]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: keep intel device info structs in gen based order
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5d723d7a 35#include "intel_frontbuffer.h"
0ccdacf6 36#include "intel_mocs.h"
6b5e90f5 37#include <linux/dma-fence-array.h>
c13d87ea 38#include <linux/reservation.h>
5949eac4 39#include <linux/shmem_fs.h>
5a0e3ad6 40#include <linux/slab.h>
20e4933c 41#include <linux/stop_machine.h>
673a394b 42#include <linux/swap.h>
79e53945 43#include <linux/pci.h>
1286ff73 44#include <linux/dma-buf.h>
673a394b 45
fbbd37b3 46static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
05394f39 47static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 48static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 49
c76ce038
CW
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
0031fb96 53 return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
c76ce038
CW
54}
55
2c22569b
CW
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
b50a5371
AS
58 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
59 return false;
60
2c22569b
CW
61 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
62 return true;
63
64 return obj->pin_display;
65}
66
4f1959ee 67static int
bb6dc8d9 68insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
69 struct drm_mm_node *node, u32 size)
70{
71 memset(node, 0, sizeof(*node));
bb6dc8d9 72 return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
85fd4f58
CW
73 size, 0,
74 I915_COLOR_UNEVICTABLE,
bb6dc8d9 75 0, ggtt->mappable_end,
4f1959ee
AS
76 DRM_MM_SEARCH_DEFAULT,
77 DRM_MM_CREATE_DEFAULT);
78}
79
80static void
81remove_mappable_node(struct drm_mm_node *node)
82{
83 drm_mm_remove_node(node);
84}
85
73aa808f
CW
86/* some bookkeeping */
87static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 88 u64 size)
73aa808f 89{
c20e8355 90 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
91 dev_priv->mm.object_count++;
92 dev_priv->mm.object_memory += size;
c20e8355 93 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
94}
95
96static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 97 u64 size)
73aa808f 98{
c20e8355 99 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100 dev_priv->mm.object_count--;
101 dev_priv->mm.object_memory -= size;
c20e8355 102 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
103}
104
21dd3734 105static int
33196ded 106i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 107{
30dbf0c0
CW
108 int ret;
109
4c7d62c6
CW
110 might_sleep();
111
d98c52cf 112 if (!i915_reset_in_progress(error))
30dbf0c0
CW
113 return 0;
114
0a6759c6
DV
115 /*
116 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
117 * userspace. If it takes that long something really bad is going on and
118 * we should simply try to bail out and fail as gracefully as possible.
119 */
1f83fee0 120 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 121 !i915_reset_in_progress(error),
b52992c0 122 I915_RESET_TIMEOUT);
0a6759c6
DV
123 if (ret == 0) {
124 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
125 return -EIO;
126 } else if (ret < 0) {
30dbf0c0 127 return ret;
d98c52cf
CW
128 } else {
129 return 0;
0a6759c6 130 }
30dbf0c0
CW
131}
132
54cf91dc 133int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 134{
fac5e23e 135 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
136 int ret;
137
33196ded 138 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
139 if (ret)
140 return ret;
141
142 ret = mutex_lock_interruptible(&dev->struct_mutex);
143 if (ret)
144 return ret;
145
76c1dec1
CW
146 return 0;
147}
30dbf0c0 148
5a125c3c
EA
149int
150i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 151 struct drm_file *file)
5a125c3c 152{
72e96d64 153 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 154 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 155 struct drm_i915_gem_get_aperture *args = data;
ca1543be 156 struct i915_vma *vma;
6299f992 157 size_t pinned;
5a125c3c 158
6299f992 159 pinned = 0;
73aa808f 160 mutex_lock(&dev->struct_mutex);
1c7f4bca 161 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 162 if (i915_vma_is_pinned(vma))
ca1543be 163 pinned += vma->node.size;
1c7f4bca 164 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 165 if (i915_vma_is_pinned(vma))
ca1543be 166 pinned += vma->node.size;
73aa808f 167 mutex_unlock(&dev->struct_mutex);
5a125c3c 168
72e96d64 169 args->aper_size = ggtt->base.total;
0206e353 170 args->aper_available_size = args->aper_size - pinned;
6299f992 171
5a125c3c
EA
172 return 0;
173}
174
03ac84f1 175static struct sg_table *
6a2c4232 176i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 177{
93c76a3d 178 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232
CW
179 char *vaddr = obj->phys_handle->vaddr;
180 struct sg_table *st;
181 struct scatterlist *sg;
182 int i;
00731155 183
6a2c4232 184 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
03ac84f1 185 return ERR_PTR(-EINVAL);
6a2c4232
CW
186
187 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
188 struct page *page;
189 char *src;
190
191 page = shmem_read_mapping_page(mapping, i);
192 if (IS_ERR(page))
03ac84f1 193 return ERR_CAST(page);
6a2c4232
CW
194
195 src = kmap_atomic(page);
196 memcpy(vaddr, src, PAGE_SIZE);
197 drm_clflush_virt_range(vaddr, PAGE_SIZE);
198 kunmap_atomic(src);
199
09cbfeaf 200 put_page(page);
6a2c4232
CW
201 vaddr += PAGE_SIZE;
202 }
203
c033666a 204 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
205
206 st = kmalloc(sizeof(*st), GFP_KERNEL);
207 if (st == NULL)
03ac84f1 208 return ERR_PTR(-ENOMEM);
6a2c4232
CW
209
210 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
211 kfree(st);
03ac84f1 212 return ERR_PTR(-ENOMEM);
6a2c4232
CW
213 }
214
215 sg = st->sgl;
216 sg->offset = 0;
217 sg->length = obj->base.size;
00731155 218
6a2c4232
CW
219 sg_dma_address(sg) = obj->phys_handle->busaddr;
220 sg_dma_len(sg) = obj->base.size;
221
03ac84f1 222 return st;
6a2c4232
CW
223}
224
225static void
2b3c8317
CW
226__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
227 struct sg_table *pages)
6a2c4232 228{
a4f5ea64 229 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 230
a4f5ea64
CW
231 if (obj->mm.madv == I915_MADV_DONTNEED)
232 obj->mm.dirty = false;
6a2c4232 233
05c34837
CW
234 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
235 !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
2b3c8317 236 drm_clflush_sg(pages);
03ac84f1
CW
237
238 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240}
241
242static void
243i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
244 struct sg_table *pages)
245{
2b3c8317 246 __i915_gem_object_release_shmem(obj, pages);
03ac84f1 247
a4f5ea64 248 if (obj->mm.dirty) {
93c76a3d 249 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 250 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
251 int i;
252
253 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
254 struct page *page;
255 char *dst;
256
257 page = shmem_read_mapping_page(mapping, i);
258 if (IS_ERR(page))
259 continue;
260
261 dst = kmap_atomic(page);
262 drm_clflush_virt_range(vaddr, PAGE_SIZE);
263 memcpy(dst, vaddr, PAGE_SIZE);
264 kunmap_atomic(dst);
265
266 set_page_dirty(page);
a4f5ea64 267 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 268 mark_page_accessed(page);
09cbfeaf 269 put_page(page);
00731155
CW
270 vaddr += PAGE_SIZE;
271 }
a4f5ea64 272 obj->mm.dirty = false;
00731155
CW
273 }
274
03ac84f1
CW
275 sg_free_table(pages);
276 kfree(pages);
6a2c4232
CW
277}
278
279static void
280i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
281{
282 drm_pci_free(obj->base.dev, obj->phys_handle);
a4f5ea64 283 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
284}
285
286static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
287 .get_pages = i915_gem_object_get_pages_phys,
288 .put_pages = i915_gem_object_put_pages_phys,
289 .release = i915_gem_object_release_phys,
290};
291
35a9611c 292int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
293{
294 struct i915_vma *vma;
295 LIST_HEAD(still_in_list);
02bef8f9
CW
296 int ret;
297
298 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 299
02bef8f9
CW
300 /* Closed vma are removed from the obj->vma_list - but they may
301 * still have an active binding on the object. To remove those we
302 * must wait for all rendering to complete to the object (as unbinding
303 * must anyway), and retire the requests.
aa653a68 304 */
e95433c7
CW
305 ret = i915_gem_object_wait(obj,
306 I915_WAIT_INTERRUPTIBLE |
307 I915_WAIT_LOCKED |
308 I915_WAIT_ALL,
309 MAX_SCHEDULE_TIMEOUT,
310 NULL);
02bef8f9
CW
311 if (ret)
312 return ret;
313
314 i915_gem_retire_requests(to_i915(obj->base.dev));
315
aa653a68
CW
316 while ((vma = list_first_entry_or_null(&obj->vma_list,
317 struct i915_vma,
318 obj_link))) {
319 list_move_tail(&vma->obj_link, &still_in_list);
320 ret = i915_vma_unbind(vma);
321 if (ret)
322 break;
323 }
324 list_splice(&still_in_list, &obj->vma_list);
325
326 return ret;
327}
328
e95433c7
CW
329static long
330i915_gem_object_wait_fence(struct dma_fence *fence,
331 unsigned int flags,
332 long timeout,
333 struct intel_rps_client *rps)
00e60f26 334{
e95433c7 335 struct drm_i915_gem_request *rq;
00e60f26 336
e95433c7 337 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 338
e95433c7
CW
339 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
340 return timeout;
341
342 if (!dma_fence_is_i915(fence))
343 return dma_fence_wait_timeout(fence,
344 flags & I915_WAIT_INTERRUPTIBLE,
345 timeout);
346
347 rq = to_request(fence);
348 if (i915_gem_request_completed(rq))
349 goto out;
350
351 /* This client is about to stall waiting for the GPU. In many cases
352 * this is undesirable and limits the throughput of the system, as
353 * many clients cannot continue processing user input/output whilst
354 * blocked. RPS autotuning may take tens of milliseconds to respond
355 * to the GPU load and thus incurs additional latency for the client.
356 * We can circumvent that by promoting the GPU frequency to maximum
357 * before we wait. This makes the GPU throttle up much more quickly
358 * (good for benchmarks and user experience, e.g. window animations),
359 * but at a cost of spending more power processing the workload
360 * (bad for battery). Not all clients even want their results
361 * immediately and for them we should just let the GPU select its own
362 * frequency to maximise efficiency. To prevent a single client from
363 * forcing the clocks too high for the whole system, we only allow
364 * each client to waitboost once in a busy period.
365 */
366 if (rps) {
367 if (INTEL_GEN(rq->i915) >= 6)
368 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
369 else
370 rps = NULL;
00e60f26
CW
371 }
372
e95433c7
CW
373 timeout = i915_wait_request(rq, flags, timeout);
374
375out:
376 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
377 i915_gem_request_retire_upto(rq);
378
cb399eab 379 if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
e95433c7
CW
380 /* The GPU is now idle and this client has stalled.
381 * Since no other client has submitted a request in the
382 * meantime, assume that this client is the only one
383 * supplying work to the GPU but is unable to keep that
384 * work supplied because it is waiting. Since the GPU is
385 * then never kept fully busy, RPS autoclocking will
386 * keep the clocks relatively low, causing further delays.
387 * Compensate by giving the synchronous client credit for
388 * a waitboost next time.
389 */
390 spin_lock(&rq->i915->rps.client_lock);
391 list_del_init(&rps->link);
392 spin_unlock(&rq->i915->rps.client_lock);
393 }
394
395 return timeout;
396}
397
398static long
399i915_gem_object_wait_reservation(struct reservation_object *resv,
400 unsigned int flags,
401 long timeout,
402 struct intel_rps_client *rps)
403{
404 struct dma_fence *excl;
405
406 if (flags & I915_WAIT_ALL) {
407 struct dma_fence **shared;
408 unsigned int count, i;
00e60f26
CW
409 int ret;
410
e95433c7
CW
411 ret = reservation_object_get_fences_rcu(resv,
412 &excl, &count, &shared);
00e60f26
CW
413 if (ret)
414 return ret;
00e60f26 415
e95433c7
CW
416 for (i = 0; i < count; i++) {
417 timeout = i915_gem_object_wait_fence(shared[i],
418 flags, timeout,
419 rps);
420 if (timeout <= 0)
421 break;
00e60f26 422
e95433c7
CW
423 dma_fence_put(shared[i]);
424 }
425
426 for (; i < count; i++)
427 dma_fence_put(shared[i]);
428 kfree(shared);
429 } else {
430 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
431 }
432
e95433c7
CW
433 if (excl && timeout > 0)
434 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
435
436 dma_fence_put(excl);
437
438 return timeout;
00e60f26
CW
439}
440
6b5e90f5
CW
441static void __fence_set_priority(struct dma_fence *fence, int prio)
442{
443 struct drm_i915_gem_request *rq;
444 struct intel_engine_cs *engine;
445
446 if (!dma_fence_is_i915(fence))
447 return;
448
449 rq = to_request(fence);
450 engine = rq->engine;
451 if (!engine->schedule)
452 return;
453
454 engine->schedule(rq, prio);
455}
456
457static void fence_set_priority(struct dma_fence *fence, int prio)
458{
459 /* Recurse once into a fence-array */
460 if (dma_fence_is_array(fence)) {
461 struct dma_fence_array *array = to_dma_fence_array(fence);
462 int i;
463
464 for (i = 0; i < array->num_fences; i++)
465 __fence_set_priority(array->fences[i], prio);
466 } else {
467 __fence_set_priority(fence, prio);
468 }
469}
470
471int
472i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
473 unsigned int flags,
474 int prio)
475{
476 struct dma_fence *excl;
477
478 if (flags & I915_WAIT_ALL) {
479 struct dma_fence **shared;
480 unsigned int count, i;
481 int ret;
482
483 ret = reservation_object_get_fences_rcu(obj->resv,
484 &excl, &count, &shared);
485 if (ret)
486 return ret;
487
488 for (i = 0; i < count; i++) {
489 fence_set_priority(shared[i], prio);
490 dma_fence_put(shared[i]);
491 }
492
493 kfree(shared);
494 } else {
495 excl = reservation_object_get_excl_rcu(obj->resv);
496 }
497
498 if (excl) {
499 fence_set_priority(excl, prio);
500 dma_fence_put(excl);
501 }
502 return 0;
503}
504
e95433c7
CW
505/**
506 * Waits for rendering to the object to be completed
507 * @obj: i915 gem object
508 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
509 * @timeout: how long to wait
510 * @rps: client (user process) to charge for any waitboosting
00e60f26 511 */
e95433c7
CW
512int
513i915_gem_object_wait(struct drm_i915_gem_object *obj,
514 unsigned int flags,
515 long timeout,
516 struct intel_rps_client *rps)
00e60f26 517{
e95433c7
CW
518 might_sleep();
519#if IS_ENABLED(CONFIG_LOCKDEP)
520 GEM_BUG_ON(debug_locks &&
521 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
522 !!(flags & I915_WAIT_LOCKED));
523#endif
524 GEM_BUG_ON(timeout < 0);
00e60f26 525
d07f0e59
CW
526 timeout = i915_gem_object_wait_reservation(obj->resv,
527 flags, timeout,
528 rps);
e95433c7 529 return timeout < 0 ? timeout : 0;
00e60f26
CW
530}
531
532static struct intel_rps_client *to_rps_client(struct drm_file *file)
533{
534 struct drm_i915_file_private *fpriv = file->driver_priv;
535
536 return &fpriv->rps;
537}
538
00731155
CW
539int
540i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
541 int align)
542{
543 drm_dma_handle_t *phys;
6a2c4232 544 int ret;
00731155
CW
545
546 if (obj->phys_handle) {
547 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
548 return -EBUSY;
549
550 return 0;
551 }
552
a4f5ea64 553 if (obj->mm.madv != I915_MADV_WILLNEED)
00731155
CW
554 return -EFAULT;
555
556 if (obj->base.filp == NULL)
557 return -EINVAL;
558
4717ca9e
CW
559 ret = i915_gem_object_unbind(obj);
560 if (ret)
561 return ret;
562
548625ee 563 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
03ac84f1
CW
564 if (obj->mm.pages)
565 return -EBUSY;
6a2c4232 566
00731155
CW
567 /* create a new object */
568 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
569 if (!phys)
570 return -ENOMEM;
571
00731155 572 obj->phys_handle = phys;
6a2c4232
CW
573 obj->ops = &i915_gem_phys_ops;
574
a4f5ea64 575 return i915_gem_object_pin_pages(obj);
00731155
CW
576}
577
578static int
579i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
580 struct drm_i915_gem_pwrite *args,
03ac84f1 581 struct drm_file *file)
00731155
CW
582{
583 struct drm_device *dev = obj->base.dev;
584 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 585 char __user *user_data = u64_to_user_ptr(args->data_ptr);
e95433c7 586 int ret;
6a2c4232
CW
587
588 /* We manually control the domain here and pretend that it
589 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
590 */
e95433c7
CW
591 lockdep_assert_held(&obj->base.dev->struct_mutex);
592 ret = i915_gem_object_wait(obj,
593 I915_WAIT_INTERRUPTIBLE |
594 I915_WAIT_LOCKED |
595 I915_WAIT_ALL,
596 MAX_SCHEDULE_TIMEOUT,
03ac84f1 597 to_rps_client(file));
6a2c4232
CW
598 if (ret)
599 return ret;
00731155 600
77a0d1ca 601 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
602 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
603 unsigned long unwritten;
604
605 /* The physical object once assigned is fixed for the lifetime
606 * of the obj, so we can safely drop the lock and continue
607 * to access vaddr.
608 */
609 mutex_unlock(&dev->struct_mutex);
610 unwritten = copy_from_user(vaddr, user_data, args->size);
611 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
612 if (unwritten) {
613 ret = -EFAULT;
614 goto out;
615 }
00731155
CW
616 }
617
6a2c4232 618 drm_clflush_virt_range(vaddr, args->size);
c033666a 619 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
620
621out:
de152b62 622 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 623 return ret;
00731155
CW
624}
625
187685cb 626void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
42dcedd4 627{
efab6d8d 628 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
629}
630
631void i915_gem_object_free(struct drm_i915_gem_object *obj)
632{
fac5e23e 633 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 634 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
635}
636
ff72145b
DA
637static int
638i915_gem_create(struct drm_file *file,
12d79d78 639 struct drm_i915_private *dev_priv,
ff72145b
DA
640 uint64_t size,
641 uint32_t *handle_p)
673a394b 642{
05394f39 643 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
644 int ret;
645 u32 handle;
673a394b 646
ff72145b 647 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
648 if (size == 0)
649 return -EINVAL;
673a394b
EA
650
651 /* Allocate the new object */
12d79d78 652 obj = i915_gem_object_create(dev_priv, size);
fe3db79b
CW
653 if (IS_ERR(obj))
654 return PTR_ERR(obj);
673a394b 655
05394f39 656 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 657 /* drop reference from allocate - handle holds it now */
f0cd5182 658 i915_gem_object_put(obj);
d861e338
DV
659 if (ret)
660 return ret;
202f2fef 661
ff72145b 662 *handle_p = handle;
673a394b
EA
663 return 0;
664}
665
ff72145b
DA
666int
667i915_gem_dumb_create(struct drm_file *file,
668 struct drm_device *dev,
669 struct drm_mode_create_dumb *args)
670{
671 /* have to work out size/pitch and return them */
de45eaf7 672 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b 673 args->size = args->pitch * args->height;
12d79d78 674 return i915_gem_create(file, to_i915(dev),
da6b51d0 675 args->size, &args->handle);
ff72145b
DA
676}
677
ff72145b
DA
678/**
679 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
680 * @dev: drm device pointer
681 * @data: ioctl data blob
682 * @file: drm file pointer
ff72145b
DA
683 */
684int
685i915_gem_create_ioctl(struct drm_device *dev, void *data,
686 struct drm_file *file)
687{
12d79d78 688 struct drm_i915_private *dev_priv = to_i915(dev);
ff72145b 689 struct drm_i915_gem_create *args = data;
63ed2cb2 690
12d79d78 691 i915_gem_flush_free_objects(dev_priv);
fbbd37b3 692
12d79d78 693 return i915_gem_create(file, dev_priv,
da6b51d0 694 args->size, &args->handle);
ff72145b
DA
695}
696
8461d226
DV
697static inline int
698__copy_to_user_swizzled(char __user *cpu_vaddr,
699 const char *gpu_vaddr, int gpu_offset,
700 int length)
701{
702 int ret, cpu_offset = 0;
703
704 while (length > 0) {
705 int cacheline_end = ALIGN(gpu_offset + 1, 64);
706 int this_length = min(cacheline_end - gpu_offset, length);
707 int swizzled_gpu_offset = gpu_offset ^ 64;
708
709 ret = __copy_to_user(cpu_vaddr + cpu_offset,
710 gpu_vaddr + swizzled_gpu_offset,
711 this_length);
712 if (ret)
713 return ret + length;
714
715 cpu_offset += this_length;
716 gpu_offset += this_length;
717 length -= this_length;
718 }
719
720 return 0;
721}
722
8c59967c 723static inline int
4f0c7cfb
BW
724__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
725 const char __user *cpu_vaddr,
8c59967c
DV
726 int length)
727{
728 int ret, cpu_offset = 0;
729
730 while (length > 0) {
731 int cacheline_end = ALIGN(gpu_offset + 1, 64);
732 int this_length = min(cacheline_end - gpu_offset, length);
733 int swizzled_gpu_offset = gpu_offset ^ 64;
734
735 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
736 cpu_vaddr + cpu_offset,
737 this_length);
738 if (ret)
739 return ret + length;
740
741 cpu_offset += this_length;
742 gpu_offset += this_length;
743 length -= this_length;
744 }
745
746 return 0;
747}
748
4c914c0c
BV
749/*
750 * Pins the specified object's pages and synchronizes the object with
751 * GPU accesses. Sets needs_clflush to non-zero if the caller should
752 * flush the object from the CPU cache.
753 */
754int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 755 unsigned int *needs_clflush)
4c914c0c
BV
756{
757 int ret;
758
e95433c7 759 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 760
e95433c7 761 *needs_clflush = 0;
43394c7d
CW
762 if (!i915_gem_object_has_struct_page(obj))
763 return -ENODEV;
4c914c0c 764
e95433c7
CW
765 ret = i915_gem_object_wait(obj,
766 I915_WAIT_INTERRUPTIBLE |
767 I915_WAIT_LOCKED,
768 MAX_SCHEDULE_TIMEOUT,
769 NULL);
c13d87ea
CW
770 if (ret)
771 return ret;
772
a4f5ea64 773 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
774 if (ret)
775 return ret;
776
a314d5cb
CW
777 i915_gem_object_flush_gtt_write_domain(obj);
778
43394c7d
CW
779 /* If we're not in the cpu read domain, set ourself into the gtt
780 * read domain and manually flush cachelines (if required). This
781 * optimizes for the case when the gpu will dirty the data
782 * anyway again before the next pread happens.
783 */
784 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
4c914c0c
BV
785 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
786 obj->cache_level);
43394c7d 787
43394c7d
CW
788 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
789 ret = i915_gem_object_set_to_cpu_domain(obj, false);
9764951e
CW
790 if (ret)
791 goto err_unpin;
792
43394c7d 793 *needs_clflush = 0;
4c914c0c
BV
794 }
795
9764951e 796 /* return with the pages pinned */
43394c7d 797 return 0;
9764951e
CW
798
799err_unpin:
800 i915_gem_object_unpin_pages(obj);
801 return ret;
43394c7d
CW
802}
803
804int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
805 unsigned int *needs_clflush)
806{
807 int ret;
808
e95433c7
CW
809 lockdep_assert_held(&obj->base.dev->struct_mutex);
810
43394c7d
CW
811 *needs_clflush = 0;
812 if (!i915_gem_object_has_struct_page(obj))
813 return -ENODEV;
814
e95433c7
CW
815 ret = i915_gem_object_wait(obj,
816 I915_WAIT_INTERRUPTIBLE |
817 I915_WAIT_LOCKED |
818 I915_WAIT_ALL,
819 MAX_SCHEDULE_TIMEOUT,
820 NULL);
43394c7d
CW
821 if (ret)
822 return ret;
823
a4f5ea64 824 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
825 if (ret)
826 return ret;
827
a314d5cb
CW
828 i915_gem_object_flush_gtt_write_domain(obj);
829
43394c7d
CW
830 /* If we're not in the cpu write domain, set ourself into the
831 * gtt write domain and manually flush cachelines (as required).
832 * This optimizes for the case when the gpu will use the data
833 * right away and we therefore have to clflush anyway.
834 */
835 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
836 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
837
838 /* Same trick applies to invalidate partially written cachelines read
839 * before writing.
840 */
841 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
842 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
843 obj->cache_level);
844
43394c7d
CW
845 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
846 ret = i915_gem_object_set_to_cpu_domain(obj, true);
9764951e
CW
847 if (ret)
848 goto err_unpin;
849
43394c7d
CW
850 *needs_clflush = 0;
851 }
852
853 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
854 obj->cache_dirty = true;
855
856 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 857 obj->mm.dirty = true;
9764951e 858 /* return with the pages pinned */
43394c7d 859 return 0;
9764951e
CW
860
861err_unpin:
862 i915_gem_object_unpin_pages(obj);
863 return ret;
4c914c0c
BV
864}
865
23c18c71
DV
866static void
867shmem_clflush_swizzled_range(char *addr, unsigned long length,
868 bool swizzled)
869{
e7e58eb5 870 if (unlikely(swizzled)) {
23c18c71
DV
871 unsigned long start = (unsigned long) addr;
872 unsigned long end = (unsigned long) addr + length;
873
874 /* For swizzling simply ensure that we always flush both
875 * channels. Lame, but simple and it works. Swizzled
876 * pwrite/pread is far from a hotpath - current userspace
877 * doesn't use it at all. */
878 start = round_down(start, 128);
879 end = round_up(end, 128);
880
881 drm_clflush_virt_range((void *)start, end - start);
882 } else {
883 drm_clflush_virt_range(addr, length);
884 }
885
886}
887
d174bd64
DV
888/* Only difference to the fast-path function is that this can handle bit17
889 * and uses non-atomic copy and kmap functions. */
890static int
bb6dc8d9 891shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
892 char __user *user_data,
893 bool page_do_bit17_swizzling, bool needs_clflush)
894{
895 char *vaddr;
896 int ret;
897
898 vaddr = kmap(page);
899 if (needs_clflush)
bb6dc8d9 900 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 901 page_do_bit17_swizzling);
d174bd64
DV
902
903 if (page_do_bit17_swizzling)
bb6dc8d9 904 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 905 else
bb6dc8d9 906 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
907 kunmap(page);
908
f60d7f0c 909 return ret ? - EFAULT : 0;
d174bd64
DV
910}
911
bb6dc8d9
CW
912static int
913shmem_pread(struct page *page, int offset, int length, char __user *user_data,
914 bool page_do_bit17_swizzling, bool needs_clflush)
915{
916 int ret;
917
918 ret = -ENODEV;
919 if (!page_do_bit17_swizzling) {
920 char *vaddr = kmap_atomic(page);
921
922 if (needs_clflush)
923 drm_clflush_virt_range(vaddr + offset, length);
924 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
925 kunmap_atomic(vaddr);
926 }
927 if (ret == 0)
928 return 0;
929
930 return shmem_pread_slow(page, offset, length, user_data,
931 page_do_bit17_swizzling, needs_clflush);
932}
933
934static int
935i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
936 struct drm_i915_gem_pread *args)
937{
938 char __user *user_data;
939 u64 remain;
940 unsigned int obj_do_bit17_swizzling;
941 unsigned int needs_clflush;
942 unsigned int idx, offset;
943 int ret;
944
945 obj_do_bit17_swizzling = 0;
946 if (i915_gem_object_needs_bit17_swizzle(obj))
947 obj_do_bit17_swizzling = BIT(17);
948
949 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
950 if (ret)
951 return ret;
952
953 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
954 mutex_unlock(&obj->base.dev->struct_mutex);
955 if (ret)
956 return ret;
957
958 remain = args->size;
959 user_data = u64_to_user_ptr(args->data_ptr);
960 offset = offset_in_page(args->offset);
961 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
962 struct page *page = i915_gem_object_get_page(obj, idx);
963 int length;
964
965 length = remain;
966 if (offset + length > PAGE_SIZE)
967 length = PAGE_SIZE - offset;
968
969 ret = shmem_pread(page, offset, length, user_data,
970 page_to_phys(page) & obj_do_bit17_swizzling,
971 needs_clflush);
972 if (ret)
973 break;
974
975 remain -= length;
976 user_data += length;
977 offset = 0;
978 }
979
980 i915_gem_obj_finish_shmem_access(obj);
981 return ret;
982}
983
984static inline bool
985gtt_user_read(struct io_mapping *mapping,
986 loff_t base, int offset,
987 char __user *user_data, int length)
b50a5371 988{
b50a5371 989 void *vaddr;
bb6dc8d9 990 unsigned long unwritten;
b50a5371 991
b50a5371 992 /* We can use the cpu mem copy function because this is X86. */
bb6dc8d9
CW
993 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
994 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
995 io_mapping_unmap_atomic(vaddr);
996 if (unwritten) {
997 vaddr = (void __force *)
998 io_mapping_map_wc(mapping, base, PAGE_SIZE);
999 unwritten = copy_to_user(user_data, vaddr + offset, length);
1000 io_mapping_unmap(vaddr);
1001 }
b50a5371
AS
1002 return unwritten;
1003}
1004
1005static int
bb6dc8d9
CW
1006i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1007 const struct drm_i915_gem_pread *args)
b50a5371 1008{
bb6dc8d9
CW
1009 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1010 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1011 struct drm_mm_node node;
bb6dc8d9
CW
1012 struct i915_vma *vma;
1013 void __user *user_data;
1014 u64 remain, offset;
b50a5371
AS
1015 int ret;
1016
bb6dc8d9
CW
1017 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1018 if (ret)
1019 return ret;
1020
1021 intel_runtime_pm_get(i915);
1022 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1023 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1024 if (!IS_ERR(vma)) {
1025 node.start = i915_ggtt_offset(vma);
1026 node.allocated = false;
49ef5294 1027 ret = i915_vma_put_fence(vma);
18034584
CW
1028 if (ret) {
1029 i915_vma_unpin(vma);
1030 vma = ERR_PTR(ret);
1031 }
1032 }
058d88c4 1033 if (IS_ERR(vma)) {
bb6dc8d9 1034 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1035 if (ret)
bb6dc8d9
CW
1036 goto out_unlock;
1037 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1038 }
1039
1040 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1041 if (ret)
1042 goto out_unpin;
1043
bb6dc8d9 1044 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1045
bb6dc8d9
CW
1046 user_data = u64_to_user_ptr(args->data_ptr);
1047 remain = args->size;
1048 offset = args->offset;
b50a5371
AS
1049
1050 while (remain > 0) {
1051 /* Operation in this page
1052 *
1053 * page_base = page offset within aperture
1054 * page_offset = offset within page
1055 * page_length = bytes to copy for this page
1056 */
1057 u32 page_base = node.start;
1058 unsigned page_offset = offset_in_page(offset);
1059 unsigned page_length = PAGE_SIZE - page_offset;
1060 page_length = remain < page_length ? remain : page_length;
1061 if (node.allocated) {
1062 wmb();
1063 ggtt->base.insert_page(&ggtt->base,
1064 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 1065 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1066 wmb();
1067 } else {
1068 page_base += offset & PAGE_MASK;
1069 }
bb6dc8d9
CW
1070
1071 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1072 user_data, page_length)) {
b50a5371
AS
1073 ret = -EFAULT;
1074 break;
1075 }
1076
1077 remain -= page_length;
1078 user_data += page_length;
1079 offset += page_length;
1080 }
1081
bb6dc8d9 1082 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1083out_unpin:
1084 if (node.allocated) {
1085 wmb();
1086 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1087 node.start, node.size);
b50a5371
AS
1088 remove_mappable_node(&node);
1089 } else {
058d88c4 1090 i915_vma_unpin(vma);
b50a5371 1091 }
bb6dc8d9
CW
1092out_unlock:
1093 intel_runtime_pm_put(i915);
1094 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1095
eb01459f
EA
1096 return ret;
1097}
1098
673a394b
EA
1099/**
1100 * Reads data from the object referenced by handle.
14bb2c11
TU
1101 * @dev: drm device pointer
1102 * @data: ioctl data blob
1103 * @file: drm file pointer
673a394b
EA
1104 *
1105 * On error, the contents of *data are undefined.
1106 */
1107int
1108i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1109 struct drm_file *file)
673a394b
EA
1110{
1111 struct drm_i915_gem_pread *args = data;
05394f39 1112 struct drm_i915_gem_object *obj;
bb6dc8d9 1113 int ret;
673a394b 1114
51311d0a
CW
1115 if (args->size == 0)
1116 return 0;
1117
1118 if (!access_ok(VERIFY_WRITE,
3ed605bc 1119 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1120 args->size))
1121 return -EFAULT;
1122
03ac0642 1123 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1124 if (!obj)
1125 return -ENOENT;
673a394b 1126
7dcd2499 1127 /* Bounds check source. */
05394f39
CW
1128 if (args->offset > obj->base.size ||
1129 args->size > obj->base.size - args->offset) {
ce9d419d 1130 ret = -EINVAL;
bb6dc8d9 1131 goto out;
ce9d419d
CW
1132 }
1133
db53a302
CW
1134 trace_i915_gem_object_pread(obj, args->offset, args->size);
1135
e95433c7
CW
1136 ret = i915_gem_object_wait(obj,
1137 I915_WAIT_INTERRUPTIBLE,
1138 MAX_SCHEDULE_TIMEOUT,
1139 to_rps_client(file));
258a5ede 1140 if (ret)
bb6dc8d9 1141 goto out;
258a5ede 1142
bb6dc8d9 1143 ret = i915_gem_object_pin_pages(obj);
258a5ede 1144 if (ret)
bb6dc8d9 1145 goto out;
673a394b 1146
bb6dc8d9 1147 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1148 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1149 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1150
bb6dc8d9
CW
1151 i915_gem_object_unpin_pages(obj);
1152out:
f0cd5182 1153 i915_gem_object_put(obj);
eb01459f 1154 return ret;
673a394b
EA
1155}
1156
0839ccb8
KP
1157/* This is the fast write path which cannot handle
1158 * page faults in the source data
9b7530cc 1159 */
0839ccb8 1160
fe115628
CW
1161static inline bool
1162ggtt_write(struct io_mapping *mapping,
1163 loff_t base, int offset,
1164 char __user *user_data, int length)
9b7530cc 1165{
4f0c7cfb 1166 void *vaddr;
0839ccb8 1167 unsigned long unwritten;
9b7530cc 1168
4f0c7cfb 1169 /* We can use the cpu mem copy function because this is X86. */
fe115628
CW
1170 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1171 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
0839ccb8 1172 user_data, length);
fe115628
CW
1173 io_mapping_unmap_atomic(vaddr);
1174 if (unwritten) {
1175 vaddr = (void __force *)
1176 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1177 unwritten = copy_from_user(vaddr + offset, user_data, length);
1178 io_mapping_unmap(vaddr);
1179 }
bb6dc8d9 1180
bb6dc8d9
CW
1181 return unwritten;
1182}
1183
3de09aa3
EA
1184/**
1185 * This is the fast pwrite path, where we copy the data directly from the
1186 * user into the GTT, uncached.
fe115628 1187 * @obj: i915 GEM object
14bb2c11 1188 * @args: pwrite arguments structure
3de09aa3 1189 */
673a394b 1190static int
fe115628
CW
1191i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1192 const struct drm_i915_gem_pwrite *args)
673a394b 1193{
fe115628 1194 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1195 struct i915_ggtt *ggtt = &i915->ggtt;
1196 struct drm_mm_node node;
fe115628
CW
1197 struct i915_vma *vma;
1198 u64 remain, offset;
1199 void __user *user_data;
4f1959ee 1200 int ret;
b50a5371 1201
fe115628
CW
1202 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1203 if (ret)
1204 return ret;
935aaa69 1205
9c870d03 1206 intel_runtime_pm_get(i915);
058d88c4 1207 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1208 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1209 if (!IS_ERR(vma)) {
1210 node.start = i915_ggtt_offset(vma);
1211 node.allocated = false;
49ef5294 1212 ret = i915_vma_put_fence(vma);
18034584
CW
1213 if (ret) {
1214 i915_vma_unpin(vma);
1215 vma = ERR_PTR(ret);
1216 }
1217 }
058d88c4 1218 if (IS_ERR(vma)) {
bb6dc8d9 1219 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1220 if (ret)
fe115628
CW
1221 goto out_unlock;
1222 GEM_BUG_ON(!node.allocated);
4f1959ee 1223 }
935aaa69
DV
1224
1225 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1226 if (ret)
1227 goto out_unpin;
1228
fe115628
CW
1229 mutex_unlock(&i915->drm.struct_mutex);
1230
b19482d7 1231 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1232
4f1959ee
AS
1233 user_data = u64_to_user_ptr(args->data_ptr);
1234 offset = args->offset;
1235 remain = args->size;
1236 while (remain) {
673a394b
EA
1237 /* Operation in this page
1238 *
0839ccb8
KP
1239 * page_base = page offset within aperture
1240 * page_offset = offset within page
1241 * page_length = bytes to copy for this page
673a394b 1242 */
4f1959ee 1243 u32 page_base = node.start;
bb6dc8d9
CW
1244 unsigned int page_offset = offset_in_page(offset);
1245 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1246 page_length = remain < page_length ? remain : page_length;
1247 if (node.allocated) {
1248 wmb(); /* flush the write before we modify the GGTT */
1249 ggtt->base.insert_page(&ggtt->base,
1250 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1251 node.start, I915_CACHE_NONE, 0);
1252 wmb(); /* flush modifications to the GGTT (insert_page) */
1253 } else {
1254 page_base += offset & PAGE_MASK;
1255 }
0839ccb8 1256 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1257 * source page isn't available. Return the error and we'll
1258 * retry in the slow path.
b50a5371
AS
1259 * If the object is non-shmem backed, we retry again with the
1260 * path that handles page fault.
0839ccb8 1261 */
fe115628
CW
1262 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1263 user_data, page_length)) {
1264 ret = -EFAULT;
1265 break;
935aaa69 1266 }
673a394b 1267
0839ccb8
KP
1268 remain -= page_length;
1269 user_data += page_length;
1270 offset += page_length;
673a394b 1271 }
b19482d7 1272 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628
CW
1273
1274 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1275out_unpin:
4f1959ee
AS
1276 if (node.allocated) {
1277 wmb();
1278 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1279 node.start, node.size);
4f1959ee
AS
1280 remove_mappable_node(&node);
1281 } else {
058d88c4 1282 i915_vma_unpin(vma);
4f1959ee 1283 }
fe115628 1284out_unlock:
9c870d03 1285 intel_runtime_pm_put(i915);
fe115628 1286 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1287 return ret;
673a394b
EA
1288}
1289
3043c60c 1290static int
fe115628 1291shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1292 char __user *user_data,
1293 bool page_do_bit17_swizzling,
1294 bool needs_clflush_before,
1295 bool needs_clflush_after)
673a394b 1296{
d174bd64
DV
1297 char *vaddr;
1298 int ret;
e5281ccd 1299
d174bd64 1300 vaddr = kmap(page);
e7e58eb5 1301 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1302 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1303 page_do_bit17_swizzling);
d174bd64 1304 if (page_do_bit17_swizzling)
fe115628
CW
1305 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1306 length);
d174bd64 1307 else
fe115628 1308 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1309 if (needs_clflush_after)
fe115628 1310 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1311 page_do_bit17_swizzling);
d174bd64 1312 kunmap(page);
40123c1f 1313
755d2218 1314 return ret ? -EFAULT : 0;
40123c1f
EA
1315}
1316
fe115628
CW
1317/* Per-page copy function for the shmem pwrite fastpath.
1318 * Flushes invalid cachelines before writing to the target if
1319 * needs_clflush_before is set and flushes out any written cachelines after
1320 * writing if needs_clflush is set.
1321 */
40123c1f 1322static int
fe115628
CW
1323shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1324 bool page_do_bit17_swizzling,
1325 bool needs_clflush_before,
1326 bool needs_clflush_after)
40123c1f 1327{
fe115628
CW
1328 int ret;
1329
1330 ret = -ENODEV;
1331 if (!page_do_bit17_swizzling) {
1332 char *vaddr = kmap_atomic(page);
1333
1334 if (needs_clflush_before)
1335 drm_clflush_virt_range(vaddr + offset, len);
1336 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1337 if (needs_clflush_after)
1338 drm_clflush_virt_range(vaddr + offset, len);
1339
1340 kunmap_atomic(vaddr);
1341 }
1342 if (ret == 0)
1343 return ret;
1344
1345 return shmem_pwrite_slow(page, offset, len, user_data,
1346 page_do_bit17_swizzling,
1347 needs_clflush_before,
1348 needs_clflush_after);
1349}
1350
1351static int
1352i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1353 const struct drm_i915_gem_pwrite *args)
1354{
1355 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1356 void __user *user_data;
1357 u64 remain;
1358 unsigned int obj_do_bit17_swizzling;
1359 unsigned int partial_cacheline_write;
43394c7d 1360 unsigned int needs_clflush;
fe115628
CW
1361 unsigned int offset, idx;
1362 int ret;
40123c1f 1363
fe115628 1364 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1365 if (ret)
1366 return ret;
1367
fe115628
CW
1368 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1369 mutex_unlock(&i915->drm.struct_mutex);
1370 if (ret)
1371 return ret;
673a394b 1372
fe115628
CW
1373 obj_do_bit17_swizzling = 0;
1374 if (i915_gem_object_needs_bit17_swizzle(obj))
1375 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1376
fe115628
CW
1377 /* If we don't overwrite a cacheline completely we need to be
1378 * careful to have up-to-date data by first clflushing. Don't
1379 * overcomplicate things and flush the entire patch.
1380 */
1381 partial_cacheline_write = 0;
1382 if (needs_clflush & CLFLUSH_BEFORE)
1383 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1384
fe115628
CW
1385 user_data = u64_to_user_ptr(args->data_ptr);
1386 remain = args->size;
1387 offset = offset_in_page(args->offset);
1388 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1389 struct page *page = i915_gem_object_get_page(obj, idx);
1390 int length;
40123c1f 1391
fe115628
CW
1392 length = remain;
1393 if (offset + length > PAGE_SIZE)
1394 length = PAGE_SIZE - offset;
755d2218 1395
fe115628
CW
1396 ret = shmem_pwrite(page, offset, length, user_data,
1397 page_to_phys(page) & obj_do_bit17_swizzling,
1398 (offset | length) & partial_cacheline_write,
1399 needs_clflush & CLFLUSH_AFTER);
755d2218 1400 if (ret)
fe115628 1401 break;
755d2218 1402
fe115628
CW
1403 remain -= length;
1404 user_data += length;
1405 offset = 0;
8c59967c 1406 }
673a394b 1407
de152b62 1408 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
fe115628 1409 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1410 return ret;
673a394b
EA
1411}
1412
1413/**
1414 * Writes data to the object referenced by handle.
14bb2c11
TU
1415 * @dev: drm device
1416 * @data: ioctl data blob
1417 * @file: drm file
673a394b
EA
1418 *
1419 * On error, the contents of the buffer that were to be modified are undefined.
1420 */
1421int
1422i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1423 struct drm_file *file)
673a394b
EA
1424{
1425 struct drm_i915_gem_pwrite *args = data;
05394f39 1426 struct drm_i915_gem_object *obj;
51311d0a
CW
1427 int ret;
1428
1429 if (args->size == 0)
1430 return 0;
1431
1432 if (!access_ok(VERIFY_READ,
3ed605bc 1433 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1434 args->size))
1435 return -EFAULT;
1436
03ac0642 1437 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1438 if (!obj)
1439 return -ENOENT;
673a394b 1440
7dcd2499 1441 /* Bounds check destination. */
05394f39
CW
1442 if (args->offset > obj->base.size ||
1443 args->size > obj->base.size - args->offset) {
ce9d419d 1444 ret = -EINVAL;
258a5ede 1445 goto err;
ce9d419d
CW
1446 }
1447
db53a302
CW
1448 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1449
e95433c7
CW
1450 ret = i915_gem_object_wait(obj,
1451 I915_WAIT_INTERRUPTIBLE |
1452 I915_WAIT_ALL,
1453 MAX_SCHEDULE_TIMEOUT,
1454 to_rps_client(file));
258a5ede
CW
1455 if (ret)
1456 goto err;
1457
fe115628 1458 ret = i915_gem_object_pin_pages(obj);
258a5ede 1459 if (ret)
fe115628 1460 goto err;
258a5ede 1461
935aaa69 1462 ret = -EFAULT;
673a394b
EA
1463 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1464 * it would end up going through the fenced access, and we'll get
1465 * different detiling behavior between reading and writing.
1466 * pread/pwrite currently are reading and writing from the CPU
1467 * perspective, requiring manual detiling by the client.
1468 */
6eae0059 1469 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1470 cpu_write_needs_clflush(obj))
935aaa69
DV
1471 /* Note that the gtt paths might fail with non-page-backed user
1472 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1473 * textures). Fallback to the shmem path in that case.
1474 */
fe115628 1475 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1476
d1054ee4 1477 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1478 if (obj->phys_handle)
1479 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1480 else
fe115628 1481 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1482 }
5c0480f2 1483
fe115628 1484 i915_gem_object_unpin_pages(obj);
258a5ede 1485err:
f0cd5182 1486 i915_gem_object_put(obj);
258a5ede 1487 return ret;
673a394b
EA
1488}
1489
d243ad82 1490static inline enum fb_op_origin
aeecc969
CW
1491write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1492{
50349247
CW
1493 return (domain == I915_GEM_DOMAIN_GTT ?
1494 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
aeecc969
CW
1495}
1496
40e62d5d
CW
1497static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1498{
1499 struct drm_i915_private *i915;
1500 struct list_head *list;
1501 struct i915_vma *vma;
1502
1503 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1504 if (!i915_vma_is_ggtt(vma))
1505 continue;
1506
1507 if (i915_vma_is_active(vma))
1508 continue;
1509
1510 if (!drm_mm_node_allocated(&vma->node))
1511 continue;
1512
1513 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1514 }
1515
1516 i915 = to_i915(obj->base.dev);
1517 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
56cea323 1518 list_move_tail(&obj->global_link, list);
40e62d5d
CW
1519}
1520
673a394b 1521/**
2ef7eeaa
EA
1522 * Called when user space prepares to use an object with the CPU, either
1523 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1524 * @dev: drm device
1525 * @data: ioctl data blob
1526 * @file: drm file
673a394b
EA
1527 */
1528int
1529i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1530 struct drm_file *file)
673a394b
EA
1531{
1532 struct drm_i915_gem_set_domain *args = data;
05394f39 1533 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1534 uint32_t read_domains = args->read_domains;
1535 uint32_t write_domain = args->write_domain;
40e62d5d 1536 int err;
673a394b 1537
2ef7eeaa 1538 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1539 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1540 return -EINVAL;
1541
1542 /* Having something in the write domain implies it's in the read
1543 * domain, and only that read domain. Enforce that in the request.
1544 */
1545 if (write_domain != 0 && read_domains != write_domain)
1546 return -EINVAL;
1547
03ac0642 1548 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1549 if (!obj)
1550 return -ENOENT;
673a394b 1551
3236f57a
CW
1552 /* Try to flush the object off the GPU without holding the lock.
1553 * We will repeat the flush holding the lock in the normal manner
1554 * to catch cases where we are gazumped.
1555 */
40e62d5d 1556 err = i915_gem_object_wait(obj,
e95433c7
CW
1557 I915_WAIT_INTERRUPTIBLE |
1558 (write_domain ? I915_WAIT_ALL : 0),
1559 MAX_SCHEDULE_TIMEOUT,
1560 to_rps_client(file));
40e62d5d 1561 if (err)
f0cd5182 1562 goto out;
b8f9096d 1563
40e62d5d
CW
1564 /* Flush and acquire obj->pages so that we are coherent through
1565 * direct access in memory with previous cached writes through
1566 * shmemfs and that our cache domain tracking remains valid.
1567 * For example, if the obj->filp was moved to swap without us
1568 * being notified and releasing the pages, we would mistakenly
1569 * continue to assume that the obj remained out of the CPU cached
1570 * domain.
1571 */
1572 err = i915_gem_object_pin_pages(obj);
1573 if (err)
f0cd5182 1574 goto out;
40e62d5d
CW
1575
1576 err = i915_mutex_lock_interruptible(dev);
1577 if (err)
f0cd5182 1578 goto out_unpin;
3236f57a 1579
43566ded 1580 if (read_domains & I915_GEM_DOMAIN_GTT)
40e62d5d 1581 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1582 else
40e62d5d 1583 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1584
40e62d5d
CW
1585 /* And bump the LRU for this access */
1586 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1587
673a394b 1588 mutex_unlock(&dev->struct_mutex);
b8f9096d 1589
40e62d5d
CW
1590 if (write_domain != 0)
1591 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1592
f0cd5182 1593out_unpin:
40e62d5d 1594 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1595out:
1596 i915_gem_object_put(obj);
40e62d5d 1597 return err;
673a394b
EA
1598}
1599
1600/**
1601 * Called when user space has done writes to this buffer
14bb2c11
TU
1602 * @dev: drm device
1603 * @data: ioctl data blob
1604 * @file: drm file
673a394b
EA
1605 */
1606int
1607i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1608 struct drm_file *file)
673a394b
EA
1609{
1610 struct drm_i915_gem_sw_finish *args = data;
05394f39 1611 struct drm_i915_gem_object *obj;
c21724cc 1612 int err = 0;
1d7cfea1 1613
03ac0642 1614 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1615 if (!obj)
1616 return -ENOENT;
673a394b 1617
673a394b 1618 /* Pinned buffers may be scanout, so flush the cache */
c21724cc
CW
1619 if (READ_ONCE(obj->pin_display)) {
1620 err = i915_mutex_lock_interruptible(dev);
1621 if (!err) {
1622 i915_gem_object_flush_cpu_write_domain(obj);
1623 mutex_unlock(&dev->struct_mutex);
1624 }
1625 }
e47c68e9 1626
f0cd5182 1627 i915_gem_object_put(obj);
c21724cc 1628 return err;
673a394b
EA
1629}
1630
1631/**
14bb2c11
TU
1632 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1633 * it is mapped to.
1634 * @dev: drm device
1635 * @data: ioctl data blob
1636 * @file: drm file
673a394b
EA
1637 *
1638 * While the mapping holds a reference on the contents of the object, it doesn't
1639 * imply a ref on the object itself.
34367381
DV
1640 *
1641 * IMPORTANT:
1642 *
1643 * DRM driver writers who look a this function as an example for how to do GEM
1644 * mmap support, please don't implement mmap support like here. The modern way
1645 * to implement DRM mmap support is with an mmap offset ioctl (like
1646 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1647 * That way debug tooling like valgrind will understand what's going on, hiding
1648 * the mmap call in a driver private ioctl will break that. The i915 driver only
1649 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1650 */
1651int
1652i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1653 struct drm_file *file)
673a394b
EA
1654{
1655 struct drm_i915_gem_mmap *args = data;
03ac0642 1656 struct drm_i915_gem_object *obj;
673a394b
EA
1657 unsigned long addr;
1658
1816f923
AG
1659 if (args->flags & ~(I915_MMAP_WC))
1660 return -EINVAL;
1661
568a58e5 1662 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1663 return -ENODEV;
1664
03ac0642
CW
1665 obj = i915_gem_object_lookup(file, args->handle);
1666 if (!obj)
bf79cb91 1667 return -ENOENT;
673a394b 1668
1286ff73
DV
1669 /* prime objects have no backing filp to GEM mmap
1670 * pages from.
1671 */
03ac0642 1672 if (!obj->base.filp) {
f0cd5182 1673 i915_gem_object_put(obj);
1286ff73
DV
1674 return -EINVAL;
1675 }
1676
03ac0642 1677 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1678 PROT_READ | PROT_WRITE, MAP_SHARED,
1679 args->offset);
1816f923
AG
1680 if (args->flags & I915_MMAP_WC) {
1681 struct mm_struct *mm = current->mm;
1682 struct vm_area_struct *vma;
1683
80a89a5e 1684 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1685 i915_gem_object_put(obj);
80a89a5e
MH
1686 return -EINTR;
1687 }
1816f923
AG
1688 vma = find_vma(mm, addr);
1689 if (vma)
1690 vma->vm_page_prot =
1691 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1692 else
1693 addr = -ENOMEM;
1694 up_write(&mm->mmap_sem);
aeecc969
CW
1695
1696 /* This may race, but that's ok, it only gets set */
50349247 1697 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1698 }
f0cd5182 1699 i915_gem_object_put(obj);
673a394b
EA
1700 if (IS_ERR((void *)addr))
1701 return addr;
1702
1703 args->addr_ptr = (uint64_t) addr;
1704
1705 return 0;
1706}
1707
03af84fe
CW
1708static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1709{
1710 u64 size;
1711
1712 size = i915_gem_object_get_stride(obj);
1713 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1714
1715 return size >> PAGE_SHIFT;
1716}
1717
4cc69075
CW
1718/**
1719 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1720 *
1721 * A history of the GTT mmap interface:
1722 *
1723 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1724 * aligned and suitable for fencing, and still fit into the available
1725 * mappable space left by the pinned display objects. A classic problem
1726 * we called the page-fault-of-doom where we would ping-pong between
1727 * two objects that could not fit inside the GTT and so the memcpy
1728 * would page one object in at the expense of the other between every
1729 * single byte.
1730 *
1731 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1732 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1733 * object is too large for the available space (or simply too large
1734 * for the mappable aperture!), a view is created instead and faulted
1735 * into userspace. (This view is aligned and sized appropriately for
1736 * fenced access.)
1737 *
1738 * Restrictions:
1739 *
1740 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1741 * hangs on some architectures, corruption on others. An attempt to service
1742 * a GTT page fault from a snoopable object will generate a SIGBUS.
1743 *
1744 * * the object must be able to fit into RAM (physical memory, though no
1745 * limited to the mappable aperture).
1746 *
1747 *
1748 * Caveats:
1749 *
1750 * * a new GTT page fault will synchronize rendering from the GPU and flush
1751 * all data to system memory. Subsequent access will not be synchronized.
1752 *
1753 * * all mappings are revoked on runtime device suspend.
1754 *
1755 * * there are only 8, 16 or 32 fence registers to share between all users
1756 * (older machines require fence register for display and blitter access
1757 * as well). Contention of the fence registers will cause the previous users
1758 * to be unmapped and any new access will generate new page faults.
1759 *
1760 * * running out of memory while servicing a fault may generate a SIGBUS,
1761 * rather than the expected SIGSEGV.
1762 */
1763int i915_gem_mmap_gtt_version(void)
1764{
1765 return 1;
1766}
1767
de151cf6
JB
1768/**
1769 * i915_gem_fault - fault a page into the GTT
058d88c4 1770 * @area: CPU VMA in question
d9072a3e 1771 * @vmf: fault info
de151cf6
JB
1772 *
1773 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1774 * from userspace. The fault handler takes care of binding the object to
1775 * the GTT (if needed), allocating and programming a fence register (again,
1776 * only if needed based on whether the old reg is still valid or the object
1777 * is tiled) and inserting a new PTE into the faulting process.
1778 *
1779 * Note that the faulting process may involve evicting existing objects
1780 * from the GTT and/or fence registers to make room. So performance may
1781 * suffer if the GTT working set is large or there are few fence registers
1782 * left.
4cc69075
CW
1783 *
1784 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1785 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1786 */
058d88c4 1787int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
de151cf6 1788{
03af84fe 1789#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
058d88c4 1790 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1791 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1792 struct drm_i915_private *dev_priv = to_i915(dev);
1793 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1794 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1795 struct i915_vma *vma;
de151cf6 1796 pgoff_t page_offset;
82118877 1797 unsigned int flags;
b8f9096d 1798 int ret;
f65c9168 1799
de151cf6 1800 /* We don't use vmf->pgoff since that has the fake offset */
058d88c4 1801 page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
de151cf6
JB
1802 PAGE_SHIFT;
1803
db53a302
CW
1804 trace_i915_gem_object_fault(obj, page_offset, true, write);
1805
6e4930f6 1806 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1807 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1808 * repeat the flush holding the lock in the normal manner to catch cases
1809 * where we are gazumped.
1810 */
e95433c7
CW
1811 ret = i915_gem_object_wait(obj,
1812 I915_WAIT_INTERRUPTIBLE,
1813 MAX_SCHEDULE_TIMEOUT,
1814 NULL);
6e4930f6 1815 if (ret)
b8f9096d
CW
1816 goto err;
1817
40e62d5d
CW
1818 ret = i915_gem_object_pin_pages(obj);
1819 if (ret)
1820 goto err;
1821
b8f9096d
CW
1822 intel_runtime_pm_get(dev_priv);
1823
1824 ret = i915_mutex_lock_interruptible(dev);
1825 if (ret)
1826 goto err_rpm;
6e4930f6 1827
eb119bd6 1828 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 1829 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 1830 ret = -EFAULT;
b8f9096d 1831 goto err_unlock;
eb119bd6
CW
1832 }
1833
82118877
CW
1834 /* If the object is smaller than a couple of partial vma, it is
1835 * not worth only creating a single partial vma - we may as well
1836 * clear enough space for the full object.
1837 */
1838 flags = PIN_MAPPABLE;
1839 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1840 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1841
a61007a8 1842 /* Now pin it into the GTT as needed */
82118877 1843 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8
CW
1844 if (IS_ERR(vma)) {
1845 struct i915_ggtt_view view;
03af84fe
CW
1846 unsigned int chunk_size;
1847
a61007a8 1848 /* Use a partial view if it is bigger than available space */
03af84fe
CW
1849 chunk_size = MIN_CHUNK_PAGES;
1850 if (i915_gem_object_is_tiled(obj))
0ef723cb 1851 chunk_size = roundup(chunk_size, tile_row_pages(obj));
e7ded2d7 1852
c5ad54cf
JL
1853 memset(&view, 0, sizeof(view));
1854 view.type = I915_GGTT_VIEW_PARTIAL;
1855 view.params.partial.offset = rounddown(page_offset, chunk_size);
1856 view.params.partial.size =
a61007a8 1857 min_t(unsigned int, chunk_size,
908b1232 1858 vma_pages(area) - view.params.partial.offset);
c5ad54cf 1859
aa136d9d
CW
1860 /* If the partial covers the entire object, just create a
1861 * normal VMA.
1862 */
1863 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1864 view.type = I915_GGTT_VIEW_NORMAL;
1865
50349247
CW
1866 /* Userspace is now writing through an untracked VMA, abandon
1867 * all hope that the hardware is able to track future writes.
1868 */
1869 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1870
a61007a8
CW
1871 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1872 }
058d88c4
CW
1873 if (IS_ERR(vma)) {
1874 ret = PTR_ERR(vma);
b8f9096d 1875 goto err_unlock;
058d88c4 1876 }
4a684a41 1877
c9839303
CW
1878 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1879 if (ret)
b8f9096d 1880 goto err_unpin;
74898d7e 1881
49ef5294 1882 ret = i915_vma_get_fence(vma);
d9e86c0e 1883 if (ret)
b8f9096d 1884 goto err_unpin;
7d1c4804 1885
275f039d 1886 /* Mark as being mmapped into userspace for later revocation */
9c870d03 1887 assert_rpm_wakelock_held(dev_priv);
275f039d
CW
1888 if (list_empty(&obj->userfault_link))
1889 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
275f039d 1890
b90b91d8 1891 /* Finally, remap it using the new GTT offset */
c58305af
CW
1892 ret = remap_io_mapping(area,
1893 area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1894 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1895 min_t(u64, vma->size, area->vm_end - area->vm_start),
1896 &ggtt->mappable);
a61007a8 1897
b8f9096d 1898err_unpin:
058d88c4 1899 __i915_vma_unpin(vma);
b8f9096d 1900err_unlock:
de151cf6 1901 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1902err_rpm:
1903 intel_runtime_pm_put(dev_priv);
40e62d5d 1904 i915_gem_object_unpin_pages(obj);
b8f9096d 1905err:
de151cf6 1906 switch (ret) {
d9bc7e9f 1907 case -EIO:
2232f031
DV
1908 /*
1909 * We eat errors when the gpu is terminally wedged to avoid
1910 * userspace unduly crashing (gl has no provisions for mmaps to
1911 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1912 * and so needs to be reported.
1913 */
1914 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1915 ret = VM_FAULT_SIGBUS;
1916 break;
1917 }
045e769a 1918 case -EAGAIN:
571c608d
DV
1919 /*
1920 * EAGAIN means the gpu is hung and we'll wait for the error
1921 * handler to reset everything when re-faulting in
1922 * i915_mutex_lock_interruptible.
d9bc7e9f 1923 */
c715089f
CW
1924 case 0:
1925 case -ERESTARTSYS:
bed636ab 1926 case -EINTR:
e79e0fe3
DR
1927 case -EBUSY:
1928 /*
1929 * EBUSY is ok: this just means that another thread
1930 * already did the job.
1931 */
f65c9168
PZ
1932 ret = VM_FAULT_NOPAGE;
1933 break;
de151cf6 1934 case -ENOMEM:
f65c9168
PZ
1935 ret = VM_FAULT_OOM;
1936 break;
a7c2e1aa 1937 case -ENOSPC:
45d67817 1938 case -EFAULT:
f65c9168
PZ
1939 ret = VM_FAULT_SIGBUS;
1940 break;
de151cf6 1941 default:
a7c2e1aa 1942 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1943 ret = VM_FAULT_SIGBUS;
1944 break;
de151cf6 1945 }
f65c9168 1946 return ret;
de151cf6
JB
1947}
1948
901782b2
CW
1949/**
1950 * i915_gem_release_mmap - remove physical page mappings
1951 * @obj: obj in question
1952 *
af901ca1 1953 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1954 * relinquish ownership of the pages back to the system.
1955 *
1956 * It is vital that we remove the page mapping if we have mapped a tiled
1957 * object through the GTT and then lose the fence register due to
1958 * resource pressure. Similarly if the object has been moved out of the
1959 * aperture, than pages mapped into userspace must be revoked. Removing the
1960 * mapping will then trigger a page fault on the next user access, allowing
1961 * fixup by i915_gem_fault().
1962 */
d05ca301 1963void
05394f39 1964i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1965{
275f039d 1966 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 1967
349f2ccf
CW
1968 /* Serialisation between user GTT access and our code depends upon
1969 * revoking the CPU's PTE whilst the mutex is held. The next user
1970 * pagefault then has to wait until we release the mutex.
9c870d03
CW
1971 *
1972 * Note that RPM complicates somewhat by adding an additional
1973 * requirement that operations to the GGTT be made holding the RPM
1974 * wakeref.
349f2ccf 1975 */
275f039d 1976 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 1977 intel_runtime_pm_get(i915);
349f2ccf 1978
3594a3e2 1979 if (list_empty(&obj->userfault_link))
9c870d03 1980 goto out;
901782b2 1981
3594a3e2 1982 list_del_init(&obj->userfault_link);
6796cb16
DH
1983 drm_vma_node_unmap(&obj->base.vma_node,
1984 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1985
1986 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1987 * memory transactions from userspace before we return. The TLB
1988 * flushing implied above by changing the PTE above *should* be
1989 * sufficient, an extra barrier here just provides us with a bit
1990 * of paranoid documentation about our requirement to serialise
1991 * memory writes before touching registers / GSM.
1992 */
1993 wmb();
9c870d03
CW
1994
1995out:
1996 intel_runtime_pm_put(i915);
901782b2
CW
1997}
1998
7c108fd8 1999void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 2000{
3594a3e2 2001 struct drm_i915_gem_object *obj, *on;
7c108fd8 2002 int i;
eedd10f4 2003
3594a3e2
CW
2004 /*
2005 * Only called during RPM suspend. All users of the userfault_list
2006 * must be holding an RPM wakeref to ensure that this can not
2007 * run concurrently with themselves (and use the struct_mutex for
2008 * protection between themselves).
2009 */
275f039d 2010
3594a3e2
CW
2011 list_for_each_entry_safe(obj, on,
2012 &dev_priv->mm.userfault_list, userfault_link) {
2013 list_del_init(&obj->userfault_link);
275f039d
CW
2014 drm_vma_node_unmap(&obj->base.vma_node,
2015 obj->base.dev->anon_inode->i_mapping);
275f039d 2016 }
7c108fd8
CW
2017
2018 /* The fence will be lost when the device powers down. If any were
2019 * in use by hardware (i.e. they are pinned), we should not be powering
2020 * down! All other fences will be reacquired by the user upon waking.
2021 */
2022 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2023 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2024
2025 if (WARN_ON(reg->pin_count))
2026 continue;
2027
2028 if (!reg->vma)
2029 continue;
2030
2031 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2032 reg->dirty = true;
2033 }
eedd10f4
CW
2034}
2035
ad1a7d20
CW
2036/**
2037 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 2038 * @dev_priv: i915 device
ad1a7d20
CW
2039 * @size: object size
2040 * @tiling_mode: tiling mode
2041 *
2042 * Return the required global GTT size for an object, taking into account
2043 * potential fence register mapping.
2044 */
a9f1481f
CW
2045u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2046 u64 size, int tiling_mode)
92b88aeb 2047{
ad1a7d20 2048 u64 ggtt_size;
92b88aeb 2049
ad1a7d20
CW
2050 GEM_BUG_ON(size == 0);
2051
a9f1481f 2052 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
2053 tiling_mode == I915_TILING_NONE)
2054 return size;
92b88aeb
CW
2055
2056 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 2057 if (IS_GEN3(dev_priv))
ad1a7d20 2058 ggtt_size = 1024*1024;
92b88aeb 2059 else
ad1a7d20 2060 ggtt_size = 512*1024;
92b88aeb 2061
ad1a7d20
CW
2062 while (ggtt_size < size)
2063 ggtt_size <<= 1;
92b88aeb 2064
ad1a7d20 2065 return ggtt_size;
92b88aeb
CW
2066}
2067
de151cf6 2068/**
ad1a7d20 2069 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 2070 * @dev_priv: i915 device
14bb2c11
TU
2071 * @size: object size
2072 * @tiling_mode: tiling mode
ad1a7d20 2073 * @fenced: is fenced alignment required or not
de151cf6 2074 *
ad1a7d20 2075 * Return the required global GTT alignment for an object, taking into account
5e783301 2076 * potential fence register mapping.
de151cf6 2077 */
a9f1481f 2078u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 2079 int tiling_mode, bool fenced)
de151cf6 2080{
ad1a7d20
CW
2081 GEM_BUG_ON(size == 0);
2082
de151cf6
JB
2083 /*
2084 * Minimum alignment is 4k (GTT page size), but might be greater
2085 * if a fence register is needed for the object.
2086 */
a9f1481f 2087 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
e28f8711 2088 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2089 return 4096;
2090
a00b10c3
CW
2091 /*
2092 * Previous chips need to be aligned to the size of the smallest
2093 * fence register that can contain the object.
2094 */
a9f1481f 2095 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
2096}
2097
d8cb5086
CW
2098static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2099{
fac5e23e 2100 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2101 int err;
da494d7c 2102
f3f6184c
CW
2103 err = drm_gem_create_mmap_offset(&obj->base);
2104 if (!err)
2105 return 0;
d8cb5086 2106
f3f6184c
CW
2107 /* We can idle the GPU locklessly to flush stale objects, but in order
2108 * to claim that space for ourselves, we need to take the big
2109 * struct_mutex to free the requests+objects and allocate our slot.
d8cb5086 2110 */
ea746f36 2111 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
f3f6184c
CW
2112 if (err)
2113 return err;
2114
2115 err = i915_mutex_lock_interruptible(&dev_priv->drm);
2116 if (!err) {
2117 i915_gem_retire_requests(dev_priv);
2118 err = drm_gem_create_mmap_offset(&obj->base);
2119 mutex_unlock(&dev_priv->drm.struct_mutex);
2120 }
da494d7c 2121
f3f6184c 2122 return err;
d8cb5086
CW
2123}
2124
2125static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2126{
d8cb5086
CW
2127 drm_gem_free_mmap_offset(&obj->base);
2128}
2129
da6b51d0 2130int
ff72145b
DA
2131i915_gem_mmap_gtt(struct drm_file *file,
2132 struct drm_device *dev,
da6b51d0 2133 uint32_t handle,
ff72145b 2134 uint64_t *offset)
de151cf6 2135{
05394f39 2136 struct drm_i915_gem_object *obj;
de151cf6
JB
2137 int ret;
2138
03ac0642 2139 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2140 if (!obj)
2141 return -ENOENT;
ab18282d 2142
d8cb5086 2143 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2144 if (ret == 0)
2145 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2146
f0cd5182 2147 i915_gem_object_put(obj);
1d7cfea1 2148 return ret;
de151cf6
JB
2149}
2150
ff72145b
DA
2151/**
2152 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2153 * @dev: DRM device
2154 * @data: GTT mapping ioctl data
2155 * @file: GEM object info
2156 *
2157 * Simply returns the fake offset to userspace so it can mmap it.
2158 * The mmap call will end up in drm_gem_mmap(), which will set things
2159 * up so we can get faults in the handler above.
2160 *
2161 * The fault handler will take care of binding the object into the GTT
2162 * (since it may have been evicted to make room for something), allocating
2163 * a fence register, and mapping the appropriate aperture address into
2164 * userspace.
2165 */
2166int
2167i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2168 struct drm_file *file)
2169{
2170 struct drm_i915_gem_mmap_gtt *args = data;
2171
da6b51d0 2172 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2173}
2174
225067ee
DV
2175/* Immediately discard the backing storage */
2176static void
2177i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2178{
4d6294bf 2179 i915_gem_object_free_mmap_offset(obj);
1286ff73 2180
4d6294bf
CW
2181 if (obj->base.filp == NULL)
2182 return;
e5281ccd 2183
225067ee
DV
2184 /* Our goal here is to return as much of the memory as
2185 * is possible back to the system as we are called from OOM.
2186 * To do this we must instruct the shmfs to drop all of its
2187 * backing pages, *now*.
2188 */
5537252b 2189 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2190 obj->mm.madv = __I915_MADV_PURGED;
225067ee 2191}
e5281ccd 2192
5537252b 2193/* Try to discard unwanted pages */
03ac84f1 2194void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2195{
5537252b
CW
2196 struct address_space *mapping;
2197
1233e2db
CW
2198 lockdep_assert_held(&obj->mm.lock);
2199 GEM_BUG_ON(obj->mm.pages);
2200
a4f5ea64 2201 switch (obj->mm.madv) {
5537252b
CW
2202 case I915_MADV_DONTNEED:
2203 i915_gem_object_truncate(obj);
2204 case __I915_MADV_PURGED:
2205 return;
2206 }
2207
2208 if (obj->base.filp == NULL)
2209 return;
2210
93c76a3d 2211 mapping = obj->base.filp->f_mapping,
5537252b 2212 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2213}
2214
5cdf5881 2215static void
03ac84f1
CW
2216i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2217 struct sg_table *pages)
673a394b 2218{
85d1225e
DG
2219 struct sgt_iter sgt_iter;
2220 struct page *page;
1286ff73 2221
2b3c8317 2222 __i915_gem_object_release_shmem(obj, pages);
673a394b 2223
03ac84f1 2224 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2225
6dacfd2f 2226 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2227 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2228
03ac84f1 2229 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2230 if (obj->mm.dirty)
9da3da66 2231 set_page_dirty(page);
3ef94daa 2232
a4f5ea64 2233 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2234 mark_page_accessed(page);
3ef94daa 2235
09cbfeaf 2236 put_page(page);
3ef94daa 2237 }
a4f5ea64 2238 obj->mm.dirty = false;
673a394b 2239
03ac84f1
CW
2240 sg_free_table(pages);
2241 kfree(pages);
37e680a1 2242}
6c085a72 2243
96d77634
CW
2244static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2245{
2246 struct radix_tree_iter iter;
2247 void **slot;
2248
a4f5ea64
CW
2249 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2250 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2251}
2252
548625ee
CW
2253void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2254 enum i915_mm_subclass subclass)
37e680a1 2255{
03ac84f1 2256 struct sg_table *pages;
37e680a1 2257
a4f5ea64 2258 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2259 return;
a5570178 2260
15717de2 2261 GEM_BUG_ON(obj->bind_count);
1233e2db
CW
2262 if (!READ_ONCE(obj->mm.pages))
2263 return;
2264
2265 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2266 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2267 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2268 goto unlock;
3e123027 2269
a2165e31
CW
2270 /* ->put_pages might need to allocate memory for the bit17 swizzle
2271 * array, hence protect them from being reaped by removing them from gtt
2272 * lists early. */
03ac84f1
CW
2273 pages = fetch_and_zero(&obj->mm.pages);
2274 GEM_BUG_ON(!pages);
a2165e31 2275
a4f5ea64 2276 if (obj->mm.mapping) {
4b30cb23
CW
2277 void *ptr;
2278
a4f5ea64 2279 ptr = ptr_mask_bits(obj->mm.mapping);
4b30cb23
CW
2280 if (is_vmalloc_addr(ptr))
2281 vunmap(ptr);
fb8621d3 2282 else
4b30cb23
CW
2283 kunmap(kmap_to_page(ptr));
2284
a4f5ea64 2285 obj->mm.mapping = NULL;
0a798eb9
CW
2286 }
2287
96d77634
CW
2288 __i915_gem_object_reset_page_iter(obj);
2289
03ac84f1 2290 obj->ops->put_pages(obj, pages);
1233e2db
CW
2291unlock:
2292 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2293}
2294
4ff340f0 2295static unsigned int swiotlb_max_size(void)
871dfbd6
CW
2296{
2297#if IS_ENABLED(CONFIG_SWIOTLB)
2298 return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2299#else
2300 return 0;
2301#endif
2302}
2303
0c40ce13
TU
2304static void i915_sg_trim(struct sg_table *orig_st)
2305{
2306 struct sg_table new_st;
2307 struct scatterlist *sg, *new_sg;
2308 unsigned int i;
2309
2310 if (orig_st->nents == orig_st->orig_nents)
2311 return;
2312
2313 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL))
2314 return;
2315
2316 new_sg = new_st.sgl;
2317 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2318 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2319 /* called before being DMA mapped, no need to copy sg->dma_* */
2320 new_sg = sg_next(new_sg);
2321 }
2322
2323 sg_free_table(orig_st);
2324
2325 *orig_st = new_st;
2326}
2327
03ac84f1 2328static struct sg_table *
6c085a72 2329i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2330{
fac5e23e 2331 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2332 int page_count, i;
2333 struct address_space *mapping;
9da3da66
CW
2334 struct sg_table *st;
2335 struct scatterlist *sg;
85d1225e 2336 struct sgt_iter sgt_iter;
e5281ccd 2337 struct page *page;
90797e6d 2338 unsigned long last_pfn = 0; /* suppress gcc warning */
4ff340f0 2339 unsigned int max_segment;
e2273302 2340 int ret;
6c085a72 2341 gfp_t gfp;
e5281ccd 2342
6c085a72
CW
2343 /* Assert that the object is not currently in any GPU domain. As it
2344 * wasn't in the GTT, there shouldn't be any way it could have been in
2345 * a GPU cache
2346 */
03ac84f1
CW
2347 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2348 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2349
871dfbd6
CW
2350 max_segment = swiotlb_max_size();
2351 if (!max_segment)
4ff340f0 2352 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
871dfbd6 2353
9da3da66
CW
2354 st = kmalloc(sizeof(*st), GFP_KERNEL);
2355 if (st == NULL)
03ac84f1 2356 return ERR_PTR(-ENOMEM);
9da3da66 2357
05394f39 2358 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2359 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2360 kfree(st);
03ac84f1 2361 return ERR_PTR(-ENOMEM);
9da3da66 2362 }
e5281ccd 2363
9da3da66
CW
2364 /* Get the list of pages out of our struct file. They'll be pinned
2365 * at this point until we release them.
2366 *
2367 * Fail silently without starting the shrinker
2368 */
93c76a3d 2369 mapping = obj->base.filp->f_mapping;
c62d2555 2370 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2371 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2372 sg = st->sgl;
2373 st->nents = 0;
2374 for (i = 0; i < page_count; i++) {
6c085a72
CW
2375 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2376 if (IS_ERR(page)) {
21ab4e74
CW
2377 i915_gem_shrink(dev_priv,
2378 page_count,
2379 I915_SHRINK_BOUND |
2380 I915_SHRINK_UNBOUND |
2381 I915_SHRINK_PURGEABLE);
6c085a72
CW
2382 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2383 }
2384 if (IS_ERR(page)) {
2385 /* We've tried hard to allocate the memory by reaping
2386 * our own buffer, now let the real VM do its job and
2387 * go down in flames if truly OOM.
2388 */
f461d1be 2389 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2390 if (IS_ERR(page)) {
2391 ret = PTR_ERR(page);
b17993b7 2392 goto err_sg;
e2273302 2393 }
6c085a72 2394 }
871dfbd6
CW
2395 if (!i ||
2396 sg->length >= max_segment ||
2397 page_to_pfn(page) != last_pfn + 1) {
90797e6d
ID
2398 if (i)
2399 sg = sg_next(sg);
2400 st->nents++;
2401 sg_set_page(sg, page, PAGE_SIZE, 0);
2402 } else {
2403 sg->length += PAGE_SIZE;
2404 }
2405 last_pfn = page_to_pfn(page);
3bbbe706
DV
2406
2407 /* Check that the i965g/gm workaround works. */
2408 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2409 }
871dfbd6 2410 if (sg) /* loop terminated early; short sg table */
426729dc 2411 sg_mark_end(sg);
74ce6b6c 2412
0c40ce13
TU
2413 /* Trim unused sg entries to avoid wasting memory. */
2414 i915_sg_trim(st);
2415
03ac84f1 2416 ret = i915_gem_gtt_prepare_pages(obj, st);
e2273302
ID
2417 if (ret)
2418 goto err_pages;
2419
6dacfd2f 2420 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2421 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2422
03ac84f1 2423 return st;
e5281ccd 2424
b17993b7 2425err_sg:
90797e6d 2426 sg_mark_end(sg);
b17993b7 2427err_pages:
85d1225e
DG
2428 for_each_sgt_page(page, sgt_iter, st)
2429 put_page(page);
9da3da66
CW
2430 sg_free_table(st);
2431 kfree(st);
0820baf3
CW
2432
2433 /* shmemfs first checks if there is enough memory to allocate the page
2434 * and reports ENOSPC should there be insufficient, along with the usual
2435 * ENOMEM for a genuine allocation failure.
2436 *
2437 * We use ENOSPC in our driver to mean that we have run out of aperture
2438 * space and so want to translate the error from shmemfs back to our
2439 * usual understanding of ENOMEM.
2440 */
e2273302
ID
2441 if (ret == -ENOSPC)
2442 ret = -ENOMEM;
2443
03ac84f1
CW
2444 return ERR_PTR(ret);
2445}
2446
2447void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2448 struct sg_table *pages)
2449{
1233e2db 2450 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2451
2452 obj->mm.get_page.sg_pos = pages->sgl;
2453 obj->mm.get_page.sg_idx = 0;
2454
2455 obj->mm.pages = pages;
2c3a3f44
CW
2456
2457 if (i915_gem_object_is_tiled(obj) &&
2458 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2459 GEM_BUG_ON(obj->mm.quirked);
2460 __i915_gem_object_pin_pages(obj);
2461 obj->mm.quirked = true;
2462 }
03ac84f1
CW
2463}
2464
2465static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2466{
2467 struct sg_table *pages;
2468
2c3a3f44
CW
2469 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2470
03ac84f1
CW
2471 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2472 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2473 return -EFAULT;
2474 }
2475
2476 pages = obj->ops->get_pages(obj);
2477 if (unlikely(IS_ERR(pages)))
2478 return PTR_ERR(pages);
2479
2480 __i915_gem_object_set_pages(obj, pages);
2481 return 0;
673a394b
EA
2482}
2483
37e680a1 2484/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2485 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2486 * multiple times before they are released by a single call to
1233e2db 2487 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2488 * either as a result of memory pressure (reaping pages under the shrinker)
2489 * or as the object is itself released.
2490 */
a4f5ea64 2491int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2492{
03ac84f1 2493 int err;
37e680a1 2494
1233e2db
CW
2495 err = mutex_lock_interruptible(&obj->mm.lock);
2496 if (err)
2497 return err;
4c7d62c6 2498
2c3a3f44
CW
2499 if (unlikely(!obj->mm.pages)) {
2500 err = ____i915_gem_object_get_pages(obj);
2501 if (err)
2502 goto unlock;
37e680a1 2503
2c3a3f44
CW
2504 smp_mb__before_atomic();
2505 }
2506 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2507
1233e2db
CW
2508unlock:
2509 mutex_unlock(&obj->mm.lock);
03ac84f1 2510 return err;
673a394b
EA
2511}
2512
dd6034c6 2513/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2514static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2515 enum i915_map_type type)
dd6034c6
DG
2516{
2517 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2518 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2519 struct sgt_iter sgt_iter;
2520 struct page *page;
b338fa47
DG
2521 struct page *stack_pages[32];
2522 struct page **pages = stack_pages;
dd6034c6 2523 unsigned long i = 0;
d31d7cb1 2524 pgprot_t pgprot;
dd6034c6
DG
2525 void *addr;
2526
2527 /* A single page can always be kmapped */
d31d7cb1 2528 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2529 return kmap(sg_page(sgt->sgl));
2530
b338fa47
DG
2531 if (n_pages > ARRAY_SIZE(stack_pages)) {
2532 /* Too big for stack -- allocate temporary array instead */
2533 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2534 if (!pages)
2535 return NULL;
2536 }
dd6034c6 2537
85d1225e
DG
2538 for_each_sgt_page(page, sgt_iter, sgt)
2539 pages[i++] = page;
dd6034c6
DG
2540
2541 /* Check that we have the expected number of pages */
2542 GEM_BUG_ON(i != n_pages);
2543
d31d7cb1
CW
2544 switch (type) {
2545 case I915_MAP_WB:
2546 pgprot = PAGE_KERNEL;
2547 break;
2548 case I915_MAP_WC:
2549 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2550 break;
2551 }
2552 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2553
b338fa47
DG
2554 if (pages != stack_pages)
2555 drm_free_large(pages);
dd6034c6
DG
2556
2557 return addr;
2558}
2559
2560/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2561void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2562 enum i915_map_type type)
0a798eb9 2563{
d31d7cb1
CW
2564 enum i915_map_type has_type;
2565 bool pinned;
2566 void *ptr;
0a798eb9
CW
2567 int ret;
2568
d31d7cb1 2569 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2570
1233e2db 2571 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2572 if (ret)
2573 return ERR_PTR(ret);
2574
1233e2db
CW
2575 pinned = true;
2576 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2c3a3f44
CW
2577 if (unlikely(!obj->mm.pages)) {
2578 ret = ____i915_gem_object_get_pages(obj);
2579 if (ret)
2580 goto err_unlock;
1233e2db 2581
2c3a3f44
CW
2582 smp_mb__before_atomic();
2583 }
2584 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2585 pinned = false;
2586 }
2587 GEM_BUG_ON(!obj->mm.pages);
0a798eb9 2588
a4f5ea64 2589 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
d31d7cb1
CW
2590 if (ptr && has_type != type) {
2591 if (pinned) {
2592 ret = -EBUSY;
1233e2db 2593 goto err_unpin;
0a798eb9 2594 }
d31d7cb1
CW
2595
2596 if (is_vmalloc_addr(ptr))
2597 vunmap(ptr);
2598 else
2599 kunmap(kmap_to_page(ptr));
2600
a4f5ea64 2601 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2602 }
2603
d31d7cb1
CW
2604 if (!ptr) {
2605 ptr = i915_gem_object_map(obj, type);
2606 if (!ptr) {
2607 ret = -ENOMEM;
1233e2db 2608 goto err_unpin;
d31d7cb1
CW
2609 }
2610
a4f5ea64 2611 obj->mm.mapping = ptr_pack_bits(ptr, type);
d31d7cb1
CW
2612 }
2613
1233e2db
CW
2614out_unlock:
2615 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2616 return ptr;
2617
1233e2db
CW
2618err_unpin:
2619 atomic_dec(&obj->mm.pages_pin_count);
2620err_unlock:
2621 ptr = ERR_PTR(ret);
2622 goto out_unlock;
0a798eb9
CW
2623}
2624
7b4d3a16 2625static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2626{
bc1d53c6 2627 if (ctx->banned)
be62acb4
MK
2628 return true;
2629
bc1d53c6 2630 if (!ctx->bannable)
e5e1fc47
MK
2631 return false;
2632
bc1d53c6 2633 if (ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD) {
e5e1fc47
MK
2634 DRM_DEBUG("context hanging too often, banning!\n");
2635 return true;
2636 }
2637
be62acb4
MK
2638 return false;
2639}
2640
e5e1fc47 2641static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
aa60c664 2642{
bc1d53c6 2643 ctx->ban_score += CONTEXT_SCORE_GUILTY;
e5e1fc47 2644
bc1d53c6
MK
2645 ctx->banned = i915_context_is_banned(ctx);
2646 ctx->guilty_count++;
b083a087
MK
2647
2648 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
bc1d53c6
MK
2649 ctx->name, ctx->ban_score,
2650 yesno(ctx->banned));
b083a087 2651
d9e9da64 2652 if (!ctx->banned || IS_ERR_OR_NULL(ctx->file_priv))
b083a087
MK
2653 return;
2654
d9e9da64
CW
2655 ctx->file_priv->context_bans++;
2656 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2657 ctx->name, ctx->file_priv->context_bans);
e5e1fc47
MK
2658}
2659
2660static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2661{
bc1d53c6 2662 ctx->active_count++;
aa60c664
MK
2663}
2664
8d9fc7fd 2665struct drm_i915_gem_request *
0bc40be8 2666i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2667{
4db080f9
CW
2668 struct drm_i915_gem_request *request;
2669
f69a02c9
CW
2670 /* We are called by the error capture and reset at a random
2671 * point in time. In particular, note that neither is crucially
2672 * ordered with an interrupt. After a hang, the GPU is dead and we
2673 * assume that no more writes can happen (we waited long enough for
2674 * all writes that were in transaction to be flushed) - adding an
2675 * extra delay for a recent interrupt is pointless. Hence, we do
2676 * not need an engine->irq_seqno_barrier() before the seqno reads.
2677 */
73cb9701 2678 list_for_each_entry(request, &engine->timeline->requests, link) {
80b204bc 2679 if (__i915_gem_request_completed(request))
4db080f9 2680 continue;
aa60c664 2681
b6b0fac0 2682 return request;
4db080f9 2683 }
b6b0fac0
MK
2684
2685 return NULL;
2686}
2687
821ed7df
CW
2688static void reset_request(struct drm_i915_gem_request *request)
2689{
2690 void *vaddr = request->ring->vaddr;
2691 u32 head;
2692
2693 /* As this request likely depends on state from the lost
2694 * context, clear out all the user operations leaving the
2695 * breadcrumb at the end (so we get the fence notifications).
2696 */
2697 head = request->head;
2698 if (request->postfix < head) {
2699 memset(vaddr + head, 0, request->ring->size - head);
2700 head = 0;
2701 }
2702 memset(vaddr + head, 0, request->postfix - head);
2703}
2704
2705static void i915_gem_reset_engine(struct intel_engine_cs *engine)
b6b0fac0
MK
2706{
2707 struct drm_i915_gem_request *request;
821ed7df 2708 struct i915_gem_context *incomplete_ctx;
80b204bc 2709 struct intel_timeline *timeline;
b6b0fac0
MK
2710 bool ring_hung;
2711
821ed7df
CW
2712 if (engine->irq_seqno_barrier)
2713 engine->irq_seqno_barrier(engine);
2714
0bc40be8 2715 request = i915_gem_find_active_request(engine);
821ed7df 2716 if (!request)
b6b0fac0
MK
2717 return;
2718
3fe3b030
MK
2719 ring_hung = engine->hangcheck.stalled;
2720 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2721 DRM_DEBUG_DRIVER("%s pardoned, was guilty? %s\n",
2722 engine->name,
2723 yesno(ring_hung));
77c60701 2724 ring_hung = false;
3fe3b030 2725 }
77c60701 2726
e5e1fc47
MK
2727 if (ring_hung)
2728 i915_gem_context_mark_guilty(request->ctx);
2729 else
2730 i915_gem_context_mark_innocent(request->ctx);
2731
821ed7df
CW
2732 if (!ring_hung)
2733 return;
2734
2735 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
65e4760e 2736 engine->name, request->global_seqno);
821ed7df
CW
2737
2738 /* Setup the CS to resume from the breadcrumb of the hung request */
2739 engine->reset_hw(engine, request);
2740
2741 /* Users of the default context do not rely on logical state
2742 * preserved between batches. They have to emit full state on
2743 * every batch and so it is safe to execute queued requests following
2744 * the hang.
2745 *
2746 * Other contexts preserve state, now corrupt. We want to skip all
2747 * queued requests that reference the corrupt context.
2748 */
2749 incomplete_ctx = request->ctx;
2750 if (i915_gem_context_is_default(incomplete_ctx))
2751 return;
2752
73cb9701 2753 list_for_each_entry_continue(request, &engine->timeline->requests, link)
821ed7df
CW
2754 if (request->ctx == incomplete_ctx)
2755 reset_request(request);
80b204bc
CW
2756
2757 timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2758 list_for_each_entry(request, &timeline->requests, link)
2759 reset_request(request);
4db080f9 2760}
aa60c664 2761
821ed7df 2762void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 2763{
821ed7df 2764 struct intel_engine_cs *engine;
3b3f1650 2765 enum intel_engine_id id;
608c1a52 2766
4c7d62c6
CW
2767 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2768
821ed7df
CW
2769 i915_gem_retire_requests(dev_priv);
2770
3b3f1650 2771 for_each_engine(engine, dev_priv, id)
821ed7df
CW
2772 i915_gem_reset_engine(engine);
2773
4362f4f6 2774 i915_gem_restore_fences(dev_priv);
f2a91d1a
CW
2775
2776 if (dev_priv->gt.awake) {
2777 intel_sanitize_gt_powersave(dev_priv);
2778 intel_enable_gt_powersave(dev_priv);
2779 if (INTEL_GEN(dev_priv) >= 6)
2780 gen6_rps_busy(dev_priv);
2781 }
821ed7df
CW
2782}
2783
2784static void nop_submit_request(struct drm_i915_gem_request *request)
2785{
3dcf93f7
CW
2786 i915_gem_request_submit(request);
2787 intel_engine_init_global_seqno(request->engine, request->global_seqno);
821ed7df
CW
2788}
2789
2790static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2791{
20e4933c
CW
2792 /* We need to be sure that no thread is running the old callback as
2793 * we install the nop handler (otherwise we would submit a request
2794 * to hardware that will never complete). In order to prevent this
2795 * race, we wait until the machine is idle before making the swap
2796 * (using stop_machine()).
2797 */
821ed7df 2798 engine->submit_request = nop_submit_request;
70c2a24d 2799
c4b0930b
CW
2800 /* Mark all pending requests as complete so that any concurrent
2801 * (lockless) lookup doesn't try and wait upon the request as we
2802 * reset it.
2803 */
73cb9701 2804 intel_engine_init_global_seqno(engine,
cb399eab 2805 intel_engine_last_submit(engine));
c4b0930b 2806
dcb4c12a
OM
2807 /*
2808 * Clear the execlists queue up before freeing the requests, as those
2809 * are the ones that keep the context and ringbuffer backing objects
2810 * pinned in place.
2811 */
dcb4c12a 2812
7de1691a 2813 if (i915.enable_execlists) {
663f71e7
CW
2814 unsigned long flags;
2815
2816 spin_lock_irqsave(&engine->timeline->lock, flags);
2817
70c2a24d
CW
2818 i915_gem_request_put(engine->execlist_port[0].request);
2819 i915_gem_request_put(engine->execlist_port[1].request);
2820 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
20311bd3
CW
2821 engine->execlist_queue = RB_ROOT;
2822 engine->execlist_first = NULL;
663f71e7
CW
2823
2824 spin_unlock_irqrestore(&engine->timeline->lock, flags);
dcb4c12a 2825 }
673a394b
EA
2826}
2827
20e4933c 2828static int __i915_gem_set_wedged_BKL(void *data)
673a394b 2829{
20e4933c 2830 struct drm_i915_private *i915 = data;
e2f80391 2831 struct intel_engine_cs *engine;
3b3f1650 2832 enum intel_engine_id id;
673a394b 2833
20e4933c
CW
2834 for_each_engine(engine, i915, id)
2835 i915_gem_cleanup_engine(engine);
2836
2837 return 0;
2838}
2839
2840void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2841{
821ed7df
CW
2842 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2843 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
4db080f9 2844
20e4933c 2845 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
dfaae392 2846
20e4933c 2847 i915_gem_context_lost(dev_priv);
821ed7df 2848 i915_gem_retire_requests(dev_priv);
20e4933c
CW
2849
2850 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
673a394b
EA
2851}
2852
75ef9da2 2853static void
673a394b
EA
2854i915_gem_retire_work_handler(struct work_struct *work)
2855{
b29c19b6 2856 struct drm_i915_private *dev_priv =
67d97da3 2857 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2858 struct drm_device *dev = &dev_priv->drm;
673a394b 2859
891b48cf 2860 /* Come back later if the device is busy... */
b29c19b6 2861 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2862 i915_gem_retire_requests(dev_priv);
b29c19b6 2863 mutex_unlock(&dev->struct_mutex);
673a394b 2864 }
67d97da3
CW
2865
2866 /* Keep the retire handler running until we are finally idle.
2867 * We do not need to do this test under locking as in the worst-case
2868 * we queue the retire worker once too often.
2869 */
c9615613
CW
2870 if (READ_ONCE(dev_priv->gt.awake)) {
2871 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2872 queue_delayed_work(dev_priv->wq,
2873 &dev_priv->gt.retire_work,
bcb45086 2874 round_jiffies_up_relative(HZ));
c9615613 2875 }
b29c19b6 2876}
0a58705b 2877
b29c19b6
CW
2878static void
2879i915_gem_idle_work_handler(struct work_struct *work)
2880{
2881 struct drm_i915_private *dev_priv =
67d97da3 2882 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2883 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2884 struct intel_engine_cs *engine;
3b3f1650 2885 enum intel_engine_id id;
67d97da3
CW
2886 bool rearm_hangcheck;
2887
2888 if (!READ_ONCE(dev_priv->gt.awake))
2889 return;
2890
0cb5670b
ID
2891 /*
2892 * Wait for last execlists context complete, but bail out in case a
2893 * new request is submitted.
2894 */
2895 wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2896 intel_execlists_idle(dev_priv), 10);
2897
28176ef4 2898 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
2899 return;
2900
2901 rearm_hangcheck =
2902 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2903
2904 if (!mutex_trylock(&dev->struct_mutex)) {
2905 /* Currently busy, come back later */
2906 mod_delayed_work(dev_priv->wq,
2907 &dev_priv->gt.idle_work,
2908 msecs_to_jiffies(50));
2909 goto out_rearm;
2910 }
2911
93c97dc1
ID
2912 /*
2913 * New request retired after this work handler started, extend active
2914 * period until next instance of the work.
2915 */
2916 if (work_pending(work))
2917 goto out_unlock;
2918
28176ef4 2919 if (dev_priv->gt.active_requests)
67d97da3 2920 goto out_unlock;
b29c19b6 2921
0cb5670b
ID
2922 if (wait_for(intel_execlists_idle(dev_priv), 10))
2923 DRM_ERROR("Timeout waiting for engines to idle\n");
2924
3b3f1650 2925 for_each_engine(engine, dev_priv, id)
67d97da3 2926 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2927
67d97da3
CW
2928 GEM_BUG_ON(!dev_priv->gt.awake);
2929 dev_priv->gt.awake = false;
2930 rearm_hangcheck = false;
30ecad77 2931
67d97da3
CW
2932 if (INTEL_GEN(dev_priv) >= 6)
2933 gen6_rps_idle(dev_priv);
2934 intel_runtime_pm_put(dev_priv);
2935out_unlock:
2936 mutex_unlock(&dev->struct_mutex);
b29c19b6 2937
67d97da3
CW
2938out_rearm:
2939 if (rearm_hangcheck) {
2940 GEM_BUG_ON(!dev_priv->gt.awake);
2941 i915_queue_hangcheck(dev_priv);
35c94185 2942 }
673a394b
EA
2943}
2944
b1f788c6
CW
2945void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2946{
2947 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2948 struct drm_i915_file_private *fpriv = file->driver_priv;
2949 struct i915_vma *vma, *vn;
2950
2951 mutex_lock(&obj->base.dev->struct_mutex);
2952 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2953 if (vma->vm->file == fpriv)
2954 i915_vma_close(vma);
f8a7fde4
CW
2955
2956 if (i915_gem_object_is_active(obj) &&
2957 !i915_gem_object_has_active_reference(obj)) {
2958 i915_gem_object_set_active_reference(obj);
2959 i915_gem_object_get(obj);
2960 }
b1f788c6
CW
2961 mutex_unlock(&obj->base.dev->struct_mutex);
2962}
2963
e95433c7
CW
2964static unsigned long to_wait_timeout(s64 timeout_ns)
2965{
2966 if (timeout_ns < 0)
2967 return MAX_SCHEDULE_TIMEOUT;
2968
2969 if (timeout_ns == 0)
2970 return 0;
2971
2972 return nsecs_to_jiffies_timeout(timeout_ns);
2973}
2974
23ba4fd0
BW
2975/**
2976 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2977 * @dev: drm device pointer
2978 * @data: ioctl data blob
2979 * @file: drm file pointer
23ba4fd0
BW
2980 *
2981 * Returns 0 if successful, else an error is returned with the remaining time in
2982 * the timeout parameter.
2983 * -ETIME: object is still busy after timeout
2984 * -ERESTARTSYS: signal interrupted the wait
2985 * -ENONENT: object doesn't exist
2986 * Also possible, but rare:
2987 * -EAGAIN: GPU wedged
2988 * -ENOMEM: damn
2989 * -ENODEV: Internal IRQ fail
2990 * -E?: The add request failed
2991 *
2992 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2993 * non-zero timeout parameter the wait ioctl will wait for the given number of
2994 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2995 * without holding struct_mutex the object may become re-busied before this
2996 * function completes. A similar but shorter * race condition exists in the busy
2997 * ioctl
2998 */
2999int
3000i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3001{
3002 struct drm_i915_gem_wait *args = data;
3003 struct drm_i915_gem_object *obj;
e95433c7
CW
3004 ktime_t start;
3005 long ret;
23ba4fd0 3006
11b5d511
DV
3007 if (args->flags != 0)
3008 return -EINVAL;
3009
03ac0642 3010 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 3011 if (!obj)
23ba4fd0 3012 return -ENOENT;
23ba4fd0 3013
e95433c7
CW
3014 start = ktime_get();
3015
3016 ret = i915_gem_object_wait(obj,
3017 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3018 to_wait_timeout(args->timeout_ns),
3019 to_rps_client(file));
3020
3021 if (args->timeout_ns > 0) {
3022 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3023 if (args->timeout_ns < 0)
3024 args->timeout_ns = 0;
b4716185
CW
3025 }
3026
f0cd5182 3027 i915_gem_object_put(obj);
ff865885 3028 return ret;
23ba4fd0
BW
3029}
3030
73cb9701 3031static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 3032{
73cb9701 3033 int ret, i;
4df2faf4 3034
73cb9701
CW
3035 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3036 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3037 if (ret)
3038 return ret;
3039 }
62e63007 3040
73cb9701
CW
3041 return 0;
3042}
3043
3044int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3045{
73cb9701
CW
3046 int ret;
3047
9caa34aa
CW
3048 if (flags & I915_WAIT_LOCKED) {
3049 struct i915_gem_timeline *tl;
3050
3051 lockdep_assert_held(&i915->drm.struct_mutex);
3052
3053 list_for_each_entry(tl, &i915->gt.timelines, link) {
3054 ret = wait_for_timeline(tl, flags);
3055 if (ret)
3056 return ret;
3057 }
3058 } else {
3059 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
1ec14ad3
CW
3060 if (ret)
3061 return ret;
3062 }
4df2faf4 3063
8a1a49f9 3064 return 0;
4df2faf4
DV
3065}
3066
d0da48cf
CW
3067void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3068 bool force)
673a394b 3069{
673a394b
EA
3070 /* If we don't have a page list set up, then we're not pinned
3071 * to GPU, and we can ignore the cache flush because it'll happen
3072 * again at bind time.
3073 */
a4f5ea64 3074 if (!obj->mm.pages)
d0da48cf 3075 return;
673a394b 3076
769ce464
ID
3077 /*
3078 * Stolen memory is always coherent with the GPU as it is explicitly
3079 * marked as wc by the system, or the system is cache-coherent.
3080 */
6a2c4232 3081 if (obj->stolen || obj->phys_handle)
d0da48cf 3082 return;
769ce464 3083
9c23f7fc
CW
3084 /* If the GPU is snooping the contents of the CPU cache,
3085 * we do not need to manually clear the CPU cache lines. However,
3086 * the caches are only snooped when the render cache is
3087 * flushed/invalidated. As we always have to emit invalidations
3088 * and flushes when moving into and out of the RENDER domain, correct
3089 * snooping behaviour occurs naturally as the result of our domain
3090 * tracking.
3091 */
0f71979a
CW
3092 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3093 obj->cache_dirty = true;
d0da48cf 3094 return;
0f71979a 3095 }
9c23f7fc 3096
1c5d22f7 3097 trace_i915_gem_object_clflush(obj);
a4f5ea64 3098 drm_clflush_sg(obj->mm.pages);
0f71979a 3099 obj->cache_dirty = false;
e47c68e9
EA
3100}
3101
3102/** Flushes the GTT write domain for the object if it's dirty. */
3103static void
05394f39 3104i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3105{
3b5724d7 3106 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1c5d22f7 3107
05394f39 3108 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3109 return;
3110
63256ec5 3111 /* No actual flushing is required for the GTT write domain. Writes
3b5724d7 3112 * to it "immediately" go to main memory as far as we know, so there's
e47c68e9 3113 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3114 *
3115 * However, we do have to enforce the order so that all writes through
3116 * the GTT land before any writes to the device, such as updates to
3117 * the GATT itself.
3b5724d7
CW
3118 *
3119 * We also have to wait a bit for the writes to land from the GTT.
3120 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3121 * timing. This issue has only been observed when switching quickly
3122 * between GTT writes and CPU reads from inside the kernel on recent hw,
3123 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3124 * system agents we cannot reproduce this behaviour).
e47c68e9 3125 */
63256ec5 3126 wmb();
3b5724d7 3127 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3b3f1650 3128 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
63256ec5 3129
d243ad82 3130 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
f99d7069 3131
b0dc465f 3132 obj->base.write_domain = 0;
1c5d22f7 3133 trace_i915_gem_object_change_domain(obj,
05394f39 3134 obj->base.read_domains,
b0dc465f 3135 I915_GEM_DOMAIN_GTT);
e47c68e9
EA
3136}
3137
3138/** Flushes the CPU write domain for the object if it's dirty. */
3139static void
e62b59e4 3140i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3141{
05394f39 3142 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3143 return;
3144
d0da48cf 3145 i915_gem_clflush_object(obj, obj->pin_display);
de152b62 3146 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3147
b0dc465f 3148 obj->base.write_domain = 0;
1c5d22f7 3149 trace_i915_gem_object_change_domain(obj,
05394f39 3150 obj->base.read_domains,
b0dc465f 3151 I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3152}
3153
2ef7eeaa
EA
3154/**
3155 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3156 * @obj: object to act on
3157 * @write: ask for write access or read only
2ef7eeaa
EA
3158 *
3159 * This function returns when the move is complete, including waiting on
3160 * flushes to occur.
3161 */
79e53945 3162int
2021746e 3163i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3164{
1c5d22f7 3165 uint32_t old_write_domain, old_read_domains;
e47c68e9 3166 int ret;
2ef7eeaa 3167
e95433c7 3168 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3169
e95433c7
CW
3170 ret = i915_gem_object_wait(obj,
3171 I915_WAIT_INTERRUPTIBLE |
3172 I915_WAIT_LOCKED |
3173 (write ? I915_WAIT_ALL : 0),
3174 MAX_SCHEDULE_TIMEOUT,
3175 NULL);
88241785
CW
3176 if (ret)
3177 return ret;
3178
c13d87ea
CW
3179 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3180 return 0;
3181
43566ded
CW
3182 /* Flush and acquire obj->pages so that we are coherent through
3183 * direct access in memory with previous cached writes through
3184 * shmemfs and that our cache domain tracking remains valid.
3185 * For example, if the obj->filp was moved to swap without us
3186 * being notified and releasing the pages, we would mistakenly
3187 * continue to assume that the obj remained out of the CPU cached
3188 * domain.
3189 */
a4f5ea64 3190 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3191 if (ret)
3192 return ret;
3193
e62b59e4 3194 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3195
d0a57789
CW
3196 /* Serialise direct access to this object with the barriers for
3197 * coherent writes from the GPU, by effectively invalidating the
3198 * GTT domain upon first access.
3199 */
3200 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3201 mb();
3202
05394f39
CW
3203 old_write_domain = obj->base.write_domain;
3204 old_read_domains = obj->base.read_domains;
1c5d22f7 3205
e47c68e9
EA
3206 /* It should now be out of any other write domains, and we can update
3207 * the domain values for our changes.
3208 */
40e62d5d 3209 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3210 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3211 if (write) {
05394f39
CW
3212 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3213 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3214 obj->mm.dirty = true;
2ef7eeaa
EA
3215 }
3216
1c5d22f7
CW
3217 trace_i915_gem_object_change_domain(obj,
3218 old_read_domains,
3219 old_write_domain);
3220
a4f5ea64 3221 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3222 return 0;
3223}
3224
ef55f92a
CW
3225/**
3226 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3227 * @obj: object to act on
3228 * @cache_level: new cache level to set for the object
ef55f92a
CW
3229 *
3230 * After this function returns, the object will be in the new cache-level
3231 * across all GTT and the contents of the backing storage will be coherent,
3232 * with respect to the new cache-level. In order to keep the backing storage
3233 * coherent for all users, we only allow a single cache level to be set
3234 * globally on the object and prevent it from being changed whilst the
3235 * hardware is reading from the object. That is if the object is currently
3236 * on the scanout it will be set to uncached (or equivalent display
3237 * cache coherency) and all non-MOCS GPU access will also be uncached so
3238 * that all direct access to the scanout remains coherent.
3239 */
e4ffd173
CW
3240int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3241 enum i915_cache_level cache_level)
3242{
aa653a68 3243 struct i915_vma *vma;
a6a7cc4b 3244 int ret;
e4ffd173 3245
4c7d62c6
CW
3246 lockdep_assert_held(&obj->base.dev->struct_mutex);
3247
e4ffd173 3248 if (obj->cache_level == cache_level)
a6a7cc4b 3249 return 0;
e4ffd173 3250
ef55f92a
CW
3251 /* Inspect the list of currently bound VMA and unbind any that would
3252 * be invalid given the new cache-level. This is principally to
3253 * catch the issue of the CS prefetch crossing page boundaries and
3254 * reading an invalid PTE on older architectures.
3255 */
aa653a68
CW
3256restart:
3257 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3258 if (!drm_mm_node_allocated(&vma->node))
3259 continue;
3260
20dfbde4 3261 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3262 DRM_DEBUG("can not change the cache level of pinned objects\n");
3263 return -EBUSY;
3264 }
3265
aa653a68
CW
3266 if (i915_gem_valid_gtt_space(vma, cache_level))
3267 continue;
3268
3269 ret = i915_vma_unbind(vma);
3270 if (ret)
3271 return ret;
3272
3273 /* As unbinding may affect other elements in the
3274 * obj->vma_list (due to side-effects from retiring
3275 * an active vma), play safe and restart the iterator.
3276 */
3277 goto restart;
42d6ab48
CW
3278 }
3279
ef55f92a
CW
3280 /* We can reuse the existing drm_mm nodes but need to change the
3281 * cache-level on the PTE. We could simply unbind them all and
3282 * rebind with the correct cache-level on next use. However since
3283 * we already have a valid slot, dma mapping, pages etc, we may as
3284 * rewrite the PTE in the belief that doing so tramples upon less
3285 * state and so involves less work.
3286 */
15717de2 3287 if (obj->bind_count) {
ef55f92a
CW
3288 /* Before we change the PTE, the GPU must not be accessing it.
3289 * If we wait upon the object, we know that all the bound
3290 * VMA are no longer active.
3291 */
e95433c7
CW
3292 ret = i915_gem_object_wait(obj,
3293 I915_WAIT_INTERRUPTIBLE |
3294 I915_WAIT_LOCKED |
3295 I915_WAIT_ALL,
3296 MAX_SCHEDULE_TIMEOUT,
3297 NULL);
e4ffd173
CW
3298 if (ret)
3299 return ret;
3300
0031fb96
TU
3301 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3302 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3303 /* Access to snoopable pages through the GTT is
3304 * incoherent and on some machines causes a hard
3305 * lockup. Relinquish the CPU mmaping to force
3306 * userspace to refault in the pages and we can
3307 * then double check if the GTT mapping is still
3308 * valid for that pointer access.
3309 */
3310 i915_gem_release_mmap(obj);
3311
3312 /* As we no longer need a fence for GTT access,
3313 * we can relinquish it now (and so prevent having
3314 * to steal a fence from someone else on the next
3315 * fence request). Note GPU activity would have
3316 * dropped the fence as all snoopable access is
3317 * supposed to be linear.
3318 */
49ef5294
CW
3319 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3320 ret = i915_vma_put_fence(vma);
3321 if (ret)
3322 return ret;
3323 }
ef55f92a
CW
3324 } else {
3325 /* We either have incoherent backing store and
3326 * so no GTT access or the architecture is fully
3327 * coherent. In such cases, existing GTT mmaps
3328 * ignore the cache bit in the PTE and we can
3329 * rewrite it without confusing the GPU or having
3330 * to force userspace to fault back in its mmaps.
3331 */
e4ffd173
CW
3332 }
3333
1c7f4bca 3334 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3335 if (!drm_mm_node_allocated(&vma->node))
3336 continue;
3337
3338 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3339 if (ret)
3340 return ret;
3341 }
e4ffd173
CW
3342 }
3343
a6a7cc4b
CW
3344 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3345 cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3346 obj->cache_dirty = true;
3347
1c7f4bca 3348 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3349 vma->node.color = cache_level;
3350 obj->cache_level = cache_level;
3351
e4ffd173
CW
3352 return 0;
3353}
3354
199adf40
BW
3355int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3356 struct drm_file *file)
e6994aee 3357{
199adf40 3358 struct drm_i915_gem_caching *args = data;
e6994aee 3359 struct drm_i915_gem_object *obj;
fbbd37b3 3360 int err = 0;
e6994aee 3361
fbbd37b3
CW
3362 rcu_read_lock();
3363 obj = i915_gem_object_lookup_rcu(file, args->handle);
3364 if (!obj) {
3365 err = -ENOENT;
3366 goto out;
3367 }
e6994aee 3368
651d794f
CW
3369 switch (obj->cache_level) {
3370 case I915_CACHE_LLC:
3371 case I915_CACHE_L3_LLC:
3372 args->caching = I915_CACHING_CACHED;
3373 break;
3374
4257d3ba
CW
3375 case I915_CACHE_WT:
3376 args->caching = I915_CACHING_DISPLAY;
3377 break;
3378
651d794f
CW
3379 default:
3380 args->caching = I915_CACHING_NONE;
3381 break;
3382 }
fbbd37b3
CW
3383out:
3384 rcu_read_unlock();
3385 return err;
e6994aee
CW
3386}
3387
199adf40
BW
3388int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3389 struct drm_file *file)
e6994aee 3390{
9c870d03 3391 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3392 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3393 struct drm_i915_gem_object *obj;
3394 enum i915_cache_level level;
3395 int ret;
3396
199adf40
BW
3397 switch (args->caching) {
3398 case I915_CACHING_NONE:
e6994aee
CW
3399 level = I915_CACHE_NONE;
3400 break;
199adf40 3401 case I915_CACHING_CACHED:
e5756c10
ID
3402 /*
3403 * Due to a HW issue on BXT A stepping, GPU stores via a
3404 * snooped mapping may leave stale data in a corresponding CPU
3405 * cacheline, whereas normally such cachelines would get
3406 * invalidated.
3407 */
9c870d03 3408 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3409 return -ENODEV;
3410
e6994aee
CW
3411 level = I915_CACHE_LLC;
3412 break;
4257d3ba 3413 case I915_CACHING_DISPLAY:
9c870d03 3414 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3415 break;
e6994aee
CW
3416 default:
3417 return -EINVAL;
3418 }
3419
3bc2913e
BW
3420 ret = i915_mutex_lock_interruptible(dev);
3421 if (ret)
9c870d03 3422 return ret;
3bc2913e 3423
03ac0642
CW
3424 obj = i915_gem_object_lookup(file, args->handle);
3425 if (!obj) {
e6994aee
CW
3426 ret = -ENOENT;
3427 goto unlock;
3428 }
3429
3430 ret = i915_gem_object_set_cache_level(obj, level);
f8c417cd 3431 i915_gem_object_put(obj);
e6994aee
CW
3432unlock:
3433 mutex_unlock(&dev->struct_mutex);
3434 return ret;
3435}
3436
b9241ea3 3437/*
2da3b9b9
CW
3438 * Prepare buffer for display plane (scanout, cursors, etc).
3439 * Can be called from an uninterruptible phase (modesetting) and allows
3440 * any flushes to be pipelined (for pageflips).
b9241ea3 3441 */
058d88c4 3442struct i915_vma *
2da3b9b9
CW
3443i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3444 u32 alignment,
e6617330 3445 const struct i915_ggtt_view *view)
b9241ea3 3446{
058d88c4 3447 struct i915_vma *vma;
2da3b9b9 3448 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3449 int ret;
3450
4c7d62c6
CW
3451 lockdep_assert_held(&obj->base.dev->struct_mutex);
3452
cc98b413
CW
3453 /* Mark the pin_display early so that we account for the
3454 * display coherency whilst setting up the cache domains.
3455 */
8a0c39b1 3456 obj->pin_display++;
cc98b413 3457
a7ef0640
EA
3458 /* The display engine is not coherent with the LLC cache on gen6. As
3459 * a result, we make sure that the pinning that is about to occur is
3460 * done with uncached PTEs. This is lowest common denominator for all
3461 * chipsets.
3462 *
3463 * However for gen6+, we could do better by using the GFDT bit instead
3464 * of uncaching, which would allow us to flush all the LLC-cached data
3465 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3466 */
651d794f 3467 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3468 HAS_WT(to_i915(obj->base.dev)) ?
3469 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3470 if (ret) {
3471 vma = ERR_PTR(ret);
cc98b413 3472 goto err_unpin_display;
058d88c4 3473 }
a7ef0640 3474
2da3b9b9
CW
3475 /* As the user may map the buffer once pinned in the display plane
3476 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3477 * always use map_and_fenceable for all scanout buffers. However,
3478 * it may simply be too big to fit into mappable, in which case
3479 * put it anyway and hope that userspace can cope (but always first
3480 * try to preserve the existing ABI).
2da3b9b9 3481 */
2efb813d
CW
3482 vma = ERR_PTR(-ENOSPC);
3483 if (view->type == I915_GGTT_VIEW_NORMAL)
3484 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3485 PIN_MAPPABLE | PIN_NONBLOCK);
767a222e
CW
3486 if (IS_ERR(vma)) {
3487 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3488 unsigned int flags;
3489
3490 /* Valleyview is definitely limited to scanning out the first
3491 * 512MiB. Lets presume this behaviour was inherited from the
3492 * g4x display engine and that all earlier gen are similarly
3493 * limited. Testing suggests that it is a little more
3494 * complicated than this. For example, Cherryview appears quite
3495 * happy to scanout from anywhere within its global aperture.
3496 */
3497 flags = 0;
3498 if (HAS_GMCH_DISPLAY(i915))
3499 flags = PIN_MAPPABLE;
3500 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3501 }
058d88c4 3502 if (IS_ERR(vma))
cc98b413 3503 goto err_unpin_display;
2da3b9b9 3504
d8923dcf
CW
3505 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3506
a6a7cc4b
CW
3507 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3508 if (obj->cache_dirty) {
3509 i915_gem_clflush_object(obj, true);
3510 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3511 }
b118c1e3 3512
2da3b9b9 3513 old_write_domain = obj->base.write_domain;
05394f39 3514 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3515
3516 /* It should now be out of any other write domains, and we can update
3517 * the domain values for our changes.
3518 */
e5f1d962 3519 obj->base.write_domain = 0;
05394f39 3520 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3521
3522 trace_i915_gem_object_change_domain(obj,
3523 old_read_domains,
2da3b9b9 3524 old_write_domain);
b9241ea3 3525
058d88c4 3526 return vma;
cc98b413
CW
3527
3528err_unpin_display:
8a0c39b1 3529 obj->pin_display--;
058d88c4 3530 return vma;
cc98b413
CW
3531}
3532
3533void
058d88c4 3534i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3535{
49d73912 3536 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4c7d62c6 3537
058d88c4 3538 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3539 return;
3540
d8923dcf
CW
3541 if (--vma->obj->pin_display == 0)
3542 vma->display_alignment = 0;
e6617330 3543
383d5823
CW
3544 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3545 if (!i915_vma_is_active(vma))
3546 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3547
058d88c4 3548 i915_vma_unpin(vma);
b9241ea3
ZW
3549}
3550
e47c68e9
EA
3551/**
3552 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3553 * @obj: object to act on
3554 * @write: requesting write or read-only access
e47c68e9
EA
3555 *
3556 * This function returns when the move is complete, including waiting on
3557 * flushes to occur.
3558 */
dabdfe02 3559int
919926ae 3560i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3561{
1c5d22f7 3562 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3563 int ret;
3564
e95433c7 3565 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3566
e95433c7
CW
3567 ret = i915_gem_object_wait(obj,
3568 I915_WAIT_INTERRUPTIBLE |
3569 I915_WAIT_LOCKED |
3570 (write ? I915_WAIT_ALL : 0),
3571 MAX_SCHEDULE_TIMEOUT,
3572 NULL);
88241785
CW
3573 if (ret)
3574 return ret;
3575
c13d87ea
CW
3576 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3577 return 0;
3578
e47c68e9 3579 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3580
05394f39
CW
3581 old_write_domain = obj->base.write_domain;
3582 old_read_domains = obj->base.read_domains;
1c5d22f7 3583
e47c68e9 3584 /* Flush the CPU cache if it's still invalid. */
05394f39 3585 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3586 i915_gem_clflush_object(obj, false);
2ef7eeaa 3587
05394f39 3588 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3589 }
3590
3591 /* It should now be out of any other write domains, and we can update
3592 * the domain values for our changes.
3593 */
40e62d5d 3594 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3595
3596 /* If we're writing through the CPU, then the GPU read domains will
3597 * need to be invalidated at next use.
3598 */
3599 if (write) {
05394f39
CW
3600 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3601 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3602 }
2ef7eeaa 3603
1c5d22f7
CW
3604 trace_i915_gem_object_change_domain(obj,
3605 old_read_domains,
3606 old_write_domain);
3607
2ef7eeaa
EA
3608 return 0;
3609}
3610
673a394b
EA
3611/* Throttle our rendering by waiting until the ring has completed our requests
3612 * emitted over 20 msec ago.
3613 *
b962442e
EA
3614 * Note that if we were to use the current jiffies each time around the loop,
3615 * we wouldn't escape the function with any frames outstanding if the time to
3616 * render a frame was over 20ms.
3617 *
673a394b
EA
3618 * This should get us reasonable parallelism between CPU and GPU but also
3619 * relatively low latency when blocking on a particular request to finish.
3620 */
40a5f0de 3621static int
f787a5f5 3622i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3623{
fac5e23e 3624 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3625 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3626 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3627 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 3628 long ret;
93533c29 3629
f4457ae7
CW
3630 /* ABI: return -EIO if already wedged */
3631 if (i915_terminally_wedged(&dev_priv->gpu_error))
3632 return -EIO;
e110e8d6 3633
1c25595f 3634 spin_lock(&file_priv->mm.lock);
f787a5f5 3635 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3636 if (time_after_eq(request->emitted_jiffies, recent_enough))
3637 break;
40a5f0de 3638
fcfa423c
JH
3639 /*
3640 * Note that the request might not have been submitted yet.
3641 * In which case emitted_jiffies will be zero.
3642 */
3643 if (!request->emitted_jiffies)
3644 continue;
3645
54fb2411 3646 target = request;
b962442e 3647 }
ff865885 3648 if (target)
e8a261ea 3649 i915_gem_request_get(target);
1c25595f 3650 spin_unlock(&file_priv->mm.lock);
40a5f0de 3651
54fb2411 3652 if (target == NULL)
f787a5f5 3653 return 0;
2bc43b5c 3654
e95433c7
CW
3655 ret = i915_wait_request(target,
3656 I915_WAIT_INTERRUPTIBLE,
3657 MAX_SCHEDULE_TIMEOUT);
e8a261ea 3658 i915_gem_request_put(target);
ff865885 3659
e95433c7 3660 return ret < 0 ? ret : 0;
40a5f0de
EA
3661}
3662
058d88c4 3663struct i915_vma *
ec7adb6e
JL
3664i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3665 const struct i915_ggtt_view *view,
91b2db6f 3666 u64 size,
2ffffd0f
CW
3667 u64 alignment,
3668 u64 flags)
ec7adb6e 3669{
ad16d2ed
CW
3670 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3671 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
3672 struct i915_vma *vma;
3673 int ret;
72e96d64 3674
4c7d62c6
CW
3675 lockdep_assert_held(&obj->base.dev->struct_mutex);
3676
058d88c4 3677 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
59bfa124 3678 if (IS_ERR(vma))
058d88c4 3679 return vma;
59bfa124
CW
3680
3681 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3682 if (flags & PIN_NONBLOCK &&
3683 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 3684 return ERR_PTR(-ENOSPC);
59bfa124 3685
ad16d2ed
CW
3686 if (flags & PIN_MAPPABLE) {
3687 u32 fence_size;
3688
3689 fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3690 i915_gem_object_get_tiling(obj));
3691 /* If the required space is larger than the available
3692 * aperture, we will not able to find a slot for the
3693 * object and unbinding the object now will be in
3694 * vain. Worse, doing so may cause us to ping-pong
3695 * the object in and out of the Global GTT and
3696 * waste a lot of cycles under the mutex.
3697 */
3698 if (fence_size > dev_priv->ggtt.mappable_end)
3699 return ERR_PTR(-E2BIG);
3700
3701 /* If NONBLOCK is set the caller is optimistically
3702 * trying to cache the full object within the mappable
3703 * aperture, and *must* have a fallback in place for
3704 * situations where we cannot bind the object. We
3705 * can be a little more lax here and use the fallback
3706 * more often to avoid costly migrations of ourselves
3707 * and other objects within the aperture.
3708 *
3709 * Half-the-aperture is used as a simple heuristic.
3710 * More interesting would to do search for a free
3711 * block prior to making the commitment to unbind.
3712 * That caters for the self-harm case, and with a
3713 * little more heuristics (e.g. NOFAULT, NOEVICT)
3714 * we could try to minimise harm to others.
3715 */
3716 if (flags & PIN_NONBLOCK &&
3717 fence_size > dev_priv->ggtt.mappable_end / 2)
3718 return ERR_PTR(-ENOSPC);
3719 }
3720
59bfa124
CW
3721 WARN(i915_vma_is_pinned(vma),
3722 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
3723 " offset=%08x, req.alignment=%llx,"
3724 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3725 i915_ggtt_offset(vma), alignment,
59bfa124 3726 !!(flags & PIN_MAPPABLE),
05a20d09 3727 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
3728 ret = i915_vma_unbind(vma);
3729 if (ret)
058d88c4 3730 return ERR_PTR(ret);
59bfa124
CW
3731 }
3732
058d88c4
CW
3733 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3734 if (ret)
3735 return ERR_PTR(ret);
ec7adb6e 3736
058d88c4 3737 return vma;
673a394b
EA
3738}
3739
edf6b76f 3740static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
3741{
3742 /* Note that we could alias engines in the execbuf API, but
3743 * that would be very unwise as it prevents userspace from
3744 * fine control over engine selection. Ahem.
3745 *
3746 * This should be something like EXEC_MAX_ENGINE instead of
3747 * I915_NUM_ENGINES.
3748 */
3749 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3750 return 0x10000 << id;
3751}
3752
3753static __always_inline unsigned int __busy_write_id(unsigned int id)
3754{
70cb472c
CW
3755 /* The uABI guarantees an active writer is also amongst the read
3756 * engines. This would be true if we accessed the activity tracking
3757 * under the lock, but as we perform the lookup of the object and
3758 * its activity locklessly we can not guarantee that the last_write
3759 * being active implies that we have set the same engine flag from
3760 * last_read - hence we always set both read and write busy for
3761 * last_write.
3762 */
3763 return id | __busy_read_flag(id);
3fdc13c7
CW
3764}
3765
edf6b76f 3766static __always_inline unsigned int
d07f0e59 3767__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
3768 unsigned int (*flag)(unsigned int id))
3769{
d07f0e59 3770 struct drm_i915_gem_request *rq;
3fdc13c7 3771
d07f0e59
CW
3772 /* We have to check the current hw status of the fence as the uABI
3773 * guarantees forward progress. We could rely on the idle worker
3774 * to eventually flush us, but to minimise latency just ask the
3775 * hardware.
1255501d 3776 *
d07f0e59 3777 * Note we only report on the status of native fences.
1255501d 3778 */
d07f0e59
CW
3779 if (!dma_fence_is_i915(fence))
3780 return 0;
3781
3782 /* opencode to_request() in order to avoid const warnings */
3783 rq = container_of(fence, struct drm_i915_gem_request, fence);
3784 if (i915_gem_request_completed(rq))
3785 return 0;
3786
3787 return flag(rq->engine->exec_id);
3fdc13c7
CW
3788}
3789
edf6b76f 3790static __always_inline unsigned int
d07f0e59 3791busy_check_reader(const struct dma_fence *fence)
3fdc13c7 3792{
d07f0e59 3793 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
3794}
3795
edf6b76f 3796static __always_inline unsigned int
d07f0e59 3797busy_check_writer(const struct dma_fence *fence)
3fdc13c7 3798{
d07f0e59
CW
3799 if (!fence)
3800 return 0;
3801
3802 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
3803}
3804
673a394b
EA
3805int
3806i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3807 struct drm_file *file)
673a394b
EA
3808{
3809 struct drm_i915_gem_busy *args = data;
05394f39 3810 struct drm_i915_gem_object *obj;
d07f0e59
CW
3811 struct reservation_object_list *list;
3812 unsigned int seq;
fbbd37b3 3813 int err;
673a394b 3814
d07f0e59 3815 err = -ENOENT;
fbbd37b3
CW
3816 rcu_read_lock();
3817 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 3818 if (!obj)
fbbd37b3 3819 goto out;
d1b851fc 3820
d07f0e59
CW
3821 /* A discrepancy here is that we do not report the status of
3822 * non-i915 fences, i.e. even though we may report the object as idle,
3823 * a call to set-domain may still stall waiting for foreign rendering.
3824 * This also means that wait-ioctl may report an object as busy,
3825 * where busy-ioctl considers it idle.
3826 *
3827 * We trade the ability to warn of foreign fences to report on which
3828 * i915 engines are active for the object.
3829 *
3830 * Alternatively, we can trade that extra information on read/write
3831 * activity with
3832 * args->busy =
3833 * !reservation_object_test_signaled_rcu(obj->resv, true);
3834 * to report the overall busyness. This is what the wait-ioctl does.
3835 *
3836 */
3837retry:
3838 seq = raw_read_seqcount(&obj->resv->seq);
426960be 3839
d07f0e59
CW
3840 /* Translate the exclusive fence to the READ *and* WRITE engine */
3841 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 3842
d07f0e59
CW
3843 /* Translate shared fences to READ set of engines */
3844 list = rcu_dereference(obj->resv->fence);
3845 if (list) {
3846 unsigned int shared_count = list->shared_count, i;
3fdc13c7 3847
d07f0e59
CW
3848 for (i = 0; i < shared_count; ++i) {
3849 struct dma_fence *fence =
3850 rcu_dereference(list->shared[i]);
3851
3852 args->busy |= busy_check_reader(fence);
3853 }
426960be 3854 }
673a394b 3855
d07f0e59
CW
3856 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3857 goto retry;
3858
3859 err = 0;
fbbd37b3
CW
3860out:
3861 rcu_read_unlock();
3862 return err;
673a394b
EA
3863}
3864
3865int
3866i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3867 struct drm_file *file_priv)
3868{
0206e353 3869 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3870}
3871
3ef94daa
CW
3872int
3873i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3874 struct drm_file *file_priv)
3875{
fac5e23e 3876 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 3877 struct drm_i915_gem_madvise *args = data;
05394f39 3878 struct drm_i915_gem_object *obj;
1233e2db 3879 int err;
3ef94daa
CW
3880
3881 switch (args->madv) {
3882 case I915_MADV_DONTNEED:
3883 case I915_MADV_WILLNEED:
3884 break;
3885 default:
3886 return -EINVAL;
3887 }
3888
03ac0642 3889 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
3890 if (!obj)
3891 return -ENOENT;
3892
3893 err = mutex_lock_interruptible(&obj->mm.lock);
3894 if (err)
3895 goto out;
3ef94daa 3896
a4f5ea64 3897 if (obj->mm.pages &&
3e510a8e 3898 i915_gem_object_is_tiled(obj) &&
656bfa3a 3899 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
3900 if (obj->mm.madv == I915_MADV_WILLNEED) {
3901 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 3902 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
3903 obj->mm.quirked = false;
3904 }
3905 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 3906 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 3907 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
3908 obj->mm.quirked = true;
3909 }
656bfa3a
DV
3910 }
3911
a4f5ea64
CW
3912 if (obj->mm.madv != __I915_MADV_PURGED)
3913 obj->mm.madv = args->madv;
3ef94daa 3914
6c085a72 3915 /* if the object is no longer attached, discard its backing storage */
a4f5ea64 3916 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
2d7ef395
CW
3917 i915_gem_object_truncate(obj);
3918
a4f5ea64 3919 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 3920 mutex_unlock(&obj->mm.lock);
bb6baf76 3921
1233e2db 3922out:
f8c417cd 3923 i915_gem_object_put(obj);
1233e2db 3924 return err;
3ef94daa
CW
3925}
3926
5b8c8aec
CW
3927static void
3928frontbuffer_retire(struct i915_gem_active *active,
3929 struct drm_i915_gem_request *request)
3930{
3931 struct drm_i915_gem_object *obj =
3932 container_of(active, typeof(*obj), frontbuffer_write);
3933
3934 intel_fb_obj_flush(obj, true, ORIGIN_CS);
3935}
3936
37e680a1
CW
3937void i915_gem_object_init(struct drm_i915_gem_object *obj,
3938 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3939{
1233e2db
CW
3940 mutex_init(&obj->mm.lock);
3941
56cea323 3942 INIT_LIST_HEAD(&obj->global_link);
275f039d 3943 INIT_LIST_HEAD(&obj->userfault_link);
b25cb2f8 3944 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 3945 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 3946 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 3947
37e680a1
CW
3948 obj->ops = ops;
3949
d07f0e59
CW
3950 reservation_object_init(&obj->__builtin_resv);
3951 obj->resv = &obj->__builtin_resv;
3952
50349247 3953 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 3954 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
3955
3956 obj->mm.madv = I915_MADV_WILLNEED;
3957 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3958 mutex_init(&obj->mm.get_page.lock);
0327d6ba 3959
f19ec8cb 3960 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
3961}
3962
37e680a1 3963static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
3964 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3965 I915_GEM_OBJECT_IS_SHRINKABLE,
37e680a1
CW
3966 .get_pages = i915_gem_object_get_pages_gtt,
3967 .put_pages = i915_gem_object_put_pages_gtt,
3968};
3969
b4bcbe2a
CW
3970/* Note we don't consider signbits :| */
3971#define overflows_type(x, T) \
3972 (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
3973
3974struct drm_i915_gem_object *
12d79d78 3975i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
ac52bc56 3976{
c397b908 3977 struct drm_i915_gem_object *obj;
5949eac4 3978 struct address_space *mapping;
1a240d4d 3979 gfp_t mask;
fe3db79b 3980 int ret;
ac52bc56 3981
b4bcbe2a
CW
3982 /* There is a prevalence of the assumption that we fit the object's
3983 * page count inside a 32bit _signed_ variable. Let's document this and
3984 * catch if we ever need to fix it. In the meantime, if you do spot
3985 * such a local variable, please consider fixing!
3986 */
3987 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3988 return ERR_PTR(-E2BIG);
3989
3990 if (overflows_type(size, obj->base.size))
3991 return ERR_PTR(-E2BIG);
3992
187685cb 3993 obj = i915_gem_object_alloc(dev_priv);
c397b908 3994 if (obj == NULL)
fe3db79b 3995 return ERR_PTR(-ENOMEM);
673a394b 3996
12d79d78 3997 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
fe3db79b
CW
3998 if (ret)
3999 goto fail;
673a394b 4000
bed1ea95 4001 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
a26e5239 4002 if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
bed1ea95
CW
4003 /* 965gm cannot relocate objects above 4GiB. */
4004 mask &= ~__GFP_HIGHMEM;
4005 mask |= __GFP_DMA32;
4006 }
4007
93c76a3d 4008 mapping = obj->base.filp->f_mapping;
bed1ea95 4009 mapping_set_gfp_mask(mapping, mask);
5949eac4 4010
37e680a1 4011 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4012
c397b908
DV
4013 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4014 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4015
0031fb96 4016 if (HAS_LLC(dev_priv)) {
3d29b842 4017 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4018 * cache) for about a 10% performance improvement
4019 * compared to uncached. Graphics requests other than
4020 * display scanout are coherent with the CPU in
4021 * accessing this cache. This means in this mode we
4022 * don't need to clflush on the CPU side, and on the
4023 * GPU side we only need to flush internal caches to
4024 * get data visible to the CPU.
4025 *
4026 * However, we maintain the display planes as UC, and so
4027 * need to rebind when first used as such.
4028 */
4029 obj->cache_level = I915_CACHE_LLC;
4030 } else
4031 obj->cache_level = I915_CACHE_NONE;
4032
d861e338
DV
4033 trace_i915_gem_object_create(obj);
4034
05394f39 4035 return obj;
fe3db79b
CW
4036
4037fail:
4038 i915_gem_object_free(obj);
fe3db79b 4039 return ERR_PTR(ret);
c397b908
DV
4040}
4041
340fbd8c
CW
4042static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4043{
4044 /* If we are the last user of the backing storage (be it shmemfs
4045 * pages or stolen etc), we know that the pages are going to be
4046 * immediately released. In this case, we can then skip copying
4047 * back the contents from the GPU.
4048 */
4049
a4f5ea64 4050 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4051 return false;
4052
4053 if (obj->base.filp == NULL)
4054 return true;
4055
4056 /* At first glance, this looks racy, but then again so would be
4057 * userspace racing mmap against close. However, the first external
4058 * reference to the filp can only be obtained through the
4059 * i915_gem_mmap_ioctl() which safeguards us against the user
4060 * acquiring such a reference whilst we are in the middle of
4061 * freeing the object.
4062 */
4063 return atomic_long_read(&obj->base.filp->f_count) == 1;
4064}
4065
fbbd37b3
CW
4066static void __i915_gem_free_objects(struct drm_i915_private *i915,
4067 struct llist_node *freed)
673a394b 4068{
fbbd37b3 4069 struct drm_i915_gem_object *obj, *on;
673a394b 4070
fbbd37b3
CW
4071 mutex_lock(&i915->drm.struct_mutex);
4072 intel_runtime_pm_get(i915);
4073 llist_for_each_entry(obj, freed, freed) {
4074 struct i915_vma *vma, *vn;
4075
4076 trace_i915_gem_object_destroy(obj);
4077
4078 GEM_BUG_ON(i915_gem_object_is_active(obj));
4079 list_for_each_entry_safe(vma, vn,
4080 &obj->vma_list, obj_link) {
4081 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4082 GEM_BUG_ON(i915_vma_is_active(vma));
4083 vma->flags &= ~I915_VMA_PIN_MASK;
4084 i915_vma_close(vma);
4085 }
db6c2b41
CW
4086 GEM_BUG_ON(!list_empty(&obj->vma_list));
4087 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4088
56cea323 4089 list_del(&obj->global_link);
fbbd37b3
CW
4090 }
4091 intel_runtime_pm_put(i915);
4092 mutex_unlock(&i915->drm.struct_mutex);
4093
4094 llist_for_each_entry_safe(obj, on, freed, freed) {
4095 GEM_BUG_ON(obj->bind_count);
4096 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4097
4098 if (obj->ops->release)
4099 obj->ops->release(obj);
f65c9168 4100
fbbd37b3
CW
4101 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4102 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4103 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
fbbd37b3
CW
4104 GEM_BUG_ON(obj->mm.pages);
4105
4106 if (obj->base.import_attach)
4107 drm_prime_gem_destroy(&obj->base, NULL);
4108
d07f0e59 4109 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4110 drm_gem_object_release(&obj->base);
4111 i915_gem_info_remove_obj(i915, obj->base.size);
4112
4113 kfree(obj->bit_17);
4114 i915_gem_object_free(obj);
4115 }
4116}
4117
4118static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4119{
4120 struct llist_node *freed;
4121
4122 freed = llist_del_all(&i915->mm.free_list);
4123 if (unlikely(freed))
4124 __i915_gem_free_objects(i915, freed);
4125}
4126
4127static void __i915_gem_free_work(struct work_struct *work)
4128{
4129 struct drm_i915_private *i915 =
4130 container_of(work, struct drm_i915_private, mm.free_work);
4131 struct llist_node *freed;
26e12f89 4132
b1f788c6
CW
4133 /* All file-owned VMA should have been released by this point through
4134 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4135 * However, the object may also be bound into the global GTT (e.g.
4136 * older GPUs without per-process support, or for direct access through
4137 * the GTT either for the user or for scanout). Those VMA still need to
4138 * unbound now.
4139 */
1488fc08 4140
fbbd37b3
CW
4141 while ((freed = llist_del_all(&i915->mm.free_list)))
4142 __i915_gem_free_objects(i915, freed);
4143}
a071fa00 4144
fbbd37b3
CW
4145static void __i915_gem_free_object_rcu(struct rcu_head *head)
4146{
4147 struct drm_i915_gem_object *obj =
4148 container_of(head, typeof(*obj), rcu);
4149 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4150
4151 /* We can't simply use call_rcu() from i915_gem_free_object()
4152 * as we need to block whilst unbinding, and the call_rcu
4153 * task may be called from softirq context. So we take a
4154 * detour through a worker.
4155 */
4156 if (llist_add(&obj->freed, &i915->mm.free_list))
4157 schedule_work(&i915->mm.free_work);
4158}
656bfa3a 4159
fbbd37b3
CW
4160void i915_gem_free_object(struct drm_gem_object *gem_obj)
4161{
4162 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4163
bc0629a7
CW
4164 if (obj->mm.quirked)
4165 __i915_gem_object_unpin_pages(obj);
4166
340fbd8c 4167 if (discard_backing_storage(obj))
a4f5ea64 4168 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4169
fbbd37b3
CW
4170 /* Before we free the object, make sure any pure RCU-only
4171 * read-side critical sections are complete, e.g.
4172 * i915_gem_busy_ioctl(). For the corresponding synchronized
4173 * lookup see i915_gem_object_lookup_rcu().
4174 */
4175 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4176}
4177
f8a7fde4
CW
4178void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4179{
4180 lockdep_assert_held(&obj->base.dev->struct_mutex);
4181
4182 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4183 if (i915_gem_object_is_active(obj))
4184 i915_gem_object_set_active_reference(obj);
4185 else
4186 i915_gem_object_put(obj);
4187}
4188
3033acab
CW
4189static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4190{
4191 struct intel_engine_cs *engine;
4192 enum intel_engine_id id;
4193
4194 for_each_engine(engine, dev_priv, id)
4195 GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4196}
4197
bf9e8429 4198int i915_gem_suspend(struct drm_i915_private *dev_priv)
29105ccc 4199{
bf9e8429 4200 struct drm_device *dev = &dev_priv->drm;
dcff85c8 4201 int ret;
28dfe52a 4202
54b4f68f
CW
4203 intel_suspend_gt_powersave(dev_priv);
4204
45c5f202 4205 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4206
4207 /* We have to flush all the executing contexts to main memory so
4208 * that they can saved in the hibernation image. To ensure the last
4209 * context image is coherent, we have to switch away from it. That
4210 * leaves the dev_priv->kernel_context still active when
4211 * we actually suspend, and its image in memory may not match the GPU
4212 * state. Fortunately, the kernel_context is disposable and we do
4213 * not rely on its state.
4214 */
4215 ret = i915_gem_switch_to_kernel_context(dev_priv);
4216 if (ret)
4217 goto err;
4218
22dd3bb9
CW
4219 ret = i915_gem_wait_for_idle(dev_priv,
4220 I915_WAIT_INTERRUPTIBLE |
4221 I915_WAIT_LOCKED);
f7403347 4222 if (ret)
45c5f202 4223 goto err;
f7403347 4224
c033666a 4225 i915_gem_retire_requests(dev_priv);
28176ef4 4226 GEM_BUG_ON(dev_priv->gt.active_requests);
673a394b 4227
3033acab 4228 assert_kernel_context_is_current(dev_priv);
b2e862d0 4229 i915_gem_context_lost(dev_priv);
45c5f202
CW
4230 mutex_unlock(&dev->struct_mutex);
4231
737b1506 4232 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4233 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4234 flush_delayed_work(&dev_priv->gt.idle_work);
fbbd37b3 4235 flush_work(&dev_priv->mm.free_work);
29105ccc 4236
bdcf120b
CW
4237 /* Assert that we sucessfully flushed all the work and
4238 * reset the GPU back to its idle, low power state.
4239 */
67d97da3 4240 WARN_ON(dev_priv->gt.awake);
31ab49ab 4241 WARN_ON(!intel_execlists_idle(dev_priv));
bdcf120b 4242
1c777c5d
ID
4243 /*
4244 * Neither the BIOS, ourselves or any other kernel
4245 * expects the system to be in execlists mode on startup,
4246 * so we need to reset the GPU back to legacy mode. And the only
4247 * known way to disable logical contexts is through a GPU reset.
4248 *
4249 * So in order to leave the system in a known default configuration,
4250 * always reset the GPU upon unload and suspend. Afterwards we then
4251 * clean up the GEM state tracking, flushing off the requests and
4252 * leaving the system in a known idle state.
4253 *
4254 * Note that is of the upmost importance that the GPU is idle and
4255 * all stray writes are flushed *before* we dismantle the backing
4256 * storage for the pinned objects.
4257 *
4258 * However, since we are uncertain that resetting the GPU on older
4259 * machines is a good idea, we don't - just in case it leaves the
4260 * machine in an unusable condition.
4261 */
0031fb96 4262 if (HAS_HW_CONTEXTS(dev_priv)) {
1c777c5d
ID
4263 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4264 WARN_ON(reset && reset != -ENODEV);
4265 }
4266
673a394b 4267 return 0;
45c5f202
CW
4268
4269err:
4270 mutex_unlock(&dev->struct_mutex);
4271 return ret;
673a394b
EA
4272}
4273
bf9e8429 4274void i915_gem_resume(struct drm_i915_private *dev_priv)
5ab57c70 4275{
bf9e8429 4276 struct drm_device *dev = &dev_priv->drm;
5ab57c70 4277
31ab49ab
ID
4278 WARN_ON(dev_priv->gt.awake);
4279
5ab57c70 4280 mutex_lock(&dev->struct_mutex);
275a991c 4281 i915_gem_restore_gtt_mappings(dev_priv);
5ab57c70
CW
4282
4283 /* As we didn't flush the kernel context before suspend, we cannot
4284 * guarantee that the context image is complete. So let's just reset
4285 * it and start again.
4286 */
821ed7df 4287 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4288
4289 mutex_unlock(&dev->struct_mutex);
4290}
4291
c6be607a 4292void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 4293{
c6be607a 4294 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
4295 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4296 return;
4297
4298 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4299 DISP_TILE_SURFACE_SWIZZLING);
4300
5db94019 4301 if (IS_GEN5(dev_priv))
11782b02
DV
4302 return;
4303
f691e2f4 4304 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4305 if (IS_GEN6(dev_priv))
6b26c86d 4306 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4307 else if (IS_GEN7(dev_priv))
6b26c86d 4308 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4309 else if (IS_GEN8(dev_priv))
31a5336e 4310 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4311 else
4312 BUG();
f691e2f4 4313}
e21af88d 4314
50a0bc90 4315static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4316{
81e7f200
VS
4317 I915_WRITE(RING_CTL(base), 0);
4318 I915_WRITE(RING_HEAD(base), 0);
4319 I915_WRITE(RING_TAIL(base), 0);
4320 I915_WRITE(RING_START(base), 0);
4321}
4322
50a0bc90 4323static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4324{
50a0bc90
TU
4325 if (IS_I830(dev_priv)) {
4326 init_unused_ring(dev_priv, PRB1_BASE);
4327 init_unused_ring(dev_priv, SRB0_BASE);
4328 init_unused_ring(dev_priv, SRB1_BASE);
4329 init_unused_ring(dev_priv, SRB2_BASE);
4330 init_unused_ring(dev_priv, SRB3_BASE);
4331 } else if (IS_GEN2(dev_priv)) {
4332 init_unused_ring(dev_priv, SRB0_BASE);
4333 init_unused_ring(dev_priv, SRB1_BASE);
4334 } else if (IS_GEN3(dev_priv)) {
4335 init_unused_ring(dev_priv, PRB1_BASE);
4336 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4337 }
4338}
4339
4fc7c971 4340int
bf9e8429 4341i915_gem_init_hw(struct drm_i915_private *dev_priv)
4fc7c971 4342{
e2f80391 4343 struct intel_engine_cs *engine;
3b3f1650 4344 enum intel_engine_id id;
d200cda6 4345 int ret;
4fc7c971 4346
de867c20
CW
4347 dev_priv->gt.last_init_time = ktime_get();
4348
5e4f5189
CW
4349 /* Double layer security blanket, see i915_gem_init() */
4350 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4351
0031fb96 4352 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4353 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4354
772c2a51 4355 if (IS_HASWELL(dev_priv))
50a0bc90 4356 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4357 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4358
6e266956 4359 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4360 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4361 u32 temp = I915_READ(GEN7_MSG_CTL);
4362 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4363 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 4364 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
4365 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4366 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4367 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4368 }
88a2b2a3
BW
4369 }
4370
c6be607a 4371 i915_gem_init_swizzling(dev_priv);
4fc7c971 4372
d5abdfda
DV
4373 /*
4374 * At least 830 can leave some of the unused rings
4375 * "active" (ie. head != tail) after resume which
4376 * will prevent c3 entry. Makes sure all unused rings
4377 * are totally idle.
4378 */
50a0bc90 4379 init_unused_rings(dev_priv);
d5abdfda 4380
ed54c1a1 4381 BUG_ON(!dev_priv->kernel_context);
90638cc1 4382
c6be607a 4383 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88
JH
4384 if (ret) {
4385 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4386 goto out;
4387 }
4388
4389 /* Need to do basic initialisation of all rings first: */
3b3f1650 4390 for_each_engine(engine, dev_priv, id) {
e2f80391 4391 ret = engine->init_hw(engine);
35a57ffb 4392 if (ret)
5e4f5189 4393 goto out;
35a57ffb 4394 }
99433931 4395
bf9e8429 4396 intel_mocs_init_l3cc_table(dev_priv);
0ccdacf6 4397
33a732f4 4398 /* We can't enable contexts until all firmware is loaded */
bf9e8429 4399 ret = intel_guc_setup(dev_priv);
e556f7c1
DG
4400 if (ret)
4401 goto out;
33a732f4 4402
5e4f5189
CW
4403out:
4404 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4405 return ret;
8187a2b7
ZN
4406}
4407
39df9190
CW
4408bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4409{
4410 if (INTEL_INFO(dev_priv)->gen < 6)
4411 return false;
4412
4413 /* TODO: make semaphores and Execlists play nicely together */
4414 if (i915.enable_execlists)
4415 return false;
4416
4417 if (value >= 0)
4418 return value;
4419
4420#ifdef CONFIG_INTEL_IOMMU
4421 /* Enable semaphores on SNB when IO remapping is off */
4422 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4423 return false;
4424#endif
4425
4426 return true;
4427}
4428
bf9e8429 4429int i915_gem_init(struct drm_i915_private *dev_priv)
1070a42b 4430{
1070a42b
CW
4431 int ret;
4432
bf9e8429 4433 mutex_lock(&dev_priv->drm.struct_mutex);
d62b4892 4434
a83014d3 4435 if (!i915.enable_execlists) {
821ed7df 4436 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4437 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4438 } else {
821ed7df 4439 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4440 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4441 }
4442
5e4f5189
CW
4443 /* This is just a security blanket to placate dragons.
4444 * On some systems, we very sporadically observe that the first TLBs
4445 * used by the CS may be stale, despite us poking the TLB reset. If
4446 * we hold the forcewake during initialisation these problems
4447 * just magically go away.
4448 */
4449 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4450
72778cb2 4451 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4452
4453 ret = i915_gem_init_ggtt(dev_priv);
4454 if (ret)
4455 goto out_unlock;
d62b4892 4456
bf9e8429 4457 ret = i915_gem_context_init(dev_priv);
7bcc3777
JN
4458 if (ret)
4459 goto out_unlock;
2fa48d8d 4460
bf9e8429 4461 ret = intel_engines_init(dev_priv);
35a57ffb 4462 if (ret)
7bcc3777 4463 goto out_unlock;
2fa48d8d 4464
bf9e8429 4465 ret = i915_gem_init_hw(dev_priv);
60990320 4466 if (ret == -EIO) {
7e21d648 4467 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4468 * wedged. But we only want to do this where the GPU is angry,
4469 * for all other failure, such as an allocation failure, bail.
4470 */
4471 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4472 i915_gem_set_wedged(dev_priv);
60990320 4473 ret = 0;
1070a42b 4474 }
7bcc3777
JN
4475
4476out_unlock:
5e4f5189 4477 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
bf9e8429 4478 mutex_unlock(&dev_priv->drm.struct_mutex);
1070a42b 4479
60990320 4480 return ret;
1070a42b
CW
4481}
4482
8187a2b7 4483void
cb15d9f8 4484i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
8187a2b7 4485{
e2f80391 4486 struct intel_engine_cs *engine;
3b3f1650 4487 enum intel_engine_id id;
8187a2b7 4488
3b3f1650 4489 for_each_engine(engine, dev_priv, id)
117897f4 4490 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4491}
4492
40ae4e16
ID
4493void
4494i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4495{
49ef5294 4496 int i;
40ae4e16
ID
4497
4498 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4499 !IS_CHERRYVIEW(dev_priv))
4500 dev_priv->num_fence_regs = 32;
4501 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4502 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4503 dev_priv->num_fence_regs = 16;
4504 else
4505 dev_priv->num_fence_regs = 8;
4506
c033666a 4507 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4508 dev_priv->num_fence_regs =
4509 I915_READ(vgtif_reg(avail_rs.fence_num));
4510
4511 /* Initialize fence registers to zero */
49ef5294
CW
4512 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4513 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4514
4515 fence->i915 = dev_priv;
4516 fence->id = i;
4517 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4518 }
4362f4f6 4519 i915_gem_restore_fences(dev_priv);
40ae4e16 4520
4362f4f6 4521 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
4522}
4523
73cb9701 4524int
cb15d9f8 4525i915_gem_load_init(struct drm_i915_private *dev_priv)
673a394b 4526{
a933568e 4527 int err = -ENOMEM;
42dcedd4 4528
a933568e
TU
4529 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4530 if (!dev_priv->objects)
73cb9701 4531 goto err_out;
73cb9701 4532
a933568e
TU
4533 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4534 if (!dev_priv->vmas)
73cb9701 4535 goto err_objects;
73cb9701 4536
a933568e
TU
4537 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4538 SLAB_HWCACHE_ALIGN |
4539 SLAB_RECLAIM_ACCOUNT |
4540 SLAB_DESTROY_BY_RCU);
4541 if (!dev_priv->requests)
73cb9701 4542 goto err_vmas;
73cb9701 4543
52e54209
CW
4544 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4545 SLAB_HWCACHE_ALIGN |
4546 SLAB_RECLAIM_ACCOUNT);
4547 if (!dev_priv->dependencies)
4548 goto err_requests;
4549
73cb9701
CW
4550 mutex_lock(&dev_priv->drm.struct_mutex);
4551 INIT_LIST_HEAD(&dev_priv->gt.timelines);
bb89485e 4552 err = i915_gem_timeline_init__global(dev_priv);
73cb9701
CW
4553 mutex_unlock(&dev_priv->drm.struct_mutex);
4554 if (err)
52e54209 4555 goto err_dependencies;
673a394b 4556
a33afea5 4557 INIT_LIST_HEAD(&dev_priv->context_list);
fbbd37b3
CW
4558 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4559 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
4560 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4561 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4562 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 4563 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
67d97da3 4564 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4565 i915_gem_retire_work_handler);
67d97da3 4566 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4567 i915_gem_idle_work_handler);
1f15b76f 4568 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4569 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4570
72bfa19c
CW
4571 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4572
6b95a207 4573 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4574
ce453d81
CW
4575 dev_priv->mm.interruptible = true;
4576
6f633402
JL
4577 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4578
b5add959 4579 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701
CW
4580
4581 return 0;
4582
52e54209
CW
4583err_dependencies:
4584 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
4585err_requests:
4586 kmem_cache_destroy(dev_priv->requests);
4587err_vmas:
4588 kmem_cache_destroy(dev_priv->vmas);
4589err_objects:
4590 kmem_cache_destroy(dev_priv->objects);
4591err_out:
4592 return err;
673a394b 4593}
71acb5eb 4594
cb15d9f8 4595void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
d64aa096 4596{
7d5d59e5
CW
4597 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4598
ea84aa77
MA
4599 mutex_lock(&dev_priv->drm.struct_mutex);
4600 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4601 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4602 mutex_unlock(&dev_priv->drm.struct_mutex);
4603
52e54209 4604 kmem_cache_destroy(dev_priv->dependencies);
d64aa096
ID
4605 kmem_cache_destroy(dev_priv->requests);
4606 kmem_cache_destroy(dev_priv->vmas);
4607 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4608
4609 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4610 rcu_barrier();
d64aa096
ID
4611}
4612
6a800eab
CW
4613int i915_gem_freeze(struct drm_i915_private *dev_priv)
4614{
4615 intel_runtime_pm_get(dev_priv);
4616
4617 mutex_lock(&dev_priv->drm.struct_mutex);
4618 i915_gem_shrink_all(dev_priv);
4619 mutex_unlock(&dev_priv->drm.struct_mutex);
4620
4621 intel_runtime_pm_put(dev_priv);
4622
4623 return 0;
4624}
4625
461fb99c
CW
4626int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4627{
4628 struct drm_i915_gem_object *obj;
7aab2d53
CW
4629 struct list_head *phases[] = {
4630 &dev_priv->mm.unbound_list,
4631 &dev_priv->mm.bound_list,
4632 NULL
4633 }, **p;
461fb99c
CW
4634
4635 /* Called just before we write the hibernation image.
4636 *
4637 * We need to update the domain tracking to reflect that the CPU
4638 * will be accessing all the pages to create and restore from the
4639 * hibernation, and so upon restoration those pages will be in the
4640 * CPU domain.
4641 *
4642 * To make sure the hibernation image contains the latest state,
4643 * we update that state just before writing out the image.
7aab2d53
CW
4644 *
4645 * To try and reduce the hibernation image, we manually shrink
4646 * the objects as well.
461fb99c
CW
4647 */
4648
6a800eab
CW
4649 mutex_lock(&dev_priv->drm.struct_mutex);
4650 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
461fb99c 4651
7aab2d53 4652 for (p = phases; *p; p++) {
56cea323 4653 list_for_each_entry(obj, *p, global_link) {
7aab2d53
CW
4654 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4655 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4656 }
461fb99c 4657 }
6a800eab 4658 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
4659
4660 return 0;
4661}
4662
f787a5f5 4663void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4664{
f787a5f5 4665 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4666 struct drm_i915_gem_request *request;
b962442e
EA
4667
4668 /* Clean up our request list when the client is going away, so that
4669 * later retire_requests won't dereference our soon-to-be-gone
4670 * file_priv.
4671 */
1c25595f 4672 spin_lock(&file_priv->mm.lock);
15f7bbc7 4673 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4674 request->file_priv = NULL;
1c25595f 4675 spin_unlock(&file_priv->mm.lock);
b29c19b6 4676
2e1b8730 4677 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4678 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4679 list_del(&file_priv->rps.link);
8d3afd7d 4680 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4681 }
b29c19b6
CW
4682}
4683
4684int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4685{
4686 struct drm_i915_file_private *file_priv;
e422b888 4687 int ret;
b29c19b6 4688
c4c29d7b 4689 DRM_DEBUG("\n");
b29c19b6
CW
4690
4691 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4692 if (!file_priv)
4693 return -ENOMEM;
4694
4695 file->driver_priv = file_priv;
f19ec8cb 4696 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4697 file_priv->file = file;
2e1b8730 4698 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4699
4700 spin_lock_init(&file_priv->mm.lock);
4701 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4702
c80ff16e 4703 file_priv->bsd_engine = -1;
de1add36 4704
e422b888
BW
4705 ret = i915_gem_context_open(dev, file);
4706 if (ret)
4707 kfree(file_priv);
b29c19b6 4708
e422b888 4709 return ret;
b29c19b6
CW
4710}
4711
b680c37a
DV
4712/**
4713 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4714 * @old: current GEM buffer for the frontbuffer slots
4715 * @new: new GEM buffer for the frontbuffer slots
4716 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4717 *
4718 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4719 * from @old and setting them in @new. Both @old and @new can be NULL.
4720 */
a071fa00
DV
4721void i915_gem_track_fb(struct drm_i915_gem_object *old,
4722 struct drm_i915_gem_object *new,
4723 unsigned frontbuffer_bits)
4724{
faf5bf0a
CW
4725 /* Control of individual bits within the mask are guarded by
4726 * the owning plane->mutex, i.e. we can never see concurrent
4727 * manipulation of individual bits. But since the bitfield as a whole
4728 * is updated using RMW, we need to use atomics in order to update
4729 * the bits.
4730 */
4731 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4732 sizeof(atomic_t) * BITS_PER_BYTE);
4733
a071fa00 4734 if (old) {
faf5bf0a
CW
4735 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4736 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4737 }
4738
4739 if (new) {
faf5bf0a
CW
4740 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4741 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4742 }
4743}
4744
ea70299d
DG
4745/* Allocate a new GEM object and fill it with the supplied data */
4746struct drm_i915_gem_object *
12d79d78 4747i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
ea70299d
DG
4748 const void *data, size_t size)
4749{
4750 struct drm_i915_gem_object *obj;
4751 struct sg_table *sg;
4752 size_t bytes;
4753 int ret;
4754
12d79d78 4755 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
fe3db79b 4756 if (IS_ERR(obj))
ea70299d
DG
4757 return obj;
4758
4759 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4760 if (ret)
4761 goto fail;
4762
a4f5ea64 4763 ret = i915_gem_object_pin_pages(obj);
ea70299d
DG
4764 if (ret)
4765 goto fail;
4766
a4f5ea64 4767 sg = obj->mm.pages;
ea70299d 4768 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
a4f5ea64 4769 obj->mm.dirty = true; /* Backing store is now out of date */
ea70299d
DG
4770 i915_gem_object_unpin_pages(obj);
4771
4772 if (WARN_ON(bytes != size)) {
4773 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4774 ret = -EFAULT;
4775 goto fail;
4776 }
4777
4778 return obj;
4779
4780fail:
f8c417cd 4781 i915_gem_object_put(obj);
ea70299d
DG
4782 return ERR_PTR(ret);
4783}
96d77634
CW
4784
4785struct scatterlist *
4786i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4787 unsigned int n,
4788 unsigned int *offset)
4789{
a4f5ea64 4790 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
4791 struct scatterlist *sg;
4792 unsigned int idx, count;
4793
4794 might_sleep();
4795 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 4796 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
4797
4798 /* As we iterate forward through the sg, we record each entry in a
4799 * radixtree for quick repeated (backwards) lookups. If we have seen
4800 * this index previously, we will have an entry for it.
4801 *
4802 * Initial lookup is O(N), but this is amortized to O(1) for
4803 * sequential page access (where each new request is consecutive
4804 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4805 * i.e. O(1) with a large constant!
4806 */
4807 if (n < READ_ONCE(iter->sg_idx))
4808 goto lookup;
4809
4810 mutex_lock(&iter->lock);
4811
4812 /* We prefer to reuse the last sg so that repeated lookup of this
4813 * (or the subsequent) sg are fast - comparing against the last
4814 * sg is faster than going through the radixtree.
4815 */
4816
4817 sg = iter->sg_pos;
4818 idx = iter->sg_idx;
4819 count = __sg_page_count(sg);
4820
4821 while (idx + count <= n) {
4822 unsigned long exception, i;
4823 int ret;
4824
4825 /* If we cannot allocate and insert this entry, or the
4826 * individual pages from this range, cancel updating the
4827 * sg_idx so that on this lookup we are forced to linearly
4828 * scan onwards, but on future lookups we will try the
4829 * insertion again (in which case we need to be careful of
4830 * the error return reporting that we have already inserted
4831 * this index).
4832 */
4833 ret = radix_tree_insert(&iter->radix, idx, sg);
4834 if (ret && ret != -EEXIST)
4835 goto scan;
4836
4837 exception =
4838 RADIX_TREE_EXCEPTIONAL_ENTRY |
4839 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4840 for (i = 1; i < count; i++) {
4841 ret = radix_tree_insert(&iter->radix, idx + i,
4842 (void *)exception);
4843 if (ret && ret != -EEXIST)
4844 goto scan;
4845 }
4846
4847 idx += count;
4848 sg = ____sg_next(sg);
4849 count = __sg_page_count(sg);
4850 }
4851
4852scan:
4853 iter->sg_pos = sg;
4854 iter->sg_idx = idx;
4855
4856 mutex_unlock(&iter->lock);
4857
4858 if (unlikely(n < idx)) /* insertion completed by another thread */
4859 goto lookup;
4860
4861 /* In case we failed to insert the entry into the radixtree, we need
4862 * to look beyond the current sg.
4863 */
4864 while (idx + count <= n) {
4865 idx += count;
4866 sg = ____sg_next(sg);
4867 count = __sg_page_count(sg);
4868 }
4869
4870 *offset = n - idx;
4871 return sg;
4872
4873lookup:
4874 rcu_read_lock();
4875
4876 sg = radix_tree_lookup(&iter->radix, n);
4877 GEM_BUG_ON(!sg);
4878
4879 /* If this index is in the middle of multi-page sg entry,
4880 * the radixtree will contain an exceptional entry that points
4881 * to the start of that range. We will return the pointer to
4882 * the base page and the offset of this page within the
4883 * sg entry's range.
4884 */
4885 *offset = 0;
4886 if (unlikely(radix_tree_exception(sg))) {
4887 unsigned long base =
4888 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4889
4890 sg = radix_tree_lookup(&iter->radix, base);
4891 GEM_BUG_ON(!sg);
4892
4893 *offset = n - base;
4894 }
4895
4896 rcu_read_unlock();
4897
4898 return sg;
4899}
4900
4901struct page *
4902i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4903{
4904 struct scatterlist *sg;
4905 unsigned int offset;
4906
4907 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4908
4909 sg = i915_gem_object_get_sg(obj, n, &offset);
4910 return nth_page(sg_page(sg), offset);
4911}
4912
4913/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4914struct page *
4915i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4916 unsigned int n)
4917{
4918 struct page *page;
4919
4920 page = i915_gem_object_get_page(obj, n);
a4f5ea64 4921 if (!obj->mm.dirty)
96d77634
CW
4922 set_page_dirty(page);
4923
4924 return page;
4925}
4926
4927dma_addr_t
4928i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4929 unsigned long n)
4930{
4931 struct scatterlist *sg;
4932 unsigned int offset;
4933
4934 sg = i915_gem_object_get_sg(obj, n, &offset);
4935 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4936}