */
3117 if (i915_gem_object_is_inactive(obj))
3118 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3119
e47c68e9
EA
3120 return 0;
3121}
3122
e4ffd173
CW
3123int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3124 enum i915_cache_level cache_level)
3125{
7bddb01f
DV
3126 struct drm_device *dev = obj->base.dev;
3127 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3128 int ret;
3129
3130 if (obj->cache_level == cache_level)
3131 return 0;
3132
3133 if (obj->pin_count) {
3134 DRM_DEBUG("can not change the cache level of pinned objects\n");
3135 return -EBUSY;
3136 }
3137
42d6ab48
CW
3138 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3139 ret = i915_gem_object_unbind(obj);
3140 if (ret)
3141 return ret;
3142 }
3143
e4ffd173
CW
3144 if (obj->gtt_space) {
3145 ret = i915_gem_object_finish_gpu(obj);
3146 if (ret)
3147 return ret;
3148
3149 i915_gem_object_finish_gtt(obj);
3150
3151 /* Before SandyBridge, you could not use tiling or fence
3152 * registers with snooped memory, so relinquish any fences
3153 * currently pointing to our region in the aperture.
3154 */
42d6ab48 3155 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3156 ret = i915_gem_object_put_fence(obj);
3157 if (ret)
3158 return ret;
3159 }
3160
74898d7e
DV
3161 if (obj->has_global_gtt_mapping)
3162 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3163 if (obj->has_aliasing_ppgtt_mapping)
3164 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3165 obj, cache_level);
42d6ab48
CW
3166
3167 obj->gtt_space->color = cache_level;
e4ffd173
CW
3168 }
3169
3170 if (cache_level == I915_CACHE_NONE) {
3171 u32 old_read_domains, old_write_domain;
3172
3173 /* If we're coming from LLC cached, then we haven't
3174 * actually been tracking whether the data is in the
3175 * CPU cache or not, since we only allow one bit set
3176 * in obj->write_domain and have been skipping the clflushes.
3177 * Just set it to the CPU cache for now.
3178 */
3179 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3180 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3181
3182 old_read_domains = obj->base.read_domains;
3183 old_write_domain = obj->base.write_domain;
3184
3185 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3186 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3187
3188 trace_i915_gem_object_change_domain(obj,
3189 old_read_domains,
3190 old_write_domain);
3191 }
3192
3193 obj->cache_level = cache_level;
42d6ab48 3194 i915_gem_verify_gtt(dev);
e4ffd173
CW
3195 return 0;
3196}
3197
199adf40
BW
3198int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3199 struct drm_file *file)
e6994aee 3200{
199adf40 3201 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3202 struct drm_i915_gem_object *obj;
3203 int ret;
3204
3205 ret = i915_mutex_lock_interruptible(dev);
3206 if (ret)
3207 return ret;
3208
3209 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3210 if (&obj->base == NULL) {
3211 ret = -ENOENT;
3212 goto unlock;
3213 }
3214
199adf40 3215 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3216
3217 drm_gem_object_unreference(&obj->base);
3218unlock:
3219 mutex_unlock(&dev->struct_mutex);
3220 return ret;
3221}
3222
199adf40
BW
3223int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3224 struct drm_file *file)
e6994aee 3225{
199adf40 3226 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3227 struct drm_i915_gem_object *obj;
3228 enum i915_cache_level level;
3229 int ret;
3230
199adf40
BW
3231 switch (args->caching) {
3232 case I915_CACHING_NONE:
e6994aee
CW
3233 level = I915_CACHE_NONE;
3234 break;
199adf40 3235 case I915_CACHING_CACHED:
e6994aee
CW
3236 level = I915_CACHE_LLC;
3237 break;
3238 default:
3239 return -EINVAL;
3240 }
3241
3bc2913e
BW
3242 ret = i915_mutex_lock_interruptible(dev);
3243 if (ret)
3244 return ret;
3245
e6994aee
CW
3246 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3247 if (&obj->base == NULL) {
3248 ret = -ENOENT;
3249 goto unlock;
3250 }
3251
3252 ret = i915_gem_object_set_cache_level(obj, level);
3253
3254 drm_gem_object_unreference(&obj->base);
3255unlock:
3256 mutex_unlock(&dev->struct_mutex);
3257 return ret;
3258}
3259
b9241ea3 3260/*
2da3b9b9
CW
3261 * Prepare buffer for display plane (scanout, cursors, etc).
3262 * Can be called from an uninterruptible phase (modesetting) and allows
3263 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3264 */
3265int
2da3b9b9
CW
3266i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3267 u32 alignment,
919926ae 3268 struct intel_ring_buffer *pipelined)
b9241ea3 3269{
2da3b9b9 3270 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3271 int ret;
3272
0be73284 3273 if (pipelined != obj->ring) {
2911a35b
BW
3274 ret = i915_gem_object_sync(obj, pipelined);
3275 if (ret)
b9241ea3
ZW
3276 return ret;
3277 }
3278
a7ef0640
EA
3279 /* The display engine is not coherent with the LLC cache on gen6. As
3280 * a result, we make sure that the pinning that is about to occur is
3281 * done with uncached PTEs. This is lowest common denominator for all
3282 * chipsets.
3283 *
3284 * However for gen6+, we could do better by using the GFDT bit instead
3285 * of uncaching, which would allow us to flush all the LLC-cached data
3286 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3287 */
3288 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3289 if (ret)
3290 return ret;
3291
2da3b9b9
CW
3292 /* As the user may map the buffer once pinned in the display plane
3293 * (e.g. libkms for the bootup splash), we have to ensure that we
3294 * always use map_and_fenceable for all scanout buffers.
3295 */
86a1ee26 3296 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3297 if (ret)
3298 return ret;
3299
b118c1e3
CW
3300 i915_gem_object_flush_cpu_write_domain(obj);
3301
2da3b9b9 3302 old_write_domain = obj->base.write_domain;
05394f39 3303 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3304
3305 /* It should now be out of any other write domains, and we can update
3306 * the domain values for our changes.
3307 */
e5f1d962 3308 obj->base.write_domain = 0;
05394f39 3309 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3310
3311 trace_i915_gem_object_change_domain(obj,
3312 old_read_domains,
2da3b9b9 3313 old_write_domain);
b9241ea3
ZW
3314
3315 return 0;
3316}
3317
85345517 3318int
a8198eea 3319i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3320{
88241785
CW
3321 int ret;
3322
a8198eea 3323 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3324 return 0;
3325
0201f1ec 3326 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3327 if (ret)
3328 return ret;
3329
a8198eea
CW
3330 /* Ensure that we invalidate the GPU's caches and TLBs. */
3331 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3332 return 0;
85345517
CW
3333}
3334
e47c68e9
EA
3335/**
3336 * Moves a single object to the CPU read, and possibly write domain.
3337 *
3338 * This function returns when the move is complete, including waiting on
3339 * flushes to occur.
3340 */
dabdfe02 3341int
919926ae 3342i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3343{
1c5d22f7 3344 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3345 int ret;
3346
8d7e3de1
CW
3347 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3348 return 0;
3349
0201f1ec 3350 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3351 if (ret)
3352 return ret;
3353
e47c68e9 3354 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3355
05394f39
CW
3356 old_write_domain = obj->base.write_domain;
3357 old_read_domains = obj->base.read_domains;
1c5d22f7 3358
e47c68e9 3359 /* Flush the CPU cache if it's still invalid. */
05394f39 3360 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3361 i915_gem_clflush_object(obj);
2ef7eeaa 3362
05394f39 3363 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3364 }
3365
3366 /* It should now be out of any other write domains, and we can update
3367 * the domain values for our changes.
3368 */
05394f39 3369 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3370
3371 /* If we're writing through the CPU, then the GPU read domains will
3372 * need to be invalidated at next use.
3373 */
3374 if (write) {
05394f39
CW
3375 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3376 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3377 }
2ef7eeaa 3378
1c5d22f7
CW
3379 trace_i915_gem_object_change_domain(obj,
3380 old_read_domains,
3381 old_write_domain);
3382
2ef7eeaa
EA
3383 return 0;
3384}
3385
673a394b
EA
3386/* Throttle our rendering by waiting until the ring has completed our requests
3387 * emitted over 20 msec ago.
3388 *
b962442e
EA
3389 * Note that if we were to use the current jiffies each time around the loop,
3390 * we wouldn't escape the function with any frames outstanding if the time to
3391 * render a frame was over 20ms.
3392 *
673a394b
EA
3393 * This should get us reasonable parallelism between CPU and GPU but also
3394 * relatively low latency when blocking on a particular request to finish.
3395 */
40a5f0de 3396static int
f787a5f5 3397i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3398{
f787a5f5
CW
3399 struct drm_i915_private *dev_priv = dev->dev_private;
3400 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3401 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3402 struct drm_i915_gem_request *request;
3403 struct intel_ring_buffer *ring = NULL;
3404 u32 seqno = 0;
3405 int ret;
93533c29 3406
e110e8d6
CW
3407 if (atomic_read(&dev_priv->mm.wedged))
3408 return -EIO;
3409
1c25595f 3410 spin_lock(&file_priv->mm.lock);
f787a5f5 3411 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3412 if (time_after_eq(request->emitted_jiffies, recent_enough))
3413 break;
40a5f0de 3414
f787a5f5
CW
3415 ring = request->ring;
3416 seqno = request->seqno;
b962442e 3417 }
1c25595f 3418 spin_unlock(&file_priv->mm.lock);
40a5f0de 3419
f787a5f5
CW
3420 if (seqno == 0)
3421 return 0;
2bc43b5c 3422
5c81fe85 3423 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3424 if (ret == 0)
3425 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3426
3427 return ret;
3428}
3429
673a394b 3430int
05394f39
CW
3431i915_gem_object_pin(struct drm_i915_gem_object *obj,
3432 uint32_t alignment,
86a1ee26
CW
3433 bool map_and_fenceable,
3434 bool nonblocking)
673a394b 3435{
673a394b
EA
3436 int ret;
3437
7e81a42e
CW
3438 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3439 return -EBUSY;
ac0c6b5a 3440
05394f39
CW
3441 if (obj->gtt_space != NULL) {
3442 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3443 (map_and_fenceable && !obj->map_and_fenceable)) {
3444 WARN(obj->pin_count,
ae7d49d8 3445 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3446 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3447 " obj->map_and_fenceable=%d\n",
05394f39 3448 obj->gtt_offset, alignment,
75e9e915 3449 map_and_fenceable,
05394f39 3450 obj->map_and_fenceable);
ac0c6b5a
CW
3451 ret = i915_gem_object_unbind(obj);
3452 if (ret)
3453 return ret;
3454 }
3455 }
3456
05394f39 3457 if (obj->gtt_space == NULL) {
8742267a
CW
3458 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3459
a00b10c3 3460 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3461 map_and_fenceable,
3462 nonblocking);
9731129c 3463 if (ret)
673a394b 3464 return ret;
8742267a
CW
3465
3466 if (!dev_priv->mm.aliasing_ppgtt)
3467 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3468 }
76446cac 3469
74898d7e
DV
3470 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3471 i915_gem_gtt_bind_object(obj, obj->cache_level);
3472
1b50247a 3473 obj->pin_count++;
6299f992 3474 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3475
3476 return 0;
3477}
3478
3479void
05394f39 3480i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3481{
05394f39
CW
3482 BUG_ON(obj->pin_count == 0);
3483 BUG_ON(obj->gtt_space == NULL);
673a394b 3484
1b50247a 3485 if (--obj->pin_count == 0)
6299f992 3486 obj->pin_mappable = false;
673a394b
EA
3487}
3488
3489int
3490i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3491 struct drm_file *file)
673a394b
EA
3492{
3493 struct drm_i915_gem_pin *args = data;
05394f39 3494 struct drm_i915_gem_object *obj;
673a394b
EA
3495 int ret;
3496
1d7cfea1
CW
3497 ret = i915_mutex_lock_interruptible(dev);
3498 if (ret)
3499 return ret;
673a394b 3500
05394f39 3501 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3502 if (&obj->base == NULL) {
1d7cfea1
CW
3503 ret = -ENOENT;
3504 goto unlock;
673a394b 3505 }
673a394b 3506
05394f39 3507 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3508 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3509 ret = -EINVAL;
3510 goto out;
3ef94daa
CW
3511 }
3512
05394f39 3513 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3514 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3515 args->handle);
1d7cfea1
CW
3516 ret = -EINVAL;
3517 goto out;
79e53945
JB
3518 }
3519
05394f39
CW
3520 obj->user_pin_count++;
3521 obj->pin_filp = file;
3522 if (obj->user_pin_count == 1) {
86a1ee26 3523 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3524 if (ret)
3525 goto out;
673a394b
EA
3526 }
3527
3528 /* XXX - flush the CPU caches for pinned objects
3529 * as the X server doesn't manage domains yet
3530 */
e47c68e9 3531 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3532 args->offset = obj->gtt_offset;
1d7cfea1 3533out:
05394f39 3534 drm_gem_object_unreference(&obj->base);
1d7cfea1 3535unlock:
673a394b 3536 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3537 return ret;
673a394b
EA
3538}
3539
3540int
3541i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3542 struct drm_file *file)
673a394b
EA
3543{
3544 struct drm_i915_gem_pin *args = data;
05394f39 3545 struct drm_i915_gem_object *obj;
76c1dec1 3546 int ret;
673a394b 3547
1d7cfea1
CW
3548 ret = i915_mutex_lock_interruptible(dev);
3549 if (ret)
3550 return ret;
673a394b 3551
05394f39 3552 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3553 if (&obj->base == NULL) {
1d7cfea1
CW
3554 ret = -ENOENT;
3555 goto unlock;
673a394b 3556 }
76c1dec1 3557
05394f39 3558 if (obj->pin_filp != file) {
79e53945
JB
3559 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3560 args->handle);
1d7cfea1
CW
3561 ret = -EINVAL;
3562 goto out;
79e53945 3563 }
05394f39
CW
3564 obj->user_pin_count--;
3565 if (obj->user_pin_count == 0) {
3566 obj->pin_filp = NULL;
79e53945
JB
3567 i915_gem_object_unpin(obj);
3568 }
673a394b 3569
1d7cfea1 3570out:
05394f39 3571 drm_gem_object_unreference(&obj->base);
1d7cfea1 3572unlock:
673a394b 3573 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3574 return ret;
673a394b
EA
3575}
3576
3577int
3578i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3579 struct drm_file *file)
673a394b
EA
3580{
3581 struct drm_i915_gem_busy *args = data;
05394f39 3582 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3583 int ret;
3584
76c1dec1 3585 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3586 if (ret)
76c1dec1 3587 return ret;
673a394b 3588
05394f39 3589 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3590 if (&obj->base == NULL) {
1d7cfea1
CW
3591 ret = -ENOENT;
3592 goto unlock;
673a394b 3593 }
d1b851fc 3594
0be555b6
CW
3595 /* Count all active objects as busy, even if they are currently not used
3596 * by the gpu. Users of this interface expect objects to eventually
3597 * become non-busy without any further actions, therefore emit any
3598 * necessary flushes here.
c4de0a5d 3599 */
30dfebf3 3600 ret = i915_gem_object_flush_active(obj);
0be555b6 3601
30dfebf3 3602 args->busy = obj->active;
e9808edd
CW
3603 if (obj->ring) {
3604 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3605 args->busy |= intel_ring_flag(obj->ring) << 16;
3606 }
673a394b 3607
05394f39 3608 drm_gem_object_unreference(&obj->base);
1d7cfea1 3609unlock:
673a394b 3610 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3611 return ret;
673a394b
EA
3612}
3613
3614int
3615i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3616 struct drm_file *file_priv)
3617{
0206e353 3618 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3619}
3620
3ef94daa
CW
3621int
3622i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3623 struct drm_file *file_priv)
3624{
3625 struct drm_i915_gem_madvise *args = data;
05394f39 3626 struct drm_i915_gem_object *obj;
76c1dec1 3627 int ret;
3ef94daa
CW
3628
3629 switch (args->madv) {
3630 case I915_MADV_DONTNEED:
3631 case I915_MADV_WILLNEED:
3632 break;
3633 default:
3634 return -EINVAL;
3635 }
3636
1d7cfea1
CW
3637 ret = i915_mutex_lock_interruptible(dev);
3638 if (ret)
3639 return ret;
3640
05394f39 3641 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3642 if (&obj->base == NULL) {
1d7cfea1
CW
3643 ret = -ENOENT;
3644 goto unlock;
3ef94daa 3645 }
3ef94daa 3646
05394f39 3647 if (obj->pin_count) {
1d7cfea1
CW
3648 ret = -EINVAL;
3649 goto out;
3ef94daa
CW
3650 }
3651
05394f39
CW
3652 if (obj->madv != __I915_MADV_PURGED)
3653 obj->madv = args->madv;
3ef94daa 3654
6c085a72
CW
3655 /* if the object is no longer attached, discard its backing storage */
3656 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3657 i915_gem_object_truncate(obj);
3658
05394f39 3659 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3660
1d7cfea1 3661out:
05394f39 3662 drm_gem_object_unreference(&obj->base);
1d7cfea1 3663unlock:
3ef94daa 3664 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3665 return ret;
3ef94daa
CW
3666}
3667
37e680a1
CW
3668void i915_gem_object_init(struct drm_i915_gem_object *obj,
3669 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3670{
0327d6ba
CW
3671 INIT_LIST_HEAD(&obj->mm_list);
3672 INIT_LIST_HEAD(&obj->gtt_list);
3673 INIT_LIST_HEAD(&obj->ring_list);
3674 INIT_LIST_HEAD(&obj->exec_list);
3675
37e680a1
CW
3676 obj->ops = ops;
3677
0327d6ba
CW
3678 obj->fence_reg = I915_FENCE_REG_NONE;
3679 obj->madv = I915_MADV_WILLNEED;
3680 /* Avoid an unnecessary call to unbind on the first bind. */
3681 obj->map_and_fenceable = true;
3682
3683 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3684}
3685
37e680a1
CW
3686static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3687 .get_pages = i915_gem_object_get_pages_gtt,
3688 .put_pages = i915_gem_object_put_pages_gtt,
3689};
3690
05394f39
CW
3691struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3692 size_t size)
ac52bc56 3693{
c397b908 3694 struct drm_i915_gem_object *obj;
5949eac4 3695 struct address_space *mapping;
bed1ea95 3696 u32 mask;
ac52bc56 3697
c397b908
DV
3698 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3699 if (obj == NULL)
3700 return NULL;
673a394b 3701
c397b908
DV
3702 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3703 kfree(obj);
3704 return NULL;
3705 }
673a394b 3706
bed1ea95
CW
3707 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3708 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3709 /* 965gm cannot relocate objects above 4GiB. */
3710 mask &= ~__GFP_HIGHMEM;
3711 mask |= __GFP_DMA32;
3712 }
3713
5949eac4 3714 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3715 mapping_set_gfp_mask(mapping, mask);
5949eac4 3716
37e680a1 3717 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3718
c397b908
DV
3719 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3720 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3721
3d29b842
ED
3722 if (HAS_LLC(dev)) {
3723 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3724 * cache) for about a 10% performance improvement
3725 * compared to uncached. Graphics requests other than
3726 * display scanout are coherent with the CPU in
3727 * accessing this cache. This means in this mode we
3728 * don't need to clflush on the CPU side, and on the
3729 * GPU side we only need to flush internal caches to
3730 * get data visible to the CPU.
3731 *
3732 * However, we maintain the display planes as UC, and so
3733 * need to rebind when first used as such.
3734 */
3735 obj->cache_level = I915_CACHE_LLC;
3736 } else
3737 obj->cache_level = I915_CACHE_NONE;
3738
05394f39 3739 return obj;
c397b908
DV
3740}
3741
3742int i915_gem_init_object(struct drm_gem_object *obj)
3743{
3744 BUG();
de151cf6 3745
673a394b
EA
3746 return 0;
3747}
3748
1488fc08 3749void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3750{
1488fc08 3751 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3752 struct drm_device *dev = obj->base.dev;
be72615b 3753 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3754
26e12f89
CW
3755 trace_i915_gem_object_destroy(obj);
3756
1488fc08
CW
3757 if (obj->phys_obj)
3758 i915_gem_detach_phys_object(dev, obj);
3759
3760 obj->pin_count = 0;
3761 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3762 bool was_interruptible;
3763
3764 was_interruptible = dev_priv->mm.interruptible;
3765 dev_priv->mm.interruptible = false;
3766
3767 WARN_ON(i915_gem_object_unbind(obj));
3768
3769 dev_priv->mm.interruptible = was_interruptible;
3770 }
3771
a5570178 3772 obj->pages_pin_count = 0;
37e680a1 3773 i915_gem_object_put_pages(obj);
d8cb5086 3774 i915_gem_object_free_mmap_offset(obj);
de151cf6 3775
9da3da66
CW
3776 BUG_ON(obj->pages);
3777
2f745ad3
CW
3778 if (obj->base.import_attach)
3779 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 3780
05394f39
CW
3781 drm_gem_object_release(&obj->base);
3782 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3783
05394f39
CW
3784 kfree(obj->bit_17);
3785 kfree(obj);
673a394b
EA
3786}
3787
29105ccc
CW
3788int
3789i915_gem_idle(struct drm_device *dev)
3790{
3791 drm_i915_private_t *dev_priv = dev->dev_private;
3792 int ret;
28dfe52a 3793
29105ccc 3794 mutex_lock(&dev->struct_mutex);
1c5d22f7 3795
87acb0a5 3796 if (dev_priv->mm.suspended) {
29105ccc
CW
3797 mutex_unlock(&dev->struct_mutex);
3798 return 0;
28dfe52a
EA
3799 }
3800
b2da9fe5 3801 ret = i915_gpu_idle(dev);
6dbe2772
KP
3802 if (ret) {
3803 mutex_unlock(&dev->struct_mutex);
673a394b 3804 return ret;
6dbe2772 3805 }
b2da9fe5 3806 i915_gem_retire_requests(dev);
673a394b 3807
29105ccc 3808 /* Under UMS, be paranoid and evict. */
a39d7efc 3809 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3810 i915_gem_evict_everything(dev);
29105ccc 3811
312817a3
CW
3812 i915_gem_reset_fences(dev);
3813
29105ccc
CW
3814 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3815 * We need to replace this with a semaphore, or something.
3816 * And not confound mm.suspended!
3817 */
3818 dev_priv->mm.suspended = 1;
bc0c7f14 3819 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3820
3821 i915_kernel_lost_context(dev);
6dbe2772 3822 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3823
6dbe2772
KP
3824 mutex_unlock(&dev->struct_mutex);
3825
29105ccc
CW
3826 /* Cancel the retire work handler, which should be idle now. */
3827 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3828
673a394b
EA
3829 return 0;
3830}
3831
b9524a1e
BW
3832void i915_gem_l3_remap(struct drm_device *dev)
3833{
3834 drm_i915_private_t *dev_priv = dev->dev_private;
3835 u32 misccpctl;
3836 int i;
3837
3838 if (!IS_IVYBRIDGE(dev))
3839 return;
3840
a4da4fa4 3841 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
3842 return;
3843
3844 misccpctl = I915_READ(GEN7_MISCCPCTL);
3845 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3846 POSTING_READ(GEN7_MISCCPCTL);
3847
3848 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3849 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 3850 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
3851 DRM_DEBUG("0x%x was already programmed to %x\n",
3852 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 3853 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 3854 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 3855 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
3856 }
3857
3858 /* Make sure all the writes land before disabling dop clock gating */
3859 POSTING_READ(GEN7_L3LOG_BASE);
3860
3861 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3862}
3863
f691e2f4
DV
3864void i915_gem_init_swizzling(struct drm_device *dev)
3865{
3866 drm_i915_private_t *dev_priv = dev->dev_private;
3867
11782b02 3868 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3869 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3870 return;
3871
3872 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3873 DISP_TILE_SURFACE_SWIZZLING);
3874
11782b02
DV
3875 if (IS_GEN5(dev))
3876 return;
3877
f691e2f4
DV
3878 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3879 if (IS_GEN6(dev))
6b26c86d 3880 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3881 else
6b26c86d 3882 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3883}
e21af88d 3884
67b1b571
CW
3885static bool
3886intel_enable_blt(struct drm_device *dev)
3887{
3888 if (!HAS_BLT(dev))
3889 return false;
3890
3891 /* The blitter was dysfunctional on early prototypes */
3892 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3893 DRM_INFO("BLT not supported on this pre-production hardware;"
3894 " graphics performance will be degraded.\n");
3895 return false;
3896 }
3897
3898 return true;
3899}
3900
8187a2b7 3901int
f691e2f4 3902i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3903{
3904 drm_i915_private_t *dev_priv = dev->dev_private;
3905 int ret;
68f95ba9 3906
e76e9aeb 3907 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
8ecd1a66
DV
3908 return -EIO;
3909
eda2d7f5
RV
3910 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3911 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3912
b9524a1e
BW
3913 i915_gem_l3_remap(dev);
3914
f691e2f4
DV
3915 i915_gem_init_swizzling(dev);
3916
5c1143bb 3917 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3918 if (ret)
b6913e4b 3919 return ret;
68f95ba9
CW
3920
3921 if (HAS_BSD(dev)) {
5c1143bb 3922 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3923 if (ret)
3924 goto cleanup_render_ring;
d1b851fc 3925 }
68f95ba9 3926
67b1b571 3927 if (intel_enable_blt(dev)) {
549f7365
CW
3928 ret = intel_init_blt_ring_buffer(dev);
3929 if (ret)
3930 goto cleanup_bsd_ring;
3931 }
3932
6f392d54
CW
3933 dev_priv->next_seqno = 1;
3934
254f965c
BW
3935 /*
3936 * XXX: There was some w/a described somewhere suggesting loading
3937 * contexts before PPGTT.
3938 */
3939 i915_gem_context_init(dev);
e21af88d
DV
3940 i915_gem_init_ppgtt(dev);
3941
68f95ba9
CW
3942 return 0;
3943
549f7365 3944cleanup_bsd_ring:
1ec14ad3 3945 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3946cleanup_render_ring:
1ec14ad3 3947 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3948 return ret;
3949}
3950
1070a42b
CW
3951static bool
3952intel_enable_ppgtt(struct drm_device *dev)
3953{
3954 if (i915_enable_ppgtt >= 0)
3955 return i915_enable_ppgtt;
3956
3957#ifdef CONFIG_INTEL_IOMMU
3958 /* Disable ppgtt on SNB if VT-d is on. */
3959 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3960 return false;
3961#endif
3962
3963 return true;
3964}
3965
3966int i915_gem_init(struct drm_device *dev)
3967{
3968 struct drm_i915_private *dev_priv = dev->dev_private;
3969 unsigned long gtt_size, mappable_size;
3970 int ret;
3971
3972 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3973 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3974
3975 mutex_lock(&dev->struct_mutex);
3976 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3977 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3978 * aperture accordingly when using aliasing ppgtt. */
3979 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3980
3981 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3982
3983 ret = i915_gem_init_aliasing_ppgtt(dev);
3984 if (ret) {
3985 mutex_unlock(&dev->struct_mutex);
3986 return ret;
3987 }
3988 } else {
3989 /* Let GEM Manage all of the aperture.
3990 *
3991 * However, leave one page at the end still bound to the scratch
3992 * page. There are a number of places where the hardware
3993 * apparently prefetches past the end of the object, and we've
3994 * seen multiple hangs with the GPU head pointer stuck in a
3995 * batchbuffer bound at the last page of the aperture. One page
3996 * should be enough to keep any prefetching inside of the
3997 * aperture.
3998 */
3999 i915_gem_init_global_gtt(dev, 0, mappable_size,
4000 gtt_size);
4001 }
4002
4003 ret = i915_gem_init_hw(dev);
4004 mutex_unlock(&dev->struct_mutex);
4005 if (ret) {
4006 i915_gem_cleanup_aliasing_ppgtt(dev);
4007 return ret;
4008 }
4009
53ca26ca
DV
4010 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4011 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4012 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4013 return 0;
4014}
4015
8187a2b7
ZN
4016void
4017i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4018{
4019 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4020 struct intel_ring_buffer *ring;
1ec14ad3 4021 int i;
8187a2b7 4022
b4519513
CW
4023 for_each_ring(ring, dev_priv, i)
4024 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4025}
4026
673a394b
EA
4027int
4028i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4029 struct drm_file *file_priv)
4030{
4031 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4032 int ret;
673a394b 4033
79e53945
JB
4034 if (drm_core_check_feature(dev, DRIVER_MODESET))
4035 return 0;
4036
ba1234d1 4037 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4038 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4039 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4040 }
4041
673a394b 4042 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4043 dev_priv->mm.suspended = 0;
4044
f691e2f4 4045 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4046 if (ret != 0) {
4047 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4048 return ret;
d816f6ac 4049 }
9bb2d6f9 4050
69dc4987 4051 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4052 mutex_unlock(&dev->struct_mutex);
dbb19d30 4053
5f35308b
CW
4054 ret = drm_irq_install(dev);
4055 if (ret)
4056 goto cleanup_ringbuffer;
dbb19d30 4057
673a394b 4058 return 0;
5f35308b
CW
4059
4060cleanup_ringbuffer:
4061 mutex_lock(&dev->struct_mutex);
4062 i915_gem_cleanup_ringbuffer(dev);
4063 dev_priv->mm.suspended = 1;
4064 mutex_unlock(&dev->struct_mutex);
4065
4066 return ret;
673a394b
EA
4067}
4068
4069int
4070i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4071 struct drm_file *file_priv)
4072{
79e53945
JB
4073 if (drm_core_check_feature(dev, DRIVER_MODESET))
4074 return 0;
4075
dbb19d30 4076 drm_irq_uninstall(dev);
e6890f6f 4077 return i915_gem_idle(dev);
673a394b
EA
4078}
4079
4080void
4081i915_gem_lastclose(struct drm_device *dev)
4082{
4083 int ret;
673a394b 4084
e806b495
EA
4085 if (drm_core_check_feature(dev, DRIVER_MODESET))
4086 return;
4087
6dbe2772
KP
4088 ret = i915_gem_idle(dev);
4089 if (ret)
4090 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4091}
4092
64193406
CW
4093static void
4094init_ring_lists(struct intel_ring_buffer *ring)
4095{
4096 INIT_LIST_HEAD(&ring->active_list);
4097 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4098}
4099
673a394b
EA
4100void
4101i915_gem_load(struct drm_device *dev)
4102{
b5aa8a0f 4103 int i;
673a394b
EA
4104 drm_i915_private_t *dev_priv = dev->dev_private;
4105
69dc4987 4106 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4107 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4108 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4109 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4110 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4111 for (i = 0; i < I915_NUM_RINGS; i++)
4112 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4113 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4114 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4115 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4116 i915_gem_retire_work_handler);
30dbf0c0 4117 init_completion(&dev_priv->error_completion);
31169714 4118
94400120
DA
4119 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4120 if (IS_GEN3(dev)) {
50743298
DV
4121 I915_WRITE(MI_ARB_STATE,
4122 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4123 }
4124
72bfa19c
CW
4125 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4126
de151cf6 4127 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4128 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4129 dev_priv->fence_reg_start = 3;
de151cf6 4130
a6c45cf0 4131 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4132 dev_priv->num_fence_regs = 16;
4133 else
4134 dev_priv->num_fence_regs = 8;
4135
b5aa8a0f 4136 /* Initialize fence registers to zero */
ada726c7 4137 i915_gem_reset_fences(dev);
10ed13e4 4138
673a394b 4139 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4140 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4141
ce453d81
CW
4142 dev_priv->mm.interruptible = true;
4143
17250b71
CW
4144 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4145 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4146 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4147}
71acb5eb
DA
4148
4149/*
4150 * Create a physically contiguous memory object for this object
4151 * e.g. for cursor + overlay regs
4152 */
995b6762
CW
4153static int i915_gem_init_phys_object(struct drm_device *dev,
4154 int id, int size, int align)
71acb5eb
DA
4155{
4156 drm_i915_private_t *dev_priv = dev->dev_private;
4157 struct drm_i915_gem_phys_object *phys_obj;
4158 int ret;
4159
4160 if (dev_priv->mm.phys_objs[id - 1] || !size)
4161 return 0;
4162
9a298b2a 4163 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4164 if (!phys_obj)
4165 return -ENOMEM;
4166
4167 phys_obj->id = id;
4168
6eeefaf3 4169 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4170 if (!phys_obj->handle) {
4171 ret = -ENOMEM;
4172 goto kfree_obj;
4173 }
4174#ifdef CONFIG_X86
4175 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4176#endif
4177
4178 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4179
4180 return 0;
4181kfree_obj:
9a298b2a 4182 kfree(phys_obj);
71acb5eb
DA
4183 return ret;
4184}
4185
995b6762 4186static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4187{
4188 drm_i915_private_t *dev_priv = dev->dev_private;
4189 struct drm_i915_gem_phys_object *phys_obj;
4190
4191 if (!dev_priv->mm.phys_objs[id - 1])
4192 return;
4193
4194 phys_obj = dev_priv->mm.phys_objs[id - 1];
4195 if (phys_obj->cur_obj) {
4196 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4197 }
4198
4199#ifdef CONFIG_X86
4200 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4201#endif
4202 drm_pci_free(dev, phys_obj->handle);
4203 kfree(phys_obj);
4204 dev_priv->mm.phys_objs[id - 1] = NULL;
4205}
4206
4207void i915_gem_free_all_phys_object(struct drm_device *dev)
4208{
4209 int i;
4210
260883c8 4211 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4212 i915_gem_free_phys_object(dev, i);
4213}
4214
4215void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4216 struct drm_i915_gem_object *obj)
71acb5eb 4217{
05394f39 4218 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4219 char *vaddr;
71acb5eb 4220 int i;
71acb5eb
DA
4221 int page_count;
4222
05394f39 4223 if (!obj->phys_obj)
71acb5eb 4224 return;
05394f39 4225 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4226
05394f39 4227 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4228 for (i = 0; i < page_count; i++) {
5949eac4 4229 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4230 if (!IS_ERR(page)) {
4231 char *dst = kmap_atomic(page);
4232 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4233 kunmap_atomic(dst);
4234
4235 drm_clflush_pages(&page, 1);
4236
4237 set_page_dirty(page);
4238 mark_page_accessed(page);
4239 page_cache_release(page);
4240 }
71acb5eb 4241 }
e76e9aeb 4242 i915_gem_chipset_flush(dev);
d78b47b9 4243
05394f39
CW
4244 obj->phys_obj->cur_obj = NULL;
4245 obj->phys_obj = NULL;
71acb5eb
DA
4246}
4247
4248int
4249i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4250 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4251 int id,
4252 int align)
71acb5eb 4253{
05394f39 4254 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4255 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4256 int ret = 0;
4257 int page_count;
4258 int i;
4259
4260 if (id > I915_MAX_PHYS_OBJECT)
4261 return -EINVAL;
4262
05394f39
CW
4263 if (obj->phys_obj) {
4264 if (obj->phys_obj->id == id)
71acb5eb
DA
4265 return 0;
4266 i915_gem_detach_phys_object(dev, obj);
4267 }
4268
71acb5eb
DA
4269 /* create a new object */
4270 if (!dev_priv->mm.phys_objs[id - 1]) {
4271 ret = i915_gem_init_phys_object(dev, id,
05394f39 4272 obj->base.size, align);
71acb5eb 4273 if (ret) {
05394f39
CW
4274 DRM_ERROR("failed to init phys object %d size: %zu\n",
4275 id, obj->base.size);
e5281ccd 4276 return ret;
71acb5eb
DA
4277 }
4278 }
4279
4280 /* bind to the object */
05394f39
CW
4281 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4282 obj->phys_obj->cur_obj = obj;
71acb5eb 4283
05394f39 4284 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4285
4286 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4287 struct page *page;
4288 char *dst, *src;
4289
5949eac4 4290 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4291 if (IS_ERR(page))
4292 return PTR_ERR(page);
71acb5eb 4293
ff75b9bc 4294 src = kmap_atomic(page);
05394f39 4295 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4296 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4297 kunmap_atomic(src);
71acb5eb 4298
e5281ccd
CW
4299 mark_page_accessed(page);
4300 page_cache_release(page);
4301 }
d78b47b9 4302
71acb5eb 4303 return 0;
71acb5eb
DA
4304}
4305
4306static int
05394f39
CW
4307i915_gem_phys_pwrite(struct drm_device *dev,
4308 struct drm_i915_gem_object *obj,
71acb5eb
DA
4309 struct drm_i915_gem_pwrite *args,
4310 struct drm_file *file_priv)
4311{
05394f39 4312 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4313 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4314
b47b30cc
CW
4315 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4316 unsigned long unwritten;
4317
4318 /* The physical object once assigned is fixed for the lifetime
4319 * of the obj, so we can safely drop the lock and continue
4320 * to access vaddr.
4321 */
4322 mutex_unlock(&dev->struct_mutex);
4323 unwritten = copy_from_user(vaddr, user_data, args->size);
4324 mutex_lock(&dev->struct_mutex);
4325 if (unwritten)
4326 return -EFAULT;
4327 }
71acb5eb 4328
e76e9aeb 4329 i915_gem_chipset_flush(dev);
71acb5eb
DA
4330 return 0;
4331}
b962442e 4332
f787a5f5 4333void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4334{
f787a5f5 4335 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4336
4337 /* Clean up our request list when the client is going away, so that
4338 * later retire_requests won't dereference our soon-to-be-gone
4339 * file_priv.
4340 */
1c25595f 4341 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4342 while (!list_empty(&file_priv->mm.request_list)) {
4343 struct drm_i915_gem_request *request;
4344
4345 request = list_first_entry(&file_priv->mm.request_list,
4346 struct drm_i915_gem_request,
4347 client_list);
4348 list_del(&request->client_list);
4349 request->file_priv = NULL;
4350 }
1c25595f 4351 spin_unlock(&file_priv->mm.lock);
b962442e 4352}
31169714 4353
5774506f
CW
4354static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4355{
4356 if (!mutex_is_locked(mutex))
4357 return false;
4358
4359#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4360 return mutex->owner == task;
4361#else
4362 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4363 return false;
4364#endif
4365}
4366
31169714 4367static int
1495f230 4368i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4369{
17250b71
CW
4370 struct drm_i915_private *dev_priv =
4371 container_of(shrinker,
4372 struct drm_i915_private,
4373 mm.inactive_shrinker);
4374 struct drm_device *dev = dev_priv->dev;
6c085a72 4375 struct drm_i915_gem_object *obj;
1495f230 4376 int nr_to_scan = sc->nr_to_scan;
5774506f 4377 bool unlock = true;
17250b71
CW
4378 int cnt;
4379
5774506f
CW
4380 if (!mutex_trylock(&dev->struct_mutex)) {
4381 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4382 return 0;
4383
4384 unlock = false;
4385 }
31169714 4386
6c085a72
CW
4387 if (nr_to_scan) {
4388 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4389 if (nr_to_scan > 0)
4390 i915_gem_shrink_all(dev_priv);
31169714
CW
4391 }
4392
17250b71 4393 cnt = 0;
6c085a72 4394 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
a5570178
CW
4395 if (obj->pages_pin_count == 0)
4396 cnt += obj->base.size >> PAGE_SHIFT;
6c085a72 4397 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
a5570178 4398 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4399 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4400
5774506f
CW
4401 if (unlock)
4402 mutex_unlock(&dev->struct_mutex);
6c085a72 4403 return cnt;
31169714 4404}