]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Abstract the legacy workload submission mechanism away
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43
CW
63static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 65
c76ce038
CW
66static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
68{
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
70}
71
2c22569b
CW
72static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73{
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
76
77 return obj->pin_display;
78}
79
61050808
CW
80static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81{
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
84
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
87 */
5d82e3e6 88 obj->fence_dirty = false;
61050808
CW
89 obj->fence_reg = I915_FENCE_REG_NONE;
90}
91
73aa808f
CW
92/* some bookkeeping */
93static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
102static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104{
c20e8355 105 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
c20e8355 108 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
109}
110
21dd3734 111static int
33196ded 112i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 113{
30dbf0c0
CW
114 int ret;
115
7abb690a
DV
116#define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
1f83fee0 118 if (EXIT_COND)
30dbf0c0
CW
119 return 0;
120
0a6759c6
DV
121 /*
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
125 */
1f83fee0
DV
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
0a6759c6
DV
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
30dbf0c0 133 return ret;
0a6759c6 134 }
1f83fee0 135#undef EXIT_COND
30dbf0c0 136
21dd3734 137 return 0;
30dbf0c0
CW
138}
139
54cf91dc 140int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 141{
33196ded 142 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
143 int ret;
144
33196ded 145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
146 if (ret)
147 return ret;
148
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
152
23bc5982 153 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
154 return 0;
155}
30dbf0c0 156
7d1c4804 157static inline bool
05394f39 158i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 159{
9843877d 160 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
161}
162
79e53945
JB
163int
164i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 165 struct drm_file *file)
79e53945 166{
93d18799 167 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 168 struct drm_i915_gem_init *args = data;
2021746e 169
7bb6fb8d
DV
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
172
2021746e
CW
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
79e53945 176
f534bc0b
DV
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
180
79e53945 181 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
93d18799 184 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
185 mutex_unlock(&dev->struct_mutex);
186
2021746e 187 return 0;
673a394b
EA
188}
189
5a125c3c
EA
190int
191i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 192 struct drm_file *file)
5a125c3c 193{
73aa808f 194 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 195 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
5a125c3c 198
6299f992 199 pinned = 0;
73aa808f 200 mutex_lock(&dev->struct_mutex);
35c20a60 201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 202 if (i915_gem_obj_is_pinned(obj))
f343c5f6 203 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 204 mutex_unlock(&dev->struct_mutex);
5a125c3c 205
853ba5d2 206 args->aper_size = dev_priv->gtt.base.total;
0206e353 207 args->aper_available_size = args->aper_size - pinned;
6299f992 208
5a125c3c
EA
209 return 0;
210}
211
00731155
CW
212static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
213{
214 drm_dma_handle_t *phys = obj->phys_handle;
215
216 if (!phys)
217 return;
218
219 if (obj->madv == I915_MADV_WILLNEED) {
220 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221 char *vaddr = phys->vaddr;
222 int i;
223
224 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225 struct page *page = shmem_read_mapping_page(mapping, i);
226 if (!IS_ERR(page)) {
227 char *dst = kmap_atomic(page);
228 memcpy(dst, vaddr, PAGE_SIZE);
229 drm_clflush_virt_range(dst, PAGE_SIZE);
230 kunmap_atomic(dst);
231
232 set_page_dirty(page);
233 mark_page_accessed(page);
234 page_cache_release(page);
235 }
236 vaddr += PAGE_SIZE;
237 }
238 i915_gem_chipset_flush(obj->base.dev);
239 }
240
241#ifdef CONFIG_X86
242 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
243#endif
244 drm_pci_free(obj->base.dev, phys);
245 obj->phys_handle = NULL;
246}
247
248int
249i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
250 int align)
251{
252 drm_dma_handle_t *phys;
253 struct address_space *mapping;
254 char *vaddr;
255 int i;
256
257 if (obj->phys_handle) {
258 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
259 return -EBUSY;
260
261 return 0;
262 }
263
264 if (obj->madv != I915_MADV_WILLNEED)
265 return -EFAULT;
266
267 if (obj->base.filp == NULL)
268 return -EINVAL;
269
270 /* create a new object */
271 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
272 if (!phys)
273 return -ENOMEM;
274
275 vaddr = phys->vaddr;
276#ifdef CONFIG_X86
277 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
278#endif
279 mapping = file_inode(obj->base.filp)->i_mapping;
280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281 struct page *page;
282 char *src;
283
284 page = shmem_read_mapping_page(mapping, i);
285 if (IS_ERR(page)) {
286#ifdef CONFIG_X86
287 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
288#endif
289 drm_pci_free(obj->base.dev, phys);
290 return PTR_ERR(page);
291 }
292
293 src = kmap_atomic(page);
294 memcpy(vaddr, src, PAGE_SIZE);
295 kunmap_atomic(src);
296
297 mark_page_accessed(page);
298 page_cache_release(page);
299
300 vaddr += PAGE_SIZE;
301 }
302
303 obj->phys_handle = phys;
304 return 0;
305}
306
307static int
308i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309 struct drm_i915_gem_pwrite *args,
310 struct drm_file *file_priv)
311{
312 struct drm_device *dev = obj->base.dev;
313 void *vaddr = obj->phys_handle->vaddr + args->offset;
314 char __user *user_data = to_user_ptr(args->data_ptr);
315
316 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317 unsigned long unwritten;
318
319 /* The physical object once assigned is fixed for the lifetime
320 * of the obj, so we can safely drop the lock and continue
321 * to access vaddr.
322 */
323 mutex_unlock(&dev->struct_mutex);
324 unwritten = copy_from_user(vaddr, user_data, args->size);
325 mutex_lock(&dev->struct_mutex);
326 if (unwritten)
327 return -EFAULT;
328 }
329
330 i915_gem_chipset_flush(dev);
331 return 0;
332}
333
42dcedd4
CW
334void *i915_gem_object_alloc(struct drm_device *dev)
335{
336 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 337 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
338}
339
340void i915_gem_object_free(struct drm_i915_gem_object *obj)
341{
342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343 kmem_cache_free(dev_priv->slab, obj);
344}
345
ff72145b
DA
346static int
347i915_gem_create(struct drm_file *file,
348 struct drm_device *dev,
349 uint64_t size,
350 uint32_t *handle_p)
673a394b 351{
05394f39 352 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
353 int ret;
354 u32 handle;
673a394b 355
ff72145b 356 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
357 if (size == 0)
358 return -EINVAL;
673a394b
EA
359
360 /* Allocate the new object */
ff72145b 361 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
362 if (obj == NULL)
363 return -ENOMEM;
364
05394f39 365 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 366 /* drop reference from allocate - handle holds it now */
d861e338
DV
367 drm_gem_object_unreference_unlocked(&obj->base);
368 if (ret)
369 return ret;
202f2fef 370
ff72145b 371 *handle_p = handle;
673a394b
EA
372 return 0;
373}
374
ff72145b
DA
375int
376i915_gem_dumb_create(struct drm_file *file,
377 struct drm_device *dev,
378 struct drm_mode_create_dumb *args)
379{
380 /* have to work out size/pitch and return them */
de45eaf7 381 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
382 args->size = args->pitch * args->height;
383 return i915_gem_create(file, dev,
384 args->size, &args->handle);
385}
386
ff72145b
DA
387/**
388 * Creates a new mm object and returns a handle to it.
389 */
390int
391i915_gem_create_ioctl(struct drm_device *dev, void *data,
392 struct drm_file *file)
393{
394 struct drm_i915_gem_create *args = data;
63ed2cb2 395
ff72145b
DA
396 return i915_gem_create(file, dev,
397 args->size, &args->handle);
398}
399
8461d226
DV
400static inline int
401__copy_to_user_swizzled(char __user *cpu_vaddr,
402 const char *gpu_vaddr, int gpu_offset,
403 int length)
404{
405 int ret, cpu_offset = 0;
406
407 while (length > 0) {
408 int cacheline_end = ALIGN(gpu_offset + 1, 64);
409 int this_length = min(cacheline_end - gpu_offset, length);
410 int swizzled_gpu_offset = gpu_offset ^ 64;
411
412 ret = __copy_to_user(cpu_vaddr + cpu_offset,
413 gpu_vaddr + swizzled_gpu_offset,
414 this_length);
415 if (ret)
416 return ret + length;
417
418 cpu_offset += this_length;
419 gpu_offset += this_length;
420 length -= this_length;
421 }
422
423 return 0;
424}
425
8c59967c 426static inline int
4f0c7cfb
BW
427__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428 const char __user *cpu_vaddr,
8c59967c
DV
429 int length)
430{
431 int ret, cpu_offset = 0;
432
433 while (length > 0) {
434 int cacheline_end = ALIGN(gpu_offset + 1, 64);
435 int this_length = min(cacheline_end - gpu_offset, length);
436 int swizzled_gpu_offset = gpu_offset ^ 64;
437
438 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439 cpu_vaddr + cpu_offset,
440 this_length);
441 if (ret)
442 return ret + length;
443
444 cpu_offset += this_length;
445 gpu_offset += this_length;
446 length -= this_length;
447 }
448
449 return 0;
450}
451
4c914c0c
BV
452/*
453 * Pins the specified object's pages and synchronizes the object with
454 * GPU accesses. Sets needs_clflush to non-zero if the caller should
455 * flush the object from the CPU cache.
456 */
457int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
458 int *needs_clflush)
459{
460 int ret;
461
462 *needs_clflush = 0;
463
464 if (!obj->base.filp)
465 return -EINVAL;
466
467 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468 /* If we're not in the cpu read domain, set ourself into the gtt
469 * read domain and manually flush cachelines (if required). This
470 * optimizes for the case when the gpu will dirty the data
471 * anyway again before the next pread happens. */
472 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
473 obj->cache_level);
474 ret = i915_gem_object_wait_rendering(obj, true);
475 if (ret)
476 return ret;
c8725f3d
CW
477
478 i915_gem_object_retire(obj);
4c914c0c
BV
479 }
480
481 ret = i915_gem_object_get_pages(obj);
482 if (ret)
483 return ret;
484
485 i915_gem_object_pin_pages(obj);
486
487 return ret;
488}
489
d174bd64
DV
490/* Per-page copy function for the shmem pread fastpath.
491 * Flushes invalid cachelines before reading the target if
492 * needs_clflush is set. */
eb01459f 493static int
d174bd64
DV
494shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495 char __user *user_data,
496 bool page_do_bit17_swizzling, bool needs_clflush)
497{
498 char *vaddr;
499 int ret;
500
e7e58eb5 501 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
502 return -EINVAL;
503
504 vaddr = kmap_atomic(page);
505 if (needs_clflush)
506 drm_clflush_virt_range(vaddr + shmem_page_offset,
507 page_length);
508 ret = __copy_to_user_inatomic(user_data,
509 vaddr + shmem_page_offset,
510 page_length);
511 kunmap_atomic(vaddr);
512
f60d7f0c 513 return ret ? -EFAULT : 0;
d174bd64
DV
514}
515
23c18c71
DV
516static void
517shmem_clflush_swizzled_range(char *addr, unsigned long length,
518 bool swizzled)
519{
e7e58eb5 520 if (unlikely(swizzled)) {
23c18c71
DV
521 unsigned long start = (unsigned long) addr;
522 unsigned long end = (unsigned long) addr + length;
523
524 /* For swizzling simply ensure that we always flush both
525 * channels. Lame, but simple and it works. Swizzled
526 * pwrite/pread is far from a hotpath - current userspace
527 * doesn't use it at all. */
528 start = round_down(start, 128);
529 end = round_up(end, 128);
530
531 drm_clflush_virt_range((void *)start, end - start);
532 } else {
533 drm_clflush_virt_range(addr, length);
534 }
535
536}
537
d174bd64
DV
538/* Only difference to the fast-path function is that this can handle bit17
539 * and uses non-atomic copy and kmap functions. */
540static int
541shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542 char __user *user_data,
543 bool page_do_bit17_swizzling, bool needs_clflush)
544{
545 char *vaddr;
546 int ret;
547
548 vaddr = kmap(page);
549 if (needs_clflush)
23c18c71
DV
550 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
551 page_length,
552 page_do_bit17_swizzling);
d174bd64
DV
553
554 if (page_do_bit17_swizzling)
555 ret = __copy_to_user_swizzled(user_data,
556 vaddr, shmem_page_offset,
557 page_length);
558 else
559 ret = __copy_to_user(user_data,
560 vaddr + shmem_page_offset,
561 page_length);
562 kunmap(page);
563
f60d7f0c 564 return ret ? - EFAULT : 0;
d174bd64
DV
565}
566
eb01459f 567static int
dbf7bff0
DV
568i915_gem_shmem_pread(struct drm_device *dev,
569 struct drm_i915_gem_object *obj,
570 struct drm_i915_gem_pread *args,
571 struct drm_file *file)
eb01459f 572{
8461d226 573 char __user *user_data;
eb01459f 574 ssize_t remain;
8461d226 575 loff_t offset;
eb2c0c81 576 int shmem_page_offset, page_length, ret = 0;
8461d226 577 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 578 int prefaulted = 0;
8489731c 579 int needs_clflush = 0;
67d5a50c 580 struct sg_page_iter sg_iter;
eb01459f 581
2bb4629a 582 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
583 remain = args->size;
584
8461d226 585 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 586
4c914c0c 587 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
588 if (ret)
589 return ret;
590
8461d226 591 offset = args->offset;
eb01459f 592
67d5a50c
ID
593 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594 offset >> PAGE_SHIFT) {
2db76d7c 595 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
596
597 if (remain <= 0)
598 break;
599
eb01459f
EA
600 /* Operation in this page
601 *
eb01459f 602 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
603 * page_length = bytes to copy for this page
604 */
c8cbbb8b 605 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
606 page_length = remain;
607 if ((shmem_page_offset + page_length) > PAGE_SIZE)
608 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 609
8461d226
DV
610 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
611 (page_to_phys(page) & (1 << 17)) != 0;
612
d174bd64
DV
613 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
614 user_data, page_do_bit17_swizzling,
615 needs_clflush);
616 if (ret == 0)
617 goto next_page;
dbf7bff0 618
dbf7bff0
DV
619 mutex_unlock(&dev->struct_mutex);
620
d330a953 621 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 622 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
623 /* Userspace is tricking us, but we've already clobbered
624 * its pages with the prefault and promised to write the
625 * data up to the first fault. Hence ignore any errors
626 * and just continue. */
627 (void)ret;
628 prefaulted = 1;
629 }
eb01459f 630
d174bd64
DV
631 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
632 user_data, page_do_bit17_swizzling,
633 needs_clflush);
eb01459f 634
dbf7bff0 635 mutex_lock(&dev->struct_mutex);
f60d7f0c 636
f60d7f0c 637 if (ret)
8461d226 638 goto out;
8461d226 639
17793c9a 640next_page:
eb01459f 641 remain -= page_length;
8461d226 642 user_data += page_length;
eb01459f
EA
643 offset += page_length;
644 }
645
4f27b75d 646out:
f60d7f0c
CW
647 i915_gem_object_unpin_pages(obj);
648
eb01459f
EA
649 return ret;
650}
651
673a394b
EA
652/**
653 * Reads data from the object referenced by handle.
654 *
655 * On error, the contents of *data are undefined.
656 */
657int
658i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 659 struct drm_file *file)
673a394b
EA
660{
661 struct drm_i915_gem_pread *args = data;
05394f39 662 struct drm_i915_gem_object *obj;
35b62a89 663 int ret = 0;
673a394b 664
51311d0a
CW
665 if (args->size == 0)
666 return 0;
667
668 if (!access_ok(VERIFY_WRITE,
2bb4629a 669 to_user_ptr(args->data_ptr),
51311d0a
CW
670 args->size))
671 return -EFAULT;
672
4f27b75d 673 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 674 if (ret)
4f27b75d 675 return ret;
673a394b 676
05394f39 677 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 678 if (&obj->base == NULL) {
1d7cfea1
CW
679 ret = -ENOENT;
680 goto unlock;
4f27b75d 681 }
673a394b 682
7dcd2499 683 /* Bounds check source. */
05394f39
CW
684 if (args->offset > obj->base.size ||
685 args->size > obj->base.size - args->offset) {
ce9d419d 686 ret = -EINVAL;
35b62a89 687 goto out;
ce9d419d
CW
688 }
689
1286ff73
DV
690 /* prime objects have no backing filp to GEM pread/pwrite
691 * pages from.
692 */
693 if (!obj->base.filp) {
694 ret = -EINVAL;
695 goto out;
696 }
697
db53a302
CW
698 trace_i915_gem_object_pread(obj, args->offset, args->size);
699
dbf7bff0 700 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 701
35b62a89 702out:
05394f39 703 drm_gem_object_unreference(&obj->base);
1d7cfea1 704unlock:
4f27b75d 705 mutex_unlock(&dev->struct_mutex);
eb01459f 706 return ret;
673a394b
EA
707}
708
0839ccb8
KP
709/* This is the fast write path which cannot handle
710 * page faults in the source data
9b7530cc 711 */
0839ccb8
KP
712
713static inline int
714fast_user_write(struct io_mapping *mapping,
715 loff_t page_base, int page_offset,
716 char __user *user_data,
717 int length)
9b7530cc 718{
4f0c7cfb
BW
719 void __iomem *vaddr_atomic;
720 void *vaddr;
0839ccb8 721 unsigned long unwritten;
9b7530cc 722
3e4d3af5 723 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
724 /* We can use the cpu mem copy function because this is X86. */
725 vaddr = (void __force*)vaddr_atomic + page_offset;
726 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 727 user_data, length);
3e4d3af5 728 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 729 return unwritten;
0839ccb8
KP
730}
731
3de09aa3
EA
732/**
733 * This is the fast pwrite path, where we copy the data directly from the
734 * user into the GTT, uncached.
735 */
673a394b 736static int
05394f39
CW
737i915_gem_gtt_pwrite_fast(struct drm_device *dev,
738 struct drm_i915_gem_object *obj,
3de09aa3 739 struct drm_i915_gem_pwrite *args,
05394f39 740 struct drm_file *file)
673a394b 741{
3e31c6c0 742 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 743 ssize_t remain;
0839ccb8 744 loff_t offset, page_base;
673a394b 745 char __user *user_data;
935aaa69
DV
746 int page_offset, page_length, ret;
747
1ec9e26d 748 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
749 if (ret)
750 goto out;
751
752 ret = i915_gem_object_set_to_gtt_domain(obj, true);
753 if (ret)
754 goto out_unpin;
755
756 ret = i915_gem_object_put_fence(obj);
757 if (ret)
758 goto out_unpin;
673a394b 759
2bb4629a 760 user_data = to_user_ptr(args->data_ptr);
673a394b 761 remain = args->size;
673a394b 762
f343c5f6 763 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
764
765 while (remain > 0) {
766 /* Operation in this page
767 *
0839ccb8
KP
768 * page_base = page offset within aperture
769 * page_offset = offset within page
770 * page_length = bytes to copy for this page
673a394b 771 */
c8cbbb8b
CW
772 page_base = offset & PAGE_MASK;
773 page_offset = offset_in_page(offset);
0839ccb8
KP
774 page_length = remain;
775 if ((page_offset + remain) > PAGE_SIZE)
776 page_length = PAGE_SIZE - page_offset;
777
0839ccb8 778 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
779 * source page isn't available. Return the error and we'll
780 * retry in the slow path.
0839ccb8 781 */
5d4545ae 782 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
783 page_offset, user_data, page_length)) {
784 ret = -EFAULT;
785 goto out_unpin;
786 }
673a394b 787
0839ccb8
KP
788 remain -= page_length;
789 user_data += page_length;
790 offset += page_length;
673a394b 791 }
673a394b 792
935aaa69 793out_unpin:
d7f46fc4 794 i915_gem_object_ggtt_unpin(obj);
935aaa69 795out:
3de09aa3 796 return ret;
673a394b
EA
797}
798
d174bd64
DV
799/* Per-page copy function for the shmem pwrite fastpath.
800 * Flushes invalid cachelines before writing to the target if
801 * needs_clflush_before is set and flushes out any written cachelines after
802 * writing if needs_clflush is set. */
3043c60c 803static int
d174bd64
DV
804shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
805 char __user *user_data,
806 bool page_do_bit17_swizzling,
807 bool needs_clflush_before,
808 bool needs_clflush_after)
673a394b 809{
d174bd64 810 char *vaddr;
673a394b 811 int ret;
3de09aa3 812
e7e58eb5 813 if (unlikely(page_do_bit17_swizzling))
d174bd64 814 return -EINVAL;
3de09aa3 815
d174bd64
DV
816 vaddr = kmap_atomic(page);
817 if (needs_clflush_before)
818 drm_clflush_virt_range(vaddr + shmem_page_offset,
819 page_length);
c2831a94
CW
820 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
821 user_data, page_length);
d174bd64
DV
822 if (needs_clflush_after)
823 drm_clflush_virt_range(vaddr + shmem_page_offset,
824 page_length);
825 kunmap_atomic(vaddr);
3de09aa3 826
755d2218 827 return ret ? -EFAULT : 0;
3de09aa3
EA
828}
829
d174bd64
DV
830/* Only difference to the fast-path function is that this can handle bit17
831 * and uses non-atomic copy and kmap functions. */
3043c60c 832static int
d174bd64
DV
833shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
834 char __user *user_data,
835 bool page_do_bit17_swizzling,
836 bool needs_clflush_before,
837 bool needs_clflush_after)
673a394b 838{
d174bd64
DV
839 char *vaddr;
840 int ret;
e5281ccd 841
d174bd64 842 vaddr = kmap(page);
e7e58eb5 843 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
844 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
845 page_length,
846 page_do_bit17_swizzling);
d174bd64
DV
847 if (page_do_bit17_swizzling)
848 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
849 user_data,
850 page_length);
d174bd64
DV
851 else
852 ret = __copy_from_user(vaddr + shmem_page_offset,
853 user_data,
854 page_length);
855 if (needs_clflush_after)
23c18c71
DV
856 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
857 page_length,
858 page_do_bit17_swizzling);
d174bd64 859 kunmap(page);
40123c1f 860
755d2218 861 return ret ? -EFAULT : 0;
40123c1f
EA
862}
863
40123c1f 864static int
e244a443
DV
865i915_gem_shmem_pwrite(struct drm_device *dev,
866 struct drm_i915_gem_object *obj,
867 struct drm_i915_gem_pwrite *args,
868 struct drm_file *file)
40123c1f 869{
40123c1f 870 ssize_t remain;
8c59967c
DV
871 loff_t offset;
872 char __user *user_data;
eb2c0c81 873 int shmem_page_offset, page_length, ret = 0;
8c59967c 874 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 875 int hit_slowpath = 0;
58642885
DV
876 int needs_clflush_after = 0;
877 int needs_clflush_before = 0;
67d5a50c 878 struct sg_page_iter sg_iter;
40123c1f 879
2bb4629a 880 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
881 remain = args->size;
882
8c59967c 883 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 884
58642885
DV
885 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
886 /* If we're not in the cpu write domain, set ourself into the gtt
887 * write domain and manually flush cachelines (if required). This
888 * optimizes for the case when the gpu will use the data
889 * right away and we therefore have to clflush anyway. */
2c22569b 890 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
891 ret = i915_gem_object_wait_rendering(obj, false);
892 if (ret)
893 return ret;
c8725f3d
CW
894
895 i915_gem_object_retire(obj);
58642885 896 }
c76ce038
CW
897 /* Same trick applies to invalidate partially written cachelines read
898 * before writing. */
899 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
900 needs_clflush_before =
901 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 902
755d2218
CW
903 ret = i915_gem_object_get_pages(obj);
904 if (ret)
905 return ret;
906
907 i915_gem_object_pin_pages(obj);
908
673a394b 909 offset = args->offset;
05394f39 910 obj->dirty = 1;
673a394b 911
67d5a50c
ID
912 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
913 offset >> PAGE_SHIFT) {
2db76d7c 914 struct page *page = sg_page_iter_page(&sg_iter);
58642885 915 int partial_cacheline_write;
e5281ccd 916
9da3da66
CW
917 if (remain <= 0)
918 break;
919
40123c1f
EA
920 /* Operation in this page
921 *
40123c1f 922 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
923 * page_length = bytes to copy for this page
924 */
c8cbbb8b 925 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
926
927 page_length = remain;
928 if ((shmem_page_offset + page_length) > PAGE_SIZE)
929 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 930
58642885
DV
931 /* If we don't overwrite a cacheline completely we need to be
932 * careful to have up-to-date data by first clflushing. Don't
933 * overcomplicate things and flush the entire patch. */
934 partial_cacheline_write = needs_clflush_before &&
935 ((shmem_page_offset | page_length)
936 & (boot_cpu_data.x86_clflush_size - 1));
937
8c59967c
DV
938 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
939 (page_to_phys(page) & (1 << 17)) != 0;
940
d174bd64
DV
941 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
942 user_data, page_do_bit17_swizzling,
943 partial_cacheline_write,
944 needs_clflush_after);
945 if (ret == 0)
946 goto next_page;
e244a443
DV
947
948 hit_slowpath = 1;
e244a443 949 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
950 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
951 user_data, page_do_bit17_swizzling,
952 partial_cacheline_write,
953 needs_clflush_after);
40123c1f 954
e244a443 955 mutex_lock(&dev->struct_mutex);
755d2218 956
755d2218 957 if (ret)
8c59967c 958 goto out;
8c59967c 959
17793c9a 960next_page:
40123c1f 961 remain -= page_length;
8c59967c 962 user_data += page_length;
40123c1f 963 offset += page_length;
673a394b
EA
964 }
965
fbd5a26d 966out:
755d2218
CW
967 i915_gem_object_unpin_pages(obj);
968
e244a443 969 if (hit_slowpath) {
8dcf015e
DV
970 /*
971 * Fixup: Flush cpu caches in case we didn't flush the dirty
972 * cachelines in-line while writing and the object moved
973 * out of the cpu write domain while we've dropped the lock.
974 */
975 if (!needs_clflush_after &&
976 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
977 if (i915_gem_clflush_object(obj, obj->pin_display))
978 i915_gem_chipset_flush(dev);
e244a443 979 }
8c59967c 980 }
673a394b 981
58642885 982 if (needs_clflush_after)
e76e9aeb 983 i915_gem_chipset_flush(dev);
58642885 984
40123c1f 985 return ret;
673a394b
EA
986}
987
988/**
989 * Writes data to the object referenced by handle.
990 *
991 * On error, the contents of the buffer that were to be modified are undefined.
992 */
993int
994i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 995 struct drm_file *file)
673a394b
EA
996{
997 struct drm_i915_gem_pwrite *args = data;
05394f39 998 struct drm_i915_gem_object *obj;
51311d0a
CW
999 int ret;
1000
1001 if (args->size == 0)
1002 return 0;
1003
1004 if (!access_ok(VERIFY_READ,
2bb4629a 1005 to_user_ptr(args->data_ptr),
51311d0a
CW
1006 args->size))
1007 return -EFAULT;
1008
d330a953 1009 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1010 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1011 args->size);
1012 if (ret)
1013 return -EFAULT;
1014 }
673a394b 1015
fbd5a26d 1016 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1017 if (ret)
fbd5a26d 1018 return ret;
1d7cfea1 1019
05394f39 1020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1021 if (&obj->base == NULL) {
1d7cfea1
CW
1022 ret = -ENOENT;
1023 goto unlock;
fbd5a26d 1024 }
673a394b 1025
7dcd2499 1026 /* Bounds check destination. */
05394f39
CW
1027 if (args->offset > obj->base.size ||
1028 args->size > obj->base.size - args->offset) {
ce9d419d 1029 ret = -EINVAL;
35b62a89 1030 goto out;
ce9d419d
CW
1031 }
1032
1286ff73
DV
1033 /* prime objects have no backing filp to GEM pread/pwrite
1034 * pages from.
1035 */
1036 if (!obj->base.filp) {
1037 ret = -EINVAL;
1038 goto out;
1039 }
1040
db53a302
CW
1041 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1042
935aaa69 1043 ret = -EFAULT;
673a394b
EA
1044 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1045 * it would end up going through the fenced access, and we'll get
1046 * different detiling behavior between reading and writing.
1047 * pread/pwrite currently are reading and writing from the CPU
1048 * perspective, requiring manual detiling by the client.
1049 */
00731155
CW
1050 if (obj->phys_handle) {
1051 ret = i915_gem_phys_pwrite(obj, args, file);
5c0480f2
DV
1052 goto out;
1053 }
1054
2c22569b
CW
1055 if (obj->tiling_mode == I915_TILING_NONE &&
1056 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1057 cpu_write_needs_clflush(obj)) {
fbd5a26d 1058 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1059 /* Note that the gtt paths might fail with non-page-backed user
1060 * pointers (e.g. gtt mappings when moving data between
1061 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1062 }
673a394b 1063
86a1ee26 1064 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 1065 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 1066
35b62a89 1067out:
05394f39 1068 drm_gem_object_unreference(&obj->base);
1d7cfea1 1069unlock:
fbd5a26d 1070 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1071 return ret;
1072}
1073
b361237b 1074int
33196ded 1075i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1076 bool interruptible)
1077{
1f83fee0 1078 if (i915_reset_in_progress(error)) {
b361237b
CW
1079 /* Non-interruptible callers can't handle -EAGAIN, hence return
1080 * -EIO unconditionally for these. */
1081 if (!interruptible)
1082 return -EIO;
1083
1f83fee0
DV
1084 /* Recovery complete, but the reset failed ... */
1085 if (i915_terminally_wedged(error))
b361237b
CW
1086 return -EIO;
1087
1088 return -EAGAIN;
1089 }
1090
1091 return 0;
1092}
1093
1094/*
1095 * Compare seqno against outstanding lazy request. Emit a request if they are
1096 * equal.
1097 */
84c33a64 1098int
a4872ba6 1099i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
b361237b
CW
1100{
1101 int ret;
1102
1103 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1104
1105 ret = 0;
1823521d 1106 if (seqno == ring->outstanding_lazy_seqno)
0025c077 1107 ret = i915_add_request(ring, NULL);
b361237b
CW
1108
1109 return ret;
1110}
1111
094f9a54
CW
1112static void fake_irq(unsigned long data)
1113{
1114 wake_up_process((struct task_struct *)data);
1115}
1116
1117static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1118 struct intel_engine_cs *ring)
094f9a54
CW
1119{
1120 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1121}
1122
b29c19b6
CW
1123static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1124{
1125 if (file_priv == NULL)
1126 return true;
1127
1128 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1129}
1130
b361237b
CW
1131/**
1132 * __wait_seqno - wait until execution of seqno has finished
1133 * @ring: the ring expected to report seqno
1134 * @seqno: duh!
f69061be 1135 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1136 * @interruptible: do an interruptible wait (normally yes)
1137 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1138 *
f69061be
DV
1139 * Note: It is of utmost importance that the passed in seqno and reset_counter
1140 * values have been read by the caller in an smp safe manner. Where read-side
1141 * locks are involved, it is sufficient to read the reset_counter before
1142 * unlocking the lock that protects the seqno. For lockless tricks, the
1143 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1144 * inserted.
1145 *
b361237b
CW
1146 * Returns 0 if the seqno was found within the alloted time. Else returns the
1147 * errno with remaining time filled in timeout argument.
1148 */
a4872ba6 1149static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
f69061be 1150 unsigned reset_counter,
b29c19b6
CW
1151 bool interruptible,
1152 struct timespec *timeout,
1153 struct drm_i915_file_private *file_priv)
b361237b 1154{
3d13ef2e 1155 struct drm_device *dev = ring->dev;
3e31c6c0 1156 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1157 const bool irq_test_in_progress =
1158 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1159 struct timespec before, now;
1160 DEFINE_WAIT(wait);
47e9766d 1161 unsigned long timeout_expire;
b361237b
CW
1162 int ret;
1163
9df7575f 1164 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1165
b361237b
CW
1166 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1167 return 0;
1168
47e9766d 1169 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1170
ec5cc0f9 1171 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1172 gen6_rps_boost(dev_priv);
1173 if (file_priv)
1174 mod_delayed_work(dev_priv->wq,
1175 &file_priv->mm.idle_work,
1176 msecs_to_jiffies(100));
1177 }
1178
168c3f21 1179 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1180 return -ENODEV;
1181
094f9a54
CW
1182 /* Record current time in case interrupted by signal, or wedged */
1183 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1184 getrawmonotonic(&before);
094f9a54
CW
1185 for (;;) {
1186 struct timer_list timer;
b361237b 1187
094f9a54
CW
1188 prepare_to_wait(&ring->irq_queue, &wait,
1189 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1190
f69061be
DV
1191 /* We need to check whether any gpu reset happened in between
1192 * the caller grabbing the seqno and now ... */
094f9a54
CW
1193 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1194 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1195 * is truely gone. */
1196 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1197 if (ret == 0)
1198 ret = -EAGAIN;
1199 break;
1200 }
f69061be 1201
094f9a54
CW
1202 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1203 ret = 0;
1204 break;
1205 }
b361237b 1206
094f9a54
CW
1207 if (interruptible && signal_pending(current)) {
1208 ret = -ERESTARTSYS;
1209 break;
1210 }
1211
47e9766d 1212 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1213 ret = -ETIME;
1214 break;
1215 }
1216
1217 timer.function = NULL;
1218 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1219 unsigned long expire;
1220
094f9a54 1221 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1222 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1223 mod_timer(&timer, expire);
1224 }
1225
5035c275 1226 io_schedule();
094f9a54 1227
094f9a54
CW
1228 if (timer.function) {
1229 del_singleshot_timer_sync(&timer);
1230 destroy_timer_on_stack(&timer);
1231 }
1232 }
b361237b 1233 getrawmonotonic(&now);
094f9a54 1234 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1235
168c3f21
MK
1236 if (!irq_test_in_progress)
1237 ring->irq_put(ring);
094f9a54
CW
1238
1239 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1240
1241 if (timeout) {
1242 struct timespec sleep_time = timespec_sub(now, before);
1243 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1244 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1245 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1246 }
1247
094f9a54 1248 return ret;
b361237b
CW
1249}
1250
1251/**
1252 * Waits for a sequence number to be signaled, and cleans up the
1253 * request and object lists appropriately for that event.
1254 */
1255int
a4872ba6 1256i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
b361237b
CW
1257{
1258 struct drm_device *dev = ring->dev;
1259 struct drm_i915_private *dev_priv = dev->dev_private;
1260 bool interruptible = dev_priv->mm.interruptible;
1261 int ret;
1262
1263 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1264 BUG_ON(seqno == 0);
1265
33196ded 1266 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1267 if (ret)
1268 return ret;
1269
1270 ret = i915_gem_check_olr(ring, seqno);
1271 if (ret)
1272 return ret;
1273
f69061be
DV
1274 return __wait_seqno(ring, seqno,
1275 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1276 interruptible, NULL, NULL);
b361237b
CW
1277}
1278
d26e3af8
CW
1279static int
1280i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
a4872ba6 1281 struct intel_engine_cs *ring)
d26e3af8 1282{
c8725f3d
CW
1283 if (!obj->active)
1284 return 0;
d26e3af8
CW
1285
1286 /* Manually manage the write flush as we may have not yet
1287 * retired the buffer.
1288 *
1289 * Note that the last_write_seqno is always the earlier of
1290 * the two (read/write) seqno, so if we haved successfully waited,
1291 * we know we have passed the last write.
1292 */
1293 obj->last_write_seqno = 0;
d26e3af8
CW
1294
1295 return 0;
1296}
1297
b361237b
CW
1298/**
1299 * Ensures that all rendering to the object has completed and the object is
1300 * safe to unbind from the GTT or access from the CPU.
1301 */
1302static __must_check int
1303i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1304 bool readonly)
1305{
a4872ba6 1306 struct intel_engine_cs *ring = obj->ring;
b361237b
CW
1307 u32 seqno;
1308 int ret;
1309
1310 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1311 if (seqno == 0)
1312 return 0;
1313
1314 ret = i915_wait_seqno(ring, seqno);
1315 if (ret)
1316 return ret;
1317
d26e3af8 1318 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1319}
1320
3236f57a
CW
1321/* A nonblocking variant of the above wait. This is a highly dangerous routine
1322 * as the object state may change during this call.
1323 */
1324static __must_check int
1325i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1326 struct drm_i915_file_private *file_priv,
3236f57a
CW
1327 bool readonly)
1328{
1329 struct drm_device *dev = obj->base.dev;
1330 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 1331 struct intel_engine_cs *ring = obj->ring;
f69061be 1332 unsigned reset_counter;
3236f57a
CW
1333 u32 seqno;
1334 int ret;
1335
1336 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1337 BUG_ON(!dev_priv->mm.interruptible);
1338
1339 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1340 if (seqno == 0)
1341 return 0;
1342
33196ded 1343 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1344 if (ret)
1345 return ret;
1346
1347 ret = i915_gem_check_olr(ring, seqno);
1348 if (ret)
1349 return ret;
1350
f69061be 1351 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1352 mutex_unlock(&dev->struct_mutex);
6e4930f6 1353 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1354 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1355 if (ret)
1356 return ret;
3236f57a 1357
d26e3af8 1358 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1359}
1360
673a394b 1361/**
2ef7eeaa
EA
1362 * Called when user space prepares to use an object with the CPU, either
1363 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1364 */
1365int
1366i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1367 struct drm_file *file)
673a394b
EA
1368{
1369 struct drm_i915_gem_set_domain *args = data;
05394f39 1370 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1371 uint32_t read_domains = args->read_domains;
1372 uint32_t write_domain = args->write_domain;
673a394b
EA
1373 int ret;
1374
2ef7eeaa 1375 /* Only handle setting domains to types used by the CPU. */
21d509e3 1376 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1377 return -EINVAL;
1378
21d509e3 1379 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1380 return -EINVAL;
1381
1382 /* Having something in the write domain implies it's in the read
1383 * domain, and only that read domain. Enforce that in the request.
1384 */
1385 if (write_domain != 0 && read_domains != write_domain)
1386 return -EINVAL;
1387
76c1dec1 1388 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1389 if (ret)
76c1dec1 1390 return ret;
1d7cfea1 1391
05394f39 1392 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1393 if (&obj->base == NULL) {
1d7cfea1
CW
1394 ret = -ENOENT;
1395 goto unlock;
76c1dec1 1396 }
673a394b 1397
3236f57a
CW
1398 /* Try to flush the object off the GPU without holding the lock.
1399 * We will repeat the flush holding the lock in the normal manner
1400 * to catch cases where we are gazumped.
1401 */
6e4930f6
CW
1402 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1403 file->driver_priv,
1404 !write_domain);
3236f57a
CW
1405 if (ret)
1406 goto unref;
1407
2ef7eeaa
EA
1408 if (read_domains & I915_GEM_DOMAIN_GTT) {
1409 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1410
1411 /* Silently promote "you're not bound, there was nothing to do"
1412 * to success, since the client was just asking us to
1413 * make sure everything was done.
1414 */
1415 if (ret == -EINVAL)
1416 ret = 0;
2ef7eeaa 1417 } else {
e47c68e9 1418 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1419 }
1420
3236f57a 1421unref:
05394f39 1422 drm_gem_object_unreference(&obj->base);
1d7cfea1 1423unlock:
673a394b
EA
1424 mutex_unlock(&dev->struct_mutex);
1425 return ret;
1426}
1427
1428/**
1429 * Called when user space has done writes to this buffer
1430 */
1431int
1432i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1433 struct drm_file *file)
673a394b
EA
1434{
1435 struct drm_i915_gem_sw_finish *args = data;
05394f39 1436 struct drm_i915_gem_object *obj;
673a394b
EA
1437 int ret = 0;
1438
76c1dec1 1439 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1440 if (ret)
76c1dec1 1441 return ret;
1d7cfea1 1442
05394f39 1443 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1444 if (&obj->base == NULL) {
1d7cfea1
CW
1445 ret = -ENOENT;
1446 goto unlock;
673a394b
EA
1447 }
1448
673a394b 1449 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1450 if (obj->pin_display)
1451 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1452
05394f39 1453 drm_gem_object_unreference(&obj->base);
1d7cfea1 1454unlock:
673a394b
EA
1455 mutex_unlock(&dev->struct_mutex);
1456 return ret;
1457}
1458
1459/**
1460 * Maps the contents of an object, returning the address it is mapped
1461 * into.
1462 *
1463 * While the mapping holds a reference on the contents of the object, it doesn't
1464 * imply a ref on the object itself.
1465 */
1466int
1467i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1468 struct drm_file *file)
673a394b
EA
1469{
1470 struct drm_i915_gem_mmap *args = data;
1471 struct drm_gem_object *obj;
673a394b
EA
1472 unsigned long addr;
1473
05394f39 1474 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1475 if (obj == NULL)
bf79cb91 1476 return -ENOENT;
673a394b 1477
1286ff73
DV
1478 /* prime objects have no backing filp to GEM mmap
1479 * pages from.
1480 */
1481 if (!obj->filp) {
1482 drm_gem_object_unreference_unlocked(obj);
1483 return -EINVAL;
1484 }
1485
6be5ceb0 1486 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1487 PROT_READ | PROT_WRITE, MAP_SHARED,
1488 args->offset);
bc9025bd 1489 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1490 if (IS_ERR((void *)addr))
1491 return addr;
1492
1493 args->addr_ptr = (uint64_t) addr;
1494
1495 return 0;
1496}
1497
de151cf6
JB
1498/**
1499 * i915_gem_fault - fault a page into the GTT
1500 * vma: VMA in question
1501 * vmf: fault info
1502 *
1503 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1504 * from userspace. The fault handler takes care of binding the object to
1505 * the GTT (if needed), allocating and programming a fence register (again,
1506 * only if needed based on whether the old reg is still valid or the object
1507 * is tiled) and inserting a new PTE into the faulting process.
1508 *
1509 * Note that the faulting process may involve evicting existing objects
1510 * from the GTT and/or fence registers to make room. So performance may
1511 * suffer if the GTT working set is large or there are few fence registers
1512 * left.
1513 */
1514int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1515{
05394f39
CW
1516 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1517 struct drm_device *dev = obj->base.dev;
3e31c6c0 1518 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1519 pgoff_t page_offset;
1520 unsigned long pfn;
1521 int ret = 0;
0f973f27 1522 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1523
f65c9168
PZ
1524 intel_runtime_pm_get(dev_priv);
1525
de151cf6
JB
1526 /* We don't use vmf->pgoff since that has the fake offset */
1527 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1528 PAGE_SHIFT;
1529
d9bc7e9f
CW
1530 ret = i915_mutex_lock_interruptible(dev);
1531 if (ret)
1532 goto out;
a00b10c3 1533
db53a302
CW
1534 trace_i915_gem_object_fault(obj, page_offset, true, write);
1535
6e4930f6
CW
1536 /* Try to flush the object off the GPU first without holding the lock.
1537 * Upon reacquiring the lock, we will perform our sanity checks and then
1538 * repeat the flush holding the lock in the normal manner to catch cases
1539 * where we are gazumped.
1540 */
1541 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1542 if (ret)
1543 goto unlock;
1544
eb119bd6
CW
1545 /* Access to snoopable pages through the GTT is incoherent. */
1546 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1547 ret = -EFAULT;
eb119bd6
CW
1548 goto unlock;
1549 }
1550
d9bc7e9f 1551 /* Now bind it into the GTT if needed */
1ec9e26d 1552 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1553 if (ret)
1554 goto unlock;
4a684a41 1555
c9839303
CW
1556 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1557 if (ret)
1558 goto unpin;
74898d7e 1559
06d98131 1560 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1561 if (ret)
c9839303 1562 goto unpin;
7d1c4804 1563
b90b91d8 1564 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1565 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1566 pfn >>= PAGE_SHIFT;
de151cf6 1567
b90b91d8 1568 if (!obj->fault_mappable) {
beff0d0f
VS
1569 unsigned long size = min_t(unsigned long,
1570 vma->vm_end - vma->vm_start,
1571 obj->base.size);
b90b91d8
CW
1572 int i;
1573
beff0d0f 1574 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1575 ret = vm_insert_pfn(vma,
1576 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1577 pfn + i);
1578 if (ret)
1579 break;
1580 }
1581
1582 obj->fault_mappable = true;
1583 } else
1584 ret = vm_insert_pfn(vma,
1585 (unsigned long)vmf->virtual_address,
1586 pfn + page_offset);
c9839303 1587unpin:
d7f46fc4 1588 i915_gem_object_ggtt_unpin(obj);
c715089f 1589unlock:
de151cf6 1590 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1591out:
de151cf6 1592 switch (ret) {
d9bc7e9f 1593 case -EIO:
a9340cca
DV
1594 /* If this -EIO is due to a gpu hang, give the reset code a
1595 * chance to clean up the mess. Otherwise return the proper
1596 * SIGBUS. */
f65c9168
PZ
1597 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1598 ret = VM_FAULT_SIGBUS;
1599 break;
1600 }
045e769a 1601 case -EAGAIN:
571c608d
DV
1602 /*
1603 * EAGAIN means the gpu is hung and we'll wait for the error
1604 * handler to reset everything when re-faulting in
1605 * i915_mutex_lock_interruptible.
d9bc7e9f 1606 */
c715089f
CW
1607 case 0:
1608 case -ERESTARTSYS:
bed636ab 1609 case -EINTR:
e79e0fe3
DR
1610 case -EBUSY:
1611 /*
1612 * EBUSY is ok: this just means that another thread
1613 * already did the job.
1614 */
f65c9168
PZ
1615 ret = VM_FAULT_NOPAGE;
1616 break;
de151cf6 1617 case -ENOMEM:
f65c9168
PZ
1618 ret = VM_FAULT_OOM;
1619 break;
a7c2e1aa 1620 case -ENOSPC:
45d67817 1621 case -EFAULT:
f65c9168
PZ
1622 ret = VM_FAULT_SIGBUS;
1623 break;
de151cf6 1624 default:
a7c2e1aa 1625 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1626 ret = VM_FAULT_SIGBUS;
1627 break;
de151cf6 1628 }
f65c9168
PZ
1629
1630 intel_runtime_pm_put(dev_priv);
1631 return ret;
de151cf6
JB
1632}
1633
901782b2
CW
1634/**
1635 * i915_gem_release_mmap - remove physical page mappings
1636 * @obj: obj in question
1637 *
af901ca1 1638 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1639 * relinquish ownership of the pages back to the system.
1640 *
1641 * It is vital that we remove the page mapping if we have mapped a tiled
1642 * object through the GTT and then lose the fence register due to
1643 * resource pressure. Similarly if the object has been moved out of the
1644 * aperture, than pages mapped into userspace must be revoked. Removing the
1645 * mapping will then trigger a page fault on the next user access, allowing
1646 * fixup by i915_gem_fault().
1647 */
d05ca301 1648void
05394f39 1649i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1650{
6299f992
CW
1651 if (!obj->fault_mappable)
1652 return;
901782b2 1653
6796cb16
DH
1654 drm_vma_node_unmap(&obj->base.vma_node,
1655 obj->base.dev->anon_inode->i_mapping);
6299f992 1656 obj->fault_mappable = false;
901782b2
CW
1657}
1658
6254b204
CW
1659void
1660i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1661{
1662 struct drm_i915_gem_object *obj;
1663
1664 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1665 i915_gem_release_mmap(obj);
1666}
1667
0fa87796 1668uint32_t
e28f8711 1669i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1670{
e28f8711 1671 uint32_t gtt_size;
92b88aeb
CW
1672
1673 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1674 tiling_mode == I915_TILING_NONE)
1675 return size;
92b88aeb
CW
1676
1677 /* Previous chips need a power-of-two fence region when tiling */
1678 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1679 gtt_size = 1024*1024;
92b88aeb 1680 else
e28f8711 1681 gtt_size = 512*1024;
92b88aeb 1682
e28f8711
CW
1683 while (gtt_size < size)
1684 gtt_size <<= 1;
92b88aeb 1685
e28f8711 1686 return gtt_size;
92b88aeb
CW
1687}
1688
de151cf6
JB
1689/**
1690 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1691 * @obj: object to check
1692 *
1693 * Return the required GTT alignment for an object, taking into account
5e783301 1694 * potential fence register mapping.
de151cf6 1695 */
d865110c
ID
1696uint32_t
1697i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1698 int tiling_mode, bool fenced)
de151cf6 1699{
de151cf6
JB
1700 /*
1701 * Minimum alignment is 4k (GTT page size), but might be greater
1702 * if a fence register is needed for the object.
1703 */
d865110c 1704 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1705 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1706 return 4096;
1707
a00b10c3
CW
1708 /*
1709 * Previous chips need to be aligned to the size of the smallest
1710 * fence register that can contain the object.
1711 */
e28f8711 1712 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1713}
1714
d8cb5086
CW
1715static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1716{
1717 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1718 int ret;
1719
0de23977 1720 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1721 return 0;
1722
da494d7c
DV
1723 dev_priv->mm.shrinker_no_lock_stealing = true;
1724
d8cb5086
CW
1725 ret = drm_gem_create_mmap_offset(&obj->base);
1726 if (ret != -ENOSPC)
da494d7c 1727 goto out;
d8cb5086
CW
1728
1729 /* Badly fragmented mmap space? The only way we can recover
1730 * space is by destroying unwanted objects. We can't randomly release
1731 * mmap_offsets as userspace expects them to be persistent for the
1732 * lifetime of the objects. The closest we can is to release the
1733 * offsets on purgeable objects by truncating it and marking it purged,
1734 * which prevents userspace from ever using that object again.
1735 */
1736 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1737 ret = drm_gem_create_mmap_offset(&obj->base);
1738 if (ret != -ENOSPC)
da494d7c 1739 goto out;
d8cb5086
CW
1740
1741 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1742 ret = drm_gem_create_mmap_offset(&obj->base);
1743out:
1744 dev_priv->mm.shrinker_no_lock_stealing = false;
1745
1746 return ret;
d8cb5086
CW
1747}
1748
1749static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1750{
d8cb5086
CW
1751 drm_gem_free_mmap_offset(&obj->base);
1752}
1753
de151cf6 1754int
ff72145b
DA
1755i915_gem_mmap_gtt(struct drm_file *file,
1756 struct drm_device *dev,
1757 uint32_t handle,
1758 uint64_t *offset)
de151cf6 1759{
da761a6e 1760 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1761 struct drm_i915_gem_object *obj;
de151cf6
JB
1762 int ret;
1763
76c1dec1 1764 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1765 if (ret)
76c1dec1 1766 return ret;
de151cf6 1767
ff72145b 1768 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1769 if (&obj->base == NULL) {
1d7cfea1
CW
1770 ret = -ENOENT;
1771 goto unlock;
1772 }
de151cf6 1773
5d4545ae 1774 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1775 ret = -E2BIG;
ff56b0bc 1776 goto out;
da761a6e
CW
1777 }
1778
05394f39 1779 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1780 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1781 ret = -EFAULT;
1d7cfea1 1782 goto out;
ab18282d
CW
1783 }
1784
d8cb5086
CW
1785 ret = i915_gem_object_create_mmap_offset(obj);
1786 if (ret)
1787 goto out;
de151cf6 1788
0de23977 1789 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1790
1d7cfea1 1791out:
05394f39 1792 drm_gem_object_unreference(&obj->base);
1d7cfea1 1793unlock:
de151cf6 1794 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1795 return ret;
de151cf6
JB
1796}
1797
ff72145b
DA
1798/**
1799 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1800 * @dev: DRM device
1801 * @data: GTT mapping ioctl data
1802 * @file: GEM object info
1803 *
1804 * Simply returns the fake offset to userspace so it can mmap it.
1805 * The mmap call will end up in drm_gem_mmap(), which will set things
1806 * up so we can get faults in the handler above.
1807 *
1808 * The fault handler will take care of binding the object into the GTT
1809 * (since it may have been evicted to make room for something), allocating
1810 * a fence register, and mapping the appropriate aperture address into
1811 * userspace.
1812 */
1813int
1814i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1815 struct drm_file *file)
1816{
1817 struct drm_i915_gem_mmap_gtt *args = data;
1818
ff72145b
DA
1819 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1820}
1821
5537252b
CW
1822static inline int
1823i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1824{
1825 return obj->madv == I915_MADV_DONTNEED;
1826}
1827
225067ee
DV
1828/* Immediately discard the backing storage */
1829static void
1830i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1831{
4d6294bf 1832 i915_gem_object_free_mmap_offset(obj);
1286ff73 1833
4d6294bf
CW
1834 if (obj->base.filp == NULL)
1835 return;
e5281ccd 1836
225067ee
DV
1837 /* Our goal here is to return as much of the memory as
1838 * is possible back to the system as we are called from OOM.
1839 * To do this we must instruct the shmfs to drop all of its
1840 * backing pages, *now*.
1841 */
5537252b 1842 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1843 obj->madv = __I915_MADV_PURGED;
1844}
e5281ccd 1845
5537252b
CW
1846/* Try to discard unwanted pages */
1847static void
1848i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1849{
5537252b
CW
1850 struct address_space *mapping;
1851
1852 switch (obj->madv) {
1853 case I915_MADV_DONTNEED:
1854 i915_gem_object_truncate(obj);
1855 case __I915_MADV_PURGED:
1856 return;
1857 }
1858
1859 if (obj->base.filp == NULL)
1860 return;
1861
1862 mapping = file_inode(obj->base.filp)->i_mapping,
1863 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1864}
1865
5cdf5881 1866static void
05394f39 1867i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1868{
90797e6d
ID
1869 struct sg_page_iter sg_iter;
1870 int ret;
1286ff73 1871
05394f39 1872 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1873
6c085a72
CW
1874 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1875 if (ret) {
1876 /* In the event of a disaster, abandon all caches and
1877 * hope for the best.
1878 */
1879 WARN_ON(ret != -EIO);
2c22569b 1880 i915_gem_clflush_object(obj, true);
6c085a72
CW
1881 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1882 }
1883
6dacfd2f 1884 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1885 i915_gem_object_save_bit_17_swizzle(obj);
1886
05394f39
CW
1887 if (obj->madv == I915_MADV_DONTNEED)
1888 obj->dirty = 0;
3ef94daa 1889
90797e6d 1890 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1891 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1892
05394f39 1893 if (obj->dirty)
9da3da66 1894 set_page_dirty(page);
3ef94daa 1895
05394f39 1896 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1897 mark_page_accessed(page);
3ef94daa 1898
9da3da66 1899 page_cache_release(page);
3ef94daa 1900 }
05394f39 1901 obj->dirty = 0;
673a394b 1902
9da3da66
CW
1903 sg_free_table(obj->pages);
1904 kfree(obj->pages);
37e680a1 1905}
6c085a72 1906
dd624afd 1907int
37e680a1
CW
1908i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1909{
1910 const struct drm_i915_gem_object_ops *ops = obj->ops;
1911
2f745ad3 1912 if (obj->pages == NULL)
37e680a1
CW
1913 return 0;
1914
a5570178
CW
1915 if (obj->pages_pin_count)
1916 return -EBUSY;
1917
9843877d 1918 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1919
a2165e31
CW
1920 /* ->put_pages might need to allocate memory for the bit17 swizzle
1921 * array, hence protect them from being reaped by removing them from gtt
1922 * lists early. */
35c20a60 1923 list_del(&obj->global_list);
a2165e31 1924
37e680a1 1925 ops->put_pages(obj);
05394f39 1926 obj->pages = NULL;
37e680a1 1927
5537252b 1928 i915_gem_object_invalidate(obj);
6c085a72
CW
1929
1930 return 0;
1931}
1932
d9973b43 1933static unsigned long
93927ca5
DV
1934__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1935 bool purgeable_only)
6c085a72 1936{
c8725f3d
CW
1937 struct list_head still_in_list;
1938 struct drm_i915_gem_object *obj;
d9973b43 1939 unsigned long count = 0;
6c085a72 1940
57094f82 1941 /*
c8725f3d 1942 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
1943 * (due to retiring requests) we have to strictly process only
1944 * one element of the list at the time, and recheck the list
1945 * on every iteration.
c8725f3d
CW
1946 *
1947 * In particular, we must hold a reference whilst removing the
1948 * object as we may end up waiting for and/or retiring the objects.
1949 * This might release the final reference (held by the active list)
1950 * and result in the object being freed from under us. This is
1951 * similar to the precautions the eviction code must take whilst
1952 * removing objects.
1953 *
1954 * Also note that although these lists do not hold a reference to
1955 * the object we can safely grab one here: The final object
1956 * unreferencing and the bound_list are both protected by the
1957 * dev->struct_mutex and so we won't ever be able to observe an
1958 * object on the bound_list with a reference count equals 0.
57094f82 1959 */
c8725f3d
CW
1960 INIT_LIST_HEAD(&still_in_list);
1961 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1962 obj = list_first_entry(&dev_priv->mm.unbound_list,
1963 typeof(*obj), global_list);
1964 list_move_tail(&obj->global_list, &still_in_list);
1965
1966 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1967 continue;
1968
1969 drm_gem_object_reference(&obj->base);
1970
1971 if (i915_gem_object_put_pages(obj) == 0)
1972 count += obj->base.size >> PAGE_SHIFT;
1973
1974 drm_gem_object_unreference(&obj->base);
1975 }
1976 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1977
1978 INIT_LIST_HEAD(&still_in_list);
57094f82 1979 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1980 struct i915_vma *vma, *v;
80dcfdbd 1981
57094f82
CW
1982 obj = list_first_entry(&dev_priv->mm.bound_list,
1983 typeof(*obj), global_list);
c8725f3d 1984 list_move_tail(&obj->global_list, &still_in_list);
57094f82 1985
80dcfdbd
BW
1986 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1987 continue;
1988
57094f82
CW
1989 drm_gem_object_reference(&obj->base);
1990
07fe0b12
BW
1991 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1992 if (i915_vma_unbind(vma))
1993 break;
80dcfdbd 1994
57094f82 1995 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1996 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1997
1998 drm_gem_object_unreference(&obj->base);
6c085a72 1999 }
c8725f3d 2000 list_splice(&still_in_list, &dev_priv->mm.bound_list);
6c085a72
CW
2001
2002 return count;
2003}
2004
d9973b43 2005static unsigned long
93927ca5
DV
2006i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2007{
2008 return __i915_gem_shrink(dev_priv, target, true);
2009}
2010
d9973b43 2011static unsigned long
6c085a72
CW
2012i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2013{
6c085a72 2014 i915_gem_evict_everything(dev_priv->dev);
c8725f3d 2015 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
225067ee
DV
2016}
2017
37e680a1 2018static int
6c085a72 2019i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2020{
6c085a72 2021 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2022 int page_count, i;
2023 struct address_space *mapping;
9da3da66
CW
2024 struct sg_table *st;
2025 struct scatterlist *sg;
90797e6d 2026 struct sg_page_iter sg_iter;
e5281ccd 2027 struct page *page;
90797e6d 2028 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2029 gfp_t gfp;
e5281ccd 2030
6c085a72
CW
2031 /* Assert that the object is not currently in any GPU domain. As it
2032 * wasn't in the GTT, there shouldn't be any way it could have been in
2033 * a GPU cache
2034 */
2035 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2036 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2037
9da3da66
CW
2038 st = kmalloc(sizeof(*st), GFP_KERNEL);
2039 if (st == NULL)
2040 return -ENOMEM;
2041
05394f39 2042 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2043 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2044 kfree(st);
e5281ccd 2045 return -ENOMEM;
9da3da66 2046 }
e5281ccd 2047
9da3da66
CW
2048 /* Get the list of pages out of our struct file. They'll be pinned
2049 * at this point until we release them.
2050 *
2051 * Fail silently without starting the shrinker
2052 */
496ad9aa 2053 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2054 gfp = mapping_gfp_mask(mapping);
caf49191 2055 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2056 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2057 sg = st->sgl;
2058 st->nents = 0;
2059 for (i = 0; i < page_count; i++) {
6c085a72
CW
2060 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2061 if (IS_ERR(page)) {
2062 i915_gem_purge(dev_priv, page_count);
2063 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2064 }
2065 if (IS_ERR(page)) {
2066 /* We've tried hard to allocate the memory by reaping
2067 * our own buffer, now let the real VM do its job and
2068 * go down in flames if truly OOM.
2069 */
6c085a72 2070 i915_gem_shrink_all(dev_priv);
f461d1be 2071 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2072 if (IS_ERR(page))
2073 goto err_pages;
6c085a72 2074 }
426729dc
KRW
2075#ifdef CONFIG_SWIOTLB
2076 if (swiotlb_nr_tbl()) {
2077 st->nents++;
2078 sg_set_page(sg, page, PAGE_SIZE, 0);
2079 sg = sg_next(sg);
2080 continue;
2081 }
2082#endif
90797e6d
ID
2083 if (!i || page_to_pfn(page) != last_pfn + 1) {
2084 if (i)
2085 sg = sg_next(sg);
2086 st->nents++;
2087 sg_set_page(sg, page, PAGE_SIZE, 0);
2088 } else {
2089 sg->length += PAGE_SIZE;
2090 }
2091 last_pfn = page_to_pfn(page);
3bbbe706
DV
2092
2093 /* Check that the i965g/gm workaround works. */
2094 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2095 }
426729dc
KRW
2096#ifdef CONFIG_SWIOTLB
2097 if (!swiotlb_nr_tbl())
2098#endif
2099 sg_mark_end(sg);
74ce6b6c
CW
2100 obj->pages = st;
2101
6dacfd2f 2102 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2103 i915_gem_object_do_bit_17_swizzle(obj);
2104
2105 return 0;
2106
2107err_pages:
90797e6d
ID
2108 sg_mark_end(sg);
2109 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2110 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2111 sg_free_table(st);
2112 kfree(st);
0820baf3
CW
2113
2114 /* shmemfs first checks if there is enough memory to allocate the page
2115 * and reports ENOSPC should there be insufficient, along with the usual
2116 * ENOMEM for a genuine allocation failure.
2117 *
2118 * We use ENOSPC in our driver to mean that we have run out of aperture
2119 * space and so want to translate the error from shmemfs back to our
2120 * usual understanding of ENOMEM.
2121 */
2122 if (PTR_ERR(page) == -ENOSPC)
2123 return -ENOMEM;
2124 else
2125 return PTR_ERR(page);
673a394b
EA
2126}
2127
37e680a1
CW
2128/* Ensure that the associated pages are gathered from the backing storage
2129 * and pinned into our object. i915_gem_object_get_pages() may be called
2130 * multiple times before they are released by a single call to
2131 * i915_gem_object_put_pages() - once the pages are no longer referenced
2132 * either as a result of memory pressure (reaping pages under the shrinker)
2133 * or as the object is itself released.
2134 */
2135int
2136i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2137{
2138 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2139 const struct drm_i915_gem_object_ops *ops = obj->ops;
2140 int ret;
2141
2f745ad3 2142 if (obj->pages)
37e680a1
CW
2143 return 0;
2144
43e28f09 2145 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2146 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2147 return -EFAULT;
43e28f09
CW
2148 }
2149
a5570178
CW
2150 BUG_ON(obj->pages_pin_count);
2151
37e680a1
CW
2152 ret = ops->get_pages(obj);
2153 if (ret)
2154 return ret;
2155
35c20a60 2156 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2157 return 0;
673a394b
EA
2158}
2159
e2d05a8b 2160static void
05394f39 2161i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2162 struct intel_engine_cs *ring)
673a394b 2163{
9d773091 2164 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2165
852835f3 2166 BUG_ON(ring == NULL);
02978ff5
CW
2167 if (obj->ring != ring && obj->last_write_seqno) {
2168 /* Keep the seqno relative to the current ring */
2169 obj->last_write_seqno = seqno;
2170 }
05394f39 2171 obj->ring = ring;
673a394b
EA
2172
2173 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2174 if (!obj->active) {
2175 drm_gem_object_reference(&obj->base);
2176 obj->active = 1;
673a394b 2177 }
e35a41de 2178
05394f39 2179 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2180
0201f1ec 2181 obj->last_read_seqno = seqno;
caea7476
CW
2182}
2183
e2d05a8b 2184void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2185 struct intel_engine_cs *ring)
e2d05a8b
BW
2186{
2187 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2188 return i915_gem_object_move_to_active(vma->obj, ring);
2189}
2190
caea7476 2191static void
caea7476 2192i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2193{
ca191b13 2194 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2195 struct i915_address_space *vm;
2196 struct i915_vma *vma;
ce44b0ea 2197
65ce3027 2198 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2199 BUG_ON(!obj->active);
caea7476 2200
feb822cf
BW
2201 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2202 vma = i915_gem_obj_to_vma(obj, vm);
2203 if (vma && !list_empty(&vma->mm_list))
2204 list_move_tail(&vma->mm_list, &vm->inactive_list);
2205 }
caea7476 2206
f99d7069
DV
2207 intel_fb_obj_flush(obj, true);
2208
65ce3027 2209 list_del_init(&obj->ring_list);
caea7476
CW
2210 obj->ring = NULL;
2211
65ce3027
CW
2212 obj->last_read_seqno = 0;
2213 obj->last_write_seqno = 0;
2214 obj->base.write_domain = 0;
2215
2216 obj->last_fenced_seqno = 0;
caea7476
CW
2217
2218 obj->active = 0;
2219 drm_gem_object_unreference(&obj->base);
2220
2221 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2222}
673a394b 2223
c8725f3d
CW
2224static void
2225i915_gem_object_retire(struct drm_i915_gem_object *obj)
2226{
a4872ba6 2227 struct intel_engine_cs *ring = obj->ring;
c8725f3d
CW
2228
2229 if (ring == NULL)
2230 return;
2231
2232 if (i915_seqno_passed(ring->get_seqno(ring, true),
2233 obj->last_read_seqno))
2234 i915_gem_object_move_to_inactive(obj);
2235}
2236
9d773091 2237static int
fca26bb4 2238i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2239{
9d773091 2240 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2241 struct intel_engine_cs *ring;
9d773091 2242 int ret, i, j;
53d227f2 2243
107f27a5 2244 /* Carefully retire all requests without writing to the rings */
9d773091 2245 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2246 ret = intel_ring_idle(ring);
2247 if (ret)
2248 return ret;
9d773091 2249 }
9d773091 2250 i915_gem_retire_requests(dev);
107f27a5
CW
2251
2252 /* Finally reset hw state */
9d773091 2253 for_each_ring(ring, dev_priv, i) {
fca26bb4 2254 intel_ring_init_seqno(ring, seqno);
498d2ac1 2255
ebc348b2
BW
2256 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2257 ring->semaphore.sync_seqno[j] = 0;
9d773091 2258 }
53d227f2 2259
9d773091 2260 return 0;
53d227f2
DV
2261}
2262
fca26bb4
MK
2263int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2264{
2265 struct drm_i915_private *dev_priv = dev->dev_private;
2266 int ret;
2267
2268 if (seqno == 0)
2269 return -EINVAL;
2270
2271 /* HWS page needs to be set less than what we
2272 * will inject to ring
2273 */
2274 ret = i915_gem_init_seqno(dev, seqno - 1);
2275 if (ret)
2276 return ret;
2277
2278 /* Carefully set the last_seqno value so that wrap
2279 * detection still works
2280 */
2281 dev_priv->next_seqno = seqno;
2282 dev_priv->last_seqno = seqno - 1;
2283 if (dev_priv->last_seqno == 0)
2284 dev_priv->last_seqno--;
2285
2286 return 0;
2287}
2288
9d773091
CW
2289int
2290i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2291{
9d773091
CW
2292 struct drm_i915_private *dev_priv = dev->dev_private;
2293
2294 /* reserve 0 for non-seqno */
2295 if (dev_priv->next_seqno == 0) {
fca26bb4 2296 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2297 if (ret)
2298 return ret;
53d227f2 2299
9d773091
CW
2300 dev_priv->next_seqno = 1;
2301 }
53d227f2 2302
f72b3435 2303 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2304 return 0;
53d227f2
DV
2305}
2306
a4872ba6 2307int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2308 struct drm_file *file,
7d736f4f 2309 struct drm_i915_gem_object *obj,
0025c077 2310 u32 *out_seqno)
673a394b 2311{
3e31c6c0 2312 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2313 struct drm_i915_gem_request *request;
7d736f4f 2314 u32 request_ring_position, request_start;
3cce469c
CW
2315 int ret;
2316
1b5d063f 2317 request_start = intel_ring_get_tail(ring->buffer);
cc889e0f
DV
2318 /*
2319 * Emit any outstanding flushes - execbuf can fail to emit the flush
2320 * after having emitted the batchbuffer command. Hence we need to fix
2321 * things up similar to emitting the lazy request. The difference here
2322 * is that the flush _must_ happen before the next request, no matter
2323 * what.
2324 */
a7b9761d
CW
2325 ret = intel_ring_flush_all_caches(ring);
2326 if (ret)
2327 return ret;
cc889e0f 2328
3c0e234c
CW
2329 request = ring->preallocated_lazy_request;
2330 if (WARN_ON(request == NULL))
acb868d3 2331 return -ENOMEM;
cc889e0f 2332
a71d8d94
CW
2333 /* Record the position of the start of the request so that
2334 * should we detect the updated seqno part-way through the
2335 * GPU processing the request, we never over-estimate the
2336 * position of the head.
2337 */
1b5d063f 2338 request_ring_position = intel_ring_get_tail(ring->buffer);
a71d8d94 2339
9d773091 2340 ret = ring->add_request(ring);
3c0e234c 2341 if (ret)
3bb73aba 2342 return ret;
673a394b 2343
9d773091 2344 request->seqno = intel_ring_get_seqno(ring);
852835f3 2345 request->ring = ring;
7d736f4f 2346 request->head = request_start;
a71d8d94 2347 request->tail = request_ring_position;
7d736f4f
MK
2348
2349 /* Whilst this request exists, batch_obj will be on the
2350 * active_list, and so will hold the active reference. Only when this
2351 * request is retired will the the batch_obj be moved onto the
2352 * inactive_list and lose its active reference. Hence we do not need
2353 * to explicitly hold another reference here.
2354 */
9a7e0c2a 2355 request->batch_obj = obj;
0e50e96b 2356
9a7e0c2a
CW
2357 /* Hold a reference to the current context so that we can inspect
2358 * it later in case a hangcheck error event fires.
2359 */
2360 request->ctx = ring->last_context;
0e50e96b
MK
2361 if (request->ctx)
2362 i915_gem_context_reference(request->ctx);
2363
673a394b 2364 request->emitted_jiffies = jiffies;
852835f3 2365 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2366 request->file_priv = NULL;
852835f3 2367
db53a302
CW
2368 if (file) {
2369 struct drm_i915_file_private *file_priv = file->driver_priv;
2370
1c25595f 2371 spin_lock(&file_priv->mm.lock);
f787a5f5 2372 request->file_priv = file_priv;
b962442e 2373 list_add_tail(&request->client_list,
f787a5f5 2374 &file_priv->mm.request_list);
1c25595f 2375 spin_unlock(&file_priv->mm.lock);
b962442e 2376 }
673a394b 2377
9d773091 2378 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2379 ring->outstanding_lazy_seqno = 0;
3c0e234c 2380 ring->preallocated_lazy_request = NULL;
db53a302 2381
db1b76ca 2382 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2383 i915_queue_hangcheck(ring->dev);
2384
f62a0076
CW
2385 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2386 queue_delayed_work(dev_priv->wq,
2387 &dev_priv->mm.retire_work,
2388 round_jiffies_up_relative(HZ));
2389 intel_mark_busy(dev_priv->dev);
f65d9421 2390 }
cc889e0f 2391
acb868d3 2392 if (out_seqno)
9d773091 2393 *out_seqno = request->seqno;
3cce469c 2394 return 0;
673a394b
EA
2395}
2396
f787a5f5
CW
2397static inline void
2398i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2399{
1c25595f 2400 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2401
1c25595f
CW
2402 if (!file_priv)
2403 return;
1c5d22f7 2404
1c25595f 2405 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2406 list_del(&request->client_list);
2407 request->file_priv = NULL;
1c25595f 2408 spin_unlock(&file_priv->mm.lock);
673a394b 2409}
673a394b 2410
939fd762 2411static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2412 const struct intel_context *ctx)
be62acb4 2413{
44e2c070 2414 unsigned long elapsed;
be62acb4 2415
44e2c070
MK
2416 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2417
2418 if (ctx->hang_stats.banned)
be62acb4
MK
2419 return true;
2420
2421 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2422 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2423 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2424 return true;
88b4aa87
MK
2425 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2426 if (i915_stop_ring_allow_warn(dev_priv))
2427 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2428 return true;
3fac8978 2429 }
be62acb4
MK
2430 }
2431
2432 return false;
2433}
2434
939fd762 2435static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2436 struct intel_context *ctx,
b6b0fac0 2437 const bool guilty)
aa60c664 2438{
44e2c070
MK
2439 struct i915_ctx_hang_stats *hs;
2440
2441 if (WARN_ON(!ctx))
2442 return;
aa60c664 2443
44e2c070
MK
2444 hs = &ctx->hang_stats;
2445
2446 if (guilty) {
939fd762 2447 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2448 hs->batch_active++;
2449 hs->guilty_ts = get_seconds();
2450 } else {
2451 hs->batch_pending++;
aa60c664
MK
2452 }
2453}
2454
0e50e96b
MK
2455static void i915_gem_free_request(struct drm_i915_gem_request *request)
2456{
2457 list_del(&request->list);
2458 i915_gem_request_remove_from_client(request);
2459
2460 if (request->ctx)
2461 i915_gem_context_unreference(request->ctx);
2462
2463 kfree(request);
2464}
2465
8d9fc7fd 2466struct drm_i915_gem_request *
a4872ba6 2467i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2468{
4db080f9 2469 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2470 u32 completed_seqno;
2471
2472 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2473
2474 list_for_each_entry(request, &ring->request_list, list) {
2475 if (i915_seqno_passed(completed_seqno, request->seqno))
2476 continue;
aa60c664 2477
b6b0fac0 2478 return request;
4db080f9 2479 }
b6b0fac0
MK
2480
2481 return NULL;
2482}
2483
2484static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2485 struct intel_engine_cs *ring)
b6b0fac0
MK
2486{
2487 struct drm_i915_gem_request *request;
2488 bool ring_hung;
2489
8d9fc7fd 2490 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2491
2492 if (request == NULL)
2493 return;
2494
2495 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2496
939fd762 2497 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2498
2499 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2500 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2501}
aa60c664 2502
4db080f9 2503static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2504 struct intel_engine_cs *ring)
4db080f9 2505{
dfaae392 2506 while (!list_empty(&ring->active_list)) {
05394f39 2507 struct drm_i915_gem_object *obj;
9375e446 2508
05394f39
CW
2509 obj = list_first_entry(&ring->active_list,
2510 struct drm_i915_gem_object,
2511 ring_list);
9375e446 2512
05394f39 2513 i915_gem_object_move_to_inactive(obj);
673a394b 2514 }
1d62beea
BW
2515
2516 /*
2517 * We must free the requests after all the corresponding objects have
2518 * been moved off active lists. Which is the same order as the normal
2519 * retire_requests function does. This is important if object hold
2520 * implicit references on things like e.g. ppgtt address spaces through
2521 * the request.
2522 */
2523 while (!list_empty(&ring->request_list)) {
2524 struct drm_i915_gem_request *request;
2525
2526 request = list_first_entry(&ring->request_list,
2527 struct drm_i915_gem_request,
2528 list);
2529
2530 i915_gem_free_request(request);
2531 }
e3efda49
CW
2532
2533 /* These may not have been flush before the reset, do so now */
2534 kfree(ring->preallocated_lazy_request);
2535 ring->preallocated_lazy_request = NULL;
2536 ring->outstanding_lazy_seqno = 0;
673a394b
EA
2537}
2538
19b2dbde 2539void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2540{
2541 struct drm_i915_private *dev_priv = dev->dev_private;
2542 int i;
2543
4b9de737 2544 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2545 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2546
94a335db
DV
2547 /*
2548 * Commit delayed tiling changes if we have an object still
2549 * attached to the fence, otherwise just clear the fence.
2550 */
2551 if (reg->obj) {
2552 i915_gem_object_update_fence(reg->obj, reg,
2553 reg->obj->tiling_mode);
2554 } else {
2555 i915_gem_write_fence(dev, i, NULL);
2556 }
312817a3
CW
2557 }
2558}
2559
069efc1d 2560void i915_gem_reset(struct drm_device *dev)
673a394b 2561{
77f01230 2562 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2563 struct intel_engine_cs *ring;
1ec14ad3 2564 int i;
673a394b 2565
4db080f9
CW
2566 /*
2567 * Before we free the objects from the requests, we need to inspect
2568 * them for finding the guilty party. As the requests only borrow
2569 * their reference to the objects, the inspection must be done first.
2570 */
2571 for_each_ring(ring, dev_priv, i)
2572 i915_gem_reset_ring_status(dev_priv, ring);
2573
b4519513 2574 for_each_ring(ring, dev_priv, i)
4db080f9 2575 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2576
acce9ffa
BW
2577 i915_gem_context_reset(dev);
2578
19b2dbde 2579 i915_gem_restore_fences(dev);
673a394b
EA
2580}
2581
2582/**
2583 * This function clears the request list as sequence numbers are passed.
2584 */
1cf0ba14 2585void
a4872ba6 2586i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2587{
673a394b
EA
2588 uint32_t seqno;
2589
db53a302 2590 if (list_empty(&ring->request_list))
6c0594a3
KW
2591 return;
2592
db53a302 2593 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2594
b2eadbc8 2595 seqno = ring->get_seqno(ring, true);
1ec14ad3 2596
e9103038
CW
2597 /* Move any buffers on the active list that are no longer referenced
2598 * by the ringbuffer to the flushing/inactive lists as appropriate,
2599 * before we free the context associated with the requests.
2600 */
2601 while (!list_empty(&ring->active_list)) {
2602 struct drm_i915_gem_object *obj;
2603
2604 obj = list_first_entry(&ring->active_list,
2605 struct drm_i915_gem_object,
2606 ring_list);
2607
2608 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2609 break;
2610
2611 i915_gem_object_move_to_inactive(obj);
2612 }
2613
2614
852835f3 2615 while (!list_empty(&ring->request_list)) {
673a394b 2616 struct drm_i915_gem_request *request;
673a394b 2617
852835f3 2618 request = list_first_entry(&ring->request_list,
673a394b
EA
2619 struct drm_i915_gem_request,
2620 list);
673a394b 2621
dfaae392 2622 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2623 break;
2624
db53a302 2625 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2626 /* We know the GPU must have read the request to have
2627 * sent us the seqno + interrupt, so use the position
2628 * of tail of the request to update the last known position
2629 * of the GPU head.
2630 */
ee1b1e5e 2631 ring->buffer->last_retired_head = request->tail;
b84d5f0c 2632
0e50e96b 2633 i915_gem_free_request(request);
b84d5f0c 2634 }
673a394b 2635
db53a302
CW
2636 if (unlikely(ring->trace_irq_seqno &&
2637 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2638 ring->irq_put(ring);
db53a302 2639 ring->trace_irq_seqno = 0;
9d34e5db 2640 }
23bc5982 2641
db53a302 2642 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2643}
2644
b29c19b6 2645bool
b09a1fec
CW
2646i915_gem_retire_requests(struct drm_device *dev)
2647{
3e31c6c0 2648 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2649 struct intel_engine_cs *ring;
b29c19b6 2650 bool idle = true;
1ec14ad3 2651 int i;
b09a1fec 2652
b29c19b6 2653 for_each_ring(ring, dev_priv, i) {
b4519513 2654 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2655 idle &= list_empty(&ring->request_list);
2656 }
2657
2658 if (idle)
2659 mod_delayed_work(dev_priv->wq,
2660 &dev_priv->mm.idle_work,
2661 msecs_to_jiffies(100));
2662
2663 return idle;
b09a1fec
CW
2664}
2665
75ef9da2 2666static void
673a394b
EA
2667i915_gem_retire_work_handler(struct work_struct *work)
2668{
b29c19b6
CW
2669 struct drm_i915_private *dev_priv =
2670 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2671 struct drm_device *dev = dev_priv->dev;
0a58705b 2672 bool idle;
673a394b 2673
891b48cf 2674 /* Come back later if the device is busy... */
b29c19b6
CW
2675 idle = false;
2676 if (mutex_trylock(&dev->struct_mutex)) {
2677 idle = i915_gem_retire_requests(dev);
2678 mutex_unlock(&dev->struct_mutex);
673a394b 2679 }
b29c19b6 2680 if (!idle)
bcb45086
CW
2681 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2682 round_jiffies_up_relative(HZ));
b29c19b6 2683}
0a58705b 2684
b29c19b6
CW
2685static void
2686i915_gem_idle_work_handler(struct work_struct *work)
2687{
2688 struct drm_i915_private *dev_priv =
2689 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2690
2691 intel_mark_idle(dev_priv->dev);
673a394b
EA
2692}
2693
30dfebf3
DV
2694/**
2695 * Ensures that an object will eventually get non-busy by flushing any required
2696 * write domains, emitting any outstanding lazy request and retiring and
2697 * completed requests.
2698 */
2699static int
2700i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2701{
2702 int ret;
2703
2704 if (obj->active) {
0201f1ec 2705 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2706 if (ret)
2707 return ret;
2708
30dfebf3
DV
2709 i915_gem_retire_requests_ring(obj->ring);
2710 }
2711
2712 return 0;
2713}
2714
23ba4fd0
BW
2715/**
2716 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2717 * @DRM_IOCTL_ARGS: standard ioctl arguments
2718 *
2719 * Returns 0 if successful, else an error is returned with the remaining time in
2720 * the timeout parameter.
2721 * -ETIME: object is still busy after timeout
2722 * -ERESTARTSYS: signal interrupted the wait
2723 * -ENONENT: object doesn't exist
2724 * Also possible, but rare:
2725 * -EAGAIN: GPU wedged
2726 * -ENOMEM: damn
2727 * -ENODEV: Internal IRQ fail
2728 * -E?: The add request failed
2729 *
2730 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2731 * non-zero timeout parameter the wait ioctl will wait for the given number of
2732 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2733 * without holding struct_mutex the object may become re-busied before this
2734 * function completes. A similar but shorter * race condition exists in the busy
2735 * ioctl
2736 */
2737int
2738i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2739{
3e31c6c0 2740 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2741 struct drm_i915_gem_wait *args = data;
2742 struct drm_i915_gem_object *obj;
a4872ba6 2743 struct intel_engine_cs *ring = NULL;
eac1f14f 2744 struct timespec timeout_stack, *timeout = NULL;
f69061be 2745 unsigned reset_counter;
23ba4fd0
BW
2746 u32 seqno = 0;
2747 int ret = 0;
2748
eac1f14f
BW
2749 if (args->timeout_ns >= 0) {
2750 timeout_stack = ns_to_timespec(args->timeout_ns);
2751 timeout = &timeout_stack;
2752 }
23ba4fd0
BW
2753
2754 ret = i915_mutex_lock_interruptible(dev);
2755 if (ret)
2756 return ret;
2757
2758 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2759 if (&obj->base == NULL) {
2760 mutex_unlock(&dev->struct_mutex);
2761 return -ENOENT;
2762 }
2763
30dfebf3
DV
2764 /* Need to make sure the object gets inactive eventually. */
2765 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2766 if (ret)
2767 goto out;
2768
2769 if (obj->active) {
0201f1ec 2770 seqno = obj->last_read_seqno;
23ba4fd0
BW
2771 ring = obj->ring;
2772 }
2773
2774 if (seqno == 0)
2775 goto out;
2776
23ba4fd0
BW
2777 /* Do this after OLR check to make sure we make forward progress polling
2778 * on this IOCTL with a 0 timeout (like busy ioctl)
2779 */
2780 if (!args->timeout_ns) {
2781 ret = -ETIME;
2782 goto out;
2783 }
2784
2785 drm_gem_object_unreference(&obj->base);
f69061be 2786 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2787 mutex_unlock(&dev->struct_mutex);
2788
b29c19b6 2789 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2790 if (timeout)
eac1f14f 2791 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2792 return ret;
2793
2794out:
2795 drm_gem_object_unreference(&obj->base);
2796 mutex_unlock(&dev->struct_mutex);
2797 return ret;
2798}
2799
5816d648
BW
2800/**
2801 * i915_gem_object_sync - sync an object to a ring.
2802 *
2803 * @obj: object which may be in use on another ring.
2804 * @to: ring we wish to use the object on. May be NULL.
2805 *
2806 * This code is meant to abstract object synchronization with the GPU.
2807 * Calling with NULL implies synchronizing the object with the CPU
2808 * rather than a particular GPU ring.
2809 *
2810 * Returns 0 if successful, else propagates up the lower layer error.
2811 */
2911a35b
BW
2812int
2813i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2814 struct intel_engine_cs *to)
2911a35b 2815{
a4872ba6 2816 struct intel_engine_cs *from = obj->ring;
2911a35b
BW
2817 u32 seqno;
2818 int ret, idx;
2819
2820 if (from == NULL || to == from)
2821 return 0;
2822
5816d648 2823 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2824 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2825
2826 idx = intel_ring_sync_index(from, to);
2827
0201f1ec 2828 seqno = obj->last_read_seqno;
ddd4dbc6
RV
2829 /* Optimization: Avoid semaphore sync when we are sure we already
2830 * waited for an object with higher seqno */
ebc348b2 2831 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2832 return 0;
2833
b4aca010
BW
2834 ret = i915_gem_check_olr(obj->ring, seqno);
2835 if (ret)
2836 return ret;
2911a35b 2837
b52b89da 2838 trace_i915_gem_ring_sync_to(from, to, seqno);
ebc348b2 2839 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2840 if (!ret)
7b01e260
MK
2841 /* We use last_read_seqno because sync_to()
2842 * might have just caused seqno wrap under
2843 * the radar.
2844 */
ebc348b2 2845 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2846
e3a5a225 2847 return ret;
2911a35b
BW
2848}
2849
b5ffc9bc
CW
2850static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2851{
2852 u32 old_write_domain, old_read_domains;
2853
b5ffc9bc
CW
2854 /* Force a pagefault for domain tracking on next user access */
2855 i915_gem_release_mmap(obj);
2856
b97c3d9c
KP
2857 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2858 return;
2859
97c809fd
CW
2860 /* Wait for any direct GTT access to complete */
2861 mb();
2862
b5ffc9bc
CW
2863 old_read_domains = obj->base.read_domains;
2864 old_write_domain = obj->base.write_domain;
2865
2866 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2867 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2868
2869 trace_i915_gem_object_change_domain(obj,
2870 old_read_domains,
2871 old_write_domain);
2872}
2873
07fe0b12 2874int i915_vma_unbind(struct i915_vma *vma)
673a394b 2875{
07fe0b12 2876 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 2877 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 2878 int ret;
673a394b 2879
07fe0b12 2880 if (list_empty(&vma->vma_link))
673a394b
EA
2881 return 0;
2882
0ff501cb
DV
2883 if (!drm_mm_node_allocated(&vma->node)) {
2884 i915_gem_vma_destroy(vma);
0ff501cb
DV
2885 return 0;
2886 }
433544bd 2887
d7f46fc4 2888 if (vma->pin_count)
31d8d651 2889 return -EBUSY;
673a394b 2890
c4670ad0
CW
2891 BUG_ON(obj->pages == NULL);
2892
a8198eea 2893 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2894 if (ret)
a8198eea
CW
2895 return ret;
2896 /* Continue on if we fail due to EIO, the GPU is hung so we
2897 * should be safe and we need to cleanup or else we might
2898 * cause memory corruption through use-after-free.
2899 */
2900
8b1bc9b4
DV
2901 if (i915_is_ggtt(vma->vm)) {
2902 i915_gem_object_finish_gtt(obj);
5323fd04 2903
8b1bc9b4
DV
2904 /* release the fence reg _after_ flushing */
2905 ret = i915_gem_object_put_fence(obj);
2906 if (ret)
2907 return ret;
2908 }
96b47b65 2909
07fe0b12 2910 trace_i915_vma_unbind(vma);
db53a302 2911
6f65e29a
BW
2912 vma->unbind_vma(vma);
2913
64bf9303 2914 list_del_init(&vma->mm_list);
5cacaac7 2915 if (i915_is_ggtt(vma->vm))
e6a84468 2916 obj->map_and_fenceable = false;
673a394b 2917
2f633156
BW
2918 drm_mm_remove_node(&vma->node);
2919 i915_gem_vma_destroy(vma);
2920
2921 /* Since the unbound list is global, only move to that list if
b93dab6e 2922 * no more VMAs exist. */
9490edb5
AR
2923 if (list_empty(&obj->vma_list)) {
2924 i915_gem_gtt_finish_object(obj);
2f633156 2925 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 2926 }
673a394b 2927
70903c3b
CW
2928 /* And finally now the object is completely decoupled from this vma,
2929 * we can drop its hold on the backing storage and allow it to be
2930 * reaped by the shrinker.
2931 */
2932 i915_gem_object_unpin_pages(obj);
2933
88241785 2934 return 0;
54cf91dc
CW
2935}
2936
b2da9fe5 2937int i915_gpu_idle(struct drm_device *dev)
4df2faf4 2938{
3e31c6c0 2939 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2940 struct intel_engine_cs *ring;
1ec14ad3 2941 int ret, i;
4df2faf4 2942
4df2faf4 2943 /* Flush everything onto the inactive list. */
b4519513 2944 for_each_ring(ring, dev_priv, i) {
691e6415 2945 ret = i915_switch_context(ring, ring->default_context);
b6c7488d
BW
2946 if (ret)
2947 return ret;
2948
3e960501 2949 ret = intel_ring_idle(ring);
1ec14ad3
CW
2950 if (ret)
2951 return ret;
2952 }
4df2faf4 2953
8a1a49f9 2954 return 0;
4df2faf4
DV
2955}
2956
9ce079e4
CW
2957static void i965_write_fence_reg(struct drm_device *dev, int reg,
2958 struct drm_i915_gem_object *obj)
de151cf6 2959{
3e31c6c0 2960 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
2961 int fence_reg;
2962 int fence_pitch_shift;
de151cf6 2963
56c844e5
ID
2964 if (INTEL_INFO(dev)->gen >= 6) {
2965 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2966 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2967 } else {
2968 fence_reg = FENCE_REG_965_0;
2969 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2970 }
2971
d18b9619
CW
2972 fence_reg += reg * 8;
2973
2974 /* To w/a incoherency with non-atomic 64-bit register updates,
2975 * we split the 64-bit update into two 32-bit writes. In order
2976 * for a partial fence not to be evaluated between writes, we
2977 * precede the update with write to turn off the fence register,
2978 * and only enable the fence as the last step.
2979 *
2980 * For extra levels of paranoia, we make sure each step lands
2981 * before applying the next step.
2982 */
2983 I915_WRITE(fence_reg, 0);
2984 POSTING_READ(fence_reg);
2985
9ce079e4 2986 if (obj) {
f343c5f6 2987 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2988 uint64_t val;
de151cf6 2989
f343c5f6 2990 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2991 0xfffff000) << 32;
f343c5f6 2992 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2993 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2994 if (obj->tiling_mode == I915_TILING_Y)
2995 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2996 val |= I965_FENCE_REG_VALID;
c6642782 2997
d18b9619
CW
2998 I915_WRITE(fence_reg + 4, val >> 32);
2999 POSTING_READ(fence_reg + 4);
3000
3001 I915_WRITE(fence_reg + 0, val);
3002 POSTING_READ(fence_reg);
3003 } else {
3004 I915_WRITE(fence_reg + 4, 0);
3005 POSTING_READ(fence_reg + 4);
3006 }
de151cf6
JB
3007}
3008
9ce079e4
CW
3009static void i915_write_fence_reg(struct drm_device *dev, int reg,
3010 struct drm_i915_gem_object *obj)
de151cf6 3011{
3e31c6c0 3012 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3013 u32 val;
de151cf6 3014
9ce079e4 3015 if (obj) {
f343c5f6 3016 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3017 int pitch_val;
3018 int tile_width;
c6642782 3019
f343c5f6 3020 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3021 (size & -size) != size ||
f343c5f6
BW
3022 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3023 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3024 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3025
9ce079e4
CW
3026 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3027 tile_width = 128;
3028 else
3029 tile_width = 512;
3030
3031 /* Note: pitch better be a power of two tile widths */
3032 pitch_val = obj->stride / tile_width;
3033 pitch_val = ffs(pitch_val) - 1;
3034
f343c5f6 3035 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3036 if (obj->tiling_mode == I915_TILING_Y)
3037 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3038 val |= I915_FENCE_SIZE_BITS(size);
3039 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3040 val |= I830_FENCE_REG_VALID;
3041 } else
3042 val = 0;
3043
3044 if (reg < 8)
3045 reg = FENCE_REG_830_0 + reg * 4;
3046 else
3047 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3048
3049 I915_WRITE(reg, val);
3050 POSTING_READ(reg);
de151cf6
JB
3051}
3052
9ce079e4
CW
3053static void i830_write_fence_reg(struct drm_device *dev, int reg,
3054 struct drm_i915_gem_object *obj)
de151cf6 3055{
3e31c6c0 3056 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3057 uint32_t val;
de151cf6 3058
9ce079e4 3059 if (obj) {
f343c5f6 3060 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3061 uint32_t pitch_val;
de151cf6 3062
f343c5f6 3063 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3064 (size & -size) != size ||
f343c5f6
BW
3065 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3066 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3067 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3068
9ce079e4
CW
3069 pitch_val = obj->stride / 128;
3070 pitch_val = ffs(pitch_val) - 1;
de151cf6 3071
f343c5f6 3072 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3073 if (obj->tiling_mode == I915_TILING_Y)
3074 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3075 val |= I830_FENCE_SIZE_BITS(size);
3076 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3077 val |= I830_FENCE_REG_VALID;
3078 } else
3079 val = 0;
c6642782 3080
9ce079e4
CW
3081 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3082 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3083}
3084
d0a57789
CW
3085inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3086{
3087 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3088}
3089
9ce079e4
CW
3090static void i915_gem_write_fence(struct drm_device *dev, int reg,
3091 struct drm_i915_gem_object *obj)
3092{
d0a57789
CW
3093 struct drm_i915_private *dev_priv = dev->dev_private;
3094
3095 /* Ensure that all CPU reads are completed before installing a fence
3096 * and all writes before removing the fence.
3097 */
3098 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3099 mb();
3100
94a335db
DV
3101 WARN(obj && (!obj->stride || !obj->tiling_mode),
3102 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3103 obj->stride, obj->tiling_mode);
3104
9ce079e4 3105 switch (INTEL_INFO(dev)->gen) {
5ab31333 3106 case 8:
9ce079e4 3107 case 7:
56c844e5 3108 case 6:
9ce079e4
CW
3109 case 5:
3110 case 4: i965_write_fence_reg(dev, reg, obj); break;
3111 case 3: i915_write_fence_reg(dev, reg, obj); break;
3112 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3113 default: BUG();
9ce079e4 3114 }
d0a57789
CW
3115
3116 /* And similarly be paranoid that no direct access to this region
3117 * is reordered to before the fence is installed.
3118 */
3119 if (i915_gem_object_needs_mb(obj))
3120 mb();
de151cf6
JB
3121}
3122
61050808
CW
3123static inline int fence_number(struct drm_i915_private *dev_priv,
3124 struct drm_i915_fence_reg *fence)
3125{
3126 return fence - dev_priv->fence_regs;
3127}
3128
3129static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3130 struct drm_i915_fence_reg *fence,
3131 bool enable)
3132{
2dc8aae0 3133 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3134 int reg = fence_number(dev_priv, fence);
3135
3136 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3137
3138 if (enable) {
46a0b638 3139 obj->fence_reg = reg;
61050808
CW
3140 fence->obj = obj;
3141 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3142 } else {
3143 obj->fence_reg = I915_FENCE_REG_NONE;
3144 fence->obj = NULL;
3145 list_del_init(&fence->lru_list);
3146 }
94a335db 3147 obj->fence_dirty = false;
61050808
CW
3148}
3149
d9e86c0e 3150static int
d0a57789 3151i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3152{
1c293ea3 3153 if (obj->last_fenced_seqno) {
86d5bc37 3154 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3155 if (ret)
3156 return ret;
d9e86c0e
CW
3157
3158 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3159 }
3160
3161 return 0;
3162}
3163
3164int
3165i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3166{
61050808 3167 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3168 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3169 int ret;
3170
d0a57789 3171 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3172 if (ret)
3173 return ret;
3174
61050808
CW
3175 if (obj->fence_reg == I915_FENCE_REG_NONE)
3176 return 0;
d9e86c0e 3177
f9c513e9
CW
3178 fence = &dev_priv->fence_regs[obj->fence_reg];
3179
aff10b30
DV
3180 if (WARN_ON(fence->pin_count))
3181 return -EBUSY;
3182
61050808 3183 i915_gem_object_fence_lost(obj);
f9c513e9 3184 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3185
3186 return 0;
3187}
3188
3189static struct drm_i915_fence_reg *
a360bb1a 3190i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3191{
ae3db24a 3192 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3193 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3194 int i;
ae3db24a
DV
3195
3196 /* First try to find a free reg */
d9e86c0e 3197 avail = NULL;
ae3db24a
DV
3198 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3199 reg = &dev_priv->fence_regs[i];
3200 if (!reg->obj)
d9e86c0e 3201 return reg;
ae3db24a 3202
1690e1eb 3203 if (!reg->pin_count)
d9e86c0e 3204 avail = reg;
ae3db24a
DV
3205 }
3206
d9e86c0e 3207 if (avail == NULL)
5dce5b93 3208 goto deadlock;
ae3db24a
DV
3209
3210 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3211 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3212 if (reg->pin_count)
ae3db24a
DV
3213 continue;
3214
8fe301ad 3215 return reg;
ae3db24a
DV
3216 }
3217
5dce5b93
CW
3218deadlock:
3219 /* Wait for completion of pending flips which consume fences */
3220 if (intel_has_pending_fb_unpin(dev))
3221 return ERR_PTR(-EAGAIN);
3222
3223 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3224}
3225
de151cf6 3226/**
9a5a53b3 3227 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3228 * @obj: object to map through a fence reg
3229 *
3230 * When mapping objects through the GTT, userspace wants to be able to write
3231 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3232 * This function walks the fence regs looking for a free one for @obj,
3233 * stealing one if it can't find any.
3234 *
3235 * It then sets up the reg based on the object's properties: address, pitch
3236 * and tiling format.
9a5a53b3
CW
3237 *
3238 * For an untiled surface, this removes any existing fence.
de151cf6 3239 */
8c4b8c3f 3240int
06d98131 3241i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3242{
05394f39 3243 struct drm_device *dev = obj->base.dev;
79e53945 3244 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3245 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3246 struct drm_i915_fence_reg *reg;
ae3db24a 3247 int ret;
de151cf6 3248
14415745
CW
3249 /* Have we updated the tiling parameters upon the object and so
3250 * will need to serialise the write to the associated fence register?
3251 */
5d82e3e6 3252 if (obj->fence_dirty) {
d0a57789 3253 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3254 if (ret)
3255 return ret;
3256 }
9a5a53b3 3257
d9e86c0e 3258 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3259 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3260 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3261 if (!obj->fence_dirty) {
14415745
CW
3262 list_move_tail(&reg->lru_list,
3263 &dev_priv->mm.fence_list);
3264 return 0;
3265 }
3266 } else if (enable) {
e6a84468
CW
3267 if (WARN_ON(!obj->map_and_fenceable))
3268 return -EINVAL;
3269
14415745 3270 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3271 if (IS_ERR(reg))
3272 return PTR_ERR(reg);
d9e86c0e 3273
14415745
CW
3274 if (reg->obj) {
3275 struct drm_i915_gem_object *old = reg->obj;
3276
d0a57789 3277 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3278 if (ret)
3279 return ret;
3280
14415745 3281 i915_gem_object_fence_lost(old);
29c5a587 3282 }
14415745 3283 } else
a09ba7fa 3284 return 0;
a09ba7fa 3285
14415745 3286 i915_gem_object_update_fence(obj, reg, enable);
14415745 3287
9ce079e4 3288 return 0;
de151cf6
JB
3289}
3290
42d6ab48
CW
3291static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3292 struct drm_mm_node *gtt_space,
3293 unsigned long cache_level)
3294{
3295 struct drm_mm_node *other;
3296
3297 /* On non-LLC machines we have to be careful when putting differing
3298 * types of snoopable memory together to avoid the prefetcher
4239ca77 3299 * crossing memory domains and dying.
42d6ab48
CW
3300 */
3301 if (HAS_LLC(dev))
3302 return true;
3303
c6cfb325 3304 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3305 return true;
3306
3307 if (list_empty(&gtt_space->node_list))
3308 return true;
3309
3310 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3311 if (other->allocated && !other->hole_follows && other->color != cache_level)
3312 return false;
3313
3314 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3315 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3316 return false;
3317
3318 return true;
3319}
3320
3321static void i915_gem_verify_gtt(struct drm_device *dev)
3322{
3323#if WATCH_GTT
3324 struct drm_i915_private *dev_priv = dev->dev_private;
3325 struct drm_i915_gem_object *obj;
3326 int err = 0;
3327
35c20a60 3328 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3329 if (obj->gtt_space == NULL) {
3330 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3331 err++;
3332 continue;
3333 }
3334
3335 if (obj->cache_level != obj->gtt_space->color) {
3336 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3337 i915_gem_obj_ggtt_offset(obj),
3338 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3339 obj->cache_level,
3340 obj->gtt_space->color);
3341 err++;
3342 continue;
3343 }
3344
3345 if (!i915_gem_valid_gtt_space(dev,
3346 obj->gtt_space,
3347 obj->cache_level)) {
3348 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3349 i915_gem_obj_ggtt_offset(obj),
3350 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3351 obj->cache_level);
3352 err++;
3353 continue;
3354 }
3355 }
3356
3357 WARN_ON(err);
3358#endif
3359}
3360
673a394b
EA
3361/**
3362 * Finds free space in the GTT aperture and binds the object there.
3363 */
262de145 3364static struct i915_vma *
07fe0b12
BW
3365i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3366 struct i915_address_space *vm,
3367 unsigned alignment,
d23db88c 3368 uint64_t flags)
673a394b 3369{
05394f39 3370 struct drm_device *dev = obj->base.dev;
3e31c6c0 3371 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3372 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3373 unsigned long start =
3374 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3375 unsigned long end =
1ec9e26d 3376 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3377 struct i915_vma *vma;
07f73f69 3378 int ret;
673a394b 3379
e28f8711
CW
3380 fence_size = i915_gem_get_gtt_size(dev,
3381 obj->base.size,
3382 obj->tiling_mode);
3383 fence_alignment = i915_gem_get_gtt_alignment(dev,
3384 obj->base.size,
d865110c 3385 obj->tiling_mode, true);
e28f8711 3386 unfenced_alignment =
d865110c 3387 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3388 obj->base.size,
3389 obj->tiling_mode, false);
a00b10c3 3390
673a394b 3391 if (alignment == 0)
1ec9e26d 3392 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3393 unfenced_alignment;
1ec9e26d 3394 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3395 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3396 return ERR_PTR(-EINVAL);
673a394b
EA
3397 }
3398
1ec9e26d 3399 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3400
654fc607
CW
3401 /* If the object is bigger than the entire aperture, reject it early
3402 * before evicting everything in a vain attempt to find space.
3403 */
d23db88c
CW
3404 if (obj->base.size > end) {
3405 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3406 obj->base.size,
1ec9e26d 3407 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3408 end);
262de145 3409 return ERR_PTR(-E2BIG);
654fc607
CW
3410 }
3411
37e680a1 3412 ret = i915_gem_object_get_pages(obj);
6c085a72 3413 if (ret)
262de145 3414 return ERR_PTR(ret);
6c085a72 3415
fbdda6fb
CW
3416 i915_gem_object_pin_pages(obj);
3417
accfef2e 3418 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3419 if (IS_ERR(vma))
bc6bc15b 3420 goto err_unpin;
2f633156 3421
0a9ae0d7 3422search_free:
07fe0b12 3423 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3424 size, alignment,
d23db88c
CW
3425 obj->cache_level,
3426 start, end,
62347f9e
LK
3427 DRM_MM_SEARCH_DEFAULT,
3428 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3429 if (ret) {
f6cd1f15 3430 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3431 obj->cache_level,
3432 start, end,
3433 flags);
dc9dd7a2
CW
3434 if (ret == 0)
3435 goto search_free;
9731129c 3436
bc6bc15b 3437 goto err_free_vma;
673a394b 3438 }
2f633156 3439 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3440 obj->cache_level))) {
2f633156 3441 ret = -EINVAL;
bc6bc15b 3442 goto err_remove_node;
673a394b
EA
3443 }
3444
74163907 3445 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3446 if (ret)
bc6bc15b 3447 goto err_remove_node;
673a394b 3448
35c20a60 3449 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3450 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3451
4bd561b3
BW
3452 if (i915_is_ggtt(vm)) {
3453 bool mappable, fenceable;
a00b10c3 3454
49987099
DV
3455 fenceable = (vma->node.size == fence_size &&
3456 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3457
49987099
DV
3458 mappable = (vma->node.start + obj->base.size <=
3459 dev_priv->gtt.mappable_end);
a00b10c3 3460
5cacaac7 3461 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3462 }
75e9e915 3463
1ec9e26d 3464 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3465
1ec9e26d 3466 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3467 vma->bind_vma(vma, obj->cache_level,
3468 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3469
42d6ab48 3470 i915_gem_verify_gtt(dev);
262de145 3471 return vma;
2f633156 3472
bc6bc15b 3473err_remove_node:
6286ef9b 3474 drm_mm_remove_node(&vma->node);
bc6bc15b 3475err_free_vma:
2f633156 3476 i915_gem_vma_destroy(vma);
262de145 3477 vma = ERR_PTR(ret);
bc6bc15b 3478err_unpin:
2f633156 3479 i915_gem_object_unpin_pages(obj);
262de145 3480 return vma;
673a394b
EA
3481}
3482
000433b6 3483bool
2c22569b
CW
3484i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3485 bool force)
673a394b 3486{
673a394b
EA
3487 /* If we don't have a page list set up, then we're not pinned
3488 * to GPU, and we can ignore the cache flush because it'll happen
3489 * again at bind time.
3490 */
05394f39 3491 if (obj->pages == NULL)
000433b6 3492 return false;
673a394b 3493
769ce464
ID
3494 /*
3495 * Stolen memory is always coherent with the GPU as it is explicitly
3496 * marked as wc by the system, or the system is cache-coherent.
3497 */
3498 if (obj->stolen)
000433b6 3499 return false;
769ce464 3500
9c23f7fc
CW
3501 /* If the GPU is snooping the contents of the CPU cache,
3502 * we do not need to manually clear the CPU cache lines. However,
3503 * the caches are only snooped when the render cache is
3504 * flushed/invalidated. As we always have to emit invalidations
3505 * and flushes when moving into and out of the RENDER domain, correct
3506 * snooping behaviour occurs naturally as the result of our domain
3507 * tracking.
3508 */
2c22569b 3509 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3510 return false;
9c23f7fc 3511
1c5d22f7 3512 trace_i915_gem_object_clflush(obj);
9da3da66 3513 drm_clflush_sg(obj->pages);
000433b6
CW
3514
3515 return true;
e47c68e9
EA
3516}
3517
3518/** Flushes the GTT write domain for the object if it's dirty. */
3519static void
05394f39 3520i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3521{
1c5d22f7
CW
3522 uint32_t old_write_domain;
3523
05394f39 3524 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3525 return;
3526
63256ec5 3527 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3528 * to it immediately go to main memory as far as we know, so there's
3529 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3530 *
3531 * However, we do have to enforce the order so that all writes through
3532 * the GTT land before any writes to the device, such as updates to
3533 * the GATT itself.
e47c68e9 3534 */
63256ec5
CW
3535 wmb();
3536
05394f39
CW
3537 old_write_domain = obj->base.write_domain;
3538 obj->base.write_domain = 0;
1c5d22f7 3539
f99d7069
DV
3540 intel_fb_obj_flush(obj, false);
3541
1c5d22f7 3542 trace_i915_gem_object_change_domain(obj,
05394f39 3543 obj->base.read_domains,
1c5d22f7 3544 old_write_domain);
e47c68e9
EA
3545}
3546
3547/** Flushes the CPU write domain for the object if it's dirty. */
3548static void
2c22569b
CW
3549i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3550 bool force)
e47c68e9 3551{
1c5d22f7 3552 uint32_t old_write_domain;
e47c68e9 3553
05394f39 3554 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3555 return;
3556
000433b6
CW
3557 if (i915_gem_clflush_object(obj, force))
3558 i915_gem_chipset_flush(obj->base.dev);
3559
05394f39
CW
3560 old_write_domain = obj->base.write_domain;
3561 obj->base.write_domain = 0;
1c5d22f7 3562
f99d7069
DV
3563 intel_fb_obj_flush(obj, false);
3564
1c5d22f7 3565 trace_i915_gem_object_change_domain(obj,
05394f39 3566 obj->base.read_domains,
1c5d22f7 3567 old_write_domain);
e47c68e9
EA
3568}
3569
2ef7eeaa
EA
3570/**
3571 * Moves a single object to the GTT read, and possibly write domain.
3572 *
3573 * This function returns when the move is complete, including waiting on
3574 * flushes to occur.
3575 */
79e53945 3576int
2021746e 3577i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3578{
3e31c6c0 3579 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
dc8cd1e7 3580 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
1c5d22f7 3581 uint32_t old_write_domain, old_read_domains;
e47c68e9 3582 int ret;
2ef7eeaa 3583
02354392 3584 /* Not valid to be called on unbound objects. */
dc8cd1e7 3585 if (vma == NULL)
02354392
EA
3586 return -EINVAL;
3587
8d7e3de1
CW
3588 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3589 return 0;
3590
0201f1ec 3591 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3592 if (ret)
3593 return ret;
3594
c8725f3d 3595 i915_gem_object_retire(obj);
2c22569b 3596 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3597
d0a57789
CW
3598 /* Serialise direct access to this object with the barriers for
3599 * coherent writes from the GPU, by effectively invalidating the
3600 * GTT domain upon first access.
3601 */
3602 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3603 mb();
3604
05394f39
CW
3605 old_write_domain = obj->base.write_domain;
3606 old_read_domains = obj->base.read_domains;
1c5d22f7 3607
e47c68e9
EA
3608 /* It should now be out of any other write domains, and we can update
3609 * the domain values for our changes.
3610 */
05394f39
CW
3611 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3612 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3613 if (write) {
05394f39
CW
3614 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3615 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3616 obj->dirty = 1;
2ef7eeaa
EA
3617 }
3618
f99d7069
DV
3619 if (write)
3620 intel_fb_obj_invalidate(obj, NULL);
3621
1c5d22f7
CW
3622 trace_i915_gem_object_change_domain(obj,
3623 old_read_domains,
3624 old_write_domain);
3625
8325a09d 3626 /* And bump the LRU for this access */
dc8cd1e7
CW
3627 if (i915_gem_object_is_inactive(obj))
3628 list_move_tail(&vma->mm_list,
3629 &dev_priv->gtt.base.inactive_list);
8325a09d 3630
e47c68e9
EA
3631 return 0;
3632}
3633
e4ffd173
CW
3634int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3635 enum i915_cache_level cache_level)
3636{
7bddb01f 3637 struct drm_device *dev = obj->base.dev;
df6f783a 3638 struct i915_vma *vma, *next;
e4ffd173
CW
3639 int ret;
3640
3641 if (obj->cache_level == cache_level)
3642 return 0;
3643
d7f46fc4 3644 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3645 DRM_DEBUG("can not change the cache level of pinned objects\n");
3646 return -EBUSY;
3647 }
3648
df6f783a 3649 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3089c6f2 3650 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3651 ret = i915_vma_unbind(vma);
3089c6f2
BW
3652 if (ret)
3653 return ret;
3089c6f2 3654 }
42d6ab48
CW
3655 }
3656
3089c6f2 3657 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3658 ret = i915_gem_object_finish_gpu(obj);
3659 if (ret)
3660 return ret;
3661
3662 i915_gem_object_finish_gtt(obj);
3663
3664 /* Before SandyBridge, you could not use tiling or fence
3665 * registers with snooped memory, so relinquish any fences
3666 * currently pointing to our region in the aperture.
3667 */
42d6ab48 3668 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3669 ret = i915_gem_object_put_fence(obj);
3670 if (ret)
3671 return ret;
3672 }
3673
6f65e29a 3674 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3675 if (drm_mm_node_allocated(&vma->node))
3676 vma->bind_vma(vma, cache_level,
3677 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
e4ffd173
CW
3678 }
3679
2c22569b
CW
3680 list_for_each_entry(vma, &obj->vma_list, vma_link)
3681 vma->node.color = cache_level;
3682 obj->cache_level = cache_level;
3683
3684 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3685 u32 old_read_domains, old_write_domain;
3686
3687 /* If we're coming from LLC cached, then we haven't
3688 * actually been tracking whether the data is in the
3689 * CPU cache or not, since we only allow one bit set
3690 * in obj->write_domain and have been skipping the clflushes.
3691 * Just set it to the CPU cache for now.
3692 */
c8725f3d 3693 i915_gem_object_retire(obj);
e4ffd173 3694 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3695
3696 old_read_domains = obj->base.read_domains;
3697 old_write_domain = obj->base.write_domain;
3698
3699 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3700 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3701
3702 trace_i915_gem_object_change_domain(obj,
3703 old_read_domains,
3704 old_write_domain);
3705 }
3706
42d6ab48 3707 i915_gem_verify_gtt(dev);
e4ffd173
CW
3708 return 0;
3709}
3710
199adf40
BW
3711int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3712 struct drm_file *file)
e6994aee 3713{
199adf40 3714 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3715 struct drm_i915_gem_object *obj;
3716 int ret;
3717
3718 ret = i915_mutex_lock_interruptible(dev);
3719 if (ret)
3720 return ret;
3721
3722 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3723 if (&obj->base == NULL) {
3724 ret = -ENOENT;
3725 goto unlock;
3726 }
3727
651d794f
CW
3728 switch (obj->cache_level) {
3729 case I915_CACHE_LLC:
3730 case I915_CACHE_L3_LLC:
3731 args->caching = I915_CACHING_CACHED;
3732 break;
3733
4257d3ba
CW
3734 case I915_CACHE_WT:
3735 args->caching = I915_CACHING_DISPLAY;
3736 break;
3737
651d794f
CW
3738 default:
3739 args->caching = I915_CACHING_NONE;
3740 break;
3741 }
e6994aee
CW
3742
3743 drm_gem_object_unreference(&obj->base);
3744unlock:
3745 mutex_unlock(&dev->struct_mutex);
3746 return ret;
3747}
3748
199adf40
BW
3749int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3750 struct drm_file *file)
e6994aee 3751{
199adf40 3752 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3753 struct drm_i915_gem_object *obj;
3754 enum i915_cache_level level;
3755 int ret;
3756
199adf40
BW
3757 switch (args->caching) {
3758 case I915_CACHING_NONE:
e6994aee
CW
3759 level = I915_CACHE_NONE;
3760 break;
199adf40 3761 case I915_CACHING_CACHED:
e6994aee
CW
3762 level = I915_CACHE_LLC;
3763 break;
4257d3ba
CW
3764 case I915_CACHING_DISPLAY:
3765 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3766 break;
e6994aee
CW
3767 default:
3768 return -EINVAL;
3769 }
3770
3bc2913e
BW
3771 ret = i915_mutex_lock_interruptible(dev);
3772 if (ret)
3773 return ret;
3774
e6994aee
CW
3775 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3776 if (&obj->base == NULL) {
3777 ret = -ENOENT;
3778 goto unlock;
3779 }
3780
3781 ret = i915_gem_object_set_cache_level(obj, level);
3782
3783 drm_gem_object_unreference(&obj->base);
3784unlock:
3785 mutex_unlock(&dev->struct_mutex);
3786 return ret;
3787}
3788
cc98b413
CW
3789static bool is_pin_display(struct drm_i915_gem_object *obj)
3790{
19656430
OM
3791 struct i915_vma *vma;
3792
19656430
OM
3793 vma = i915_gem_obj_to_ggtt(obj);
3794 if (!vma)
3795 return false;
3796
cc98b413
CW
3797 /* There are 3 sources that pin objects:
3798 * 1. The display engine (scanouts, sprites, cursors);
3799 * 2. Reservations for execbuffer;
3800 * 3. The user.
3801 *
3802 * We can ignore reservations as we hold the struct_mutex and
3803 * are only called outside of the reservation path. The user
3804 * can only increment pin_count once, and so if after
3805 * subtracting the potential reference by the user, any pin_count
3806 * remains, it must be due to another use by the display engine.
3807 */
19656430 3808 return vma->pin_count - !!obj->user_pin_count;
cc98b413
CW
3809}
3810
b9241ea3 3811/*
2da3b9b9
CW
3812 * Prepare buffer for display plane (scanout, cursors, etc).
3813 * Can be called from an uninterruptible phase (modesetting) and allows
3814 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3815 */
3816int
2da3b9b9
CW
3817i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3818 u32 alignment,
a4872ba6 3819 struct intel_engine_cs *pipelined)
b9241ea3 3820{
2da3b9b9 3821 u32 old_read_domains, old_write_domain;
19656430 3822 bool was_pin_display;
b9241ea3
ZW
3823 int ret;
3824
0be73284 3825 if (pipelined != obj->ring) {
2911a35b
BW
3826 ret = i915_gem_object_sync(obj, pipelined);
3827 if (ret)
b9241ea3
ZW
3828 return ret;
3829 }
3830
cc98b413
CW
3831 /* Mark the pin_display early so that we account for the
3832 * display coherency whilst setting up the cache domains.
3833 */
19656430 3834 was_pin_display = obj->pin_display;
cc98b413
CW
3835 obj->pin_display = true;
3836
a7ef0640
EA
3837 /* The display engine is not coherent with the LLC cache on gen6. As
3838 * a result, we make sure that the pinning that is about to occur is
3839 * done with uncached PTEs. This is lowest common denominator for all
3840 * chipsets.
3841 *
3842 * However for gen6+, we could do better by using the GFDT bit instead
3843 * of uncaching, which would allow us to flush all the LLC-cached data
3844 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3845 */
651d794f
CW
3846 ret = i915_gem_object_set_cache_level(obj,
3847 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3848 if (ret)
cc98b413 3849 goto err_unpin_display;
a7ef0640 3850
2da3b9b9
CW
3851 /* As the user may map the buffer once pinned in the display plane
3852 * (e.g. libkms for the bootup splash), we have to ensure that we
3853 * always use map_and_fenceable for all scanout buffers.
3854 */
1ec9e26d 3855 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3856 if (ret)
cc98b413 3857 goto err_unpin_display;
2da3b9b9 3858
2c22569b 3859 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3860
2da3b9b9 3861 old_write_domain = obj->base.write_domain;
05394f39 3862 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3863
3864 /* It should now be out of any other write domains, and we can update
3865 * the domain values for our changes.
3866 */
e5f1d962 3867 obj->base.write_domain = 0;
05394f39 3868 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3869
3870 trace_i915_gem_object_change_domain(obj,
3871 old_read_domains,
2da3b9b9 3872 old_write_domain);
b9241ea3
ZW
3873
3874 return 0;
cc98b413
CW
3875
3876err_unpin_display:
19656430
OM
3877 WARN_ON(was_pin_display != is_pin_display(obj));
3878 obj->pin_display = was_pin_display;
cc98b413
CW
3879 return ret;
3880}
3881
3882void
3883i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3884{
d7f46fc4 3885 i915_gem_object_ggtt_unpin(obj);
cc98b413 3886 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3887}
3888
85345517 3889int
a8198eea 3890i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3891{
88241785
CW
3892 int ret;
3893
a8198eea 3894 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3895 return 0;
3896
0201f1ec 3897 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3898 if (ret)
3899 return ret;
3900
a8198eea
CW
3901 /* Ensure that we invalidate the GPU's caches and TLBs. */
3902 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3903 return 0;
85345517
CW
3904}
3905
e47c68e9
EA
3906/**
3907 * Moves a single object to the CPU read, and possibly write domain.
3908 *
3909 * This function returns when the move is complete, including waiting on
3910 * flushes to occur.
3911 */
dabdfe02 3912int
919926ae 3913i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3914{
1c5d22f7 3915 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3916 int ret;
3917
8d7e3de1
CW
3918 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3919 return 0;
3920
0201f1ec 3921 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3922 if (ret)
3923 return ret;
3924
c8725f3d 3925 i915_gem_object_retire(obj);
e47c68e9 3926 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3927
05394f39
CW
3928 old_write_domain = obj->base.write_domain;
3929 old_read_domains = obj->base.read_domains;
1c5d22f7 3930
e47c68e9 3931 /* Flush the CPU cache if it's still invalid. */
05394f39 3932 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3933 i915_gem_clflush_object(obj, false);
2ef7eeaa 3934
05394f39 3935 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3936 }
3937
3938 /* It should now be out of any other write domains, and we can update
3939 * the domain values for our changes.
3940 */
05394f39 3941 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3942
3943 /* If we're writing through the CPU, then the GPU read domains will
3944 * need to be invalidated at next use.
3945 */
3946 if (write) {
05394f39
CW
3947 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3948 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3949 }
2ef7eeaa 3950
f99d7069
DV
3951 if (write)
3952 intel_fb_obj_invalidate(obj, NULL);
3953
1c5d22f7
CW
3954 trace_i915_gem_object_change_domain(obj,
3955 old_read_domains,
3956 old_write_domain);
3957
2ef7eeaa
EA
3958 return 0;
3959}
3960
673a394b
EA
3961/* Throttle our rendering by waiting until the ring has completed our requests
3962 * emitted over 20 msec ago.
3963 *
b962442e
EA
3964 * Note that if we were to use the current jiffies each time around the loop,
3965 * we wouldn't escape the function with any frames outstanding if the time to
3966 * render a frame was over 20ms.
3967 *
673a394b
EA
3968 * This should get us reasonable parallelism between CPU and GPU but also
3969 * relatively low latency when blocking on a particular request to finish.
3970 */
40a5f0de 3971static int
f787a5f5 3972i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3973{
f787a5f5
CW
3974 struct drm_i915_private *dev_priv = dev->dev_private;
3975 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3976 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5 3977 struct drm_i915_gem_request *request;
a4872ba6 3978 struct intel_engine_cs *ring = NULL;
f69061be 3979 unsigned reset_counter;
f787a5f5
CW
3980 u32 seqno = 0;
3981 int ret;
93533c29 3982
308887aa
DV
3983 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3984 if (ret)
3985 return ret;
3986
3987 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3988 if (ret)
3989 return ret;
e110e8d6 3990
1c25595f 3991 spin_lock(&file_priv->mm.lock);
f787a5f5 3992 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3993 if (time_after_eq(request->emitted_jiffies, recent_enough))
3994 break;
40a5f0de 3995
f787a5f5
CW
3996 ring = request->ring;
3997 seqno = request->seqno;
b962442e 3998 }
f69061be 3999 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 4000 spin_unlock(&file_priv->mm.lock);
40a5f0de 4001
f787a5f5
CW
4002 if (seqno == 0)
4003 return 0;
2bc43b5c 4004
b29c19b6 4005 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
4006 if (ret == 0)
4007 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
4008
4009 return ret;
4010}
4011
d23db88c
CW
4012static bool
4013i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4014{
4015 struct drm_i915_gem_object *obj = vma->obj;
4016
4017 if (alignment &&
4018 vma->node.start & (alignment - 1))
4019 return true;
4020
4021 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4022 return true;
4023
4024 if (flags & PIN_OFFSET_BIAS &&
4025 vma->node.start < (flags & PIN_OFFSET_MASK))
4026 return true;
4027
4028 return false;
4029}
4030
673a394b 4031int
05394f39 4032i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 4033 struct i915_address_space *vm,
05394f39 4034 uint32_t alignment,
d23db88c 4035 uint64_t flags)
673a394b 4036{
6e7186af 4037 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4038 struct i915_vma *vma;
673a394b
EA
4039 int ret;
4040
6e7186af
BW
4041 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4042 return -ENODEV;
4043
bf3d149b 4044 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4045 return -EINVAL;
07fe0b12
BW
4046
4047 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 4048 if (vma) {
d7f46fc4
BW
4049 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4050 return -EBUSY;
4051
d23db88c 4052 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4053 WARN(vma->pin_count,
ae7d49d8 4054 "bo is already pinned with incorrect alignment:"
f343c5f6 4055 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4056 " obj->map_and_fenceable=%d\n",
07fe0b12 4057 i915_gem_obj_offset(obj, vm), alignment,
d23db88c 4058 !!(flags & PIN_MAPPABLE),
05394f39 4059 obj->map_and_fenceable);
07fe0b12 4060 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4061 if (ret)
4062 return ret;
8ea99c92
DV
4063
4064 vma = NULL;
ac0c6b5a
CW
4065 }
4066 }
4067
8ea99c92 4068 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
4069 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4070 if (IS_ERR(vma))
4071 return PTR_ERR(vma);
22c344e9 4072 }
76446cac 4073
8ea99c92
DV
4074 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4075 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 4076
8ea99c92 4077 vma->pin_count++;
1ec9e26d
DV
4078 if (flags & PIN_MAPPABLE)
4079 obj->pin_mappable |= true;
673a394b
EA
4080
4081 return 0;
4082}
4083
4084void
d7f46fc4 4085i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4086{
d7f46fc4 4087 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4088
d7f46fc4
BW
4089 BUG_ON(!vma);
4090 BUG_ON(vma->pin_count == 0);
4091 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4092
4093 if (--vma->pin_count == 0)
6299f992 4094 obj->pin_mappable = false;
673a394b
EA
4095}
4096
d8ffa60b
DV
4097bool
4098i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4099{
4100 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4101 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4102 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4103
4104 WARN_ON(!ggtt_vma ||
4105 dev_priv->fence_regs[obj->fence_reg].pin_count >
4106 ggtt_vma->pin_count);
4107 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4108 return true;
4109 } else
4110 return false;
4111}
4112
4113void
4114i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4115{
4116 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4117 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4118 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4119 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4120 }
4121}
4122
673a394b
EA
4123int
4124i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 4125 struct drm_file *file)
673a394b
EA
4126{
4127 struct drm_i915_gem_pin *args = data;
05394f39 4128 struct drm_i915_gem_object *obj;
673a394b
EA
4129 int ret;
4130
02f6bccc
DV
4131 if (INTEL_INFO(dev)->gen >= 6)
4132 return -ENODEV;
4133
1d7cfea1
CW
4134 ret = i915_mutex_lock_interruptible(dev);
4135 if (ret)
4136 return ret;
673a394b 4137
05394f39 4138 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4139 if (&obj->base == NULL) {
1d7cfea1
CW
4140 ret = -ENOENT;
4141 goto unlock;
673a394b 4142 }
673a394b 4143
05394f39 4144 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 4145 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 4146 ret = -EFAULT;
1d7cfea1 4147 goto out;
3ef94daa
CW
4148 }
4149
05394f39 4150 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 4151 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 4152 args->handle);
1d7cfea1
CW
4153 ret = -EINVAL;
4154 goto out;
79e53945
JB
4155 }
4156
aa5f8021
DV
4157 if (obj->user_pin_count == ULONG_MAX) {
4158 ret = -EBUSY;
4159 goto out;
4160 }
4161
93be8788 4162 if (obj->user_pin_count == 0) {
1ec9e26d 4163 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
4164 if (ret)
4165 goto out;
673a394b
EA
4166 }
4167
93be8788
CW
4168 obj->user_pin_count++;
4169 obj->pin_filp = file;
4170
f343c5f6 4171 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 4172out:
05394f39 4173 drm_gem_object_unreference(&obj->base);
1d7cfea1 4174unlock:
673a394b 4175 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4176 return ret;
673a394b
EA
4177}
4178
4179int
4180i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4181 struct drm_file *file)
673a394b
EA
4182{
4183 struct drm_i915_gem_pin *args = data;
05394f39 4184 struct drm_i915_gem_object *obj;
76c1dec1 4185 int ret;
673a394b 4186
1d7cfea1
CW
4187 ret = i915_mutex_lock_interruptible(dev);
4188 if (ret)
4189 return ret;
673a394b 4190
05394f39 4191 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4192 if (&obj->base == NULL) {
1d7cfea1
CW
4193 ret = -ENOENT;
4194 goto unlock;
673a394b 4195 }
76c1dec1 4196
05394f39 4197 if (obj->pin_filp != file) {
bd9b6a4e 4198 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 4199 args->handle);
1d7cfea1
CW
4200 ret = -EINVAL;
4201 goto out;
79e53945 4202 }
05394f39
CW
4203 obj->user_pin_count--;
4204 if (obj->user_pin_count == 0) {
4205 obj->pin_filp = NULL;
d7f46fc4 4206 i915_gem_object_ggtt_unpin(obj);
79e53945 4207 }
673a394b 4208
1d7cfea1 4209out:
05394f39 4210 drm_gem_object_unreference(&obj->base);
1d7cfea1 4211unlock:
673a394b 4212 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4213 return ret;
673a394b
EA
4214}
4215
4216int
4217i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4218 struct drm_file *file)
673a394b
EA
4219{
4220 struct drm_i915_gem_busy *args = data;
05394f39 4221 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4222 int ret;
4223
76c1dec1 4224 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4225 if (ret)
76c1dec1 4226 return ret;
673a394b 4227
05394f39 4228 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4229 if (&obj->base == NULL) {
1d7cfea1
CW
4230 ret = -ENOENT;
4231 goto unlock;
673a394b 4232 }
d1b851fc 4233
0be555b6
CW
4234 /* Count all active objects as busy, even if they are currently not used
4235 * by the gpu. Users of this interface expect objects to eventually
4236 * become non-busy without any further actions, therefore emit any
4237 * necessary flushes here.
c4de0a5d 4238 */
30dfebf3 4239 ret = i915_gem_object_flush_active(obj);
0be555b6 4240
30dfebf3 4241 args->busy = obj->active;
e9808edd
CW
4242 if (obj->ring) {
4243 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4244 args->busy |= intel_ring_flag(obj->ring) << 16;
4245 }
673a394b 4246
05394f39 4247 drm_gem_object_unreference(&obj->base);
1d7cfea1 4248unlock:
673a394b 4249 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4250 return ret;
673a394b
EA
4251}
4252
4253int
4254i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4255 struct drm_file *file_priv)
4256{
0206e353 4257 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4258}
4259
3ef94daa
CW
4260int
4261i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4262 struct drm_file *file_priv)
4263{
4264 struct drm_i915_gem_madvise *args = data;
05394f39 4265 struct drm_i915_gem_object *obj;
76c1dec1 4266 int ret;
3ef94daa
CW
4267
4268 switch (args->madv) {
4269 case I915_MADV_DONTNEED:
4270 case I915_MADV_WILLNEED:
4271 break;
4272 default:
4273 return -EINVAL;
4274 }
4275
1d7cfea1
CW
4276 ret = i915_mutex_lock_interruptible(dev);
4277 if (ret)
4278 return ret;
4279
05394f39 4280 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4281 if (&obj->base == NULL) {
1d7cfea1
CW
4282 ret = -ENOENT;
4283 goto unlock;
3ef94daa 4284 }
3ef94daa 4285
d7f46fc4 4286 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4287 ret = -EINVAL;
4288 goto out;
3ef94daa
CW
4289 }
4290
05394f39
CW
4291 if (obj->madv != __I915_MADV_PURGED)
4292 obj->madv = args->madv;
3ef94daa 4293
6c085a72
CW
4294 /* if the object is no longer attached, discard its backing storage */
4295 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4296 i915_gem_object_truncate(obj);
4297
05394f39 4298 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4299
1d7cfea1 4300out:
05394f39 4301 drm_gem_object_unreference(&obj->base);
1d7cfea1 4302unlock:
3ef94daa 4303 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4304 return ret;
3ef94daa
CW
4305}
4306
37e680a1
CW
4307void i915_gem_object_init(struct drm_i915_gem_object *obj,
4308 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4309{
35c20a60 4310 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4311 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4312 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4313 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4314
37e680a1
CW
4315 obj->ops = ops;
4316
0327d6ba
CW
4317 obj->fence_reg = I915_FENCE_REG_NONE;
4318 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4319
4320 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4321}
4322
37e680a1
CW
4323static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4324 .get_pages = i915_gem_object_get_pages_gtt,
4325 .put_pages = i915_gem_object_put_pages_gtt,
4326};
4327
05394f39
CW
4328struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4329 size_t size)
ac52bc56 4330{
c397b908 4331 struct drm_i915_gem_object *obj;
5949eac4 4332 struct address_space *mapping;
1a240d4d 4333 gfp_t mask;
ac52bc56 4334
42dcedd4 4335 obj = i915_gem_object_alloc(dev);
c397b908
DV
4336 if (obj == NULL)
4337 return NULL;
673a394b 4338
c397b908 4339 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4340 i915_gem_object_free(obj);
c397b908
DV
4341 return NULL;
4342 }
673a394b 4343
bed1ea95
CW
4344 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4345 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4346 /* 965gm cannot relocate objects above 4GiB. */
4347 mask &= ~__GFP_HIGHMEM;
4348 mask |= __GFP_DMA32;
4349 }
4350
496ad9aa 4351 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4352 mapping_set_gfp_mask(mapping, mask);
5949eac4 4353
37e680a1 4354 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4355
c397b908
DV
4356 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4357 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4358
3d29b842
ED
4359 if (HAS_LLC(dev)) {
4360 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4361 * cache) for about a 10% performance improvement
4362 * compared to uncached. Graphics requests other than
4363 * display scanout are coherent with the CPU in
4364 * accessing this cache. This means in this mode we
4365 * don't need to clflush on the CPU side, and on the
4366 * GPU side we only need to flush internal caches to
4367 * get data visible to the CPU.
4368 *
4369 * However, we maintain the display planes as UC, and so
4370 * need to rebind when first used as such.
4371 */
4372 obj->cache_level = I915_CACHE_LLC;
4373 } else
4374 obj->cache_level = I915_CACHE_NONE;
4375
d861e338
DV
4376 trace_i915_gem_object_create(obj);
4377
05394f39 4378 return obj;
c397b908
DV
4379}
4380
340fbd8c
CW
4381static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4382{
4383 /* If we are the last user of the backing storage (be it shmemfs
4384 * pages or stolen etc), we know that the pages are going to be
4385 * immediately released. In this case, we can then skip copying
4386 * back the contents from the GPU.
4387 */
4388
4389 if (obj->madv != I915_MADV_WILLNEED)
4390 return false;
4391
4392 if (obj->base.filp == NULL)
4393 return true;
4394
4395 /* At first glance, this looks racy, but then again so would be
4396 * userspace racing mmap against close. However, the first external
4397 * reference to the filp can only be obtained through the
4398 * i915_gem_mmap_ioctl() which safeguards us against the user
4399 * acquiring such a reference whilst we are in the middle of
4400 * freeing the object.
4401 */
4402 return atomic_long_read(&obj->base.filp->f_count) == 1;
4403}
4404
1488fc08 4405void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4406{
1488fc08 4407 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4408 struct drm_device *dev = obj->base.dev;
3e31c6c0 4409 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4410 struct i915_vma *vma, *next;
673a394b 4411
f65c9168
PZ
4412 intel_runtime_pm_get(dev_priv);
4413
26e12f89
CW
4414 trace_i915_gem_object_destroy(obj);
4415
07fe0b12 4416 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4417 int ret;
4418
4419 vma->pin_count = 0;
4420 ret = i915_vma_unbind(vma);
07fe0b12
BW
4421 if (WARN_ON(ret == -ERESTARTSYS)) {
4422 bool was_interruptible;
1488fc08 4423
07fe0b12
BW
4424 was_interruptible = dev_priv->mm.interruptible;
4425 dev_priv->mm.interruptible = false;
1488fc08 4426
07fe0b12 4427 WARN_ON(i915_vma_unbind(vma));
1488fc08 4428
07fe0b12
BW
4429 dev_priv->mm.interruptible = was_interruptible;
4430 }
1488fc08
CW
4431 }
4432
00731155
CW
4433 i915_gem_object_detach_phys(obj);
4434
1d64ae71
BW
4435 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4436 * before progressing. */
4437 if (obj->stolen)
4438 i915_gem_object_unpin_pages(obj);
4439
a071fa00
DV
4440 WARN_ON(obj->frontbuffer_bits);
4441
401c29f6
BW
4442 if (WARN_ON(obj->pages_pin_count))
4443 obj->pages_pin_count = 0;
340fbd8c 4444 if (discard_backing_storage(obj))
5537252b 4445 obj->madv = I915_MADV_DONTNEED;
37e680a1 4446 i915_gem_object_put_pages(obj);
d8cb5086 4447 i915_gem_object_free_mmap_offset(obj);
de151cf6 4448
9da3da66
CW
4449 BUG_ON(obj->pages);
4450
2f745ad3
CW
4451 if (obj->base.import_attach)
4452 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4453
5cc9ed4b
CW
4454 if (obj->ops->release)
4455 obj->ops->release(obj);
4456
05394f39
CW
4457 drm_gem_object_release(&obj->base);
4458 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4459
05394f39 4460 kfree(obj->bit_17);
42dcedd4 4461 i915_gem_object_free(obj);
f65c9168
PZ
4462
4463 intel_runtime_pm_put(dev_priv);
673a394b
EA
4464}
4465
e656a6cb 4466struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4467 struct i915_address_space *vm)
e656a6cb
DV
4468{
4469 struct i915_vma *vma;
4470 list_for_each_entry(vma, &obj->vma_list, vma_link)
4471 if (vma->vm == vm)
4472 return vma;
4473
4474 return NULL;
4475}
4476
2f633156
BW
4477void i915_gem_vma_destroy(struct i915_vma *vma)
4478{
4479 WARN_ON(vma->node.allocated);
aaa05667
CW
4480
4481 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4482 if (!list_empty(&vma->exec_list))
4483 return;
4484
8b9c2b94 4485 list_del(&vma->vma_link);
b93dab6e 4486
2f633156
BW
4487 kfree(vma);
4488}
4489
e3efda49
CW
4490static void
4491i915_gem_stop_ringbuffers(struct drm_device *dev)
4492{
4493 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4494 struct intel_engine_cs *ring;
e3efda49
CW
4495 int i;
4496
4497 for_each_ring(ring, dev_priv, i)
a83014d3 4498 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4499}
4500
29105ccc 4501int
45c5f202 4502i915_gem_suspend(struct drm_device *dev)
29105ccc 4503{
3e31c6c0 4504 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4505 int ret = 0;
28dfe52a 4506
45c5f202 4507 mutex_lock(&dev->struct_mutex);
f7403347 4508 if (dev_priv->ums.mm_suspended)
45c5f202 4509 goto err;
28dfe52a 4510
b2da9fe5 4511 ret = i915_gpu_idle(dev);
f7403347 4512 if (ret)
45c5f202 4513 goto err;
f7403347 4514
b2da9fe5 4515 i915_gem_retire_requests(dev);
673a394b 4516
29105ccc 4517 /* Under UMS, be paranoid and evict. */
a39d7efc 4518 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4519 i915_gem_evict_everything(dev);
29105ccc 4520
29105ccc 4521 i915_kernel_lost_context(dev);
e3efda49 4522 i915_gem_stop_ringbuffers(dev);
29105ccc 4523
45c5f202
CW
4524 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4525 * We need to replace this with a semaphore, or something.
4526 * And not confound ums.mm_suspended!
4527 */
4528 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4529 DRIVER_MODESET);
4530 mutex_unlock(&dev->struct_mutex);
4531
4532 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4533 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4534 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4535
673a394b 4536 return 0;
45c5f202
CW
4537
4538err:
4539 mutex_unlock(&dev->struct_mutex);
4540 return ret;
673a394b
EA
4541}
4542
a4872ba6 4543int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4544{
c3787e2e 4545 struct drm_device *dev = ring->dev;
3e31c6c0 4546 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4547 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4548 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4549 int i, ret;
b9524a1e 4550
040d2baa 4551 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4552 return 0;
b9524a1e 4553
c3787e2e
BW
4554 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4555 if (ret)
4556 return ret;
b9524a1e 4557
c3787e2e
BW
4558 /*
4559 * Note: We do not worry about the concurrent register cacheline hang
4560 * here because no other code should access these registers other than
4561 * at initialization time.
4562 */
b9524a1e 4563 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4564 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4565 intel_ring_emit(ring, reg_base + i);
4566 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4567 }
4568
c3787e2e 4569 intel_ring_advance(ring);
b9524a1e 4570
c3787e2e 4571 return ret;
b9524a1e
BW
4572}
4573
f691e2f4
DV
4574void i915_gem_init_swizzling(struct drm_device *dev)
4575{
3e31c6c0 4576 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4577
11782b02 4578 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4579 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4580 return;
4581
4582 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4583 DISP_TILE_SURFACE_SWIZZLING);
4584
11782b02
DV
4585 if (IS_GEN5(dev))
4586 return;
4587
f691e2f4
DV
4588 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4589 if (IS_GEN6(dev))
6b26c86d 4590 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4591 else if (IS_GEN7(dev))
6b26c86d 4592 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4593 else if (IS_GEN8(dev))
4594 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4595 else
4596 BUG();
f691e2f4 4597}
e21af88d 4598
67b1b571
CW
4599static bool
4600intel_enable_blt(struct drm_device *dev)
4601{
4602 if (!HAS_BLT(dev))
4603 return false;
4604
4605 /* The blitter was dysfunctional on early prototypes */
4606 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4607 DRM_INFO("BLT not supported on this pre-production hardware;"
4608 " graphics performance will be degraded.\n");
4609 return false;
4610 }
4611
4612 return true;
4613}
4614
a83014d3 4615int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4616{
4fc7c971 4617 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4618 int ret;
68f95ba9 4619
5c1143bb 4620 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4621 if (ret)
b6913e4b 4622 return ret;
68f95ba9
CW
4623
4624 if (HAS_BSD(dev)) {
5c1143bb 4625 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4626 if (ret)
4627 goto cleanup_render_ring;
d1b851fc 4628 }
68f95ba9 4629
67b1b571 4630 if (intel_enable_blt(dev)) {
549f7365
CW
4631 ret = intel_init_blt_ring_buffer(dev);
4632 if (ret)
4633 goto cleanup_bsd_ring;
4634 }
4635
9a8a2213
BW
4636 if (HAS_VEBOX(dev)) {
4637 ret = intel_init_vebox_ring_buffer(dev);
4638 if (ret)
4639 goto cleanup_blt_ring;
4640 }
4641
845f74a7
ZY
4642 if (HAS_BSD2(dev)) {
4643 ret = intel_init_bsd2_ring_buffer(dev);
4644 if (ret)
4645 goto cleanup_vebox_ring;
4646 }
9a8a2213 4647
99433931 4648 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4649 if (ret)
845f74a7 4650 goto cleanup_bsd2_ring;
4fc7c971
BW
4651
4652 return 0;
4653
845f74a7
ZY
4654cleanup_bsd2_ring:
4655 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4656cleanup_vebox_ring:
4657 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4658cleanup_blt_ring:
4659 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4660cleanup_bsd_ring:
4661 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4662cleanup_render_ring:
4663 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4664
4665 return ret;
4666}
4667
4668int
4669i915_gem_init_hw(struct drm_device *dev)
4670{
3e31c6c0 4671 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4672 int ret, i;
4fc7c971
BW
4673
4674 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4675 return -EIO;
4676
59124506 4677 if (dev_priv->ellc_size)
05e21cc4 4678 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4679
0bf21347
VS
4680 if (IS_HASWELL(dev))
4681 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4682 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4683
88a2b2a3 4684 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4685 if (IS_IVYBRIDGE(dev)) {
4686 u32 temp = I915_READ(GEN7_MSG_CTL);
4687 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4688 I915_WRITE(GEN7_MSG_CTL, temp);
4689 } else if (INTEL_INFO(dev)->gen >= 7) {
4690 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4691 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4692 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4693 }
88a2b2a3
BW
4694 }
4695
4fc7c971
BW
4696 i915_gem_init_swizzling(dev);
4697
a83014d3 4698 ret = dev_priv->gt.init_rings(dev);
99433931
MK
4699 if (ret)
4700 return ret;
4701
c3787e2e
BW
4702 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4703 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4704
254f965c 4705 /*
2fa48d8d
BW
4706 * XXX: Contexts should only be initialized once. Doing a switch to the
4707 * default context switch however is something we'd like to do after
4708 * reset or thaw (the latter may not actually be necessary for HW, but
4709 * goes with our code better). Context switching requires rings (for
4710 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4711 */
2fa48d8d 4712 ret = i915_gem_context_enable(dev_priv);
60990320 4713 if (ret && ret != -EIO) {
2fa48d8d 4714 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4715 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4716 }
e21af88d 4717
2fa48d8d 4718 return ret;
8187a2b7
ZN
4719}
4720
1070a42b
CW
4721int i915_gem_init(struct drm_device *dev)
4722{
4723 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4724 int ret;
4725
127f1003
OM
4726 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4727 i915.enable_execlists);
4728
1070a42b 4729 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4730
4731 if (IS_VALLEYVIEW(dev)) {
4732 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4733 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4734 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4735 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4736 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4737 }
4738
a83014d3
OM
4739 if (!i915.enable_execlists) {
4740 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4741 dev_priv->gt.init_rings = i915_gem_init_rings;
4742 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4743 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4744 }
4745
5cc9ed4b 4746 i915_gem_init_userptr(dev);
d7e5008f 4747 i915_gem_init_global_gtt(dev);
d62b4892 4748
2fa48d8d 4749 ret = i915_gem_context_init(dev);
e3848694
MK
4750 if (ret) {
4751 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4752 return ret;
e3848694 4753 }
2fa48d8d 4754
1070a42b 4755 ret = i915_gem_init_hw(dev);
60990320
CW
4756 if (ret == -EIO) {
4757 /* Allow ring initialisation to fail by marking the GPU as
4758 * wedged. But we only want to do this where the GPU is angry,
4759 * for all other failure, such as an allocation failure, bail.
4760 */
4761 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4762 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4763 ret = 0;
1070a42b 4764 }
60990320 4765 mutex_unlock(&dev->struct_mutex);
1070a42b 4766
53ca26ca
DV
4767 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4768 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4769 dev_priv->dri1.allow_batchbuffer = 1;
60990320 4770 return ret;
1070a42b
CW
4771}
4772
8187a2b7
ZN
4773void
4774i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4775{
3e31c6c0 4776 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4777 struct intel_engine_cs *ring;
1ec14ad3 4778 int i;
8187a2b7 4779
b4519513 4780 for_each_ring(ring, dev_priv, i)
a83014d3 4781 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4782}
4783
673a394b
EA
4784int
4785i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4786 struct drm_file *file_priv)
4787{
db1b76ca 4788 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4789 int ret;
673a394b 4790
79e53945
JB
4791 if (drm_core_check_feature(dev, DRIVER_MODESET))
4792 return 0;
4793
1f83fee0 4794 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4795 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4796 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4797 }
4798
673a394b 4799 mutex_lock(&dev->struct_mutex);
db1b76ca 4800 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4801
f691e2f4 4802 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4803 if (ret != 0) {
4804 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4805 return ret;
d816f6ac 4806 }
9bb2d6f9 4807
5cef07e1 4808 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
dbb19d30 4809
bb0f1b5c 4810 ret = drm_irq_install(dev, dev->pdev->irq);
5f35308b
CW
4811 if (ret)
4812 goto cleanup_ringbuffer;
e090c53b 4813 mutex_unlock(&dev->struct_mutex);
dbb19d30 4814
673a394b 4815 return 0;
5f35308b
CW
4816
4817cleanup_ringbuffer:
5f35308b 4818 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4819 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4820 mutex_unlock(&dev->struct_mutex);
4821
4822 return ret;
673a394b
EA
4823}
4824
4825int
4826i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4827 struct drm_file *file_priv)
4828{
79e53945
JB
4829 if (drm_core_check_feature(dev, DRIVER_MODESET))
4830 return 0;
4831
e090c53b 4832 mutex_lock(&dev->struct_mutex);
dbb19d30 4833 drm_irq_uninstall(dev);
e090c53b 4834 mutex_unlock(&dev->struct_mutex);
db1b76ca 4835
45c5f202 4836 return i915_gem_suspend(dev);
673a394b
EA
4837}
4838
4839void
4840i915_gem_lastclose(struct drm_device *dev)
4841{
4842 int ret;
673a394b 4843
e806b495
EA
4844 if (drm_core_check_feature(dev, DRIVER_MODESET))
4845 return;
4846
45c5f202 4847 ret = i915_gem_suspend(dev);
6dbe2772
KP
4848 if (ret)
4849 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4850}
4851
64193406 4852static void
a4872ba6 4853init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4854{
4855 INIT_LIST_HEAD(&ring->active_list);
4856 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4857}
4858
7e0d96bc
BW
4859void i915_init_vm(struct drm_i915_private *dev_priv,
4860 struct i915_address_space *vm)
fc8c067e 4861{
7e0d96bc
BW
4862 if (!i915_is_ggtt(vm))
4863 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4864 vm->dev = dev_priv->dev;
4865 INIT_LIST_HEAD(&vm->active_list);
4866 INIT_LIST_HEAD(&vm->inactive_list);
4867 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4868 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4869}
4870
673a394b
EA
4871void
4872i915_gem_load(struct drm_device *dev)
4873{
3e31c6c0 4874 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4875 int i;
4876
4877 dev_priv->slab =
4878 kmem_cache_create("i915_gem_object",
4879 sizeof(struct drm_i915_gem_object), 0,
4880 SLAB_HWCACHE_ALIGN,
4881 NULL);
673a394b 4882
fc8c067e
BW
4883 INIT_LIST_HEAD(&dev_priv->vm_list);
4884 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4885
a33afea5 4886 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4887 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4888 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4889 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4890 for (i = 0; i < I915_NUM_RINGS; i++)
4891 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4892 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4893 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4894 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4895 i915_gem_retire_work_handler);
b29c19b6
CW
4896 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4897 i915_gem_idle_work_handler);
1f83fee0 4898 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4899
94400120 4900 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4901 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4902 I915_WRITE(MI_ARB_STATE,
4903 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4904 }
4905
72bfa19c
CW
4906 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4907
de151cf6 4908 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4909 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4910 dev_priv->fence_reg_start = 3;
de151cf6 4911
42b5aeab
VS
4912 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4913 dev_priv->num_fence_regs = 32;
4914 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4915 dev_priv->num_fence_regs = 16;
4916 else
4917 dev_priv->num_fence_regs = 8;
4918
b5aa8a0f 4919 /* Initialize fence registers to zero */
19b2dbde
CW
4920 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4921 i915_gem_restore_fences(dev);
10ed13e4 4922
673a394b 4923 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4924 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4925
ce453d81
CW
4926 dev_priv->mm.interruptible = true;
4927
ceabbba5
CW
4928 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4929 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4930 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4931 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
4932
4933 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4934 register_oom_notifier(&dev_priv->mm.oom_notifier);
f99d7069
DV
4935
4936 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 4937}
71acb5eb 4938
f787a5f5 4939void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4940{
f787a5f5 4941 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4942
b29c19b6
CW
4943 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4944
b962442e
EA
4945 /* Clean up our request list when the client is going away, so that
4946 * later retire_requests won't dereference our soon-to-be-gone
4947 * file_priv.
4948 */
1c25595f 4949 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4950 while (!list_empty(&file_priv->mm.request_list)) {
4951 struct drm_i915_gem_request *request;
4952
4953 request = list_first_entry(&file_priv->mm.request_list,
4954 struct drm_i915_gem_request,
4955 client_list);
4956 list_del(&request->client_list);
4957 request->file_priv = NULL;
4958 }
1c25595f 4959 spin_unlock(&file_priv->mm.lock);
b962442e 4960}
31169714 4961
b29c19b6
CW
4962static void
4963i915_gem_file_idle_work_handler(struct work_struct *work)
4964{
4965 struct drm_i915_file_private *file_priv =
4966 container_of(work, typeof(*file_priv), mm.idle_work.work);
4967
4968 atomic_set(&file_priv->rps_wait_boost, false);
4969}
4970
4971int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4972{
4973 struct drm_i915_file_private *file_priv;
e422b888 4974 int ret;
b29c19b6
CW
4975
4976 DRM_DEBUG_DRIVER("\n");
4977
4978 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4979 if (!file_priv)
4980 return -ENOMEM;
4981
4982 file->driver_priv = file_priv;
4983 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 4984 file_priv->file = file;
b29c19b6
CW
4985
4986 spin_lock_init(&file_priv->mm.lock);
4987 INIT_LIST_HEAD(&file_priv->mm.request_list);
4988 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4989 i915_gem_file_idle_work_handler);
4990
e422b888
BW
4991 ret = i915_gem_context_open(dev, file);
4992 if (ret)
4993 kfree(file_priv);
b29c19b6 4994
e422b888 4995 return ret;
b29c19b6
CW
4996}
4997
a071fa00
DV
4998void i915_gem_track_fb(struct drm_i915_gem_object *old,
4999 struct drm_i915_gem_object *new,
5000 unsigned frontbuffer_bits)
5001{
5002 if (old) {
5003 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5004 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5005 old->frontbuffer_bits &= ~frontbuffer_bits;
5006 }
5007
5008 if (new) {
5009 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5010 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5011 new->frontbuffer_bits |= frontbuffer_bits;
5012 }
5013}
5014
5774506f
CW
5015static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5016{
5017 if (!mutex_is_locked(mutex))
5018 return false;
5019
5020#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5021 return mutex->owner == task;
5022#else
5023 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5024 return false;
5025#endif
5026}
5027
b453c4db
CW
5028static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5029{
5030 if (!mutex_trylock(&dev->struct_mutex)) {
5031 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5032 return false;
5033
5034 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5035 return false;
5036
5037 *unlock = false;
5038 } else
5039 *unlock = true;
5040
5041 return true;
5042}
5043
ceabbba5
CW
5044static int num_vma_bound(struct drm_i915_gem_object *obj)
5045{
5046 struct i915_vma *vma;
5047 int count = 0;
5048
5049 list_for_each_entry(vma, &obj->vma_list, vma_link)
5050 if (drm_mm_node_allocated(&vma->node))
5051 count++;
5052
5053 return count;
5054}
5055
7dc19d5a 5056static unsigned long
ceabbba5 5057i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5058{
17250b71 5059 struct drm_i915_private *dev_priv =
ceabbba5 5060 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5061 struct drm_device *dev = dev_priv->dev;
6c085a72 5062 struct drm_i915_gem_object *obj;
7dc19d5a 5063 unsigned long count;
b453c4db 5064 bool unlock;
17250b71 5065
b453c4db
CW
5066 if (!i915_gem_shrinker_lock(dev, &unlock))
5067 return 0;
31169714 5068
7dc19d5a 5069 count = 0;
35c20a60 5070 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5071 if (obj->pages_pin_count == 0)
7dc19d5a 5072 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5073
5074 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5075 if (!i915_gem_obj_is_pinned(obj) &&
5076 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5077 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5078 }
17250b71 5079
5774506f
CW
5080 if (unlock)
5081 mutex_unlock(&dev->struct_mutex);
d9973b43 5082
7dc19d5a 5083 return count;
31169714 5084}
a70a3148
BW
5085
5086/* All the new VM stuff */
5087unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5088 struct i915_address_space *vm)
5089{
5090 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5091 struct i915_vma *vma;
5092
6f425321
BW
5093 if (!dev_priv->mm.aliasing_ppgtt ||
5094 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5095 vm = &dev_priv->gtt.base;
5096
a70a3148
BW
5097 list_for_each_entry(vma, &o->vma_list, vma_link) {
5098 if (vma->vm == vm)
5099 return vma->node.start;
5100
5101 }
f25748ea
DV
5102 WARN(1, "%s vma for this object not found.\n",
5103 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5104 return -1;
5105}
5106
5107bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5108 struct i915_address_space *vm)
5109{
5110 struct i915_vma *vma;
5111
5112 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5113 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5114 return true;
5115
5116 return false;
5117}
5118
5119bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5120{
5a1d5eb0 5121 struct i915_vma *vma;
a70a3148 5122
5a1d5eb0
CW
5123 list_for_each_entry(vma, &o->vma_list, vma_link)
5124 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5125 return true;
5126
5127 return false;
5128}
5129
5130unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5131 struct i915_address_space *vm)
5132{
5133 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5134 struct i915_vma *vma;
5135
6f425321
BW
5136 if (!dev_priv->mm.aliasing_ppgtt ||
5137 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5138 vm = &dev_priv->gtt.base;
5139
5140 BUG_ON(list_empty(&o->vma_list));
5141
5142 list_for_each_entry(vma, &o->vma_list, vma_link)
5143 if (vma->vm == vm)
5144 return vma->node.size;
5145
5146 return 0;
5147}
5148
7dc19d5a 5149static unsigned long
ceabbba5 5150i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5151{
5152 struct drm_i915_private *dev_priv =
ceabbba5 5153 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5154 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5155 unsigned long freed;
b453c4db 5156 bool unlock;
7dc19d5a 5157
b453c4db
CW
5158 if (!i915_gem_shrinker_lock(dev, &unlock))
5159 return SHRINK_STOP;
7dc19d5a 5160
d9973b43
CW
5161 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5162 if (freed < sc->nr_to_scan)
5163 freed += __i915_gem_shrink(dev_priv,
5164 sc->nr_to_scan - freed,
5165 false);
7dc19d5a
DC
5166 if (unlock)
5167 mutex_unlock(&dev->struct_mutex);
d9973b43 5168
7dc19d5a
DC
5169 return freed;
5170}
5c2abbea 5171
2cfcd32a
CW
5172static int
5173i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5174{
5175 struct drm_i915_private *dev_priv =
5176 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5177 struct drm_device *dev = dev_priv->dev;
5178 struct drm_i915_gem_object *obj;
5179 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5180 unsigned long pinned, bound, unbound, freed;
5181 bool was_interruptible;
5182 bool unlock;
5183
a1db2fa7 5184 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
2cfcd32a 5185 schedule_timeout_killable(1);
a1db2fa7
CW
5186 if (fatal_signal_pending(current))
5187 return NOTIFY_DONE;
5188 }
2cfcd32a
CW
5189 if (timeout == 0) {
5190 pr_err("Unable to purge GPU memory due lock contention.\n");
5191 return NOTIFY_DONE;
5192 }
5193
5194 was_interruptible = dev_priv->mm.interruptible;
5195 dev_priv->mm.interruptible = false;
5196
5197 freed = i915_gem_shrink_all(dev_priv);
5198
5199 dev_priv->mm.interruptible = was_interruptible;
5200
5201 /* Because we may be allocating inside our own driver, we cannot
5202 * assert that there are no objects with pinned pages that are not
5203 * being pointed to by hardware.
5204 */
5205 unbound = bound = pinned = 0;
5206 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5207 if (!obj->base.filp) /* not backed by a freeable object */
5208 continue;
5209
5210 if (obj->pages_pin_count)
5211 pinned += obj->base.size;
5212 else
5213 unbound += obj->base.size;
5214 }
5215 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5216 if (!obj->base.filp)
5217 continue;
5218
5219 if (obj->pages_pin_count)
5220 pinned += obj->base.size;
5221 else
5222 bound += obj->base.size;
5223 }
5224
5225 if (unlock)
5226 mutex_unlock(&dev->struct_mutex);
5227
5228 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5229 freed, pinned);
5230 if (unbound || bound)
5231 pr_err("%lu and %lu bytes still available in the "
5232 "bound and unbound GPU page lists.\n",
5233 bound, unbound);
5234
5235 *(unsigned long *)ptr += freed;
5236 return NOTIFY_DONE;
5237}
5238
5c2abbea
BW
5239struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5240{
5241 struct i915_vma *vma;
5242
5c2abbea 5243 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5244 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5245 return NULL;
5246
5247 return vma;
5248}