]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Update WaFlushCoherentL3CacheLinesAtContextSwitch
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808
CW
49static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
c76ce038
CW
55static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57{
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59}
60
2c22569b
CW
61static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62{
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67}
68
61050808
CW
69static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70{
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
5d82e3e6 77 obj->fence_dirty = false;
61050808
CW
78 obj->fence_reg = I915_FENCE_REG_NONE;
79}
80
73aa808f
CW
81/* some bookkeeping */
82static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
c20e8355 85 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
c20e8355 88 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89}
90
91static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93{
c20e8355 94 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
c20e8355 97 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98}
99
21dd3734 100static int
33196ded 101i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 102{
30dbf0c0
CW
103 int ret;
104
7abb690a
DV
105#define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
1f83fee0 107 if (EXIT_COND)
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0
DV
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
0a6759c6 123 }
1f83fee0 124#undef EXIT_COND
30dbf0c0 125
21dd3734 126 return 0;
30dbf0c0
CW
127}
128
54cf91dc 129int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 130{
33196ded 131 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
132 int ret;
133
33196ded 134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
23bc5982 142 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
73aa808f 150 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 151 struct drm_i915_gem_get_aperture *args = data;
ca1543be
TU
152 struct i915_gtt *ggtt = &dev_priv->gtt;
153 struct i915_vma *vma;
6299f992 154 size_t pinned;
5a125c3c 155
6299f992 156 pinned = 0;
73aa808f 157 mutex_lock(&dev->struct_mutex);
ca1543be
TU
158 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
159 if (vma->pin_count)
160 pinned += vma->node.size;
161 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
162 if (vma->pin_count)
163 pinned += vma->node.size;
73aa808f 164 mutex_unlock(&dev->struct_mutex);
5a125c3c 165
853ba5d2 166 args->aper_size = dev_priv->gtt.base.total;
0206e353 167 args->aper_available_size = args->aper_size - pinned;
6299f992 168
5a125c3c
EA
169 return 0;
170}
171
6a2c4232
CW
172static int
173i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 174{
6a2c4232
CW
175 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
176 char *vaddr = obj->phys_handle->vaddr;
177 struct sg_table *st;
178 struct scatterlist *sg;
179 int i;
00731155 180
6a2c4232
CW
181 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182 return -EINVAL;
183
184 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 struct page *page;
186 char *src;
187
188 page = shmem_read_mapping_page(mapping, i);
189 if (IS_ERR(page))
190 return PTR_ERR(page);
191
192 src = kmap_atomic(page);
193 memcpy(vaddr, src, PAGE_SIZE);
194 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 kunmap_atomic(src);
196
197 page_cache_release(page);
198 vaddr += PAGE_SIZE;
199 }
200
201 i915_gem_chipset_flush(obj->base.dev);
202
203 st = kmalloc(sizeof(*st), GFP_KERNEL);
204 if (st == NULL)
205 return -ENOMEM;
206
207 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 kfree(st);
209 return -ENOMEM;
210 }
211
212 sg = st->sgl;
213 sg->offset = 0;
214 sg->length = obj->base.size;
00731155 215
6a2c4232
CW
216 sg_dma_address(sg) = obj->phys_handle->busaddr;
217 sg_dma_len(sg) = obj->base.size;
218
219 obj->pages = st;
220 obj->has_dma_mapping = true;
221 return 0;
222}
223
224static void
225i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
226{
227 int ret;
228
229 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 230
6a2c4232
CW
231 ret = i915_gem_object_set_to_cpu_domain(obj, true);
232 if (ret) {
233 /* In the event of a disaster, abandon all caches and
234 * hope for the best.
235 */
236 WARN_ON(ret != -EIO);
237 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
238 }
239
240 if (obj->madv == I915_MADV_DONTNEED)
241 obj->dirty = 0;
242
243 if (obj->dirty) {
00731155 244 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 245 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
246 int i;
247
248 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
249 struct page *page;
250 char *dst;
251
252 page = shmem_read_mapping_page(mapping, i);
253 if (IS_ERR(page))
254 continue;
255
256 dst = kmap_atomic(page);
257 drm_clflush_virt_range(vaddr, PAGE_SIZE);
258 memcpy(dst, vaddr, PAGE_SIZE);
259 kunmap_atomic(dst);
260
261 set_page_dirty(page);
262 if (obj->madv == I915_MADV_WILLNEED)
00731155 263 mark_page_accessed(page);
6a2c4232 264 page_cache_release(page);
00731155
CW
265 vaddr += PAGE_SIZE;
266 }
6a2c4232 267 obj->dirty = 0;
00731155
CW
268 }
269
6a2c4232
CW
270 sg_free_table(obj->pages);
271 kfree(obj->pages);
272
273 obj->has_dma_mapping = false;
274}
275
276static void
277i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
278{
279 drm_pci_free(obj->base.dev, obj->phys_handle);
280}
281
282static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
283 .get_pages = i915_gem_object_get_pages_phys,
284 .put_pages = i915_gem_object_put_pages_phys,
285 .release = i915_gem_object_release_phys,
286};
287
288static int
289drop_pages(struct drm_i915_gem_object *obj)
290{
291 struct i915_vma *vma, *next;
292 int ret;
293
294 drm_gem_object_reference(&obj->base);
295 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
296 if (i915_vma_unbind(vma))
297 break;
298
299 ret = i915_gem_object_put_pages(obj);
300 drm_gem_object_unreference(&obj->base);
301
302 return ret;
00731155
CW
303}
304
305int
306i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
307 int align)
308{
309 drm_dma_handle_t *phys;
6a2c4232 310 int ret;
00731155
CW
311
312 if (obj->phys_handle) {
313 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
314 return -EBUSY;
315
316 return 0;
317 }
318
319 if (obj->madv != I915_MADV_WILLNEED)
320 return -EFAULT;
321
322 if (obj->base.filp == NULL)
323 return -EINVAL;
324
6a2c4232
CW
325 ret = drop_pages(obj);
326 if (ret)
327 return ret;
328
00731155
CW
329 /* create a new object */
330 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
331 if (!phys)
332 return -ENOMEM;
333
00731155 334 obj->phys_handle = phys;
6a2c4232
CW
335 obj->ops = &i915_gem_phys_ops;
336
337 return i915_gem_object_get_pages(obj);
00731155
CW
338}
339
340static int
341i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
342 struct drm_i915_gem_pwrite *args,
343 struct drm_file *file_priv)
344{
345 struct drm_device *dev = obj->base.dev;
346 void *vaddr = obj->phys_handle->vaddr + args->offset;
347 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 348 int ret = 0;
6a2c4232
CW
349
350 /* We manually control the domain here and pretend that it
351 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
352 */
353 ret = i915_gem_object_wait_rendering(obj, false);
354 if (ret)
355 return ret;
00731155 356
77a0d1ca 357 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
358 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
359 unsigned long unwritten;
360
361 /* The physical object once assigned is fixed for the lifetime
362 * of the obj, so we can safely drop the lock and continue
363 * to access vaddr.
364 */
365 mutex_unlock(&dev->struct_mutex);
366 unwritten = copy_from_user(vaddr, user_data, args->size);
367 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
368 if (unwritten) {
369 ret = -EFAULT;
370 goto out;
371 }
00731155
CW
372 }
373
6a2c4232 374 drm_clflush_virt_range(vaddr, args->size);
00731155 375 i915_gem_chipset_flush(dev);
063e4e6b
PZ
376
377out:
378 intel_fb_obj_flush(obj, false);
379 return ret;
00731155
CW
380}
381
42dcedd4
CW
382void *i915_gem_object_alloc(struct drm_device *dev)
383{
384 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 385 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
386}
387
388void i915_gem_object_free(struct drm_i915_gem_object *obj)
389{
390 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 391 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
392}
393
ff72145b
DA
394static int
395i915_gem_create(struct drm_file *file,
396 struct drm_device *dev,
397 uint64_t size,
398 uint32_t *handle_p)
673a394b 399{
05394f39 400 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
401 int ret;
402 u32 handle;
673a394b 403
ff72145b 404 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
405 if (size == 0)
406 return -EINVAL;
673a394b
EA
407
408 /* Allocate the new object */
ff72145b 409 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
410 if (obj == NULL)
411 return -ENOMEM;
412
05394f39 413 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 414 /* drop reference from allocate - handle holds it now */
d861e338
DV
415 drm_gem_object_unreference_unlocked(&obj->base);
416 if (ret)
417 return ret;
202f2fef 418
ff72145b 419 *handle_p = handle;
673a394b
EA
420 return 0;
421}
422
ff72145b
DA
423int
424i915_gem_dumb_create(struct drm_file *file,
425 struct drm_device *dev,
426 struct drm_mode_create_dumb *args)
427{
428 /* have to work out size/pitch and return them */
de45eaf7 429 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
430 args->size = args->pitch * args->height;
431 return i915_gem_create(file, dev,
da6b51d0 432 args->size, &args->handle);
ff72145b
DA
433}
434
ff72145b
DA
435/**
436 * Creates a new mm object and returns a handle to it.
437 */
438int
439i915_gem_create_ioctl(struct drm_device *dev, void *data,
440 struct drm_file *file)
441{
442 struct drm_i915_gem_create *args = data;
63ed2cb2 443
ff72145b 444 return i915_gem_create(file, dev,
da6b51d0 445 args->size, &args->handle);
ff72145b
DA
446}
447
8461d226
DV
448static inline int
449__copy_to_user_swizzled(char __user *cpu_vaddr,
450 const char *gpu_vaddr, int gpu_offset,
451 int length)
452{
453 int ret, cpu_offset = 0;
454
455 while (length > 0) {
456 int cacheline_end = ALIGN(gpu_offset + 1, 64);
457 int this_length = min(cacheline_end - gpu_offset, length);
458 int swizzled_gpu_offset = gpu_offset ^ 64;
459
460 ret = __copy_to_user(cpu_vaddr + cpu_offset,
461 gpu_vaddr + swizzled_gpu_offset,
462 this_length);
463 if (ret)
464 return ret + length;
465
466 cpu_offset += this_length;
467 gpu_offset += this_length;
468 length -= this_length;
469 }
470
471 return 0;
472}
473
8c59967c 474static inline int
4f0c7cfb
BW
475__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
476 const char __user *cpu_vaddr,
8c59967c
DV
477 int length)
478{
479 int ret, cpu_offset = 0;
480
481 while (length > 0) {
482 int cacheline_end = ALIGN(gpu_offset + 1, 64);
483 int this_length = min(cacheline_end - gpu_offset, length);
484 int swizzled_gpu_offset = gpu_offset ^ 64;
485
486 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
487 cpu_vaddr + cpu_offset,
488 this_length);
489 if (ret)
490 return ret + length;
491
492 cpu_offset += this_length;
493 gpu_offset += this_length;
494 length -= this_length;
495 }
496
497 return 0;
498}
499
4c914c0c
BV
500/*
501 * Pins the specified object's pages and synchronizes the object with
502 * GPU accesses. Sets needs_clflush to non-zero if the caller should
503 * flush the object from the CPU cache.
504 */
505int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
506 int *needs_clflush)
507{
508 int ret;
509
510 *needs_clflush = 0;
511
512 if (!obj->base.filp)
513 return -EINVAL;
514
515 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
516 /* If we're not in the cpu read domain, set ourself into the gtt
517 * read domain and manually flush cachelines (if required). This
518 * optimizes for the case when the gpu will dirty the data
519 * anyway again before the next pread happens. */
520 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
521 obj->cache_level);
522 ret = i915_gem_object_wait_rendering(obj, true);
523 if (ret)
524 return ret;
525 }
526
527 ret = i915_gem_object_get_pages(obj);
528 if (ret)
529 return ret;
530
531 i915_gem_object_pin_pages(obj);
532
533 return ret;
534}
535
d174bd64
DV
536/* Per-page copy function for the shmem pread fastpath.
537 * Flushes invalid cachelines before reading the target if
538 * needs_clflush is set. */
eb01459f 539static int
d174bd64
DV
540shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
541 char __user *user_data,
542 bool page_do_bit17_swizzling, bool needs_clflush)
543{
544 char *vaddr;
545 int ret;
546
e7e58eb5 547 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
548 return -EINVAL;
549
550 vaddr = kmap_atomic(page);
551 if (needs_clflush)
552 drm_clflush_virt_range(vaddr + shmem_page_offset,
553 page_length);
554 ret = __copy_to_user_inatomic(user_data,
555 vaddr + shmem_page_offset,
556 page_length);
557 kunmap_atomic(vaddr);
558
f60d7f0c 559 return ret ? -EFAULT : 0;
d174bd64
DV
560}
561
23c18c71
DV
562static void
563shmem_clflush_swizzled_range(char *addr, unsigned long length,
564 bool swizzled)
565{
e7e58eb5 566 if (unlikely(swizzled)) {
23c18c71
DV
567 unsigned long start = (unsigned long) addr;
568 unsigned long end = (unsigned long) addr + length;
569
570 /* For swizzling simply ensure that we always flush both
571 * channels. Lame, but simple and it works. Swizzled
572 * pwrite/pread is far from a hotpath - current userspace
573 * doesn't use it at all. */
574 start = round_down(start, 128);
575 end = round_up(end, 128);
576
577 drm_clflush_virt_range((void *)start, end - start);
578 } else {
579 drm_clflush_virt_range(addr, length);
580 }
581
582}
583
d174bd64
DV
584/* Only difference to the fast-path function is that this can handle bit17
585 * and uses non-atomic copy and kmap functions. */
586static int
587shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
588 char __user *user_data,
589 bool page_do_bit17_swizzling, bool needs_clflush)
590{
591 char *vaddr;
592 int ret;
593
594 vaddr = kmap(page);
595 if (needs_clflush)
23c18c71
DV
596 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
597 page_length,
598 page_do_bit17_swizzling);
d174bd64
DV
599
600 if (page_do_bit17_swizzling)
601 ret = __copy_to_user_swizzled(user_data,
602 vaddr, shmem_page_offset,
603 page_length);
604 else
605 ret = __copy_to_user(user_data,
606 vaddr + shmem_page_offset,
607 page_length);
608 kunmap(page);
609
f60d7f0c 610 return ret ? - EFAULT : 0;
d174bd64
DV
611}
612
eb01459f 613static int
dbf7bff0
DV
614i915_gem_shmem_pread(struct drm_device *dev,
615 struct drm_i915_gem_object *obj,
616 struct drm_i915_gem_pread *args,
617 struct drm_file *file)
eb01459f 618{
8461d226 619 char __user *user_data;
eb01459f 620 ssize_t remain;
8461d226 621 loff_t offset;
eb2c0c81 622 int shmem_page_offset, page_length, ret = 0;
8461d226 623 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 624 int prefaulted = 0;
8489731c 625 int needs_clflush = 0;
67d5a50c 626 struct sg_page_iter sg_iter;
eb01459f 627
2bb4629a 628 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
629 remain = args->size;
630
8461d226 631 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 632
4c914c0c 633 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
634 if (ret)
635 return ret;
636
8461d226 637 offset = args->offset;
eb01459f 638
67d5a50c
ID
639 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
640 offset >> PAGE_SHIFT) {
2db76d7c 641 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
642
643 if (remain <= 0)
644 break;
645
eb01459f
EA
646 /* Operation in this page
647 *
eb01459f 648 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
649 * page_length = bytes to copy for this page
650 */
c8cbbb8b 651 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
652 page_length = remain;
653 if ((shmem_page_offset + page_length) > PAGE_SIZE)
654 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 655
8461d226
DV
656 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
657 (page_to_phys(page) & (1 << 17)) != 0;
658
d174bd64
DV
659 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
660 user_data, page_do_bit17_swizzling,
661 needs_clflush);
662 if (ret == 0)
663 goto next_page;
dbf7bff0 664
dbf7bff0
DV
665 mutex_unlock(&dev->struct_mutex);
666
d330a953 667 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 668 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
669 /* Userspace is tricking us, but we've already clobbered
670 * its pages with the prefault and promised to write the
671 * data up to the first fault. Hence ignore any errors
672 * and just continue. */
673 (void)ret;
674 prefaulted = 1;
675 }
eb01459f 676
d174bd64
DV
677 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
678 user_data, page_do_bit17_swizzling,
679 needs_clflush);
eb01459f 680
dbf7bff0 681 mutex_lock(&dev->struct_mutex);
f60d7f0c 682
f60d7f0c 683 if (ret)
8461d226 684 goto out;
8461d226 685
17793c9a 686next_page:
eb01459f 687 remain -= page_length;
8461d226 688 user_data += page_length;
eb01459f
EA
689 offset += page_length;
690 }
691
4f27b75d 692out:
f60d7f0c
CW
693 i915_gem_object_unpin_pages(obj);
694
eb01459f
EA
695 return ret;
696}
697
673a394b
EA
698/**
699 * Reads data from the object referenced by handle.
700 *
701 * On error, the contents of *data are undefined.
702 */
703int
704i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 705 struct drm_file *file)
673a394b
EA
706{
707 struct drm_i915_gem_pread *args = data;
05394f39 708 struct drm_i915_gem_object *obj;
35b62a89 709 int ret = 0;
673a394b 710
51311d0a
CW
711 if (args->size == 0)
712 return 0;
713
714 if (!access_ok(VERIFY_WRITE,
2bb4629a 715 to_user_ptr(args->data_ptr),
51311d0a
CW
716 args->size))
717 return -EFAULT;
718
4f27b75d 719 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 720 if (ret)
4f27b75d 721 return ret;
673a394b 722
05394f39 723 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 724 if (&obj->base == NULL) {
1d7cfea1
CW
725 ret = -ENOENT;
726 goto unlock;
4f27b75d 727 }
673a394b 728
7dcd2499 729 /* Bounds check source. */
05394f39
CW
730 if (args->offset > obj->base.size ||
731 args->size > obj->base.size - args->offset) {
ce9d419d 732 ret = -EINVAL;
35b62a89 733 goto out;
ce9d419d
CW
734 }
735
1286ff73
DV
736 /* prime objects have no backing filp to GEM pread/pwrite
737 * pages from.
738 */
739 if (!obj->base.filp) {
740 ret = -EINVAL;
741 goto out;
742 }
743
db53a302
CW
744 trace_i915_gem_object_pread(obj, args->offset, args->size);
745
dbf7bff0 746 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 747
35b62a89 748out:
05394f39 749 drm_gem_object_unreference(&obj->base);
1d7cfea1 750unlock:
4f27b75d 751 mutex_unlock(&dev->struct_mutex);
eb01459f 752 return ret;
673a394b
EA
753}
754
0839ccb8
KP
755/* This is the fast write path which cannot handle
756 * page faults in the source data
9b7530cc 757 */
0839ccb8
KP
758
759static inline int
760fast_user_write(struct io_mapping *mapping,
761 loff_t page_base, int page_offset,
762 char __user *user_data,
763 int length)
9b7530cc 764{
4f0c7cfb
BW
765 void __iomem *vaddr_atomic;
766 void *vaddr;
0839ccb8 767 unsigned long unwritten;
9b7530cc 768
3e4d3af5 769 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
770 /* We can use the cpu mem copy function because this is X86. */
771 vaddr = (void __force*)vaddr_atomic + page_offset;
772 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 773 user_data, length);
3e4d3af5 774 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 775 return unwritten;
0839ccb8
KP
776}
777
3de09aa3
EA
778/**
779 * This is the fast pwrite path, where we copy the data directly from the
780 * user into the GTT, uncached.
781 */
673a394b 782static int
05394f39
CW
783i915_gem_gtt_pwrite_fast(struct drm_device *dev,
784 struct drm_i915_gem_object *obj,
3de09aa3 785 struct drm_i915_gem_pwrite *args,
05394f39 786 struct drm_file *file)
673a394b 787{
3e31c6c0 788 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 789 ssize_t remain;
0839ccb8 790 loff_t offset, page_base;
673a394b 791 char __user *user_data;
935aaa69
DV
792 int page_offset, page_length, ret;
793
1ec9e26d 794 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
795 if (ret)
796 goto out;
797
798 ret = i915_gem_object_set_to_gtt_domain(obj, true);
799 if (ret)
800 goto out_unpin;
801
802 ret = i915_gem_object_put_fence(obj);
803 if (ret)
804 goto out_unpin;
673a394b 805
2bb4629a 806 user_data = to_user_ptr(args->data_ptr);
673a394b 807 remain = args->size;
673a394b 808
f343c5f6 809 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 810
77a0d1ca 811 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 812
673a394b
EA
813 while (remain > 0) {
814 /* Operation in this page
815 *
0839ccb8
KP
816 * page_base = page offset within aperture
817 * page_offset = offset within page
818 * page_length = bytes to copy for this page
673a394b 819 */
c8cbbb8b
CW
820 page_base = offset & PAGE_MASK;
821 page_offset = offset_in_page(offset);
0839ccb8
KP
822 page_length = remain;
823 if ((page_offset + remain) > PAGE_SIZE)
824 page_length = PAGE_SIZE - page_offset;
825
0839ccb8 826 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
827 * source page isn't available. Return the error and we'll
828 * retry in the slow path.
0839ccb8 829 */
5d4545ae 830 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
831 page_offset, user_data, page_length)) {
832 ret = -EFAULT;
063e4e6b 833 goto out_flush;
935aaa69 834 }
673a394b 835
0839ccb8
KP
836 remain -= page_length;
837 user_data += page_length;
838 offset += page_length;
673a394b 839 }
673a394b 840
063e4e6b
PZ
841out_flush:
842 intel_fb_obj_flush(obj, false);
935aaa69 843out_unpin:
d7f46fc4 844 i915_gem_object_ggtt_unpin(obj);
935aaa69 845out:
3de09aa3 846 return ret;
673a394b
EA
847}
848
d174bd64
DV
849/* Per-page copy function for the shmem pwrite fastpath.
850 * Flushes invalid cachelines before writing to the target if
851 * needs_clflush_before is set and flushes out any written cachelines after
852 * writing if needs_clflush is set. */
3043c60c 853static int
d174bd64
DV
854shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
855 char __user *user_data,
856 bool page_do_bit17_swizzling,
857 bool needs_clflush_before,
858 bool needs_clflush_after)
673a394b 859{
d174bd64 860 char *vaddr;
673a394b 861 int ret;
3de09aa3 862
e7e58eb5 863 if (unlikely(page_do_bit17_swizzling))
d174bd64 864 return -EINVAL;
3de09aa3 865
d174bd64
DV
866 vaddr = kmap_atomic(page);
867 if (needs_clflush_before)
868 drm_clflush_virt_range(vaddr + shmem_page_offset,
869 page_length);
c2831a94
CW
870 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
871 user_data, page_length);
d174bd64
DV
872 if (needs_clflush_after)
873 drm_clflush_virt_range(vaddr + shmem_page_offset,
874 page_length);
875 kunmap_atomic(vaddr);
3de09aa3 876
755d2218 877 return ret ? -EFAULT : 0;
3de09aa3
EA
878}
879
d174bd64
DV
880/* Only difference to the fast-path function is that this can handle bit17
881 * and uses non-atomic copy and kmap functions. */
3043c60c 882static int
d174bd64
DV
883shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
884 char __user *user_data,
885 bool page_do_bit17_swizzling,
886 bool needs_clflush_before,
887 bool needs_clflush_after)
673a394b 888{
d174bd64
DV
889 char *vaddr;
890 int ret;
e5281ccd 891
d174bd64 892 vaddr = kmap(page);
e7e58eb5 893 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
894 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
895 page_length,
896 page_do_bit17_swizzling);
d174bd64
DV
897 if (page_do_bit17_swizzling)
898 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
899 user_data,
900 page_length);
d174bd64
DV
901 else
902 ret = __copy_from_user(vaddr + shmem_page_offset,
903 user_data,
904 page_length);
905 if (needs_clflush_after)
23c18c71
DV
906 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
907 page_length,
908 page_do_bit17_swizzling);
d174bd64 909 kunmap(page);
40123c1f 910
755d2218 911 return ret ? -EFAULT : 0;
40123c1f
EA
912}
913
40123c1f 914static int
e244a443
DV
915i915_gem_shmem_pwrite(struct drm_device *dev,
916 struct drm_i915_gem_object *obj,
917 struct drm_i915_gem_pwrite *args,
918 struct drm_file *file)
40123c1f 919{
40123c1f 920 ssize_t remain;
8c59967c
DV
921 loff_t offset;
922 char __user *user_data;
eb2c0c81 923 int shmem_page_offset, page_length, ret = 0;
8c59967c 924 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 925 int hit_slowpath = 0;
58642885
DV
926 int needs_clflush_after = 0;
927 int needs_clflush_before = 0;
67d5a50c 928 struct sg_page_iter sg_iter;
40123c1f 929
2bb4629a 930 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
931 remain = args->size;
932
8c59967c 933 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 934
58642885
DV
935 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
936 /* If we're not in the cpu write domain, set ourself into the gtt
937 * write domain and manually flush cachelines (if required). This
938 * optimizes for the case when the gpu will use the data
939 * right away and we therefore have to clflush anyway. */
2c22569b 940 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
941 ret = i915_gem_object_wait_rendering(obj, false);
942 if (ret)
943 return ret;
58642885 944 }
c76ce038
CW
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 950
755d2218
CW
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
77a0d1ca 955 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 956
755d2218
CW
957 i915_gem_object_pin_pages(obj);
958
673a394b 959 offset = args->offset;
05394f39 960 obj->dirty = 1;
673a394b 961
67d5a50c
ID
962 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 offset >> PAGE_SHIFT) {
2db76d7c 964 struct page *page = sg_page_iter_page(&sg_iter);
58642885 965 int partial_cacheline_write;
e5281ccd 966
9da3da66
CW
967 if (remain <= 0)
968 break;
969
40123c1f
EA
970 /* Operation in this page
971 *
40123c1f 972 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
973 * page_length = bytes to copy for this page
974 */
c8cbbb8b 975 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
976
977 page_length = remain;
978 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 980
58642885
DV
981 /* If we don't overwrite a cacheline completely we need to be
982 * careful to have up-to-date data by first clflushing. Don't
983 * overcomplicate things and flush the entire patch. */
984 partial_cacheline_write = needs_clflush_before &&
985 ((shmem_page_offset | page_length)
986 & (boot_cpu_data.x86_clflush_size - 1));
987
8c59967c
DV
988 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 (page_to_phys(page) & (1 << 17)) != 0;
990
d174bd64
DV
991 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 user_data, page_do_bit17_swizzling,
993 partial_cacheline_write,
994 needs_clflush_after);
995 if (ret == 0)
996 goto next_page;
e244a443
DV
997
998 hit_slowpath = 1;
e244a443 999 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1000 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 user_data, page_do_bit17_swizzling,
1002 partial_cacheline_write,
1003 needs_clflush_after);
40123c1f 1004
e244a443 1005 mutex_lock(&dev->struct_mutex);
755d2218 1006
755d2218 1007 if (ret)
8c59967c 1008 goto out;
8c59967c 1009
17793c9a 1010next_page:
40123c1f 1011 remain -= page_length;
8c59967c 1012 user_data += page_length;
40123c1f 1013 offset += page_length;
673a394b
EA
1014 }
1015
fbd5a26d 1016out:
755d2218
CW
1017 i915_gem_object_unpin_pages(obj);
1018
e244a443 1019 if (hit_slowpath) {
8dcf015e
DV
1020 /*
1021 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 * cachelines in-line while writing and the object moved
1023 * out of the cpu write domain while we've dropped the lock.
1024 */
1025 if (!needs_clflush_after &&
1026 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1027 if (i915_gem_clflush_object(obj, obj->pin_display))
1028 i915_gem_chipset_flush(dev);
e244a443 1029 }
8c59967c 1030 }
673a394b 1031
58642885 1032 if (needs_clflush_after)
e76e9aeb 1033 i915_gem_chipset_flush(dev);
58642885 1034
063e4e6b 1035 intel_fb_obj_flush(obj, false);
40123c1f 1036 return ret;
673a394b
EA
1037}
1038
1039/**
1040 * Writes data to the object referenced by handle.
1041 *
1042 * On error, the contents of the buffer that were to be modified are undefined.
1043 */
1044int
1045i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1046 struct drm_file *file)
673a394b 1047{
5d77d9c5 1048 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1049 struct drm_i915_gem_pwrite *args = data;
05394f39 1050 struct drm_i915_gem_object *obj;
51311d0a
CW
1051 int ret;
1052
1053 if (args->size == 0)
1054 return 0;
1055
1056 if (!access_ok(VERIFY_READ,
2bb4629a 1057 to_user_ptr(args->data_ptr),
51311d0a
CW
1058 args->size))
1059 return -EFAULT;
1060
d330a953 1061 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1062 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063 args->size);
1064 if (ret)
1065 return -EFAULT;
1066 }
673a394b 1067
5d77d9c5
ID
1068 intel_runtime_pm_get(dev_priv);
1069
fbd5a26d 1070 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1071 if (ret)
5d77d9c5 1072 goto put_rpm;
1d7cfea1 1073
05394f39 1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1075 if (&obj->base == NULL) {
1d7cfea1
CW
1076 ret = -ENOENT;
1077 goto unlock;
fbd5a26d 1078 }
673a394b 1079
7dcd2499 1080 /* Bounds check destination. */
05394f39
CW
1081 if (args->offset > obj->base.size ||
1082 args->size > obj->base.size - args->offset) {
ce9d419d 1083 ret = -EINVAL;
35b62a89 1084 goto out;
ce9d419d
CW
1085 }
1086
1286ff73
DV
1087 /* prime objects have no backing filp to GEM pread/pwrite
1088 * pages from.
1089 */
1090 if (!obj->base.filp) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
db53a302
CW
1095 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
935aaa69 1097 ret = -EFAULT;
673a394b
EA
1098 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099 * it would end up going through the fenced access, and we'll get
1100 * different detiling behavior between reading and writing.
1101 * pread/pwrite currently are reading and writing from the CPU
1102 * perspective, requiring manual detiling by the client.
1103 */
2c22569b
CW
1104 if (obj->tiling_mode == I915_TILING_NONE &&
1105 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106 cpu_write_needs_clflush(obj)) {
fbd5a26d 1107 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1108 /* Note that the gtt paths might fail with non-page-backed user
1109 * pointers (e.g. gtt mappings when moving data between
1110 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1111 }
673a394b 1112
6a2c4232
CW
1113 if (ret == -EFAULT || ret == -ENOSPC) {
1114 if (obj->phys_handle)
1115 ret = i915_gem_phys_pwrite(obj, args, file);
1116 else
1117 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118 }
5c0480f2 1119
35b62a89 1120out:
05394f39 1121 drm_gem_object_unreference(&obj->base);
1d7cfea1 1122unlock:
fbd5a26d 1123 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1124put_rpm:
1125 intel_runtime_pm_put(dev_priv);
1126
673a394b
EA
1127 return ret;
1128}
1129
b361237b 1130int
33196ded 1131i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1132 bool interruptible)
1133{
1f83fee0 1134 if (i915_reset_in_progress(error)) {
b361237b
CW
1135 /* Non-interruptible callers can't handle -EAGAIN, hence return
1136 * -EIO unconditionally for these. */
1137 if (!interruptible)
1138 return -EIO;
1139
1f83fee0
DV
1140 /* Recovery complete, but the reset failed ... */
1141 if (i915_terminally_wedged(error))
b361237b
CW
1142 return -EIO;
1143
6689c167
MA
1144 /*
1145 * Check if GPU Reset is in progress - we need intel_ring_begin
1146 * to work properly to reinit the hw state while the gpu is
1147 * still marked as reset-in-progress. Handle this with a flag.
1148 */
1149 if (!error->reload_in_reset)
1150 return -EAGAIN;
b361237b
CW
1151 }
1152
1153 return 0;
1154}
1155
094f9a54
CW
1156static void fake_irq(unsigned long data)
1157{
1158 wake_up_process((struct task_struct *)data);
1159}
1160
1161static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1162 struct intel_engine_cs *ring)
094f9a54
CW
1163{
1164 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1165}
1166
eed29a5b 1167static int __i915_spin_request(struct drm_i915_gem_request *req)
b29c19b6 1168{
2def4ad9
CW
1169 unsigned long timeout;
1170
eed29a5b 1171 if (i915_gem_request_get_ring(req)->irq_refcount)
2def4ad9
CW
1172 return -EBUSY;
1173
1174 timeout = jiffies + 1;
1175 while (!need_resched()) {
eed29a5b 1176 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1177 return 0;
1178
1179 if (time_after_eq(jiffies, timeout))
1180 break;
b29c19b6 1181
2def4ad9
CW
1182 cpu_relax_lowlatency();
1183 }
eed29a5b 1184 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1185 return 0;
1186
1187 return -EAGAIN;
b29c19b6
CW
1188}
1189
b361237b 1190/**
9c654818
JH
1191 * __i915_wait_request - wait until execution of request has finished
1192 * @req: duh!
1193 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1194 * @interruptible: do an interruptible wait (normally yes)
1195 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1196 *
f69061be
DV
1197 * Note: It is of utmost importance that the passed in seqno and reset_counter
1198 * values have been read by the caller in an smp safe manner. Where read-side
1199 * locks are involved, it is sufficient to read the reset_counter before
1200 * unlocking the lock that protects the seqno. For lockless tricks, the
1201 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1202 * inserted.
1203 *
9c654818 1204 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1205 * errno with remaining time filled in timeout argument.
1206 */
9c654818 1207int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1208 unsigned reset_counter,
b29c19b6 1209 bool interruptible,
5ed0bdf2 1210 s64 *timeout,
2e1b8730 1211 struct intel_rps_client *rps)
b361237b 1212{
9c654818 1213 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1214 struct drm_device *dev = ring->dev;
3e31c6c0 1215 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1216 const bool irq_test_in_progress =
1217 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1218 DEFINE_WAIT(wait);
47e9766d 1219 unsigned long timeout_expire;
5ed0bdf2 1220 s64 before, now;
b361237b
CW
1221 int ret;
1222
9df7575f 1223 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1224
b4716185
CW
1225 if (list_empty(&req->list))
1226 return 0;
1227
1b5a433a 1228 if (i915_gem_request_completed(req, true))
b361237b
CW
1229 return 0;
1230
7bd0e226
DV
1231 timeout_expire = timeout ?
1232 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1233
2e1b8730 1234 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1235 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1236
094f9a54 1237 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1238 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1239 before = ktime_get_raw_ns();
2def4ad9
CW
1240
1241 /* Optimistic spin for the next jiffie before touching IRQs */
1242 ret = __i915_spin_request(req);
1243 if (ret == 0)
1244 goto out;
1245
1246 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1247 ret = -ENODEV;
1248 goto out;
1249 }
1250
094f9a54
CW
1251 for (;;) {
1252 struct timer_list timer;
b361237b 1253
094f9a54
CW
1254 prepare_to_wait(&ring->irq_queue, &wait,
1255 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1256
f69061be
DV
1257 /* We need to check whether any gpu reset happened in between
1258 * the caller grabbing the seqno and now ... */
094f9a54
CW
1259 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1260 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1261 * is truely gone. */
1262 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1263 if (ret == 0)
1264 ret = -EAGAIN;
1265 break;
1266 }
f69061be 1267
1b5a433a 1268 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1269 ret = 0;
1270 break;
1271 }
b361237b 1272
094f9a54
CW
1273 if (interruptible && signal_pending(current)) {
1274 ret = -ERESTARTSYS;
1275 break;
1276 }
1277
47e9766d 1278 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1279 ret = -ETIME;
1280 break;
1281 }
1282
1283 timer.function = NULL;
1284 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1285 unsigned long expire;
1286
094f9a54 1287 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1288 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1289 mod_timer(&timer, expire);
1290 }
1291
5035c275 1292 io_schedule();
094f9a54 1293
094f9a54
CW
1294 if (timer.function) {
1295 del_singleshot_timer_sync(&timer);
1296 destroy_timer_on_stack(&timer);
1297 }
1298 }
168c3f21
MK
1299 if (!irq_test_in_progress)
1300 ring->irq_put(ring);
094f9a54
CW
1301
1302 finish_wait(&ring->irq_queue, &wait);
b361237b 1303
2def4ad9
CW
1304out:
1305 now = ktime_get_raw_ns();
1306 trace_i915_gem_request_wait_end(req);
1307
b361237b 1308 if (timeout) {
5ed0bdf2
TG
1309 s64 tres = *timeout - (now - before);
1310
1311 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1312
1313 /*
1314 * Apparently ktime isn't accurate enough and occasionally has a
1315 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1316 * things up to make the test happy. We allow up to 1 jiffy.
1317 *
1318 * This is a regrssion from the timespec->ktime conversion.
1319 */
1320 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1321 *timeout = 0;
b361237b
CW
1322 }
1323
094f9a54 1324 return ret;
b361237b
CW
1325}
1326
fcfa423c
JH
1327int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1328 struct drm_file *file)
1329{
1330 struct drm_i915_private *dev_private;
1331 struct drm_i915_file_private *file_priv;
1332
1333 WARN_ON(!req || !file || req->file_priv);
1334
1335 if (!req || !file)
1336 return -EINVAL;
1337
1338 if (req->file_priv)
1339 return -EINVAL;
1340
1341 dev_private = req->ring->dev->dev_private;
1342 file_priv = file->driver_priv;
1343
1344 spin_lock(&file_priv->mm.lock);
1345 req->file_priv = file_priv;
1346 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1347 spin_unlock(&file_priv->mm.lock);
1348
1349 req->pid = get_pid(task_pid(current));
1350
1351 return 0;
1352}
1353
b4716185
CW
1354static inline void
1355i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1356{
1357 struct drm_i915_file_private *file_priv = request->file_priv;
1358
1359 if (!file_priv)
1360 return;
1361
1362 spin_lock(&file_priv->mm.lock);
1363 list_del(&request->client_list);
1364 request->file_priv = NULL;
1365 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1366
1367 put_pid(request->pid);
1368 request->pid = NULL;
b4716185
CW
1369}
1370
1371static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1372{
1373 trace_i915_gem_request_retire(request);
1374
1375 /* We know the GPU must have read the request to have
1376 * sent us the seqno + interrupt, so use the position
1377 * of tail of the request to update the last known position
1378 * of the GPU head.
1379 *
1380 * Note this requires that we are always called in request
1381 * completion order.
1382 */
1383 request->ringbuf->last_retired_head = request->postfix;
1384
1385 list_del_init(&request->list);
1386 i915_gem_request_remove_from_client(request);
1387
b4716185
CW
1388 i915_gem_request_unreference(request);
1389}
1390
1391static void
1392__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1393{
1394 struct intel_engine_cs *engine = req->ring;
1395 struct drm_i915_gem_request *tmp;
1396
1397 lockdep_assert_held(&engine->dev->struct_mutex);
1398
1399 if (list_empty(&req->list))
1400 return;
1401
1402 do {
1403 tmp = list_first_entry(&engine->request_list,
1404 typeof(*tmp), list);
1405
1406 i915_gem_request_retire(tmp);
1407 } while (tmp != req);
1408
1409 WARN_ON(i915_verify_lists(engine->dev));
1410}
1411
b361237b 1412/**
a4b3a571 1413 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1414 * request and object lists appropriately for that event.
1415 */
1416int
a4b3a571 1417i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1418{
a4b3a571
DV
1419 struct drm_device *dev;
1420 struct drm_i915_private *dev_priv;
1421 bool interruptible;
b361237b
CW
1422 int ret;
1423
a4b3a571
DV
1424 BUG_ON(req == NULL);
1425
1426 dev = req->ring->dev;
1427 dev_priv = dev->dev_private;
1428 interruptible = dev_priv->mm.interruptible;
1429
b361237b 1430 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1431
33196ded 1432 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1433 if (ret)
1434 return ret;
1435
b4716185
CW
1436 ret = __i915_wait_request(req,
1437 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1438 interruptible, NULL, NULL);
b4716185
CW
1439 if (ret)
1440 return ret;
d26e3af8 1441
b4716185 1442 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1443 return 0;
1444}
1445
b361237b
CW
1446/**
1447 * Ensures that all rendering to the object has completed and the object is
1448 * safe to unbind from the GTT or access from the CPU.
1449 */
2e2f351d 1450int
b361237b
CW
1451i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1452 bool readonly)
1453{
b4716185 1454 int ret, i;
b361237b 1455
b4716185 1456 if (!obj->active)
b361237b
CW
1457 return 0;
1458
b4716185
CW
1459 if (readonly) {
1460 if (obj->last_write_req != NULL) {
1461 ret = i915_wait_request(obj->last_write_req);
1462 if (ret)
1463 return ret;
b361237b 1464
b4716185
CW
1465 i = obj->last_write_req->ring->id;
1466 if (obj->last_read_req[i] == obj->last_write_req)
1467 i915_gem_object_retire__read(obj, i);
1468 else
1469 i915_gem_object_retire__write(obj);
1470 }
1471 } else {
1472 for (i = 0; i < I915_NUM_RINGS; i++) {
1473 if (obj->last_read_req[i] == NULL)
1474 continue;
1475
1476 ret = i915_wait_request(obj->last_read_req[i]);
1477 if (ret)
1478 return ret;
1479
1480 i915_gem_object_retire__read(obj, i);
1481 }
1482 RQ_BUG_ON(obj->active);
1483 }
1484
1485 return 0;
1486}
1487
1488static void
1489i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1490 struct drm_i915_gem_request *req)
1491{
1492 int ring = req->ring->id;
1493
1494 if (obj->last_read_req[ring] == req)
1495 i915_gem_object_retire__read(obj, ring);
1496 else if (obj->last_write_req == req)
1497 i915_gem_object_retire__write(obj);
1498
1499 __i915_gem_request_retire__upto(req);
b361237b
CW
1500}
1501
3236f57a
CW
1502/* A nonblocking variant of the above wait. This is a highly dangerous routine
1503 * as the object state may change during this call.
1504 */
1505static __must_check int
1506i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1507 struct intel_rps_client *rps,
3236f57a
CW
1508 bool readonly)
1509{
1510 struct drm_device *dev = obj->base.dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1512 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1513 unsigned reset_counter;
b4716185 1514 int ret, i, n = 0;
3236f57a
CW
1515
1516 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1517 BUG_ON(!dev_priv->mm.interruptible);
1518
b4716185 1519 if (!obj->active)
3236f57a
CW
1520 return 0;
1521
33196ded 1522 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1523 if (ret)
1524 return ret;
1525
f69061be 1526 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1527
1528 if (readonly) {
1529 struct drm_i915_gem_request *req;
1530
1531 req = obj->last_write_req;
1532 if (req == NULL)
1533 return 0;
1534
b4716185
CW
1535 requests[n++] = i915_gem_request_reference(req);
1536 } else {
1537 for (i = 0; i < I915_NUM_RINGS; i++) {
1538 struct drm_i915_gem_request *req;
1539
1540 req = obj->last_read_req[i];
1541 if (req == NULL)
1542 continue;
1543
b4716185
CW
1544 requests[n++] = i915_gem_request_reference(req);
1545 }
1546 }
1547
3236f57a 1548 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1549 for (i = 0; ret == 0 && i < n; i++)
1550 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1551 NULL, rps);
3236f57a
CW
1552 mutex_lock(&dev->struct_mutex);
1553
b4716185
CW
1554 for (i = 0; i < n; i++) {
1555 if (ret == 0)
1556 i915_gem_object_retire_request(obj, requests[i]);
1557 i915_gem_request_unreference(requests[i]);
1558 }
1559
1560 return ret;
3236f57a
CW
1561}
1562
2e1b8730
CW
1563static struct intel_rps_client *to_rps_client(struct drm_file *file)
1564{
1565 struct drm_i915_file_private *fpriv = file->driver_priv;
1566 return &fpriv->rps;
1567}
1568
673a394b 1569/**
2ef7eeaa
EA
1570 * Called when user space prepares to use an object with the CPU, either
1571 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1572 */
1573int
1574i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1575 struct drm_file *file)
673a394b
EA
1576{
1577 struct drm_i915_gem_set_domain *args = data;
05394f39 1578 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1579 uint32_t read_domains = args->read_domains;
1580 uint32_t write_domain = args->write_domain;
673a394b
EA
1581 int ret;
1582
2ef7eeaa 1583 /* Only handle setting domains to types used by the CPU. */
21d509e3 1584 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1585 return -EINVAL;
1586
21d509e3 1587 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1588 return -EINVAL;
1589
1590 /* Having something in the write domain implies it's in the read
1591 * domain, and only that read domain. Enforce that in the request.
1592 */
1593 if (write_domain != 0 && read_domains != write_domain)
1594 return -EINVAL;
1595
76c1dec1 1596 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1597 if (ret)
76c1dec1 1598 return ret;
1d7cfea1 1599
05394f39 1600 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1601 if (&obj->base == NULL) {
1d7cfea1
CW
1602 ret = -ENOENT;
1603 goto unlock;
76c1dec1 1604 }
673a394b 1605
3236f57a
CW
1606 /* Try to flush the object off the GPU without holding the lock.
1607 * We will repeat the flush holding the lock in the normal manner
1608 * to catch cases where we are gazumped.
1609 */
6e4930f6 1610 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1611 to_rps_client(file),
6e4930f6 1612 !write_domain);
3236f57a
CW
1613 if (ret)
1614 goto unref;
1615
43566ded 1616 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1617 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1618 else
e47c68e9 1619 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1620
031b698a
DV
1621 if (write_domain != 0)
1622 intel_fb_obj_invalidate(obj,
1623 write_domain == I915_GEM_DOMAIN_GTT ?
1624 ORIGIN_GTT : ORIGIN_CPU);
1625
3236f57a 1626unref:
05394f39 1627 drm_gem_object_unreference(&obj->base);
1d7cfea1 1628unlock:
673a394b
EA
1629 mutex_unlock(&dev->struct_mutex);
1630 return ret;
1631}
1632
1633/**
1634 * Called when user space has done writes to this buffer
1635 */
1636int
1637i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1638 struct drm_file *file)
673a394b
EA
1639{
1640 struct drm_i915_gem_sw_finish *args = data;
05394f39 1641 struct drm_i915_gem_object *obj;
673a394b
EA
1642 int ret = 0;
1643
76c1dec1 1644 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1645 if (ret)
76c1dec1 1646 return ret;
1d7cfea1 1647
05394f39 1648 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1649 if (&obj->base == NULL) {
1d7cfea1
CW
1650 ret = -ENOENT;
1651 goto unlock;
673a394b
EA
1652 }
1653
673a394b 1654 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1655 if (obj->pin_display)
e62b59e4 1656 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1657
05394f39 1658 drm_gem_object_unreference(&obj->base);
1d7cfea1 1659unlock:
673a394b
EA
1660 mutex_unlock(&dev->struct_mutex);
1661 return ret;
1662}
1663
1664/**
1665 * Maps the contents of an object, returning the address it is mapped
1666 * into.
1667 *
1668 * While the mapping holds a reference on the contents of the object, it doesn't
1669 * imply a ref on the object itself.
34367381
DV
1670 *
1671 * IMPORTANT:
1672 *
1673 * DRM driver writers who look a this function as an example for how to do GEM
1674 * mmap support, please don't implement mmap support like here. The modern way
1675 * to implement DRM mmap support is with an mmap offset ioctl (like
1676 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1677 * That way debug tooling like valgrind will understand what's going on, hiding
1678 * the mmap call in a driver private ioctl will break that. The i915 driver only
1679 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1680 */
1681int
1682i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1683 struct drm_file *file)
673a394b
EA
1684{
1685 struct drm_i915_gem_mmap *args = data;
1686 struct drm_gem_object *obj;
673a394b
EA
1687 unsigned long addr;
1688
1816f923
AG
1689 if (args->flags & ~(I915_MMAP_WC))
1690 return -EINVAL;
1691
1692 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1693 return -ENODEV;
1694
05394f39 1695 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1696 if (obj == NULL)
bf79cb91 1697 return -ENOENT;
673a394b 1698
1286ff73
DV
1699 /* prime objects have no backing filp to GEM mmap
1700 * pages from.
1701 */
1702 if (!obj->filp) {
1703 drm_gem_object_unreference_unlocked(obj);
1704 return -EINVAL;
1705 }
1706
6be5ceb0 1707 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1708 PROT_READ | PROT_WRITE, MAP_SHARED,
1709 args->offset);
1816f923
AG
1710 if (args->flags & I915_MMAP_WC) {
1711 struct mm_struct *mm = current->mm;
1712 struct vm_area_struct *vma;
1713
1714 down_write(&mm->mmap_sem);
1715 vma = find_vma(mm, addr);
1716 if (vma)
1717 vma->vm_page_prot =
1718 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1719 else
1720 addr = -ENOMEM;
1721 up_write(&mm->mmap_sem);
1722 }
bc9025bd 1723 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1724 if (IS_ERR((void *)addr))
1725 return addr;
1726
1727 args->addr_ptr = (uint64_t) addr;
1728
1729 return 0;
1730}
1731
de151cf6
JB
1732/**
1733 * i915_gem_fault - fault a page into the GTT
1734 * vma: VMA in question
1735 * vmf: fault info
1736 *
1737 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1738 * from userspace. The fault handler takes care of binding the object to
1739 * the GTT (if needed), allocating and programming a fence register (again,
1740 * only if needed based on whether the old reg is still valid or the object
1741 * is tiled) and inserting a new PTE into the faulting process.
1742 *
1743 * Note that the faulting process may involve evicting existing objects
1744 * from the GTT and/or fence registers to make room. So performance may
1745 * suffer if the GTT working set is large or there are few fence registers
1746 * left.
1747 */
1748int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1749{
05394f39
CW
1750 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1751 struct drm_device *dev = obj->base.dev;
3e31c6c0 1752 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1753 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1754 pgoff_t page_offset;
1755 unsigned long pfn;
1756 int ret = 0;
0f973f27 1757 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1758
f65c9168
PZ
1759 intel_runtime_pm_get(dev_priv);
1760
de151cf6
JB
1761 /* We don't use vmf->pgoff since that has the fake offset */
1762 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1763 PAGE_SHIFT;
1764
d9bc7e9f
CW
1765 ret = i915_mutex_lock_interruptible(dev);
1766 if (ret)
1767 goto out;
a00b10c3 1768
db53a302
CW
1769 trace_i915_gem_object_fault(obj, page_offset, true, write);
1770
6e4930f6
CW
1771 /* Try to flush the object off the GPU first without holding the lock.
1772 * Upon reacquiring the lock, we will perform our sanity checks and then
1773 * repeat the flush holding the lock in the normal manner to catch cases
1774 * where we are gazumped.
1775 */
1776 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1777 if (ret)
1778 goto unlock;
1779
eb119bd6
CW
1780 /* Access to snoopable pages through the GTT is incoherent. */
1781 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1782 ret = -EFAULT;
eb119bd6
CW
1783 goto unlock;
1784 }
1785
c5ad54cf 1786 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1787 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1788 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1789 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1790
c5ad54cf
JL
1791 memset(&view, 0, sizeof(view));
1792 view.type = I915_GGTT_VIEW_PARTIAL;
1793 view.params.partial.offset = rounddown(page_offset, chunk_size);
1794 view.params.partial.size =
1795 min_t(unsigned int,
1796 chunk_size,
1797 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1798 view.params.partial.offset);
1799 }
1800
1801 /* Now pin it into the GTT if needed */
1802 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1803 if (ret)
1804 goto unlock;
4a684a41 1805
c9839303
CW
1806 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1807 if (ret)
1808 goto unpin;
74898d7e 1809
06d98131 1810 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1811 if (ret)
c9839303 1812 goto unpin;
7d1c4804 1813
b90b91d8 1814 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1815 pfn = dev_priv->gtt.mappable_base +
1816 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1817 pfn >>= PAGE_SHIFT;
de151cf6 1818
c5ad54cf
JL
1819 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1820 /* Overriding existing pages in partial view does not cause
1821 * us any trouble as TLBs are still valid because the fault
1822 * is due to userspace losing part of the mapping or never
1823 * having accessed it before (at this partials' range).
1824 */
1825 unsigned long base = vma->vm_start +
1826 (view.params.partial.offset << PAGE_SHIFT);
1827 unsigned int i;
b90b91d8 1828
c5ad54cf
JL
1829 for (i = 0; i < view.params.partial.size; i++) {
1830 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1831 if (ret)
1832 break;
1833 }
1834
1835 obj->fault_mappable = true;
c5ad54cf
JL
1836 } else {
1837 if (!obj->fault_mappable) {
1838 unsigned long size = min_t(unsigned long,
1839 vma->vm_end - vma->vm_start,
1840 obj->base.size);
1841 int i;
1842
1843 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1844 ret = vm_insert_pfn(vma,
1845 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1846 pfn + i);
1847 if (ret)
1848 break;
1849 }
1850
1851 obj->fault_mappable = true;
1852 } else
1853 ret = vm_insert_pfn(vma,
1854 (unsigned long)vmf->virtual_address,
1855 pfn + page_offset);
1856 }
c9839303 1857unpin:
c5ad54cf 1858 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1859unlock:
de151cf6 1860 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1861out:
de151cf6 1862 switch (ret) {
d9bc7e9f 1863 case -EIO:
2232f031
DV
1864 /*
1865 * We eat errors when the gpu is terminally wedged to avoid
1866 * userspace unduly crashing (gl has no provisions for mmaps to
1867 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1868 * and so needs to be reported.
1869 */
1870 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1871 ret = VM_FAULT_SIGBUS;
1872 break;
1873 }
045e769a 1874 case -EAGAIN:
571c608d
DV
1875 /*
1876 * EAGAIN means the gpu is hung and we'll wait for the error
1877 * handler to reset everything when re-faulting in
1878 * i915_mutex_lock_interruptible.
d9bc7e9f 1879 */
c715089f
CW
1880 case 0:
1881 case -ERESTARTSYS:
bed636ab 1882 case -EINTR:
e79e0fe3
DR
1883 case -EBUSY:
1884 /*
1885 * EBUSY is ok: this just means that another thread
1886 * already did the job.
1887 */
f65c9168
PZ
1888 ret = VM_FAULT_NOPAGE;
1889 break;
de151cf6 1890 case -ENOMEM:
f65c9168
PZ
1891 ret = VM_FAULT_OOM;
1892 break;
a7c2e1aa 1893 case -ENOSPC:
45d67817 1894 case -EFAULT:
f65c9168
PZ
1895 ret = VM_FAULT_SIGBUS;
1896 break;
de151cf6 1897 default:
a7c2e1aa 1898 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1899 ret = VM_FAULT_SIGBUS;
1900 break;
de151cf6 1901 }
f65c9168
PZ
1902
1903 intel_runtime_pm_put(dev_priv);
1904 return ret;
de151cf6
JB
1905}
1906
901782b2
CW
1907/**
1908 * i915_gem_release_mmap - remove physical page mappings
1909 * @obj: obj in question
1910 *
af901ca1 1911 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1912 * relinquish ownership of the pages back to the system.
1913 *
1914 * It is vital that we remove the page mapping if we have mapped a tiled
1915 * object through the GTT and then lose the fence register due to
1916 * resource pressure. Similarly if the object has been moved out of the
1917 * aperture, than pages mapped into userspace must be revoked. Removing the
1918 * mapping will then trigger a page fault on the next user access, allowing
1919 * fixup by i915_gem_fault().
1920 */
d05ca301 1921void
05394f39 1922i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1923{
6299f992
CW
1924 if (!obj->fault_mappable)
1925 return;
901782b2 1926
6796cb16
DH
1927 drm_vma_node_unmap(&obj->base.vma_node,
1928 obj->base.dev->anon_inode->i_mapping);
6299f992 1929 obj->fault_mappable = false;
901782b2
CW
1930}
1931
eedd10f4
CW
1932void
1933i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1934{
1935 struct drm_i915_gem_object *obj;
1936
1937 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1938 i915_gem_release_mmap(obj);
1939}
1940
0fa87796 1941uint32_t
e28f8711 1942i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1943{
e28f8711 1944 uint32_t gtt_size;
92b88aeb
CW
1945
1946 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1947 tiling_mode == I915_TILING_NONE)
1948 return size;
92b88aeb
CW
1949
1950 /* Previous chips need a power-of-two fence region when tiling */
1951 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1952 gtt_size = 1024*1024;
92b88aeb 1953 else
e28f8711 1954 gtt_size = 512*1024;
92b88aeb 1955
e28f8711
CW
1956 while (gtt_size < size)
1957 gtt_size <<= 1;
92b88aeb 1958
e28f8711 1959 return gtt_size;
92b88aeb
CW
1960}
1961
de151cf6
JB
1962/**
1963 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1964 * @obj: object to check
1965 *
1966 * Return the required GTT alignment for an object, taking into account
5e783301 1967 * potential fence register mapping.
de151cf6 1968 */
d865110c
ID
1969uint32_t
1970i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1971 int tiling_mode, bool fenced)
de151cf6 1972{
de151cf6
JB
1973 /*
1974 * Minimum alignment is 4k (GTT page size), but might be greater
1975 * if a fence register is needed for the object.
1976 */
d865110c 1977 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1978 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1979 return 4096;
1980
a00b10c3
CW
1981 /*
1982 * Previous chips need to be aligned to the size of the smallest
1983 * fence register that can contain the object.
1984 */
e28f8711 1985 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1986}
1987
d8cb5086
CW
1988static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1989{
1990 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1991 int ret;
1992
0de23977 1993 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1994 return 0;
1995
da494d7c
DV
1996 dev_priv->mm.shrinker_no_lock_stealing = true;
1997
d8cb5086
CW
1998 ret = drm_gem_create_mmap_offset(&obj->base);
1999 if (ret != -ENOSPC)
da494d7c 2000 goto out;
d8cb5086
CW
2001
2002 /* Badly fragmented mmap space? The only way we can recover
2003 * space is by destroying unwanted objects. We can't randomly release
2004 * mmap_offsets as userspace expects them to be persistent for the
2005 * lifetime of the objects. The closest we can is to release the
2006 * offsets on purgeable objects by truncating it and marking it purged,
2007 * which prevents userspace from ever using that object again.
2008 */
21ab4e74
CW
2009 i915_gem_shrink(dev_priv,
2010 obj->base.size >> PAGE_SHIFT,
2011 I915_SHRINK_BOUND |
2012 I915_SHRINK_UNBOUND |
2013 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2014 ret = drm_gem_create_mmap_offset(&obj->base);
2015 if (ret != -ENOSPC)
da494d7c 2016 goto out;
d8cb5086
CW
2017
2018 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2019 ret = drm_gem_create_mmap_offset(&obj->base);
2020out:
2021 dev_priv->mm.shrinker_no_lock_stealing = false;
2022
2023 return ret;
d8cb5086
CW
2024}
2025
2026static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2027{
d8cb5086
CW
2028 drm_gem_free_mmap_offset(&obj->base);
2029}
2030
da6b51d0 2031int
ff72145b
DA
2032i915_gem_mmap_gtt(struct drm_file *file,
2033 struct drm_device *dev,
da6b51d0 2034 uint32_t handle,
ff72145b 2035 uint64_t *offset)
de151cf6 2036{
05394f39 2037 struct drm_i915_gem_object *obj;
de151cf6
JB
2038 int ret;
2039
76c1dec1 2040 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2041 if (ret)
76c1dec1 2042 return ret;
de151cf6 2043
ff72145b 2044 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2045 if (&obj->base == NULL) {
1d7cfea1
CW
2046 ret = -ENOENT;
2047 goto unlock;
2048 }
de151cf6 2049
05394f39 2050 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2051 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2052 ret = -EFAULT;
1d7cfea1 2053 goto out;
ab18282d
CW
2054 }
2055
d8cb5086
CW
2056 ret = i915_gem_object_create_mmap_offset(obj);
2057 if (ret)
2058 goto out;
de151cf6 2059
0de23977 2060 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2061
1d7cfea1 2062out:
05394f39 2063 drm_gem_object_unreference(&obj->base);
1d7cfea1 2064unlock:
de151cf6 2065 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2066 return ret;
de151cf6
JB
2067}
2068
ff72145b
DA
2069/**
2070 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2071 * @dev: DRM device
2072 * @data: GTT mapping ioctl data
2073 * @file: GEM object info
2074 *
2075 * Simply returns the fake offset to userspace so it can mmap it.
2076 * The mmap call will end up in drm_gem_mmap(), which will set things
2077 * up so we can get faults in the handler above.
2078 *
2079 * The fault handler will take care of binding the object into the GTT
2080 * (since it may have been evicted to make room for something), allocating
2081 * a fence register, and mapping the appropriate aperture address into
2082 * userspace.
2083 */
2084int
2085i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2086 struct drm_file *file)
2087{
2088 struct drm_i915_gem_mmap_gtt *args = data;
2089
da6b51d0 2090 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2091}
2092
225067ee
DV
2093/* Immediately discard the backing storage */
2094static void
2095i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2096{
4d6294bf 2097 i915_gem_object_free_mmap_offset(obj);
1286ff73 2098
4d6294bf
CW
2099 if (obj->base.filp == NULL)
2100 return;
e5281ccd 2101
225067ee
DV
2102 /* Our goal here is to return as much of the memory as
2103 * is possible back to the system as we are called from OOM.
2104 * To do this we must instruct the shmfs to drop all of its
2105 * backing pages, *now*.
2106 */
5537252b 2107 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2108 obj->madv = __I915_MADV_PURGED;
2109}
e5281ccd 2110
5537252b
CW
2111/* Try to discard unwanted pages */
2112static void
2113i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2114{
5537252b
CW
2115 struct address_space *mapping;
2116
2117 switch (obj->madv) {
2118 case I915_MADV_DONTNEED:
2119 i915_gem_object_truncate(obj);
2120 case __I915_MADV_PURGED:
2121 return;
2122 }
2123
2124 if (obj->base.filp == NULL)
2125 return;
2126
2127 mapping = file_inode(obj->base.filp)->i_mapping,
2128 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2129}
2130
5cdf5881 2131static void
05394f39 2132i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2133{
90797e6d
ID
2134 struct sg_page_iter sg_iter;
2135 int ret;
1286ff73 2136
05394f39 2137 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2138
6c085a72
CW
2139 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2140 if (ret) {
2141 /* In the event of a disaster, abandon all caches and
2142 * hope for the best.
2143 */
2144 WARN_ON(ret != -EIO);
2c22569b 2145 i915_gem_clflush_object(obj, true);
6c085a72
CW
2146 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2147 }
2148
6dacfd2f 2149 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2150 i915_gem_object_save_bit_17_swizzle(obj);
2151
05394f39
CW
2152 if (obj->madv == I915_MADV_DONTNEED)
2153 obj->dirty = 0;
3ef94daa 2154
90797e6d 2155 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2156 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2157
05394f39 2158 if (obj->dirty)
9da3da66 2159 set_page_dirty(page);
3ef94daa 2160
05394f39 2161 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2162 mark_page_accessed(page);
3ef94daa 2163
9da3da66 2164 page_cache_release(page);
3ef94daa 2165 }
05394f39 2166 obj->dirty = 0;
673a394b 2167
9da3da66
CW
2168 sg_free_table(obj->pages);
2169 kfree(obj->pages);
37e680a1 2170}
6c085a72 2171
dd624afd 2172int
37e680a1
CW
2173i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2174{
2175 const struct drm_i915_gem_object_ops *ops = obj->ops;
2176
2f745ad3 2177 if (obj->pages == NULL)
37e680a1
CW
2178 return 0;
2179
a5570178
CW
2180 if (obj->pages_pin_count)
2181 return -EBUSY;
2182
9843877d 2183 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2184
a2165e31
CW
2185 /* ->put_pages might need to allocate memory for the bit17 swizzle
2186 * array, hence protect them from being reaped by removing them from gtt
2187 * lists early. */
35c20a60 2188 list_del(&obj->global_list);
a2165e31 2189
37e680a1 2190 ops->put_pages(obj);
05394f39 2191 obj->pages = NULL;
37e680a1 2192
5537252b 2193 i915_gem_object_invalidate(obj);
6c085a72
CW
2194
2195 return 0;
2196}
2197
37e680a1 2198static int
6c085a72 2199i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2200{
6c085a72 2201 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2202 int page_count, i;
2203 struct address_space *mapping;
9da3da66
CW
2204 struct sg_table *st;
2205 struct scatterlist *sg;
90797e6d 2206 struct sg_page_iter sg_iter;
e5281ccd 2207 struct page *page;
90797e6d 2208 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2209 gfp_t gfp;
e5281ccd 2210
6c085a72
CW
2211 /* Assert that the object is not currently in any GPU domain. As it
2212 * wasn't in the GTT, there shouldn't be any way it could have been in
2213 * a GPU cache
2214 */
2215 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2216 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2217
9da3da66
CW
2218 st = kmalloc(sizeof(*st), GFP_KERNEL);
2219 if (st == NULL)
2220 return -ENOMEM;
2221
05394f39 2222 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2223 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2224 kfree(st);
e5281ccd 2225 return -ENOMEM;
9da3da66 2226 }
e5281ccd 2227
9da3da66
CW
2228 /* Get the list of pages out of our struct file. They'll be pinned
2229 * at this point until we release them.
2230 *
2231 * Fail silently without starting the shrinker
2232 */
496ad9aa 2233 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2234 gfp = mapping_gfp_mask(mapping);
caf49191 2235 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2236 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2237 sg = st->sgl;
2238 st->nents = 0;
2239 for (i = 0; i < page_count; i++) {
6c085a72
CW
2240 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2241 if (IS_ERR(page)) {
21ab4e74
CW
2242 i915_gem_shrink(dev_priv,
2243 page_count,
2244 I915_SHRINK_BOUND |
2245 I915_SHRINK_UNBOUND |
2246 I915_SHRINK_PURGEABLE);
6c085a72
CW
2247 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2248 }
2249 if (IS_ERR(page)) {
2250 /* We've tried hard to allocate the memory by reaping
2251 * our own buffer, now let the real VM do its job and
2252 * go down in flames if truly OOM.
2253 */
6c085a72 2254 i915_gem_shrink_all(dev_priv);
f461d1be 2255 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2256 if (IS_ERR(page))
2257 goto err_pages;
6c085a72 2258 }
426729dc
KRW
2259#ifdef CONFIG_SWIOTLB
2260 if (swiotlb_nr_tbl()) {
2261 st->nents++;
2262 sg_set_page(sg, page, PAGE_SIZE, 0);
2263 sg = sg_next(sg);
2264 continue;
2265 }
2266#endif
90797e6d
ID
2267 if (!i || page_to_pfn(page) != last_pfn + 1) {
2268 if (i)
2269 sg = sg_next(sg);
2270 st->nents++;
2271 sg_set_page(sg, page, PAGE_SIZE, 0);
2272 } else {
2273 sg->length += PAGE_SIZE;
2274 }
2275 last_pfn = page_to_pfn(page);
3bbbe706
DV
2276
2277 /* Check that the i965g/gm workaround works. */
2278 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2279 }
426729dc
KRW
2280#ifdef CONFIG_SWIOTLB
2281 if (!swiotlb_nr_tbl())
2282#endif
2283 sg_mark_end(sg);
74ce6b6c
CW
2284 obj->pages = st;
2285
6dacfd2f 2286 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2287 i915_gem_object_do_bit_17_swizzle(obj);
2288
656bfa3a
DV
2289 if (obj->tiling_mode != I915_TILING_NONE &&
2290 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2291 i915_gem_object_pin_pages(obj);
2292
e5281ccd
CW
2293 return 0;
2294
2295err_pages:
90797e6d
ID
2296 sg_mark_end(sg);
2297 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2298 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2299 sg_free_table(st);
2300 kfree(st);
0820baf3
CW
2301
2302 /* shmemfs first checks if there is enough memory to allocate the page
2303 * and reports ENOSPC should there be insufficient, along with the usual
2304 * ENOMEM for a genuine allocation failure.
2305 *
2306 * We use ENOSPC in our driver to mean that we have run out of aperture
2307 * space and so want to translate the error from shmemfs back to our
2308 * usual understanding of ENOMEM.
2309 */
2310 if (PTR_ERR(page) == -ENOSPC)
2311 return -ENOMEM;
2312 else
2313 return PTR_ERR(page);
673a394b
EA
2314}
2315
37e680a1
CW
2316/* Ensure that the associated pages are gathered from the backing storage
2317 * and pinned into our object. i915_gem_object_get_pages() may be called
2318 * multiple times before they are released by a single call to
2319 * i915_gem_object_put_pages() - once the pages are no longer referenced
2320 * either as a result of memory pressure (reaping pages under the shrinker)
2321 * or as the object is itself released.
2322 */
2323int
2324i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2325{
2326 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2327 const struct drm_i915_gem_object_ops *ops = obj->ops;
2328 int ret;
2329
2f745ad3 2330 if (obj->pages)
37e680a1
CW
2331 return 0;
2332
43e28f09 2333 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2334 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2335 return -EFAULT;
43e28f09
CW
2336 }
2337
a5570178
CW
2338 BUG_ON(obj->pages_pin_count);
2339
37e680a1
CW
2340 ret = ops->get_pages(obj);
2341 if (ret)
2342 return ret;
2343
35c20a60 2344 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2345
2346 obj->get_page.sg = obj->pages->sgl;
2347 obj->get_page.last = 0;
2348
37e680a1 2349 return 0;
673a394b
EA
2350}
2351
b4716185 2352void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2353 struct drm_i915_gem_request *req)
673a394b 2354{
b4716185 2355 struct drm_i915_gem_object *obj = vma->obj;
b2af0376
JH
2356 struct intel_engine_cs *ring;
2357
2358 ring = i915_gem_request_get_ring(req);
673a394b
EA
2359
2360 /* Add a reference if we're newly entering the active list. */
b4716185 2361 if (obj->active == 0)
05394f39 2362 drm_gem_object_reference(&obj->base);
b4716185 2363 obj->active |= intel_ring_flag(ring);
e35a41de 2364
b4716185 2365 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
b2af0376 2366 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
caea7476 2367
b4716185 2368 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2369}
2370
b4716185
CW
2371static void
2372i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2373{
b4716185
CW
2374 RQ_BUG_ON(obj->last_write_req == NULL);
2375 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2376
2377 i915_gem_request_assign(&obj->last_write_req, NULL);
2378 intel_fb_obj_flush(obj, true);
e2d05a8b
BW
2379}
2380
caea7476 2381static void
b4716185 2382i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2383{
feb822cf 2384 struct i915_vma *vma;
ce44b0ea 2385
b4716185
CW
2386 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2387 RQ_BUG_ON(!(obj->active & (1 << ring)));
2388
2389 list_del_init(&obj->ring_list[ring]);
2390 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2391
2392 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2393 i915_gem_object_retire__write(obj);
2394
2395 obj->active &= ~(1 << ring);
2396 if (obj->active)
2397 return;
caea7476 2398
fe14d5f4
TU
2399 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2400 if (!list_empty(&vma->mm_list))
2401 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2402 }
caea7476 2403
97b2a6a1 2404 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2405 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2406}
2407
9d773091 2408static int
fca26bb4 2409i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2410{
9d773091 2411 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2412 struct intel_engine_cs *ring;
9d773091 2413 int ret, i, j;
53d227f2 2414
107f27a5 2415 /* Carefully retire all requests without writing to the rings */
9d773091 2416 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2417 ret = intel_ring_idle(ring);
2418 if (ret)
2419 return ret;
9d773091 2420 }
9d773091 2421 i915_gem_retire_requests(dev);
107f27a5
CW
2422
2423 /* Finally reset hw state */
9d773091 2424 for_each_ring(ring, dev_priv, i) {
fca26bb4 2425 intel_ring_init_seqno(ring, seqno);
498d2ac1 2426
ebc348b2
BW
2427 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2428 ring->semaphore.sync_seqno[j] = 0;
9d773091 2429 }
53d227f2 2430
9d773091 2431 return 0;
53d227f2
DV
2432}
2433
fca26bb4
MK
2434int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2435{
2436 struct drm_i915_private *dev_priv = dev->dev_private;
2437 int ret;
2438
2439 if (seqno == 0)
2440 return -EINVAL;
2441
2442 /* HWS page needs to be set less than what we
2443 * will inject to ring
2444 */
2445 ret = i915_gem_init_seqno(dev, seqno - 1);
2446 if (ret)
2447 return ret;
2448
2449 /* Carefully set the last_seqno value so that wrap
2450 * detection still works
2451 */
2452 dev_priv->next_seqno = seqno;
2453 dev_priv->last_seqno = seqno - 1;
2454 if (dev_priv->last_seqno == 0)
2455 dev_priv->last_seqno--;
2456
2457 return 0;
2458}
2459
9d773091
CW
2460int
2461i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2462{
9d773091
CW
2463 struct drm_i915_private *dev_priv = dev->dev_private;
2464
2465 /* reserve 0 for non-seqno */
2466 if (dev_priv->next_seqno == 0) {
fca26bb4 2467 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2468 if (ret)
2469 return ret;
53d227f2 2470
9d773091
CW
2471 dev_priv->next_seqno = 1;
2472 }
53d227f2 2473
f72b3435 2474 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2475 return 0;
53d227f2
DV
2476}
2477
bf7dc5b7
JH
2478/*
2479 * NB: This function is not allowed to fail. Doing so would mean the the
2480 * request is not being tracked for completion but the work itself is
2481 * going to happen on the hardware. This would be a Bad Thing(tm).
2482 */
75289874 2483void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2484 struct drm_i915_gem_object *obj,
2485 bool flush_caches)
673a394b 2486{
75289874
JH
2487 struct intel_engine_cs *ring;
2488 struct drm_i915_private *dev_priv;
48e29f55 2489 struct intel_ringbuffer *ringbuf;
6d3d8274 2490 u32 request_start;
3cce469c
CW
2491 int ret;
2492
48e29f55 2493 if (WARN_ON(request == NULL))
bf7dc5b7 2494 return;
48e29f55 2495
75289874
JH
2496 ring = request->ring;
2497 dev_priv = ring->dev->dev_private;
2498 ringbuf = request->ringbuf;
2499
29b1b415
JH
2500 /*
2501 * To ensure that this call will not fail, space for its emissions
2502 * should already have been reserved in the ring buffer. Let the ring
2503 * know that it is time to use that space up.
2504 */
2505 intel_ring_reserved_space_use(ringbuf);
2506
48e29f55 2507 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2508 /*
2509 * Emit any outstanding flushes - execbuf can fail to emit the flush
2510 * after having emitted the batchbuffer command. Hence we need to fix
2511 * things up similar to emitting the lazy request. The difference here
2512 * is that the flush _must_ happen before the next request, no matter
2513 * what.
2514 */
5b4a60c2
JH
2515 if (flush_caches) {
2516 if (i915.enable_execlists)
4866d729 2517 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2518 else
4866d729 2519 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2520 /* Not allowed to fail! */
2521 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2522 }
cc889e0f 2523
a71d8d94
CW
2524 /* Record the position of the start of the request so that
2525 * should we detect the updated seqno part-way through the
2526 * GPU processing the request, we never over-estimate the
2527 * position of the head.
2528 */
6d3d8274 2529 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2530
bf7dc5b7 2531 if (i915.enable_execlists)
c4e76638 2532 ret = ring->emit_request(request);
bf7dc5b7 2533 else {
ee044a88 2534 ret = ring->add_request(request);
53292cdb
MT
2535
2536 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2537 }
bf7dc5b7
JH
2538 /* Not allowed to fail! */
2539 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2540
7d736f4f 2541 request->head = request_start;
7d736f4f
MK
2542
2543 /* Whilst this request exists, batch_obj will be on the
2544 * active_list, and so will hold the active reference. Only when this
2545 * request is retired will the the batch_obj be moved onto the
2546 * inactive_list and lose its active reference. Hence we do not need
2547 * to explicitly hold another reference here.
2548 */
9a7e0c2a 2549 request->batch_obj = obj;
0e50e96b 2550
673a394b 2551 request->emitted_jiffies = jiffies;
852835f3 2552 list_add_tail(&request->list, &ring->request_list);
673a394b 2553
74328ee5 2554 trace_i915_gem_request_add(request);
db53a302 2555
87255483 2556 i915_queue_hangcheck(ring->dev);
10cd45b6 2557
87255483
DV
2558 queue_delayed_work(dev_priv->wq,
2559 &dev_priv->mm.retire_work,
2560 round_jiffies_up_relative(HZ));
2561 intel_mark_busy(dev_priv->dev);
cc889e0f 2562
29b1b415
JH
2563 /* Sanity check that the reserved size was large enough. */
2564 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2565}
2566
939fd762 2567static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2568 const struct intel_context *ctx)
be62acb4 2569{
44e2c070 2570 unsigned long elapsed;
be62acb4 2571
44e2c070
MK
2572 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2573
2574 if (ctx->hang_stats.banned)
be62acb4
MK
2575 return true;
2576
676fa572
CW
2577 if (ctx->hang_stats.ban_period_seconds &&
2578 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2579 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2580 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2581 return true;
88b4aa87
MK
2582 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2583 if (i915_stop_ring_allow_warn(dev_priv))
2584 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2585 return true;
3fac8978 2586 }
be62acb4
MK
2587 }
2588
2589 return false;
2590}
2591
939fd762 2592static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2593 struct intel_context *ctx,
b6b0fac0 2594 const bool guilty)
aa60c664 2595{
44e2c070
MK
2596 struct i915_ctx_hang_stats *hs;
2597
2598 if (WARN_ON(!ctx))
2599 return;
aa60c664 2600
44e2c070
MK
2601 hs = &ctx->hang_stats;
2602
2603 if (guilty) {
939fd762 2604 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2605 hs->batch_active++;
2606 hs->guilty_ts = get_seconds();
2607 } else {
2608 hs->batch_pending++;
aa60c664
MK
2609 }
2610}
2611
abfe262a
JH
2612void i915_gem_request_free(struct kref *req_ref)
2613{
2614 struct drm_i915_gem_request *req = container_of(req_ref,
2615 typeof(*req), ref);
2616 struct intel_context *ctx = req->ctx;
2617
fcfa423c
JH
2618 if (req->file_priv)
2619 i915_gem_request_remove_from_client(req);
2620
0794aed3
TD
2621 if (ctx) {
2622 if (i915.enable_execlists) {
abfe262a 2623 struct intel_engine_cs *ring = req->ring;
0e50e96b 2624
0794aed3
TD
2625 if (ctx != ring->default_context)
2626 intel_lr_context_unpin(ring, ctx);
2627 }
abfe262a 2628
dcb4c12a
OM
2629 i915_gem_context_unreference(ctx);
2630 }
abfe262a 2631
efab6d8d 2632 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2633}
2634
6689cb2b 2635int i915_gem_request_alloc(struct intel_engine_cs *ring,
217e46b5
JH
2636 struct intel_context *ctx,
2637 struct drm_i915_gem_request **req_out)
6689cb2b 2638{
efab6d8d 2639 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2640 struct drm_i915_gem_request *req;
6689cb2b 2641 int ret;
6689cb2b 2642
217e46b5
JH
2643 if (!req_out)
2644 return -EINVAL;
2645
bccca494 2646 *req_out = NULL;
6689cb2b 2647
eed29a5b
DV
2648 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2649 if (req == NULL)
6689cb2b
JH
2650 return -ENOMEM;
2651
eed29a5b 2652 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2653 if (ret)
2654 goto err;
6689cb2b 2655
40e895ce
JH
2656 kref_init(&req->ref);
2657 req->i915 = dev_priv;
eed29a5b 2658 req->ring = ring;
40e895ce
JH
2659 req->ctx = ctx;
2660 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2661
2662 if (i915.enable_execlists)
40e895ce 2663 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2664 else
eed29a5b 2665 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2666 if (ret) {
2667 i915_gem_context_unreference(req->ctx);
9a0c1e27 2668 goto err;
40e895ce 2669 }
6689cb2b 2670
29b1b415
JH
2671 /*
2672 * Reserve space in the ring buffer for all the commands required to
2673 * eventually emit this request. This is to guarantee that the
2674 * i915_add_request() call can't fail. Note that the reserve may need
2675 * to be redone if the request is not actually submitted straight
2676 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2677 */
ccd98fe4
JH
2678 if (i915.enable_execlists)
2679 ret = intel_logical_ring_reserve_space(req);
2680 else
2681 ret = intel_ring_reserve_space(req);
2682 if (ret) {
2683 /*
2684 * At this point, the request is fully allocated even if not
2685 * fully prepared. Thus it can be cleaned up using the proper
2686 * free code.
2687 */
2688 i915_gem_request_cancel(req);
2689 return ret;
2690 }
29b1b415 2691
bccca494 2692 *req_out = req;
6689cb2b 2693 return 0;
9a0c1e27
CW
2694
2695err:
2696 kmem_cache_free(dev_priv->requests, req);
2697 return ret;
0e50e96b
MK
2698}
2699
29b1b415
JH
2700void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2701{
2702 intel_ring_reserved_space_cancel(req->ringbuf);
2703
2704 i915_gem_request_unreference(req);
2705}
2706
8d9fc7fd 2707struct drm_i915_gem_request *
a4872ba6 2708i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2709{
4db080f9
CW
2710 struct drm_i915_gem_request *request;
2711
2712 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2713 if (i915_gem_request_completed(request, false))
4db080f9 2714 continue;
aa60c664 2715
b6b0fac0 2716 return request;
4db080f9 2717 }
b6b0fac0
MK
2718
2719 return NULL;
2720}
2721
2722static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2723 struct intel_engine_cs *ring)
b6b0fac0
MK
2724{
2725 struct drm_i915_gem_request *request;
2726 bool ring_hung;
2727
8d9fc7fd 2728 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2729
2730 if (request == NULL)
2731 return;
2732
2733 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2734
939fd762 2735 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2736
2737 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2738 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2739}
aa60c664 2740
4db080f9 2741static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2742 struct intel_engine_cs *ring)
4db080f9 2743{
dfaae392 2744 while (!list_empty(&ring->active_list)) {
05394f39 2745 struct drm_i915_gem_object *obj;
9375e446 2746
05394f39
CW
2747 obj = list_first_entry(&ring->active_list,
2748 struct drm_i915_gem_object,
b4716185 2749 ring_list[ring->id]);
9375e446 2750
b4716185 2751 i915_gem_object_retire__read(obj, ring->id);
673a394b 2752 }
1d62beea 2753
dcb4c12a
OM
2754 /*
2755 * Clear the execlists queue up before freeing the requests, as those
2756 * are the ones that keep the context and ringbuffer backing objects
2757 * pinned in place.
2758 */
2759 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2760 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2761
2762 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2763 struct drm_i915_gem_request,
dcb4c12a
OM
2764 execlist_link);
2765 list_del(&submit_req->execlist_link);
1197b4f2
MK
2766
2767 if (submit_req->ctx != ring->default_context)
2768 intel_lr_context_unpin(ring, submit_req->ctx);
2769
b3a38998 2770 i915_gem_request_unreference(submit_req);
dcb4c12a
OM
2771 }
2772
1d62beea
BW
2773 /*
2774 * We must free the requests after all the corresponding objects have
2775 * been moved off active lists. Which is the same order as the normal
2776 * retire_requests function does. This is important if object hold
2777 * implicit references on things like e.g. ppgtt address spaces through
2778 * the request.
2779 */
2780 while (!list_empty(&ring->request_list)) {
2781 struct drm_i915_gem_request *request;
2782
2783 request = list_first_entry(&ring->request_list,
2784 struct drm_i915_gem_request,
2785 list);
2786
b4716185 2787 i915_gem_request_retire(request);
1d62beea 2788 }
673a394b
EA
2789}
2790
19b2dbde 2791void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2792{
2793 struct drm_i915_private *dev_priv = dev->dev_private;
2794 int i;
2795
4b9de737 2796 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2797 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2798
94a335db
DV
2799 /*
2800 * Commit delayed tiling changes if we have an object still
2801 * attached to the fence, otherwise just clear the fence.
2802 */
2803 if (reg->obj) {
2804 i915_gem_object_update_fence(reg->obj, reg,
2805 reg->obj->tiling_mode);
2806 } else {
2807 i915_gem_write_fence(dev, i, NULL);
2808 }
312817a3
CW
2809 }
2810}
2811
069efc1d 2812void i915_gem_reset(struct drm_device *dev)
673a394b 2813{
77f01230 2814 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2815 struct intel_engine_cs *ring;
1ec14ad3 2816 int i;
673a394b 2817
4db080f9
CW
2818 /*
2819 * Before we free the objects from the requests, we need to inspect
2820 * them for finding the guilty party. As the requests only borrow
2821 * their reference to the objects, the inspection must be done first.
2822 */
2823 for_each_ring(ring, dev_priv, i)
2824 i915_gem_reset_ring_status(dev_priv, ring);
2825
b4519513 2826 for_each_ring(ring, dev_priv, i)
4db080f9 2827 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2828
acce9ffa
BW
2829 i915_gem_context_reset(dev);
2830
19b2dbde 2831 i915_gem_restore_fences(dev);
b4716185
CW
2832
2833 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2834}
2835
2836/**
2837 * This function clears the request list as sequence numbers are passed.
2838 */
1cf0ba14 2839void
a4872ba6 2840i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2841{
db53a302 2842 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2843
832a3aad
CW
2844 /* Retire requests first as we use it above for the early return.
2845 * If we retire requests last, we may use a later seqno and so clear
2846 * the requests lists without clearing the active list, leading to
2847 * confusion.
e9103038 2848 */
852835f3 2849 while (!list_empty(&ring->request_list)) {
673a394b 2850 struct drm_i915_gem_request *request;
673a394b 2851
852835f3 2852 request = list_first_entry(&ring->request_list,
673a394b
EA
2853 struct drm_i915_gem_request,
2854 list);
673a394b 2855
1b5a433a 2856 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2857 break;
2858
b4716185 2859 i915_gem_request_retire(request);
b84d5f0c 2860 }
673a394b 2861
832a3aad
CW
2862 /* Move any buffers on the active list that are no longer referenced
2863 * by the ringbuffer to the flushing/inactive lists as appropriate,
2864 * before we free the context associated with the requests.
2865 */
2866 while (!list_empty(&ring->active_list)) {
2867 struct drm_i915_gem_object *obj;
2868
2869 obj = list_first_entry(&ring->active_list,
2870 struct drm_i915_gem_object,
b4716185 2871 ring_list[ring->id]);
832a3aad 2872
b4716185 2873 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2874 break;
2875
b4716185 2876 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2877 }
2878
581c26e8
JH
2879 if (unlikely(ring->trace_irq_req &&
2880 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2881 ring->irq_put(ring);
581c26e8 2882 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2883 }
23bc5982 2884
db53a302 2885 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2886}
2887
b29c19b6 2888bool
b09a1fec
CW
2889i915_gem_retire_requests(struct drm_device *dev)
2890{
3e31c6c0 2891 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2892 struct intel_engine_cs *ring;
b29c19b6 2893 bool idle = true;
1ec14ad3 2894 int i;
b09a1fec 2895
b29c19b6 2896 for_each_ring(ring, dev_priv, i) {
b4519513 2897 i915_gem_retire_requests_ring(ring);
b29c19b6 2898 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2899 if (i915.enable_execlists) {
2900 unsigned long flags;
2901
2902 spin_lock_irqsave(&ring->execlist_lock, flags);
2903 idle &= list_empty(&ring->execlist_queue);
2904 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2905
2906 intel_execlists_retire_requests(ring);
2907 }
b29c19b6
CW
2908 }
2909
2910 if (idle)
2911 mod_delayed_work(dev_priv->wq,
2912 &dev_priv->mm.idle_work,
2913 msecs_to_jiffies(100));
2914
2915 return idle;
b09a1fec
CW
2916}
2917
75ef9da2 2918static void
673a394b
EA
2919i915_gem_retire_work_handler(struct work_struct *work)
2920{
b29c19b6
CW
2921 struct drm_i915_private *dev_priv =
2922 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2923 struct drm_device *dev = dev_priv->dev;
0a58705b 2924 bool idle;
673a394b 2925
891b48cf 2926 /* Come back later if the device is busy... */
b29c19b6
CW
2927 idle = false;
2928 if (mutex_trylock(&dev->struct_mutex)) {
2929 idle = i915_gem_retire_requests(dev);
2930 mutex_unlock(&dev->struct_mutex);
673a394b 2931 }
b29c19b6 2932 if (!idle)
bcb45086
CW
2933 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2934 round_jiffies_up_relative(HZ));
b29c19b6 2935}
0a58705b 2936
b29c19b6
CW
2937static void
2938i915_gem_idle_work_handler(struct work_struct *work)
2939{
2940 struct drm_i915_private *dev_priv =
2941 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2942 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2943 struct intel_engine_cs *ring;
2944 int i;
b29c19b6 2945
423795cb
CW
2946 for_each_ring(ring, dev_priv, i)
2947 if (!list_empty(&ring->request_list))
2948 return;
35c94185
CW
2949
2950 intel_mark_idle(dev);
2951
2952 if (mutex_trylock(&dev->struct_mutex)) {
2953 struct intel_engine_cs *ring;
2954 int i;
2955
2956 for_each_ring(ring, dev_priv, i)
2957 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 2958
35c94185
CW
2959 mutex_unlock(&dev->struct_mutex);
2960 }
673a394b
EA
2961}
2962
30dfebf3
DV
2963/**
2964 * Ensures that an object will eventually get non-busy by flushing any required
2965 * write domains, emitting any outstanding lazy request and retiring and
2966 * completed requests.
2967 */
2968static int
2969i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2970{
a5ac0f90 2971 int i;
b4716185
CW
2972
2973 if (!obj->active)
2974 return 0;
30dfebf3 2975
b4716185
CW
2976 for (i = 0; i < I915_NUM_RINGS; i++) {
2977 struct drm_i915_gem_request *req;
41c52415 2978
b4716185
CW
2979 req = obj->last_read_req[i];
2980 if (req == NULL)
2981 continue;
2982
2983 if (list_empty(&req->list))
2984 goto retire;
2985
b4716185
CW
2986 if (i915_gem_request_completed(req, true)) {
2987 __i915_gem_request_retire__upto(req);
2988retire:
2989 i915_gem_object_retire__read(obj, i);
2990 }
30dfebf3
DV
2991 }
2992
2993 return 0;
2994}
2995
23ba4fd0
BW
2996/**
2997 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2998 * @DRM_IOCTL_ARGS: standard ioctl arguments
2999 *
3000 * Returns 0 if successful, else an error is returned with the remaining time in
3001 * the timeout parameter.
3002 * -ETIME: object is still busy after timeout
3003 * -ERESTARTSYS: signal interrupted the wait
3004 * -ENONENT: object doesn't exist
3005 * Also possible, but rare:
3006 * -EAGAIN: GPU wedged
3007 * -ENOMEM: damn
3008 * -ENODEV: Internal IRQ fail
3009 * -E?: The add request failed
3010 *
3011 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3012 * non-zero timeout parameter the wait ioctl will wait for the given number of
3013 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3014 * without holding struct_mutex the object may become re-busied before this
3015 * function completes. A similar but shorter * race condition exists in the busy
3016 * ioctl
3017 */
3018int
3019i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3020{
3e31c6c0 3021 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3022 struct drm_i915_gem_wait *args = data;
3023 struct drm_i915_gem_object *obj;
b4716185 3024 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 3025 unsigned reset_counter;
b4716185
CW
3026 int i, n = 0;
3027 int ret;
23ba4fd0 3028
11b5d511
DV
3029 if (args->flags != 0)
3030 return -EINVAL;
3031
23ba4fd0
BW
3032 ret = i915_mutex_lock_interruptible(dev);
3033 if (ret)
3034 return ret;
3035
3036 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3037 if (&obj->base == NULL) {
3038 mutex_unlock(&dev->struct_mutex);
3039 return -ENOENT;
3040 }
3041
30dfebf3
DV
3042 /* Need to make sure the object gets inactive eventually. */
3043 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3044 if (ret)
3045 goto out;
3046
b4716185 3047 if (!obj->active)
97b2a6a1 3048 goto out;
23ba4fd0 3049
23ba4fd0 3050 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3051 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3052 */
762e4583 3053 if (args->timeout_ns == 0) {
23ba4fd0
BW
3054 ret = -ETIME;
3055 goto out;
3056 }
3057
3058 drm_gem_object_unreference(&obj->base);
f69061be 3059 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
3060
3061 for (i = 0; i < I915_NUM_RINGS; i++) {
3062 if (obj->last_read_req[i] == NULL)
3063 continue;
3064
3065 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3066 }
3067
23ba4fd0
BW
3068 mutex_unlock(&dev->struct_mutex);
3069
b4716185
CW
3070 for (i = 0; i < n; i++) {
3071 if (ret == 0)
3072 ret = __i915_wait_request(req[i], reset_counter, true,
3073 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3074 file->driver_priv);
3075 i915_gem_request_unreference__unlocked(req[i]);
3076 }
ff865885 3077 return ret;
23ba4fd0
BW
3078
3079out:
3080 drm_gem_object_unreference(&obj->base);
3081 mutex_unlock(&dev->struct_mutex);
3082 return ret;
3083}
3084
b4716185
CW
3085static int
3086__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3087 struct intel_engine_cs *to,
91af127f
JH
3088 struct drm_i915_gem_request *from_req,
3089 struct drm_i915_gem_request **to_req)
b4716185
CW
3090{
3091 struct intel_engine_cs *from;
3092 int ret;
3093
91af127f 3094 from = i915_gem_request_get_ring(from_req);
b4716185
CW
3095 if (to == from)
3096 return 0;
3097
91af127f 3098 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3099 return 0;
3100
b4716185 3101 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3102 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3103 ret = __i915_wait_request(from_req,
a6f766f3
CW
3104 atomic_read(&i915->gpu_error.reset_counter),
3105 i915->mm.interruptible,
3106 NULL,
3107 &i915->rps.semaphores);
b4716185
CW
3108 if (ret)
3109 return ret;
3110
91af127f 3111 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3112 } else {
3113 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3114 u32 seqno = i915_gem_request_get_seqno(from_req);
3115
3116 WARN_ON(!to_req);
b4716185
CW
3117
3118 if (seqno <= from->semaphore.sync_seqno[idx])
3119 return 0;
3120
91af127f
JH
3121 if (*to_req == NULL) {
3122 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3123 if (ret)
3124 return ret;
3125 }
3126
599d924c
JH
3127 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3128 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3129 if (ret)
3130 return ret;
3131
3132 /* We use last_read_req because sync_to()
3133 * might have just caused seqno wrap under
3134 * the radar.
3135 */
3136 from->semaphore.sync_seqno[idx] =
3137 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3138 }
3139
3140 return 0;
3141}
3142
5816d648
BW
3143/**
3144 * i915_gem_object_sync - sync an object to a ring.
3145 *
3146 * @obj: object which may be in use on another ring.
3147 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3148 * @to_req: request we wish to use the object for. See below.
3149 * This will be allocated and returned if a request is
3150 * required but not passed in.
5816d648
BW
3151 *
3152 * This code is meant to abstract object synchronization with the GPU.
3153 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3154 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3155 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3156 * into a buffer at any time, but multiple readers. To ensure each has
3157 * a coherent view of memory, we must:
3158 *
3159 * - If there is an outstanding write request to the object, the new
3160 * request must wait for it to complete (either CPU or in hw, requests
3161 * on the same ring will be naturally ordered).
3162 *
3163 * - If we are a write request (pending_write_domain is set), the new
3164 * request must wait for outstanding read requests to complete.
5816d648 3165 *
91af127f
JH
3166 * For CPU synchronisation (NULL to) no request is required. For syncing with
3167 * rings to_req must be non-NULL. However, a request does not have to be
3168 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3169 * request will be allocated automatically and returned through *to_req. Note
3170 * that it is not guaranteed that commands will be emitted (because the system
3171 * might already be idle). Hence there is no need to create a request that
3172 * might never have any work submitted. Note further that if a request is
3173 * returned in *to_req, it is the responsibility of the caller to submit
3174 * that request (after potentially adding more work to it).
3175 *
5816d648
BW
3176 * Returns 0 if successful, else propagates up the lower layer error.
3177 */
2911a35b
BW
3178int
3179i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3180 struct intel_engine_cs *to,
3181 struct drm_i915_gem_request **to_req)
2911a35b 3182{
b4716185
CW
3183 const bool readonly = obj->base.pending_write_domain == 0;
3184 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3185 int ret, i, n;
41c52415 3186
b4716185 3187 if (!obj->active)
2911a35b
BW
3188 return 0;
3189
b4716185
CW
3190 if (to == NULL)
3191 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3192
b4716185
CW
3193 n = 0;
3194 if (readonly) {
3195 if (obj->last_write_req)
3196 req[n++] = obj->last_write_req;
3197 } else {
3198 for (i = 0; i < I915_NUM_RINGS; i++)
3199 if (obj->last_read_req[i])
3200 req[n++] = obj->last_read_req[i];
3201 }
3202 for (i = 0; i < n; i++) {
91af127f 3203 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3204 if (ret)
3205 return ret;
3206 }
2911a35b 3207
b4716185 3208 return 0;
2911a35b
BW
3209}
3210
b5ffc9bc
CW
3211static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3212{
3213 u32 old_write_domain, old_read_domains;
3214
b5ffc9bc
CW
3215 /* Force a pagefault for domain tracking on next user access */
3216 i915_gem_release_mmap(obj);
3217
b97c3d9c
KP
3218 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3219 return;
3220
97c809fd
CW
3221 /* Wait for any direct GTT access to complete */
3222 mb();
3223
b5ffc9bc
CW
3224 old_read_domains = obj->base.read_domains;
3225 old_write_domain = obj->base.write_domain;
3226
3227 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3228 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3229
3230 trace_i915_gem_object_change_domain(obj,
3231 old_read_domains,
3232 old_write_domain);
3233}
3234
07fe0b12 3235int i915_vma_unbind(struct i915_vma *vma)
673a394b 3236{
07fe0b12 3237 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3238 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3239 int ret;
673a394b 3240
07fe0b12 3241 if (list_empty(&vma->vma_link))
673a394b
EA
3242 return 0;
3243
0ff501cb
DV
3244 if (!drm_mm_node_allocated(&vma->node)) {
3245 i915_gem_vma_destroy(vma);
0ff501cb
DV
3246 return 0;
3247 }
433544bd 3248
d7f46fc4 3249 if (vma->pin_count)
31d8d651 3250 return -EBUSY;
673a394b 3251
c4670ad0
CW
3252 BUG_ON(obj->pages == NULL);
3253
2e2f351d 3254 ret = i915_gem_object_wait_rendering(obj, false);
1488fc08 3255 if (ret)
a8198eea
CW
3256 return ret;
3257 /* Continue on if we fail due to EIO, the GPU is hung so we
3258 * should be safe and we need to cleanup or else we might
3259 * cause memory corruption through use-after-free.
3260 */
3261
fe14d5f4
TU
3262 if (i915_is_ggtt(vma->vm) &&
3263 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3264 i915_gem_object_finish_gtt(obj);
5323fd04 3265
8b1bc9b4
DV
3266 /* release the fence reg _after_ flushing */
3267 ret = i915_gem_object_put_fence(obj);
3268 if (ret)
3269 return ret;
3270 }
96b47b65 3271
07fe0b12 3272 trace_i915_vma_unbind(vma);
db53a302 3273
777dc5bb 3274 vma->vm->unbind_vma(vma);
5e562f1d 3275 vma->bound = 0;
6f65e29a 3276
64bf9303 3277 list_del_init(&vma->mm_list);
fe14d5f4
TU
3278 if (i915_is_ggtt(vma->vm)) {
3279 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3280 obj->map_and_fenceable = false;
3281 } else if (vma->ggtt_view.pages) {
3282 sg_free_table(vma->ggtt_view.pages);
3283 kfree(vma->ggtt_view.pages);
3284 vma->ggtt_view.pages = NULL;
3285 }
3286 }
673a394b 3287
2f633156
BW
3288 drm_mm_remove_node(&vma->node);
3289 i915_gem_vma_destroy(vma);
3290
3291 /* Since the unbound list is global, only move to that list if
b93dab6e 3292 * no more VMAs exist. */
9490edb5
AR
3293 if (list_empty(&obj->vma_list)) {
3294 i915_gem_gtt_finish_object(obj);
2f633156 3295 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3296 }
673a394b 3297
70903c3b
CW
3298 /* And finally now the object is completely decoupled from this vma,
3299 * we can drop its hold on the backing storage and allow it to be
3300 * reaped by the shrinker.
3301 */
3302 i915_gem_object_unpin_pages(obj);
3303
88241785 3304 return 0;
54cf91dc
CW
3305}
3306
b2da9fe5 3307int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3308{
3e31c6c0 3309 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3310 struct intel_engine_cs *ring;
1ec14ad3 3311 int ret, i;
4df2faf4 3312
4df2faf4 3313 /* Flush everything onto the inactive list. */
b4519513 3314 for_each_ring(ring, dev_priv, i) {
ecdb5fd8 3315 if (!i915.enable_execlists) {
73cfa865
JH
3316 struct drm_i915_gem_request *req;
3317
3318 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
ecdb5fd8
TD
3319 if (ret)
3320 return ret;
73cfa865 3321
ba01cc93 3322 ret = i915_switch_context(req);
73cfa865
JH
3323 if (ret) {
3324 i915_gem_request_cancel(req);
3325 return ret;
3326 }
3327
75289874 3328 i915_add_request_no_flush(req);
ecdb5fd8 3329 }
b6c7488d 3330
3e960501 3331 ret = intel_ring_idle(ring);
1ec14ad3
CW
3332 if (ret)
3333 return ret;
3334 }
4df2faf4 3335
b4716185 3336 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3337 return 0;
4df2faf4
DV
3338}
3339
9ce079e4
CW
3340static void i965_write_fence_reg(struct drm_device *dev, int reg,
3341 struct drm_i915_gem_object *obj)
de151cf6 3342{
3e31c6c0 3343 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3344 int fence_reg;
3345 int fence_pitch_shift;
de151cf6 3346
56c844e5
ID
3347 if (INTEL_INFO(dev)->gen >= 6) {
3348 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3349 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3350 } else {
3351 fence_reg = FENCE_REG_965_0;
3352 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3353 }
3354
d18b9619
CW
3355 fence_reg += reg * 8;
3356
3357 /* To w/a incoherency with non-atomic 64-bit register updates,
3358 * we split the 64-bit update into two 32-bit writes. In order
3359 * for a partial fence not to be evaluated between writes, we
3360 * precede the update with write to turn off the fence register,
3361 * and only enable the fence as the last step.
3362 *
3363 * For extra levels of paranoia, we make sure each step lands
3364 * before applying the next step.
3365 */
3366 I915_WRITE(fence_reg, 0);
3367 POSTING_READ(fence_reg);
3368
9ce079e4 3369 if (obj) {
f343c5f6 3370 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3371 uint64_t val;
de151cf6 3372
af1a7301
BP
3373 /* Adjust fence size to match tiled area */
3374 if (obj->tiling_mode != I915_TILING_NONE) {
3375 uint32_t row_size = obj->stride *
3376 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3377 size = (size / row_size) * row_size;
3378 }
3379
f343c5f6 3380 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3381 0xfffff000) << 32;
f343c5f6 3382 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3383 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3384 if (obj->tiling_mode == I915_TILING_Y)
3385 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3386 val |= I965_FENCE_REG_VALID;
c6642782 3387
d18b9619
CW
3388 I915_WRITE(fence_reg + 4, val >> 32);
3389 POSTING_READ(fence_reg + 4);
3390
3391 I915_WRITE(fence_reg + 0, val);
3392 POSTING_READ(fence_reg);
3393 } else {
3394 I915_WRITE(fence_reg + 4, 0);
3395 POSTING_READ(fence_reg + 4);
3396 }
de151cf6
JB
3397}
3398
9ce079e4
CW
3399static void i915_write_fence_reg(struct drm_device *dev, int reg,
3400 struct drm_i915_gem_object *obj)
de151cf6 3401{
3e31c6c0 3402 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3403 u32 val;
de151cf6 3404
9ce079e4 3405 if (obj) {
f343c5f6 3406 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3407 int pitch_val;
3408 int tile_width;
c6642782 3409
f343c5f6 3410 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3411 (size & -size) != size ||
f343c5f6
BW
3412 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3413 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3414 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3415
9ce079e4
CW
3416 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3417 tile_width = 128;
3418 else
3419 tile_width = 512;
3420
3421 /* Note: pitch better be a power of two tile widths */
3422 pitch_val = obj->stride / tile_width;
3423 pitch_val = ffs(pitch_val) - 1;
3424
f343c5f6 3425 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3426 if (obj->tiling_mode == I915_TILING_Y)
3427 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3428 val |= I915_FENCE_SIZE_BITS(size);
3429 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3430 val |= I830_FENCE_REG_VALID;
3431 } else
3432 val = 0;
3433
3434 if (reg < 8)
3435 reg = FENCE_REG_830_0 + reg * 4;
3436 else
3437 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3438
3439 I915_WRITE(reg, val);
3440 POSTING_READ(reg);
de151cf6
JB
3441}
3442
9ce079e4
CW
3443static void i830_write_fence_reg(struct drm_device *dev, int reg,
3444 struct drm_i915_gem_object *obj)
de151cf6 3445{
3e31c6c0 3446 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3447 uint32_t val;
de151cf6 3448
9ce079e4 3449 if (obj) {
f343c5f6 3450 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3451 uint32_t pitch_val;
de151cf6 3452
f343c5f6 3453 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3454 (size & -size) != size ||
f343c5f6
BW
3455 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3456 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3457 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3458
9ce079e4
CW
3459 pitch_val = obj->stride / 128;
3460 pitch_val = ffs(pitch_val) - 1;
de151cf6 3461
f343c5f6 3462 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3463 if (obj->tiling_mode == I915_TILING_Y)
3464 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3465 val |= I830_FENCE_SIZE_BITS(size);
3466 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3467 val |= I830_FENCE_REG_VALID;
3468 } else
3469 val = 0;
c6642782 3470
9ce079e4
CW
3471 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3472 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3473}
3474
d0a57789
CW
3475inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3476{
3477 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3478}
3479
9ce079e4
CW
3480static void i915_gem_write_fence(struct drm_device *dev, int reg,
3481 struct drm_i915_gem_object *obj)
3482{
d0a57789
CW
3483 struct drm_i915_private *dev_priv = dev->dev_private;
3484
3485 /* Ensure that all CPU reads are completed before installing a fence
3486 * and all writes before removing the fence.
3487 */
3488 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3489 mb();
3490
94a335db
DV
3491 WARN(obj && (!obj->stride || !obj->tiling_mode),
3492 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3493 obj->stride, obj->tiling_mode);
3494
ce38ab05
RV
3495 if (IS_GEN2(dev))
3496 i830_write_fence_reg(dev, reg, obj);
3497 else if (IS_GEN3(dev))
3498 i915_write_fence_reg(dev, reg, obj);
3499 else if (INTEL_INFO(dev)->gen >= 4)
3500 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3501
3502 /* And similarly be paranoid that no direct access to this region
3503 * is reordered to before the fence is installed.
3504 */
3505 if (i915_gem_object_needs_mb(obj))
3506 mb();
de151cf6
JB
3507}
3508
61050808
CW
3509static inline int fence_number(struct drm_i915_private *dev_priv,
3510 struct drm_i915_fence_reg *fence)
3511{
3512 return fence - dev_priv->fence_regs;
3513}
3514
3515static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3516 struct drm_i915_fence_reg *fence,
3517 bool enable)
3518{
2dc8aae0 3519 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3520 int reg = fence_number(dev_priv, fence);
3521
3522 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3523
3524 if (enable) {
46a0b638 3525 obj->fence_reg = reg;
61050808
CW
3526 fence->obj = obj;
3527 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3528 } else {
3529 obj->fence_reg = I915_FENCE_REG_NONE;
3530 fence->obj = NULL;
3531 list_del_init(&fence->lru_list);
3532 }
94a335db 3533 obj->fence_dirty = false;
61050808
CW
3534}
3535
d9e86c0e 3536static int
d0a57789 3537i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3538{
97b2a6a1 3539 if (obj->last_fenced_req) {
a4b3a571 3540 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3541 if (ret)
3542 return ret;
d9e86c0e 3543
97b2a6a1 3544 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3545 }
3546
3547 return 0;
3548}
3549
3550int
3551i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3552{
61050808 3553 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3554 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3555 int ret;
3556
d0a57789 3557 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3558 if (ret)
3559 return ret;
3560
61050808
CW
3561 if (obj->fence_reg == I915_FENCE_REG_NONE)
3562 return 0;
d9e86c0e 3563
f9c513e9
CW
3564 fence = &dev_priv->fence_regs[obj->fence_reg];
3565
aff10b30
DV
3566 if (WARN_ON(fence->pin_count))
3567 return -EBUSY;
3568
61050808 3569 i915_gem_object_fence_lost(obj);
f9c513e9 3570 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3571
3572 return 0;
3573}
3574
3575static struct drm_i915_fence_reg *
a360bb1a 3576i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3577{
ae3db24a 3578 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3579 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3580 int i;
ae3db24a
DV
3581
3582 /* First try to find a free reg */
d9e86c0e 3583 avail = NULL;
ae3db24a
DV
3584 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3585 reg = &dev_priv->fence_regs[i];
3586 if (!reg->obj)
d9e86c0e 3587 return reg;
ae3db24a 3588
1690e1eb 3589 if (!reg->pin_count)
d9e86c0e 3590 avail = reg;
ae3db24a
DV
3591 }
3592
d9e86c0e 3593 if (avail == NULL)
5dce5b93 3594 goto deadlock;
ae3db24a
DV
3595
3596 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3597 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3598 if (reg->pin_count)
ae3db24a
DV
3599 continue;
3600
8fe301ad 3601 return reg;
ae3db24a
DV
3602 }
3603
5dce5b93
CW
3604deadlock:
3605 /* Wait for completion of pending flips which consume fences */
3606 if (intel_has_pending_fb_unpin(dev))
3607 return ERR_PTR(-EAGAIN);
3608
3609 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3610}
3611
de151cf6 3612/**
9a5a53b3 3613 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3614 * @obj: object to map through a fence reg
3615 *
3616 * When mapping objects through the GTT, userspace wants to be able to write
3617 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3618 * This function walks the fence regs looking for a free one for @obj,
3619 * stealing one if it can't find any.
3620 *
3621 * It then sets up the reg based on the object's properties: address, pitch
3622 * and tiling format.
9a5a53b3
CW
3623 *
3624 * For an untiled surface, this removes any existing fence.
de151cf6 3625 */
8c4b8c3f 3626int
06d98131 3627i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3628{
05394f39 3629 struct drm_device *dev = obj->base.dev;
79e53945 3630 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3631 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3632 struct drm_i915_fence_reg *reg;
ae3db24a 3633 int ret;
de151cf6 3634
14415745
CW
3635 /* Have we updated the tiling parameters upon the object and so
3636 * will need to serialise the write to the associated fence register?
3637 */
5d82e3e6 3638 if (obj->fence_dirty) {
d0a57789 3639 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3640 if (ret)
3641 return ret;
3642 }
9a5a53b3 3643
d9e86c0e 3644 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3645 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3646 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3647 if (!obj->fence_dirty) {
14415745
CW
3648 list_move_tail(&reg->lru_list,
3649 &dev_priv->mm.fence_list);
3650 return 0;
3651 }
3652 } else if (enable) {
e6a84468
CW
3653 if (WARN_ON(!obj->map_and_fenceable))
3654 return -EINVAL;
3655
14415745 3656 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3657 if (IS_ERR(reg))
3658 return PTR_ERR(reg);
d9e86c0e 3659
14415745
CW
3660 if (reg->obj) {
3661 struct drm_i915_gem_object *old = reg->obj;
3662
d0a57789 3663 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3664 if (ret)
3665 return ret;
3666
14415745 3667 i915_gem_object_fence_lost(old);
29c5a587 3668 }
14415745 3669 } else
a09ba7fa 3670 return 0;
a09ba7fa 3671
14415745 3672 i915_gem_object_update_fence(obj, reg, enable);
14415745 3673
9ce079e4 3674 return 0;
de151cf6
JB
3675}
3676
4144f9b5 3677static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3678 unsigned long cache_level)
3679{
4144f9b5 3680 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3681 struct drm_mm_node *other;
3682
4144f9b5
CW
3683 /*
3684 * On some machines we have to be careful when putting differing types
3685 * of snoopable memory together to avoid the prefetcher crossing memory
3686 * domains and dying. During vm initialisation, we decide whether or not
3687 * these constraints apply and set the drm_mm.color_adjust
3688 * appropriately.
42d6ab48 3689 */
4144f9b5 3690 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3691 return true;
3692
c6cfb325 3693 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3694 return true;
3695
3696 if (list_empty(&gtt_space->node_list))
3697 return true;
3698
3699 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3700 if (other->allocated && !other->hole_follows && other->color != cache_level)
3701 return false;
3702
3703 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3704 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3705 return false;
3706
3707 return true;
3708}
3709
673a394b 3710/**
91e6711e
JL
3711 * Finds free space in the GTT aperture and binds the object or a view of it
3712 * there.
673a394b 3713 */
262de145 3714static struct i915_vma *
07fe0b12
BW
3715i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3716 struct i915_address_space *vm,
ec7adb6e 3717 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3718 unsigned alignment,
ec7adb6e 3719 uint64_t flags)
673a394b 3720{
05394f39 3721 struct drm_device *dev = obj->base.dev;
3e31c6c0 3722 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3723 u32 size, fence_size, fence_alignment, unfenced_alignment;
c44ef60e 3724 u64 start =
d23db88c 3725 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
c44ef60e 3726 u64 end =
1ec9e26d 3727 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3728 struct i915_vma *vma;
07f73f69 3729 int ret;
673a394b 3730
91e6711e
JL
3731 if (i915_is_ggtt(vm)) {
3732 u32 view_size;
3733
3734 if (WARN_ON(!ggtt_view))
3735 return ERR_PTR(-EINVAL);
ec7adb6e 3736
91e6711e
JL
3737 view_size = i915_ggtt_view_size(obj, ggtt_view);
3738
3739 fence_size = i915_gem_get_gtt_size(dev,
3740 view_size,
3741 obj->tiling_mode);
3742 fence_alignment = i915_gem_get_gtt_alignment(dev,
3743 view_size,
3744 obj->tiling_mode,
3745 true);
3746 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3747 view_size,
3748 obj->tiling_mode,
3749 false);
3750 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3751 } else {
3752 fence_size = i915_gem_get_gtt_size(dev,
3753 obj->base.size,
3754 obj->tiling_mode);
3755 fence_alignment = i915_gem_get_gtt_alignment(dev,
3756 obj->base.size,
3757 obj->tiling_mode,
3758 true);
3759 unfenced_alignment =
3760 i915_gem_get_gtt_alignment(dev,
3761 obj->base.size,
3762 obj->tiling_mode,
3763 false);
3764 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3765 }
a00b10c3 3766
673a394b 3767 if (alignment == 0)
1ec9e26d 3768 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3769 unfenced_alignment;
1ec9e26d 3770 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3771 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3772 ggtt_view ? ggtt_view->type : 0,
3773 alignment);
262de145 3774 return ERR_PTR(-EINVAL);
673a394b
EA
3775 }
3776
91e6711e
JL
3777 /* If binding the object/GGTT view requires more space than the entire
3778 * aperture has, reject it early before evicting everything in a vain
3779 * attempt to find space.
654fc607 3780 */
91e6711e 3781 if (size > end) {
c44ef60e 3782 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%llu\n",
91e6711e
JL
3783 ggtt_view ? ggtt_view->type : 0,
3784 size,
1ec9e26d 3785 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3786 end);
262de145 3787 return ERR_PTR(-E2BIG);
654fc607
CW
3788 }
3789
37e680a1 3790 ret = i915_gem_object_get_pages(obj);
6c085a72 3791 if (ret)
262de145 3792 return ERR_PTR(ret);
6c085a72 3793
fbdda6fb
CW
3794 i915_gem_object_pin_pages(obj);
3795
ec7adb6e
JL
3796 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3797 i915_gem_obj_lookup_or_create_vma(obj, vm);
3798
262de145 3799 if (IS_ERR(vma))
bc6bc15b 3800 goto err_unpin;
2f633156 3801
0a9ae0d7 3802search_free:
07fe0b12 3803 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3804 size, alignment,
d23db88c
CW
3805 obj->cache_level,
3806 start, end,
62347f9e
LK
3807 DRM_MM_SEARCH_DEFAULT,
3808 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3809 if (ret) {
f6cd1f15 3810 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3811 obj->cache_level,
3812 start, end,
3813 flags);
dc9dd7a2
CW
3814 if (ret == 0)
3815 goto search_free;
9731129c 3816
bc6bc15b 3817 goto err_free_vma;
673a394b 3818 }
4144f9b5 3819 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3820 ret = -EINVAL;
bc6bc15b 3821 goto err_remove_node;
673a394b
EA
3822 }
3823
74163907 3824 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3825 if (ret)
bc6bc15b 3826 goto err_remove_node;
673a394b 3827
fe14d5f4 3828 trace_i915_vma_bind(vma, flags);
0875546c 3829 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
3830 if (ret)
3831 goto err_finish_gtt;
3832
35c20a60 3833 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3834 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3835
262de145 3836 return vma;
2f633156 3837
fe14d5f4
TU
3838err_finish_gtt:
3839 i915_gem_gtt_finish_object(obj);
bc6bc15b 3840err_remove_node:
6286ef9b 3841 drm_mm_remove_node(&vma->node);
bc6bc15b 3842err_free_vma:
2f633156 3843 i915_gem_vma_destroy(vma);
262de145 3844 vma = ERR_PTR(ret);
bc6bc15b 3845err_unpin:
2f633156 3846 i915_gem_object_unpin_pages(obj);
262de145 3847 return vma;
673a394b
EA
3848}
3849
000433b6 3850bool
2c22569b
CW
3851i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3852 bool force)
673a394b 3853{
673a394b
EA
3854 /* If we don't have a page list set up, then we're not pinned
3855 * to GPU, and we can ignore the cache flush because it'll happen
3856 * again at bind time.
3857 */
05394f39 3858 if (obj->pages == NULL)
000433b6 3859 return false;
673a394b 3860
769ce464
ID
3861 /*
3862 * Stolen memory is always coherent with the GPU as it is explicitly
3863 * marked as wc by the system, or the system is cache-coherent.
3864 */
6a2c4232 3865 if (obj->stolen || obj->phys_handle)
000433b6 3866 return false;
769ce464 3867
9c23f7fc
CW
3868 /* If the GPU is snooping the contents of the CPU cache,
3869 * we do not need to manually clear the CPU cache lines. However,
3870 * the caches are only snooped when the render cache is
3871 * flushed/invalidated. As we always have to emit invalidations
3872 * and flushes when moving into and out of the RENDER domain, correct
3873 * snooping behaviour occurs naturally as the result of our domain
3874 * tracking.
3875 */
0f71979a
CW
3876 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3877 obj->cache_dirty = true;
000433b6 3878 return false;
0f71979a 3879 }
9c23f7fc 3880
1c5d22f7 3881 trace_i915_gem_object_clflush(obj);
9da3da66 3882 drm_clflush_sg(obj->pages);
0f71979a 3883 obj->cache_dirty = false;
000433b6
CW
3884
3885 return true;
e47c68e9
EA
3886}
3887
3888/** Flushes the GTT write domain for the object if it's dirty. */
3889static void
05394f39 3890i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3891{
1c5d22f7
CW
3892 uint32_t old_write_domain;
3893
05394f39 3894 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3895 return;
3896
63256ec5 3897 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3898 * to it immediately go to main memory as far as we know, so there's
3899 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3900 *
3901 * However, we do have to enforce the order so that all writes through
3902 * the GTT land before any writes to the device, such as updates to
3903 * the GATT itself.
e47c68e9 3904 */
63256ec5
CW
3905 wmb();
3906
05394f39
CW
3907 old_write_domain = obj->base.write_domain;
3908 obj->base.write_domain = 0;
1c5d22f7 3909
f99d7069
DV
3910 intel_fb_obj_flush(obj, false);
3911
1c5d22f7 3912 trace_i915_gem_object_change_domain(obj,
05394f39 3913 obj->base.read_domains,
1c5d22f7 3914 old_write_domain);
e47c68e9
EA
3915}
3916
3917/** Flushes the CPU write domain for the object if it's dirty. */
3918static void
e62b59e4 3919i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3920{
1c5d22f7 3921 uint32_t old_write_domain;
e47c68e9 3922
05394f39 3923 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3924 return;
3925
e62b59e4 3926 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3927 i915_gem_chipset_flush(obj->base.dev);
3928
05394f39
CW
3929 old_write_domain = obj->base.write_domain;
3930 obj->base.write_domain = 0;
1c5d22f7 3931
f99d7069
DV
3932 intel_fb_obj_flush(obj, false);
3933
1c5d22f7 3934 trace_i915_gem_object_change_domain(obj,
05394f39 3935 obj->base.read_domains,
1c5d22f7 3936 old_write_domain);
e47c68e9
EA
3937}
3938
2ef7eeaa
EA
3939/**
3940 * Moves a single object to the GTT read, and possibly write domain.
3941 *
3942 * This function returns when the move is complete, including waiting on
3943 * flushes to occur.
3944 */
79e53945 3945int
2021746e 3946i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3947{
1c5d22f7 3948 uint32_t old_write_domain, old_read_domains;
43566ded 3949 struct i915_vma *vma;
e47c68e9 3950 int ret;
2ef7eeaa 3951
8d7e3de1
CW
3952 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3953 return 0;
3954
0201f1ec 3955 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3956 if (ret)
3957 return ret;
3958
43566ded
CW
3959 /* Flush and acquire obj->pages so that we are coherent through
3960 * direct access in memory with previous cached writes through
3961 * shmemfs and that our cache domain tracking remains valid.
3962 * For example, if the obj->filp was moved to swap without us
3963 * being notified and releasing the pages, we would mistakenly
3964 * continue to assume that the obj remained out of the CPU cached
3965 * domain.
3966 */
3967 ret = i915_gem_object_get_pages(obj);
3968 if (ret)
3969 return ret;
3970
e62b59e4 3971 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3972
d0a57789
CW
3973 /* Serialise direct access to this object with the barriers for
3974 * coherent writes from the GPU, by effectively invalidating the
3975 * GTT domain upon first access.
3976 */
3977 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3978 mb();
3979
05394f39
CW
3980 old_write_domain = obj->base.write_domain;
3981 old_read_domains = obj->base.read_domains;
1c5d22f7 3982
e47c68e9
EA
3983 /* It should now be out of any other write domains, and we can update
3984 * the domain values for our changes.
3985 */
05394f39
CW
3986 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3987 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3988 if (write) {
05394f39
CW
3989 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3990 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3991 obj->dirty = 1;
2ef7eeaa
EA
3992 }
3993
1c5d22f7
CW
3994 trace_i915_gem_object_change_domain(obj,
3995 old_read_domains,
3996 old_write_domain);
3997
8325a09d 3998 /* And bump the LRU for this access */
43566ded
CW
3999 vma = i915_gem_obj_to_ggtt(obj);
4000 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 4001 list_move_tail(&vma->mm_list,
43566ded 4002 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 4003
e47c68e9
EA
4004 return 0;
4005}
4006
e4ffd173
CW
4007int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4008 enum i915_cache_level cache_level)
4009{
7bddb01f 4010 struct drm_device *dev = obj->base.dev;
df6f783a 4011 struct i915_vma *vma, *next;
e4ffd173
CW
4012 int ret;
4013
4014 if (obj->cache_level == cache_level)
4015 return 0;
4016
d7f46fc4 4017 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
4018 DRM_DEBUG("can not change the cache level of pinned objects\n");
4019 return -EBUSY;
4020 }
4021
df6f783a 4022 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 4023 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 4024 ret = i915_vma_unbind(vma);
3089c6f2
BW
4025 if (ret)
4026 return ret;
3089c6f2 4027 }
42d6ab48
CW
4028 }
4029
3089c6f2 4030 if (i915_gem_obj_bound_any(obj)) {
2e2f351d 4031 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
4032 if (ret)
4033 return ret;
4034
4035 i915_gem_object_finish_gtt(obj);
4036
4037 /* Before SandyBridge, you could not use tiling or fence
4038 * registers with snooped memory, so relinquish any fences
4039 * currently pointing to our region in the aperture.
4040 */
42d6ab48 4041 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
4042 ret = i915_gem_object_put_fence(obj);
4043 if (ret)
4044 return ret;
4045 }
4046
6f65e29a 4047 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
4048 if (drm_mm_node_allocated(&vma->node)) {
4049 ret = i915_vma_bind(vma, cache_level,
0875546c 4050 PIN_UPDATE);
fe14d5f4
TU
4051 if (ret)
4052 return ret;
4053 }
e4ffd173
CW
4054 }
4055
2c22569b
CW
4056 list_for_each_entry(vma, &obj->vma_list, vma_link)
4057 vma->node.color = cache_level;
4058 obj->cache_level = cache_level;
4059
0f71979a
CW
4060 if (obj->cache_dirty &&
4061 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4062 cpu_write_needs_clflush(obj)) {
4063 if (i915_gem_clflush_object(obj, true))
4064 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
4065 }
4066
e4ffd173
CW
4067 return 0;
4068}
4069
199adf40
BW
4070int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4071 struct drm_file *file)
e6994aee 4072{
199adf40 4073 struct drm_i915_gem_caching *args = data;
e6994aee 4074 struct drm_i915_gem_object *obj;
e6994aee
CW
4075
4076 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
4077 if (&obj->base == NULL)
4078 return -ENOENT;
e6994aee 4079
651d794f
CW
4080 switch (obj->cache_level) {
4081 case I915_CACHE_LLC:
4082 case I915_CACHE_L3_LLC:
4083 args->caching = I915_CACHING_CACHED;
4084 break;
4085
4257d3ba
CW
4086 case I915_CACHE_WT:
4087 args->caching = I915_CACHING_DISPLAY;
4088 break;
4089
651d794f
CW
4090 default:
4091 args->caching = I915_CACHING_NONE;
4092 break;
4093 }
e6994aee 4094
432be69d
CW
4095 drm_gem_object_unreference_unlocked(&obj->base);
4096 return 0;
e6994aee
CW
4097}
4098
199adf40
BW
4099int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4100 struct drm_file *file)
e6994aee 4101{
199adf40 4102 struct drm_i915_gem_caching *args = data;
e6994aee
CW
4103 struct drm_i915_gem_object *obj;
4104 enum i915_cache_level level;
4105 int ret;
4106
199adf40
BW
4107 switch (args->caching) {
4108 case I915_CACHING_NONE:
e6994aee
CW
4109 level = I915_CACHE_NONE;
4110 break;
199adf40 4111 case I915_CACHING_CACHED:
e6994aee
CW
4112 level = I915_CACHE_LLC;
4113 break;
4257d3ba
CW
4114 case I915_CACHING_DISPLAY:
4115 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4116 break;
e6994aee
CW
4117 default:
4118 return -EINVAL;
4119 }
4120
3bc2913e
BW
4121 ret = i915_mutex_lock_interruptible(dev);
4122 if (ret)
4123 return ret;
4124
e6994aee
CW
4125 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4126 if (&obj->base == NULL) {
4127 ret = -ENOENT;
4128 goto unlock;
4129 }
4130
4131 ret = i915_gem_object_set_cache_level(obj, level);
4132
4133 drm_gem_object_unreference(&obj->base);
4134unlock:
4135 mutex_unlock(&dev->struct_mutex);
4136 return ret;
4137}
4138
b9241ea3 4139/*
2da3b9b9
CW
4140 * Prepare buffer for display plane (scanout, cursors, etc).
4141 * Can be called from an uninterruptible phase (modesetting) and allows
4142 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4143 */
4144int
2da3b9b9
CW
4145i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4146 u32 alignment,
e6617330 4147 struct intel_engine_cs *pipelined,
91af127f 4148 struct drm_i915_gem_request **pipelined_request,
e6617330 4149 const struct i915_ggtt_view *view)
b9241ea3 4150{
2da3b9b9 4151 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4152 int ret;
4153
91af127f 4154 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
b4716185
CW
4155 if (ret)
4156 return ret;
b9241ea3 4157
cc98b413
CW
4158 /* Mark the pin_display early so that we account for the
4159 * display coherency whilst setting up the cache domains.
4160 */
8a0c39b1 4161 obj->pin_display++;
cc98b413 4162
a7ef0640
EA
4163 /* The display engine is not coherent with the LLC cache on gen6. As
4164 * a result, we make sure that the pinning that is about to occur is
4165 * done with uncached PTEs. This is lowest common denominator for all
4166 * chipsets.
4167 *
4168 * However for gen6+, we could do better by using the GFDT bit instead
4169 * of uncaching, which would allow us to flush all the LLC-cached data
4170 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4171 */
651d794f
CW
4172 ret = i915_gem_object_set_cache_level(obj,
4173 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4174 if (ret)
cc98b413 4175 goto err_unpin_display;
a7ef0640 4176
2da3b9b9
CW
4177 /* As the user may map the buffer once pinned in the display plane
4178 * (e.g. libkms for the bootup splash), we have to ensure that we
4179 * always use map_and_fenceable for all scanout buffers.
4180 */
50470bb0
TU
4181 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4182 view->type == I915_GGTT_VIEW_NORMAL ?
4183 PIN_MAPPABLE : 0);
2da3b9b9 4184 if (ret)
cc98b413 4185 goto err_unpin_display;
2da3b9b9 4186
e62b59e4 4187 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4188
2da3b9b9 4189 old_write_domain = obj->base.write_domain;
05394f39 4190 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4191
4192 /* It should now be out of any other write domains, and we can update
4193 * the domain values for our changes.
4194 */
e5f1d962 4195 obj->base.write_domain = 0;
05394f39 4196 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4197
4198 trace_i915_gem_object_change_domain(obj,
4199 old_read_domains,
2da3b9b9 4200 old_write_domain);
b9241ea3
ZW
4201
4202 return 0;
cc98b413
CW
4203
4204err_unpin_display:
8a0c39b1 4205 obj->pin_display--;
cc98b413
CW
4206 return ret;
4207}
4208
4209void
e6617330
TU
4210i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4211 const struct i915_ggtt_view *view)
cc98b413 4212{
8a0c39b1
TU
4213 if (WARN_ON(obj->pin_display == 0))
4214 return;
4215
e6617330
TU
4216 i915_gem_object_ggtt_unpin_view(obj, view);
4217
8a0c39b1 4218 obj->pin_display--;
b9241ea3
ZW
4219}
4220
e47c68e9
EA
4221/**
4222 * Moves a single object to the CPU read, and possibly write domain.
4223 *
4224 * This function returns when the move is complete, including waiting on
4225 * flushes to occur.
4226 */
dabdfe02 4227int
919926ae 4228i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4229{
1c5d22f7 4230 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4231 int ret;
4232
8d7e3de1
CW
4233 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4234 return 0;
4235
0201f1ec 4236 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4237 if (ret)
4238 return ret;
4239
e47c68e9 4240 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4241
05394f39
CW
4242 old_write_domain = obj->base.write_domain;
4243 old_read_domains = obj->base.read_domains;
1c5d22f7 4244
e47c68e9 4245 /* Flush the CPU cache if it's still invalid. */
05394f39 4246 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4247 i915_gem_clflush_object(obj, false);
2ef7eeaa 4248
05394f39 4249 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4250 }
4251
4252 /* It should now be out of any other write domains, and we can update
4253 * the domain values for our changes.
4254 */
05394f39 4255 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4256
4257 /* If we're writing through the CPU, then the GPU read domains will
4258 * need to be invalidated at next use.
4259 */
4260 if (write) {
05394f39
CW
4261 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4262 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4263 }
2ef7eeaa 4264
1c5d22f7
CW
4265 trace_i915_gem_object_change_domain(obj,
4266 old_read_domains,
4267 old_write_domain);
4268
2ef7eeaa
EA
4269 return 0;
4270}
4271
673a394b
EA
4272/* Throttle our rendering by waiting until the ring has completed our requests
4273 * emitted over 20 msec ago.
4274 *
b962442e
EA
4275 * Note that if we were to use the current jiffies each time around the loop,
4276 * we wouldn't escape the function with any frames outstanding if the time to
4277 * render a frame was over 20ms.
4278 *
673a394b
EA
4279 * This should get us reasonable parallelism between CPU and GPU but also
4280 * relatively low latency when blocking on a particular request to finish.
4281 */
40a5f0de 4282static int
f787a5f5 4283i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4284{
f787a5f5
CW
4285 struct drm_i915_private *dev_priv = dev->dev_private;
4286 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4287 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4288 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4289 unsigned reset_counter;
f787a5f5 4290 int ret;
93533c29 4291
308887aa
DV
4292 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4293 if (ret)
4294 return ret;
4295
4296 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4297 if (ret)
4298 return ret;
e110e8d6 4299
1c25595f 4300 spin_lock(&file_priv->mm.lock);
f787a5f5 4301 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4302 if (time_after_eq(request->emitted_jiffies, recent_enough))
4303 break;
40a5f0de 4304
fcfa423c
JH
4305 /*
4306 * Note that the request might not have been submitted yet.
4307 * In which case emitted_jiffies will be zero.
4308 */
4309 if (!request->emitted_jiffies)
4310 continue;
4311
54fb2411 4312 target = request;
b962442e 4313 }
f69061be 4314 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4315 if (target)
4316 i915_gem_request_reference(target);
1c25595f 4317 spin_unlock(&file_priv->mm.lock);
40a5f0de 4318
54fb2411 4319 if (target == NULL)
f787a5f5 4320 return 0;
2bc43b5c 4321
9c654818 4322 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4323 if (ret == 0)
4324 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4325
41037f9f 4326 i915_gem_request_unreference__unlocked(target);
ff865885 4327
40a5f0de
EA
4328 return ret;
4329}
4330
d23db88c
CW
4331static bool
4332i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4333{
4334 struct drm_i915_gem_object *obj = vma->obj;
4335
4336 if (alignment &&
4337 vma->node.start & (alignment - 1))
4338 return true;
4339
4340 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4341 return true;
4342
4343 if (flags & PIN_OFFSET_BIAS &&
4344 vma->node.start < (flags & PIN_OFFSET_MASK))
4345 return true;
4346
4347 return false;
4348}
4349
ec7adb6e
JL
4350static int
4351i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4352 struct i915_address_space *vm,
4353 const struct i915_ggtt_view *ggtt_view,
4354 uint32_t alignment,
4355 uint64_t flags)
673a394b 4356{
6e7186af 4357 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4358 struct i915_vma *vma;
ef79e17c 4359 unsigned bound;
673a394b
EA
4360 int ret;
4361
6e7186af
BW
4362 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4363 return -ENODEV;
4364
bf3d149b 4365 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4366 return -EINVAL;
07fe0b12 4367
c826c449
CW
4368 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4369 return -EINVAL;
4370
ec7adb6e
JL
4371 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4372 return -EINVAL;
4373
4374 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4375 i915_gem_obj_to_vma(obj, vm);
4376
4377 if (IS_ERR(vma))
4378 return PTR_ERR(vma);
4379
07fe0b12 4380 if (vma) {
d7f46fc4
BW
4381 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4382 return -EBUSY;
4383
d23db88c 4384 if (i915_vma_misplaced(vma, alignment, flags)) {
ec7adb6e 4385 unsigned long offset;
9abc4648 4386 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
ec7adb6e 4387 i915_gem_obj_offset(obj, vm);
d7f46fc4 4388 WARN(vma->pin_count,
ec7adb6e 4389 "bo is already pinned in %s with incorrect alignment:"
f343c5f6 4390 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4391 " obj->map_and_fenceable=%d\n",
ec7adb6e
JL
4392 ggtt_view ? "ggtt" : "ppgtt",
4393 offset,
fe14d5f4 4394 alignment,
d23db88c 4395 !!(flags & PIN_MAPPABLE),
05394f39 4396 obj->map_and_fenceable);
07fe0b12 4397 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4398 if (ret)
4399 return ret;
8ea99c92
DV
4400
4401 vma = NULL;
ac0c6b5a
CW
4402 }
4403 }
4404
ef79e17c 4405 bound = vma ? vma->bound : 0;
8ea99c92 4406 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4407 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4408 flags);
262de145
DV
4409 if (IS_ERR(vma))
4410 return PTR_ERR(vma);
0875546c
DV
4411 } else {
4412 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4413 if (ret)
4414 return ret;
4415 }
74898d7e 4416
91e6711e
JL
4417 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4418 (bound ^ vma->bound) & GLOBAL_BIND) {
ef79e17c
CW
4419 bool mappable, fenceable;
4420 u32 fence_size, fence_alignment;
4421
4422 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4423 obj->base.size,
4424 obj->tiling_mode);
4425 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4426 obj->base.size,
4427 obj->tiling_mode,
4428 true);
4429
4430 fenceable = (vma->node.size == fence_size &&
4431 (vma->node.start & (fence_alignment - 1)) == 0);
4432
e8dec1dd 4433 mappable = (vma->node.start + fence_size <=
ef79e17c
CW
4434 dev_priv->gtt.mappable_end);
4435
4436 obj->map_and_fenceable = mappable && fenceable;
ef79e17c 4437
91e6711e
JL
4438 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4439 }
ef79e17c 4440
8ea99c92 4441 vma->pin_count++;
673a394b
EA
4442 return 0;
4443}
4444
ec7adb6e
JL
4445int
4446i915_gem_object_pin(struct drm_i915_gem_object *obj,
4447 struct i915_address_space *vm,
4448 uint32_t alignment,
4449 uint64_t flags)
4450{
4451 return i915_gem_object_do_pin(obj, vm,
4452 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4453 alignment, flags);
4454}
4455
4456int
4457i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4458 const struct i915_ggtt_view *view,
4459 uint32_t alignment,
4460 uint64_t flags)
4461{
4462 if (WARN_ONCE(!view, "no view specified"))
4463 return -EINVAL;
4464
4465 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4466 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4467}
4468
673a394b 4469void
e6617330
TU
4470i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4471 const struct i915_ggtt_view *view)
673a394b 4472{
e6617330 4473 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4474
d7f46fc4 4475 BUG_ON(!vma);
e6617330 4476 WARN_ON(vma->pin_count == 0);
9abc4648 4477 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4478
30154650 4479 --vma->pin_count;
673a394b
EA
4480}
4481
d8ffa60b
DV
4482bool
4483i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4484{
4485 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4486 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4487 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4488
4489 WARN_ON(!ggtt_vma ||
4490 dev_priv->fence_regs[obj->fence_reg].pin_count >
4491 ggtt_vma->pin_count);
4492 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4493 return true;
4494 } else
4495 return false;
4496}
4497
4498void
4499i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4500{
4501 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4502 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4503 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4504 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4505 }
4506}
4507
673a394b
EA
4508int
4509i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4510 struct drm_file *file)
673a394b
EA
4511{
4512 struct drm_i915_gem_busy *args = data;
05394f39 4513 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4514 int ret;
4515
76c1dec1 4516 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4517 if (ret)
76c1dec1 4518 return ret;
673a394b 4519
05394f39 4520 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4521 if (&obj->base == NULL) {
1d7cfea1
CW
4522 ret = -ENOENT;
4523 goto unlock;
673a394b 4524 }
d1b851fc 4525
0be555b6
CW
4526 /* Count all active objects as busy, even if they are currently not used
4527 * by the gpu. Users of this interface expect objects to eventually
4528 * become non-busy without any further actions, therefore emit any
4529 * necessary flushes here.
c4de0a5d 4530 */
30dfebf3 4531 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4532 if (ret)
4533 goto unref;
0be555b6 4534
b4716185
CW
4535 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4536 args->busy = obj->active << 16;
4537 if (obj->last_write_req)
4538 args->busy |= obj->last_write_req->ring->id;
673a394b 4539
b4716185 4540unref:
05394f39 4541 drm_gem_object_unreference(&obj->base);
1d7cfea1 4542unlock:
673a394b 4543 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4544 return ret;
673a394b
EA
4545}
4546
4547int
4548i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4549 struct drm_file *file_priv)
4550{
0206e353 4551 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4552}
4553
3ef94daa
CW
4554int
4555i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4556 struct drm_file *file_priv)
4557{
656bfa3a 4558 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4559 struct drm_i915_gem_madvise *args = data;
05394f39 4560 struct drm_i915_gem_object *obj;
76c1dec1 4561 int ret;
3ef94daa
CW
4562
4563 switch (args->madv) {
4564 case I915_MADV_DONTNEED:
4565 case I915_MADV_WILLNEED:
4566 break;
4567 default:
4568 return -EINVAL;
4569 }
4570
1d7cfea1
CW
4571 ret = i915_mutex_lock_interruptible(dev);
4572 if (ret)
4573 return ret;
4574
05394f39 4575 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4576 if (&obj->base == NULL) {
1d7cfea1
CW
4577 ret = -ENOENT;
4578 goto unlock;
3ef94daa 4579 }
3ef94daa 4580
d7f46fc4 4581 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4582 ret = -EINVAL;
4583 goto out;
3ef94daa
CW
4584 }
4585
656bfa3a
DV
4586 if (obj->pages &&
4587 obj->tiling_mode != I915_TILING_NONE &&
4588 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4589 if (obj->madv == I915_MADV_WILLNEED)
4590 i915_gem_object_unpin_pages(obj);
4591 if (args->madv == I915_MADV_WILLNEED)
4592 i915_gem_object_pin_pages(obj);
4593 }
4594
05394f39
CW
4595 if (obj->madv != __I915_MADV_PURGED)
4596 obj->madv = args->madv;
3ef94daa 4597
6c085a72 4598 /* if the object is no longer attached, discard its backing storage */
be6a0376 4599 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4600 i915_gem_object_truncate(obj);
4601
05394f39 4602 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4603
1d7cfea1 4604out:
05394f39 4605 drm_gem_object_unreference(&obj->base);
1d7cfea1 4606unlock:
3ef94daa 4607 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4608 return ret;
3ef94daa
CW
4609}
4610
37e680a1
CW
4611void i915_gem_object_init(struct drm_i915_gem_object *obj,
4612 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4613{
b4716185
CW
4614 int i;
4615
35c20a60 4616 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4617 for (i = 0; i < I915_NUM_RINGS; i++)
4618 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4619 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4620 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4621 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4622
37e680a1
CW
4623 obj->ops = ops;
4624
0327d6ba
CW
4625 obj->fence_reg = I915_FENCE_REG_NONE;
4626 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4627
4628 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4629}
4630
37e680a1
CW
4631static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4632 .get_pages = i915_gem_object_get_pages_gtt,
4633 .put_pages = i915_gem_object_put_pages_gtt,
4634};
4635
05394f39
CW
4636struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4637 size_t size)
ac52bc56 4638{
c397b908 4639 struct drm_i915_gem_object *obj;
5949eac4 4640 struct address_space *mapping;
1a240d4d 4641 gfp_t mask;
ac52bc56 4642
42dcedd4 4643 obj = i915_gem_object_alloc(dev);
c397b908
DV
4644 if (obj == NULL)
4645 return NULL;
673a394b 4646
c397b908 4647 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4648 i915_gem_object_free(obj);
c397b908
DV
4649 return NULL;
4650 }
673a394b 4651
bed1ea95
CW
4652 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4653 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4654 /* 965gm cannot relocate objects above 4GiB. */
4655 mask &= ~__GFP_HIGHMEM;
4656 mask |= __GFP_DMA32;
4657 }
4658
496ad9aa 4659 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4660 mapping_set_gfp_mask(mapping, mask);
5949eac4 4661
37e680a1 4662 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4663
c397b908
DV
4664 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4665 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4666
3d29b842
ED
4667 if (HAS_LLC(dev)) {
4668 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4669 * cache) for about a 10% performance improvement
4670 * compared to uncached. Graphics requests other than
4671 * display scanout are coherent with the CPU in
4672 * accessing this cache. This means in this mode we
4673 * don't need to clflush on the CPU side, and on the
4674 * GPU side we only need to flush internal caches to
4675 * get data visible to the CPU.
4676 *
4677 * However, we maintain the display planes as UC, and so
4678 * need to rebind when first used as such.
4679 */
4680 obj->cache_level = I915_CACHE_LLC;
4681 } else
4682 obj->cache_level = I915_CACHE_NONE;
4683
d861e338
DV
4684 trace_i915_gem_object_create(obj);
4685
05394f39 4686 return obj;
c397b908
DV
4687}
4688
340fbd8c
CW
4689static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4690{
4691 /* If we are the last user of the backing storage (be it shmemfs
4692 * pages or stolen etc), we know that the pages are going to be
4693 * immediately released. In this case, we can then skip copying
4694 * back the contents from the GPU.
4695 */
4696
4697 if (obj->madv != I915_MADV_WILLNEED)
4698 return false;
4699
4700 if (obj->base.filp == NULL)
4701 return true;
4702
4703 /* At first glance, this looks racy, but then again so would be
4704 * userspace racing mmap against close. However, the first external
4705 * reference to the filp can only be obtained through the
4706 * i915_gem_mmap_ioctl() which safeguards us against the user
4707 * acquiring such a reference whilst we are in the middle of
4708 * freeing the object.
4709 */
4710 return atomic_long_read(&obj->base.filp->f_count) == 1;
4711}
4712
1488fc08 4713void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4714{
1488fc08 4715 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4716 struct drm_device *dev = obj->base.dev;
3e31c6c0 4717 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4718 struct i915_vma *vma, *next;
673a394b 4719
f65c9168
PZ
4720 intel_runtime_pm_get(dev_priv);
4721
26e12f89
CW
4722 trace_i915_gem_object_destroy(obj);
4723
07fe0b12 4724 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4725 int ret;
4726
4727 vma->pin_count = 0;
4728 ret = i915_vma_unbind(vma);
07fe0b12
BW
4729 if (WARN_ON(ret == -ERESTARTSYS)) {
4730 bool was_interruptible;
1488fc08 4731
07fe0b12
BW
4732 was_interruptible = dev_priv->mm.interruptible;
4733 dev_priv->mm.interruptible = false;
1488fc08 4734
07fe0b12 4735 WARN_ON(i915_vma_unbind(vma));
1488fc08 4736
07fe0b12
BW
4737 dev_priv->mm.interruptible = was_interruptible;
4738 }
1488fc08
CW
4739 }
4740
1d64ae71
BW
4741 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4742 * before progressing. */
4743 if (obj->stolen)
4744 i915_gem_object_unpin_pages(obj);
4745
a071fa00
DV
4746 WARN_ON(obj->frontbuffer_bits);
4747
656bfa3a
DV
4748 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4749 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4750 obj->tiling_mode != I915_TILING_NONE)
4751 i915_gem_object_unpin_pages(obj);
4752
401c29f6
BW
4753 if (WARN_ON(obj->pages_pin_count))
4754 obj->pages_pin_count = 0;
340fbd8c 4755 if (discard_backing_storage(obj))
5537252b 4756 obj->madv = I915_MADV_DONTNEED;
37e680a1 4757 i915_gem_object_put_pages(obj);
d8cb5086 4758 i915_gem_object_free_mmap_offset(obj);
de151cf6 4759
9da3da66
CW
4760 BUG_ON(obj->pages);
4761
2f745ad3
CW
4762 if (obj->base.import_attach)
4763 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4764
5cc9ed4b
CW
4765 if (obj->ops->release)
4766 obj->ops->release(obj);
4767
05394f39
CW
4768 drm_gem_object_release(&obj->base);
4769 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4770
05394f39 4771 kfree(obj->bit_17);
42dcedd4 4772 i915_gem_object_free(obj);
f65c9168
PZ
4773
4774 intel_runtime_pm_put(dev_priv);
673a394b
EA
4775}
4776
ec7adb6e
JL
4777struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4778 struct i915_address_space *vm)
e656a6cb
DV
4779{
4780 struct i915_vma *vma;
ec7adb6e
JL
4781 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4782 if (i915_is_ggtt(vma->vm) &&
4783 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4784 continue;
4785 if (vma->vm == vm)
e656a6cb 4786 return vma;
ec7adb6e
JL
4787 }
4788 return NULL;
4789}
4790
4791struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4792 const struct i915_ggtt_view *view)
4793{
4794 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4795 struct i915_vma *vma;
e656a6cb 4796
ec7adb6e
JL
4797 if (WARN_ONCE(!view, "no view specified"))
4798 return ERR_PTR(-EINVAL);
4799
4800 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4801 if (vma->vm == ggtt &&
4802 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4803 return vma;
e656a6cb
DV
4804 return NULL;
4805}
4806
2f633156
BW
4807void i915_gem_vma_destroy(struct i915_vma *vma)
4808{
b9d06dd9 4809 struct i915_address_space *vm = NULL;
2f633156 4810 WARN_ON(vma->node.allocated);
aaa05667
CW
4811
4812 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4813 if (!list_empty(&vma->exec_list))
4814 return;
4815
b9d06dd9 4816 vm = vma->vm;
b9d06dd9 4817
841cd773
DV
4818 if (!i915_is_ggtt(vm))
4819 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4820
8b9c2b94 4821 list_del(&vma->vma_link);
b93dab6e 4822
e20d2ab7 4823 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4824}
4825
e3efda49
CW
4826static void
4827i915_gem_stop_ringbuffers(struct drm_device *dev)
4828{
4829 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4830 struct intel_engine_cs *ring;
e3efda49
CW
4831 int i;
4832
4833 for_each_ring(ring, dev_priv, i)
a83014d3 4834 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4835}
4836
29105ccc 4837int
45c5f202 4838i915_gem_suspend(struct drm_device *dev)
29105ccc 4839{
3e31c6c0 4840 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4841 int ret = 0;
28dfe52a 4842
45c5f202 4843 mutex_lock(&dev->struct_mutex);
b2da9fe5 4844 ret = i915_gpu_idle(dev);
f7403347 4845 if (ret)
45c5f202 4846 goto err;
f7403347 4847
b2da9fe5 4848 i915_gem_retire_requests(dev);
673a394b 4849
e3efda49 4850 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4851 mutex_unlock(&dev->struct_mutex);
4852
737b1506 4853 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4854 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4855 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4856
bdcf120b
CW
4857 /* Assert that we sucessfully flushed all the work and
4858 * reset the GPU back to its idle, low power state.
4859 */
4860 WARN_ON(dev_priv->mm.busy);
4861
673a394b 4862 return 0;
45c5f202
CW
4863
4864err:
4865 mutex_unlock(&dev->struct_mutex);
4866 return ret;
673a394b
EA
4867}
4868
6909a666 4869int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4870{
6909a666 4871 struct intel_engine_cs *ring = req->ring;
c3787e2e 4872 struct drm_device *dev = ring->dev;
3e31c6c0 4873 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4874 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4875 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4876 int i, ret;
b9524a1e 4877
040d2baa 4878 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4879 return 0;
b9524a1e 4880
5fb9de1a 4881 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4882 if (ret)
4883 return ret;
b9524a1e 4884
c3787e2e
BW
4885 /*
4886 * Note: We do not worry about the concurrent register cacheline hang
4887 * here because no other code should access these registers other than
4888 * at initialization time.
4889 */
b9524a1e 4890 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4891 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4892 intel_ring_emit(ring, reg_base + i);
4893 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4894 }
4895
c3787e2e 4896 intel_ring_advance(ring);
b9524a1e 4897
c3787e2e 4898 return ret;
b9524a1e
BW
4899}
4900
f691e2f4
DV
4901void i915_gem_init_swizzling(struct drm_device *dev)
4902{
3e31c6c0 4903 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4904
11782b02 4905 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4906 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4907 return;
4908
4909 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4910 DISP_TILE_SURFACE_SWIZZLING);
4911
11782b02
DV
4912 if (IS_GEN5(dev))
4913 return;
4914
f691e2f4
DV
4915 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4916 if (IS_GEN6(dev))
6b26c86d 4917 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4918 else if (IS_GEN7(dev))
6b26c86d 4919 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4920 else if (IS_GEN8(dev))
4921 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4922 else
4923 BUG();
f691e2f4 4924}
e21af88d 4925
67b1b571
CW
4926static bool
4927intel_enable_blt(struct drm_device *dev)
4928{
4929 if (!HAS_BLT(dev))
4930 return false;
4931
4932 /* The blitter was dysfunctional on early prototypes */
4933 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4934 DRM_INFO("BLT not supported on this pre-production hardware;"
4935 " graphics performance will be degraded.\n");
4936 return false;
4937 }
4938
4939 return true;
4940}
4941
81e7f200
VS
4942static void init_unused_ring(struct drm_device *dev, u32 base)
4943{
4944 struct drm_i915_private *dev_priv = dev->dev_private;
4945
4946 I915_WRITE(RING_CTL(base), 0);
4947 I915_WRITE(RING_HEAD(base), 0);
4948 I915_WRITE(RING_TAIL(base), 0);
4949 I915_WRITE(RING_START(base), 0);
4950}
4951
4952static void init_unused_rings(struct drm_device *dev)
4953{
4954 if (IS_I830(dev)) {
4955 init_unused_ring(dev, PRB1_BASE);
4956 init_unused_ring(dev, SRB0_BASE);
4957 init_unused_ring(dev, SRB1_BASE);
4958 init_unused_ring(dev, SRB2_BASE);
4959 init_unused_ring(dev, SRB3_BASE);
4960 } else if (IS_GEN2(dev)) {
4961 init_unused_ring(dev, SRB0_BASE);
4962 init_unused_ring(dev, SRB1_BASE);
4963 } else if (IS_GEN3(dev)) {
4964 init_unused_ring(dev, PRB1_BASE);
4965 init_unused_ring(dev, PRB2_BASE);
4966 }
4967}
4968
a83014d3 4969int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4970{
4fc7c971 4971 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4972 int ret;
68f95ba9 4973
5c1143bb 4974 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4975 if (ret)
b6913e4b 4976 return ret;
68f95ba9
CW
4977
4978 if (HAS_BSD(dev)) {
5c1143bb 4979 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4980 if (ret)
4981 goto cleanup_render_ring;
d1b851fc 4982 }
68f95ba9 4983
67b1b571 4984 if (intel_enable_blt(dev)) {
549f7365
CW
4985 ret = intel_init_blt_ring_buffer(dev);
4986 if (ret)
4987 goto cleanup_bsd_ring;
4988 }
4989
9a8a2213
BW
4990 if (HAS_VEBOX(dev)) {
4991 ret = intel_init_vebox_ring_buffer(dev);
4992 if (ret)
4993 goto cleanup_blt_ring;
4994 }
4995
845f74a7
ZY
4996 if (HAS_BSD2(dev)) {
4997 ret = intel_init_bsd2_ring_buffer(dev);
4998 if (ret)
4999 goto cleanup_vebox_ring;
5000 }
9a8a2213 5001
99433931 5002 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 5003 if (ret)
845f74a7 5004 goto cleanup_bsd2_ring;
4fc7c971
BW
5005
5006 return 0;
5007
845f74a7
ZY
5008cleanup_bsd2_ring:
5009 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
5010cleanup_vebox_ring:
5011 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
5012cleanup_blt_ring:
5013 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5014cleanup_bsd_ring:
5015 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5016cleanup_render_ring:
5017 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5018
5019 return ret;
5020}
5021
5022int
5023i915_gem_init_hw(struct drm_device *dev)
5024{
3e31c6c0 5025 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 5026 struct intel_engine_cs *ring;
4ad2fd88 5027 int ret, i, j;
4fc7c971
BW
5028
5029 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5030 return -EIO;
5031
5e4f5189
CW
5032 /* Double layer security blanket, see i915_gem_init() */
5033 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5034
59124506 5035 if (dev_priv->ellc_size)
05e21cc4 5036 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 5037
0bf21347
VS
5038 if (IS_HASWELL(dev))
5039 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5040 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 5041
88a2b2a3 5042 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
5043 if (IS_IVYBRIDGE(dev)) {
5044 u32 temp = I915_READ(GEN7_MSG_CTL);
5045 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5046 I915_WRITE(GEN7_MSG_CTL, temp);
5047 } else if (INTEL_INFO(dev)->gen >= 7) {
5048 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5049 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5050 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5051 }
88a2b2a3
BW
5052 }
5053
4fc7c971
BW
5054 i915_gem_init_swizzling(dev);
5055
d5abdfda
DV
5056 /*
5057 * At least 830 can leave some of the unused rings
5058 * "active" (ie. head != tail) after resume which
5059 * will prevent c3 entry. Makes sure all unused rings
5060 * are totally idle.
5061 */
5062 init_unused_rings(dev);
5063
90638cc1
JH
5064 BUG_ON(!dev_priv->ring[RCS].default_context);
5065
4ad2fd88
JH
5066 ret = i915_ppgtt_init_hw(dev);
5067 if (ret) {
5068 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5069 goto out;
5070 }
5071
5072 /* Need to do basic initialisation of all rings first: */
35a57ffb
DV
5073 for_each_ring(ring, dev_priv, i) {
5074 ret = ring->init_hw(ring);
5075 if (ret)
5e4f5189 5076 goto out;
35a57ffb 5077 }
99433931 5078
4ad2fd88
JH
5079 /* Now it is safe to go back round and do everything else: */
5080 for_each_ring(ring, dev_priv, i) {
dc4be607
JH
5081 struct drm_i915_gem_request *req;
5082
90638cc1
JH
5083 WARN_ON(!ring->default_context);
5084
dc4be607
JH
5085 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
5086 if (ret) {
5087 i915_gem_cleanup_ringbuffer(dev);
5088 goto out;
5089 }
5090
4ad2fd88
JH
5091 if (ring->id == RCS) {
5092 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 5093 i915_gem_l3_remap(req, j);
4ad2fd88 5094 }
c3787e2e 5095
b3dd6b96 5096 ret = i915_ppgtt_init_ring(req);
4ad2fd88
JH
5097 if (ret && ret != -EIO) {
5098 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
dc4be607 5099 i915_gem_request_cancel(req);
4ad2fd88
JH
5100 i915_gem_cleanup_ringbuffer(dev);
5101 goto out;
5102 }
82460d97 5103
b3dd6b96 5104 ret = i915_gem_context_enable(req);
90638cc1
JH
5105 if (ret && ret != -EIO) {
5106 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
dc4be607 5107 i915_gem_request_cancel(req);
90638cc1
JH
5108 i915_gem_cleanup_ringbuffer(dev);
5109 goto out;
5110 }
dc4be607 5111
75289874 5112 i915_add_request_no_flush(req);
b7c36d25 5113 }
e21af88d 5114
5e4f5189
CW
5115out:
5116 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 5117 return ret;
8187a2b7
ZN
5118}
5119
1070a42b
CW
5120int i915_gem_init(struct drm_device *dev)
5121{
5122 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
5123 int ret;
5124
127f1003
OM
5125 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5126 i915.enable_execlists);
5127
1070a42b 5128 mutex_lock(&dev->struct_mutex);
d62b4892
JB
5129
5130 if (IS_VALLEYVIEW(dev)) {
5131 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
5132 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5133 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5134 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
5135 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5136 }
5137
a83014d3 5138 if (!i915.enable_execlists) {
f3dc74c0 5139 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
5140 dev_priv->gt.init_rings = i915_gem_init_rings;
5141 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5142 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 5143 } else {
f3dc74c0 5144 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
5145 dev_priv->gt.init_rings = intel_logical_rings_init;
5146 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5147 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
5148 }
5149
5e4f5189
CW
5150 /* This is just a security blanket to placate dragons.
5151 * On some systems, we very sporadically observe that the first TLBs
5152 * used by the CS may be stale, despite us poking the TLB reset. If
5153 * we hold the forcewake during initialisation these problems
5154 * just magically go away.
5155 */
5156 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5157
6c5566a8 5158 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
5159 if (ret)
5160 goto out_unlock;
6c5566a8 5161
d7e5008f 5162 i915_gem_init_global_gtt(dev);
d62b4892 5163
2fa48d8d 5164 ret = i915_gem_context_init(dev);
7bcc3777
JN
5165 if (ret)
5166 goto out_unlock;
2fa48d8d 5167
35a57ffb
DV
5168 ret = dev_priv->gt.init_rings(dev);
5169 if (ret)
7bcc3777 5170 goto out_unlock;
2fa48d8d 5171
1070a42b 5172 ret = i915_gem_init_hw(dev);
60990320
CW
5173 if (ret == -EIO) {
5174 /* Allow ring initialisation to fail by marking the GPU as
5175 * wedged. But we only want to do this where the GPU is angry,
5176 * for all other failure, such as an allocation failure, bail.
5177 */
5178 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5179 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5180 ret = 0;
1070a42b 5181 }
7bcc3777
JN
5182
5183out_unlock:
5e4f5189 5184 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 5185 mutex_unlock(&dev->struct_mutex);
1070a42b 5186
60990320 5187 return ret;
1070a42b
CW
5188}
5189
8187a2b7
ZN
5190void
5191i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5192{
3e31c6c0 5193 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 5194 struct intel_engine_cs *ring;
1ec14ad3 5195 int i;
8187a2b7 5196
b4519513 5197 for_each_ring(ring, dev_priv, i)
a83014d3 5198 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
5199}
5200
64193406 5201static void
a4872ba6 5202init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
5203{
5204 INIT_LIST_HEAD(&ring->active_list);
5205 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
5206}
5207
7e0d96bc
BW
5208void i915_init_vm(struct drm_i915_private *dev_priv,
5209 struct i915_address_space *vm)
fc8c067e 5210{
7e0d96bc
BW
5211 if (!i915_is_ggtt(vm))
5212 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
5213 vm->dev = dev_priv->dev;
5214 INIT_LIST_HEAD(&vm->active_list);
5215 INIT_LIST_HEAD(&vm->inactive_list);
5216 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 5217 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
5218}
5219
673a394b
EA
5220void
5221i915_gem_load(struct drm_device *dev)
5222{
3e31c6c0 5223 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5224 int i;
5225
efab6d8d 5226 dev_priv->objects =
42dcedd4
CW
5227 kmem_cache_create("i915_gem_object",
5228 sizeof(struct drm_i915_gem_object), 0,
5229 SLAB_HWCACHE_ALIGN,
5230 NULL);
e20d2ab7
CW
5231 dev_priv->vmas =
5232 kmem_cache_create("i915_gem_vma",
5233 sizeof(struct i915_vma), 0,
5234 SLAB_HWCACHE_ALIGN,
5235 NULL);
efab6d8d
CW
5236 dev_priv->requests =
5237 kmem_cache_create("i915_gem_request",
5238 sizeof(struct drm_i915_gem_request), 0,
5239 SLAB_HWCACHE_ALIGN,
5240 NULL);
673a394b 5241
fc8c067e
BW
5242 INIT_LIST_HEAD(&dev_priv->vm_list);
5243 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5244
a33afea5 5245 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5246 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5247 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5248 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
5249 for (i = 0; i < I915_NUM_RINGS; i++)
5250 init_ring_lists(&dev_priv->ring[i]);
4b9de737 5251 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5252 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5253 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5254 i915_gem_retire_work_handler);
b29c19b6
CW
5255 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5256 i915_gem_idle_work_handler);
1f83fee0 5257 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5258
72bfa19c
CW
5259 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5260
42b5aeab
VS
5261 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5262 dev_priv->num_fence_regs = 32;
5263 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5264 dev_priv->num_fence_regs = 16;
5265 else
5266 dev_priv->num_fence_regs = 8;
5267
eb82289a
YZ
5268 if (intel_vgpu_active(dev))
5269 dev_priv->num_fence_regs =
5270 I915_READ(vgtif_reg(avail_rs.fence_num));
5271
b5aa8a0f 5272 /* Initialize fence registers to zero */
19b2dbde
CW
5273 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5274 i915_gem_restore_fences(dev);
10ed13e4 5275
673a394b 5276 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5277 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5278
ce453d81
CW
5279 dev_priv->mm.interruptible = true;
5280
be6a0376 5281 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
5282
5283 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5284}
71acb5eb 5285
f787a5f5 5286void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5287{
f787a5f5 5288 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5289
5290 /* Clean up our request list when the client is going away, so that
5291 * later retire_requests won't dereference our soon-to-be-gone
5292 * file_priv.
5293 */
1c25595f 5294 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5295 while (!list_empty(&file_priv->mm.request_list)) {
5296 struct drm_i915_gem_request *request;
5297
5298 request = list_first_entry(&file_priv->mm.request_list,
5299 struct drm_i915_gem_request,
5300 client_list);
5301 list_del(&request->client_list);
5302 request->file_priv = NULL;
5303 }
1c25595f 5304 spin_unlock(&file_priv->mm.lock);
b29c19b6 5305
2e1b8730 5306 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5307 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5308 list_del(&file_priv->rps.link);
8d3afd7d 5309 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5310 }
b29c19b6
CW
5311}
5312
5313int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5314{
5315 struct drm_i915_file_private *file_priv;
e422b888 5316 int ret;
b29c19b6
CW
5317
5318 DRM_DEBUG_DRIVER("\n");
5319
5320 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5321 if (!file_priv)
5322 return -ENOMEM;
5323
5324 file->driver_priv = file_priv;
5325 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5326 file_priv->file = file;
2e1b8730 5327 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5328
5329 spin_lock_init(&file_priv->mm.lock);
5330 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5331
e422b888
BW
5332 ret = i915_gem_context_open(dev, file);
5333 if (ret)
5334 kfree(file_priv);
b29c19b6 5335
e422b888 5336 return ret;
b29c19b6
CW
5337}
5338
b680c37a
DV
5339/**
5340 * i915_gem_track_fb - update frontbuffer tracking
5341 * old: current GEM buffer for the frontbuffer slots
5342 * new: new GEM buffer for the frontbuffer slots
5343 * frontbuffer_bits: bitmask of frontbuffer slots
5344 *
5345 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5346 * from @old and setting them in @new. Both @old and @new can be NULL.
5347 */
a071fa00
DV
5348void i915_gem_track_fb(struct drm_i915_gem_object *old,
5349 struct drm_i915_gem_object *new,
5350 unsigned frontbuffer_bits)
5351{
5352 if (old) {
5353 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5354 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5355 old->frontbuffer_bits &= ~frontbuffer_bits;
5356 }
5357
5358 if (new) {
5359 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5360 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5361 new->frontbuffer_bits |= frontbuffer_bits;
5362 }
5363}
5364
a70a3148 5365/* All the new VM stuff */
ec7adb6e
JL
5366unsigned long
5367i915_gem_obj_offset(struct drm_i915_gem_object *o,
5368 struct i915_address_space *vm)
a70a3148
BW
5369{
5370 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5371 struct i915_vma *vma;
5372
896ab1a5 5373 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5374
a70a3148 5375 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5376 if (i915_is_ggtt(vma->vm) &&
5377 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5378 continue;
5379 if (vma->vm == vm)
a70a3148 5380 return vma->node.start;
a70a3148 5381 }
ec7adb6e 5382
f25748ea
DV
5383 WARN(1, "%s vma for this object not found.\n",
5384 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5385 return -1;
5386}
5387
ec7adb6e
JL
5388unsigned long
5389i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
9abc4648 5390 const struct i915_ggtt_view *view)
a70a3148 5391{
ec7adb6e 5392 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5393 struct i915_vma *vma;
5394
5395 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5396 if (vma->vm == ggtt &&
5397 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5398 return vma->node.start;
5399
5678ad73 5400 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5401 return -1;
5402}
5403
5404bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5405 struct i915_address_space *vm)
5406{
5407 struct i915_vma *vma;
5408
5409 list_for_each_entry(vma, &o->vma_list, vma_link) {
5410 if (i915_is_ggtt(vma->vm) &&
5411 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5412 continue;
5413 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5414 return true;
5415 }
5416
5417 return false;
5418}
5419
5420bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5421 const struct i915_ggtt_view *view)
ec7adb6e
JL
5422{
5423 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5424 struct i915_vma *vma;
5425
5426 list_for_each_entry(vma, &o->vma_list, vma_link)
5427 if (vma->vm == ggtt &&
9abc4648 5428 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5429 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5430 return true;
5431
5432 return false;
5433}
5434
5435bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5436{
5a1d5eb0 5437 struct i915_vma *vma;
a70a3148 5438
5a1d5eb0
CW
5439 list_for_each_entry(vma, &o->vma_list, vma_link)
5440 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5441 return true;
5442
5443 return false;
5444}
5445
5446unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5447 struct i915_address_space *vm)
5448{
5449 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5450 struct i915_vma *vma;
5451
896ab1a5 5452 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5453
5454 BUG_ON(list_empty(&o->vma_list));
5455
ec7adb6e
JL
5456 list_for_each_entry(vma, &o->vma_list, vma_link) {
5457 if (i915_is_ggtt(vma->vm) &&
5458 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5459 continue;
a70a3148
BW
5460 if (vma->vm == vm)
5461 return vma->node.size;
ec7adb6e 5462 }
a70a3148
BW
5463 return 0;
5464}
5465
ec7adb6e 5466bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5467{
5468 struct i915_vma *vma;
a6631ae1 5469 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5470 if (vma->pin_count > 0)
5471 return true;
a6631ae1 5472
ec7adb6e 5473 return false;
5c2abbea 5474}