]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Prepare to consolidate fence writing
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
d9e86c0e
CW
45static void i915_gem_clear_fence_reg(struct drm_device *dev,
46 struct drm_i915_fence_reg *reg);
05394f39
CW
47static int i915_gem_phys_pwrite(struct drm_device *dev,
48 struct drm_i915_gem_object *obj,
71acb5eb 49 struct drm_i915_gem_pwrite *args,
05394f39
CW
50 struct drm_file *file);
51static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 52
17250b71 53static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 54 struct shrink_control *sc);
8c59967c 55static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 56
73aa808f
CW
57/* some bookkeeping */
58static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
59 size_t size)
60{
61 dev_priv->mm.object_count++;
62 dev_priv->mm.object_memory += size;
63}
64
65static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
68 dev_priv->mm.object_count--;
69 dev_priv->mm.object_memory -= size;
70}
71
21dd3734
CW
72static int
73i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
74{
75 struct drm_i915_private *dev_priv = dev->dev_private;
76 struct completion *x = &dev_priv->error_completion;
77 unsigned long flags;
78 int ret;
79
80 if (!atomic_read(&dev_priv->mm.wedged))
81 return 0;
82
83 ret = wait_for_completion_interruptible(x);
84 if (ret)
85 return ret;
86
21dd3734
CW
87 if (atomic_read(&dev_priv->mm.wedged)) {
88 /* GPU is hung, bump the completion count to account for
89 * the token we just consumed so that we never hit zero and
90 * end up waiting upon a subsequent completion event that
91 * will never happen.
92 */
93 spin_lock_irqsave(&x->wait.lock, flags);
94 x->done++;
95 spin_unlock_irqrestore(&x->wait.lock, flags);
96 }
97 return 0;
30dbf0c0
CW
98}
99
54cf91dc 100int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 101{
76c1dec1
CW
102 int ret;
103
21dd3734 104 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
105 if (ret)
106 return ret;
107
108 ret = mutex_lock_interruptible(&dev->struct_mutex);
109 if (ret)
110 return ret;
111
23bc5982 112 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
113 return 0;
114}
30dbf0c0 115
7d1c4804 116static inline bool
05394f39 117i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 118{
05394f39 119 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
120}
121
79e53945
JB
122int
123i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 124 struct drm_file *file)
79e53945
JB
125{
126 struct drm_i915_gem_init *args = data;
2021746e
CW
127
128 if (args->gtt_start >= args->gtt_end ||
129 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
130 return -EINVAL;
79e53945 131
f534bc0b
DV
132 /* GEM with user mode setting was never supported on ilk and later. */
133 if (INTEL_INFO(dev)->gen >= 5)
134 return -ENODEV;
135
79e53945 136 mutex_lock(&dev->struct_mutex);
644ec02b
DV
137 i915_gem_init_global_gtt(dev, args->gtt_start,
138 args->gtt_end, args->gtt_end);
673a394b
EA
139 mutex_unlock(&dev->struct_mutex);
140
2021746e 141 return 0;
673a394b
EA
142}
143
5a125c3c
EA
144int
145i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 146 struct drm_file *file)
5a125c3c 147{
73aa808f 148 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 149 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
150 struct drm_i915_gem_object *obj;
151 size_t pinned;
5a125c3c
EA
152
153 if (!(dev->driver->driver_features & DRIVER_GEM))
154 return -ENODEV;
155
6299f992 156 pinned = 0;
73aa808f 157 mutex_lock(&dev->struct_mutex);
6299f992
CW
158 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
159 pinned += obj->gtt_space->size;
73aa808f 160 mutex_unlock(&dev->struct_mutex);
5a125c3c 161
6299f992 162 args->aper_size = dev_priv->mm.gtt_total;
0206e353 163 args->aper_available_size = args->aper_size - pinned;
6299f992 164
5a125c3c
EA
165 return 0;
166}
167
ff72145b
DA
168static int
169i915_gem_create(struct drm_file *file,
170 struct drm_device *dev,
171 uint64_t size,
172 uint32_t *handle_p)
673a394b 173{
05394f39 174 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
175 int ret;
176 u32 handle;
673a394b 177
ff72145b 178 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
179 if (size == 0)
180 return -EINVAL;
673a394b
EA
181
182 /* Allocate the new object */
ff72145b 183 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
184 if (obj == NULL)
185 return -ENOMEM;
186
05394f39 187 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 188 if (ret) {
05394f39
CW
189 drm_gem_object_release(&obj->base);
190 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 191 kfree(obj);
673a394b 192 return ret;
1dfd9754 193 }
673a394b 194
202f2fef 195 /* drop reference from allocate - handle holds it now */
05394f39 196 drm_gem_object_unreference(&obj->base);
202f2fef
CW
197 trace_i915_gem_object_create(obj);
198
ff72145b 199 *handle_p = handle;
673a394b
EA
200 return 0;
201}
202
ff72145b
DA
203int
204i915_gem_dumb_create(struct drm_file *file,
205 struct drm_device *dev,
206 struct drm_mode_create_dumb *args)
207{
208 /* have to work out size/pitch and return them */
ed0291fd 209 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
210 args->size = args->pitch * args->height;
211 return i915_gem_create(file, dev,
212 args->size, &args->handle);
213}
214
215int i915_gem_dumb_destroy(struct drm_file *file,
216 struct drm_device *dev,
217 uint32_t handle)
218{
219 return drm_gem_handle_delete(file, handle);
220}
221
222/**
223 * Creates a new mm object and returns a handle to it.
224 */
225int
226i915_gem_create_ioctl(struct drm_device *dev, void *data,
227 struct drm_file *file)
228{
229 struct drm_i915_gem_create *args = data;
230 return i915_gem_create(file, dev,
231 args->size, &args->handle);
232}
233
05394f39 234static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 235{
05394f39 236 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
237
238 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 239 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
240}
241
8461d226
DV
242static inline int
243__copy_to_user_swizzled(char __user *cpu_vaddr,
244 const char *gpu_vaddr, int gpu_offset,
245 int length)
246{
247 int ret, cpu_offset = 0;
248
249 while (length > 0) {
250 int cacheline_end = ALIGN(gpu_offset + 1, 64);
251 int this_length = min(cacheline_end - gpu_offset, length);
252 int swizzled_gpu_offset = gpu_offset ^ 64;
253
254 ret = __copy_to_user(cpu_vaddr + cpu_offset,
255 gpu_vaddr + swizzled_gpu_offset,
256 this_length);
257 if (ret)
258 return ret + length;
259
260 cpu_offset += this_length;
261 gpu_offset += this_length;
262 length -= this_length;
263 }
264
265 return 0;
266}
267
8c59967c
DV
268static inline int
269__copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
270 const char *cpu_vaddr,
271 int length)
272{
273 int ret, cpu_offset = 0;
274
275 while (length > 0) {
276 int cacheline_end = ALIGN(gpu_offset + 1, 64);
277 int this_length = min(cacheline_end - gpu_offset, length);
278 int swizzled_gpu_offset = gpu_offset ^ 64;
279
280 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
281 cpu_vaddr + cpu_offset,
282 this_length);
283 if (ret)
284 return ret + length;
285
286 cpu_offset += this_length;
287 gpu_offset += this_length;
288 length -= this_length;
289 }
290
291 return 0;
292}
293
d174bd64
DV
294/* Per-page copy function for the shmem pread fastpath.
295 * Flushes invalid cachelines before reading the target if
296 * needs_clflush is set. */
eb01459f 297static int
d174bd64
DV
298shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
299 char __user *user_data,
300 bool page_do_bit17_swizzling, bool needs_clflush)
301{
302 char *vaddr;
303 int ret;
304
e7e58eb5 305 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
306 return -EINVAL;
307
308 vaddr = kmap_atomic(page);
309 if (needs_clflush)
310 drm_clflush_virt_range(vaddr + shmem_page_offset,
311 page_length);
312 ret = __copy_to_user_inatomic(user_data,
313 vaddr + shmem_page_offset,
314 page_length);
315 kunmap_atomic(vaddr);
316
317 return ret;
318}
319
23c18c71
DV
320static void
321shmem_clflush_swizzled_range(char *addr, unsigned long length,
322 bool swizzled)
323{
e7e58eb5 324 if (unlikely(swizzled)) {
23c18c71
DV
325 unsigned long start = (unsigned long) addr;
326 unsigned long end = (unsigned long) addr + length;
327
328 /* For swizzling simply ensure that we always flush both
329 * channels. Lame, but simple and it works. Swizzled
330 * pwrite/pread is far from a hotpath - current userspace
331 * doesn't use it at all. */
332 start = round_down(start, 128);
333 end = round_up(end, 128);
334
335 drm_clflush_virt_range((void *)start, end - start);
336 } else {
337 drm_clflush_virt_range(addr, length);
338 }
339
340}
341
d174bd64
DV
342/* Only difference to the fast-path function is that this can handle bit17
343 * and uses non-atomic copy and kmap functions. */
344static int
345shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
346 char __user *user_data,
347 bool page_do_bit17_swizzling, bool needs_clflush)
348{
349 char *vaddr;
350 int ret;
351
352 vaddr = kmap(page);
353 if (needs_clflush)
23c18c71
DV
354 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
355 page_length,
356 page_do_bit17_swizzling);
d174bd64
DV
357
358 if (page_do_bit17_swizzling)
359 ret = __copy_to_user_swizzled(user_data,
360 vaddr, shmem_page_offset,
361 page_length);
362 else
363 ret = __copy_to_user(user_data,
364 vaddr + shmem_page_offset,
365 page_length);
366 kunmap(page);
367
368 return ret;
369}
370
eb01459f 371static int
dbf7bff0
DV
372i915_gem_shmem_pread(struct drm_device *dev,
373 struct drm_i915_gem_object *obj,
374 struct drm_i915_gem_pread *args,
375 struct drm_file *file)
eb01459f 376{
05394f39 377 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 378 char __user *user_data;
eb01459f 379 ssize_t remain;
8461d226 380 loff_t offset;
eb2c0c81 381 int shmem_page_offset, page_length, ret = 0;
8461d226 382 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 383 int hit_slowpath = 0;
96d79b52 384 int prefaulted = 0;
8489731c 385 int needs_clflush = 0;
692a576b 386 int release_page;
eb01459f 387
8461d226 388 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
389 remain = args->size;
390
8461d226 391 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 392
8489731c
DV
393 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
394 /* If we're not in the cpu read domain, set ourself into the gtt
395 * read domain and manually flush cachelines (if required). This
396 * optimizes for the case when the gpu will dirty the data
397 * anyway again before the next pread happens. */
398 if (obj->cache_level == I915_CACHE_NONE)
399 needs_clflush = 1;
400 ret = i915_gem_object_set_to_gtt_domain(obj, false);
401 if (ret)
402 return ret;
403 }
eb01459f 404
8461d226 405 offset = args->offset;
eb01459f
EA
406
407 while (remain > 0) {
e5281ccd
CW
408 struct page *page;
409
eb01459f
EA
410 /* Operation in this page
411 *
eb01459f 412 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
413 * page_length = bytes to copy for this page
414 */
c8cbbb8b 415 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
416 page_length = remain;
417 if ((shmem_page_offset + page_length) > PAGE_SIZE)
418 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 419
692a576b
DV
420 if (obj->pages) {
421 page = obj->pages[offset >> PAGE_SHIFT];
422 release_page = 0;
423 } else {
424 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
425 if (IS_ERR(page)) {
426 ret = PTR_ERR(page);
427 goto out;
428 }
429 release_page = 1;
b65552f0 430 }
e5281ccd 431
8461d226
DV
432 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
433 (page_to_phys(page) & (1 << 17)) != 0;
434
d174bd64
DV
435 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
436 user_data, page_do_bit17_swizzling,
437 needs_clflush);
438 if (ret == 0)
439 goto next_page;
dbf7bff0
DV
440
441 hit_slowpath = 1;
692a576b 442 page_cache_get(page);
dbf7bff0
DV
443 mutex_unlock(&dev->struct_mutex);
444
96d79b52 445 if (!prefaulted) {
f56f821f 446 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
447 /* Userspace is tricking us, but we've already clobbered
448 * its pages with the prefault and promised to write the
449 * data up to the first fault. Hence ignore any errors
450 * and just continue. */
451 (void)ret;
452 prefaulted = 1;
453 }
eb01459f 454
d174bd64
DV
455 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
456 user_data, page_do_bit17_swizzling,
457 needs_clflush);
eb01459f 458
dbf7bff0 459 mutex_lock(&dev->struct_mutex);
e5281ccd 460 page_cache_release(page);
dbf7bff0 461next_page:
e5281ccd 462 mark_page_accessed(page);
692a576b
DV
463 if (release_page)
464 page_cache_release(page);
e5281ccd 465
8461d226
DV
466 if (ret) {
467 ret = -EFAULT;
468 goto out;
469 }
470
eb01459f 471 remain -= page_length;
8461d226 472 user_data += page_length;
eb01459f
EA
473 offset += page_length;
474 }
475
4f27b75d 476out:
dbf7bff0
DV
477 if (hit_slowpath) {
478 /* Fixup: Kill any reinstated backing storage pages */
479 if (obj->madv == __I915_MADV_PURGED)
480 i915_gem_object_truncate(obj);
481 }
eb01459f
EA
482
483 return ret;
484}
485
673a394b
EA
486/**
487 * Reads data from the object referenced by handle.
488 *
489 * On error, the contents of *data are undefined.
490 */
491int
492i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 493 struct drm_file *file)
673a394b
EA
494{
495 struct drm_i915_gem_pread *args = data;
05394f39 496 struct drm_i915_gem_object *obj;
35b62a89 497 int ret = 0;
673a394b 498
51311d0a
CW
499 if (args->size == 0)
500 return 0;
501
502 if (!access_ok(VERIFY_WRITE,
503 (char __user *)(uintptr_t)args->data_ptr,
504 args->size))
505 return -EFAULT;
506
4f27b75d 507 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 508 if (ret)
4f27b75d 509 return ret;
673a394b 510
05394f39 511 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 512 if (&obj->base == NULL) {
1d7cfea1
CW
513 ret = -ENOENT;
514 goto unlock;
4f27b75d 515 }
673a394b 516
7dcd2499 517 /* Bounds check source. */
05394f39
CW
518 if (args->offset > obj->base.size ||
519 args->size > obj->base.size - args->offset) {
ce9d419d 520 ret = -EINVAL;
35b62a89 521 goto out;
ce9d419d
CW
522 }
523
db53a302
CW
524 trace_i915_gem_object_pread(obj, args->offset, args->size);
525
dbf7bff0 526 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 527
35b62a89 528out:
05394f39 529 drm_gem_object_unreference(&obj->base);
1d7cfea1 530unlock:
4f27b75d 531 mutex_unlock(&dev->struct_mutex);
eb01459f 532 return ret;
673a394b
EA
533}
534
0839ccb8
KP
535/* This is the fast write path which cannot handle
536 * page faults in the source data
9b7530cc 537 */
0839ccb8
KP
538
539static inline int
540fast_user_write(struct io_mapping *mapping,
541 loff_t page_base, int page_offset,
542 char __user *user_data,
543 int length)
9b7530cc 544{
9b7530cc 545 char *vaddr_atomic;
0839ccb8 546 unsigned long unwritten;
9b7530cc 547
3e4d3af5 548 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
549 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
550 user_data, length);
3e4d3af5 551 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 552 return unwritten;
0839ccb8
KP
553}
554
3de09aa3
EA
555/**
556 * This is the fast pwrite path, where we copy the data directly from the
557 * user into the GTT, uncached.
558 */
673a394b 559static int
05394f39
CW
560i915_gem_gtt_pwrite_fast(struct drm_device *dev,
561 struct drm_i915_gem_object *obj,
3de09aa3 562 struct drm_i915_gem_pwrite *args,
05394f39 563 struct drm_file *file)
673a394b 564{
0839ccb8 565 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 566 ssize_t remain;
0839ccb8 567 loff_t offset, page_base;
673a394b 568 char __user *user_data;
935aaa69
DV
569 int page_offset, page_length, ret;
570
571 ret = i915_gem_object_pin(obj, 0, true);
572 if (ret)
573 goto out;
574
575 ret = i915_gem_object_set_to_gtt_domain(obj, true);
576 if (ret)
577 goto out_unpin;
578
579 ret = i915_gem_object_put_fence(obj);
580 if (ret)
581 goto out_unpin;
673a394b
EA
582
583 user_data = (char __user *) (uintptr_t) args->data_ptr;
584 remain = args->size;
673a394b 585
05394f39 586 offset = obj->gtt_offset + args->offset;
673a394b
EA
587
588 while (remain > 0) {
589 /* Operation in this page
590 *
0839ccb8
KP
591 * page_base = page offset within aperture
592 * page_offset = offset within page
593 * page_length = bytes to copy for this page
673a394b 594 */
c8cbbb8b
CW
595 page_base = offset & PAGE_MASK;
596 page_offset = offset_in_page(offset);
0839ccb8
KP
597 page_length = remain;
598 if ((page_offset + remain) > PAGE_SIZE)
599 page_length = PAGE_SIZE - page_offset;
600
0839ccb8 601 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
602 * source page isn't available. Return the error and we'll
603 * retry in the slow path.
0839ccb8 604 */
fbd5a26d 605 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
606 page_offset, user_data, page_length)) {
607 ret = -EFAULT;
608 goto out_unpin;
609 }
673a394b 610
0839ccb8
KP
611 remain -= page_length;
612 user_data += page_length;
613 offset += page_length;
673a394b 614 }
673a394b 615
935aaa69
DV
616out_unpin:
617 i915_gem_object_unpin(obj);
618out:
3de09aa3 619 return ret;
673a394b
EA
620}
621
d174bd64
DV
622/* Per-page copy function for the shmem pwrite fastpath.
623 * Flushes invalid cachelines before writing to the target if
624 * needs_clflush_before is set and flushes out any written cachelines after
625 * writing if needs_clflush is set. */
3043c60c 626static int
d174bd64
DV
627shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
628 char __user *user_data,
629 bool page_do_bit17_swizzling,
630 bool needs_clflush_before,
631 bool needs_clflush_after)
673a394b 632{
d174bd64 633 char *vaddr;
673a394b 634 int ret;
3de09aa3 635
e7e58eb5 636 if (unlikely(page_do_bit17_swizzling))
d174bd64 637 return -EINVAL;
3de09aa3 638
d174bd64
DV
639 vaddr = kmap_atomic(page);
640 if (needs_clflush_before)
641 drm_clflush_virt_range(vaddr + shmem_page_offset,
642 page_length);
643 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
644 user_data,
645 page_length);
646 if (needs_clflush_after)
647 drm_clflush_virt_range(vaddr + shmem_page_offset,
648 page_length);
649 kunmap_atomic(vaddr);
3de09aa3
EA
650
651 return ret;
652}
653
d174bd64
DV
654/* Only difference to the fast-path function is that this can handle bit17
655 * and uses non-atomic copy and kmap functions. */
3043c60c 656static int
d174bd64
DV
657shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
658 char __user *user_data,
659 bool page_do_bit17_swizzling,
660 bool needs_clflush_before,
661 bool needs_clflush_after)
673a394b 662{
d174bd64
DV
663 char *vaddr;
664 int ret;
e5281ccd 665
d174bd64 666 vaddr = kmap(page);
e7e58eb5 667 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
668 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
669 page_length,
670 page_do_bit17_swizzling);
d174bd64
DV
671 if (page_do_bit17_swizzling)
672 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
673 user_data,
674 page_length);
d174bd64
DV
675 else
676 ret = __copy_from_user(vaddr + shmem_page_offset,
677 user_data,
678 page_length);
679 if (needs_clflush_after)
23c18c71
DV
680 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
681 page_length,
682 page_do_bit17_swizzling);
d174bd64 683 kunmap(page);
40123c1f 684
d174bd64 685 return ret;
40123c1f
EA
686}
687
40123c1f 688static int
e244a443
DV
689i915_gem_shmem_pwrite(struct drm_device *dev,
690 struct drm_i915_gem_object *obj,
691 struct drm_i915_gem_pwrite *args,
692 struct drm_file *file)
40123c1f 693{
05394f39 694 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 695 ssize_t remain;
8c59967c
DV
696 loff_t offset;
697 char __user *user_data;
eb2c0c81 698 int shmem_page_offset, page_length, ret = 0;
8c59967c 699 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 700 int hit_slowpath = 0;
58642885
DV
701 int needs_clflush_after = 0;
702 int needs_clflush_before = 0;
692a576b 703 int release_page;
40123c1f 704
8c59967c 705 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
706 remain = args->size;
707
8c59967c 708 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 709
58642885
DV
710 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
711 /* If we're not in the cpu write domain, set ourself into the gtt
712 * write domain and manually flush cachelines (if required). This
713 * optimizes for the case when the gpu will use the data
714 * right away and we therefore have to clflush anyway. */
715 if (obj->cache_level == I915_CACHE_NONE)
716 needs_clflush_after = 1;
717 ret = i915_gem_object_set_to_gtt_domain(obj, true);
718 if (ret)
719 return ret;
720 }
721 /* Same trick applies for invalidate partially written cachelines before
722 * writing. */
723 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
724 && obj->cache_level == I915_CACHE_NONE)
725 needs_clflush_before = 1;
726
673a394b 727 offset = args->offset;
05394f39 728 obj->dirty = 1;
673a394b 729
40123c1f 730 while (remain > 0) {
e5281ccd 731 struct page *page;
58642885 732 int partial_cacheline_write;
e5281ccd 733
40123c1f
EA
734 /* Operation in this page
735 *
40123c1f 736 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
737 * page_length = bytes to copy for this page
738 */
c8cbbb8b 739 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
740
741 page_length = remain;
742 if ((shmem_page_offset + page_length) > PAGE_SIZE)
743 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 744
58642885
DV
745 /* If we don't overwrite a cacheline completely we need to be
746 * careful to have up-to-date data by first clflushing. Don't
747 * overcomplicate things and flush the entire patch. */
748 partial_cacheline_write = needs_clflush_before &&
749 ((shmem_page_offset | page_length)
750 & (boot_cpu_data.x86_clflush_size - 1));
751
692a576b
DV
752 if (obj->pages) {
753 page = obj->pages[offset >> PAGE_SHIFT];
754 release_page = 0;
755 } else {
756 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
757 if (IS_ERR(page)) {
758 ret = PTR_ERR(page);
759 goto out;
760 }
761 release_page = 1;
e5281ccd
CW
762 }
763
8c59967c
DV
764 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
765 (page_to_phys(page) & (1 << 17)) != 0;
766
d174bd64
DV
767 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
768 user_data, page_do_bit17_swizzling,
769 partial_cacheline_write,
770 needs_clflush_after);
771 if (ret == 0)
772 goto next_page;
e244a443
DV
773
774 hit_slowpath = 1;
692a576b 775 page_cache_get(page);
e244a443
DV
776 mutex_unlock(&dev->struct_mutex);
777
d174bd64
DV
778 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
779 user_data, page_do_bit17_swizzling,
780 partial_cacheline_write,
781 needs_clflush_after);
40123c1f 782
e244a443 783 mutex_lock(&dev->struct_mutex);
692a576b 784 page_cache_release(page);
e244a443 785next_page:
e5281ccd
CW
786 set_page_dirty(page);
787 mark_page_accessed(page);
692a576b
DV
788 if (release_page)
789 page_cache_release(page);
e5281ccd 790
8c59967c
DV
791 if (ret) {
792 ret = -EFAULT;
793 goto out;
794 }
795
40123c1f 796 remain -= page_length;
8c59967c 797 user_data += page_length;
40123c1f 798 offset += page_length;
673a394b
EA
799 }
800
fbd5a26d 801out:
e244a443
DV
802 if (hit_slowpath) {
803 /* Fixup: Kill any reinstated backing storage pages */
804 if (obj->madv == __I915_MADV_PURGED)
805 i915_gem_object_truncate(obj);
806 /* and flush dirty cachelines in case the object isn't in the cpu write
807 * domain anymore. */
808 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
809 i915_gem_clflush_object(obj);
810 intel_gtt_chipset_flush();
811 }
8c59967c 812 }
673a394b 813
58642885
DV
814 if (needs_clflush_after)
815 intel_gtt_chipset_flush();
816
40123c1f 817 return ret;
673a394b
EA
818}
819
820/**
821 * Writes data to the object referenced by handle.
822 *
823 * On error, the contents of the buffer that were to be modified are undefined.
824 */
825int
826i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 827 struct drm_file *file)
673a394b
EA
828{
829 struct drm_i915_gem_pwrite *args = data;
05394f39 830 struct drm_i915_gem_object *obj;
51311d0a
CW
831 int ret;
832
833 if (args->size == 0)
834 return 0;
835
836 if (!access_ok(VERIFY_READ,
837 (char __user *)(uintptr_t)args->data_ptr,
838 args->size))
839 return -EFAULT;
840
f56f821f
DV
841 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
842 args->size);
51311d0a
CW
843 if (ret)
844 return -EFAULT;
673a394b 845
fbd5a26d 846 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 847 if (ret)
fbd5a26d 848 return ret;
1d7cfea1 849
05394f39 850 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 851 if (&obj->base == NULL) {
1d7cfea1
CW
852 ret = -ENOENT;
853 goto unlock;
fbd5a26d 854 }
673a394b 855
7dcd2499 856 /* Bounds check destination. */
05394f39
CW
857 if (args->offset > obj->base.size ||
858 args->size > obj->base.size - args->offset) {
ce9d419d 859 ret = -EINVAL;
35b62a89 860 goto out;
ce9d419d
CW
861 }
862
db53a302
CW
863 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
864
935aaa69 865 ret = -EFAULT;
673a394b
EA
866 /* We can only do the GTT pwrite on untiled buffers, as otherwise
867 * it would end up going through the fenced access, and we'll get
868 * different detiling behavior between reading and writing.
869 * pread/pwrite currently are reading and writing from the CPU
870 * perspective, requiring manual detiling by the client.
871 */
5c0480f2 872 if (obj->phys_obj) {
fbd5a26d 873 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
874 goto out;
875 }
876
877 if (obj->gtt_space &&
3ae53783 878 obj->cache_level == I915_CACHE_NONE &&
c07496fa 879 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 880 obj->map_and_fenceable &&
5c0480f2 881 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 882 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
883 /* Note that the gtt paths might fail with non-page-backed user
884 * pointers (e.g. gtt mappings when moving data between
885 * textures). Fallback to the shmem path in that case. */
fbd5a26d 886 }
673a394b 887
5c0480f2 888 if (ret == -EFAULT)
935aaa69 889 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 890
35b62a89 891out:
05394f39 892 drm_gem_object_unreference(&obj->base);
1d7cfea1 893unlock:
fbd5a26d 894 mutex_unlock(&dev->struct_mutex);
673a394b
EA
895 return ret;
896}
897
898/**
2ef7eeaa
EA
899 * Called when user space prepares to use an object with the CPU, either
900 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
901 */
902int
903i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 904 struct drm_file *file)
673a394b
EA
905{
906 struct drm_i915_gem_set_domain *args = data;
05394f39 907 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
908 uint32_t read_domains = args->read_domains;
909 uint32_t write_domain = args->write_domain;
673a394b
EA
910 int ret;
911
912 if (!(dev->driver->driver_features & DRIVER_GEM))
913 return -ENODEV;
914
2ef7eeaa 915 /* Only handle setting domains to types used by the CPU. */
21d509e3 916 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
917 return -EINVAL;
918
21d509e3 919 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
920 return -EINVAL;
921
922 /* Having something in the write domain implies it's in the read
923 * domain, and only that read domain. Enforce that in the request.
924 */
925 if (write_domain != 0 && read_domains != write_domain)
926 return -EINVAL;
927
76c1dec1 928 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 929 if (ret)
76c1dec1 930 return ret;
1d7cfea1 931
05394f39 932 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 933 if (&obj->base == NULL) {
1d7cfea1
CW
934 ret = -ENOENT;
935 goto unlock;
76c1dec1 936 }
673a394b 937
2ef7eeaa
EA
938 if (read_domains & I915_GEM_DOMAIN_GTT) {
939 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
940
941 /* Silently promote "you're not bound, there was nothing to do"
942 * to success, since the client was just asking us to
943 * make sure everything was done.
944 */
945 if (ret == -EINVAL)
946 ret = 0;
2ef7eeaa 947 } else {
e47c68e9 948 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
949 }
950
05394f39 951 drm_gem_object_unreference(&obj->base);
1d7cfea1 952unlock:
673a394b
EA
953 mutex_unlock(&dev->struct_mutex);
954 return ret;
955}
956
957/**
958 * Called when user space has done writes to this buffer
959 */
960int
961i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 962 struct drm_file *file)
673a394b
EA
963{
964 struct drm_i915_gem_sw_finish *args = data;
05394f39 965 struct drm_i915_gem_object *obj;
673a394b
EA
966 int ret = 0;
967
968 if (!(dev->driver->driver_features & DRIVER_GEM))
969 return -ENODEV;
970
76c1dec1 971 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 972 if (ret)
76c1dec1 973 return ret;
1d7cfea1 974
05394f39 975 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 976 if (&obj->base == NULL) {
1d7cfea1
CW
977 ret = -ENOENT;
978 goto unlock;
673a394b
EA
979 }
980
673a394b 981 /* Pinned buffers may be scanout, so flush the cache */
05394f39 982 if (obj->pin_count)
e47c68e9
EA
983 i915_gem_object_flush_cpu_write_domain(obj);
984
05394f39 985 drm_gem_object_unreference(&obj->base);
1d7cfea1 986unlock:
673a394b
EA
987 mutex_unlock(&dev->struct_mutex);
988 return ret;
989}
990
991/**
992 * Maps the contents of an object, returning the address it is mapped
993 * into.
994 *
995 * While the mapping holds a reference on the contents of the object, it doesn't
996 * imply a ref on the object itself.
997 */
998int
999i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1000 struct drm_file *file)
673a394b
EA
1001{
1002 struct drm_i915_gem_mmap *args = data;
1003 struct drm_gem_object *obj;
673a394b
EA
1004 unsigned long addr;
1005
1006 if (!(dev->driver->driver_features & DRIVER_GEM))
1007 return -ENODEV;
1008
05394f39 1009 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1010 if (obj == NULL)
bf79cb91 1011 return -ENOENT;
673a394b 1012
673a394b
EA
1013 down_write(&current->mm->mmap_sem);
1014 addr = do_mmap(obj->filp, 0, args->size,
1015 PROT_READ | PROT_WRITE, MAP_SHARED,
1016 args->offset);
1017 up_write(&current->mm->mmap_sem);
bc9025bd 1018 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1019 if (IS_ERR((void *)addr))
1020 return addr;
1021
1022 args->addr_ptr = (uint64_t) addr;
1023
1024 return 0;
1025}
1026
de151cf6
JB
1027/**
1028 * i915_gem_fault - fault a page into the GTT
1029 * vma: VMA in question
1030 * vmf: fault info
1031 *
1032 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1033 * from userspace. The fault handler takes care of binding the object to
1034 * the GTT (if needed), allocating and programming a fence register (again,
1035 * only if needed based on whether the old reg is still valid or the object
1036 * is tiled) and inserting a new PTE into the faulting process.
1037 *
1038 * Note that the faulting process may involve evicting existing objects
1039 * from the GTT and/or fence registers to make room. So performance may
1040 * suffer if the GTT working set is large or there are few fence registers
1041 * left.
1042 */
1043int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1044{
05394f39
CW
1045 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1046 struct drm_device *dev = obj->base.dev;
7d1c4804 1047 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1048 pgoff_t page_offset;
1049 unsigned long pfn;
1050 int ret = 0;
0f973f27 1051 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1052
1053 /* We don't use vmf->pgoff since that has the fake offset */
1054 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1055 PAGE_SHIFT;
1056
d9bc7e9f
CW
1057 ret = i915_mutex_lock_interruptible(dev);
1058 if (ret)
1059 goto out;
a00b10c3 1060
db53a302
CW
1061 trace_i915_gem_object_fault(obj, page_offset, true, write);
1062
d9bc7e9f 1063 /* Now bind it into the GTT if needed */
919926ae
CW
1064 if (!obj->map_and_fenceable) {
1065 ret = i915_gem_object_unbind(obj);
1066 if (ret)
1067 goto unlock;
a00b10c3 1068 }
05394f39 1069 if (!obj->gtt_space) {
75e9e915 1070 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1071 if (ret)
1072 goto unlock;
de151cf6 1073
e92d03bf
EA
1074 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1075 if (ret)
1076 goto unlock;
1077 }
4a684a41 1078
74898d7e
DV
1079 if (!obj->has_global_gtt_mapping)
1080 i915_gem_gtt_bind_object(obj, obj->cache_level);
1081
06d98131 1082 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1083 if (ret)
1084 goto unlock;
de151cf6 1085
05394f39
CW
1086 if (i915_gem_object_is_inactive(obj))
1087 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1088
6299f992
CW
1089 obj->fault_mappable = true;
1090
05394f39 1091 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1092 page_offset;
1093
1094 /* Finally, remap it using the new GTT offset */
1095 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1096unlock:
de151cf6 1097 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1098out:
de151cf6 1099 switch (ret) {
d9bc7e9f 1100 case -EIO:
045e769a 1101 case -EAGAIN:
d9bc7e9f
CW
1102 /* Give the error handler a chance to run and move the
1103 * objects off the GPU active list. Next time we service the
1104 * fault, we should be able to transition the page into the
1105 * GTT without touching the GPU (and so avoid further
1106 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1107 * with coherency, just lost writes.
1108 */
045e769a 1109 set_need_resched();
c715089f
CW
1110 case 0:
1111 case -ERESTARTSYS:
bed636ab 1112 case -EINTR:
c715089f 1113 return VM_FAULT_NOPAGE;
de151cf6 1114 case -ENOMEM:
de151cf6 1115 return VM_FAULT_OOM;
de151cf6 1116 default:
c715089f 1117 return VM_FAULT_SIGBUS;
de151cf6
JB
1118 }
1119}
1120
901782b2
CW
1121/**
1122 * i915_gem_release_mmap - remove physical page mappings
1123 * @obj: obj in question
1124 *
af901ca1 1125 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1126 * relinquish ownership of the pages back to the system.
1127 *
1128 * It is vital that we remove the page mapping if we have mapped a tiled
1129 * object through the GTT and then lose the fence register due to
1130 * resource pressure. Similarly if the object has been moved out of the
1131 * aperture, than pages mapped into userspace must be revoked. Removing the
1132 * mapping will then trigger a page fault on the next user access, allowing
1133 * fixup by i915_gem_fault().
1134 */
d05ca301 1135void
05394f39 1136i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1137{
6299f992
CW
1138 if (!obj->fault_mappable)
1139 return;
901782b2 1140
f6e47884
CW
1141 if (obj->base.dev->dev_mapping)
1142 unmap_mapping_range(obj->base.dev->dev_mapping,
1143 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1144 obj->base.size, 1);
fb7d516a 1145
6299f992 1146 obj->fault_mappable = false;
901782b2
CW
1147}
1148
92b88aeb 1149static uint32_t
e28f8711 1150i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1151{
e28f8711 1152 uint32_t gtt_size;
92b88aeb
CW
1153
1154 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1155 tiling_mode == I915_TILING_NONE)
1156 return size;
92b88aeb
CW
1157
1158 /* Previous chips need a power-of-two fence region when tiling */
1159 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1160 gtt_size = 1024*1024;
92b88aeb 1161 else
e28f8711 1162 gtt_size = 512*1024;
92b88aeb 1163
e28f8711
CW
1164 while (gtt_size < size)
1165 gtt_size <<= 1;
92b88aeb 1166
e28f8711 1167 return gtt_size;
92b88aeb
CW
1168}
1169
de151cf6
JB
1170/**
1171 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1172 * @obj: object to check
1173 *
1174 * Return the required GTT alignment for an object, taking into account
5e783301 1175 * potential fence register mapping.
de151cf6
JB
1176 */
1177static uint32_t
e28f8711
CW
1178i915_gem_get_gtt_alignment(struct drm_device *dev,
1179 uint32_t size,
1180 int tiling_mode)
de151cf6 1181{
de151cf6
JB
1182 /*
1183 * Minimum alignment is 4k (GTT page size), but might be greater
1184 * if a fence register is needed for the object.
1185 */
a00b10c3 1186 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1187 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1188 return 4096;
1189
a00b10c3
CW
1190 /*
1191 * Previous chips need to be aligned to the size of the smallest
1192 * fence register that can contain the object.
1193 */
e28f8711 1194 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1195}
1196
5e783301
DV
1197/**
1198 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1199 * unfenced object
e28f8711
CW
1200 * @dev: the device
1201 * @size: size of the object
1202 * @tiling_mode: tiling mode of the object
5e783301
DV
1203 *
1204 * Return the required GTT alignment for an object, only taking into account
1205 * unfenced tiled surface requirements.
1206 */
467cffba 1207uint32_t
e28f8711
CW
1208i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1209 uint32_t size,
1210 int tiling_mode)
5e783301 1211{
5e783301
DV
1212 /*
1213 * Minimum alignment is 4k (GTT page size) for sane hw.
1214 */
1215 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1216 tiling_mode == I915_TILING_NONE)
5e783301
DV
1217 return 4096;
1218
e28f8711
CW
1219 /* Previous hardware however needs to be aligned to a power-of-two
1220 * tile height. The simplest method for determining this is to reuse
1221 * the power-of-tile object size.
5e783301 1222 */
e28f8711 1223 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1224}
1225
de151cf6 1226int
ff72145b
DA
1227i915_gem_mmap_gtt(struct drm_file *file,
1228 struct drm_device *dev,
1229 uint32_t handle,
1230 uint64_t *offset)
de151cf6 1231{
da761a6e 1232 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1233 struct drm_i915_gem_object *obj;
de151cf6
JB
1234 int ret;
1235
1236 if (!(dev->driver->driver_features & DRIVER_GEM))
1237 return -ENODEV;
1238
76c1dec1 1239 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1240 if (ret)
76c1dec1 1241 return ret;
de151cf6 1242
ff72145b 1243 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1244 if (&obj->base == NULL) {
1d7cfea1
CW
1245 ret = -ENOENT;
1246 goto unlock;
1247 }
de151cf6 1248
05394f39 1249 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1250 ret = -E2BIG;
ff56b0bc 1251 goto out;
da761a6e
CW
1252 }
1253
05394f39 1254 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1255 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1256 ret = -EINVAL;
1257 goto out;
ab18282d
CW
1258 }
1259
05394f39 1260 if (!obj->base.map_list.map) {
b464e9a2 1261 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1262 if (ret)
1263 goto out;
de151cf6
JB
1264 }
1265
ff72145b 1266 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1267
1d7cfea1 1268out:
05394f39 1269 drm_gem_object_unreference(&obj->base);
1d7cfea1 1270unlock:
de151cf6 1271 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1272 return ret;
de151cf6
JB
1273}
1274
ff72145b
DA
1275/**
1276 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1277 * @dev: DRM device
1278 * @data: GTT mapping ioctl data
1279 * @file: GEM object info
1280 *
1281 * Simply returns the fake offset to userspace so it can mmap it.
1282 * The mmap call will end up in drm_gem_mmap(), which will set things
1283 * up so we can get faults in the handler above.
1284 *
1285 * The fault handler will take care of binding the object into the GTT
1286 * (since it may have been evicted to make room for something), allocating
1287 * a fence register, and mapping the appropriate aperture address into
1288 * userspace.
1289 */
1290int
1291i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1292 struct drm_file *file)
1293{
1294 struct drm_i915_gem_mmap_gtt *args = data;
1295
1296 if (!(dev->driver->driver_features & DRIVER_GEM))
1297 return -ENODEV;
1298
1299 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1300}
1301
1302
e5281ccd 1303static int
05394f39 1304i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1305 gfp_t gfpmask)
1306{
e5281ccd
CW
1307 int page_count, i;
1308 struct address_space *mapping;
1309 struct inode *inode;
1310 struct page *page;
1311
1312 /* Get the list of pages out of our struct file. They'll be pinned
1313 * at this point until we release them.
1314 */
05394f39
CW
1315 page_count = obj->base.size / PAGE_SIZE;
1316 BUG_ON(obj->pages != NULL);
1317 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1318 if (obj->pages == NULL)
e5281ccd
CW
1319 return -ENOMEM;
1320
05394f39 1321 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1322 mapping = inode->i_mapping;
5949eac4
HD
1323 gfpmask |= mapping_gfp_mask(mapping);
1324
e5281ccd 1325 for (i = 0; i < page_count; i++) {
5949eac4 1326 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1327 if (IS_ERR(page))
1328 goto err_pages;
1329
05394f39 1330 obj->pages[i] = page;
e5281ccd
CW
1331 }
1332
6dacfd2f 1333 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1334 i915_gem_object_do_bit_17_swizzle(obj);
1335
1336 return 0;
1337
1338err_pages:
1339 while (i--)
05394f39 1340 page_cache_release(obj->pages[i]);
e5281ccd 1341
05394f39
CW
1342 drm_free_large(obj->pages);
1343 obj->pages = NULL;
e5281ccd
CW
1344 return PTR_ERR(page);
1345}
1346
5cdf5881 1347static void
05394f39 1348i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1349{
05394f39 1350 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1351 int i;
1352
05394f39 1353 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1354
6dacfd2f 1355 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1356 i915_gem_object_save_bit_17_swizzle(obj);
1357
05394f39
CW
1358 if (obj->madv == I915_MADV_DONTNEED)
1359 obj->dirty = 0;
3ef94daa
CW
1360
1361 for (i = 0; i < page_count; i++) {
05394f39
CW
1362 if (obj->dirty)
1363 set_page_dirty(obj->pages[i]);
3ef94daa 1364
05394f39
CW
1365 if (obj->madv == I915_MADV_WILLNEED)
1366 mark_page_accessed(obj->pages[i]);
3ef94daa 1367
05394f39 1368 page_cache_release(obj->pages[i]);
3ef94daa 1369 }
05394f39 1370 obj->dirty = 0;
673a394b 1371
05394f39
CW
1372 drm_free_large(obj->pages);
1373 obj->pages = NULL;
673a394b
EA
1374}
1375
54cf91dc 1376void
05394f39 1377i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1378 struct intel_ring_buffer *ring,
1379 u32 seqno)
673a394b 1380{
05394f39 1381 struct drm_device *dev = obj->base.dev;
69dc4987 1382 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1383
852835f3 1384 BUG_ON(ring == NULL);
05394f39 1385 obj->ring = ring;
673a394b
EA
1386
1387 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1388 if (!obj->active) {
1389 drm_gem_object_reference(&obj->base);
1390 obj->active = 1;
673a394b 1391 }
e35a41de 1392
673a394b 1393 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1394 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1395 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1396
05394f39 1397 obj->last_rendering_seqno = seqno;
caea7476 1398
7dd49065 1399 if (obj->fenced_gpu_access) {
caea7476 1400 obj->last_fenced_seqno = seqno;
caea7476 1401
7dd49065
CW
1402 /* Bump MRU to take account of the delayed flush */
1403 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1404 struct drm_i915_fence_reg *reg;
1405
1406 reg = &dev_priv->fence_regs[obj->fence_reg];
1407 list_move_tail(&reg->lru_list,
1408 &dev_priv->mm.fence_list);
1409 }
caea7476
CW
1410 }
1411}
1412
1413static void
1414i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1415{
1416 list_del_init(&obj->ring_list);
1417 obj->last_rendering_seqno = 0;
15a13bbd 1418 obj->last_fenced_seqno = 0;
673a394b
EA
1419}
1420
ce44b0ea 1421static void
05394f39 1422i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1423{
05394f39 1424 struct drm_device *dev = obj->base.dev;
ce44b0ea 1425 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1426
05394f39
CW
1427 BUG_ON(!obj->active);
1428 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1429
1430 i915_gem_object_move_off_active(obj);
1431}
1432
1433static void
1434i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1435{
1436 struct drm_device *dev = obj->base.dev;
1437 struct drm_i915_private *dev_priv = dev->dev_private;
1438
1439 if (obj->pin_count != 0)
1440 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1441 else
1442 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1443
1444 BUG_ON(!list_empty(&obj->gpu_write_list));
1445 BUG_ON(!obj->active);
1446 obj->ring = NULL;
1447
1448 i915_gem_object_move_off_active(obj);
1449 obj->fenced_gpu_access = false;
caea7476
CW
1450
1451 obj->active = 0;
87ca9c8a 1452 obj->pending_gpu_write = false;
caea7476
CW
1453 drm_gem_object_unreference(&obj->base);
1454
1455 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1456}
673a394b 1457
963b4836
CW
1458/* Immediately discard the backing storage */
1459static void
05394f39 1460i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1461{
bb6baf76 1462 struct inode *inode;
963b4836 1463
ae9fed6b
CW
1464 /* Our goal here is to return as much of the memory as
1465 * is possible back to the system as we are called from OOM.
1466 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1467 * backing pages, *now*.
ae9fed6b 1468 */
05394f39 1469 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1470 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1471
a14917ee
CW
1472 if (obj->base.map_list.map)
1473 drm_gem_free_mmap_offset(&obj->base);
1474
05394f39 1475 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1476}
1477
1478static inline int
05394f39 1479i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1480{
05394f39 1481 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1482}
1483
63560396 1484static void
db53a302
CW
1485i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1486 uint32_t flush_domains)
63560396 1487{
05394f39 1488 struct drm_i915_gem_object *obj, *next;
63560396 1489
05394f39 1490 list_for_each_entry_safe(obj, next,
64193406 1491 &ring->gpu_write_list,
63560396 1492 gpu_write_list) {
05394f39
CW
1493 if (obj->base.write_domain & flush_domains) {
1494 uint32_t old_write_domain = obj->base.write_domain;
63560396 1495
05394f39
CW
1496 obj->base.write_domain = 0;
1497 list_del_init(&obj->gpu_write_list);
1ec14ad3 1498 i915_gem_object_move_to_active(obj, ring,
db53a302 1499 i915_gem_next_request_seqno(ring));
63560396 1500
63560396 1501 trace_i915_gem_object_change_domain(obj,
05394f39 1502 obj->base.read_domains,
63560396
DV
1503 old_write_domain);
1504 }
1505 }
1506}
8187a2b7 1507
53d227f2
DV
1508static u32
1509i915_gem_get_seqno(struct drm_device *dev)
1510{
1511 drm_i915_private_t *dev_priv = dev->dev_private;
1512 u32 seqno = dev_priv->next_seqno;
1513
1514 /* reserve 0 for non-seqno */
1515 if (++dev_priv->next_seqno == 0)
1516 dev_priv->next_seqno = 1;
1517
1518 return seqno;
1519}
1520
1521u32
1522i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1523{
1524 if (ring->outstanding_lazy_request == 0)
1525 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1526
1527 return ring->outstanding_lazy_request;
1528}
1529
3cce469c 1530int
db53a302 1531i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1532 struct drm_file *file,
db53a302 1533 struct drm_i915_gem_request *request)
673a394b 1534{
db53a302 1535 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1536 uint32_t seqno;
a71d8d94 1537 u32 request_ring_position;
673a394b 1538 int was_empty;
3cce469c
CW
1539 int ret;
1540
1541 BUG_ON(request == NULL);
53d227f2 1542 seqno = i915_gem_next_request_seqno(ring);
673a394b 1543
a71d8d94
CW
1544 /* Record the position of the start of the request so that
1545 * should we detect the updated seqno part-way through the
1546 * GPU processing the request, we never over-estimate the
1547 * position of the head.
1548 */
1549 request_ring_position = intel_ring_get_tail(ring);
1550
3cce469c
CW
1551 ret = ring->add_request(ring, &seqno);
1552 if (ret)
1553 return ret;
673a394b 1554
db53a302 1555 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1556
1557 request->seqno = seqno;
852835f3 1558 request->ring = ring;
a71d8d94 1559 request->tail = request_ring_position;
673a394b 1560 request->emitted_jiffies = jiffies;
852835f3
ZN
1561 was_empty = list_empty(&ring->request_list);
1562 list_add_tail(&request->list, &ring->request_list);
1563
db53a302
CW
1564 if (file) {
1565 struct drm_i915_file_private *file_priv = file->driver_priv;
1566
1c25595f 1567 spin_lock(&file_priv->mm.lock);
f787a5f5 1568 request->file_priv = file_priv;
b962442e 1569 list_add_tail(&request->client_list,
f787a5f5 1570 &file_priv->mm.request_list);
1c25595f 1571 spin_unlock(&file_priv->mm.lock);
b962442e 1572 }
673a394b 1573
5391d0cf 1574 ring->outstanding_lazy_request = 0;
db53a302 1575
f65d9421 1576 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1577 if (i915_enable_hangcheck) {
1578 mod_timer(&dev_priv->hangcheck_timer,
1579 jiffies +
1580 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1581 }
f65d9421 1582 if (was_empty)
b3b079db
CW
1583 queue_delayed_work(dev_priv->wq,
1584 &dev_priv->mm.retire_work, HZ);
f65d9421 1585 }
3cce469c 1586 return 0;
673a394b
EA
1587}
1588
f787a5f5
CW
1589static inline void
1590i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1591{
1c25595f 1592 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1593
1c25595f
CW
1594 if (!file_priv)
1595 return;
1c5d22f7 1596
1c25595f 1597 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1598 if (request->file_priv) {
1599 list_del(&request->client_list);
1600 request->file_priv = NULL;
1601 }
1c25595f 1602 spin_unlock(&file_priv->mm.lock);
673a394b 1603}
673a394b 1604
dfaae392
CW
1605static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1606 struct intel_ring_buffer *ring)
9375e446 1607{
dfaae392
CW
1608 while (!list_empty(&ring->request_list)) {
1609 struct drm_i915_gem_request *request;
673a394b 1610
dfaae392
CW
1611 request = list_first_entry(&ring->request_list,
1612 struct drm_i915_gem_request,
1613 list);
de151cf6 1614
dfaae392 1615 list_del(&request->list);
f787a5f5 1616 i915_gem_request_remove_from_client(request);
dfaae392
CW
1617 kfree(request);
1618 }
673a394b 1619
dfaae392 1620 while (!list_empty(&ring->active_list)) {
05394f39 1621 struct drm_i915_gem_object *obj;
9375e446 1622
05394f39
CW
1623 obj = list_first_entry(&ring->active_list,
1624 struct drm_i915_gem_object,
1625 ring_list);
9375e446 1626
05394f39
CW
1627 obj->base.write_domain = 0;
1628 list_del_init(&obj->gpu_write_list);
1629 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1630 }
1631}
1632
312817a3
CW
1633static void i915_gem_reset_fences(struct drm_device *dev)
1634{
1635 struct drm_i915_private *dev_priv = dev->dev_private;
1636 int i;
1637
4b9de737 1638 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1639 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1640 struct drm_i915_gem_object *obj = reg->obj;
1641
1642 if (!obj)
1643 continue;
1644
1645 if (obj->tiling_mode)
1646 i915_gem_release_mmap(obj);
1647
d9e86c0e
CW
1648 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1649 reg->obj->fenced_gpu_access = false;
1650 reg->obj->last_fenced_seqno = 0;
d9e86c0e 1651 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1652 }
1653}
1654
069efc1d 1655void i915_gem_reset(struct drm_device *dev)
673a394b 1656{
77f01230 1657 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1658 struct drm_i915_gem_object *obj;
1ec14ad3 1659 int i;
673a394b 1660
1ec14ad3
CW
1661 for (i = 0; i < I915_NUM_RINGS; i++)
1662 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1663
1664 /* Remove anything from the flushing lists. The GPU cache is likely
1665 * to be lost on reset along with the data, so simply move the
1666 * lost bo to the inactive list.
1667 */
1668 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1669 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1670 struct drm_i915_gem_object,
1671 mm_list);
dfaae392 1672
05394f39
CW
1673 obj->base.write_domain = 0;
1674 list_del_init(&obj->gpu_write_list);
1675 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1676 }
1677
1678 /* Move everything out of the GPU domains to ensure we do any
1679 * necessary invalidation upon reuse.
1680 */
05394f39 1681 list_for_each_entry(obj,
77f01230 1682 &dev_priv->mm.inactive_list,
69dc4987 1683 mm_list)
77f01230 1684 {
05394f39 1685 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1686 }
069efc1d
CW
1687
1688 /* The fence registers are invalidated so clear them out */
312817a3 1689 i915_gem_reset_fences(dev);
673a394b
EA
1690}
1691
1692/**
1693 * This function clears the request list as sequence numbers are passed.
1694 */
a71d8d94 1695void
db53a302 1696i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1697{
673a394b 1698 uint32_t seqno;
1ec14ad3 1699 int i;
673a394b 1700
db53a302 1701 if (list_empty(&ring->request_list))
6c0594a3
KW
1702 return;
1703
db53a302 1704 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1705
78501eac 1706 seqno = ring->get_seqno(ring);
1ec14ad3 1707
076e2c0e 1708 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1709 if (seqno >= ring->sync_seqno[i])
1710 ring->sync_seqno[i] = 0;
1711
852835f3 1712 while (!list_empty(&ring->request_list)) {
673a394b 1713 struct drm_i915_gem_request *request;
673a394b 1714
852835f3 1715 request = list_first_entry(&ring->request_list,
673a394b
EA
1716 struct drm_i915_gem_request,
1717 list);
673a394b 1718
dfaae392 1719 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1720 break;
1721
db53a302 1722 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1723 /* We know the GPU must have read the request to have
1724 * sent us the seqno + interrupt, so use the position
1725 * of tail of the request to update the last known position
1726 * of the GPU head.
1727 */
1728 ring->last_retired_head = request->tail;
b84d5f0c
CW
1729
1730 list_del(&request->list);
f787a5f5 1731 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1732 kfree(request);
1733 }
673a394b 1734
b84d5f0c
CW
1735 /* Move any buffers on the active list that are no longer referenced
1736 * by the ringbuffer to the flushing/inactive lists as appropriate.
1737 */
1738 while (!list_empty(&ring->active_list)) {
05394f39 1739 struct drm_i915_gem_object *obj;
b84d5f0c 1740
0206e353 1741 obj = list_first_entry(&ring->active_list,
05394f39
CW
1742 struct drm_i915_gem_object,
1743 ring_list);
673a394b 1744
05394f39 1745 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1746 break;
b84d5f0c 1747
05394f39 1748 if (obj->base.write_domain != 0)
b84d5f0c
CW
1749 i915_gem_object_move_to_flushing(obj);
1750 else
1751 i915_gem_object_move_to_inactive(obj);
673a394b 1752 }
9d34e5db 1753
db53a302
CW
1754 if (unlikely(ring->trace_irq_seqno &&
1755 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1756 ring->irq_put(ring);
db53a302 1757 ring->trace_irq_seqno = 0;
9d34e5db 1758 }
23bc5982 1759
db53a302 1760 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1761}
1762
b09a1fec
CW
1763void
1764i915_gem_retire_requests(struct drm_device *dev)
1765{
1766 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1767 int i;
b09a1fec 1768
be72615b 1769 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1770 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1771
1772 /* We must be careful that during unbind() we do not
1773 * accidentally infinitely recurse into retire requests.
1774 * Currently:
1775 * retire -> free -> unbind -> wait -> retire_ring
1776 */
05394f39 1777 list_for_each_entry_safe(obj, next,
be72615b 1778 &dev_priv->mm.deferred_free_list,
69dc4987 1779 mm_list)
05394f39 1780 i915_gem_free_object_tail(obj);
be72615b
CW
1781 }
1782
1ec14ad3 1783 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1784 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1785}
1786
75ef9da2 1787static void
673a394b
EA
1788i915_gem_retire_work_handler(struct work_struct *work)
1789{
1790 drm_i915_private_t *dev_priv;
1791 struct drm_device *dev;
0a58705b
CW
1792 bool idle;
1793 int i;
673a394b
EA
1794
1795 dev_priv = container_of(work, drm_i915_private_t,
1796 mm.retire_work.work);
1797 dev = dev_priv->dev;
1798
891b48cf
CW
1799 /* Come back later if the device is busy... */
1800 if (!mutex_trylock(&dev->struct_mutex)) {
1801 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1802 return;
1803 }
1804
b09a1fec 1805 i915_gem_retire_requests(dev);
d1b851fc 1806
0a58705b
CW
1807 /* Send a periodic flush down the ring so we don't hold onto GEM
1808 * objects indefinitely.
1809 */
1810 idle = true;
1811 for (i = 0; i < I915_NUM_RINGS; i++) {
1812 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1813
1814 if (!list_empty(&ring->gpu_write_list)) {
1815 struct drm_i915_gem_request *request;
1816 int ret;
1817
db53a302
CW
1818 ret = i915_gem_flush_ring(ring,
1819 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1820 request = kzalloc(sizeof(*request), GFP_KERNEL);
1821 if (ret || request == NULL ||
db53a302 1822 i915_add_request(ring, NULL, request))
0a58705b
CW
1823 kfree(request);
1824 }
1825
1826 idle &= list_empty(&ring->request_list);
1827 }
1828
1829 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1830 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1831
673a394b
EA
1832 mutex_unlock(&dev->struct_mutex);
1833}
1834
db53a302
CW
1835/**
1836 * Waits for a sequence number to be signaled, and cleans up the
1837 * request and object lists appropriately for that event.
1838 */
5a5a0c64 1839int
db53a302 1840i915_wait_request(struct intel_ring_buffer *ring,
b93f9cf1
BW
1841 uint32_t seqno,
1842 bool do_retire)
673a394b 1843{
db53a302 1844 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1845 u32 ier;
673a394b
EA
1846 int ret = 0;
1847
1848 BUG_ON(seqno == 0);
1849
d9bc7e9f
CW
1850 if (atomic_read(&dev_priv->mm.wedged)) {
1851 struct completion *x = &dev_priv->error_completion;
1852 bool recovery_complete;
1853 unsigned long flags;
1854
1855 /* Give the error handler a chance to run. */
1856 spin_lock_irqsave(&x->wait.lock, flags);
1857 recovery_complete = x->done > 0;
1858 spin_unlock_irqrestore(&x->wait.lock, flags);
1859
1860 return recovery_complete ? -EIO : -EAGAIN;
1861 }
30dbf0c0 1862
5d97eb69 1863 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1864 struct drm_i915_gem_request *request;
1865
1866 request = kzalloc(sizeof(*request), GFP_KERNEL);
1867 if (request == NULL)
e35a41de 1868 return -ENOMEM;
3cce469c 1869
db53a302 1870 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
1871 if (ret) {
1872 kfree(request);
1873 return ret;
1874 }
1875
1876 seqno = request->seqno;
e35a41de 1877 }
ffed1d09 1878
78501eac 1879 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 1880 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d 1881 ier = I915_READ(DEIER) | I915_READ(GTIER);
23e3f9b3
JB
1882 else if (IS_VALLEYVIEW(ring->dev))
1883 ier = I915_READ(GTIER) | I915_READ(VLV_IER);
036a4a7d
ZW
1884 else
1885 ier = I915_READ(IER);
802c7eb6
JB
1886 if (!ier) {
1887 DRM_ERROR("something (likely vbetool) disabled "
1888 "interrupts, re-enabling\n");
f01c22fd
CW
1889 ring->dev->driver->irq_preinstall(ring->dev);
1890 ring->dev->driver->irq_postinstall(ring->dev);
802c7eb6
JB
1891 }
1892
db53a302 1893 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 1894
b2223497 1895 ring->waiting_seqno = seqno;
b13c2b96 1896 if (ring->irq_get(ring)) {
ce453d81 1897 if (dev_priv->mm.interruptible)
b13c2b96
CW
1898 ret = wait_event_interruptible(ring->irq_queue,
1899 i915_seqno_passed(ring->get_seqno(ring), seqno)
1900 || atomic_read(&dev_priv->mm.wedged));
1901 else
1902 wait_event(ring->irq_queue,
1903 i915_seqno_passed(ring->get_seqno(ring), seqno)
1904 || atomic_read(&dev_priv->mm.wedged));
1905
1906 ring->irq_put(ring);
e959b5db
EA
1907 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1908 seqno) ||
1909 atomic_read(&dev_priv->mm.wedged), 3000))
b5ba177d 1910 ret = -EBUSY;
b2223497 1911 ring->waiting_seqno = 0;
1c5d22f7 1912
db53a302 1913 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 1914 }
ba1234d1 1915 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1916 ret = -EAGAIN;
673a394b 1917
673a394b
EA
1918 /* Directly dispatch request retiring. While we have the work queue
1919 * to handle this, the waiter on a request often wants an associated
1920 * buffer to have made it to the inactive list, and we would need
1921 * a separate wait queue to handle that.
1922 */
b93f9cf1 1923 if (ret == 0 && do_retire)
db53a302 1924 i915_gem_retire_requests_ring(ring);
673a394b
EA
1925
1926 return ret;
1927}
1928
673a394b
EA
1929/**
1930 * Ensures that all rendering to the object has completed and the object is
1931 * safe to unbind from the GTT or access from the CPU.
1932 */
54cf91dc 1933int
ce453d81 1934i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 1935{
673a394b
EA
1936 int ret;
1937
e47c68e9
EA
1938 /* This function only exists to support waiting for existing rendering,
1939 * not for emitting required flushes.
673a394b 1940 */
05394f39 1941 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1942
1943 /* If there is rendering queued on the buffer being evicted, wait for
1944 * it.
1945 */
05394f39 1946 if (obj->active) {
b93f9cf1
BW
1947 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
1948 true);
2cf34d7b 1949 if (ret)
673a394b
EA
1950 return ret;
1951 }
1952
1953 return 0;
1954}
1955
5816d648
BW
1956/**
1957 * i915_gem_object_sync - sync an object to a ring.
1958 *
1959 * @obj: object which may be in use on another ring.
1960 * @to: ring we wish to use the object on. May be NULL.
1961 *
1962 * This code is meant to abstract object synchronization with the GPU.
1963 * Calling with NULL implies synchronizing the object with the CPU
1964 * rather than a particular GPU ring.
1965 *
1966 * Returns 0 if successful, else propagates up the lower layer error.
1967 */
2911a35b
BW
1968int
1969i915_gem_object_sync(struct drm_i915_gem_object *obj,
1970 struct intel_ring_buffer *to)
1971{
1972 struct intel_ring_buffer *from = obj->ring;
1973 u32 seqno;
1974 int ret, idx;
1975
1976 if (from == NULL || to == from)
1977 return 0;
1978
5816d648 1979 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2911a35b
BW
1980 return i915_gem_object_wait_rendering(obj);
1981
1982 idx = intel_ring_sync_index(from, to);
1983
1984 seqno = obj->last_rendering_seqno;
1985 if (seqno <= from->sync_seqno[idx])
1986 return 0;
1987
1988 if (seqno == from->outstanding_lazy_request) {
1989 struct drm_i915_gem_request *request;
1990
1991 request = kzalloc(sizeof(*request), GFP_KERNEL);
1992 if (request == NULL)
1993 return -ENOMEM;
1994
1995 ret = i915_add_request(from, NULL, request);
1996 if (ret) {
1997 kfree(request);
1998 return ret;
1999 }
2000
2001 seqno = request->seqno;
2002 }
2003
2911a35b 2004
1500f7ea 2005 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2006 if (!ret)
2007 from->sync_seqno[idx] = seqno;
2911a35b 2008
e3a5a225 2009 return ret;
2911a35b
BW
2010}
2011
b5ffc9bc
CW
2012static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2013{
2014 u32 old_write_domain, old_read_domains;
2015
b5ffc9bc
CW
2016 /* Act a barrier for all accesses through the GTT */
2017 mb();
2018
2019 /* Force a pagefault for domain tracking on next user access */
2020 i915_gem_release_mmap(obj);
2021
b97c3d9c
KP
2022 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2023 return;
2024
b5ffc9bc
CW
2025 old_read_domains = obj->base.read_domains;
2026 old_write_domain = obj->base.write_domain;
2027
2028 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2029 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2030
2031 trace_i915_gem_object_change_domain(obj,
2032 old_read_domains,
2033 old_write_domain);
2034}
2035
673a394b
EA
2036/**
2037 * Unbinds an object from the GTT aperture.
2038 */
0f973f27 2039int
05394f39 2040i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2041{
7bddb01f 2042 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2043 int ret = 0;
2044
05394f39 2045 if (obj->gtt_space == NULL)
673a394b
EA
2046 return 0;
2047
05394f39 2048 if (obj->pin_count != 0) {
673a394b
EA
2049 DRM_ERROR("Attempting to unbind pinned buffer\n");
2050 return -EINVAL;
2051 }
2052
a8198eea
CW
2053 ret = i915_gem_object_finish_gpu(obj);
2054 if (ret == -ERESTARTSYS)
2055 return ret;
2056 /* Continue on if we fail due to EIO, the GPU is hung so we
2057 * should be safe and we need to cleanup or else we might
2058 * cause memory corruption through use-after-free.
2059 */
2060
b5ffc9bc 2061 i915_gem_object_finish_gtt(obj);
5323fd04 2062
673a394b
EA
2063 /* Move the object to the CPU domain to ensure that
2064 * any possible CPU writes while it's not in the GTT
a8198eea 2065 * are flushed when we go to remap it.
673a394b 2066 */
a8198eea
CW
2067 if (ret == 0)
2068 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2069 if (ret == -ERESTARTSYS)
673a394b 2070 return ret;
812ed492 2071 if (ret) {
a8198eea
CW
2072 /* In the event of a disaster, abandon all caches and
2073 * hope for the best.
2074 */
812ed492 2075 i915_gem_clflush_object(obj);
05394f39 2076 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2077 }
673a394b 2078
96b47b65 2079 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2080 ret = i915_gem_object_put_fence(obj);
2081 if (ret == -ERESTARTSYS)
2082 return ret;
96b47b65 2083
db53a302
CW
2084 trace_i915_gem_object_unbind(obj);
2085
74898d7e
DV
2086 if (obj->has_global_gtt_mapping)
2087 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2088 if (obj->has_aliasing_ppgtt_mapping) {
2089 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2090 obj->has_aliasing_ppgtt_mapping = 0;
2091 }
74163907 2092 i915_gem_gtt_finish_object(obj);
7bddb01f 2093
e5281ccd 2094 i915_gem_object_put_pages_gtt(obj);
673a394b 2095
6299f992 2096 list_del_init(&obj->gtt_list);
05394f39 2097 list_del_init(&obj->mm_list);
75e9e915 2098 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2099 obj->map_and_fenceable = true;
673a394b 2100
05394f39
CW
2101 drm_mm_put_block(obj->gtt_space);
2102 obj->gtt_space = NULL;
2103 obj->gtt_offset = 0;
673a394b 2104
05394f39 2105 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2106 i915_gem_object_truncate(obj);
2107
8dc1775d 2108 return ret;
673a394b
EA
2109}
2110
88241785 2111int
db53a302 2112i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2113 uint32_t invalidate_domains,
2114 uint32_t flush_domains)
2115{
88241785
CW
2116 int ret;
2117
36d527de
CW
2118 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2119 return 0;
2120
db53a302
CW
2121 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2122
88241785
CW
2123 ret = ring->flush(ring, invalidate_domains, flush_domains);
2124 if (ret)
2125 return ret;
2126
36d527de
CW
2127 if (flush_domains & I915_GEM_GPU_DOMAINS)
2128 i915_gem_process_flushing_list(ring, flush_domains);
2129
88241785 2130 return 0;
54cf91dc
CW
2131}
2132
b93f9cf1 2133static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
a56ba56c 2134{
88241785
CW
2135 int ret;
2136
395b70be 2137 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2138 return 0;
2139
88241785 2140 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2141 ret = i915_gem_flush_ring(ring,
0ac74c6b 2142 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2143 if (ret)
2144 return ret;
2145 }
2146
b93f9cf1
BW
2147 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2148 do_retire);
a56ba56c
CW
2149}
2150
b93f9cf1 2151int i915_gpu_idle(struct drm_device *dev, bool do_retire)
4df2faf4
DV
2152{
2153 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 2154 int ret, i;
4df2faf4 2155
4df2faf4 2156 /* Flush everything onto the inactive list. */
1ec14ad3 2157 for (i = 0; i < I915_NUM_RINGS; i++) {
b93f9cf1 2158 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
1ec14ad3
CW
2159 if (ret)
2160 return ret;
2161 }
4df2faf4 2162
8a1a49f9 2163 return 0;
4df2faf4
DV
2164}
2165
9ce079e4
CW
2166static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2167 struct drm_i915_gem_object *obj)
4e901fdc 2168{
4e901fdc 2169 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2170 uint64_t val;
2171
9ce079e4
CW
2172 if (obj) {
2173 u32 size = obj->gtt_space->size;
4e901fdc 2174
9ce079e4
CW
2175 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2176 0xfffff000) << 32;
2177 val |= obj->gtt_offset & 0xfffff000;
2178 val |= (uint64_t)((obj->stride / 128) - 1) <<
2179 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2180
9ce079e4
CW
2181 if (obj->tiling_mode == I915_TILING_Y)
2182 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2183 val |= I965_FENCE_REG_VALID;
2184 } else
2185 val = 0;
c6642782 2186
9ce079e4
CW
2187 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2188 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2189}
2190
9ce079e4
CW
2191static void i965_write_fence_reg(struct drm_device *dev, int reg,
2192 struct drm_i915_gem_object *obj)
de151cf6 2193{
de151cf6 2194 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2195 uint64_t val;
2196
9ce079e4
CW
2197 if (obj) {
2198 u32 size = obj->gtt_space->size;
de151cf6 2199
9ce079e4
CW
2200 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2201 0xfffff000) << 32;
2202 val |= obj->gtt_offset & 0xfffff000;
2203 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2204 if (obj->tiling_mode == I915_TILING_Y)
2205 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2206 val |= I965_FENCE_REG_VALID;
2207 } else
2208 val = 0;
c6642782 2209
9ce079e4
CW
2210 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2211 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2212}
2213
9ce079e4
CW
2214static void i915_write_fence_reg(struct drm_device *dev, int reg,
2215 struct drm_i915_gem_object *obj)
de151cf6 2216{
de151cf6 2217 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2218 u32 val;
de151cf6 2219
9ce079e4
CW
2220 if (obj) {
2221 u32 size = obj->gtt_space->size;
2222 int pitch_val;
2223 int tile_width;
c6642782 2224
9ce079e4
CW
2225 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2226 (size & -size) != size ||
2227 (obj->gtt_offset & (size - 1)),
2228 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2229 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2230
9ce079e4
CW
2231 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2232 tile_width = 128;
2233 else
2234 tile_width = 512;
2235
2236 /* Note: pitch better be a power of two tile widths */
2237 pitch_val = obj->stride / tile_width;
2238 pitch_val = ffs(pitch_val) - 1;
2239
2240 val = obj->gtt_offset;
2241 if (obj->tiling_mode == I915_TILING_Y)
2242 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2243 val |= I915_FENCE_SIZE_BITS(size);
2244 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2245 val |= I830_FENCE_REG_VALID;
2246 } else
2247 val = 0;
2248
2249 if (reg < 8)
2250 reg = FENCE_REG_830_0 + reg * 4;
2251 else
2252 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2253
2254 I915_WRITE(reg, val);
2255 POSTING_READ(reg);
de151cf6
JB
2256}
2257
9ce079e4
CW
2258static void i830_write_fence_reg(struct drm_device *dev, int reg,
2259 struct drm_i915_gem_object *obj)
de151cf6 2260{
de151cf6 2261 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2262 uint32_t val;
de151cf6 2263
9ce079e4
CW
2264 if (obj) {
2265 u32 size = obj->gtt_space->size;
2266 uint32_t pitch_val;
de151cf6 2267
9ce079e4
CW
2268 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2269 (size & -size) != size ||
2270 (obj->gtt_offset & (size - 1)),
2271 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2272 obj->gtt_offset, size);
e76a16de 2273
9ce079e4
CW
2274 pitch_val = obj->stride / 128;
2275 pitch_val = ffs(pitch_val) - 1;
de151cf6 2276
9ce079e4
CW
2277 val = obj->gtt_offset;
2278 if (obj->tiling_mode == I915_TILING_Y)
2279 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2280 val |= I830_FENCE_SIZE_BITS(size);
2281 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2282 val |= I830_FENCE_REG_VALID;
2283 } else
2284 val = 0;
c6642782 2285
9ce079e4
CW
2286 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2287 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2288}
2289
2290static void i915_gem_write_fence(struct drm_device *dev, int reg,
2291 struct drm_i915_gem_object *obj)
2292{
2293 switch (INTEL_INFO(dev)->gen) {
2294 case 7:
2295 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2296 case 5:
2297 case 4: i965_write_fence_reg(dev, reg, obj); break;
2298 case 3: i915_write_fence_reg(dev, reg, obj); break;
2299 case 2: i830_write_fence_reg(dev, reg, obj); break;
2300 default: break;
2301 }
de151cf6
JB
2302}
2303
d9e86c0e 2304static int
a360bb1a 2305i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e
CW
2306{
2307 int ret;
2308
2309 if (obj->fenced_gpu_access) {
88241785 2310 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
1c293ea3 2311 ret = i915_gem_flush_ring(obj->ring,
88241785
CW
2312 0, obj->base.write_domain);
2313 if (ret)
2314 return ret;
2315 }
d9e86c0e
CW
2316
2317 obj->fenced_gpu_access = false;
2318 }
2319
1c293ea3 2320 if (obj->last_fenced_seqno) {
18991845
CW
2321 ret = i915_wait_request(obj->ring,
2322 obj->last_fenced_seqno,
2323 true);
2324 if (ret)
2325 return ret;
d9e86c0e
CW
2326
2327 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2328 }
2329
63256ec5
CW
2330 /* Ensure that all CPU reads are completed before installing a fence
2331 * and all writes before removing the fence.
2332 */
2333 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2334 mb();
2335
d9e86c0e
CW
2336 return 0;
2337}
2338
2339int
2340i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2341{
2342 int ret;
2343
2344 if (obj->tiling_mode)
2345 i915_gem_release_mmap(obj);
2346
a360bb1a 2347 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2348 if (ret)
2349 return ret;
2350
2351 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2352 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1690e1eb
CW
2353
2354 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
d9e86c0e
CW
2355 i915_gem_clear_fence_reg(obj->base.dev,
2356 &dev_priv->fence_regs[obj->fence_reg]);
2357
2358 obj->fence_reg = I915_FENCE_REG_NONE;
2359 }
2360
2361 return 0;
2362}
2363
2364static struct drm_i915_fence_reg *
a360bb1a 2365i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2366{
ae3db24a 2367 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2368 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2369 int i;
ae3db24a
DV
2370
2371 /* First try to find a free reg */
d9e86c0e 2372 avail = NULL;
ae3db24a
DV
2373 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2374 reg = &dev_priv->fence_regs[i];
2375 if (!reg->obj)
d9e86c0e 2376 return reg;
ae3db24a 2377
1690e1eb 2378 if (!reg->pin_count)
d9e86c0e 2379 avail = reg;
ae3db24a
DV
2380 }
2381
d9e86c0e
CW
2382 if (avail == NULL)
2383 return NULL;
ae3db24a
DV
2384
2385 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2386 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2387 if (reg->pin_count)
ae3db24a
DV
2388 continue;
2389
8fe301ad 2390 return reg;
ae3db24a
DV
2391 }
2392
8fe301ad 2393 return NULL;
ae3db24a
DV
2394}
2395
de151cf6 2396/**
9a5a53b3 2397 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2398 * @obj: object to map through a fence reg
2399 *
2400 * When mapping objects through the GTT, userspace wants to be able to write
2401 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2402 * This function walks the fence regs looking for a free one for @obj,
2403 * stealing one if it can't find any.
2404 *
2405 * It then sets up the reg based on the object's properties: address, pitch
2406 * and tiling format.
9a5a53b3
CW
2407 *
2408 * For an untiled surface, this removes any existing fence.
de151cf6 2409 */
8c4b8c3f 2410int
06d98131 2411i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2412{
05394f39 2413 struct drm_device *dev = obj->base.dev;
79e53945 2414 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2415 struct drm_i915_fence_reg *reg;
ae3db24a 2416 int ret;
de151cf6 2417
9a5a53b3
CW
2418 if (obj->tiling_mode == I915_TILING_NONE)
2419 return i915_gem_object_put_fence(obj);
2420
d9e86c0e 2421 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2422 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2423 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2424 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2425
29c5a587 2426 if (obj->tiling_changed) {
a360bb1a 2427 ret = i915_gem_object_flush_fence(obj);
29c5a587
CW
2428 if (ret)
2429 return ret;
2430
29c5a587
CW
2431 goto update;
2432 }
d9e86c0e 2433
a09ba7fa
EA
2434 return 0;
2435 }
2436
a360bb1a 2437 reg = i915_find_fence_reg(dev);
d9e86c0e 2438 if (reg == NULL)
39965b37 2439 return -EDEADLK;
de151cf6 2440
a360bb1a 2441 ret = i915_gem_object_flush_fence(obj);
d9e86c0e 2442 if (ret)
ae3db24a 2443 return ret;
de151cf6 2444
d9e86c0e
CW
2445 if (reg->obj) {
2446 struct drm_i915_gem_object *old = reg->obj;
2447
2448 drm_gem_object_reference(&old->base);
2449
2450 if (old->tiling_mode)
2451 i915_gem_release_mmap(old);
2452
a360bb1a 2453 ret = i915_gem_object_flush_fence(old);
d9e86c0e
CW
2454 if (ret) {
2455 drm_gem_object_unreference(&old->base);
2456 return ret;
2457 }
2458
d9e86c0e 2459 old->fence_reg = I915_FENCE_REG_NONE;
a360bb1a 2460 old->last_fenced_seqno = 0;
d9e86c0e
CW
2461
2462 drm_gem_object_unreference(&old->base);
a360bb1a 2463 }
a09ba7fa 2464
de151cf6 2465 reg->obj = obj;
d9e86c0e
CW
2466 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2467 obj->fence_reg = reg - dev_priv->fence_regs;
de151cf6 2468
d9e86c0e
CW
2469update:
2470 obj->tiling_changed = false;
9ce079e4
CW
2471 i915_gem_write_fence(dev, reg - dev_priv->fence_regs, obj);
2472 return 0;
de151cf6
JB
2473}
2474
2475/**
2476 * i915_gem_clear_fence_reg - clear out fence register info
2477 * @obj: object to clear
2478 *
2479 * Zeroes out the fence register itself and clears out the associated
05394f39 2480 * data structures in dev_priv and obj.
de151cf6
JB
2481 */
2482static void
d9e86c0e
CW
2483i915_gem_clear_fence_reg(struct drm_device *dev,
2484 struct drm_i915_fence_reg *reg)
de151cf6 2485{
79e53945 2486 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2487 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2488
e259befd 2489 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2490 case 7:
e259befd 2491 case 6:
d9e86c0e 2492 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2493 break;
2494 case 5:
2495 case 4:
d9e86c0e 2496 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2497 break;
2498 case 3:
d9e86c0e
CW
2499 if (fence_reg >= 8)
2500 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2501 else
e259befd 2502 case 2:
d9e86c0e 2503 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2504
2505 I915_WRITE(fence_reg, 0);
e259befd 2506 break;
dc529a4f 2507 }
de151cf6 2508
007cc8ac 2509 list_del_init(&reg->lru_list);
d9e86c0e 2510 reg->obj = NULL;
1690e1eb 2511 reg->pin_count = 0;
52dc7d32
CW
2512}
2513
673a394b
EA
2514/**
2515 * Finds free space in the GTT aperture and binds the object there.
2516 */
2517static int
05394f39 2518i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2519 unsigned alignment,
75e9e915 2520 bool map_and_fenceable)
673a394b 2521{
05394f39 2522 struct drm_device *dev = obj->base.dev;
673a394b 2523 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2524 struct drm_mm_node *free_space;
a00b10c3 2525 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2526 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2527 bool mappable, fenceable;
07f73f69 2528 int ret;
673a394b 2529
05394f39 2530 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2531 DRM_ERROR("Attempting to bind a purgeable object\n");
2532 return -EINVAL;
2533 }
2534
e28f8711
CW
2535 fence_size = i915_gem_get_gtt_size(dev,
2536 obj->base.size,
2537 obj->tiling_mode);
2538 fence_alignment = i915_gem_get_gtt_alignment(dev,
2539 obj->base.size,
2540 obj->tiling_mode);
2541 unfenced_alignment =
2542 i915_gem_get_unfenced_gtt_alignment(dev,
2543 obj->base.size,
2544 obj->tiling_mode);
a00b10c3 2545
673a394b 2546 if (alignment == 0)
5e783301
DV
2547 alignment = map_and_fenceable ? fence_alignment :
2548 unfenced_alignment;
75e9e915 2549 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2550 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2551 return -EINVAL;
2552 }
2553
05394f39 2554 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2555
654fc607
CW
2556 /* If the object is bigger than the entire aperture, reject it early
2557 * before evicting everything in a vain attempt to find space.
2558 */
05394f39 2559 if (obj->base.size >
75e9e915 2560 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2561 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2562 return -E2BIG;
2563 }
2564
673a394b 2565 search_free:
75e9e915 2566 if (map_and_fenceable)
920afa77
DV
2567 free_space =
2568 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2569 size, alignment, 0,
920afa77
DV
2570 dev_priv->mm.gtt_mappable_end,
2571 0);
2572 else
2573 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2574 size, alignment, 0);
920afa77
DV
2575
2576 if (free_space != NULL) {
75e9e915 2577 if (map_and_fenceable)
05394f39 2578 obj->gtt_space =
920afa77 2579 drm_mm_get_block_range_generic(free_space,
a00b10c3 2580 size, alignment, 0,
920afa77
DV
2581 dev_priv->mm.gtt_mappable_end,
2582 0);
2583 else
05394f39 2584 obj->gtt_space =
a00b10c3 2585 drm_mm_get_block(free_space, size, alignment);
920afa77 2586 }
05394f39 2587 if (obj->gtt_space == NULL) {
673a394b
EA
2588 /* If the gtt is empty and we're still having trouble
2589 * fitting our object in, we're out of memory.
2590 */
75e9e915
DV
2591 ret = i915_gem_evict_something(dev, size, alignment,
2592 map_and_fenceable);
9731129c 2593 if (ret)
673a394b 2594 return ret;
9731129c 2595
673a394b
EA
2596 goto search_free;
2597 }
2598
e5281ccd 2599 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2600 if (ret) {
05394f39
CW
2601 drm_mm_put_block(obj->gtt_space);
2602 obj->gtt_space = NULL;
07f73f69
CW
2603
2604 if (ret == -ENOMEM) {
809b6334
CW
2605 /* first try to reclaim some memory by clearing the GTT */
2606 ret = i915_gem_evict_everything(dev, false);
07f73f69 2607 if (ret) {
07f73f69 2608 /* now try to shrink everyone else */
4bdadb97
CW
2609 if (gfpmask) {
2610 gfpmask = 0;
2611 goto search_free;
07f73f69
CW
2612 }
2613
809b6334 2614 return -ENOMEM;
07f73f69
CW
2615 }
2616
2617 goto search_free;
2618 }
2619
673a394b
EA
2620 return ret;
2621 }
2622
74163907 2623 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2624 if (ret) {
e5281ccd 2625 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2626 drm_mm_put_block(obj->gtt_space);
2627 obj->gtt_space = NULL;
07f73f69 2628
809b6334 2629 if (i915_gem_evict_everything(dev, false))
07f73f69 2630 return ret;
07f73f69
CW
2631
2632 goto search_free;
673a394b 2633 }
673a394b 2634
0ebb9829
DV
2635 if (!dev_priv->mm.aliasing_ppgtt)
2636 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2637
6299f992 2638 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2639 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2640
673a394b
EA
2641 /* Assert that the object is not currently in any GPU domain. As it
2642 * wasn't in the GTT, there shouldn't be any way it could have been in
2643 * a GPU cache
2644 */
05394f39
CW
2645 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2646 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2647
6299f992 2648 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2649
75e9e915 2650 fenceable =
05394f39 2651 obj->gtt_space->size == fence_size &&
0206e353 2652 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2653
75e9e915 2654 mappable =
05394f39 2655 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2656
05394f39 2657 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2658
db53a302 2659 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2660 return 0;
2661}
2662
2663void
05394f39 2664i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2665{
673a394b
EA
2666 /* If we don't have a page list set up, then we're not pinned
2667 * to GPU, and we can ignore the cache flush because it'll happen
2668 * again at bind time.
2669 */
05394f39 2670 if (obj->pages == NULL)
673a394b
EA
2671 return;
2672
9c23f7fc
CW
2673 /* If the GPU is snooping the contents of the CPU cache,
2674 * we do not need to manually clear the CPU cache lines. However,
2675 * the caches are only snooped when the render cache is
2676 * flushed/invalidated. As we always have to emit invalidations
2677 * and flushes when moving into and out of the RENDER domain, correct
2678 * snooping behaviour occurs naturally as the result of our domain
2679 * tracking.
2680 */
2681 if (obj->cache_level != I915_CACHE_NONE)
2682 return;
2683
1c5d22f7 2684 trace_i915_gem_object_clflush(obj);
cfa16a0d 2685
05394f39 2686 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2687}
2688
e47c68e9 2689/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2690static int
3619df03 2691i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2692{
05394f39 2693 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2694 return 0;
e47c68e9
EA
2695
2696 /* Queue the GPU write cache flushing we need. */
db53a302 2697 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2698}
2699
2700/** Flushes the GTT write domain for the object if it's dirty. */
2701static void
05394f39 2702i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2703{
1c5d22f7
CW
2704 uint32_t old_write_domain;
2705
05394f39 2706 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2707 return;
2708
63256ec5 2709 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2710 * to it immediately go to main memory as far as we know, so there's
2711 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2712 *
2713 * However, we do have to enforce the order so that all writes through
2714 * the GTT land before any writes to the device, such as updates to
2715 * the GATT itself.
e47c68e9 2716 */
63256ec5
CW
2717 wmb();
2718
05394f39
CW
2719 old_write_domain = obj->base.write_domain;
2720 obj->base.write_domain = 0;
1c5d22f7
CW
2721
2722 trace_i915_gem_object_change_domain(obj,
05394f39 2723 obj->base.read_domains,
1c5d22f7 2724 old_write_domain);
e47c68e9
EA
2725}
2726
2727/** Flushes the CPU write domain for the object if it's dirty. */
2728static void
05394f39 2729i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2730{
1c5d22f7 2731 uint32_t old_write_domain;
e47c68e9 2732
05394f39 2733 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2734 return;
2735
2736 i915_gem_clflush_object(obj);
40ce6575 2737 intel_gtt_chipset_flush();
05394f39
CW
2738 old_write_domain = obj->base.write_domain;
2739 obj->base.write_domain = 0;
1c5d22f7
CW
2740
2741 trace_i915_gem_object_change_domain(obj,
05394f39 2742 obj->base.read_domains,
1c5d22f7 2743 old_write_domain);
e47c68e9
EA
2744}
2745
2ef7eeaa
EA
2746/**
2747 * Moves a single object to the GTT read, and possibly write domain.
2748 *
2749 * This function returns when the move is complete, including waiting on
2750 * flushes to occur.
2751 */
79e53945 2752int
2021746e 2753i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2754{
1c5d22f7 2755 uint32_t old_write_domain, old_read_domains;
e47c68e9 2756 int ret;
2ef7eeaa 2757
02354392 2758 /* Not valid to be called on unbound objects. */
05394f39 2759 if (obj->gtt_space == NULL)
02354392
EA
2760 return -EINVAL;
2761
8d7e3de1
CW
2762 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2763 return 0;
2764
88241785
CW
2765 ret = i915_gem_object_flush_gpu_write_domain(obj);
2766 if (ret)
2767 return ret;
2768
87ca9c8a 2769 if (obj->pending_gpu_write || write) {
ce453d81 2770 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2771 if (ret)
2772 return ret;
2773 }
2dafb1e0 2774
7213342d 2775 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2776
05394f39
CW
2777 old_write_domain = obj->base.write_domain;
2778 old_read_domains = obj->base.read_domains;
1c5d22f7 2779
e47c68e9
EA
2780 /* It should now be out of any other write domains, and we can update
2781 * the domain values for our changes.
2782 */
05394f39
CW
2783 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2784 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2785 if (write) {
05394f39
CW
2786 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2787 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2788 obj->dirty = 1;
2ef7eeaa
EA
2789 }
2790
1c5d22f7
CW
2791 trace_i915_gem_object_change_domain(obj,
2792 old_read_domains,
2793 old_write_domain);
2794
e47c68e9
EA
2795 return 0;
2796}
2797
e4ffd173
CW
2798int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2799 enum i915_cache_level cache_level)
2800{
7bddb01f
DV
2801 struct drm_device *dev = obj->base.dev;
2802 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2803 int ret;
2804
2805 if (obj->cache_level == cache_level)
2806 return 0;
2807
2808 if (obj->pin_count) {
2809 DRM_DEBUG("can not change the cache level of pinned objects\n");
2810 return -EBUSY;
2811 }
2812
2813 if (obj->gtt_space) {
2814 ret = i915_gem_object_finish_gpu(obj);
2815 if (ret)
2816 return ret;
2817
2818 i915_gem_object_finish_gtt(obj);
2819
2820 /* Before SandyBridge, you could not use tiling or fence
2821 * registers with snooped memory, so relinquish any fences
2822 * currently pointing to our region in the aperture.
2823 */
2824 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2825 ret = i915_gem_object_put_fence(obj);
2826 if (ret)
2827 return ret;
2828 }
2829
74898d7e
DV
2830 if (obj->has_global_gtt_mapping)
2831 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2832 if (obj->has_aliasing_ppgtt_mapping)
2833 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2834 obj, cache_level);
e4ffd173
CW
2835 }
2836
2837 if (cache_level == I915_CACHE_NONE) {
2838 u32 old_read_domains, old_write_domain;
2839
2840 /* If we're coming from LLC cached, then we haven't
2841 * actually been tracking whether the data is in the
2842 * CPU cache or not, since we only allow one bit set
2843 * in obj->write_domain and have been skipping the clflushes.
2844 * Just set it to the CPU cache for now.
2845 */
2846 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2847 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2848
2849 old_read_domains = obj->base.read_domains;
2850 old_write_domain = obj->base.write_domain;
2851
2852 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2853 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2854
2855 trace_i915_gem_object_change_domain(obj,
2856 old_read_domains,
2857 old_write_domain);
2858 }
2859
2860 obj->cache_level = cache_level;
2861 return 0;
2862}
2863
b9241ea3 2864/*
2da3b9b9
CW
2865 * Prepare buffer for display plane (scanout, cursors, etc).
2866 * Can be called from an uninterruptible phase (modesetting) and allows
2867 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
2868 */
2869int
2da3b9b9
CW
2870i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2871 u32 alignment,
919926ae 2872 struct intel_ring_buffer *pipelined)
b9241ea3 2873{
2da3b9b9 2874 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2875 int ret;
2876
88241785
CW
2877 ret = i915_gem_object_flush_gpu_write_domain(obj);
2878 if (ret)
2879 return ret;
2880
0be73284 2881 if (pipelined != obj->ring) {
2911a35b
BW
2882 ret = i915_gem_object_sync(obj, pipelined);
2883 if (ret)
b9241ea3
ZW
2884 return ret;
2885 }
2886
a7ef0640
EA
2887 /* The display engine is not coherent with the LLC cache on gen6. As
2888 * a result, we make sure that the pinning that is about to occur is
2889 * done with uncached PTEs. This is lowest common denominator for all
2890 * chipsets.
2891 *
2892 * However for gen6+, we could do better by using the GFDT bit instead
2893 * of uncaching, which would allow us to flush all the LLC-cached data
2894 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2895 */
2896 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2897 if (ret)
2898 return ret;
2899
2da3b9b9
CW
2900 /* As the user may map the buffer once pinned in the display plane
2901 * (e.g. libkms for the bootup splash), we have to ensure that we
2902 * always use map_and_fenceable for all scanout buffers.
2903 */
2904 ret = i915_gem_object_pin(obj, alignment, true);
2905 if (ret)
2906 return ret;
2907
b118c1e3
CW
2908 i915_gem_object_flush_cpu_write_domain(obj);
2909
2da3b9b9 2910 old_write_domain = obj->base.write_domain;
05394f39 2911 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
2912
2913 /* It should now be out of any other write domains, and we can update
2914 * the domain values for our changes.
2915 */
2916 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 2917 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2918
2919 trace_i915_gem_object_change_domain(obj,
2920 old_read_domains,
2da3b9b9 2921 old_write_domain);
b9241ea3
ZW
2922
2923 return 0;
2924}
2925
85345517 2926int
a8198eea 2927i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 2928{
88241785
CW
2929 int ret;
2930
a8198eea 2931 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
2932 return 0;
2933
88241785 2934 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2935 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
2936 if (ret)
2937 return ret;
2938 }
85345517 2939
c501ae7f
CW
2940 ret = i915_gem_object_wait_rendering(obj);
2941 if (ret)
2942 return ret;
2943
a8198eea
CW
2944 /* Ensure that we invalidate the GPU's caches and TLBs. */
2945 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 2946 return 0;
85345517
CW
2947}
2948
e47c68e9
EA
2949/**
2950 * Moves a single object to the CPU read, and possibly write domain.
2951 *
2952 * This function returns when the move is complete, including waiting on
2953 * flushes to occur.
2954 */
dabdfe02 2955int
919926ae 2956i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 2957{
1c5d22f7 2958 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2959 int ret;
2960
8d7e3de1
CW
2961 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
2962 return 0;
2963
88241785
CW
2964 ret = i915_gem_object_flush_gpu_write_domain(obj);
2965 if (ret)
2966 return ret;
2967
f8413190
CW
2968 if (write || obj->pending_gpu_write) {
2969 ret = i915_gem_object_wait_rendering(obj);
2970 if (ret)
2971 return ret;
2972 }
2ef7eeaa 2973
e47c68e9 2974 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2975
05394f39
CW
2976 old_write_domain = obj->base.write_domain;
2977 old_read_domains = obj->base.read_domains;
1c5d22f7 2978
e47c68e9 2979 /* Flush the CPU cache if it's still invalid. */
05394f39 2980 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2981 i915_gem_clflush_object(obj);
2ef7eeaa 2982
05394f39 2983 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2984 }
2985
2986 /* It should now be out of any other write domains, and we can update
2987 * the domain values for our changes.
2988 */
05394f39 2989 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
2990
2991 /* If we're writing through the CPU, then the GPU read domains will
2992 * need to be invalidated at next use.
2993 */
2994 if (write) {
05394f39
CW
2995 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2996 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 2997 }
2ef7eeaa 2998
1c5d22f7
CW
2999 trace_i915_gem_object_change_domain(obj,
3000 old_read_domains,
3001 old_write_domain);
3002
2ef7eeaa
EA
3003 return 0;
3004}
3005
673a394b
EA
3006/* Throttle our rendering by waiting until the ring has completed our requests
3007 * emitted over 20 msec ago.
3008 *
b962442e
EA
3009 * Note that if we were to use the current jiffies each time around the loop,
3010 * we wouldn't escape the function with any frames outstanding if the time to
3011 * render a frame was over 20ms.
3012 *
673a394b
EA
3013 * This should get us reasonable parallelism between CPU and GPU but also
3014 * relatively low latency when blocking on a particular request to finish.
3015 */
40a5f0de 3016static int
f787a5f5 3017i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3018{
f787a5f5
CW
3019 struct drm_i915_private *dev_priv = dev->dev_private;
3020 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3021 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3022 struct drm_i915_gem_request *request;
3023 struct intel_ring_buffer *ring = NULL;
3024 u32 seqno = 0;
3025 int ret;
93533c29 3026
e110e8d6
CW
3027 if (atomic_read(&dev_priv->mm.wedged))
3028 return -EIO;
3029
1c25595f 3030 spin_lock(&file_priv->mm.lock);
f787a5f5 3031 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3032 if (time_after_eq(request->emitted_jiffies, recent_enough))
3033 break;
40a5f0de 3034
f787a5f5
CW
3035 ring = request->ring;
3036 seqno = request->seqno;
b962442e 3037 }
1c25595f 3038 spin_unlock(&file_priv->mm.lock);
40a5f0de 3039
f787a5f5
CW
3040 if (seqno == 0)
3041 return 0;
2bc43b5c 3042
f787a5f5 3043 ret = 0;
78501eac 3044 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3045 /* And wait for the seqno passing without holding any locks and
3046 * causing extra latency for others. This is safe as the irq
3047 * generation is designed to be run atomically and so is
3048 * lockless.
3049 */
b13c2b96
CW
3050 if (ring->irq_get(ring)) {
3051 ret = wait_event_interruptible(ring->irq_queue,
3052 i915_seqno_passed(ring->get_seqno(ring), seqno)
3053 || atomic_read(&dev_priv->mm.wedged));
3054 ring->irq_put(ring);
40a5f0de 3055
b13c2b96
CW
3056 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3057 ret = -EIO;
e959b5db
EA
3058 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3059 seqno) ||
7ea29b13
EA
3060 atomic_read(&dev_priv->mm.wedged), 3000)) {
3061 ret = -EBUSY;
b13c2b96 3062 }
40a5f0de
EA
3063 }
3064
f787a5f5
CW
3065 if (ret == 0)
3066 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3067
3068 return ret;
3069}
3070
673a394b 3071int
05394f39
CW
3072i915_gem_object_pin(struct drm_i915_gem_object *obj,
3073 uint32_t alignment,
75e9e915 3074 bool map_and_fenceable)
673a394b 3075{
05394f39 3076 struct drm_device *dev = obj->base.dev;
f13d3f73 3077 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3078 int ret;
3079
05394f39 3080 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3081 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3082
05394f39
CW
3083 if (obj->gtt_space != NULL) {
3084 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3085 (map_and_fenceable && !obj->map_and_fenceable)) {
3086 WARN(obj->pin_count,
ae7d49d8 3087 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3088 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3089 " obj->map_and_fenceable=%d\n",
05394f39 3090 obj->gtt_offset, alignment,
75e9e915 3091 map_and_fenceable,
05394f39 3092 obj->map_and_fenceable);
ac0c6b5a
CW
3093 ret = i915_gem_object_unbind(obj);
3094 if (ret)
3095 return ret;
3096 }
3097 }
3098
05394f39 3099 if (obj->gtt_space == NULL) {
a00b10c3 3100 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3101 map_and_fenceable);
9731129c 3102 if (ret)
673a394b 3103 return ret;
22c344e9 3104 }
76446cac 3105
74898d7e
DV
3106 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3107 i915_gem_gtt_bind_object(obj, obj->cache_level);
3108
05394f39 3109 if (obj->pin_count++ == 0) {
05394f39
CW
3110 if (!obj->active)
3111 list_move_tail(&obj->mm_list,
f13d3f73 3112 &dev_priv->mm.pinned_list);
673a394b 3113 }
6299f992 3114 obj->pin_mappable |= map_and_fenceable;
673a394b 3115
23bc5982 3116 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3117 return 0;
3118}
3119
3120void
05394f39 3121i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3122{
05394f39 3123 struct drm_device *dev = obj->base.dev;
673a394b 3124 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3125
23bc5982 3126 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3127 BUG_ON(obj->pin_count == 0);
3128 BUG_ON(obj->gtt_space == NULL);
673a394b 3129
05394f39
CW
3130 if (--obj->pin_count == 0) {
3131 if (!obj->active)
3132 list_move_tail(&obj->mm_list,
673a394b 3133 &dev_priv->mm.inactive_list);
6299f992 3134 obj->pin_mappable = false;
673a394b 3135 }
23bc5982 3136 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3137}
3138
3139int
3140i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3141 struct drm_file *file)
673a394b
EA
3142{
3143 struct drm_i915_gem_pin *args = data;
05394f39 3144 struct drm_i915_gem_object *obj;
673a394b
EA
3145 int ret;
3146
1d7cfea1
CW
3147 ret = i915_mutex_lock_interruptible(dev);
3148 if (ret)
3149 return ret;
673a394b 3150
05394f39 3151 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3152 if (&obj->base == NULL) {
1d7cfea1
CW
3153 ret = -ENOENT;
3154 goto unlock;
673a394b 3155 }
673a394b 3156
05394f39 3157 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3158 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3159 ret = -EINVAL;
3160 goto out;
3ef94daa
CW
3161 }
3162
05394f39 3163 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3164 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3165 args->handle);
1d7cfea1
CW
3166 ret = -EINVAL;
3167 goto out;
79e53945
JB
3168 }
3169
05394f39
CW
3170 obj->user_pin_count++;
3171 obj->pin_filp = file;
3172 if (obj->user_pin_count == 1) {
75e9e915 3173 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3174 if (ret)
3175 goto out;
673a394b
EA
3176 }
3177
3178 /* XXX - flush the CPU caches for pinned objects
3179 * as the X server doesn't manage domains yet
3180 */
e47c68e9 3181 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3182 args->offset = obj->gtt_offset;
1d7cfea1 3183out:
05394f39 3184 drm_gem_object_unreference(&obj->base);
1d7cfea1 3185unlock:
673a394b 3186 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3187 return ret;
673a394b
EA
3188}
3189
3190int
3191i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3192 struct drm_file *file)
673a394b
EA
3193{
3194 struct drm_i915_gem_pin *args = data;
05394f39 3195 struct drm_i915_gem_object *obj;
76c1dec1 3196 int ret;
673a394b 3197
1d7cfea1
CW
3198 ret = i915_mutex_lock_interruptible(dev);
3199 if (ret)
3200 return ret;
673a394b 3201
05394f39 3202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3203 if (&obj->base == NULL) {
1d7cfea1
CW
3204 ret = -ENOENT;
3205 goto unlock;
673a394b 3206 }
76c1dec1 3207
05394f39 3208 if (obj->pin_filp != file) {
79e53945
JB
3209 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3210 args->handle);
1d7cfea1
CW
3211 ret = -EINVAL;
3212 goto out;
79e53945 3213 }
05394f39
CW
3214 obj->user_pin_count--;
3215 if (obj->user_pin_count == 0) {
3216 obj->pin_filp = NULL;
79e53945
JB
3217 i915_gem_object_unpin(obj);
3218 }
673a394b 3219
1d7cfea1 3220out:
05394f39 3221 drm_gem_object_unreference(&obj->base);
1d7cfea1 3222unlock:
673a394b 3223 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3224 return ret;
673a394b
EA
3225}
3226
3227int
3228i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3229 struct drm_file *file)
673a394b
EA
3230{
3231 struct drm_i915_gem_busy *args = data;
05394f39 3232 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3233 int ret;
3234
76c1dec1 3235 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3236 if (ret)
76c1dec1 3237 return ret;
673a394b 3238
05394f39 3239 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3240 if (&obj->base == NULL) {
1d7cfea1
CW
3241 ret = -ENOENT;
3242 goto unlock;
673a394b 3243 }
d1b851fc 3244
0be555b6
CW
3245 /* Count all active objects as busy, even if they are currently not used
3246 * by the gpu. Users of this interface expect objects to eventually
3247 * become non-busy without any further actions, therefore emit any
3248 * necessary flushes here.
c4de0a5d 3249 */
05394f39 3250 args->busy = obj->active;
0be555b6
CW
3251 if (args->busy) {
3252 /* Unconditionally flush objects, even when the gpu still uses this
3253 * object. Userspace calling this function indicates that it wants to
3254 * use this buffer rather sooner than later, so issuing the required
3255 * flush earlier is beneficial.
3256 */
1a1c6976 3257 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3258 ret = i915_gem_flush_ring(obj->ring,
88241785 3259 0, obj->base.write_domain);
1a1c6976
CW
3260 } else if (obj->ring->outstanding_lazy_request ==
3261 obj->last_rendering_seqno) {
3262 struct drm_i915_gem_request *request;
3263
7a194876
CW
3264 /* This ring is not being cleared by active usage,
3265 * so emit a request to do so.
3266 */
1a1c6976 3267 request = kzalloc(sizeof(*request), GFP_KERNEL);
457eafce 3268 if (request) {
0206e353 3269 ret = i915_add_request(obj->ring, NULL, request);
457eafce
RM
3270 if (ret)
3271 kfree(request);
3272 } else
7a194876
CW
3273 ret = -ENOMEM;
3274 }
0be555b6
CW
3275
3276 /* Update the active list for the hardware's current position.
3277 * Otherwise this only updates on a delayed timer or when irqs
3278 * are actually unmasked, and our working set ends up being
3279 * larger than required.
3280 */
db53a302 3281 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3282
05394f39 3283 args->busy = obj->active;
0be555b6 3284 }
673a394b 3285
05394f39 3286 drm_gem_object_unreference(&obj->base);
1d7cfea1 3287unlock:
673a394b 3288 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3289 return ret;
673a394b
EA
3290}
3291
3292int
3293i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3294 struct drm_file *file_priv)
3295{
0206e353 3296 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3297}
3298
3ef94daa
CW
3299int
3300i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3301 struct drm_file *file_priv)
3302{
3303 struct drm_i915_gem_madvise *args = data;
05394f39 3304 struct drm_i915_gem_object *obj;
76c1dec1 3305 int ret;
3ef94daa
CW
3306
3307 switch (args->madv) {
3308 case I915_MADV_DONTNEED:
3309 case I915_MADV_WILLNEED:
3310 break;
3311 default:
3312 return -EINVAL;
3313 }
3314
1d7cfea1
CW
3315 ret = i915_mutex_lock_interruptible(dev);
3316 if (ret)
3317 return ret;
3318
05394f39 3319 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3320 if (&obj->base == NULL) {
1d7cfea1
CW
3321 ret = -ENOENT;
3322 goto unlock;
3ef94daa 3323 }
3ef94daa 3324
05394f39 3325 if (obj->pin_count) {
1d7cfea1
CW
3326 ret = -EINVAL;
3327 goto out;
3ef94daa
CW
3328 }
3329
05394f39
CW
3330 if (obj->madv != __I915_MADV_PURGED)
3331 obj->madv = args->madv;
3ef94daa 3332
2d7ef395 3333 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3334 if (i915_gem_object_is_purgeable(obj) &&
3335 obj->gtt_space == NULL)
2d7ef395
CW
3336 i915_gem_object_truncate(obj);
3337
05394f39 3338 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3339
1d7cfea1 3340out:
05394f39 3341 drm_gem_object_unreference(&obj->base);
1d7cfea1 3342unlock:
3ef94daa 3343 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3344 return ret;
3ef94daa
CW
3345}
3346
05394f39
CW
3347struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3348 size_t size)
ac52bc56 3349{
73aa808f 3350 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3351 struct drm_i915_gem_object *obj;
5949eac4 3352 struct address_space *mapping;
ac52bc56 3353
c397b908
DV
3354 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3355 if (obj == NULL)
3356 return NULL;
673a394b 3357
c397b908
DV
3358 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3359 kfree(obj);
3360 return NULL;
3361 }
673a394b 3362
5949eac4
HD
3363 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3364 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3365
73aa808f
CW
3366 i915_gem_info_add_obj(dev_priv, size);
3367
c397b908
DV
3368 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3369 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3370
3d29b842
ED
3371 if (HAS_LLC(dev)) {
3372 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3373 * cache) for about a 10% performance improvement
3374 * compared to uncached. Graphics requests other than
3375 * display scanout are coherent with the CPU in
3376 * accessing this cache. This means in this mode we
3377 * don't need to clflush on the CPU side, and on the
3378 * GPU side we only need to flush internal caches to
3379 * get data visible to the CPU.
3380 *
3381 * However, we maintain the display planes as UC, and so
3382 * need to rebind when first used as such.
3383 */
3384 obj->cache_level = I915_CACHE_LLC;
3385 } else
3386 obj->cache_level = I915_CACHE_NONE;
3387
62b8b215 3388 obj->base.driver_private = NULL;
c397b908 3389 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3390 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3391 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3392 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3393 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3394 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3395 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3396 /* Avoid an unnecessary call to unbind on the first bind. */
3397 obj->map_and_fenceable = true;
de151cf6 3398
05394f39 3399 return obj;
c397b908
DV
3400}
3401
3402int i915_gem_init_object(struct drm_gem_object *obj)
3403{
3404 BUG();
de151cf6 3405
673a394b
EA
3406 return 0;
3407}
3408
05394f39 3409static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3410{
05394f39 3411 struct drm_device *dev = obj->base.dev;
be72615b 3412 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3413 int ret;
673a394b 3414
be72615b
CW
3415 ret = i915_gem_object_unbind(obj);
3416 if (ret == -ERESTARTSYS) {
05394f39 3417 list_move(&obj->mm_list,
be72615b
CW
3418 &dev_priv->mm.deferred_free_list);
3419 return;
3420 }
673a394b 3421
26e12f89
CW
3422 trace_i915_gem_object_destroy(obj);
3423
05394f39 3424 if (obj->base.map_list.map)
b464e9a2 3425 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3426
05394f39
CW
3427 drm_gem_object_release(&obj->base);
3428 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3429
05394f39
CW
3430 kfree(obj->bit_17);
3431 kfree(obj);
673a394b
EA
3432}
3433
05394f39 3434void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3435{
05394f39
CW
3436 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3437 struct drm_device *dev = obj->base.dev;
be72615b 3438
05394f39 3439 while (obj->pin_count > 0)
be72615b
CW
3440 i915_gem_object_unpin(obj);
3441
05394f39 3442 if (obj->phys_obj)
be72615b
CW
3443 i915_gem_detach_phys_object(dev, obj);
3444
3445 i915_gem_free_object_tail(obj);
3446}
3447
29105ccc
CW
3448int
3449i915_gem_idle(struct drm_device *dev)
3450{
3451 drm_i915_private_t *dev_priv = dev->dev_private;
3452 int ret;
28dfe52a 3453
29105ccc 3454 mutex_lock(&dev->struct_mutex);
1c5d22f7 3455
87acb0a5 3456 if (dev_priv->mm.suspended) {
29105ccc
CW
3457 mutex_unlock(&dev->struct_mutex);
3458 return 0;
28dfe52a
EA
3459 }
3460
b93f9cf1 3461 ret = i915_gpu_idle(dev, true);
6dbe2772
KP
3462 if (ret) {
3463 mutex_unlock(&dev->struct_mutex);
673a394b 3464 return ret;
6dbe2772 3465 }
673a394b 3466
29105ccc
CW
3467 /* Under UMS, be paranoid and evict. */
3468 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3469 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3470 if (ret) {
3471 mutex_unlock(&dev->struct_mutex);
3472 return ret;
3473 }
3474 }
3475
312817a3
CW
3476 i915_gem_reset_fences(dev);
3477
29105ccc
CW
3478 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3479 * We need to replace this with a semaphore, or something.
3480 * And not confound mm.suspended!
3481 */
3482 dev_priv->mm.suspended = 1;
bc0c7f14 3483 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3484
3485 i915_kernel_lost_context(dev);
6dbe2772 3486 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3487
6dbe2772
KP
3488 mutex_unlock(&dev->struct_mutex);
3489
29105ccc
CW
3490 /* Cancel the retire work handler, which should be idle now. */
3491 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3492
673a394b
EA
3493 return 0;
3494}
3495
f691e2f4
DV
3496void i915_gem_init_swizzling(struct drm_device *dev)
3497{
3498 drm_i915_private_t *dev_priv = dev->dev_private;
3499
11782b02 3500 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3501 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3502 return;
3503
3504 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3505 DISP_TILE_SURFACE_SWIZZLING);
3506
11782b02
DV
3507 if (IS_GEN5(dev))
3508 return;
3509
f691e2f4
DV
3510 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3511 if (IS_GEN6(dev))
3512 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
3513 else
3514 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
3515}
e21af88d
DV
3516
3517void i915_gem_init_ppgtt(struct drm_device *dev)
3518{
3519 drm_i915_private_t *dev_priv = dev->dev_private;
3520 uint32_t pd_offset;
3521 struct intel_ring_buffer *ring;
55a254ac
DV
3522 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3523 uint32_t __iomem *pd_addr;
3524 uint32_t pd_entry;
e21af88d
DV
3525 int i;
3526
3527 if (!dev_priv->mm.aliasing_ppgtt)
3528 return;
3529
55a254ac
DV
3530
3531 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3532 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3533 dma_addr_t pt_addr;
3534
3535 if (dev_priv->mm.gtt->needs_dmar)
3536 pt_addr = ppgtt->pt_dma_addr[i];
3537 else
3538 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3539
3540 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3541 pd_entry |= GEN6_PDE_VALID;
3542
3543 writel(pd_entry, pd_addr + i);
3544 }
3545 readl(pd_addr);
3546
3547 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3548 pd_offset /= 64; /* in cachelines, */
3549 pd_offset <<= 16;
3550
3551 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3552 uint32_t ecochk, gab_ctl, ecobits;
3553
3554 ecobits = I915_READ(GAC_ECO_BITS);
3555 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3556
3557 gab_ctl = I915_READ(GAB_CTL);
3558 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3559
3560 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3561 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3562 ECOCHK_PPGTT_CACHE64B);
3563 I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3564 } else if (INTEL_INFO(dev)->gen >= 7) {
3565 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3566 /* GFX_MODE is per-ring on gen7+ */
3567 }
3568
3569 for (i = 0; i < I915_NUM_RINGS; i++) {
3570 ring = &dev_priv->ring[i];
3571
3572 if (INTEL_INFO(dev)->gen >= 7)
3573 I915_WRITE(RING_MODE_GEN7(ring),
3574 GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3575
3576 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3577 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3578 }
3579}
3580
8187a2b7 3581int
f691e2f4 3582i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3583{
3584 drm_i915_private_t *dev_priv = dev->dev_private;
3585 int ret;
68f95ba9 3586
f691e2f4
DV
3587 i915_gem_init_swizzling(dev);
3588
5c1143bb 3589 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3590 if (ret)
b6913e4b 3591 return ret;
68f95ba9
CW
3592
3593 if (HAS_BSD(dev)) {
5c1143bb 3594 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3595 if (ret)
3596 goto cleanup_render_ring;
d1b851fc 3597 }
68f95ba9 3598
549f7365
CW
3599 if (HAS_BLT(dev)) {
3600 ret = intel_init_blt_ring_buffer(dev);
3601 if (ret)
3602 goto cleanup_bsd_ring;
3603 }
3604
6f392d54
CW
3605 dev_priv->next_seqno = 1;
3606
e21af88d
DV
3607 i915_gem_init_ppgtt(dev);
3608
68f95ba9
CW
3609 return 0;
3610
549f7365 3611cleanup_bsd_ring:
1ec14ad3 3612 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3613cleanup_render_ring:
1ec14ad3 3614 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3615 return ret;
3616}
3617
3618void
3619i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3620{
3621 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3622 int i;
8187a2b7 3623
1ec14ad3
CW
3624 for (i = 0; i < I915_NUM_RINGS; i++)
3625 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3626}
3627
673a394b
EA
3628int
3629i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3630 struct drm_file *file_priv)
3631{
3632 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3633 int ret, i;
673a394b 3634
79e53945
JB
3635 if (drm_core_check_feature(dev, DRIVER_MODESET))
3636 return 0;
3637
ba1234d1 3638 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3639 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3640 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3641 }
3642
673a394b 3643 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3644 dev_priv->mm.suspended = 0;
3645
f691e2f4 3646 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3647 if (ret != 0) {
3648 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3649 return ret;
d816f6ac 3650 }
9bb2d6f9 3651
69dc4987 3652 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3653 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3654 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3655 for (i = 0; i < I915_NUM_RINGS; i++) {
3656 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3657 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3658 }
673a394b 3659 mutex_unlock(&dev->struct_mutex);
dbb19d30 3660
5f35308b
CW
3661 ret = drm_irq_install(dev);
3662 if (ret)
3663 goto cleanup_ringbuffer;
dbb19d30 3664
673a394b 3665 return 0;
5f35308b
CW
3666
3667cleanup_ringbuffer:
3668 mutex_lock(&dev->struct_mutex);
3669 i915_gem_cleanup_ringbuffer(dev);
3670 dev_priv->mm.suspended = 1;
3671 mutex_unlock(&dev->struct_mutex);
3672
3673 return ret;
673a394b
EA
3674}
3675
3676int
3677i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3678 struct drm_file *file_priv)
3679{
79e53945
JB
3680 if (drm_core_check_feature(dev, DRIVER_MODESET))
3681 return 0;
3682
dbb19d30 3683 drm_irq_uninstall(dev);
e6890f6f 3684 return i915_gem_idle(dev);
673a394b
EA
3685}
3686
3687void
3688i915_gem_lastclose(struct drm_device *dev)
3689{
3690 int ret;
673a394b 3691
e806b495
EA
3692 if (drm_core_check_feature(dev, DRIVER_MODESET))
3693 return;
3694
6dbe2772
KP
3695 ret = i915_gem_idle(dev);
3696 if (ret)
3697 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3698}
3699
64193406
CW
3700static void
3701init_ring_lists(struct intel_ring_buffer *ring)
3702{
3703 INIT_LIST_HEAD(&ring->active_list);
3704 INIT_LIST_HEAD(&ring->request_list);
3705 INIT_LIST_HEAD(&ring->gpu_write_list);
3706}
3707
673a394b
EA
3708void
3709i915_gem_load(struct drm_device *dev)
3710{
b5aa8a0f 3711 int i;
673a394b
EA
3712 drm_i915_private_t *dev_priv = dev->dev_private;
3713
69dc4987 3714 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3715 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3716 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3717 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3718 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3719 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3720 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3721 for (i = 0; i < I915_NUM_RINGS; i++)
3722 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3723 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3724 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3725 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3726 i915_gem_retire_work_handler);
30dbf0c0 3727 init_completion(&dev_priv->error_completion);
31169714 3728
94400120
DA
3729 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3730 if (IS_GEN3(dev)) {
3731 u32 tmp = I915_READ(MI_ARB_STATE);
3732 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3733 /* arb state is a masked write, so set bit + bit in mask */
3734 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3735 I915_WRITE(MI_ARB_STATE, tmp);
3736 }
3737 }
3738
72bfa19c
CW
3739 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3740
de151cf6 3741 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3742 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3743 dev_priv->fence_reg_start = 3;
de151cf6 3744
a6c45cf0 3745 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3746 dev_priv->num_fence_regs = 16;
3747 else
3748 dev_priv->num_fence_regs = 8;
3749
b5aa8a0f 3750 /* Initialize fence registers to zero */
10ed13e4
EA
3751 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3752 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
b5aa8a0f 3753 }
10ed13e4 3754
673a394b 3755 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3756 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3757
ce453d81
CW
3758 dev_priv->mm.interruptible = true;
3759
17250b71
CW
3760 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3761 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3762 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3763}
71acb5eb
DA
3764
3765/*
3766 * Create a physically contiguous memory object for this object
3767 * e.g. for cursor + overlay regs
3768 */
995b6762
CW
3769static int i915_gem_init_phys_object(struct drm_device *dev,
3770 int id, int size, int align)
71acb5eb
DA
3771{
3772 drm_i915_private_t *dev_priv = dev->dev_private;
3773 struct drm_i915_gem_phys_object *phys_obj;
3774 int ret;
3775
3776 if (dev_priv->mm.phys_objs[id - 1] || !size)
3777 return 0;
3778
9a298b2a 3779 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3780 if (!phys_obj)
3781 return -ENOMEM;
3782
3783 phys_obj->id = id;
3784
6eeefaf3 3785 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3786 if (!phys_obj->handle) {
3787 ret = -ENOMEM;
3788 goto kfree_obj;
3789 }
3790#ifdef CONFIG_X86
3791 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3792#endif
3793
3794 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3795
3796 return 0;
3797kfree_obj:
9a298b2a 3798 kfree(phys_obj);
71acb5eb
DA
3799 return ret;
3800}
3801
995b6762 3802static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3803{
3804 drm_i915_private_t *dev_priv = dev->dev_private;
3805 struct drm_i915_gem_phys_object *phys_obj;
3806
3807 if (!dev_priv->mm.phys_objs[id - 1])
3808 return;
3809
3810 phys_obj = dev_priv->mm.phys_objs[id - 1];
3811 if (phys_obj->cur_obj) {
3812 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3813 }
3814
3815#ifdef CONFIG_X86
3816 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3817#endif
3818 drm_pci_free(dev, phys_obj->handle);
3819 kfree(phys_obj);
3820 dev_priv->mm.phys_objs[id - 1] = NULL;
3821}
3822
3823void i915_gem_free_all_phys_object(struct drm_device *dev)
3824{
3825 int i;
3826
260883c8 3827 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3828 i915_gem_free_phys_object(dev, i);
3829}
3830
3831void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3832 struct drm_i915_gem_object *obj)
71acb5eb 3833{
05394f39 3834 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3835 char *vaddr;
71acb5eb 3836 int i;
71acb5eb
DA
3837 int page_count;
3838
05394f39 3839 if (!obj->phys_obj)
71acb5eb 3840 return;
05394f39 3841 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3842
05394f39 3843 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3844 for (i = 0; i < page_count; i++) {
5949eac4 3845 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3846 if (!IS_ERR(page)) {
3847 char *dst = kmap_atomic(page);
3848 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3849 kunmap_atomic(dst);
3850
3851 drm_clflush_pages(&page, 1);
3852
3853 set_page_dirty(page);
3854 mark_page_accessed(page);
3855 page_cache_release(page);
3856 }
71acb5eb 3857 }
40ce6575 3858 intel_gtt_chipset_flush();
d78b47b9 3859
05394f39
CW
3860 obj->phys_obj->cur_obj = NULL;
3861 obj->phys_obj = NULL;
71acb5eb
DA
3862}
3863
3864int
3865i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3866 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3867 int id,
3868 int align)
71acb5eb 3869{
05394f39 3870 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3871 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3872 int ret = 0;
3873 int page_count;
3874 int i;
3875
3876 if (id > I915_MAX_PHYS_OBJECT)
3877 return -EINVAL;
3878
05394f39
CW
3879 if (obj->phys_obj) {
3880 if (obj->phys_obj->id == id)
71acb5eb
DA
3881 return 0;
3882 i915_gem_detach_phys_object(dev, obj);
3883 }
3884
71acb5eb
DA
3885 /* create a new object */
3886 if (!dev_priv->mm.phys_objs[id - 1]) {
3887 ret = i915_gem_init_phys_object(dev, id,
05394f39 3888 obj->base.size, align);
71acb5eb 3889 if (ret) {
05394f39
CW
3890 DRM_ERROR("failed to init phys object %d size: %zu\n",
3891 id, obj->base.size);
e5281ccd 3892 return ret;
71acb5eb
DA
3893 }
3894 }
3895
3896 /* bind to the object */
05394f39
CW
3897 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3898 obj->phys_obj->cur_obj = obj;
71acb5eb 3899
05394f39 3900 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
3901
3902 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3903 struct page *page;
3904 char *dst, *src;
3905
5949eac4 3906 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3907 if (IS_ERR(page))
3908 return PTR_ERR(page);
71acb5eb 3909
ff75b9bc 3910 src = kmap_atomic(page);
05394f39 3911 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 3912 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 3913 kunmap_atomic(src);
71acb5eb 3914
e5281ccd
CW
3915 mark_page_accessed(page);
3916 page_cache_release(page);
3917 }
d78b47b9 3918
71acb5eb 3919 return 0;
71acb5eb
DA
3920}
3921
3922static int
05394f39
CW
3923i915_gem_phys_pwrite(struct drm_device *dev,
3924 struct drm_i915_gem_object *obj,
71acb5eb
DA
3925 struct drm_i915_gem_pwrite *args,
3926 struct drm_file *file_priv)
3927{
05394f39 3928 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 3929 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 3930
b47b30cc
CW
3931 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3932 unsigned long unwritten;
3933
3934 /* The physical object once assigned is fixed for the lifetime
3935 * of the obj, so we can safely drop the lock and continue
3936 * to access vaddr.
3937 */
3938 mutex_unlock(&dev->struct_mutex);
3939 unwritten = copy_from_user(vaddr, user_data, args->size);
3940 mutex_lock(&dev->struct_mutex);
3941 if (unwritten)
3942 return -EFAULT;
3943 }
71acb5eb 3944
40ce6575 3945 intel_gtt_chipset_flush();
71acb5eb
DA
3946 return 0;
3947}
b962442e 3948
f787a5f5 3949void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 3950{
f787a5f5 3951 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
3952
3953 /* Clean up our request list when the client is going away, so that
3954 * later retire_requests won't dereference our soon-to-be-gone
3955 * file_priv.
3956 */
1c25595f 3957 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
3958 while (!list_empty(&file_priv->mm.request_list)) {
3959 struct drm_i915_gem_request *request;
3960
3961 request = list_first_entry(&file_priv->mm.request_list,
3962 struct drm_i915_gem_request,
3963 client_list);
3964 list_del(&request->client_list);
3965 request->file_priv = NULL;
3966 }
1c25595f 3967 spin_unlock(&file_priv->mm.lock);
b962442e 3968}
31169714 3969
1637ef41
CW
3970static int
3971i915_gpu_is_active(struct drm_device *dev)
3972{
3973 drm_i915_private_t *dev_priv = dev->dev_private;
3974 int lists_empty;
3975
1637ef41 3976 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 3977 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
3978
3979 return !lists_empty;
3980}
3981
31169714 3982static int
1495f230 3983i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 3984{
17250b71
CW
3985 struct drm_i915_private *dev_priv =
3986 container_of(shrinker,
3987 struct drm_i915_private,
3988 mm.inactive_shrinker);
3989 struct drm_device *dev = dev_priv->dev;
3990 struct drm_i915_gem_object *obj, *next;
1495f230 3991 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
3992 int cnt;
3993
3994 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 3995 return 0;
31169714
CW
3996
3997 /* "fast-path" to count number of available objects */
3998 if (nr_to_scan == 0) {
17250b71
CW
3999 cnt = 0;
4000 list_for_each_entry(obj,
4001 &dev_priv->mm.inactive_list,
4002 mm_list)
4003 cnt++;
4004 mutex_unlock(&dev->struct_mutex);
4005 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4006 }
4007
1637ef41 4008rescan:
31169714 4009 /* first scan for clean buffers */
17250b71 4010 i915_gem_retire_requests(dev);
31169714 4011
17250b71
CW
4012 list_for_each_entry_safe(obj, next,
4013 &dev_priv->mm.inactive_list,
4014 mm_list) {
4015 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4016 if (i915_gem_object_unbind(obj) == 0 &&
4017 --nr_to_scan == 0)
17250b71 4018 break;
31169714 4019 }
31169714
CW
4020 }
4021
4022 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4023 cnt = 0;
4024 list_for_each_entry_safe(obj, next,
4025 &dev_priv->mm.inactive_list,
4026 mm_list) {
2021746e
CW
4027 if (nr_to_scan &&
4028 i915_gem_object_unbind(obj) == 0)
17250b71 4029 nr_to_scan--;
2021746e 4030 else
17250b71
CW
4031 cnt++;
4032 }
4033
4034 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4035 /*
4036 * We are desperate for pages, so as a last resort, wait
4037 * for the GPU to finish and discard whatever we can.
4038 * This has a dramatic impact to reduce the number of
4039 * OOM-killer events whilst running the GPU aggressively.
4040 */
b93f9cf1 4041 if (i915_gpu_idle(dev, true) == 0)
1637ef41
CW
4042 goto rescan;
4043 }
17250b71
CW
4044 mutex_unlock(&dev->struct_mutex);
4045 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4046}