]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Rename fence.lru_list to link
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
c13d87ea 32#include "i915_gem_dmabuf.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
c13d87ea 38#include <linux/reservation.h>
5949eac4 39#include <linux/shmem_fs.h>
5a0e3ad6 40#include <linux/slab.h>
673a394b 41#include <linux/swap.h>
79e53945 42#include <linux/pci.h>
1286ff73 43#include <linux/dma-buf.h>
673a394b 44
05394f39 45static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 46static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 47
c76ce038
CW
48static bool cpu_cache_is_coherent(struct drm_device *dev,
49 enum i915_cache_level level)
50{
51 return HAS_LLC(dev) || level != I915_CACHE_NONE;
52}
53
2c22569b
CW
54static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55{
b50a5371
AS
56 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57 return false;
58
2c22569b
CW
59 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60 return true;
61
62 return obj->pin_display;
63}
64
4f1959ee
AS
65static int
66insert_mappable_node(struct drm_i915_private *i915,
67 struct drm_mm_node *node, u32 size)
68{
69 memset(node, 0, sizeof(*node));
70 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71 size, 0, 0, 0,
72 i915->ggtt.mappable_end,
73 DRM_MM_SEARCH_DEFAULT,
74 DRM_MM_CREATE_DEFAULT);
75}
76
77static void
78remove_mappable_node(struct drm_mm_node *node)
79{
80 drm_mm_remove_node(node);
81}
82
73aa808f
CW
83/* some bookkeeping */
84static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85 size_t size)
86{
c20e8355 87 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
88 dev_priv->mm.object_count++;
89 dev_priv->mm.object_memory += size;
c20e8355 90 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
91}
92
93static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count--;
98 dev_priv->mm.object_memory -= size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
21dd3734 102static int
33196ded 103i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 104{
30dbf0c0
CW
105 int ret;
106
d98c52cf 107 if (!i915_reset_in_progress(error))
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0 115 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 116 !i915_reset_in_progress(error),
1f83fee0 117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
d98c52cf
CW
123 } else {
124 return 0;
0a6759c6 125 }
30dbf0c0
CW
126}
127
54cf91dc 128int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 129{
fac5e23e 130 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
131 int ret;
132
33196ded 133 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
134 if (ret)
135 return ret;
136
137 ret = mutex_lock_interruptible(&dev->struct_mutex);
138 if (ret)
139 return ret;
140
76c1dec1
CW
141 return 0;
142}
30dbf0c0 143
5a125c3c
EA
144int
145i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 146 struct drm_file *file)
5a125c3c 147{
72e96d64 148 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 149 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 150 struct drm_i915_gem_get_aperture *args = data;
ca1543be 151 struct i915_vma *vma;
6299f992 152 size_t pinned;
5a125c3c 153
6299f992 154 pinned = 0;
73aa808f 155 mutex_lock(&dev->struct_mutex);
1c7f4bca 156 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 157 if (i915_vma_is_pinned(vma))
ca1543be 158 pinned += vma->node.size;
1c7f4bca 159 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 160 if (i915_vma_is_pinned(vma))
ca1543be 161 pinned += vma->node.size;
73aa808f 162 mutex_unlock(&dev->struct_mutex);
5a125c3c 163
72e96d64 164 args->aper_size = ggtt->base.total;
0206e353 165 args->aper_available_size = args->aper_size - pinned;
6299f992 166
5a125c3c
EA
167 return 0;
168}
169
6a2c4232
CW
170static int
171i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 172{
93c76a3d 173 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232
CW
174 char *vaddr = obj->phys_handle->vaddr;
175 struct sg_table *st;
176 struct scatterlist *sg;
177 int i;
00731155 178
6a2c4232
CW
179 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180 return -EINVAL;
181
182 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183 struct page *page;
184 char *src;
185
186 page = shmem_read_mapping_page(mapping, i);
187 if (IS_ERR(page))
188 return PTR_ERR(page);
189
190 src = kmap_atomic(page);
191 memcpy(vaddr, src, PAGE_SIZE);
192 drm_clflush_virt_range(vaddr, PAGE_SIZE);
193 kunmap_atomic(src);
194
09cbfeaf 195 put_page(page);
6a2c4232
CW
196 vaddr += PAGE_SIZE;
197 }
198
c033666a 199 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
200
201 st = kmalloc(sizeof(*st), GFP_KERNEL);
202 if (st == NULL)
203 return -ENOMEM;
204
205 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206 kfree(st);
207 return -ENOMEM;
208 }
209
210 sg = st->sgl;
211 sg->offset = 0;
212 sg->length = obj->base.size;
00731155 213
6a2c4232
CW
214 sg_dma_address(sg) = obj->phys_handle->busaddr;
215 sg_dma_len(sg) = obj->base.size;
216
217 obj->pages = st;
6a2c4232
CW
218 return 0;
219}
220
221static void
222i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223{
224 int ret;
225
226 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 227
6a2c4232 228 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 229 if (WARN_ON(ret)) {
6a2c4232
CW
230 /* In the event of a disaster, abandon all caches and
231 * hope for the best.
232 */
6a2c4232
CW
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
93c76a3d 240 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 241 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
00731155 259 mark_page_accessed(page);
09cbfeaf 260 put_page(page);
00731155
CW
261 vaddr += PAGE_SIZE;
262 }
6a2c4232 263 obj->dirty = 0;
00731155
CW
264 }
265
6a2c4232
CW
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
6a2c4232
CW
268}
269
270static void
271i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272{
273 drm_pci_free(obj->base.dev, obj->phys_handle);
274}
275
276static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277 .get_pages = i915_gem_object_get_pages_phys,
278 .put_pages = i915_gem_object_put_pages_phys,
279 .release = i915_gem_object_release_phys,
280};
281
35a9611c 282int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
283{
284 struct i915_vma *vma;
285 LIST_HEAD(still_in_list);
02bef8f9
CW
286 int ret;
287
288 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 289
02bef8f9
CW
290 /* Closed vma are removed from the obj->vma_list - but they may
291 * still have an active binding on the object. To remove those we
292 * must wait for all rendering to complete to the object (as unbinding
293 * must anyway), and retire the requests.
aa653a68 294 */
02bef8f9
CW
295 ret = i915_gem_object_wait_rendering(obj, false);
296 if (ret)
297 return ret;
298
299 i915_gem_retire_requests(to_i915(obj->base.dev));
300
aa653a68
CW
301 while ((vma = list_first_entry_or_null(&obj->vma_list,
302 struct i915_vma,
303 obj_link))) {
304 list_move_tail(&vma->obj_link, &still_in_list);
305 ret = i915_vma_unbind(vma);
306 if (ret)
307 break;
308 }
309 list_splice(&still_in_list, &obj->vma_list);
310
311 return ret;
312}
313
00e60f26
CW
314/**
315 * Ensures that all rendering to the object has completed and the object is
316 * safe to unbind from the GTT or access from the CPU.
317 * @obj: i915 gem object
318 * @readonly: waiting for just read access or read-write access
319 */
320int
321i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
322 bool readonly)
323{
324 struct reservation_object *resv;
325 struct i915_gem_active *active;
326 unsigned long active_mask;
327 int idx;
328
329 lockdep_assert_held(&obj->base.dev->struct_mutex);
330
331 if (!readonly) {
332 active = obj->last_read;
333 active_mask = i915_gem_object_get_active(obj);
334 } else {
335 active_mask = 1;
336 active = &obj->last_write;
337 }
338
339 for_each_active(active_mask, idx) {
340 int ret;
341
342 ret = i915_gem_active_wait(&active[idx],
343 &obj->base.dev->struct_mutex);
344 if (ret)
345 return ret;
346 }
347
348 resv = i915_gem_object_get_dmabuf_resv(obj);
349 if (resv) {
350 long err;
351
352 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
353 MAX_SCHEDULE_TIMEOUT);
354 if (err < 0)
355 return err;
356 }
357
358 return 0;
359}
360
b8f9096d
CW
361/* A nonblocking variant of the above wait. Must be called prior to
362 * acquiring the mutex for the object, as the object state may change
363 * during this call. A reference must be held by the caller for the object.
00e60f26
CW
364 */
365static __must_check int
b8f9096d
CW
366__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
367 struct intel_rps_client *rps,
368 bool readonly)
00e60f26 369{
00e60f26
CW
370 struct i915_gem_active *active;
371 unsigned long active_mask;
b8f9096d 372 int idx;
00e60f26 373
b8f9096d 374 active_mask = __I915_BO_ACTIVE(obj);
00e60f26
CW
375 if (!active_mask)
376 return 0;
377
378 if (!readonly) {
379 active = obj->last_read;
380 } else {
381 active_mask = 1;
382 active = &obj->last_write;
383 }
384
b8f9096d
CW
385 for_each_active(active_mask, idx) {
386 int ret;
00e60f26 387
b8f9096d
CW
388 ret = i915_gem_active_wait_unlocked(&active[idx],
389 true, NULL, rps);
390 if (ret)
391 return ret;
00e60f26
CW
392 }
393
b8f9096d 394 return 0;
00e60f26
CW
395}
396
397static struct intel_rps_client *to_rps_client(struct drm_file *file)
398{
399 struct drm_i915_file_private *fpriv = file->driver_priv;
400
401 return &fpriv->rps;
402}
403
00731155
CW
404int
405i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
406 int align)
407{
408 drm_dma_handle_t *phys;
6a2c4232 409 int ret;
00731155
CW
410
411 if (obj->phys_handle) {
412 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
413 return -EBUSY;
414
415 return 0;
416 }
417
418 if (obj->madv != I915_MADV_WILLNEED)
419 return -EFAULT;
420
421 if (obj->base.filp == NULL)
422 return -EINVAL;
423
4717ca9e
CW
424 ret = i915_gem_object_unbind(obj);
425 if (ret)
426 return ret;
427
428 ret = i915_gem_object_put_pages(obj);
6a2c4232
CW
429 if (ret)
430 return ret;
431
00731155
CW
432 /* create a new object */
433 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
434 if (!phys)
435 return -ENOMEM;
436
00731155 437 obj->phys_handle = phys;
6a2c4232
CW
438 obj->ops = &i915_gem_phys_ops;
439
440 return i915_gem_object_get_pages(obj);
00731155
CW
441}
442
443static int
444i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
445 struct drm_i915_gem_pwrite *args,
446 struct drm_file *file_priv)
447{
448 struct drm_device *dev = obj->base.dev;
449 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 450 char __user *user_data = u64_to_user_ptr(args->data_ptr);
063e4e6b 451 int ret = 0;
6a2c4232
CW
452
453 /* We manually control the domain here and pretend that it
454 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
455 */
456 ret = i915_gem_object_wait_rendering(obj, false);
457 if (ret)
458 return ret;
00731155 459
77a0d1ca 460 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
461 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
462 unsigned long unwritten;
463
464 /* The physical object once assigned is fixed for the lifetime
465 * of the obj, so we can safely drop the lock and continue
466 * to access vaddr.
467 */
468 mutex_unlock(&dev->struct_mutex);
469 unwritten = copy_from_user(vaddr, user_data, args->size);
470 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
471 if (unwritten) {
472 ret = -EFAULT;
473 goto out;
474 }
00731155
CW
475 }
476
6a2c4232 477 drm_clflush_virt_range(vaddr, args->size);
c033666a 478 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
479
480out:
de152b62 481 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 482 return ret;
00731155
CW
483}
484
42dcedd4
CW
485void *i915_gem_object_alloc(struct drm_device *dev)
486{
fac5e23e 487 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 488 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
489}
490
491void i915_gem_object_free(struct drm_i915_gem_object *obj)
492{
fac5e23e 493 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 494 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
495}
496
ff72145b
DA
497static int
498i915_gem_create(struct drm_file *file,
499 struct drm_device *dev,
500 uint64_t size,
501 uint32_t *handle_p)
673a394b 502{
05394f39 503 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
504 int ret;
505 u32 handle;
673a394b 506
ff72145b 507 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
508 if (size == 0)
509 return -EINVAL;
673a394b
EA
510
511 /* Allocate the new object */
d37cd8a8 512 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
513 if (IS_ERR(obj))
514 return PTR_ERR(obj);
673a394b 515
05394f39 516 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 517 /* drop reference from allocate - handle holds it now */
34911fd3 518 i915_gem_object_put_unlocked(obj);
d861e338
DV
519 if (ret)
520 return ret;
202f2fef 521
ff72145b 522 *handle_p = handle;
673a394b
EA
523 return 0;
524}
525
ff72145b
DA
526int
527i915_gem_dumb_create(struct drm_file *file,
528 struct drm_device *dev,
529 struct drm_mode_create_dumb *args)
530{
531 /* have to work out size/pitch and return them */
de45eaf7 532 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
533 args->size = args->pitch * args->height;
534 return i915_gem_create(file, dev,
da6b51d0 535 args->size, &args->handle);
ff72145b
DA
536}
537
ff72145b
DA
538/**
539 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
540 * @dev: drm device pointer
541 * @data: ioctl data blob
542 * @file: drm file pointer
ff72145b
DA
543 */
544int
545i915_gem_create_ioctl(struct drm_device *dev, void *data,
546 struct drm_file *file)
547{
548 struct drm_i915_gem_create *args = data;
63ed2cb2 549
ff72145b 550 return i915_gem_create(file, dev,
da6b51d0 551 args->size, &args->handle);
ff72145b
DA
552}
553
8461d226
DV
554static inline int
555__copy_to_user_swizzled(char __user *cpu_vaddr,
556 const char *gpu_vaddr, int gpu_offset,
557 int length)
558{
559 int ret, cpu_offset = 0;
560
561 while (length > 0) {
562 int cacheline_end = ALIGN(gpu_offset + 1, 64);
563 int this_length = min(cacheline_end - gpu_offset, length);
564 int swizzled_gpu_offset = gpu_offset ^ 64;
565
566 ret = __copy_to_user(cpu_vaddr + cpu_offset,
567 gpu_vaddr + swizzled_gpu_offset,
568 this_length);
569 if (ret)
570 return ret + length;
571
572 cpu_offset += this_length;
573 gpu_offset += this_length;
574 length -= this_length;
575 }
576
577 return 0;
578}
579
8c59967c 580static inline int
4f0c7cfb
BW
581__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
582 const char __user *cpu_vaddr,
8c59967c
DV
583 int length)
584{
585 int ret, cpu_offset = 0;
586
587 while (length > 0) {
588 int cacheline_end = ALIGN(gpu_offset + 1, 64);
589 int this_length = min(cacheline_end - gpu_offset, length);
590 int swizzled_gpu_offset = gpu_offset ^ 64;
591
592 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
593 cpu_vaddr + cpu_offset,
594 this_length);
595 if (ret)
596 return ret + length;
597
598 cpu_offset += this_length;
599 gpu_offset += this_length;
600 length -= this_length;
601 }
602
603 return 0;
604}
605
4c914c0c
BV
606/*
607 * Pins the specified object's pages and synchronizes the object with
608 * GPU accesses. Sets needs_clflush to non-zero if the caller should
609 * flush the object from the CPU cache.
610 */
611int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 612 unsigned int *needs_clflush)
4c914c0c
BV
613{
614 int ret;
615
616 *needs_clflush = 0;
617
43394c7d
CW
618 if (!i915_gem_object_has_struct_page(obj))
619 return -ENODEV;
4c914c0c 620
c13d87ea
CW
621 ret = i915_gem_object_wait_rendering(obj, true);
622 if (ret)
623 return ret;
624
9764951e
CW
625 ret = i915_gem_object_get_pages(obj);
626 if (ret)
627 return ret;
628
629 i915_gem_object_pin_pages(obj);
630
a314d5cb
CW
631 i915_gem_object_flush_gtt_write_domain(obj);
632
43394c7d
CW
633 /* If we're not in the cpu read domain, set ourself into the gtt
634 * read domain and manually flush cachelines (if required). This
635 * optimizes for the case when the gpu will dirty the data
636 * anyway again before the next pread happens.
637 */
638 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
4c914c0c
BV
639 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
640 obj->cache_level);
43394c7d 641
43394c7d
CW
642 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
643 ret = i915_gem_object_set_to_cpu_domain(obj, false);
9764951e
CW
644 if (ret)
645 goto err_unpin;
646
43394c7d 647 *needs_clflush = 0;
4c914c0c
BV
648 }
649
9764951e 650 /* return with the pages pinned */
43394c7d 651 return 0;
9764951e
CW
652
653err_unpin:
654 i915_gem_object_unpin_pages(obj);
655 return ret;
43394c7d
CW
656}
657
658int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
659 unsigned int *needs_clflush)
660{
661 int ret;
662
663 *needs_clflush = 0;
664 if (!i915_gem_object_has_struct_page(obj))
665 return -ENODEV;
666
667 ret = i915_gem_object_wait_rendering(obj, false);
668 if (ret)
669 return ret;
670
9764951e
CW
671 ret = i915_gem_object_get_pages(obj);
672 if (ret)
673 return ret;
674
675 i915_gem_object_pin_pages(obj);
676
a314d5cb
CW
677 i915_gem_object_flush_gtt_write_domain(obj);
678
43394c7d
CW
679 /* If we're not in the cpu write domain, set ourself into the
680 * gtt write domain and manually flush cachelines (as required).
681 * This optimizes for the case when the gpu will use the data
682 * right away and we therefore have to clflush anyway.
683 */
684 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
685 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
686
687 /* Same trick applies to invalidate partially written cachelines read
688 * before writing.
689 */
690 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
691 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
692 obj->cache_level);
693
43394c7d
CW
694 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
695 ret = i915_gem_object_set_to_cpu_domain(obj, true);
9764951e
CW
696 if (ret)
697 goto err_unpin;
698
43394c7d
CW
699 *needs_clflush = 0;
700 }
701
702 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
703 obj->cache_dirty = true;
704
705 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
706 obj->dirty = 1;
9764951e 707 /* return with the pages pinned */
43394c7d 708 return 0;
9764951e
CW
709
710err_unpin:
711 i915_gem_object_unpin_pages(obj);
712 return ret;
4c914c0c
BV
713}
714
d174bd64
DV
715/* Per-page copy function for the shmem pread fastpath.
716 * Flushes invalid cachelines before reading the target if
717 * needs_clflush is set. */
eb01459f 718static int
d174bd64
DV
719shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
720 char __user *user_data,
721 bool page_do_bit17_swizzling, bool needs_clflush)
722{
723 char *vaddr;
724 int ret;
725
e7e58eb5 726 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
727 return -EINVAL;
728
729 vaddr = kmap_atomic(page);
730 if (needs_clflush)
731 drm_clflush_virt_range(vaddr + shmem_page_offset,
732 page_length);
733 ret = __copy_to_user_inatomic(user_data,
734 vaddr + shmem_page_offset,
735 page_length);
736 kunmap_atomic(vaddr);
737
f60d7f0c 738 return ret ? -EFAULT : 0;
d174bd64
DV
739}
740
23c18c71
DV
741static void
742shmem_clflush_swizzled_range(char *addr, unsigned long length,
743 bool swizzled)
744{
e7e58eb5 745 if (unlikely(swizzled)) {
23c18c71
DV
746 unsigned long start = (unsigned long) addr;
747 unsigned long end = (unsigned long) addr + length;
748
749 /* For swizzling simply ensure that we always flush both
750 * channels. Lame, but simple and it works. Swizzled
751 * pwrite/pread is far from a hotpath - current userspace
752 * doesn't use it at all. */
753 start = round_down(start, 128);
754 end = round_up(end, 128);
755
756 drm_clflush_virt_range((void *)start, end - start);
757 } else {
758 drm_clflush_virt_range(addr, length);
759 }
760
761}
762
d174bd64
DV
763/* Only difference to the fast-path function is that this can handle bit17
764 * and uses non-atomic copy and kmap functions. */
765static int
766shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
767 char __user *user_data,
768 bool page_do_bit17_swizzling, bool needs_clflush)
769{
770 char *vaddr;
771 int ret;
772
773 vaddr = kmap(page);
774 if (needs_clflush)
23c18c71
DV
775 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
776 page_length,
777 page_do_bit17_swizzling);
d174bd64
DV
778
779 if (page_do_bit17_swizzling)
780 ret = __copy_to_user_swizzled(user_data,
781 vaddr, shmem_page_offset,
782 page_length);
783 else
784 ret = __copy_to_user(user_data,
785 vaddr + shmem_page_offset,
786 page_length);
787 kunmap(page);
788
f60d7f0c 789 return ret ? - EFAULT : 0;
d174bd64
DV
790}
791
b50a5371
AS
792static inline unsigned long
793slow_user_access(struct io_mapping *mapping,
794 uint64_t page_base, int page_offset,
795 char __user *user_data,
796 unsigned long length, bool pwrite)
797{
798 void __iomem *ioaddr;
799 void *vaddr;
800 uint64_t unwritten;
801
802 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
803 /* We can use the cpu mem copy function because this is X86. */
804 vaddr = (void __force *)ioaddr + page_offset;
805 if (pwrite)
806 unwritten = __copy_from_user(vaddr, user_data, length);
807 else
808 unwritten = __copy_to_user(user_data, vaddr, length);
809
810 io_mapping_unmap(ioaddr);
811 return unwritten;
812}
813
814static int
815i915_gem_gtt_pread(struct drm_device *dev,
816 struct drm_i915_gem_object *obj, uint64_t size,
817 uint64_t data_offset, uint64_t data_ptr)
818{
fac5e23e 819 struct drm_i915_private *dev_priv = to_i915(dev);
b50a5371 820 struct i915_ggtt *ggtt = &dev_priv->ggtt;
058d88c4 821 struct i915_vma *vma;
b50a5371
AS
822 struct drm_mm_node node;
823 char __user *user_data;
824 uint64_t remain;
825 uint64_t offset;
826 int ret;
827
058d88c4 828 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
18034584
CW
829 if (!IS_ERR(vma)) {
830 node.start = i915_ggtt_offset(vma);
831 node.allocated = false;
832 ret = i915_gem_object_put_fence(obj);
833 if (ret) {
834 i915_vma_unpin(vma);
835 vma = ERR_PTR(ret);
836 }
837 }
058d88c4 838 if (IS_ERR(vma)) {
b50a5371
AS
839 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
840 if (ret)
841 goto out;
842
843 ret = i915_gem_object_get_pages(obj);
844 if (ret) {
845 remove_mappable_node(&node);
846 goto out;
847 }
848
849 i915_gem_object_pin_pages(obj);
b50a5371
AS
850 }
851
852 ret = i915_gem_object_set_to_gtt_domain(obj, false);
853 if (ret)
854 goto out_unpin;
855
856 user_data = u64_to_user_ptr(data_ptr);
857 remain = size;
858 offset = data_offset;
859
860 mutex_unlock(&dev->struct_mutex);
861 if (likely(!i915.prefault_disable)) {
862 ret = fault_in_multipages_writeable(user_data, remain);
863 if (ret) {
864 mutex_lock(&dev->struct_mutex);
865 goto out_unpin;
866 }
867 }
868
869 while (remain > 0) {
870 /* Operation in this page
871 *
872 * page_base = page offset within aperture
873 * page_offset = offset within page
874 * page_length = bytes to copy for this page
875 */
876 u32 page_base = node.start;
877 unsigned page_offset = offset_in_page(offset);
878 unsigned page_length = PAGE_SIZE - page_offset;
879 page_length = remain < page_length ? remain : page_length;
880 if (node.allocated) {
881 wmb();
882 ggtt->base.insert_page(&ggtt->base,
883 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
884 node.start,
885 I915_CACHE_NONE, 0);
886 wmb();
887 } else {
888 page_base += offset & PAGE_MASK;
889 }
890 /* This is a slow read/write as it tries to read from
891 * and write to user memory which may result into page
892 * faults, and so we cannot perform this under struct_mutex.
893 */
894 if (slow_user_access(ggtt->mappable, page_base,
895 page_offset, user_data,
896 page_length, false)) {
897 ret = -EFAULT;
898 break;
899 }
900
901 remain -= page_length;
902 user_data += page_length;
903 offset += page_length;
904 }
905
906 mutex_lock(&dev->struct_mutex);
907 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
908 /* The user has modified the object whilst we tried
909 * reading from it, and we now have no idea what domain
910 * the pages should be in. As we have just been touching
911 * them directly, flush everything back to the GTT
912 * domain.
913 */
914 ret = i915_gem_object_set_to_gtt_domain(obj, false);
915 }
916
917out_unpin:
918 if (node.allocated) {
919 wmb();
920 ggtt->base.clear_range(&ggtt->base,
921 node.start, node.size,
922 true);
923 i915_gem_object_unpin_pages(obj);
924 remove_mappable_node(&node);
925 } else {
058d88c4 926 i915_vma_unpin(vma);
b50a5371
AS
927 }
928out:
929 return ret;
930}
931
eb01459f 932static int
dbf7bff0
DV
933i915_gem_shmem_pread(struct drm_device *dev,
934 struct drm_i915_gem_object *obj,
935 struct drm_i915_gem_pread *args,
936 struct drm_file *file)
eb01459f 937{
8461d226 938 char __user *user_data;
eb01459f 939 ssize_t remain;
8461d226 940 loff_t offset;
eb2c0c81 941 int shmem_page_offset, page_length, ret = 0;
8461d226 942 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 943 int prefaulted = 0;
8489731c 944 int needs_clflush = 0;
67d5a50c 945 struct sg_page_iter sg_iter;
eb01459f 946
4c914c0c 947 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
948 if (ret)
949 return ret;
950
43394c7d
CW
951 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
952 user_data = u64_to_user_ptr(args->data_ptr);
8461d226 953 offset = args->offset;
43394c7d 954 remain = args->size;
eb01459f 955
67d5a50c
ID
956 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
957 offset >> PAGE_SHIFT) {
2db76d7c 958 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
959
960 if (remain <= 0)
961 break;
962
eb01459f
EA
963 /* Operation in this page
964 *
eb01459f 965 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
966 * page_length = bytes to copy for this page
967 */
c8cbbb8b 968 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
969 page_length = remain;
970 if ((shmem_page_offset + page_length) > PAGE_SIZE)
971 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 972
8461d226
DV
973 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
974 (page_to_phys(page) & (1 << 17)) != 0;
975
d174bd64
DV
976 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 needs_clflush);
979 if (ret == 0)
980 goto next_page;
dbf7bff0 981
dbf7bff0
DV
982 mutex_unlock(&dev->struct_mutex);
983
d330a953 984 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 985 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
986 /* Userspace is tricking us, but we've already clobbered
987 * its pages with the prefault and promised to write the
988 * data up to the first fault. Hence ignore any errors
989 * and just continue. */
990 (void)ret;
991 prefaulted = 1;
992 }
eb01459f 993
d174bd64
DV
994 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
995 user_data, page_do_bit17_swizzling,
996 needs_clflush);
eb01459f 997
dbf7bff0 998 mutex_lock(&dev->struct_mutex);
f60d7f0c 999
f60d7f0c 1000 if (ret)
8461d226 1001 goto out;
8461d226 1002
17793c9a 1003next_page:
eb01459f 1004 remain -= page_length;
8461d226 1005 user_data += page_length;
eb01459f
EA
1006 offset += page_length;
1007 }
1008
4f27b75d 1009out:
43394c7d 1010 i915_gem_obj_finish_shmem_access(obj);
f60d7f0c 1011
eb01459f
EA
1012 return ret;
1013}
1014
673a394b
EA
1015/**
1016 * Reads data from the object referenced by handle.
14bb2c11
TU
1017 * @dev: drm device pointer
1018 * @data: ioctl data blob
1019 * @file: drm file pointer
673a394b
EA
1020 *
1021 * On error, the contents of *data are undefined.
1022 */
1023int
1024i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1025 struct drm_file *file)
673a394b
EA
1026{
1027 struct drm_i915_gem_pread *args = data;
05394f39 1028 struct drm_i915_gem_object *obj;
35b62a89 1029 int ret = 0;
673a394b 1030
51311d0a
CW
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_WRITE,
3ed605bc 1035 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1036 args->size))
1037 return -EFAULT;
1038
03ac0642 1039 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1040 if (!obj)
1041 return -ENOENT;
673a394b 1042
7dcd2499 1043 /* Bounds check source. */
05394f39
CW
1044 if (args->offset > obj->base.size ||
1045 args->size > obj->base.size - args->offset) {
ce9d419d 1046 ret = -EINVAL;
258a5ede 1047 goto err;
ce9d419d
CW
1048 }
1049
db53a302
CW
1050 trace_i915_gem_object_pread(obj, args->offset, args->size);
1051
258a5ede
CW
1052 ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
1053 if (ret)
1054 goto err;
1055
1056 ret = i915_mutex_lock_interruptible(dev);
1057 if (ret)
1058 goto err;
1059
dbf7bff0 1060 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 1061
b50a5371 1062 /* pread for non shmem backed objects */
1dd5b6f2
CW
1063 if (ret == -EFAULT || ret == -ENODEV) {
1064 intel_runtime_pm_get(to_i915(dev));
b50a5371
AS
1065 ret = i915_gem_gtt_pread(dev, obj, args->size,
1066 args->offset, args->data_ptr);
1dd5b6f2
CW
1067 intel_runtime_pm_put(to_i915(dev));
1068 }
b50a5371 1069
f8c417cd 1070 i915_gem_object_put(obj);
4f27b75d 1071 mutex_unlock(&dev->struct_mutex);
258a5ede
CW
1072
1073 return ret;
1074
1075err:
1076 i915_gem_object_put_unlocked(obj);
eb01459f 1077 return ret;
673a394b
EA
1078}
1079
0839ccb8
KP
1080/* This is the fast write path which cannot handle
1081 * page faults in the source data
9b7530cc 1082 */
0839ccb8
KP
1083
1084static inline int
1085fast_user_write(struct io_mapping *mapping,
1086 loff_t page_base, int page_offset,
1087 char __user *user_data,
1088 int length)
9b7530cc 1089{
4f0c7cfb
BW
1090 void __iomem *vaddr_atomic;
1091 void *vaddr;
0839ccb8 1092 unsigned long unwritten;
9b7530cc 1093
3e4d3af5 1094 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
1095 /* We can use the cpu mem copy function because this is X86. */
1096 vaddr = (void __force*)vaddr_atomic + page_offset;
1097 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 1098 user_data, length);
3e4d3af5 1099 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 1100 return unwritten;
0839ccb8
KP
1101}
1102
3de09aa3
EA
1103/**
1104 * This is the fast pwrite path, where we copy the data directly from the
1105 * user into the GTT, uncached.
62f90b38 1106 * @i915: i915 device private data
14bb2c11
TU
1107 * @obj: i915 gem object
1108 * @args: pwrite arguments structure
1109 * @file: drm file pointer
3de09aa3 1110 */
673a394b 1111static int
4f1959ee 1112i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
05394f39 1113 struct drm_i915_gem_object *obj,
3de09aa3 1114 struct drm_i915_gem_pwrite *args,
05394f39 1115 struct drm_file *file)
673a394b 1116{
4f1959ee 1117 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1118 struct drm_device *dev = obj->base.dev;
058d88c4 1119 struct i915_vma *vma;
4f1959ee
AS
1120 struct drm_mm_node node;
1121 uint64_t remain, offset;
673a394b 1122 char __user *user_data;
4f1959ee 1123 int ret;
b50a5371
AS
1124 bool hit_slow_path = false;
1125
3e510a8e 1126 if (i915_gem_object_is_tiled(obj))
b50a5371 1127 return -EFAULT;
935aaa69 1128
058d88c4 1129 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1130 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1131 if (!IS_ERR(vma)) {
1132 node.start = i915_ggtt_offset(vma);
1133 node.allocated = false;
1134 ret = i915_gem_object_put_fence(obj);
1135 if (ret) {
1136 i915_vma_unpin(vma);
1137 vma = ERR_PTR(ret);
1138 }
1139 }
058d88c4 1140 if (IS_ERR(vma)) {
4f1959ee
AS
1141 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
1142 if (ret)
1143 goto out;
1144
1145 ret = i915_gem_object_get_pages(obj);
1146 if (ret) {
1147 remove_mappable_node(&node);
1148 goto out;
1149 }
1150
1151 i915_gem_object_pin_pages(obj);
4f1959ee 1152 }
935aaa69
DV
1153
1154 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1155 if (ret)
1156 goto out_unpin;
1157
b19482d7 1158 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
4f1959ee 1159 obj->dirty = true;
063e4e6b 1160
4f1959ee
AS
1161 user_data = u64_to_user_ptr(args->data_ptr);
1162 offset = args->offset;
1163 remain = args->size;
1164 while (remain) {
673a394b
EA
1165 /* Operation in this page
1166 *
0839ccb8
KP
1167 * page_base = page offset within aperture
1168 * page_offset = offset within page
1169 * page_length = bytes to copy for this page
673a394b 1170 */
4f1959ee
AS
1171 u32 page_base = node.start;
1172 unsigned page_offset = offset_in_page(offset);
1173 unsigned page_length = PAGE_SIZE - page_offset;
1174 page_length = remain < page_length ? remain : page_length;
1175 if (node.allocated) {
1176 wmb(); /* flush the write before we modify the GGTT */
1177 ggtt->base.insert_page(&ggtt->base,
1178 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1179 node.start, I915_CACHE_NONE, 0);
1180 wmb(); /* flush modifications to the GGTT (insert_page) */
1181 } else {
1182 page_base += offset & PAGE_MASK;
1183 }
0839ccb8 1184 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1185 * source page isn't available. Return the error and we'll
1186 * retry in the slow path.
b50a5371
AS
1187 * If the object is non-shmem backed, we retry again with the
1188 * path that handles page fault.
0839ccb8 1189 */
72e96d64 1190 if (fast_user_write(ggtt->mappable, page_base,
935aaa69 1191 page_offset, user_data, page_length)) {
b50a5371
AS
1192 hit_slow_path = true;
1193 mutex_unlock(&dev->struct_mutex);
1194 if (slow_user_access(ggtt->mappable,
1195 page_base,
1196 page_offset, user_data,
1197 page_length, true)) {
1198 ret = -EFAULT;
1199 mutex_lock(&dev->struct_mutex);
1200 goto out_flush;
1201 }
1202
1203 mutex_lock(&dev->struct_mutex);
935aaa69 1204 }
673a394b 1205
0839ccb8
KP
1206 remain -= page_length;
1207 user_data += page_length;
1208 offset += page_length;
673a394b 1209 }
673a394b 1210
063e4e6b 1211out_flush:
b50a5371
AS
1212 if (hit_slow_path) {
1213 if (ret == 0 &&
1214 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1215 /* The user has modified the object whilst we tried
1216 * reading from it, and we now have no idea what domain
1217 * the pages should be in. As we have just been touching
1218 * them directly, flush everything back to the GTT
1219 * domain.
1220 */
1221 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1222 }
1223 }
1224
b19482d7 1225 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
935aaa69 1226out_unpin:
4f1959ee
AS
1227 if (node.allocated) {
1228 wmb();
1229 ggtt->base.clear_range(&ggtt->base,
1230 node.start, node.size,
1231 true);
1232 i915_gem_object_unpin_pages(obj);
1233 remove_mappable_node(&node);
1234 } else {
058d88c4 1235 i915_vma_unpin(vma);
4f1959ee 1236 }
935aaa69 1237out:
3de09aa3 1238 return ret;
673a394b
EA
1239}
1240
d174bd64
DV
1241/* Per-page copy function for the shmem pwrite fastpath.
1242 * Flushes invalid cachelines before writing to the target if
1243 * needs_clflush_before is set and flushes out any written cachelines after
1244 * writing if needs_clflush is set. */
3043c60c 1245static int
d174bd64
DV
1246shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1247 char __user *user_data,
1248 bool page_do_bit17_swizzling,
1249 bool needs_clflush_before,
1250 bool needs_clflush_after)
673a394b 1251{
d174bd64 1252 char *vaddr;
673a394b 1253 int ret;
3de09aa3 1254
e7e58eb5 1255 if (unlikely(page_do_bit17_swizzling))
d174bd64 1256 return -EINVAL;
3de09aa3 1257
d174bd64
DV
1258 vaddr = kmap_atomic(page);
1259 if (needs_clflush_before)
1260 drm_clflush_virt_range(vaddr + shmem_page_offset,
1261 page_length);
c2831a94
CW
1262 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1263 user_data, page_length);
d174bd64
DV
1264 if (needs_clflush_after)
1265 drm_clflush_virt_range(vaddr + shmem_page_offset,
1266 page_length);
1267 kunmap_atomic(vaddr);
3de09aa3 1268
755d2218 1269 return ret ? -EFAULT : 0;
3de09aa3
EA
1270}
1271
d174bd64
DV
1272/* Only difference to the fast-path function is that this can handle bit17
1273 * and uses non-atomic copy and kmap functions. */
3043c60c 1274static int
d174bd64
DV
1275shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1276 char __user *user_data,
1277 bool page_do_bit17_swizzling,
1278 bool needs_clflush_before,
1279 bool needs_clflush_after)
673a394b 1280{
d174bd64
DV
1281 char *vaddr;
1282 int ret;
e5281ccd 1283
d174bd64 1284 vaddr = kmap(page);
e7e58eb5 1285 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
1286 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1287 page_length,
1288 page_do_bit17_swizzling);
d174bd64
DV
1289 if (page_do_bit17_swizzling)
1290 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
1291 user_data,
1292 page_length);
d174bd64
DV
1293 else
1294 ret = __copy_from_user(vaddr + shmem_page_offset,
1295 user_data,
1296 page_length);
1297 if (needs_clflush_after)
23c18c71
DV
1298 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1299 page_length,
1300 page_do_bit17_swizzling);
d174bd64 1301 kunmap(page);
40123c1f 1302
755d2218 1303 return ret ? -EFAULT : 0;
40123c1f
EA
1304}
1305
40123c1f 1306static int
e244a443
DV
1307i915_gem_shmem_pwrite(struct drm_device *dev,
1308 struct drm_i915_gem_object *obj,
1309 struct drm_i915_gem_pwrite *args,
1310 struct drm_file *file)
40123c1f 1311{
40123c1f 1312 ssize_t remain;
8c59967c
DV
1313 loff_t offset;
1314 char __user *user_data;
eb2c0c81 1315 int shmem_page_offset, page_length, ret = 0;
8c59967c 1316 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 1317 int hit_slowpath = 0;
43394c7d 1318 unsigned int needs_clflush;
67d5a50c 1319 struct sg_page_iter sg_iter;
40123c1f 1320
43394c7d 1321 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
755d2218
CW
1322 if (ret)
1323 return ret;
1324
43394c7d
CW
1325 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1326 user_data = u64_to_user_ptr(args->data_ptr);
673a394b 1327 offset = args->offset;
43394c7d 1328 remain = args->size;
673a394b 1329
67d5a50c
ID
1330 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1331 offset >> PAGE_SHIFT) {
2db76d7c 1332 struct page *page = sg_page_iter_page(&sg_iter);
58642885 1333 int partial_cacheline_write;
e5281ccd 1334
9da3da66
CW
1335 if (remain <= 0)
1336 break;
1337
40123c1f
EA
1338 /* Operation in this page
1339 *
40123c1f 1340 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
1341 * page_length = bytes to copy for this page
1342 */
c8cbbb8b 1343 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
1344
1345 page_length = remain;
1346 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1347 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 1348
58642885
DV
1349 /* If we don't overwrite a cacheline completely we need to be
1350 * careful to have up-to-date data by first clflushing. Don't
1351 * overcomplicate things and flush the entire patch. */
43394c7d 1352 partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
58642885
DV
1353 ((shmem_page_offset | page_length)
1354 & (boot_cpu_data.x86_clflush_size - 1));
1355
8c59967c
DV
1356 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1357 (page_to_phys(page) & (1 << 17)) != 0;
1358
d174bd64
DV
1359 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1360 user_data, page_do_bit17_swizzling,
1361 partial_cacheline_write,
43394c7d 1362 needs_clflush & CLFLUSH_AFTER);
d174bd64
DV
1363 if (ret == 0)
1364 goto next_page;
e244a443
DV
1365
1366 hit_slowpath = 1;
e244a443 1367 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1368 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1369 user_data, page_do_bit17_swizzling,
1370 partial_cacheline_write,
43394c7d 1371 needs_clflush & CLFLUSH_AFTER);
40123c1f 1372
e244a443 1373 mutex_lock(&dev->struct_mutex);
755d2218 1374
755d2218 1375 if (ret)
8c59967c 1376 goto out;
8c59967c 1377
17793c9a 1378next_page:
40123c1f 1379 remain -= page_length;
8c59967c 1380 user_data += page_length;
40123c1f 1381 offset += page_length;
673a394b
EA
1382 }
1383
fbd5a26d 1384out:
43394c7d 1385 i915_gem_obj_finish_shmem_access(obj);
755d2218 1386
e244a443 1387 if (hit_slowpath) {
8dcf015e
DV
1388 /*
1389 * Fixup: Flush cpu caches in case we didn't flush the dirty
1390 * cachelines in-line while writing and the object moved
1391 * out of the cpu write domain while we've dropped the lock.
1392 */
43394c7d 1393 if (!(needs_clflush & CLFLUSH_AFTER) &&
8dcf015e 1394 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1395 if (i915_gem_clflush_object(obj, obj->pin_display))
43394c7d 1396 needs_clflush |= CLFLUSH_AFTER;
e244a443 1397 }
8c59967c 1398 }
673a394b 1399
43394c7d 1400 if (needs_clflush & CLFLUSH_AFTER)
c033666a 1401 i915_gem_chipset_flush(to_i915(dev));
58642885 1402
de152b62 1403 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1404 return ret;
673a394b
EA
1405}
1406
1407/**
1408 * Writes data to the object referenced by handle.
14bb2c11
TU
1409 * @dev: drm device
1410 * @data: ioctl data blob
1411 * @file: drm file
673a394b
EA
1412 *
1413 * On error, the contents of the buffer that were to be modified are undefined.
1414 */
1415int
1416i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1417 struct drm_file *file)
673a394b 1418{
fac5e23e 1419 struct drm_i915_private *dev_priv = to_i915(dev);
673a394b 1420 struct drm_i915_gem_pwrite *args = data;
05394f39 1421 struct drm_i915_gem_object *obj;
51311d0a
CW
1422 int ret;
1423
1424 if (args->size == 0)
1425 return 0;
1426
1427 if (!access_ok(VERIFY_READ,
3ed605bc 1428 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1429 args->size))
1430 return -EFAULT;
1431
d330a953 1432 if (likely(!i915.prefault_disable)) {
3ed605bc 1433 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
0b74b508
XZ
1434 args->size);
1435 if (ret)
1436 return -EFAULT;
1437 }
673a394b 1438
03ac0642 1439 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1440 if (!obj)
1441 return -ENOENT;
673a394b 1442
7dcd2499 1443 /* Bounds check destination. */
05394f39
CW
1444 if (args->offset > obj->base.size ||
1445 args->size > obj->base.size - args->offset) {
ce9d419d 1446 ret = -EINVAL;
258a5ede 1447 goto err;
ce9d419d
CW
1448 }
1449
db53a302
CW
1450 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1451
258a5ede
CW
1452 ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
1453 if (ret)
1454 goto err;
1455
1456 intel_runtime_pm_get(dev_priv);
1457
1458 ret = i915_mutex_lock_interruptible(dev);
1459 if (ret)
1460 goto err_rpm;
1461
935aaa69 1462 ret = -EFAULT;
673a394b
EA
1463 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1464 * it would end up going through the fenced access, and we'll get
1465 * different detiling behavior between reading and writing.
1466 * pread/pwrite currently are reading and writing from the CPU
1467 * perspective, requiring manual detiling by the client.
1468 */
6eae0059
CW
1469 if (!i915_gem_object_has_struct_page(obj) ||
1470 cpu_write_needs_clflush(obj)) {
4f1959ee 1471 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
935aaa69
DV
1472 /* Note that the gtt paths might fail with non-page-backed user
1473 * pointers (e.g. gtt mappings when moving data between
1474 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1475 }
673a394b 1476
d1054ee4 1477 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1478 if (obj->phys_handle)
1479 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1480 else
43394c7d 1481 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
6a2c4232 1482 }
5c0480f2 1483
f8c417cd 1484 i915_gem_object_put(obj);
fbd5a26d 1485 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1486 intel_runtime_pm_put(dev_priv);
1487
673a394b 1488 return ret;
258a5ede
CW
1489
1490err_rpm:
1491 intel_runtime_pm_put(dev_priv);
1492err:
1493 i915_gem_object_put_unlocked(obj);
1494 return ret;
673a394b
EA
1495}
1496
d243ad82 1497static inline enum fb_op_origin
aeecc969
CW
1498write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1499{
1500 return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1501 ORIGIN_GTT : ORIGIN_CPU;
1502}
1503
673a394b 1504/**
2ef7eeaa
EA
1505 * Called when user space prepares to use an object with the CPU, either
1506 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1507 * @dev: drm device
1508 * @data: ioctl data blob
1509 * @file: drm file
673a394b
EA
1510 */
1511int
1512i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1513 struct drm_file *file)
673a394b
EA
1514{
1515 struct drm_i915_gem_set_domain *args = data;
05394f39 1516 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1517 uint32_t read_domains = args->read_domains;
1518 uint32_t write_domain = args->write_domain;
673a394b
EA
1519 int ret;
1520
2ef7eeaa 1521 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1522 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1523 return -EINVAL;
1524
1525 /* Having something in the write domain implies it's in the read
1526 * domain, and only that read domain. Enforce that in the request.
1527 */
1528 if (write_domain != 0 && read_domains != write_domain)
1529 return -EINVAL;
1530
03ac0642 1531 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1532 if (!obj)
1533 return -ENOENT;
673a394b 1534
3236f57a
CW
1535 /* Try to flush the object off the GPU without holding the lock.
1536 * We will repeat the flush holding the lock in the normal manner
1537 * to catch cases where we are gazumped.
1538 */
b8f9096d
CW
1539 ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
1540 if (ret)
1541 goto err;
1542
1543 ret = i915_mutex_lock_interruptible(dev);
3236f57a 1544 if (ret)
b8f9096d 1545 goto err;
3236f57a 1546
43566ded 1547 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1548 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1549 else
e47c68e9 1550 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1551
031b698a 1552 if (write_domain != 0)
aeecc969 1553 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
031b698a 1554
f8c417cd 1555 i915_gem_object_put(obj);
673a394b
EA
1556 mutex_unlock(&dev->struct_mutex);
1557 return ret;
b8f9096d
CW
1558
1559err:
1560 i915_gem_object_put_unlocked(obj);
1561 return ret;
673a394b
EA
1562}
1563
1564/**
1565 * Called when user space has done writes to this buffer
14bb2c11
TU
1566 * @dev: drm device
1567 * @data: ioctl data blob
1568 * @file: drm file
673a394b
EA
1569 */
1570int
1571i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1572 struct drm_file *file)
673a394b
EA
1573{
1574 struct drm_i915_gem_sw_finish *args = data;
05394f39 1575 struct drm_i915_gem_object *obj;
c21724cc 1576 int err = 0;
1d7cfea1 1577
03ac0642 1578 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1579 if (!obj)
1580 return -ENOENT;
673a394b 1581
673a394b 1582 /* Pinned buffers may be scanout, so flush the cache */
c21724cc
CW
1583 if (READ_ONCE(obj->pin_display)) {
1584 err = i915_mutex_lock_interruptible(dev);
1585 if (!err) {
1586 i915_gem_object_flush_cpu_write_domain(obj);
1587 mutex_unlock(&dev->struct_mutex);
1588 }
1589 }
e47c68e9 1590
c21724cc
CW
1591 i915_gem_object_put_unlocked(obj);
1592 return err;
673a394b
EA
1593}
1594
1595/**
14bb2c11
TU
1596 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1597 * it is mapped to.
1598 * @dev: drm device
1599 * @data: ioctl data blob
1600 * @file: drm file
673a394b
EA
1601 *
1602 * While the mapping holds a reference on the contents of the object, it doesn't
1603 * imply a ref on the object itself.
34367381
DV
1604 *
1605 * IMPORTANT:
1606 *
1607 * DRM driver writers who look a this function as an example for how to do GEM
1608 * mmap support, please don't implement mmap support like here. The modern way
1609 * to implement DRM mmap support is with an mmap offset ioctl (like
1610 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1611 * That way debug tooling like valgrind will understand what's going on, hiding
1612 * the mmap call in a driver private ioctl will break that. The i915 driver only
1613 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1614 */
1615int
1616i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1617 struct drm_file *file)
673a394b
EA
1618{
1619 struct drm_i915_gem_mmap *args = data;
03ac0642 1620 struct drm_i915_gem_object *obj;
673a394b
EA
1621 unsigned long addr;
1622
1816f923
AG
1623 if (args->flags & ~(I915_MMAP_WC))
1624 return -EINVAL;
1625
568a58e5 1626 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1627 return -ENODEV;
1628
03ac0642
CW
1629 obj = i915_gem_object_lookup(file, args->handle);
1630 if (!obj)
bf79cb91 1631 return -ENOENT;
673a394b 1632
1286ff73
DV
1633 /* prime objects have no backing filp to GEM mmap
1634 * pages from.
1635 */
03ac0642 1636 if (!obj->base.filp) {
34911fd3 1637 i915_gem_object_put_unlocked(obj);
1286ff73
DV
1638 return -EINVAL;
1639 }
1640
03ac0642 1641 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1642 PROT_READ | PROT_WRITE, MAP_SHARED,
1643 args->offset);
1816f923
AG
1644 if (args->flags & I915_MMAP_WC) {
1645 struct mm_struct *mm = current->mm;
1646 struct vm_area_struct *vma;
1647
80a89a5e 1648 if (down_write_killable(&mm->mmap_sem)) {
34911fd3 1649 i915_gem_object_put_unlocked(obj);
80a89a5e
MH
1650 return -EINTR;
1651 }
1816f923
AG
1652 vma = find_vma(mm, addr);
1653 if (vma)
1654 vma->vm_page_prot =
1655 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1656 else
1657 addr = -ENOMEM;
1658 up_write(&mm->mmap_sem);
aeecc969
CW
1659
1660 /* This may race, but that's ok, it only gets set */
03ac0642 1661 WRITE_ONCE(obj->has_wc_mmap, true);
1816f923 1662 }
34911fd3 1663 i915_gem_object_put_unlocked(obj);
673a394b
EA
1664 if (IS_ERR((void *)addr))
1665 return addr;
1666
1667 args->addr_ptr = (uint64_t) addr;
1668
1669 return 0;
1670}
1671
de151cf6
JB
1672/**
1673 * i915_gem_fault - fault a page into the GTT
058d88c4 1674 * @area: CPU VMA in question
d9072a3e 1675 * @vmf: fault info
de151cf6
JB
1676 *
1677 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1678 * from userspace. The fault handler takes care of binding the object to
1679 * the GTT (if needed), allocating and programming a fence register (again,
1680 * only if needed based on whether the old reg is still valid or the object
1681 * is tiled) and inserting a new PTE into the faulting process.
1682 *
1683 * Note that the faulting process may involve evicting existing objects
1684 * from the GTT and/or fence registers to make room. So performance may
1685 * suffer if the GTT working set is large or there are few fence registers
1686 * left.
1687 */
058d88c4 1688int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
de151cf6 1689{
058d88c4 1690 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1691 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1692 struct drm_i915_private *dev_priv = to_i915(dev);
1693 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 1694 struct i915_ggtt_view view = i915_ggtt_view_normal;
b8f9096d 1695 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1696 struct i915_vma *vma;
de151cf6
JB
1697 pgoff_t page_offset;
1698 unsigned long pfn;
b8f9096d 1699 int ret;
f65c9168 1700
de151cf6 1701 /* We don't use vmf->pgoff since that has the fake offset */
058d88c4 1702 page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
de151cf6
JB
1703 PAGE_SHIFT;
1704
db53a302
CW
1705 trace_i915_gem_object_fault(obj, page_offset, true, write);
1706
6e4930f6 1707 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1708 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1709 * repeat the flush holding the lock in the normal manner to catch cases
1710 * where we are gazumped.
1711 */
b8f9096d 1712 ret = __unsafe_wait_rendering(obj, NULL, !write);
6e4930f6 1713 if (ret)
b8f9096d
CW
1714 goto err;
1715
1716 intel_runtime_pm_get(dev_priv);
1717
1718 ret = i915_mutex_lock_interruptible(dev);
1719 if (ret)
1720 goto err_rpm;
6e4930f6 1721
eb119bd6
CW
1722 /* Access to snoopable pages through the GTT is incoherent. */
1723 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1724 ret = -EFAULT;
b8f9096d 1725 goto err_unlock;
eb119bd6
CW
1726 }
1727
c5ad54cf 1728 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 1729 if (obj->base.size >= ggtt->mappable_end &&
3e510a8e 1730 !i915_gem_object_is_tiled(obj)) {
c5ad54cf 1731 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1732
c5ad54cf
JL
1733 memset(&view, 0, sizeof(view));
1734 view.type = I915_GGTT_VIEW_PARTIAL;
1735 view.params.partial.offset = rounddown(page_offset, chunk_size);
1736 view.params.partial.size =
1737 min_t(unsigned int,
1738 chunk_size,
058d88c4 1739 (area->vm_end - area->vm_start) / PAGE_SIZE -
c5ad54cf
JL
1740 view.params.partial.offset);
1741 }
1742
1743 /* Now pin it into the GTT if needed */
058d88c4
CW
1744 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1745 if (IS_ERR(vma)) {
1746 ret = PTR_ERR(vma);
b8f9096d 1747 goto err_unlock;
058d88c4 1748 }
4a684a41 1749
c9839303
CW
1750 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1751 if (ret)
b8f9096d 1752 goto err_unpin;
74898d7e 1753
06d98131 1754 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1755 if (ret)
b8f9096d 1756 goto err_unpin;
7d1c4804 1757
b90b91d8 1758 /* Finally, remap it using the new GTT offset */
bde13ebd 1759 pfn = ggtt->mappable_base + i915_ggtt_offset(vma);
f343c5f6 1760 pfn >>= PAGE_SHIFT;
de151cf6 1761
c5ad54cf
JL
1762 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1763 /* Overriding existing pages in partial view does not cause
1764 * us any trouble as TLBs are still valid because the fault
1765 * is due to userspace losing part of the mapping or never
1766 * having accessed it before (at this partials' range).
1767 */
058d88c4 1768 unsigned long base = area->vm_start +
c5ad54cf
JL
1769 (view.params.partial.offset << PAGE_SHIFT);
1770 unsigned int i;
b90b91d8 1771
c5ad54cf 1772 for (i = 0; i < view.params.partial.size; i++) {
058d88c4
CW
1773 ret = vm_insert_pfn(area,
1774 base + i * PAGE_SIZE,
1775 pfn + i);
b90b91d8
CW
1776 if (ret)
1777 break;
1778 }
1779
1780 obj->fault_mappable = true;
c5ad54cf
JL
1781 } else {
1782 if (!obj->fault_mappable) {
058d88c4
CW
1783 unsigned long size =
1784 min_t(unsigned long,
1785 area->vm_end - area->vm_start,
1786 obj->base.size) >> PAGE_SHIFT;
1787 unsigned long base = area->vm_start;
c5ad54cf
JL
1788 int i;
1789
058d88c4
CW
1790 for (i = 0; i < size; i++) {
1791 ret = vm_insert_pfn(area,
1792 base + i * PAGE_SIZE,
c5ad54cf
JL
1793 pfn + i);
1794 if (ret)
1795 break;
1796 }
1797
1798 obj->fault_mappable = true;
1799 } else
058d88c4 1800 ret = vm_insert_pfn(area,
c5ad54cf
JL
1801 (unsigned long)vmf->virtual_address,
1802 pfn + page_offset);
1803 }
b8f9096d 1804err_unpin:
058d88c4 1805 __i915_vma_unpin(vma);
b8f9096d 1806err_unlock:
de151cf6 1807 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1808err_rpm:
1809 intel_runtime_pm_put(dev_priv);
1810err:
de151cf6 1811 switch (ret) {
d9bc7e9f 1812 case -EIO:
2232f031
DV
1813 /*
1814 * We eat errors when the gpu is terminally wedged to avoid
1815 * userspace unduly crashing (gl has no provisions for mmaps to
1816 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1817 * and so needs to be reported.
1818 */
1819 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1820 ret = VM_FAULT_SIGBUS;
1821 break;
1822 }
045e769a 1823 case -EAGAIN:
571c608d
DV
1824 /*
1825 * EAGAIN means the gpu is hung and we'll wait for the error
1826 * handler to reset everything when re-faulting in
1827 * i915_mutex_lock_interruptible.
d9bc7e9f 1828 */
c715089f
CW
1829 case 0:
1830 case -ERESTARTSYS:
bed636ab 1831 case -EINTR:
e79e0fe3
DR
1832 case -EBUSY:
1833 /*
1834 * EBUSY is ok: this just means that another thread
1835 * already did the job.
1836 */
f65c9168
PZ
1837 ret = VM_FAULT_NOPAGE;
1838 break;
de151cf6 1839 case -ENOMEM:
f65c9168
PZ
1840 ret = VM_FAULT_OOM;
1841 break;
a7c2e1aa 1842 case -ENOSPC:
45d67817 1843 case -EFAULT:
f65c9168
PZ
1844 ret = VM_FAULT_SIGBUS;
1845 break;
de151cf6 1846 default:
a7c2e1aa 1847 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1848 ret = VM_FAULT_SIGBUS;
1849 break;
de151cf6 1850 }
f65c9168 1851 return ret;
de151cf6
JB
1852}
1853
901782b2
CW
1854/**
1855 * i915_gem_release_mmap - remove physical page mappings
1856 * @obj: obj in question
1857 *
af901ca1 1858 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1859 * relinquish ownership of the pages back to the system.
1860 *
1861 * It is vital that we remove the page mapping if we have mapped a tiled
1862 * object through the GTT and then lose the fence register due to
1863 * resource pressure. Similarly if the object has been moved out of the
1864 * aperture, than pages mapped into userspace must be revoked. Removing the
1865 * mapping will then trigger a page fault on the next user access, allowing
1866 * fixup by i915_gem_fault().
1867 */
d05ca301 1868void
05394f39 1869i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1870{
349f2ccf
CW
1871 /* Serialisation between user GTT access and our code depends upon
1872 * revoking the CPU's PTE whilst the mutex is held. The next user
1873 * pagefault then has to wait until we release the mutex.
1874 */
1875 lockdep_assert_held(&obj->base.dev->struct_mutex);
1876
6299f992
CW
1877 if (!obj->fault_mappable)
1878 return;
901782b2 1879
6796cb16
DH
1880 drm_vma_node_unmap(&obj->base.vma_node,
1881 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1882
1883 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1884 * memory transactions from userspace before we return. The TLB
1885 * flushing implied above by changing the PTE above *should* be
1886 * sufficient, an extra barrier here just provides us with a bit
1887 * of paranoid documentation about our requirement to serialise
1888 * memory writes before touching registers / GSM.
1889 */
1890 wmb();
1891
6299f992 1892 obj->fault_mappable = false;
901782b2
CW
1893}
1894
eedd10f4
CW
1895void
1896i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1897{
1898 struct drm_i915_gem_object *obj;
1899
1900 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1901 i915_gem_release_mmap(obj);
1902}
1903
ad1a7d20
CW
1904/**
1905 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 1906 * @dev_priv: i915 device
ad1a7d20
CW
1907 * @size: object size
1908 * @tiling_mode: tiling mode
1909 *
1910 * Return the required global GTT size for an object, taking into account
1911 * potential fence register mapping.
1912 */
a9f1481f
CW
1913u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1914 u64 size, int tiling_mode)
92b88aeb 1915{
ad1a7d20 1916 u64 ggtt_size;
92b88aeb 1917
ad1a7d20
CW
1918 GEM_BUG_ON(size == 0);
1919
a9f1481f 1920 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
1921 tiling_mode == I915_TILING_NONE)
1922 return size;
92b88aeb
CW
1923
1924 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 1925 if (IS_GEN3(dev_priv))
ad1a7d20 1926 ggtt_size = 1024*1024;
92b88aeb 1927 else
ad1a7d20 1928 ggtt_size = 512*1024;
92b88aeb 1929
ad1a7d20
CW
1930 while (ggtt_size < size)
1931 ggtt_size <<= 1;
92b88aeb 1932
ad1a7d20 1933 return ggtt_size;
92b88aeb
CW
1934}
1935
de151cf6 1936/**
ad1a7d20 1937 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 1938 * @dev_priv: i915 device
14bb2c11
TU
1939 * @size: object size
1940 * @tiling_mode: tiling mode
ad1a7d20 1941 * @fenced: is fenced alignment required or not
de151cf6 1942 *
ad1a7d20 1943 * Return the required global GTT alignment for an object, taking into account
5e783301 1944 * potential fence register mapping.
de151cf6 1945 */
a9f1481f 1946u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 1947 int tiling_mode, bool fenced)
de151cf6 1948{
ad1a7d20
CW
1949 GEM_BUG_ON(size == 0);
1950
de151cf6
JB
1951 /*
1952 * Minimum alignment is 4k (GTT page size), but might be greater
1953 * if a fence register is needed for the object.
1954 */
a9f1481f 1955 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
e28f8711 1956 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1957 return 4096;
1958
a00b10c3
CW
1959 /*
1960 * Previous chips need to be aligned to the size of the smallest
1961 * fence register that can contain the object.
1962 */
a9f1481f 1963 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
1964}
1965
d8cb5086
CW
1966static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1967{
fac5e23e 1968 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 1969 int err;
da494d7c 1970
f3f6184c
CW
1971 err = drm_gem_create_mmap_offset(&obj->base);
1972 if (!err)
1973 return 0;
d8cb5086 1974
f3f6184c
CW
1975 /* We can idle the GPU locklessly to flush stale objects, but in order
1976 * to claim that space for ourselves, we need to take the big
1977 * struct_mutex to free the requests+objects and allocate our slot.
d8cb5086 1978 */
f3f6184c
CW
1979 err = i915_gem_wait_for_idle(dev_priv, true);
1980 if (err)
1981 return err;
1982
1983 err = i915_mutex_lock_interruptible(&dev_priv->drm);
1984 if (!err) {
1985 i915_gem_retire_requests(dev_priv);
1986 err = drm_gem_create_mmap_offset(&obj->base);
1987 mutex_unlock(&dev_priv->drm.struct_mutex);
1988 }
da494d7c 1989
f3f6184c 1990 return err;
d8cb5086
CW
1991}
1992
1993static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1994{
d8cb5086
CW
1995 drm_gem_free_mmap_offset(&obj->base);
1996}
1997
da6b51d0 1998int
ff72145b
DA
1999i915_gem_mmap_gtt(struct drm_file *file,
2000 struct drm_device *dev,
da6b51d0 2001 uint32_t handle,
ff72145b 2002 uint64_t *offset)
de151cf6 2003{
05394f39 2004 struct drm_i915_gem_object *obj;
de151cf6
JB
2005 int ret;
2006
03ac0642 2007 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2008 if (!obj)
2009 return -ENOENT;
ab18282d 2010
d8cb5086 2011 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2012 if (ret == 0)
2013 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2014
f3f6184c 2015 i915_gem_object_put_unlocked(obj);
1d7cfea1 2016 return ret;
de151cf6
JB
2017}
2018
ff72145b
DA
2019/**
2020 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2021 * @dev: DRM device
2022 * @data: GTT mapping ioctl data
2023 * @file: GEM object info
2024 *
2025 * Simply returns the fake offset to userspace so it can mmap it.
2026 * The mmap call will end up in drm_gem_mmap(), which will set things
2027 * up so we can get faults in the handler above.
2028 *
2029 * The fault handler will take care of binding the object into the GTT
2030 * (since it may have been evicted to make room for something), allocating
2031 * a fence register, and mapping the appropriate aperture address into
2032 * userspace.
2033 */
2034int
2035i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2036 struct drm_file *file)
2037{
2038 struct drm_i915_gem_mmap_gtt *args = data;
2039
da6b51d0 2040 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2041}
2042
225067ee
DV
2043/* Immediately discard the backing storage */
2044static void
2045i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2046{
4d6294bf 2047 i915_gem_object_free_mmap_offset(obj);
1286ff73 2048
4d6294bf
CW
2049 if (obj->base.filp == NULL)
2050 return;
e5281ccd 2051
225067ee
DV
2052 /* Our goal here is to return as much of the memory as
2053 * is possible back to the system as we are called from OOM.
2054 * To do this we must instruct the shmfs to drop all of its
2055 * backing pages, *now*.
2056 */
5537252b 2057 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2058 obj->madv = __I915_MADV_PURGED;
2059}
e5281ccd 2060
5537252b
CW
2061/* Try to discard unwanted pages */
2062static void
2063i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2064{
5537252b
CW
2065 struct address_space *mapping;
2066
2067 switch (obj->madv) {
2068 case I915_MADV_DONTNEED:
2069 i915_gem_object_truncate(obj);
2070 case __I915_MADV_PURGED:
2071 return;
2072 }
2073
2074 if (obj->base.filp == NULL)
2075 return;
2076
93c76a3d 2077 mapping = obj->base.filp->f_mapping,
5537252b 2078 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2079}
2080
5cdf5881 2081static void
05394f39 2082i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2083{
85d1225e
DG
2084 struct sgt_iter sgt_iter;
2085 struct page *page;
90797e6d 2086 int ret;
1286ff73 2087
05394f39 2088 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2089
6c085a72 2090 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2091 if (WARN_ON(ret)) {
6c085a72
CW
2092 /* In the event of a disaster, abandon all caches and
2093 * hope for the best.
2094 */
2c22569b 2095 i915_gem_clflush_object(obj, true);
6c085a72
CW
2096 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2097 }
2098
e2273302
ID
2099 i915_gem_gtt_finish_object(obj);
2100
6dacfd2f 2101 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2102 i915_gem_object_save_bit_17_swizzle(obj);
2103
05394f39
CW
2104 if (obj->madv == I915_MADV_DONTNEED)
2105 obj->dirty = 0;
3ef94daa 2106
85d1225e 2107 for_each_sgt_page(page, sgt_iter, obj->pages) {
05394f39 2108 if (obj->dirty)
9da3da66 2109 set_page_dirty(page);
3ef94daa 2110
05394f39 2111 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2112 mark_page_accessed(page);
3ef94daa 2113
09cbfeaf 2114 put_page(page);
3ef94daa 2115 }
05394f39 2116 obj->dirty = 0;
673a394b 2117
9da3da66
CW
2118 sg_free_table(obj->pages);
2119 kfree(obj->pages);
37e680a1 2120}
6c085a72 2121
dd624afd 2122int
37e680a1
CW
2123i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2124{
2125 const struct drm_i915_gem_object_ops *ops = obj->ops;
2126
2f745ad3 2127 if (obj->pages == NULL)
37e680a1
CW
2128 return 0;
2129
a5570178
CW
2130 if (obj->pages_pin_count)
2131 return -EBUSY;
2132
15717de2 2133 GEM_BUG_ON(obj->bind_count);
3e123027 2134
a2165e31
CW
2135 /* ->put_pages might need to allocate memory for the bit17 swizzle
2136 * array, hence protect them from being reaped by removing them from gtt
2137 * lists early. */
35c20a60 2138 list_del(&obj->global_list);
a2165e31 2139
0a798eb9 2140 if (obj->mapping) {
4b30cb23
CW
2141 void *ptr;
2142
2143 ptr = ptr_mask_bits(obj->mapping);
2144 if (is_vmalloc_addr(ptr))
2145 vunmap(ptr);
fb8621d3 2146 else
4b30cb23
CW
2147 kunmap(kmap_to_page(ptr));
2148
0a798eb9
CW
2149 obj->mapping = NULL;
2150 }
2151
37e680a1 2152 ops->put_pages(obj);
05394f39 2153 obj->pages = NULL;
37e680a1 2154
5537252b 2155 i915_gem_object_invalidate(obj);
6c085a72
CW
2156
2157 return 0;
2158}
2159
37e680a1 2160static int
6c085a72 2161i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2162{
fac5e23e 2163 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2164 int page_count, i;
2165 struct address_space *mapping;
9da3da66
CW
2166 struct sg_table *st;
2167 struct scatterlist *sg;
85d1225e 2168 struct sgt_iter sgt_iter;
e5281ccd 2169 struct page *page;
90797e6d 2170 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2171 int ret;
6c085a72 2172 gfp_t gfp;
e5281ccd 2173
6c085a72
CW
2174 /* Assert that the object is not currently in any GPU domain. As it
2175 * wasn't in the GTT, there shouldn't be any way it could have been in
2176 * a GPU cache
2177 */
2178 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2179 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2180
9da3da66
CW
2181 st = kmalloc(sizeof(*st), GFP_KERNEL);
2182 if (st == NULL)
2183 return -ENOMEM;
2184
05394f39 2185 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2186 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2187 kfree(st);
e5281ccd 2188 return -ENOMEM;
9da3da66 2189 }
e5281ccd 2190
9da3da66
CW
2191 /* Get the list of pages out of our struct file. They'll be pinned
2192 * at this point until we release them.
2193 *
2194 * Fail silently without starting the shrinker
2195 */
93c76a3d 2196 mapping = obj->base.filp->f_mapping;
c62d2555 2197 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2198 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2199 sg = st->sgl;
2200 st->nents = 0;
2201 for (i = 0; i < page_count; i++) {
6c085a72
CW
2202 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2203 if (IS_ERR(page)) {
21ab4e74
CW
2204 i915_gem_shrink(dev_priv,
2205 page_count,
2206 I915_SHRINK_BOUND |
2207 I915_SHRINK_UNBOUND |
2208 I915_SHRINK_PURGEABLE);
6c085a72
CW
2209 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2210 }
2211 if (IS_ERR(page)) {
2212 /* We've tried hard to allocate the memory by reaping
2213 * our own buffer, now let the real VM do its job and
2214 * go down in flames if truly OOM.
2215 */
6c085a72 2216 i915_gem_shrink_all(dev_priv);
f461d1be 2217 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2218 if (IS_ERR(page)) {
2219 ret = PTR_ERR(page);
6c085a72 2220 goto err_pages;
e2273302 2221 }
6c085a72 2222 }
426729dc
KRW
2223#ifdef CONFIG_SWIOTLB
2224 if (swiotlb_nr_tbl()) {
2225 st->nents++;
2226 sg_set_page(sg, page, PAGE_SIZE, 0);
2227 sg = sg_next(sg);
2228 continue;
2229 }
2230#endif
90797e6d
ID
2231 if (!i || page_to_pfn(page) != last_pfn + 1) {
2232 if (i)
2233 sg = sg_next(sg);
2234 st->nents++;
2235 sg_set_page(sg, page, PAGE_SIZE, 0);
2236 } else {
2237 sg->length += PAGE_SIZE;
2238 }
2239 last_pfn = page_to_pfn(page);
3bbbe706
DV
2240
2241 /* Check that the i965g/gm workaround works. */
2242 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2243 }
426729dc
KRW
2244#ifdef CONFIG_SWIOTLB
2245 if (!swiotlb_nr_tbl())
2246#endif
2247 sg_mark_end(sg);
74ce6b6c
CW
2248 obj->pages = st;
2249
e2273302
ID
2250 ret = i915_gem_gtt_prepare_object(obj);
2251 if (ret)
2252 goto err_pages;
2253
6dacfd2f 2254 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2255 i915_gem_object_do_bit_17_swizzle(obj);
2256
3e510a8e 2257 if (i915_gem_object_is_tiled(obj) &&
656bfa3a
DV
2258 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2259 i915_gem_object_pin_pages(obj);
2260
e5281ccd
CW
2261 return 0;
2262
2263err_pages:
90797e6d 2264 sg_mark_end(sg);
85d1225e
DG
2265 for_each_sgt_page(page, sgt_iter, st)
2266 put_page(page);
9da3da66
CW
2267 sg_free_table(st);
2268 kfree(st);
0820baf3
CW
2269
2270 /* shmemfs first checks if there is enough memory to allocate the page
2271 * and reports ENOSPC should there be insufficient, along with the usual
2272 * ENOMEM for a genuine allocation failure.
2273 *
2274 * We use ENOSPC in our driver to mean that we have run out of aperture
2275 * space and so want to translate the error from shmemfs back to our
2276 * usual understanding of ENOMEM.
2277 */
e2273302
ID
2278 if (ret == -ENOSPC)
2279 ret = -ENOMEM;
2280
2281 return ret;
673a394b
EA
2282}
2283
37e680a1
CW
2284/* Ensure that the associated pages are gathered from the backing storage
2285 * and pinned into our object. i915_gem_object_get_pages() may be called
2286 * multiple times before they are released by a single call to
2287 * i915_gem_object_put_pages() - once the pages are no longer referenced
2288 * either as a result of memory pressure (reaping pages under the shrinker)
2289 * or as the object is itself released.
2290 */
2291int
2292i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2293{
fac5e23e 2294 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
37e680a1
CW
2295 const struct drm_i915_gem_object_ops *ops = obj->ops;
2296 int ret;
2297
2f745ad3 2298 if (obj->pages)
37e680a1
CW
2299 return 0;
2300
43e28f09 2301 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2302 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2303 return -EFAULT;
43e28f09
CW
2304 }
2305
a5570178
CW
2306 BUG_ON(obj->pages_pin_count);
2307
37e680a1
CW
2308 ret = ops->get_pages(obj);
2309 if (ret)
2310 return ret;
2311
35c20a60 2312 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2313
2314 obj->get_page.sg = obj->pages->sgl;
2315 obj->get_page.last = 0;
2316
37e680a1 2317 return 0;
673a394b
EA
2318}
2319
dd6034c6 2320/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2321static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2322 enum i915_map_type type)
dd6034c6
DG
2323{
2324 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2325 struct sg_table *sgt = obj->pages;
85d1225e
DG
2326 struct sgt_iter sgt_iter;
2327 struct page *page;
b338fa47
DG
2328 struct page *stack_pages[32];
2329 struct page **pages = stack_pages;
dd6034c6 2330 unsigned long i = 0;
d31d7cb1 2331 pgprot_t pgprot;
dd6034c6
DG
2332 void *addr;
2333
2334 /* A single page can always be kmapped */
d31d7cb1 2335 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2336 return kmap(sg_page(sgt->sgl));
2337
b338fa47
DG
2338 if (n_pages > ARRAY_SIZE(stack_pages)) {
2339 /* Too big for stack -- allocate temporary array instead */
2340 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2341 if (!pages)
2342 return NULL;
2343 }
dd6034c6 2344
85d1225e
DG
2345 for_each_sgt_page(page, sgt_iter, sgt)
2346 pages[i++] = page;
dd6034c6
DG
2347
2348 /* Check that we have the expected number of pages */
2349 GEM_BUG_ON(i != n_pages);
2350
d31d7cb1
CW
2351 switch (type) {
2352 case I915_MAP_WB:
2353 pgprot = PAGE_KERNEL;
2354 break;
2355 case I915_MAP_WC:
2356 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2357 break;
2358 }
2359 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2360
b338fa47
DG
2361 if (pages != stack_pages)
2362 drm_free_large(pages);
dd6034c6
DG
2363
2364 return addr;
2365}
2366
2367/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2368void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2369 enum i915_map_type type)
0a798eb9 2370{
d31d7cb1
CW
2371 enum i915_map_type has_type;
2372 bool pinned;
2373 void *ptr;
0a798eb9
CW
2374 int ret;
2375
2376 lockdep_assert_held(&obj->base.dev->struct_mutex);
d31d7cb1 2377 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9
CW
2378
2379 ret = i915_gem_object_get_pages(obj);
2380 if (ret)
2381 return ERR_PTR(ret);
2382
2383 i915_gem_object_pin_pages(obj);
d31d7cb1 2384 pinned = obj->pages_pin_count > 1;
0a798eb9 2385
d31d7cb1
CW
2386 ptr = ptr_unpack_bits(obj->mapping, has_type);
2387 if (ptr && has_type != type) {
2388 if (pinned) {
2389 ret = -EBUSY;
2390 goto err;
0a798eb9 2391 }
d31d7cb1
CW
2392
2393 if (is_vmalloc_addr(ptr))
2394 vunmap(ptr);
2395 else
2396 kunmap(kmap_to_page(ptr));
2397
2398 ptr = obj->mapping = NULL;
0a798eb9
CW
2399 }
2400
d31d7cb1
CW
2401 if (!ptr) {
2402 ptr = i915_gem_object_map(obj, type);
2403 if (!ptr) {
2404 ret = -ENOMEM;
2405 goto err;
2406 }
2407
2408 obj->mapping = ptr_pack_bits(ptr, type);
2409 }
2410
2411 return ptr;
2412
2413err:
2414 i915_gem_object_unpin_pages(obj);
2415 return ERR_PTR(ret);
0a798eb9
CW
2416}
2417
b4716185 2418static void
fa545cbf
CW
2419i915_gem_object_retire__write(struct i915_gem_active *active,
2420 struct drm_i915_gem_request *request)
e2d05a8b 2421{
fa545cbf
CW
2422 struct drm_i915_gem_object *obj =
2423 container_of(active, struct drm_i915_gem_object, last_write);
b4716185 2424
de152b62 2425 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2426}
2427
caea7476 2428static void
fa545cbf
CW
2429i915_gem_object_retire__read(struct i915_gem_active *active,
2430 struct drm_i915_gem_request *request)
ce44b0ea 2431{
fa545cbf
CW
2432 int idx = request->engine->id;
2433 struct drm_i915_gem_object *obj =
2434 container_of(active, struct drm_i915_gem_object, last_read[idx]);
ce44b0ea 2435
573adb39 2436 GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
b4716185 2437
573adb39
CW
2438 i915_gem_object_clear_active(obj, idx);
2439 if (i915_gem_object_is_active(obj))
b4716185 2440 return;
caea7476 2441
6c246959
CW
2442 /* Bump our place on the bound list to keep it roughly in LRU order
2443 * so that we don't steal from recently used but inactive objects
2444 * (unless we are forced to ofc!)
2445 */
b0decaf7
CW
2446 if (obj->bind_count)
2447 list_move_tail(&obj->global_list,
2448 &request->i915->mm.bound_list);
caea7476 2449
f8c417cd 2450 i915_gem_object_put(obj);
c8725f3d
CW
2451}
2452
7b4d3a16 2453static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2454{
44e2c070 2455 unsigned long elapsed;
be62acb4 2456
44e2c070 2457 if (ctx->hang_stats.banned)
be62acb4
MK
2458 return true;
2459
7b4d3a16 2460 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2461 if (ctx->hang_stats.ban_period_seconds &&
2462 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2463 DRM_DEBUG("context hanging too fast, banning!\n");
2464 return true;
be62acb4
MK
2465 }
2466
2467 return false;
2468}
2469
7b4d3a16 2470static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2471 const bool guilty)
aa60c664 2472{
7b4d3a16 2473 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2474
2475 if (guilty) {
7b4d3a16 2476 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2477 hs->batch_active++;
2478 hs->guilty_ts = get_seconds();
2479 } else {
2480 hs->batch_pending++;
aa60c664
MK
2481 }
2482}
2483
8d9fc7fd 2484struct drm_i915_gem_request *
0bc40be8 2485i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2486{
4db080f9
CW
2487 struct drm_i915_gem_request *request;
2488
f69a02c9
CW
2489 /* We are called by the error capture and reset at a random
2490 * point in time. In particular, note that neither is crucially
2491 * ordered with an interrupt. After a hang, the GPU is dead and we
2492 * assume that no more writes can happen (we waited long enough for
2493 * all writes that were in transaction to be flushed) - adding an
2494 * extra delay for a recent interrupt is pointless. Hence, we do
2495 * not need an engine->irq_seqno_barrier() before the seqno reads.
2496 */
efdf7c06 2497 list_for_each_entry(request, &engine->request_list, link) {
f69a02c9 2498 if (i915_gem_request_completed(request))
4db080f9 2499 continue;
aa60c664 2500
b6b0fac0 2501 return request;
4db080f9 2502 }
b6b0fac0
MK
2503
2504 return NULL;
2505}
2506
7b4d3a16 2507static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
b6b0fac0
MK
2508{
2509 struct drm_i915_gem_request *request;
2510 bool ring_hung;
2511
0bc40be8 2512 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2513 if (request == NULL)
2514 return;
2515
0bc40be8 2516 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2517
7b4d3a16 2518 i915_set_reset_status(request->ctx, ring_hung);
efdf7c06 2519 list_for_each_entry_continue(request, &engine->request_list, link)
7b4d3a16 2520 i915_set_reset_status(request->ctx, false);
4db080f9 2521}
aa60c664 2522
7b4d3a16 2523static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
4db080f9 2524{
dcff85c8 2525 struct drm_i915_gem_request *request;
7e37f889 2526 struct intel_ring *ring;
608c1a52 2527
c4b0930b
CW
2528 /* Mark all pending requests as complete so that any concurrent
2529 * (lockless) lookup doesn't try and wait upon the request as we
2530 * reset it.
2531 */
87b723a1 2532 intel_engine_init_seqno(engine, engine->last_submitted_seqno);
c4b0930b 2533
dcb4c12a
OM
2534 /*
2535 * Clear the execlists queue up before freeing the requests, as those
2536 * are the ones that keep the context and ringbuffer backing objects
2537 * pinned in place.
2538 */
dcb4c12a 2539
7de1691a 2540 if (i915.enable_execlists) {
27af5eea
TU
2541 /* Ensure irq handler finishes or is cancelled. */
2542 tasklet_kill(&engine->irq_tasklet);
1197b4f2 2543
e39d42fa 2544 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
2545 }
2546
1d62beea
BW
2547 /*
2548 * We must free the requests after all the corresponding objects have
2549 * been moved off active lists. Which is the same order as the normal
2550 * retire_requests function does. This is important if object hold
2551 * implicit references on things like e.g. ppgtt address spaces through
2552 * the request.
2553 */
87b723a1
CW
2554 request = i915_gem_active_raw(&engine->last_request,
2555 &engine->i915->drm.struct_mutex);
dcff85c8 2556 if (request)
05235c53 2557 i915_gem_request_retire_upto(request);
dcff85c8 2558 GEM_BUG_ON(intel_engine_is_active(engine));
608c1a52
CW
2559
2560 /* Having flushed all requests from all queues, we know that all
2561 * ringbuffers must now be empty. However, since we do not reclaim
2562 * all space when retiring the request (to prevent HEADs colliding
2563 * with rapid ringbuffer wraparound) the amount of available space
2564 * upon reset is less than when we start. Do one more pass over
2565 * all the ringbuffers to reset last_retired_head.
2566 */
7e37f889
CW
2567 list_for_each_entry(ring, &engine->buffers, link) {
2568 ring->last_retired_head = ring->tail;
2569 intel_ring_update_space(ring);
608c1a52 2570 }
2ed53a94 2571
b913b33c 2572 engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
673a394b
EA
2573}
2574
069efc1d 2575void i915_gem_reset(struct drm_device *dev)
673a394b 2576{
fac5e23e 2577 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 2578 struct intel_engine_cs *engine;
673a394b 2579
4db080f9
CW
2580 /*
2581 * Before we free the objects from the requests, we need to inspect
2582 * them for finding the guilty party. As the requests only borrow
2583 * their reference to the objects, the inspection must be done first.
2584 */
b4ac5afc 2585 for_each_engine(engine, dev_priv)
7b4d3a16 2586 i915_gem_reset_engine_status(engine);
4db080f9 2587
b4ac5afc 2588 for_each_engine(engine, dev_priv)
7b4d3a16 2589 i915_gem_reset_engine_cleanup(engine);
b913b33c 2590 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2591
acce9ffa
BW
2592 i915_gem_context_reset(dev);
2593
19b2dbde 2594 i915_gem_restore_fences(dev);
673a394b
EA
2595}
2596
75ef9da2 2597static void
673a394b
EA
2598i915_gem_retire_work_handler(struct work_struct *work)
2599{
b29c19b6 2600 struct drm_i915_private *dev_priv =
67d97da3 2601 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2602 struct drm_device *dev = &dev_priv->drm;
673a394b 2603
891b48cf 2604 /* Come back later if the device is busy... */
b29c19b6 2605 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2606 i915_gem_retire_requests(dev_priv);
b29c19b6 2607 mutex_unlock(&dev->struct_mutex);
673a394b 2608 }
67d97da3
CW
2609
2610 /* Keep the retire handler running until we are finally idle.
2611 * We do not need to do this test under locking as in the worst-case
2612 * we queue the retire worker once too often.
2613 */
c9615613
CW
2614 if (READ_ONCE(dev_priv->gt.awake)) {
2615 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2616 queue_delayed_work(dev_priv->wq,
2617 &dev_priv->gt.retire_work,
bcb45086 2618 round_jiffies_up_relative(HZ));
c9615613 2619 }
b29c19b6 2620}
0a58705b 2621
b29c19b6
CW
2622static void
2623i915_gem_idle_work_handler(struct work_struct *work)
2624{
2625 struct drm_i915_private *dev_priv =
67d97da3 2626 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2627 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2628 struct intel_engine_cs *engine;
67d97da3
CW
2629 bool rearm_hangcheck;
2630
2631 if (!READ_ONCE(dev_priv->gt.awake))
2632 return;
2633
2634 if (READ_ONCE(dev_priv->gt.active_engines))
2635 return;
2636
2637 rearm_hangcheck =
2638 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2639
2640 if (!mutex_trylock(&dev->struct_mutex)) {
2641 /* Currently busy, come back later */
2642 mod_delayed_work(dev_priv->wq,
2643 &dev_priv->gt.idle_work,
2644 msecs_to_jiffies(50));
2645 goto out_rearm;
2646 }
2647
2648 if (dev_priv->gt.active_engines)
2649 goto out_unlock;
b29c19b6 2650
b4ac5afc 2651 for_each_engine(engine, dev_priv)
67d97da3 2652 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2653
67d97da3
CW
2654 GEM_BUG_ON(!dev_priv->gt.awake);
2655 dev_priv->gt.awake = false;
2656 rearm_hangcheck = false;
30ecad77 2657
67d97da3
CW
2658 if (INTEL_GEN(dev_priv) >= 6)
2659 gen6_rps_idle(dev_priv);
2660 intel_runtime_pm_put(dev_priv);
2661out_unlock:
2662 mutex_unlock(&dev->struct_mutex);
b29c19b6 2663
67d97da3
CW
2664out_rearm:
2665 if (rearm_hangcheck) {
2666 GEM_BUG_ON(!dev_priv->gt.awake);
2667 i915_queue_hangcheck(dev_priv);
35c94185 2668 }
673a394b
EA
2669}
2670
b1f788c6
CW
2671void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2672{
2673 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2674 struct drm_i915_file_private *fpriv = file->driver_priv;
2675 struct i915_vma *vma, *vn;
2676
2677 mutex_lock(&obj->base.dev->struct_mutex);
2678 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2679 if (vma->vm->file == fpriv)
2680 i915_vma_close(vma);
2681 mutex_unlock(&obj->base.dev->struct_mutex);
2682}
2683
23ba4fd0
BW
2684/**
2685 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2686 * @dev: drm device pointer
2687 * @data: ioctl data blob
2688 * @file: drm file pointer
23ba4fd0
BW
2689 *
2690 * Returns 0 if successful, else an error is returned with the remaining time in
2691 * the timeout parameter.
2692 * -ETIME: object is still busy after timeout
2693 * -ERESTARTSYS: signal interrupted the wait
2694 * -ENONENT: object doesn't exist
2695 * Also possible, but rare:
2696 * -EAGAIN: GPU wedged
2697 * -ENOMEM: damn
2698 * -ENODEV: Internal IRQ fail
2699 * -E?: The add request failed
2700 *
2701 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2702 * non-zero timeout parameter the wait ioctl will wait for the given number of
2703 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2704 * without holding struct_mutex the object may become re-busied before this
2705 * function completes. A similar but shorter * race condition exists in the busy
2706 * ioctl
2707 */
2708int
2709i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2710{
2711 struct drm_i915_gem_wait *args = data;
033d549b 2712 struct intel_rps_client *rps = to_rps_client(file);
23ba4fd0 2713 struct drm_i915_gem_object *obj;
033d549b
CW
2714 unsigned long active;
2715 int idx, ret = 0;
23ba4fd0 2716
11b5d511
DV
2717 if (args->flags != 0)
2718 return -EINVAL;
2719
03ac0642 2720 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 2721 if (!obj)
23ba4fd0 2722 return -ENOENT;
23ba4fd0 2723
033d549b
CW
2724 active = __I915_BO_ACTIVE(obj);
2725 for_each_active(active, idx) {
2726 s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
2727 ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
2728 timeout, rps);
2729 if (ret)
2730 break;
b4716185
CW
2731 }
2732
033d549b 2733 i915_gem_object_put_unlocked(obj);
ff865885 2734 return ret;
23ba4fd0
BW
2735}
2736
b4716185 2737static int
fa545cbf 2738__i915_gem_object_sync(struct drm_i915_gem_request *to,
8e637178 2739 struct drm_i915_gem_request *from)
b4716185 2740{
b4716185
CW
2741 int ret;
2742
8e637178 2743 if (to->engine == from->engine)
b4716185
CW
2744 return 0;
2745
39df9190 2746 if (!i915.semaphores) {
776f3236
CW
2747 ret = i915_wait_request(from,
2748 from->i915->mm.interruptible,
2749 NULL,
2750 NO_WAITBOOST);
b4716185
CW
2751 if (ret)
2752 return ret;
b4716185 2753 } else {
8e637178 2754 int idx = intel_engine_sync_index(from->engine, to->engine);
ddf07be7 2755 if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
b4716185
CW
2756 return 0;
2757
8e637178 2758 trace_i915_gem_ring_sync_to(to, from);
ddf07be7 2759 ret = to->engine->semaphore.sync_to(to, from);
b4716185
CW
2760 if (ret)
2761 return ret;
2762
ddf07be7 2763 from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
b4716185
CW
2764 }
2765
2766 return 0;
2767}
2768
5816d648
BW
2769/**
2770 * i915_gem_object_sync - sync an object to a ring.
2771 *
2772 * @obj: object which may be in use on another ring.
8e637178 2773 * @to: request we are wishing to use
5816d648
BW
2774 *
2775 * This code is meant to abstract object synchronization with the GPU.
8e637178
CW
2776 * Conceptually we serialise writes between engines inside the GPU.
2777 * We only allow one engine to write into a buffer at any time, but
2778 * multiple readers. To ensure each has a coherent view of memory, we must:
b4716185
CW
2779 *
2780 * - If there is an outstanding write request to the object, the new
2781 * request must wait for it to complete (either CPU or in hw, requests
2782 * on the same ring will be naturally ordered).
2783 *
2784 * - If we are a write request (pending_write_domain is set), the new
2785 * request must wait for outstanding read requests to complete.
5816d648
BW
2786 *
2787 * Returns 0 if successful, else propagates up the lower layer error.
2788 */
2911a35b
BW
2789int
2790i915_gem_object_sync(struct drm_i915_gem_object *obj,
8e637178 2791 struct drm_i915_gem_request *to)
2911a35b 2792{
8cac6f6c
CW
2793 struct i915_gem_active *active;
2794 unsigned long active_mask;
2795 int idx;
41c52415 2796
8cac6f6c 2797 lockdep_assert_held(&obj->base.dev->struct_mutex);
2911a35b 2798
573adb39 2799 active_mask = i915_gem_object_get_active(obj);
8cac6f6c
CW
2800 if (!active_mask)
2801 return 0;
27c01aae 2802
8cac6f6c
CW
2803 if (obj->base.pending_write_domain) {
2804 active = obj->last_read;
b4716185 2805 } else {
8cac6f6c
CW
2806 active_mask = 1;
2807 active = &obj->last_write;
b4716185 2808 }
8cac6f6c
CW
2809
2810 for_each_active(active_mask, idx) {
2811 struct drm_i915_gem_request *request;
2812 int ret;
2813
2814 request = i915_gem_active_peek(&active[idx],
2815 &obj->base.dev->struct_mutex);
2816 if (!request)
2817 continue;
2818
fa545cbf 2819 ret = __i915_gem_object_sync(to, request);
b4716185
CW
2820 if (ret)
2821 return ret;
2822 }
2911a35b 2823
b4716185 2824 return 0;
2911a35b
BW
2825}
2826
b5ffc9bc
CW
2827static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2828{
2829 u32 old_write_domain, old_read_domains;
2830
b5ffc9bc
CW
2831 /* Force a pagefault for domain tracking on next user access */
2832 i915_gem_release_mmap(obj);
2833
b97c3d9c
KP
2834 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2835 return;
2836
b5ffc9bc
CW
2837 old_read_domains = obj->base.read_domains;
2838 old_write_domain = obj->base.write_domain;
2839
2840 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2841 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2842
2843 trace_i915_gem_object_change_domain(obj,
2844 old_read_domains,
2845 old_write_domain);
2846}
2847
8ef8561f
CW
2848static void __i915_vma_iounmap(struct i915_vma *vma)
2849{
20dfbde4 2850 GEM_BUG_ON(i915_vma_is_pinned(vma));
8ef8561f
CW
2851
2852 if (vma->iomap == NULL)
2853 return;
2854
2855 io_mapping_unmap(vma->iomap);
2856 vma->iomap = NULL;
2857}
2858
df0e9a28 2859int i915_vma_unbind(struct i915_vma *vma)
673a394b 2860{
07fe0b12 2861 struct drm_i915_gem_object *obj = vma->obj;
b0decaf7 2862 unsigned long active;
43e28f09 2863 int ret;
673a394b 2864
b0decaf7
CW
2865 /* First wait upon any activity as retiring the request may
2866 * have side-effects such as unpinning or even unbinding this vma.
2867 */
2868 active = i915_vma_get_active(vma);
df0e9a28 2869 if (active) {
b0decaf7
CW
2870 int idx;
2871
b1f788c6
CW
2872 /* When a closed VMA is retired, it is unbound - eek.
2873 * In order to prevent it from being recursively closed,
2874 * take a pin on the vma so that the second unbind is
2875 * aborted.
2876 */
20dfbde4 2877 __i915_vma_pin(vma);
b1f788c6 2878
b0decaf7
CW
2879 for_each_active(active, idx) {
2880 ret = i915_gem_active_retire(&vma->last_read[idx],
2881 &vma->vm->dev->struct_mutex);
2882 if (ret)
b1f788c6 2883 break;
b0decaf7
CW
2884 }
2885
20dfbde4 2886 __i915_vma_unpin(vma);
b1f788c6
CW
2887 if (ret)
2888 return ret;
2889
b0decaf7
CW
2890 GEM_BUG_ON(i915_vma_is_active(vma));
2891 }
2892
20dfbde4 2893 if (i915_vma_is_pinned(vma))
b0decaf7
CW
2894 return -EBUSY;
2895
b1f788c6
CW
2896 if (!drm_mm_node_allocated(&vma->node))
2897 goto destroy;
433544bd 2898
15717de2
CW
2899 GEM_BUG_ON(obj->bind_count == 0);
2900 GEM_BUG_ON(!obj->pages);
c4670ad0 2901
05a20d09 2902 if (i915_vma_is_map_and_fenceable(vma)) {
8b1bc9b4 2903 i915_gem_object_finish_gtt(obj);
5323fd04 2904
8b1bc9b4
DV
2905 /* release the fence reg _after_ flushing */
2906 ret = i915_gem_object_put_fence(obj);
2907 if (ret)
2908 return ret;
8ef8561f
CW
2909
2910 __i915_vma_iounmap(vma);
05a20d09 2911 vma->flags &= ~I915_VMA_CAN_FENCE;
8b1bc9b4 2912 }
96b47b65 2913
50e046b6
CW
2914 if (likely(!vma->vm->closed)) {
2915 trace_i915_vma_unbind(vma);
2916 vma->vm->unbind_vma(vma);
2917 }
3272db53 2918 vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
6f65e29a 2919
50e046b6
CW
2920 drm_mm_remove_node(&vma->node);
2921 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2922
05a20d09
CW
2923 if (vma->pages != obj->pages) {
2924 GEM_BUG_ON(!vma->pages);
2925 sg_free_table(vma->pages);
2926 kfree(vma->pages);
fe14d5f4 2927 }
247177dd 2928 vma->pages = NULL;
673a394b 2929
2f633156 2930 /* Since the unbound list is global, only move to that list if
b93dab6e 2931 * no more VMAs exist. */
15717de2
CW
2932 if (--obj->bind_count == 0)
2933 list_move_tail(&obj->global_list,
2934 &to_i915(obj->base.dev)->mm.unbound_list);
673a394b 2935
70903c3b
CW
2936 /* And finally now the object is completely decoupled from this vma,
2937 * we can drop its hold on the backing storage and allow it to be
2938 * reaped by the shrinker.
2939 */
2940 i915_gem_object_unpin_pages(obj);
2941
b1f788c6 2942destroy:
3272db53 2943 if (unlikely(i915_vma_is_closed(vma)))
b1f788c6
CW
2944 i915_vma_destroy(vma);
2945
88241785 2946 return 0;
54cf91dc
CW
2947}
2948
dcff85c8
CW
2949int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
2950 bool interruptible)
4df2faf4 2951{
e2f80391 2952 struct intel_engine_cs *engine;
b4ac5afc 2953 int ret;
4df2faf4 2954
b4ac5afc 2955 for_each_engine(engine, dev_priv) {
62e63007
CW
2956 if (engine->last_context == NULL)
2957 continue;
2958
dcff85c8 2959 ret = intel_engine_idle(engine, interruptible);
1ec14ad3
CW
2960 if (ret)
2961 return ret;
2962 }
4df2faf4 2963
8a1a49f9 2964 return 0;
4df2faf4
DV
2965}
2966
4144f9b5 2967static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
2968 unsigned long cache_level)
2969{
4144f9b5 2970 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
2971 struct drm_mm_node *other;
2972
4144f9b5
CW
2973 /*
2974 * On some machines we have to be careful when putting differing types
2975 * of snoopable memory together to avoid the prefetcher crossing memory
2976 * domains and dying. During vm initialisation, we decide whether or not
2977 * these constraints apply and set the drm_mm.color_adjust
2978 * appropriately.
42d6ab48 2979 */
4144f9b5 2980 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
2981 return true;
2982
c6cfb325 2983 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
2984 return true;
2985
2986 if (list_empty(&gtt_space->node_list))
2987 return true;
2988
2989 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2990 if (other->allocated && !other->hole_follows && other->color != cache_level)
2991 return false;
2992
2993 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2994 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2995 return false;
2996
2997 return true;
2998}
2999
673a394b 3000/**
59bfa124
CW
3001 * i915_vma_insert - finds a slot for the vma in its address space
3002 * @vma: the vma
91b2db6f 3003 * @size: requested size in bytes (can be larger than the VMA)
59bfa124 3004 * @alignment: required alignment
14bb2c11 3005 * @flags: mask of PIN_* flags to use
59bfa124
CW
3006 *
3007 * First we try to allocate some free space that meets the requirements for
3008 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
3009 * preferrably the oldest idle entry to make room for the new VMA.
3010 *
3011 * Returns:
3012 * 0 on success, negative error code otherwise.
673a394b 3013 */
59bfa124
CW
3014static int
3015i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
673a394b 3016{
59bfa124
CW
3017 struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
3018 struct drm_i915_gem_object *obj = vma->obj;
de180033
CW
3019 u64 start, end;
3020 u64 min_alignment;
07f73f69 3021 int ret;
673a394b 3022
3272db53 3023 GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
59bfa124 3024 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
de180033
CW
3025
3026 size = max(size, vma->size);
3027 if (flags & PIN_MAPPABLE)
3e510a8e
CW
3028 size = i915_gem_get_ggtt_size(dev_priv, size,
3029 i915_gem_object_get_tiling(obj));
de180033
CW
3030
3031 min_alignment =
3e510a8e
CW
3032 i915_gem_get_ggtt_alignment(dev_priv, size,
3033 i915_gem_object_get_tiling(obj),
de180033
CW
3034 flags & PIN_MAPPABLE);
3035 if (alignment == 0)
3036 alignment = min_alignment;
3037 if (alignment & (min_alignment - 1)) {
3038 DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
3039 alignment, min_alignment);
59bfa124 3040 return -EINVAL;
91e6711e 3041 }
a00b10c3 3042
101b506a 3043 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
de180033
CW
3044
3045 end = vma->vm->total;
101b506a 3046 if (flags & PIN_MAPPABLE)
91b2db6f 3047 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
101b506a 3048 if (flags & PIN_ZONE_4G)
48ea1e32 3049 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3050
91e6711e
JL
3051 /* If binding the object/GGTT view requires more space than the entire
3052 * aperture has, reject it early before evicting everything in a vain
3053 * attempt to find space.
654fc607 3054 */
91e6711e 3055 if (size > end) {
de180033 3056 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
91b2db6f 3057 size, obj->base.size,
1ec9e26d 3058 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3059 end);
59bfa124 3060 return -E2BIG;
654fc607
CW
3061 }
3062
37e680a1 3063 ret = i915_gem_object_get_pages(obj);
6c085a72 3064 if (ret)
59bfa124 3065 return ret;
6c085a72 3066
fbdda6fb
CW
3067 i915_gem_object_pin_pages(obj);
3068
506a8e87 3069 if (flags & PIN_OFFSET_FIXED) {
59bfa124 3070 u64 offset = flags & PIN_OFFSET_MASK;
de180033 3071 if (offset & (alignment - 1) || offset > end - size) {
506a8e87 3072 ret = -EINVAL;
de180033 3073 goto err_unpin;
506a8e87 3074 }
de180033 3075
506a8e87
CW
3076 vma->node.start = offset;
3077 vma->node.size = size;
3078 vma->node.color = obj->cache_level;
de180033 3079 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
506a8e87
CW
3080 if (ret) {
3081 ret = i915_gem_evict_for_vma(vma);
3082 if (ret == 0)
de180033
CW
3083 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3084 if (ret)
3085 goto err_unpin;
506a8e87 3086 }
101b506a 3087 } else {
de180033
CW
3088 u32 search_flag, alloc_flag;
3089
506a8e87
CW
3090 if (flags & PIN_HIGH) {
3091 search_flag = DRM_MM_SEARCH_BELOW;
3092 alloc_flag = DRM_MM_CREATE_TOP;
3093 } else {
3094 search_flag = DRM_MM_SEARCH_DEFAULT;
3095 alloc_flag = DRM_MM_CREATE_DEFAULT;
3096 }
101b506a 3097
954c4691
CW
3098 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3099 * so we know that we always have a minimum alignment of 4096.
3100 * The drm_mm range manager is optimised to return results
3101 * with zero alignment, so where possible use the optimal
3102 * path.
3103 */
3104 if (alignment <= 4096)
3105 alignment = 0;
3106
0a9ae0d7 3107search_free:
de180033
CW
3108 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3109 &vma->node,
506a8e87
CW
3110 size, alignment,
3111 obj->cache_level,
3112 start, end,
3113 search_flag,
3114 alloc_flag);
3115 if (ret) {
de180033 3116 ret = i915_gem_evict_something(vma->vm, size, alignment,
506a8e87
CW
3117 obj->cache_level,
3118 start, end,
3119 flags);
3120 if (ret == 0)
3121 goto search_free;
9731129c 3122
de180033 3123 goto err_unpin;
506a8e87 3124 }
673a394b 3125 }
37508589 3126 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
673a394b 3127
35c20a60 3128 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
de180033 3129 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
15717de2 3130 obj->bind_count++;
bf1a1092 3131
59bfa124 3132 return 0;
2f633156 3133
bc6bc15b 3134err_unpin:
2f633156 3135 i915_gem_object_unpin_pages(obj);
59bfa124 3136 return ret;
673a394b
EA
3137}
3138
000433b6 3139bool
2c22569b
CW
3140i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3141 bool force)
673a394b 3142{
673a394b
EA
3143 /* If we don't have a page list set up, then we're not pinned
3144 * to GPU, and we can ignore the cache flush because it'll happen
3145 * again at bind time.
3146 */
05394f39 3147 if (obj->pages == NULL)
000433b6 3148 return false;
673a394b 3149
769ce464
ID
3150 /*
3151 * Stolen memory is always coherent with the GPU as it is explicitly
3152 * marked as wc by the system, or the system is cache-coherent.
3153 */
6a2c4232 3154 if (obj->stolen || obj->phys_handle)
000433b6 3155 return false;
769ce464 3156
9c23f7fc
CW
3157 /* If the GPU is snooping the contents of the CPU cache,
3158 * we do not need to manually clear the CPU cache lines. However,
3159 * the caches are only snooped when the render cache is
3160 * flushed/invalidated. As we always have to emit invalidations
3161 * and flushes when moving into and out of the RENDER domain, correct
3162 * snooping behaviour occurs naturally as the result of our domain
3163 * tracking.
3164 */
0f71979a
CW
3165 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3166 obj->cache_dirty = true;
000433b6 3167 return false;
0f71979a 3168 }
9c23f7fc 3169
1c5d22f7 3170 trace_i915_gem_object_clflush(obj);
9da3da66 3171 drm_clflush_sg(obj->pages);
0f71979a 3172 obj->cache_dirty = false;
000433b6
CW
3173
3174 return true;
e47c68e9
EA
3175}
3176
3177/** Flushes the GTT write domain for the object if it's dirty. */
3178static void
05394f39 3179i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3180{
3b5724d7 3181 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1c5d22f7 3182
05394f39 3183 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3184 return;
3185
63256ec5 3186 /* No actual flushing is required for the GTT write domain. Writes
3b5724d7 3187 * to it "immediately" go to main memory as far as we know, so there's
e47c68e9 3188 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3189 *
3190 * However, we do have to enforce the order so that all writes through
3191 * the GTT land before any writes to the device, such as updates to
3192 * the GATT itself.
3b5724d7
CW
3193 *
3194 * We also have to wait a bit for the writes to land from the GTT.
3195 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3196 * timing. This issue has only been observed when switching quickly
3197 * between GTT writes and CPU reads from inside the kernel on recent hw,
3198 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3199 * system agents we cannot reproduce this behaviour).
e47c68e9 3200 */
63256ec5 3201 wmb();
3b5724d7
CW
3202 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3203 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base));
63256ec5 3204
d243ad82 3205 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
f99d7069 3206
b0dc465f 3207 obj->base.write_domain = 0;
1c5d22f7 3208 trace_i915_gem_object_change_domain(obj,
05394f39 3209 obj->base.read_domains,
b0dc465f 3210 I915_GEM_DOMAIN_GTT);
e47c68e9
EA
3211}
3212
3213/** Flushes the CPU write domain for the object if it's dirty. */
3214static void
e62b59e4 3215i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3216{
05394f39 3217 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3218 return;
3219
e62b59e4 3220 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3221 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3222
de152b62 3223 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3224
b0dc465f 3225 obj->base.write_domain = 0;
1c5d22f7 3226 trace_i915_gem_object_change_domain(obj,
05394f39 3227 obj->base.read_domains,
b0dc465f 3228 I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3229}
3230
2ef7eeaa
EA
3231/**
3232 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3233 * @obj: object to act on
3234 * @write: ask for write access or read only
2ef7eeaa
EA
3235 *
3236 * This function returns when the move is complete, including waiting on
3237 * flushes to occur.
3238 */
79e53945 3239int
2021746e 3240i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3241{
1c5d22f7 3242 uint32_t old_write_domain, old_read_domains;
43566ded 3243 struct i915_vma *vma;
e47c68e9 3244 int ret;
2ef7eeaa 3245
0201f1ec 3246 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3247 if (ret)
3248 return ret;
3249
c13d87ea
CW
3250 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3251 return 0;
3252
43566ded
CW
3253 /* Flush and acquire obj->pages so that we are coherent through
3254 * direct access in memory with previous cached writes through
3255 * shmemfs and that our cache domain tracking remains valid.
3256 * For example, if the obj->filp was moved to swap without us
3257 * being notified and releasing the pages, we would mistakenly
3258 * continue to assume that the obj remained out of the CPU cached
3259 * domain.
3260 */
3261 ret = i915_gem_object_get_pages(obj);
3262 if (ret)
3263 return ret;
3264
e62b59e4 3265 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3266
d0a57789
CW
3267 /* Serialise direct access to this object with the barriers for
3268 * coherent writes from the GPU, by effectively invalidating the
3269 * GTT domain upon first access.
3270 */
3271 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3272 mb();
3273
05394f39
CW
3274 old_write_domain = obj->base.write_domain;
3275 old_read_domains = obj->base.read_domains;
1c5d22f7 3276
e47c68e9
EA
3277 /* It should now be out of any other write domains, and we can update
3278 * the domain values for our changes.
3279 */
05394f39
CW
3280 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3281 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3282 if (write) {
05394f39
CW
3283 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3284 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3285 obj->dirty = 1;
2ef7eeaa
EA
3286 }
3287
1c5d22f7
CW
3288 trace_i915_gem_object_change_domain(obj,
3289 old_read_domains,
3290 old_write_domain);
3291
8325a09d 3292 /* And bump the LRU for this access */
058d88c4 3293 vma = i915_gem_object_to_ggtt(obj, NULL);
b0decaf7
CW
3294 if (vma &&
3295 drm_mm_node_allocated(&vma->node) &&
3296 !i915_vma_is_active(vma))
3297 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
8325a09d 3298
e47c68e9
EA
3299 return 0;
3300}
3301
ef55f92a
CW
3302/**
3303 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3304 * @obj: object to act on
3305 * @cache_level: new cache level to set for the object
ef55f92a
CW
3306 *
3307 * After this function returns, the object will be in the new cache-level
3308 * across all GTT and the contents of the backing storage will be coherent,
3309 * with respect to the new cache-level. In order to keep the backing storage
3310 * coherent for all users, we only allow a single cache level to be set
3311 * globally on the object and prevent it from being changed whilst the
3312 * hardware is reading from the object. That is if the object is currently
3313 * on the scanout it will be set to uncached (or equivalent display
3314 * cache coherency) and all non-MOCS GPU access will also be uncached so
3315 * that all direct access to the scanout remains coherent.
3316 */
e4ffd173
CW
3317int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3318 enum i915_cache_level cache_level)
3319{
aa653a68 3320 struct i915_vma *vma;
ed75a55b 3321 int ret = 0;
e4ffd173
CW
3322
3323 if (obj->cache_level == cache_level)
ed75a55b 3324 goto out;
e4ffd173 3325
ef55f92a
CW
3326 /* Inspect the list of currently bound VMA and unbind any that would
3327 * be invalid given the new cache-level. This is principally to
3328 * catch the issue of the CS prefetch crossing page boundaries and
3329 * reading an invalid PTE on older architectures.
3330 */
aa653a68
CW
3331restart:
3332 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3333 if (!drm_mm_node_allocated(&vma->node))
3334 continue;
3335
20dfbde4 3336 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3337 DRM_DEBUG("can not change the cache level of pinned objects\n");
3338 return -EBUSY;
3339 }
3340
aa653a68
CW
3341 if (i915_gem_valid_gtt_space(vma, cache_level))
3342 continue;
3343
3344 ret = i915_vma_unbind(vma);
3345 if (ret)
3346 return ret;
3347
3348 /* As unbinding may affect other elements in the
3349 * obj->vma_list (due to side-effects from retiring
3350 * an active vma), play safe and restart the iterator.
3351 */
3352 goto restart;
42d6ab48
CW
3353 }
3354
ef55f92a
CW
3355 /* We can reuse the existing drm_mm nodes but need to change the
3356 * cache-level on the PTE. We could simply unbind them all and
3357 * rebind with the correct cache-level on next use. However since
3358 * we already have a valid slot, dma mapping, pages etc, we may as
3359 * rewrite the PTE in the belief that doing so tramples upon less
3360 * state and so involves less work.
3361 */
15717de2 3362 if (obj->bind_count) {
ef55f92a
CW
3363 /* Before we change the PTE, the GPU must not be accessing it.
3364 * If we wait upon the object, we know that all the bound
3365 * VMA are no longer active.
3366 */
2e2f351d 3367 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3368 if (ret)
3369 return ret;
3370
aa653a68 3371 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3372 /* Access to snoopable pages through the GTT is
3373 * incoherent and on some machines causes a hard
3374 * lockup. Relinquish the CPU mmaping to force
3375 * userspace to refault in the pages and we can
3376 * then double check if the GTT mapping is still
3377 * valid for that pointer access.
3378 */
3379 i915_gem_release_mmap(obj);
3380
3381 /* As we no longer need a fence for GTT access,
3382 * we can relinquish it now (and so prevent having
3383 * to steal a fence from someone else on the next
3384 * fence request). Note GPU activity would have
3385 * dropped the fence as all snoopable access is
3386 * supposed to be linear.
3387 */
e4ffd173
CW
3388 ret = i915_gem_object_put_fence(obj);
3389 if (ret)
3390 return ret;
ef55f92a
CW
3391 } else {
3392 /* We either have incoherent backing store and
3393 * so no GTT access or the architecture is fully
3394 * coherent. In such cases, existing GTT mmaps
3395 * ignore the cache bit in the PTE and we can
3396 * rewrite it without confusing the GPU or having
3397 * to force userspace to fault back in its mmaps.
3398 */
e4ffd173
CW
3399 }
3400
1c7f4bca 3401 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3402 if (!drm_mm_node_allocated(&vma->node))
3403 continue;
3404
3405 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3406 if (ret)
3407 return ret;
3408 }
e4ffd173
CW
3409 }
3410
1c7f4bca 3411 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3412 vma->node.color = cache_level;
3413 obj->cache_level = cache_level;
3414
ed75a55b 3415out:
ef55f92a
CW
3416 /* Flush the dirty CPU caches to the backing storage so that the
3417 * object is now coherent at its new cache level (with respect
3418 * to the access domain).
3419 */
b50a5371 3420 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 3421 if (i915_gem_clflush_object(obj, true))
c033666a 3422 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3423 }
3424
e4ffd173
CW
3425 return 0;
3426}
3427
199adf40
BW
3428int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3429 struct drm_file *file)
e6994aee 3430{
199adf40 3431 struct drm_i915_gem_caching *args = data;
e6994aee 3432 struct drm_i915_gem_object *obj;
e6994aee 3433
03ac0642
CW
3434 obj = i915_gem_object_lookup(file, args->handle);
3435 if (!obj)
432be69d 3436 return -ENOENT;
e6994aee 3437
651d794f
CW
3438 switch (obj->cache_level) {
3439 case I915_CACHE_LLC:
3440 case I915_CACHE_L3_LLC:
3441 args->caching = I915_CACHING_CACHED;
3442 break;
3443
4257d3ba
CW
3444 case I915_CACHE_WT:
3445 args->caching = I915_CACHING_DISPLAY;
3446 break;
3447
651d794f
CW
3448 default:
3449 args->caching = I915_CACHING_NONE;
3450 break;
3451 }
e6994aee 3452
34911fd3 3453 i915_gem_object_put_unlocked(obj);
432be69d 3454 return 0;
e6994aee
CW
3455}
3456
199adf40
BW
3457int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3458 struct drm_file *file)
e6994aee 3459{
fac5e23e 3460 struct drm_i915_private *dev_priv = to_i915(dev);
199adf40 3461 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3462 struct drm_i915_gem_object *obj;
3463 enum i915_cache_level level;
3464 int ret;
3465
199adf40
BW
3466 switch (args->caching) {
3467 case I915_CACHING_NONE:
e6994aee
CW
3468 level = I915_CACHE_NONE;
3469 break;
199adf40 3470 case I915_CACHING_CACHED:
e5756c10
ID
3471 /*
3472 * Due to a HW issue on BXT A stepping, GPU stores via a
3473 * snooped mapping may leave stale data in a corresponding CPU
3474 * cacheline, whereas normally such cachelines would get
3475 * invalidated.
3476 */
ca377809 3477 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3478 return -ENODEV;
3479
e6994aee
CW
3480 level = I915_CACHE_LLC;
3481 break;
4257d3ba
CW
3482 case I915_CACHING_DISPLAY:
3483 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3484 break;
e6994aee
CW
3485 default:
3486 return -EINVAL;
3487 }
3488
fd0fe6ac
ID
3489 intel_runtime_pm_get(dev_priv);
3490
3bc2913e
BW
3491 ret = i915_mutex_lock_interruptible(dev);
3492 if (ret)
fd0fe6ac 3493 goto rpm_put;
3bc2913e 3494
03ac0642
CW
3495 obj = i915_gem_object_lookup(file, args->handle);
3496 if (!obj) {
e6994aee
CW
3497 ret = -ENOENT;
3498 goto unlock;
3499 }
3500
3501 ret = i915_gem_object_set_cache_level(obj, level);
3502
f8c417cd 3503 i915_gem_object_put(obj);
e6994aee
CW
3504unlock:
3505 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3506rpm_put:
3507 intel_runtime_pm_put(dev_priv);
3508
e6994aee
CW
3509 return ret;
3510}
3511
b9241ea3 3512/*
2da3b9b9
CW
3513 * Prepare buffer for display plane (scanout, cursors, etc).
3514 * Can be called from an uninterruptible phase (modesetting) and allows
3515 * any flushes to be pipelined (for pageflips).
b9241ea3 3516 */
058d88c4 3517struct i915_vma *
2da3b9b9
CW
3518i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3519 u32 alignment,
e6617330 3520 const struct i915_ggtt_view *view)
b9241ea3 3521{
058d88c4 3522 struct i915_vma *vma;
2da3b9b9 3523 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3524 int ret;
3525
cc98b413
CW
3526 /* Mark the pin_display early so that we account for the
3527 * display coherency whilst setting up the cache domains.
3528 */
8a0c39b1 3529 obj->pin_display++;
cc98b413 3530
a7ef0640
EA
3531 /* The display engine is not coherent with the LLC cache on gen6. As
3532 * a result, we make sure that the pinning that is about to occur is
3533 * done with uncached PTEs. This is lowest common denominator for all
3534 * chipsets.
3535 *
3536 * However for gen6+, we could do better by using the GFDT bit instead
3537 * of uncaching, which would allow us to flush all the LLC-cached data
3538 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3539 */
651d794f
CW
3540 ret = i915_gem_object_set_cache_level(obj,
3541 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3542 if (ret) {
3543 vma = ERR_PTR(ret);
cc98b413 3544 goto err_unpin_display;
058d88c4 3545 }
a7ef0640 3546
2da3b9b9
CW
3547 /* As the user may map the buffer once pinned in the display plane
3548 * (e.g. libkms for the bootup splash), we have to ensure that we
3549 * always use map_and_fenceable for all scanout buffers.
3550 */
058d88c4 3551 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
50470bb0
TU
3552 view->type == I915_GGTT_VIEW_NORMAL ?
3553 PIN_MAPPABLE : 0);
058d88c4 3554 if (IS_ERR(vma))
cc98b413 3555 goto err_unpin_display;
2da3b9b9 3556
058d88c4
CW
3557 WARN_ON(obj->pin_display > i915_vma_pin_count(vma));
3558
e62b59e4 3559 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3560
2da3b9b9 3561 old_write_domain = obj->base.write_domain;
05394f39 3562 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3563
3564 /* It should now be out of any other write domains, and we can update
3565 * the domain values for our changes.
3566 */
e5f1d962 3567 obj->base.write_domain = 0;
05394f39 3568 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3569
3570 trace_i915_gem_object_change_domain(obj,
3571 old_read_domains,
2da3b9b9 3572 old_write_domain);
b9241ea3 3573
058d88c4 3574 return vma;
cc98b413
CW
3575
3576err_unpin_display:
8a0c39b1 3577 obj->pin_display--;
058d88c4 3578 return vma;
cc98b413
CW
3579}
3580
3581void
058d88c4 3582i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3583{
058d88c4 3584 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3585 return;
3586
058d88c4 3587 vma->obj->pin_display--;
e6617330 3588
058d88c4
CW
3589 i915_vma_unpin(vma);
3590 WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
b9241ea3
ZW
3591}
3592
e47c68e9
EA
3593/**
3594 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3595 * @obj: object to act on
3596 * @write: requesting write or read-only access
e47c68e9
EA
3597 *
3598 * This function returns when the move is complete, including waiting on
3599 * flushes to occur.
3600 */
dabdfe02 3601int
919926ae 3602i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3603{
1c5d22f7 3604 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3605 int ret;
3606
0201f1ec 3607 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3608 if (ret)
3609 return ret;
3610
c13d87ea
CW
3611 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3612 return 0;
3613
e47c68e9 3614 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3615
05394f39
CW
3616 old_write_domain = obj->base.write_domain;
3617 old_read_domains = obj->base.read_domains;
1c5d22f7 3618
e47c68e9 3619 /* Flush the CPU cache if it's still invalid. */
05394f39 3620 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3621 i915_gem_clflush_object(obj, false);
2ef7eeaa 3622
05394f39 3623 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3624 }
3625
3626 /* It should now be out of any other write domains, and we can update
3627 * the domain values for our changes.
3628 */
05394f39 3629 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3630
3631 /* If we're writing through the CPU, then the GPU read domains will
3632 * need to be invalidated at next use.
3633 */
3634 if (write) {
05394f39
CW
3635 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3636 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3637 }
2ef7eeaa 3638
1c5d22f7
CW
3639 trace_i915_gem_object_change_domain(obj,
3640 old_read_domains,
3641 old_write_domain);
3642
2ef7eeaa
EA
3643 return 0;
3644}
3645
673a394b
EA
3646/* Throttle our rendering by waiting until the ring has completed our requests
3647 * emitted over 20 msec ago.
3648 *
b962442e
EA
3649 * Note that if we were to use the current jiffies each time around the loop,
3650 * we wouldn't escape the function with any frames outstanding if the time to
3651 * render a frame was over 20ms.
3652 *
673a394b
EA
3653 * This should get us reasonable parallelism between CPU and GPU but also
3654 * relatively low latency when blocking on a particular request to finish.
3655 */
40a5f0de 3656static int
f787a5f5 3657i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3658{
fac5e23e 3659 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3660 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3661 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3662 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 3663 int ret;
93533c29 3664
308887aa
DV
3665 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3666 if (ret)
3667 return ret;
3668
f4457ae7
CW
3669 /* ABI: return -EIO if already wedged */
3670 if (i915_terminally_wedged(&dev_priv->gpu_error))
3671 return -EIO;
e110e8d6 3672
1c25595f 3673 spin_lock(&file_priv->mm.lock);
f787a5f5 3674 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3675 if (time_after_eq(request->emitted_jiffies, recent_enough))
3676 break;
40a5f0de 3677
fcfa423c
JH
3678 /*
3679 * Note that the request might not have been submitted yet.
3680 * In which case emitted_jiffies will be zero.
3681 */
3682 if (!request->emitted_jiffies)
3683 continue;
3684
54fb2411 3685 target = request;
b962442e 3686 }
ff865885 3687 if (target)
e8a261ea 3688 i915_gem_request_get(target);
1c25595f 3689 spin_unlock(&file_priv->mm.lock);
40a5f0de 3690
54fb2411 3691 if (target == NULL)
f787a5f5 3692 return 0;
2bc43b5c 3693
776f3236 3694 ret = i915_wait_request(target, true, NULL, NULL);
e8a261ea 3695 i915_gem_request_put(target);
ff865885 3696
40a5f0de
EA
3697 return ret;
3698}
3699
d23db88c 3700static bool
91b2db6f 3701i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
d23db88c 3702{
59bfa124
CW
3703 if (!drm_mm_node_allocated(&vma->node))
3704 return false;
3705
91b2db6f
CW
3706 if (vma->node.size < size)
3707 return true;
3708
3709 if (alignment && vma->node.start & (alignment - 1))
d23db88c
CW
3710 return true;
3711
05a20d09 3712 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
d23db88c
CW
3713 return true;
3714
3715 if (flags & PIN_OFFSET_BIAS &&
3716 vma->node.start < (flags & PIN_OFFSET_MASK))
3717 return true;
3718
506a8e87
CW
3719 if (flags & PIN_OFFSET_FIXED &&
3720 vma->node.start != (flags & PIN_OFFSET_MASK))
3721 return true;
3722
d23db88c
CW
3723 return false;
3724}
3725
d0710abb
CW
3726void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3727{
3728 struct drm_i915_gem_object *obj = vma->obj;
a9f1481f 3729 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d0710abb
CW
3730 bool mappable, fenceable;
3731 u32 fence_size, fence_alignment;
3732
a9f1481f 3733 fence_size = i915_gem_get_ggtt_size(dev_priv,
05a20d09 3734 vma->size,
3e510a8e 3735 i915_gem_object_get_tiling(obj));
a9f1481f 3736 fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
05a20d09 3737 vma->size,
3e510a8e 3738 i915_gem_object_get_tiling(obj),
ad1a7d20 3739 true);
d0710abb
CW
3740
3741 fenceable = (vma->node.size == fence_size &&
3742 (vma->node.start & (fence_alignment - 1)) == 0);
3743
3744 mappable = (vma->node.start + fence_size <=
a9f1481f 3745 dev_priv->ggtt.mappable_end);
d0710abb 3746
05a20d09
CW
3747 if (mappable && fenceable)
3748 vma->flags |= I915_VMA_CAN_FENCE;
3749 else
3750 vma->flags &= ~I915_VMA_CAN_FENCE;
d0710abb
CW
3751}
3752
305bc234
CW
3753int __i915_vma_do_pin(struct i915_vma *vma,
3754 u64 size, u64 alignment, u64 flags)
673a394b 3755{
305bc234 3756 unsigned int bound = vma->flags;
673a394b
EA
3757 int ret;
3758
59bfa124 3759 GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3272db53 3760 GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
d7f46fc4 3761
305bc234
CW
3762 if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3763 ret = -EBUSY;
3764 goto err;
3765 }
ac0c6b5a 3766
de895082 3767 if ((bound & I915_VMA_BIND_MASK) == 0) {
59bfa124
CW
3768 ret = i915_vma_insert(vma, size, alignment, flags);
3769 if (ret)
3770 goto err;
fe14d5f4 3771 }
74898d7e 3772
59bfa124 3773 ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3b16525c 3774 if (ret)
59bfa124 3775 goto err;
3b16525c 3776
3272db53 3777 if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
d0710abb 3778 __i915_vma_set_map_and_fenceable(vma);
ef79e17c 3779
3b16525c 3780 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
673a394b 3781 return 0;
673a394b 3782
59bfa124
CW
3783err:
3784 __i915_vma_unpin(vma);
3785 return ret;
ec7adb6e
JL
3786}
3787
058d88c4 3788struct i915_vma *
ec7adb6e
JL
3789i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3790 const struct i915_ggtt_view *view,
91b2db6f 3791 u64 size,
2ffffd0f
CW
3792 u64 alignment,
3793 u64 flags)
ec7adb6e 3794{
058d88c4 3795 struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
59bfa124
CW
3796 struct i915_vma *vma;
3797 int ret;
72e96d64 3798
058d88c4 3799 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
59bfa124 3800 if (IS_ERR(vma))
058d88c4 3801 return vma;
59bfa124
CW
3802
3803 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3804 if (flags & PIN_NONBLOCK &&
3805 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 3806 return ERR_PTR(-ENOSPC);
59bfa124
CW
3807
3808 WARN(i915_vma_is_pinned(vma),
3809 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
3810 " offset=%08x, req.alignment=%llx,"
3811 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3812 i915_ggtt_offset(vma), alignment,
59bfa124 3813 !!(flags & PIN_MAPPABLE),
05a20d09 3814 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
3815 ret = i915_vma_unbind(vma);
3816 if (ret)
058d88c4 3817 return ERR_PTR(ret);
59bfa124
CW
3818 }
3819
058d88c4
CW
3820 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3821 if (ret)
3822 return ERR_PTR(ret);
ec7adb6e 3823
058d88c4 3824 return vma;
673a394b
EA
3825}
3826
edf6b76f 3827static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
3828{
3829 /* Note that we could alias engines in the execbuf API, but
3830 * that would be very unwise as it prevents userspace from
3831 * fine control over engine selection. Ahem.
3832 *
3833 * This should be something like EXEC_MAX_ENGINE instead of
3834 * I915_NUM_ENGINES.
3835 */
3836 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3837 return 0x10000 << id;
3838}
3839
3840static __always_inline unsigned int __busy_write_id(unsigned int id)
3841{
70cb472c
CW
3842 /* The uABI guarantees an active writer is also amongst the read
3843 * engines. This would be true if we accessed the activity tracking
3844 * under the lock, but as we perform the lookup of the object and
3845 * its activity locklessly we can not guarantee that the last_write
3846 * being active implies that we have set the same engine flag from
3847 * last_read - hence we always set both read and write busy for
3848 * last_write.
3849 */
3850 return id | __busy_read_flag(id);
3fdc13c7
CW
3851}
3852
edf6b76f 3853static __always_inline unsigned int
3fdc13c7
CW
3854__busy_set_if_active(const struct i915_gem_active *active,
3855 unsigned int (*flag)(unsigned int id))
3856{
1255501d 3857 struct drm_i915_gem_request *request;
3fdc13c7 3858
1255501d
CW
3859 request = rcu_dereference(active->request);
3860 if (!request || i915_gem_request_completed(request))
3861 return 0;
3fdc13c7 3862
1255501d
CW
3863 /* This is racy. See __i915_gem_active_get_rcu() for an in detail
3864 * discussion of how to handle the race correctly, but for reporting
3865 * the busy state we err on the side of potentially reporting the
3866 * wrong engine as being busy (but we guarantee that the result
3867 * is at least self-consistent).
3868 *
3869 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
3870 * whilst we are inspecting it, even under the RCU read lock as we are.
3871 * This means that there is a small window for the engine and/or the
3872 * seqno to have been overwritten. The seqno will always be in the
3873 * future compared to the intended, and so we know that if that
3874 * seqno is idle (on whatever engine) our request is idle and the
3875 * return 0 above is correct.
3876 *
3877 * The issue is that if the engine is switched, it is just as likely
3878 * to report that it is busy (but since the switch happened, we know
3879 * the request should be idle). So there is a small chance that a busy
3880 * result is actually the wrong engine.
3881 *
3882 * So why don't we care?
3883 *
3884 * For starters, the busy ioctl is a heuristic that is by definition
3885 * racy. Even with perfect serialisation in the driver, the hardware
3886 * state is constantly advancing - the state we report to the user
3887 * is stale.
3888 *
3889 * The critical information for the busy-ioctl is whether the object
3890 * is idle as userspace relies on that to detect whether its next
3891 * access will stall, or if it has missed submitting commands to
3892 * the hardware allowing the GPU to stall. We never generate a
3893 * false-positive for idleness, thus busy-ioctl is reliable at the
3894 * most fundamental level, and we maintain the guarantee that a
3895 * busy object left to itself will eventually become idle (and stay
3896 * idle!).
3897 *
3898 * We allow ourselves the leeway of potentially misreporting the busy
3899 * state because that is an optimisation heuristic that is constantly
3900 * in flux. Being quickly able to detect the busy/idle state is much
3901 * more important than accurate logging of exactly which engines were
3902 * busy.
3903 *
3904 * For accuracy in reporting the engine, we could use
3905 *
3906 * result = 0;
3907 * request = __i915_gem_active_get_rcu(active);
3908 * if (request) {
3909 * if (!i915_gem_request_completed(request))
3910 * result = flag(request->engine->exec_id);
3911 * i915_gem_request_put(request);
3912 * }
3913 *
3914 * but that still remains susceptible to both hardware and userspace
3915 * races. So we accept making the result of that race slightly worse,
3916 * given the rarity of the race and its low impact on the result.
3917 */
3918 return flag(READ_ONCE(request->engine->exec_id));
3fdc13c7
CW
3919}
3920
edf6b76f 3921static __always_inline unsigned int
3fdc13c7
CW
3922busy_check_reader(const struct i915_gem_active *active)
3923{
3924 return __busy_set_if_active(active, __busy_read_flag);
3925}
3926
edf6b76f 3927static __always_inline unsigned int
3fdc13c7
CW
3928busy_check_writer(const struct i915_gem_active *active)
3929{
3930 return __busy_set_if_active(active, __busy_write_id);
3931}
3932
673a394b
EA
3933int
3934i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3935 struct drm_file *file)
673a394b
EA
3936{
3937 struct drm_i915_gem_busy *args = data;
05394f39 3938 struct drm_i915_gem_object *obj;
3fdc13c7 3939 unsigned long active;
673a394b 3940
03ac0642 3941 obj = i915_gem_object_lookup(file, args->handle);
3fdc13c7
CW
3942 if (!obj)
3943 return -ENOENT;
d1b851fc 3944
426960be 3945 args->busy = 0;
3fdc13c7
CW
3946 active = __I915_BO_ACTIVE(obj);
3947 if (active) {
3948 int idx;
426960be 3949
3fdc13c7
CW
3950 /* Yes, the lookups are intentionally racy.
3951 *
3952 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
3953 * to regard the value as stale and as our ABI guarantees
3954 * forward progress, we confirm the status of each active
3955 * request with the hardware.
3956 *
3957 * Even though we guard the pointer lookup by RCU, that only
3958 * guarantees that the pointer and its contents remain
3959 * dereferencable and does *not* mean that the request we
3960 * have is the same as the one being tracked by the object.
3961 *
3962 * Consider that we lookup the request just as it is being
3963 * retired and freed. We take a local copy of the pointer,
3964 * but before we add its engine into the busy set, the other
3965 * thread reallocates it and assigns it to a task on another
1255501d
CW
3966 * engine with a fresh and incomplete seqno. Guarding against
3967 * that requires careful serialisation and reference counting,
3968 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
3969 * instead we expect that if the result is busy, which engines
3970 * are busy is not completely reliable - we only guarantee
3971 * that the object was busy.
3fdc13c7
CW
3972 */
3973 rcu_read_lock();
3974
3975 for_each_active(active, idx)
3976 args->busy |= busy_check_reader(&obj->last_read[idx]);
3977
3978 /* For ABI sanity, we only care that the write engine is in
70cb472c
CW
3979 * the set of read engines. This should be ensured by the
3980 * ordering of setting last_read/last_write in
3981 * i915_vma_move_to_active(), and then in reverse in retire.
3982 * However, for good measure, we always report the last_write
3983 * request as a busy read as well as being a busy write.
3fdc13c7
CW
3984 *
3985 * We don't care that the set of active read/write engines
3986 * may change during construction of the result, as it is
3987 * equally liable to change before userspace can inspect
3988 * the result.
3989 */
3990 args->busy |= busy_check_writer(&obj->last_write);
3991
3992 rcu_read_unlock();
426960be 3993 }
673a394b 3994
3fdc13c7
CW
3995 i915_gem_object_put_unlocked(obj);
3996 return 0;
673a394b
EA
3997}
3998
3999int
4000i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4001 struct drm_file *file_priv)
4002{
0206e353 4003 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4004}
4005
3ef94daa
CW
4006int
4007i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4008 struct drm_file *file_priv)
4009{
fac5e23e 4010 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4011 struct drm_i915_gem_madvise *args = data;
05394f39 4012 struct drm_i915_gem_object *obj;
76c1dec1 4013 int ret;
3ef94daa
CW
4014
4015 switch (args->madv) {
4016 case I915_MADV_DONTNEED:
4017 case I915_MADV_WILLNEED:
4018 break;
4019 default:
4020 return -EINVAL;
4021 }
4022
1d7cfea1
CW
4023 ret = i915_mutex_lock_interruptible(dev);
4024 if (ret)
4025 return ret;
4026
03ac0642
CW
4027 obj = i915_gem_object_lookup(file_priv, args->handle);
4028 if (!obj) {
1d7cfea1
CW
4029 ret = -ENOENT;
4030 goto unlock;
3ef94daa 4031 }
3ef94daa 4032
656bfa3a 4033 if (obj->pages &&
3e510a8e 4034 i915_gem_object_is_tiled(obj) &&
656bfa3a
DV
4035 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4036 if (obj->madv == I915_MADV_WILLNEED)
4037 i915_gem_object_unpin_pages(obj);
4038 if (args->madv == I915_MADV_WILLNEED)
4039 i915_gem_object_pin_pages(obj);
4040 }
4041
05394f39
CW
4042 if (obj->madv != __I915_MADV_PURGED)
4043 obj->madv = args->madv;
3ef94daa 4044
6c085a72 4045 /* if the object is no longer attached, discard its backing storage */
be6a0376 4046 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4047 i915_gem_object_truncate(obj);
4048
05394f39 4049 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4050
f8c417cd 4051 i915_gem_object_put(obj);
1d7cfea1 4052unlock:
3ef94daa 4053 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4054 return ret;
3ef94daa
CW
4055}
4056
37e680a1
CW
4057void i915_gem_object_init(struct drm_i915_gem_object *obj,
4058 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4059{
b4716185
CW
4060 int i;
4061
35c20a60 4062 INIT_LIST_HEAD(&obj->global_list);
666796da 4063 for (i = 0; i < I915_NUM_ENGINES; i++)
fa545cbf
CW
4064 init_request_active(&obj->last_read[i],
4065 i915_gem_object_retire__read);
4066 init_request_active(&obj->last_write,
4067 i915_gem_object_retire__write);
4068 init_request_active(&obj->last_fence, NULL);
b25cb2f8 4069 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4070 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4071 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4072
37e680a1
CW
4073 obj->ops = ops;
4074
0327d6ba
CW
4075 obj->fence_reg = I915_FENCE_REG_NONE;
4076 obj->madv = I915_MADV_WILLNEED;
0327d6ba 4077
f19ec8cb 4078 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4079}
4080
37e680a1 4081static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4082 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4083 .get_pages = i915_gem_object_get_pages_gtt,
4084 .put_pages = i915_gem_object_put_pages_gtt,
4085};
4086
d37cd8a8 4087struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 4088 size_t size)
ac52bc56 4089{
c397b908 4090 struct drm_i915_gem_object *obj;
5949eac4 4091 struct address_space *mapping;
1a240d4d 4092 gfp_t mask;
fe3db79b 4093 int ret;
ac52bc56 4094
42dcedd4 4095 obj = i915_gem_object_alloc(dev);
c397b908 4096 if (obj == NULL)
fe3db79b 4097 return ERR_PTR(-ENOMEM);
673a394b 4098
fe3db79b
CW
4099 ret = drm_gem_object_init(dev, &obj->base, size);
4100 if (ret)
4101 goto fail;
673a394b 4102
bed1ea95
CW
4103 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4104 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4105 /* 965gm cannot relocate objects above 4GiB. */
4106 mask &= ~__GFP_HIGHMEM;
4107 mask |= __GFP_DMA32;
4108 }
4109
93c76a3d 4110 mapping = obj->base.filp->f_mapping;
bed1ea95 4111 mapping_set_gfp_mask(mapping, mask);
5949eac4 4112
37e680a1 4113 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4114
c397b908
DV
4115 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4116 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4117
3d29b842
ED
4118 if (HAS_LLC(dev)) {
4119 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4120 * cache) for about a 10% performance improvement
4121 * compared to uncached. Graphics requests other than
4122 * display scanout are coherent with the CPU in
4123 * accessing this cache. This means in this mode we
4124 * don't need to clflush on the CPU side, and on the
4125 * GPU side we only need to flush internal caches to
4126 * get data visible to the CPU.
4127 *
4128 * However, we maintain the display planes as UC, and so
4129 * need to rebind when first used as such.
4130 */
4131 obj->cache_level = I915_CACHE_LLC;
4132 } else
4133 obj->cache_level = I915_CACHE_NONE;
4134
d861e338
DV
4135 trace_i915_gem_object_create(obj);
4136
05394f39 4137 return obj;
fe3db79b
CW
4138
4139fail:
4140 i915_gem_object_free(obj);
4141
4142 return ERR_PTR(ret);
c397b908
DV
4143}
4144
340fbd8c
CW
4145static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4146{
4147 /* If we are the last user of the backing storage (be it shmemfs
4148 * pages or stolen etc), we know that the pages are going to be
4149 * immediately released. In this case, we can then skip copying
4150 * back the contents from the GPU.
4151 */
4152
4153 if (obj->madv != I915_MADV_WILLNEED)
4154 return false;
4155
4156 if (obj->base.filp == NULL)
4157 return true;
4158
4159 /* At first glance, this looks racy, but then again so would be
4160 * userspace racing mmap against close. However, the first external
4161 * reference to the filp can only be obtained through the
4162 * i915_gem_mmap_ioctl() which safeguards us against the user
4163 * acquiring such a reference whilst we are in the middle of
4164 * freeing the object.
4165 */
4166 return atomic_long_read(&obj->base.filp->f_count) == 1;
4167}
4168
1488fc08 4169void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4170{
1488fc08 4171 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4172 struct drm_device *dev = obj->base.dev;
fac5e23e 4173 struct drm_i915_private *dev_priv = to_i915(dev);
07fe0b12 4174 struct i915_vma *vma, *next;
673a394b 4175
f65c9168
PZ
4176 intel_runtime_pm_get(dev_priv);
4177
26e12f89
CW
4178 trace_i915_gem_object_destroy(obj);
4179
b1f788c6
CW
4180 /* All file-owned VMA should have been released by this point through
4181 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4182 * However, the object may also be bound into the global GTT (e.g.
4183 * older GPUs without per-process support, or for direct access through
4184 * the GTT either for the user or for scanout). Those VMA still need to
4185 * unbound now.
4186 */
1c7f4bca 4187 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3272db53 4188 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
b1f788c6 4189 GEM_BUG_ON(i915_vma_is_active(vma));
3272db53 4190 vma->flags &= ~I915_VMA_PIN_MASK;
b1f788c6 4191 i915_vma_close(vma);
1488fc08 4192 }
15717de2 4193 GEM_BUG_ON(obj->bind_count);
1488fc08 4194
1d64ae71
BW
4195 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4196 * before progressing. */
4197 if (obj->stolen)
4198 i915_gem_object_unpin_pages(obj);
4199
faf5bf0a 4200 WARN_ON(atomic_read(&obj->frontbuffer_bits));
a071fa00 4201
656bfa3a
DV
4202 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4203 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
3e510a8e 4204 i915_gem_object_is_tiled(obj))
656bfa3a
DV
4205 i915_gem_object_unpin_pages(obj);
4206
401c29f6
BW
4207 if (WARN_ON(obj->pages_pin_count))
4208 obj->pages_pin_count = 0;
340fbd8c 4209 if (discard_backing_storage(obj))
5537252b 4210 obj->madv = I915_MADV_DONTNEED;
37e680a1 4211 i915_gem_object_put_pages(obj);
de151cf6 4212
9da3da66
CW
4213 BUG_ON(obj->pages);
4214
2f745ad3
CW
4215 if (obj->base.import_attach)
4216 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4217
5cc9ed4b
CW
4218 if (obj->ops->release)
4219 obj->ops->release(obj);
4220
05394f39
CW
4221 drm_gem_object_release(&obj->base);
4222 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4223
05394f39 4224 kfree(obj->bit_17);
42dcedd4 4225 i915_gem_object_free(obj);
f65c9168
PZ
4226
4227 intel_runtime_pm_put(dev_priv);
673a394b
EA
4228}
4229
dcff85c8 4230int i915_gem_suspend(struct drm_device *dev)
29105ccc 4231{
fac5e23e 4232 struct drm_i915_private *dev_priv = to_i915(dev);
dcff85c8 4233 int ret;
28dfe52a 4234
54b4f68f
CW
4235 intel_suspend_gt_powersave(dev_priv);
4236
45c5f202 4237 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4238
4239 /* We have to flush all the executing contexts to main memory so
4240 * that they can saved in the hibernation image. To ensure the last
4241 * context image is coherent, we have to switch away from it. That
4242 * leaves the dev_priv->kernel_context still active when
4243 * we actually suspend, and its image in memory may not match the GPU
4244 * state. Fortunately, the kernel_context is disposable and we do
4245 * not rely on its state.
4246 */
4247 ret = i915_gem_switch_to_kernel_context(dev_priv);
4248 if (ret)
4249 goto err;
4250
dcff85c8 4251 ret = i915_gem_wait_for_idle(dev_priv, true);
f7403347 4252 if (ret)
45c5f202 4253 goto err;
f7403347 4254
c033666a 4255 i915_gem_retire_requests(dev_priv);
673a394b 4256
b2e862d0 4257 i915_gem_context_lost(dev_priv);
45c5f202
CW
4258 mutex_unlock(&dev->struct_mutex);
4259
737b1506 4260 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4261 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4262 flush_delayed_work(&dev_priv->gt.idle_work);
29105ccc 4263
bdcf120b
CW
4264 /* Assert that we sucessfully flushed all the work and
4265 * reset the GPU back to its idle, low power state.
4266 */
67d97da3 4267 WARN_ON(dev_priv->gt.awake);
bdcf120b 4268
673a394b 4269 return 0;
45c5f202
CW
4270
4271err:
4272 mutex_unlock(&dev->struct_mutex);
4273 return ret;
673a394b
EA
4274}
4275
5ab57c70
CW
4276void i915_gem_resume(struct drm_device *dev)
4277{
4278 struct drm_i915_private *dev_priv = to_i915(dev);
4279
4280 mutex_lock(&dev->struct_mutex);
4281 i915_gem_restore_gtt_mappings(dev);
4282
4283 /* As we didn't flush the kernel context before suspend, we cannot
4284 * guarantee that the context image is complete. So let's just reset
4285 * it and start again.
4286 */
4287 if (i915.enable_execlists)
4288 intel_lr_context_reset(dev_priv, dev_priv->kernel_context);
4289
4290 mutex_unlock(&dev->struct_mutex);
4291}
4292
f691e2f4
DV
4293void i915_gem_init_swizzling(struct drm_device *dev)
4294{
fac5e23e 4295 struct drm_i915_private *dev_priv = to_i915(dev);
f691e2f4 4296
11782b02 4297 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4298 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4299 return;
4300
4301 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4302 DISP_TILE_SURFACE_SWIZZLING);
4303
11782b02
DV
4304 if (IS_GEN5(dev))
4305 return;
4306
f691e2f4
DV
4307 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4308 if (IS_GEN6(dev))
6b26c86d 4309 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4310 else if (IS_GEN7(dev))
6b26c86d 4311 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4312 else if (IS_GEN8(dev))
4313 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4314 else
4315 BUG();
f691e2f4 4316}
e21af88d 4317
81e7f200
VS
4318static void init_unused_ring(struct drm_device *dev, u32 base)
4319{
fac5e23e 4320 struct drm_i915_private *dev_priv = to_i915(dev);
81e7f200
VS
4321
4322 I915_WRITE(RING_CTL(base), 0);
4323 I915_WRITE(RING_HEAD(base), 0);
4324 I915_WRITE(RING_TAIL(base), 0);
4325 I915_WRITE(RING_START(base), 0);
4326}
4327
4328static void init_unused_rings(struct drm_device *dev)
4329{
4330 if (IS_I830(dev)) {
4331 init_unused_ring(dev, PRB1_BASE);
4332 init_unused_ring(dev, SRB0_BASE);
4333 init_unused_ring(dev, SRB1_BASE);
4334 init_unused_ring(dev, SRB2_BASE);
4335 init_unused_ring(dev, SRB3_BASE);
4336 } else if (IS_GEN2(dev)) {
4337 init_unused_ring(dev, SRB0_BASE);
4338 init_unused_ring(dev, SRB1_BASE);
4339 } else if (IS_GEN3(dev)) {
4340 init_unused_ring(dev, PRB1_BASE);
4341 init_unused_ring(dev, PRB2_BASE);
4342 }
4343}
4344
4fc7c971
BW
4345int
4346i915_gem_init_hw(struct drm_device *dev)
4347{
fac5e23e 4348 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4349 struct intel_engine_cs *engine;
d200cda6 4350 int ret;
4fc7c971 4351
5e4f5189
CW
4352 /* Double layer security blanket, see i915_gem_init() */
4353 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4354
3accaf7e 4355 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4356 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4357
0bf21347
VS
4358 if (IS_HASWELL(dev))
4359 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4360 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4361
88a2b2a3 4362 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4363 if (IS_IVYBRIDGE(dev)) {
4364 u32 temp = I915_READ(GEN7_MSG_CTL);
4365 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4366 I915_WRITE(GEN7_MSG_CTL, temp);
4367 } else if (INTEL_INFO(dev)->gen >= 7) {
4368 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4369 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4370 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4371 }
88a2b2a3
BW
4372 }
4373
4fc7c971
BW
4374 i915_gem_init_swizzling(dev);
4375
d5abdfda
DV
4376 /*
4377 * At least 830 can leave some of the unused rings
4378 * "active" (ie. head != tail) after resume which
4379 * will prevent c3 entry. Makes sure all unused rings
4380 * are totally idle.
4381 */
4382 init_unused_rings(dev);
4383
ed54c1a1 4384 BUG_ON(!dev_priv->kernel_context);
90638cc1 4385
4ad2fd88
JH
4386 ret = i915_ppgtt_init_hw(dev);
4387 if (ret) {
4388 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4389 goto out;
4390 }
4391
4392 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4393 for_each_engine(engine, dev_priv) {
e2f80391 4394 ret = engine->init_hw(engine);
35a57ffb 4395 if (ret)
5e4f5189 4396 goto out;
35a57ffb 4397 }
99433931 4398
0ccdacf6
PA
4399 intel_mocs_init_l3cc_table(dev);
4400
33a732f4 4401 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4402 ret = intel_guc_setup(dev);
4403 if (ret)
4404 goto out;
33a732f4 4405
5e4f5189
CW
4406out:
4407 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4408 return ret;
8187a2b7
ZN
4409}
4410
39df9190
CW
4411bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4412{
4413 if (INTEL_INFO(dev_priv)->gen < 6)
4414 return false;
4415
4416 /* TODO: make semaphores and Execlists play nicely together */
4417 if (i915.enable_execlists)
4418 return false;
4419
4420 if (value >= 0)
4421 return value;
4422
4423#ifdef CONFIG_INTEL_IOMMU
4424 /* Enable semaphores on SNB when IO remapping is off */
4425 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4426 return false;
4427#endif
4428
4429 return true;
4430}
4431
1070a42b
CW
4432int i915_gem_init(struct drm_device *dev)
4433{
fac5e23e 4434 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4435 int ret;
4436
1070a42b 4437 mutex_lock(&dev->struct_mutex);
d62b4892 4438
a83014d3 4439 if (!i915.enable_execlists) {
7e37f889 4440 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4441 } else {
117897f4 4442 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4443 }
4444
5e4f5189
CW
4445 /* This is just a security blanket to placate dragons.
4446 * On some systems, we very sporadically observe that the first TLBs
4447 * used by the CS may be stale, despite us poking the TLB reset. If
4448 * we hold the forcewake during initialisation these problems
4449 * just magically go away.
4450 */
4451 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4452
72778cb2 4453 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4454
4455 ret = i915_gem_init_ggtt(dev_priv);
4456 if (ret)
4457 goto out_unlock;
d62b4892 4458
2fa48d8d 4459 ret = i915_gem_context_init(dev);
7bcc3777
JN
4460 if (ret)
4461 goto out_unlock;
2fa48d8d 4462
8b3e2d36 4463 ret = intel_engines_init(dev);
35a57ffb 4464 if (ret)
7bcc3777 4465 goto out_unlock;
2fa48d8d 4466
1070a42b 4467 ret = i915_gem_init_hw(dev);
60990320 4468 if (ret == -EIO) {
7e21d648 4469 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4470 * wedged. But we only want to do this where the GPU is angry,
4471 * for all other failure, such as an allocation failure, bail.
4472 */
4473 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4474 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4475 ret = 0;
1070a42b 4476 }
7bcc3777
JN
4477
4478out_unlock:
5e4f5189 4479 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4480 mutex_unlock(&dev->struct_mutex);
1070a42b 4481
60990320 4482 return ret;
1070a42b
CW
4483}
4484
8187a2b7 4485void
117897f4 4486i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4487{
fac5e23e 4488 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4489 struct intel_engine_cs *engine;
8187a2b7 4490
b4ac5afc 4491 for_each_engine(engine, dev_priv)
117897f4 4492 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4493}
4494
64193406 4495static void
666796da 4496init_engine_lists(struct intel_engine_cs *engine)
64193406 4497{
0bc40be8 4498 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
4499}
4500
40ae4e16
ID
4501void
4502i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4503{
91c8a326 4504 struct drm_device *dev = &dev_priv->drm;
40ae4e16
ID
4505
4506 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4507 !IS_CHERRYVIEW(dev_priv))
4508 dev_priv->num_fence_regs = 32;
4509 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4510 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4511 dev_priv->num_fence_regs = 16;
4512 else
4513 dev_priv->num_fence_regs = 8;
4514
c033666a 4515 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4516 dev_priv->num_fence_regs =
4517 I915_READ(vgtif_reg(avail_rs.fence_num));
4518
4519 /* Initialize fence registers to zero */
4520 i915_gem_restore_fences(dev);
4521
4522 i915_gem_detect_bit_6_swizzle(dev);
4523}
4524
673a394b 4525void
d64aa096 4526i915_gem_load_init(struct drm_device *dev)
673a394b 4527{
fac5e23e 4528 struct drm_i915_private *dev_priv = to_i915(dev);
42dcedd4
CW
4529 int i;
4530
efab6d8d 4531 dev_priv->objects =
42dcedd4
CW
4532 kmem_cache_create("i915_gem_object",
4533 sizeof(struct drm_i915_gem_object), 0,
4534 SLAB_HWCACHE_ALIGN,
4535 NULL);
e20d2ab7
CW
4536 dev_priv->vmas =
4537 kmem_cache_create("i915_gem_vma",
4538 sizeof(struct i915_vma), 0,
4539 SLAB_HWCACHE_ALIGN,
4540 NULL);
efab6d8d
CW
4541 dev_priv->requests =
4542 kmem_cache_create("i915_gem_request",
4543 sizeof(struct drm_i915_gem_request), 0,
0eafec6d
CW
4544 SLAB_HWCACHE_ALIGN |
4545 SLAB_RECLAIM_ACCOUNT |
4546 SLAB_DESTROY_BY_RCU,
efab6d8d 4547 NULL);
673a394b 4548
a33afea5 4549 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4550 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4551 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4552 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
4553 for (i = 0; i < I915_NUM_ENGINES; i++)
4554 init_engine_lists(&dev_priv->engine[i]);
4b9de737 4555 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
a1e5afbe 4556 INIT_LIST_HEAD(&dev_priv->fence_regs[i].link);
67d97da3 4557 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4558 i915_gem_retire_work_handler);
67d97da3 4559 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4560 i915_gem_idle_work_handler);
1f15b76f 4561 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4562 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4563
72bfa19c
CW
4564 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4565
19b2dbde 4566 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 4567
6b95a207 4568 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4569
ce453d81
CW
4570 dev_priv->mm.interruptible = true;
4571
b5add959 4572 spin_lock_init(&dev_priv->fb_tracking.lock);
673a394b 4573}
71acb5eb 4574
d64aa096
ID
4575void i915_gem_load_cleanup(struct drm_device *dev)
4576{
4577 struct drm_i915_private *dev_priv = to_i915(dev);
4578
4579 kmem_cache_destroy(dev_priv->requests);
4580 kmem_cache_destroy(dev_priv->vmas);
4581 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4582
4583 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4584 rcu_barrier();
d64aa096
ID
4585}
4586
461fb99c
CW
4587int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4588{
4589 struct drm_i915_gem_object *obj;
4590
4591 /* Called just before we write the hibernation image.
4592 *
4593 * We need to update the domain tracking to reflect that the CPU
4594 * will be accessing all the pages to create and restore from the
4595 * hibernation, and so upon restoration those pages will be in the
4596 * CPU domain.
4597 *
4598 * To make sure the hibernation image contains the latest state,
4599 * we update that state just before writing out the image.
4600 */
4601
4602 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
4603 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4604 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4605 }
4606
4607 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4608 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4609 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4610 }
4611
4612 return 0;
4613}
4614
f787a5f5 4615void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4616{
f787a5f5 4617 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4618 struct drm_i915_gem_request *request;
b962442e
EA
4619
4620 /* Clean up our request list when the client is going away, so that
4621 * later retire_requests won't dereference our soon-to-be-gone
4622 * file_priv.
4623 */
1c25595f 4624 spin_lock(&file_priv->mm.lock);
15f7bbc7 4625 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4626 request->file_priv = NULL;
1c25595f 4627 spin_unlock(&file_priv->mm.lock);
b29c19b6 4628
2e1b8730 4629 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4630 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4631 list_del(&file_priv->rps.link);
8d3afd7d 4632 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4633 }
b29c19b6
CW
4634}
4635
4636int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4637{
4638 struct drm_i915_file_private *file_priv;
e422b888 4639 int ret;
b29c19b6
CW
4640
4641 DRM_DEBUG_DRIVER("\n");
4642
4643 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4644 if (!file_priv)
4645 return -ENOMEM;
4646
4647 file->driver_priv = file_priv;
f19ec8cb 4648 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4649 file_priv->file = file;
2e1b8730 4650 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4651
4652 spin_lock_init(&file_priv->mm.lock);
4653 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4654
c80ff16e 4655 file_priv->bsd_engine = -1;
de1add36 4656
e422b888
BW
4657 ret = i915_gem_context_open(dev, file);
4658 if (ret)
4659 kfree(file_priv);
b29c19b6 4660
e422b888 4661 return ret;
b29c19b6
CW
4662}
4663
b680c37a
DV
4664/**
4665 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4666 * @old: current GEM buffer for the frontbuffer slots
4667 * @new: new GEM buffer for the frontbuffer slots
4668 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4669 *
4670 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4671 * from @old and setting them in @new. Both @old and @new can be NULL.
4672 */
a071fa00
DV
4673void i915_gem_track_fb(struct drm_i915_gem_object *old,
4674 struct drm_i915_gem_object *new,
4675 unsigned frontbuffer_bits)
4676{
faf5bf0a
CW
4677 /* Control of individual bits within the mask are guarded by
4678 * the owning plane->mutex, i.e. we can never see concurrent
4679 * manipulation of individual bits. But since the bitfield as a whole
4680 * is updated using RMW, we need to use atomics in order to update
4681 * the bits.
4682 */
4683 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4684 sizeof(atomic_t) * BITS_PER_BYTE);
4685
a071fa00 4686 if (old) {
faf5bf0a
CW
4687 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4688 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4689 }
4690
4691 if (new) {
faf5bf0a
CW
4692 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4693 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4694 }
4695}
4696
033908ae
DG
4697/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4698struct page *
4699i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4700{
4701 struct page *page;
4702
4703 /* Only default objects have per-page dirty tracking */
b9bcd14a 4704 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
033908ae
DG
4705 return NULL;
4706
4707 page = i915_gem_object_get_page(obj, n);
4708 set_page_dirty(page);
4709 return page;
4710}
4711
ea70299d
DG
4712/* Allocate a new GEM object and fill it with the supplied data */
4713struct drm_i915_gem_object *
4714i915_gem_object_create_from_data(struct drm_device *dev,
4715 const void *data, size_t size)
4716{
4717 struct drm_i915_gem_object *obj;
4718 struct sg_table *sg;
4719 size_t bytes;
4720 int ret;
4721
d37cd8a8 4722 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4723 if (IS_ERR(obj))
ea70299d
DG
4724 return obj;
4725
4726 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4727 if (ret)
4728 goto fail;
4729
4730 ret = i915_gem_object_get_pages(obj);
4731 if (ret)
4732 goto fail;
4733
4734 i915_gem_object_pin_pages(obj);
4735 sg = obj->pages;
4736 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 4737 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
4738 i915_gem_object_unpin_pages(obj);
4739
4740 if (WARN_ON(bytes != size)) {
4741 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4742 ret = -EFAULT;
4743 goto fail;
4744 }
4745
4746 return obj;
4747
4748fail:
f8c417cd 4749 i915_gem_object_put(obj);
ea70299d
DG
4750 return ERR_PTR(ret);
4751}