]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Tweak on-error bbaddr parsing for clarity
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
0f8c6d7c
CW
38struct change_domains {
39 uint32_t invalidate_domains;
40 uint32_t flush_domains;
41 uint32_t flush_rings;
42};
43
05394f39 44static int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj,
919926ae 45 struct intel_ring_buffer *pipelined);
05394f39
CW
46static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
47static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
48static int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
919926ae 49 bool write);
05394f39 50static int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
51 uint64_t offset,
52 uint64_t size);
05394f39
CW
53static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
54static int i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2cf34d7b 55 bool interruptible);
05394f39 56static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
a00b10c3 57 unsigned alignment,
75e9e915 58 bool map_and_fenceable);
05394f39
CW
59static void i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj);
60static int i915_gem_phys_pwrite(struct drm_device *dev,
61 struct drm_i915_gem_object *obj,
71acb5eb 62 struct drm_i915_gem_pwrite *args,
05394f39
CW
63 struct drm_file *file);
64static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 65
17250b71
CW
66static int i915_gem_inactive_shrink(struct shrinker *shrinker,
67 int nr_to_scan,
68 gfp_t gfp_mask);
69
31169714 70
73aa808f
CW
71/* some bookkeeping */
72static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
74{
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
77}
78
79static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
81{
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
84}
85
86static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
a00b10c3 87 struct drm_i915_gem_object *obj)
73aa808f
CW
88{
89 dev_priv->mm.gtt_count++;
a00b10c3
CW
90 dev_priv->mm.gtt_memory += obj->gtt_space->size;
91 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
fb7d516a 92 dev_priv->mm.mappable_gtt_used +=
a00b10c3
CW
93 min_t(size_t, obj->gtt_space->size,
94 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
fb7d516a 95 }
93a37f20 96 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
73aa808f
CW
97}
98
99static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
a00b10c3 100 struct drm_i915_gem_object *obj)
73aa808f
CW
101{
102 dev_priv->mm.gtt_count--;
a00b10c3
CW
103 dev_priv->mm.gtt_memory -= obj->gtt_space->size;
104 if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
fb7d516a 105 dev_priv->mm.mappable_gtt_used -=
a00b10c3
CW
106 min_t(size_t, obj->gtt_space->size,
107 dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
fb7d516a 108 }
93a37f20 109 list_del_init(&obj->gtt_list);
fb7d516a
DV
110}
111
112/**
113 * Update the mappable working set counters. Call _only_ when there is a change
114 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
115 * @mappable: new state the changed mappable flag (either pin_ or fault_).
116 */
117static void
118i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
a00b10c3 119 struct drm_i915_gem_object *obj,
fb7d516a
DV
120 bool mappable)
121{
fb7d516a 122 if (mappable) {
a00b10c3 123 if (obj->pin_mappable && obj->fault_mappable)
fb7d516a
DV
124 /* Combined state was already mappable. */
125 return;
126 dev_priv->mm.gtt_mappable_count++;
a00b10c3 127 dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
fb7d516a 128 } else {
a00b10c3 129 if (obj->pin_mappable || obj->fault_mappable)
fb7d516a
DV
130 /* Combined state still mappable. */
131 return;
132 dev_priv->mm.gtt_mappable_count--;
a00b10c3 133 dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
fb7d516a 134 }
73aa808f
CW
135}
136
137static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
a00b10c3 138 struct drm_i915_gem_object *obj,
fb7d516a 139 bool mappable)
73aa808f
CW
140{
141 dev_priv->mm.pin_count++;
a00b10c3 142 dev_priv->mm.pin_memory += obj->gtt_space->size;
fb7d516a 143 if (mappable) {
a00b10c3 144 obj->pin_mappable = true;
fb7d516a
DV
145 i915_gem_info_update_mappable(dev_priv, obj, true);
146 }
73aa808f
CW
147}
148
149static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
a00b10c3 150 struct drm_i915_gem_object *obj)
73aa808f
CW
151{
152 dev_priv->mm.pin_count--;
a00b10c3
CW
153 dev_priv->mm.pin_memory -= obj->gtt_space->size;
154 if (obj->pin_mappable) {
155 obj->pin_mappable = false;
fb7d516a
DV
156 i915_gem_info_update_mappable(dev_priv, obj, false);
157 }
73aa808f
CW
158}
159
30dbf0c0
CW
160int
161i915_gem_check_is_wedged(struct drm_device *dev)
162{
163 struct drm_i915_private *dev_priv = dev->dev_private;
164 struct completion *x = &dev_priv->error_completion;
165 unsigned long flags;
166 int ret;
167
168 if (!atomic_read(&dev_priv->mm.wedged))
169 return 0;
170
171 ret = wait_for_completion_interruptible(x);
172 if (ret)
173 return ret;
174
175 /* Success, we reset the GPU! */
176 if (!atomic_read(&dev_priv->mm.wedged))
177 return 0;
178
179 /* GPU is hung, bump the completion count to account for
180 * the token we just consumed so that we never hit zero and
181 * end up waiting upon a subsequent completion event that
182 * will never happen.
183 */
184 spin_lock_irqsave(&x->wait.lock, flags);
185 x->done++;
186 spin_unlock_irqrestore(&x->wait.lock, flags);
187 return -EIO;
188}
189
76c1dec1
CW
190static int i915_mutex_lock_interruptible(struct drm_device *dev)
191{
192 struct drm_i915_private *dev_priv = dev->dev_private;
193 int ret;
194
195 ret = i915_gem_check_is_wedged(dev);
196 if (ret)
197 return ret;
198
199 ret = mutex_lock_interruptible(&dev->struct_mutex);
200 if (ret)
201 return ret;
202
203 if (atomic_read(&dev_priv->mm.wedged)) {
204 mutex_unlock(&dev->struct_mutex);
205 return -EAGAIN;
206 }
207
23bc5982 208 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
209 return 0;
210}
30dbf0c0 211
7d1c4804 212static inline bool
05394f39 213i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 214{
05394f39 215 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
216}
217
73aa808f
CW
218int i915_gem_do_init(struct drm_device *dev,
219 unsigned long start,
53984635 220 unsigned long mappable_end,
79e53945 221 unsigned long end)
673a394b
EA
222{
223 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 224
79e53945
JB
225 if (start >= end ||
226 (start & (PAGE_SIZE - 1)) != 0 ||
227 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
228 return -EINVAL;
229 }
230
79e53945
JB
231 drm_mm_init(&dev_priv->mm.gtt_space, start,
232 end - start);
673a394b 233
73aa808f 234 dev_priv->mm.gtt_total = end - start;
fb7d516a 235 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
53984635 236 dev_priv->mm.gtt_mappable_end = mappable_end;
79e53945
JB
237
238 return 0;
239}
673a394b 240
79e53945
JB
241int
242i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 243 struct drm_file *file)
79e53945
JB
244{
245 struct drm_i915_gem_init *args = data;
246 int ret;
247
248 mutex_lock(&dev->struct_mutex);
53984635 249 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
250 mutex_unlock(&dev->struct_mutex);
251
79e53945 252 return ret;
673a394b
EA
253}
254
5a125c3c
EA
255int
256i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 257 struct drm_file *file)
5a125c3c 258{
73aa808f 259 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 260 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
261
262 if (!(dev->driver->driver_features & DRIVER_GEM))
263 return -ENODEV;
264
73aa808f
CW
265 mutex_lock(&dev->struct_mutex);
266 args->aper_size = dev_priv->mm.gtt_total;
267 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
268 mutex_unlock(&dev->struct_mutex);
5a125c3c
EA
269
270 return 0;
271}
272
673a394b
EA
273
274/**
275 * Creates a new mm object and returns a handle to it.
276 */
277int
278i915_gem_create_ioctl(struct drm_device *dev, void *data,
05394f39 279 struct drm_file *file)
673a394b
EA
280{
281 struct drm_i915_gem_create *args = data;
05394f39 282 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
283 int ret;
284 u32 handle;
673a394b
EA
285
286 args->size = roundup(args->size, PAGE_SIZE);
287
288 /* Allocate the new object */
ac52bc56 289 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
290 if (obj == NULL)
291 return -ENOMEM;
292
05394f39 293 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 294 if (ret) {
05394f39
CW
295 drm_gem_object_release(&obj->base);
296 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 297 kfree(obj);
673a394b 298 return ret;
1dfd9754 299 }
673a394b 300
202f2fef 301 /* drop reference from allocate - handle holds it now */
05394f39 302 drm_gem_object_unreference(&obj->base);
202f2fef
CW
303 trace_i915_gem_object_create(obj);
304
1dfd9754 305 args->handle = handle;
673a394b
EA
306 return 0;
307}
308
05394f39 309static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 310{
05394f39 311 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
312
313 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 314 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
315}
316
99a03df5 317static inline void
40123c1f
EA
318slow_shmem_copy(struct page *dst_page,
319 int dst_offset,
320 struct page *src_page,
321 int src_offset,
322 int length)
323{
324 char *dst_vaddr, *src_vaddr;
325
99a03df5
CW
326 dst_vaddr = kmap(dst_page);
327 src_vaddr = kmap(src_page);
40123c1f
EA
328
329 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
330
99a03df5
CW
331 kunmap(src_page);
332 kunmap(dst_page);
40123c1f
EA
333}
334
99a03df5 335static inline void
280b713b
EA
336slow_shmem_bit17_copy(struct page *gpu_page,
337 int gpu_offset,
338 struct page *cpu_page,
339 int cpu_offset,
340 int length,
341 int is_read)
342{
343 char *gpu_vaddr, *cpu_vaddr;
344
345 /* Use the unswizzled path if this page isn't affected. */
346 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
347 if (is_read)
348 return slow_shmem_copy(cpu_page, cpu_offset,
349 gpu_page, gpu_offset, length);
350 else
351 return slow_shmem_copy(gpu_page, gpu_offset,
352 cpu_page, cpu_offset, length);
353 }
354
99a03df5
CW
355 gpu_vaddr = kmap(gpu_page);
356 cpu_vaddr = kmap(cpu_page);
280b713b
EA
357
358 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
359 * XORing with the other bits (A9 for Y, A9 and A10 for X)
360 */
361 while (length > 0) {
362 int cacheline_end = ALIGN(gpu_offset + 1, 64);
363 int this_length = min(cacheline_end - gpu_offset, length);
364 int swizzled_gpu_offset = gpu_offset ^ 64;
365
366 if (is_read) {
367 memcpy(cpu_vaddr + cpu_offset,
368 gpu_vaddr + swizzled_gpu_offset,
369 this_length);
370 } else {
371 memcpy(gpu_vaddr + swizzled_gpu_offset,
372 cpu_vaddr + cpu_offset,
373 this_length);
374 }
375 cpu_offset += this_length;
376 gpu_offset += this_length;
377 length -= this_length;
378 }
379
99a03df5
CW
380 kunmap(cpu_page);
381 kunmap(gpu_page);
280b713b
EA
382}
383
eb01459f
EA
384/**
385 * This is the fast shmem pread path, which attempts to copy_from_user directly
386 * from the backing pages of the object to the user's address space. On a
387 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
388 */
389static int
05394f39
CW
390i915_gem_shmem_pread_fast(struct drm_device *dev,
391 struct drm_i915_gem_object *obj,
eb01459f 392 struct drm_i915_gem_pread *args,
05394f39 393 struct drm_file *file)
eb01459f 394{
05394f39 395 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 396 ssize_t remain;
e5281ccd 397 loff_t offset;
eb01459f
EA
398 char __user *user_data;
399 int page_offset, page_length;
eb01459f
EA
400
401 user_data = (char __user *) (uintptr_t) args->data_ptr;
402 remain = args->size;
403
eb01459f
EA
404 offset = args->offset;
405
406 while (remain > 0) {
e5281ccd
CW
407 struct page *page;
408 char *vaddr;
409 int ret;
410
eb01459f
EA
411 /* Operation in this page
412 *
eb01459f
EA
413 * page_offset = offset within page
414 * page_length = bytes to copy for this page
415 */
eb01459f
EA
416 page_offset = offset & (PAGE_SIZE-1);
417 page_length = remain;
418 if ((page_offset + remain) > PAGE_SIZE)
419 page_length = PAGE_SIZE - page_offset;
420
e5281ccd
CW
421 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
422 GFP_HIGHUSER | __GFP_RECLAIMABLE);
423 if (IS_ERR(page))
424 return PTR_ERR(page);
425
426 vaddr = kmap_atomic(page);
427 ret = __copy_to_user_inatomic(user_data,
428 vaddr + page_offset,
429 page_length);
430 kunmap_atomic(vaddr);
431
432 mark_page_accessed(page);
433 page_cache_release(page);
434 if (ret)
4f27b75d 435 return -EFAULT;
eb01459f
EA
436
437 remain -= page_length;
438 user_data += page_length;
439 offset += page_length;
440 }
441
4f27b75d 442 return 0;
eb01459f
EA
443}
444
445/**
446 * This is the fallback shmem pread path, which allocates temporary storage
447 * in kernel space to copy_to_user into outside of the struct_mutex, so we
448 * can copy out of the object's backing pages while holding the struct mutex
449 * and not take page faults.
450 */
451static int
05394f39
CW
452i915_gem_shmem_pread_slow(struct drm_device *dev,
453 struct drm_i915_gem_object *obj,
eb01459f 454 struct drm_i915_gem_pread *args,
05394f39 455 struct drm_file *file)
eb01459f 456{
05394f39 457 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f
EA
458 struct mm_struct *mm = current->mm;
459 struct page **user_pages;
460 ssize_t remain;
461 loff_t offset, pinned_pages, i;
462 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
463 int shmem_page_offset;
464 int data_page_index, data_page_offset;
eb01459f
EA
465 int page_length;
466 int ret;
467 uint64_t data_ptr = args->data_ptr;
280b713b 468 int do_bit17_swizzling;
eb01459f
EA
469
470 remain = args->size;
471
472 /* Pin the user pages containing the data. We can't fault while
473 * holding the struct mutex, yet we want to hold it while
474 * dereferencing the user data.
475 */
476 first_data_page = data_ptr / PAGE_SIZE;
477 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
478 num_pages = last_data_page - first_data_page + 1;
479
4f27b75d 480 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
481 if (user_pages == NULL)
482 return -ENOMEM;
483
4f27b75d 484 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
485 down_read(&mm->mmap_sem);
486 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 487 num_pages, 1, 0, user_pages, NULL);
eb01459f 488 up_read(&mm->mmap_sem);
4f27b75d 489 mutex_lock(&dev->struct_mutex);
eb01459f
EA
490 if (pinned_pages < num_pages) {
491 ret = -EFAULT;
4f27b75d 492 goto out;
eb01459f
EA
493 }
494
4f27b75d
CW
495 ret = i915_gem_object_set_cpu_read_domain_range(obj,
496 args->offset,
497 args->size);
07f73f69 498 if (ret)
4f27b75d 499 goto out;
eb01459f 500
4f27b75d 501 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 502
eb01459f
EA
503 offset = args->offset;
504
505 while (remain > 0) {
e5281ccd
CW
506 struct page *page;
507
eb01459f
EA
508 /* Operation in this page
509 *
eb01459f
EA
510 * shmem_page_offset = offset within page in shmem file
511 * data_page_index = page number in get_user_pages return
512 * data_page_offset = offset with data_page_index page.
513 * page_length = bytes to copy for this page
514 */
eb01459f
EA
515 shmem_page_offset = offset & ~PAGE_MASK;
516 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
517 data_page_offset = data_ptr & ~PAGE_MASK;
518
519 page_length = remain;
520 if ((shmem_page_offset + page_length) > PAGE_SIZE)
521 page_length = PAGE_SIZE - shmem_page_offset;
522 if ((data_page_offset + page_length) > PAGE_SIZE)
523 page_length = PAGE_SIZE - data_page_offset;
524
e5281ccd
CW
525 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
526 GFP_HIGHUSER | __GFP_RECLAIMABLE);
527 if (IS_ERR(page))
528 return PTR_ERR(page);
529
280b713b 530 if (do_bit17_swizzling) {
e5281ccd 531 slow_shmem_bit17_copy(page,
280b713b 532 shmem_page_offset,
99a03df5
CW
533 user_pages[data_page_index],
534 data_page_offset,
535 page_length,
536 1);
537 } else {
538 slow_shmem_copy(user_pages[data_page_index],
539 data_page_offset,
e5281ccd 540 page,
99a03df5
CW
541 shmem_page_offset,
542 page_length);
280b713b 543 }
eb01459f 544
e5281ccd
CW
545 mark_page_accessed(page);
546 page_cache_release(page);
547
eb01459f
EA
548 remain -= page_length;
549 data_ptr += page_length;
550 offset += page_length;
551 }
552
4f27b75d 553out:
eb01459f
EA
554 for (i = 0; i < pinned_pages; i++) {
555 SetPageDirty(user_pages[i]);
e5281ccd 556 mark_page_accessed(user_pages[i]);
eb01459f
EA
557 page_cache_release(user_pages[i]);
558 }
8e7d2b2c 559 drm_free_large(user_pages);
eb01459f
EA
560
561 return ret;
562}
563
673a394b
EA
564/**
565 * Reads data from the object referenced by handle.
566 *
567 * On error, the contents of *data are undefined.
568 */
569int
570i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 571 struct drm_file *file)
673a394b
EA
572{
573 struct drm_i915_gem_pread *args = data;
05394f39 574 struct drm_i915_gem_object *obj;
35b62a89 575 int ret = 0;
673a394b 576
51311d0a
CW
577 if (args->size == 0)
578 return 0;
579
580 if (!access_ok(VERIFY_WRITE,
581 (char __user *)(uintptr_t)args->data_ptr,
582 args->size))
583 return -EFAULT;
584
585 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
586 args->size);
587 if (ret)
588 return -EFAULT;
589
4f27b75d 590 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 591 if (ret)
4f27b75d 592 return ret;
673a394b 593
05394f39 594 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
595 if (obj == NULL) {
596 ret = -ENOENT;
597 goto unlock;
4f27b75d 598 }
673a394b 599
7dcd2499 600 /* Bounds check source. */
05394f39
CW
601 if (args->offset > obj->base.size ||
602 args->size > obj->base.size - args->offset) {
ce9d419d 603 ret = -EINVAL;
35b62a89 604 goto out;
ce9d419d
CW
605 }
606
4f27b75d
CW
607 ret = i915_gem_object_set_cpu_read_domain_range(obj,
608 args->offset,
609 args->size);
610 if (ret)
e5281ccd 611 goto out;
4f27b75d
CW
612
613 ret = -EFAULT;
614 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 615 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 616 if (ret == -EFAULT)
05394f39 617 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 618
35b62a89 619out:
05394f39 620 drm_gem_object_unreference(&obj->base);
1d7cfea1 621unlock:
4f27b75d 622 mutex_unlock(&dev->struct_mutex);
eb01459f 623 return ret;
673a394b
EA
624}
625
0839ccb8
KP
626/* This is the fast write path which cannot handle
627 * page faults in the source data
9b7530cc 628 */
0839ccb8
KP
629
630static inline int
631fast_user_write(struct io_mapping *mapping,
632 loff_t page_base, int page_offset,
633 char __user *user_data,
634 int length)
9b7530cc 635{
9b7530cc 636 char *vaddr_atomic;
0839ccb8 637 unsigned long unwritten;
9b7530cc 638
3e4d3af5 639 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
640 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
641 user_data, length);
3e4d3af5 642 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 643 return unwritten;
0839ccb8
KP
644}
645
646/* Here's the write path which can sleep for
647 * page faults
648 */
649
ab34c226 650static inline void
3de09aa3
EA
651slow_kernel_write(struct io_mapping *mapping,
652 loff_t gtt_base, int gtt_offset,
653 struct page *user_page, int user_offset,
654 int length)
0839ccb8 655{
ab34c226
CW
656 char __iomem *dst_vaddr;
657 char *src_vaddr;
0839ccb8 658
ab34c226
CW
659 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
660 src_vaddr = kmap(user_page);
661
662 memcpy_toio(dst_vaddr + gtt_offset,
663 src_vaddr + user_offset,
664 length);
665
666 kunmap(user_page);
667 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
668}
669
3de09aa3
EA
670/**
671 * This is the fast pwrite path, where we copy the data directly from the
672 * user into the GTT, uncached.
673 */
673a394b 674static int
05394f39
CW
675i915_gem_gtt_pwrite_fast(struct drm_device *dev,
676 struct drm_i915_gem_object *obj,
3de09aa3 677 struct drm_i915_gem_pwrite *args,
05394f39 678 struct drm_file *file)
673a394b 679{
0839ccb8 680 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 681 ssize_t remain;
0839ccb8 682 loff_t offset, page_base;
673a394b 683 char __user *user_data;
0839ccb8 684 int page_offset, page_length;
673a394b
EA
685
686 user_data = (char __user *) (uintptr_t) args->data_ptr;
687 remain = args->size;
673a394b 688
05394f39 689 offset = obj->gtt_offset + args->offset;
673a394b
EA
690
691 while (remain > 0) {
692 /* Operation in this page
693 *
0839ccb8
KP
694 * page_base = page offset within aperture
695 * page_offset = offset within page
696 * page_length = bytes to copy for this page
673a394b 697 */
0839ccb8
KP
698 page_base = (offset & ~(PAGE_SIZE-1));
699 page_offset = offset & (PAGE_SIZE-1);
700 page_length = remain;
701 if ((page_offset + remain) > PAGE_SIZE)
702 page_length = PAGE_SIZE - page_offset;
703
0839ccb8 704 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
705 * source page isn't available. Return the error and we'll
706 * retry in the slow path.
0839ccb8 707 */
fbd5a26d
CW
708 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
709 page_offset, user_data, page_length))
710
711 return -EFAULT;
673a394b 712
0839ccb8
KP
713 remain -= page_length;
714 user_data += page_length;
715 offset += page_length;
673a394b 716 }
673a394b 717
fbd5a26d 718 return 0;
673a394b
EA
719}
720
3de09aa3
EA
721/**
722 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
723 * the memory and maps it using kmap_atomic for copying.
724 *
725 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
726 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
727 */
3043c60c 728static int
05394f39
CW
729i915_gem_gtt_pwrite_slow(struct drm_device *dev,
730 struct drm_i915_gem_object *obj,
3de09aa3 731 struct drm_i915_gem_pwrite *args,
05394f39 732 struct drm_file *file)
673a394b 733{
3de09aa3
EA
734 drm_i915_private_t *dev_priv = dev->dev_private;
735 ssize_t remain;
736 loff_t gtt_page_base, offset;
737 loff_t first_data_page, last_data_page, num_pages;
738 loff_t pinned_pages, i;
739 struct page **user_pages;
740 struct mm_struct *mm = current->mm;
741 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 742 int ret;
3de09aa3
EA
743 uint64_t data_ptr = args->data_ptr;
744
745 remain = args->size;
746
747 /* Pin the user pages containing the data. We can't fault while
748 * holding the struct mutex, and all of the pwrite implementations
749 * want to hold it while dereferencing the user data.
750 */
751 first_data_page = data_ptr / PAGE_SIZE;
752 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
753 num_pages = last_data_page - first_data_page + 1;
754
fbd5a26d 755 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
756 if (user_pages == NULL)
757 return -ENOMEM;
758
fbd5a26d 759 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
760 down_read(&mm->mmap_sem);
761 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
762 num_pages, 0, 0, user_pages, NULL);
763 up_read(&mm->mmap_sem);
fbd5a26d 764 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
765 if (pinned_pages < num_pages) {
766 ret = -EFAULT;
767 goto out_unpin_pages;
768 }
673a394b 769
3de09aa3
EA
770 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
771 if (ret)
fbd5a26d 772 goto out_unpin_pages;
3de09aa3 773
05394f39 774 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
775
776 while (remain > 0) {
777 /* Operation in this page
778 *
779 * gtt_page_base = page offset within aperture
780 * gtt_page_offset = offset within page in aperture
781 * data_page_index = page number in get_user_pages return
782 * data_page_offset = offset with data_page_index page.
783 * page_length = bytes to copy for this page
784 */
785 gtt_page_base = offset & PAGE_MASK;
786 gtt_page_offset = offset & ~PAGE_MASK;
787 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
788 data_page_offset = data_ptr & ~PAGE_MASK;
789
790 page_length = remain;
791 if ((gtt_page_offset + page_length) > PAGE_SIZE)
792 page_length = PAGE_SIZE - gtt_page_offset;
793 if ((data_page_offset + page_length) > PAGE_SIZE)
794 page_length = PAGE_SIZE - data_page_offset;
795
ab34c226
CW
796 slow_kernel_write(dev_priv->mm.gtt_mapping,
797 gtt_page_base, gtt_page_offset,
798 user_pages[data_page_index],
799 data_page_offset,
800 page_length);
3de09aa3
EA
801
802 remain -= page_length;
803 offset += page_length;
804 data_ptr += page_length;
805 }
806
3de09aa3
EA
807out_unpin_pages:
808 for (i = 0; i < pinned_pages; i++)
809 page_cache_release(user_pages[i]);
8e7d2b2c 810 drm_free_large(user_pages);
3de09aa3
EA
811
812 return ret;
813}
814
40123c1f
EA
815/**
816 * This is the fast shmem pwrite path, which attempts to directly
817 * copy_from_user into the kmapped pages backing the object.
818 */
3043c60c 819static int
05394f39
CW
820i915_gem_shmem_pwrite_fast(struct drm_device *dev,
821 struct drm_i915_gem_object *obj,
40123c1f 822 struct drm_i915_gem_pwrite *args,
05394f39 823 struct drm_file *file)
673a394b 824{
05394f39 825 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 826 ssize_t remain;
e5281ccd 827 loff_t offset;
40123c1f
EA
828 char __user *user_data;
829 int page_offset, page_length;
40123c1f
EA
830
831 user_data = (char __user *) (uintptr_t) args->data_ptr;
832 remain = args->size;
673a394b 833
40123c1f 834 offset = args->offset;
05394f39 835 obj->dirty = 1;
40123c1f
EA
836
837 while (remain > 0) {
e5281ccd
CW
838 struct page *page;
839 char *vaddr;
840 int ret;
841
40123c1f
EA
842 /* Operation in this page
843 *
40123c1f
EA
844 * page_offset = offset within page
845 * page_length = bytes to copy for this page
846 */
40123c1f
EA
847 page_offset = offset & (PAGE_SIZE-1);
848 page_length = remain;
849 if ((page_offset + remain) > PAGE_SIZE)
850 page_length = PAGE_SIZE - page_offset;
851
e5281ccd
CW
852 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
853 GFP_HIGHUSER | __GFP_RECLAIMABLE);
854 if (IS_ERR(page))
855 return PTR_ERR(page);
856
857 vaddr = kmap_atomic(page, KM_USER0);
858 ret = __copy_from_user_inatomic(vaddr + page_offset,
859 user_data,
860 page_length);
861 kunmap_atomic(vaddr, KM_USER0);
862
863 set_page_dirty(page);
864 mark_page_accessed(page);
865 page_cache_release(page);
866
867 /* If we get a fault while copying data, then (presumably) our
868 * source page isn't available. Return the error and we'll
869 * retry in the slow path.
870 */
871 if (ret)
fbd5a26d 872 return -EFAULT;
40123c1f
EA
873
874 remain -= page_length;
875 user_data += page_length;
876 offset += page_length;
877 }
878
fbd5a26d 879 return 0;
40123c1f
EA
880}
881
882/**
883 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
884 * the memory and maps it using kmap_atomic for copying.
885 *
886 * This avoids taking mmap_sem for faulting on the user's address while the
887 * struct_mutex is held.
888 */
889static int
05394f39
CW
890i915_gem_shmem_pwrite_slow(struct drm_device *dev,
891 struct drm_i915_gem_object *obj,
40123c1f 892 struct drm_i915_gem_pwrite *args,
05394f39 893 struct drm_file *file)
40123c1f 894{
05394f39 895 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f
EA
896 struct mm_struct *mm = current->mm;
897 struct page **user_pages;
898 ssize_t remain;
899 loff_t offset, pinned_pages, i;
900 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 901 int shmem_page_offset;
40123c1f
EA
902 int data_page_index, data_page_offset;
903 int page_length;
904 int ret;
905 uint64_t data_ptr = args->data_ptr;
280b713b 906 int do_bit17_swizzling;
40123c1f
EA
907
908 remain = args->size;
909
910 /* Pin the user pages containing the data. We can't fault while
911 * holding the struct mutex, and all of the pwrite implementations
912 * want to hold it while dereferencing the user data.
913 */
914 first_data_page = data_ptr / PAGE_SIZE;
915 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
916 num_pages = last_data_page - first_data_page + 1;
917
4f27b75d 918 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
919 if (user_pages == NULL)
920 return -ENOMEM;
921
fbd5a26d 922 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
923 down_read(&mm->mmap_sem);
924 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
925 num_pages, 0, 0, user_pages, NULL);
926 up_read(&mm->mmap_sem);
fbd5a26d 927 mutex_lock(&dev->struct_mutex);
40123c1f
EA
928 if (pinned_pages < num_pages) {
929 ret = -EFAULT;
fbd5a26d 930 goto out;
673a394b
EA
931 }
932
fbd5a26d 933 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 934 if (ret)
fbd5a26d 935 goto out;
40123c1f 936
fbd5a26d 937 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 938
673a394b 939 offset = args->offset;
05394f39 940 obj->dirty = 1;
673a394b 941
40123c1f 942 while (remain > 0) {
e5281ccd
CW
943 struct page *page;
944
40123c1f
EA
945 /* Operation in this page
946 *
40123c1f
EA
947 * shmem_page_offset = offset within page in shmem file
948 * data_page_index = page number in get_user_pages return
949 * data_page_offset = offset with data_page_index page.
950 * page_length = bytes to copy for this page
951 */
40123c1f
EA
952 shmem_page_offset = offset & ~PAGE_MASK;
953 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
954 data_page_offset = data_ptr & ~PAGE_MASK;
955
956 page_length = remain;
957 if ((shmem_page_offset + page_length) > PAGE_SIZE)
958 page_length = PAGE_SIZE - shmem_page_offset;
959 if ((data_page_offset + page_length) > PAGE_SIZE)
960 page_length = PAGE_SIZE - data_page_offset;
961
e5281ccd
CW
962 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
963 GFP_HIGHUSER | __GFP_RECLAIMABLE);
964 if (IS_ERR(page)) {
965 ret = PTR_ERR(page);
966 goto out;
967 }
968
280b713b 969 if (do_bit17_swizzling) {
e5281ccd 970 slow_shmem_bit17_copy(page,
280b713b
EA
971 shmem_page_offset,
972 user_pages[data_page_index],
973 data_page_offset,
99a03df5
CW
974 page_length,
975 0);
976 } else {
e5281ccd 977 slow_shmem_copy(page,
99a03df5
CW
978 shmem_page_offset,
979 user_pages[data_page_index],
980 data_page_offset,
981 page_length);
280b713b 982 }
40123c1f 983
e5281ccd
CW
984 set_page_dirty(page);
985 mark_page_accessed(page);
986 page_cache_release(page);
987
40123c1f
EA
988 remain -= page_length;
989 data_ptr += page_length;
990 offset += page_length;
673a394b
EA
991 }
992
fbd5a26d 993out:
40123c1f
EA
994 for (i = 0; i < pinned_pages; i++)
995 page_cache_release(user_pages[i]);
8e7d2b2c 996 drm_free_large(user_pages);
673a394b 997
40123c1f 998 return ret;
673a394b
EA
999}
1000
1001/**
1002 * Writes data to the object referenced by handle.
1003 *
1004 * On error, the contents of the buffer that were to be modified are undefined.
1005 */
1006int
1007i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1008 struct drm_file *file)
673a394b
EA
1009{
1010 struct drm_i915_gem_pwrite *args = data;
05394f39 1011 struct drm_i915_gem_object *obj;
51311d0a
CW
1012 int ret;
1013
1014 if (args->size == 0)
1015 return 0;
1016
1017 if (!access_ok(VERIFY_READ,
1018 (char __user *)(uintptr_t)args->data_ptr,
1019 args->size))
1020 return -EFAULT;
1021
1022 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1023 args->size);
1024 if (ret)
1025 return -EFAULT;
673a394b 1026
fbd5a26d 1027 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1028 if (ret)
fbd5a26d 1029 return ret;
1d7cfea1 1030
05394f39 1031 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
1032 if (obj == NULL) {
1033 ret = -ENOENT;
1034 goto unlock;
fbd5a26d 1035 }
673a394b 1036
7dcd2499 1037 /* Bounds check destination. */
05394f39
CW
1038 if (args->offset > obj->base.size ||
1039 args->size > obj->base.size - args->offset) {
ce9d419d 1040 ret = -EINVAL;
35b62a89 1041 goto out;
ce9d419d
CW
1042 }
1043
673a394b
EA
1044 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1045 * it would end up going through the fenced access, and we'll get
1046 * different detiling behavior between reading and writing.
1047 * pread/pwrite currently are reading and writing from the CPU
1048 * perspective, requiring manual detiling by the client.
1049 */
05394f39 1050 if (obj->phys_obj)
fbd5a26d 1051 ret = i915_gem_phys_pwrite(dev, obj, args, file);
05394f39
CW
1052 else if (obj->tiling_mode == I915_TILING_NONE &&
1053 obj->gtt_space &&
1054 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 1055 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1056 if (ret)
1057 goto out;
1058
1059 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1060 if (ret)
1061 goto out_unpin;
1062
1063 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1064 if (ret == -EFAULT)
1065 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1066
1067out_unpin:
1068 i915_gem_object_unpin(obj);
40123c1f 1069 } else {
fbd5a26d
CW
1070 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1071 if (ret)
e5281ccd 1072 goto out;
673a394b 1073
fbd5a26d
CW
1074 ret = -EFAULT;
1075 if (!i915_gem_object_needs_bit17_swizzle(obj))
1076 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1077 if (ret == -EFAULT)
1078 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1079 }
673a394b 1080
35b62a89 1081out:
05394f39 1082 drm_gem_object_unreference(&obj->base);
1d7cfea1 1083unlock:
fbd5a26d 1084 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1085 return ret;
1086}
1087
1088/**
2ef7eeaa
EA
1089 * Called when user space prepares to use an object with the CPU, either
1090 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1091 */
1092int
1093i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1094 struct drm_file *file)
673a394b 1095{
a09ba7fa 1096 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1097 struct drm_i915_gem_set_domain *args = data;
05394f39 1098 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1099 uint32_t read_domains = args->read_domains;
1100 uint32_t write_domain = args->write_domain;
673a394b
EA
1101 int ret;
1102
1103 if (!(dev->driver->driver_features & DRIVER_GEM))
1104 return -ENODEV;
1105
2ef7eeaa 1106 /* Only handle setting domains to types used by the CPU. */
21d509e3 1107 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1108 return -EINVAL;
1109
21d509e3 1110 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1111 return -EINVAL;
1112
1113 /* Having something in the write domain implies it's in the read
1114 * domain, and only that read domain. Enforce that in the request.
1115 */
1116 if (write_domain != 0 && read_domains != write_domain)
1117 return -EINVAL;
1118
76c1dec1 1119 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1120 if (ret)
76c1dec1 1121 return ret;
1d7cfea1 1122
05394f39 1123 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
1124 if (obj == NULL) {
1125 ret = -ENOENT;
1126 goto unlock;
76c1dec1 1127 }
673a394b 1128
652c393a
JB
1129 intel_mark_busy(dev, obj);
1130
2ef7eeaa
EA
1131 if (read_domains & I915_GEM_DOMAIN_GTT) {
1132 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1133
a09ba7fa
EA
1134 /* Update the LRU on the fence for the CPU access that's
1135 * about to occur.
1136 */
05394f39 1137 if (obj->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac 1138 struct drm_i915_fence_reg *reg =
05394f39 1139 &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 1140 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1141 &dev_priv->mm.fence_list);
1142 }
1143
02354392
EA
1144 /* Silently promote "you're not bound, there was nothing to do"
1145 * to success, since the client was just asking us to
1146 * make sure everything was done.
1147 */
1148 if (ret == -EINVAL)
1149 ret = 0;
2ef7eeaa 1150 } else {
e47c68e9 1151 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1152 }
1153
7d1c4804 1154 /* Maintain LRU order of "inactive" objects */
05394f39
CW
1155 if (ret == 0 && i915_gem_object_is_inactive(obj))
1156 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1157
05394f39 1158 drm_gem_object_unreference(&obj->base);
1d7cfea1 1159unlock:
673a394b
EA
1160 mutex_unlock(&dev->struct_mutex);
1161 return ret;
1162}
1163
1164/**
1165 * Called when user space has done writes to this buffer
1166 */
1167int
1168i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1169 struct drm_file *file)
673a394b
EA
1170{
1171 struct drm_i915_gem_sw_finish *args = data;
05394f39 1172 struct drm_i915_gem_object *obj;
673a394b
EA
1173 int ret = 0;
1174
1175 if (!(dev->driver->driver_features & DRIVER_GEM))
1176 return -ENODEV;
1177
76c1dec1 1178 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1179 if (ret)
76c1dec1 1180 return ret;
1d7cfea1 1181
05394f39 1182 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 1183 if (obj == NULL) {
1d7cfea1
CW
1184 ret = -ENOENT;
1185 goto unlock;
673a394b
EA
1186 }
1187
673a394b 1188 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1189 if (obj->pin_count)
e47c68e9
EA
1190 i915_gem_object_flush_cpu_write_domain(obj);
1191
05394f39 1192 drm_gem_object_unreference(&obj->base);
1d7cfea1 1193unlock:
673a394b
EA
1194 mutex_unlock(&dev->struct_mutex);
1195 return ret;
1196}
1197
1198/**
1199 * Maps the contents of an object, returning the address it is mapped
1200 * into.
1201 *
1202 * While the mapping holds a reference on the contents of the object, it doesn't
1203 * imply a ref on the object itself.
1204 */
1205int
1206i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1207 struct drm_file *file)
673a394b 1208{
da761a6e 1209 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1210 struct drm_i915_gem_mmap *args = data;
1211 struct drm_gem_object *obj;
1212 loff_t offset;
1213 unsigned long addr;
1214
1215 if (!(dev->driver->driver_features & DRIVER_GEM))
1216 return -ENODEV;
1217
05394f39 1218 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1219 if (obj == NULL)
bf79cb91 1220 return -ENOENT;
673a394b 1221
da761a6e
CW
1222 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1223 drm_gem_object_unreference_unlocked(obj);
1224 return -E2BIG;
1225 }
1226
673a394b
EA
1227 offset = args->offset;
1228
1229 down_write(&current->mm->mmap_sem);
1230 addr = do_mmap(obj->filp, 0, args->size,
1231 PROT_READ | PROT_WRITE, MAP_SHARED,
1232 args->offset);
1233 up_write(&current->mm->mmap_sem);
bc9025bd 1234 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1235 if (IS_ERR((void *)addr))
1236 return addr;
1237
1238 args->addr_ptr = (uint64_t) addr;
1239
1240 return 0;
1241}
1242
de151cf6
JB
1243/**
1244 * i915_gem_fault - fault a page into the GTT
1245 * vma: VMA in question
1246 * vmf: fault info
1247 *
1248 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1249 * from userspace. The fault handler takes care of binding the object to
1250 * the GTT (if needed), allocating and programming a fence register (again,
1251 * only if needed based on whether the old reg is still valid or the object
1252 * is tiled) and inserting a new PTE into the faulting process.
1253 *
1254 * Note that the faulting process may involve evicting existing objects
1255 * from the GTT and/or fence registers to make room. So performance may
1256 * suffer if the GTT working set is large or there are few fence registers
1257 * left.
1258 */
1259int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1260{
05394f39
CW
1261 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1262 struct drm_device *dev = obj->base.dev;
7d1c4804 1263 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1264 pgoff_t page_offset;
1265 unsigned long pfn;
1266 int ret = 0;
0f973f27 1267 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1268
1269 /* We don't use vmf->pgoff since that has the fake offset */
1270 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1271 PAGE_SHIFT;
1272
1273 /* Now bind it into the GTT if needed */
1274 mutex_lock(&dev->struct_mutex);
05394f39 1275 BUG_ON(obj->pin_count && !obj->pin_mappable);
a00b10c3 1276
919926ae
CW
1277 if (!obj->map_and_fenceable) {
1278 ret = i915_gem_object_unbind(obj);
1279 if (ret)
1280 goto unlock;
a00b10c3 1281 }
16e809ac 1282
05394f39 1283 if (!obj->gtt_space) {
75e9e915 1284 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1285 if (ret)
1286 goto unlock;
de151cf6
JB
1287 }
1288
4a684a41
CW
1289 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1290 if (ret)
1291 goto unlock;
1292
05394f39
CW
1293 if (!obj->fault_mappable) {
1294 obj->fault_mappable = true;
1295 i915_gem_info_update_mappable(dev_priv, obj, true);
fb7d516a
DV
1296 }
1297
de151cf6 1298 /* Need a new fence register? */
05394f39 1299 if (obj->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1300 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1301 if (ret)
1302 goto unlock;
d9ddcb96 1303 }
de151cf6 1304
05394f39
CW
1305 if (i915_gem_object_is_inactive(obj))
1306 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1307
05394f39 1308 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1309 page_offset;
1310
1311 /* Finally, remap it using the new GTT offset */
1312 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1313unlock:
de151cf6
JB
1314 mutex_unlock(&dev->struct_mutex);
1315
1316 switch (ret) {
045e769a
CW
1317 case -EAGAIN:
1318 set_need_resched();
c715089f
CW
1319 case 0:
1320 case -ERESTARTSYS:
1321 return VM_FAULT_NOPAGE;
de151cf6 1322 case -ENOMEM:
de151cf6 1323 return VM_FAULT_OOM;
de151cf6 1324 default:
c715089f 1325 return VM_FAULT_SIGBUS;
de151cf6
JB
1326 }
1327}
1328
1329/**
1330 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1331 * @obj: obj in question
1332 *
1333 * GEM memory mapping works by handing back to userspace a fake mmap offset
1334 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1335 * up the object based on the offset and sets up the various memory mapping
1336 * structures.
1337 *
1338 * This routine allocates and attaches a fake offset for @obj.
1339 */
1340static int
05394f39 1341i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
de151cf6 1342{
05394f39 1343 struct drm_device *dev = obj->base.dev;
de151cf6 1344 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1345 struct drm_map_list *list;
f77d390c 1346 struct drm_local_map *map;
de151cf6
JB
1347 int ret = 0;
1348
1349 /* Set the object up for mmap'ing */
05394f39 1350 list = &obj->base.map_list;
9a298b2a 1351 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1352 if (!list->map)
1353 return -ENOMEM;
1354
1355 map = list->map;
1356 map->type = _DRM_GEM;
05394f39 1357 map->size = obj->base.size;
de151cf6
JB
1358 map->handle = obj;
1359
1360 /* Get a DRM GEM mmap offset allocated... */
1361 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
05394f39
CW
1362 obj->base.size / PAGE_SIZE,
1363 0, 0);
de151cf6 1364 if (!list->file_offset_node) {
05394f39
CW
1365 DRM_ERROR("failed to allocate offset for bo %d\n",
1366 obj->base.name);
9e0ae534 1367 ret = -ENOSPC;
de151cf6
JB
1368 goto out_free_list;
1369 }
1370
1371 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
05394f39
CW
1372 obj->base.size / PAGE_SIZE,
1373 0);
de151cf6
JB
1374 if (!list->file_offset_node) {
1375 ret = -ENOMEM;
1376 goto out_free_list;
1377 }
1378
1379 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1380 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1381 if (ret) {
de151cf6
JB
1382 DRM_ERROR("failed to add to map hash\n");
1383 goto out_free_mm;
1384 }
1385
de151cf6
JB
1386 return 0;
1387
1388out_free_mm:
1389 drm_mm_put_block(list->file_offset_node);
1390out_free_list:
9a298b2a 1391 kfree(list->map);
39a01d1f 1392 list->map = NULL;
de151cf6
JB
1393
1394 return ret;
1395}
1396
901782b2
CW
1397/**
1398 * i915_gem_release_mmap - remove physical page mappings
1399 * @obj: obj in question
1400 *
af901ca1 1401 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1402 * relinquish ownership of the pages back to the system.
1403 *
1404 * It is vital that we remove the page mapping if we have mapped a tiled
1405 * object through the GTT and then lose the fence register due to
1406 * resource pressure. Similarly if the object has been moved out of the
1407 * aperture, than pages mapped into userspace must be revoked. Removing the
1408 * mapping will then trigger a page fault on the next user access, allowing
1409 * fixup by i915_gem_fault().
1410 */
d05ca301 1411void
05394f39 1412i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1413{
05394f39 1414 struct drm_device *dev = obj->base.dev;
fb7d516a 1415 struct drm_i915_private *dev_priv = dev->dev_private;
901782b2 1416
05394f39 1417 if (unlikely(obj->base.map_list.map && dev->dev_mapping))
901782b2 1418 unmap_mapping_range(dev->dev_mapping,
05394f39
CW
1419 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1420 obj->base.size, 1);
fb7d516a 1421
05394f39
CW
1422 if (obj->fault_mappable) {
1423 obj->fault_mappable = false;
1424 i915_gem_info_update_mappable(dev_priv, obj, false);
fb7d516a 1425 }
901782b2
CW
1426}
1427
ab00b3e5 1428static void
05394f39 1429i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
ab00b3e5 1430{
05394f39 1431 struct drm_device *dev = obj->base.dev;
ab00b3e5 1432 struct drm_gem_mm *mm = dev->mm_private;
05394f39 1433 struct drm_map_list *list = &obj->base.map_list;
ab00b3e5 1434
ab00b3e5 1435 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1436 drm_mm_put_block(list->file_offset_node);
1437 kfree(list->map);
1438 list->map = NULL;
ab00b3e5
JB
1439}
1440
92b88aeb
CW
1441static uint32_t
1442i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1443{
1444 struct drm_device *dev = obj->base.dev;
1445 uint32_t size;
1446
1447 if (INTEL_INFO(dev)->gen >= 4 ||
1448 obj->tiling_mode == I915_TILING_NONE)
1449 return obj->base.size;
1450
1451 /* Previous chips need a power-of-two fence region when tiling */
1452 if (INTEL_INFO(dev)->gen == 3)
1453 size = 1024*1024;
1454 else
1455 size = 512*1024;
1456
1457 while (size < obj->base.size)
1458 size <<= 1;
1459
1460 return size;
1461}
1462
de151cf6
JB
1463/**
1464 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1465 * @obj: object to check
1466 *
1467 * Return the required GTT alignment for an object, taking into account
5e783301 1468 * potential fence register mapping.
de151cf6
JB
1469 */
1470static uint32_t
05394f39 1471i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
de151cf6 1472{
05394f39 1473 struct drm_device *dev = obj->base.dev;
de151cf6
JB
1474
1475 /*
1476 * Minimum alignment is 4k (GTT page size), but might be greater
1477 * if a fence register is needed for the object.
1478 */
a00b10c3 1479 if (INTEL_INFO(dev)->gen >= 4 ||
05394f39 1480 obj->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1481 return 4096;
1482
a00b10c3
CW
1483 /*
1484 * Previous chips need to be aligned to the size of the smallest
1485 * fence register that can contain the object.
1486 */
05394f39 1487 return i915_gem_get_gtt_size(obj);
a00b10c3
CW
1488}
1489
5e783301
DV
1490/**
1491 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1492 * unfenced object
1493 * @obj: object to check
1494 *
1495 * Return the required GTT alignment for an object, only taking into account
1496 * unfenced tiled surface requirements.
1497 */
1498static uint32_t
05394f39 1499i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
5e783301 1500{
05394f39 1501 struct drm_device *dev = obj->base.dev;
5e783301
DV
1502 int tile_height;
1503
1504 /*
1505 * Minimum alignment is 4k (GTT page size) for sane hw.
1506 */
1507 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
05394f39 1508 obj->tiling_mode == I915_TILING_NONE)
5e783301
DV
1509 return 4096;
1510
1511 /*
1512 * Older chips need unfenced tiled buffers to be aligned to the left
1513 * edge of an even tile row (where tile rows are counted as if the bo is
1514 * placed in a fenced gtt region).
1515 */
1516 if (IS_GEN2(dev) ||
05394f39 1517 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
5e783301
DV
1518 tile_height = 32;
1519 else
1520 tile_height = 8;
1521
05394f39 1522 return tile_height * obj->stride * 2;
5e783301
DV
1523}
1524
de151cf6
JB
1525/**
1526 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1527 * @dev: DRM device
1528 * @data: GTT mapping ioctl data
05394f39 1529 * @file: GEM object info
de151cf6
JB
1530 *
1531 * Simply returns the fake offset to userspace so it can mmap it.
1532 * The mmap call will end up in drm_gem_mmap(), which will set things
1533 * up so we can get faults in the handler above.
1534 *
1535 * The fault handler will take care of binding the object into the GTT
1536 * (since it may have been evicted to make room for something), allocating
1537 * a fence register, and mapping the appropriate aperture address into
1538 * userspace.
1539 */
1540int
1541i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
05394f39 1542 struct drm_file *file)
de151cf6 1543{
da761a6e 1544 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 1545 struct drm_i915_gem_mmap_gtt *args = data;
05394f39 1546 struct drm_i915_gem_object *obj;
de151cf6
JB
1547 int ret;
1548
1549 if (!(dev->driver->driver_features & DRIVER_GEM))
1550 return -ENODEV;
1551
76c1dec1 1552 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1553 if (ret)
76c1dec1 1554 return ret;
de151cf6 1555
05394f39 1556 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1d7cfea1
CW
1557 if (obj == NULL) {
1558 ret = -ENOENT;
1559 goto unlock;
1560 }
de151cf6 1561
05394f39 1562 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e
CW
1563 ret = -E2BIG;
1564 goto unlock;
1565 }
1566
05394f39 1567 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1568 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1569 ret = -EINVAL;
1570 goto out;
ab18282d
CW
1571 }
1572
05394f39 1573 if (!obj->base.map_list.map) {
de151cf6 1574 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1575 if (ret)
1576 goto out;
de151cf6
JB
1577 }
1578
05394f39 1579 args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1580
1d7cfea1 1581out:
05394f39 1582 drm_gem_object_unreference(&obj->base);
1d7cfea1 1583unlock:
de151cf6 1584 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1585 return ret;
de151cf6
JB
1586}
1587
e5281ccd 1588static int
05394f39 1589i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1590 gfp_t gfpmask)
1591{
e5281ccd
CW
1592 int page_count, i;
1593 struct address_space *mapping;
1594 struct inode *inode;
1595 struct page *page;
1596
1597 /* Get the list of pages out of our struct file. They'll be pinned
1598 * at this point until we release them.
1599 */
05394f39
CW
1600 page_count = obj->base.size / PAGE_SIZE;
1601 BUG_ON(obj->pages != NULL);
1602 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1603 if (obj->pages == NULL)
e5281ccd
CW
1604 return -ENOMEM;
1605
05394f39 1606 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd
CW
1607 mapping = inode->i_mapping;
1608 for (i = 0; i < page_count; i++) {
1609 page = read_cache_page_gfp(mapping, i,
1610 GFP_HIGHUSER |
1611 __GFP_COLD |
1612 __GFP_RECLAIMABLE |
1613 gfpmask);
1614 if (IS_ERR(page))
1615 goto err_pages;
1616
05394f39 1617 obj->pages[i] = page;
e5281ccd
CW
1618 }
1619
05394f39 1620 if (obj->tiling_mode != I915_TILING_NONE)
e5281ccd
CW
1621 i915_gem_object_do_bit_17_swizzle(obj);
1622
1623 return 0;
1624
1625err_pages:
1626 while (i--)
05394f39 1627 page_cache_release(obj->pages[i]);
e5281ccd 1628
05394f39
CW
1629 drm_free_large(obj->pages);
1630 obj->pages = NULL;
e5281ccd
CW
1631 return PTR_ERR(page);
1632}
1633
5cdf5881 1634static void
05394f39 1635i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1636{
05394f39 1637 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1638 int i;
1639
05394f39 1640 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1641
05394f39 1642 if (obj->tiling_mode != I915_TILING_NONE)
280b713b
EA
1643 i915_gem_object_save_bit_17_swizzle(obj);
1644
05394f39
CW
1645 if (obj->madv == I915_MADV_DONTNEED)
1646 obj->dirty = 0;
3ef94daa
CW
1647
1648 for (i = 0; i < page_count; i++) {
05394f39
CW
1649 if (obj->dirty)
1650 set_page_dirty(obj->pages[i]);
3ef94daa 1651
05394f39
CW
1652 if (obj->madv == I915_MADV_WILLNEED)
1653 mark_page_accessed(obj->pages[i]);
3ef94daa 1654
05394f39 1655 page_cache_release(obj->pages[i]);
3ef94daa 1656 }
05394f39 1657 obj->dirty = 0;
673a394b 1658
05394f39
CW
1659 drm_free_large(obj->pages);
1660 obj->pages = NULL;
673a394b
EA
1661}
1662
a56ba56c
CW
1663static uint32_t
1664i915_gem_next_request_seqno(struct drm_device *dev,
1665 struct intel_ring_buffer *ring)
1666{
1667 drm_i915_private_t *dev_priv = dev->dev_private;
5d97eb69 1668 return ring->outstanding_lazy_request = dev_priv->next_seqno;
a56ba56c
CW
1669}
1670
673a394b 1671static void
05394f39 1672i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
852835f3 1673 struct intel_ring_buffer *ring)
673a394b 1674{
05394f39 1675 struct drm_device *dev = obj->base.dev;
69dc4987 1676 struct drm_i915_private *dev_priv = dev->dev_private;
a56ba56c 1677 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1678
852835f3 1679 BUG_ON(ring == NULL);
05394f39 1680 obj->ring = ring;
673a394b
EA
1681
1682 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1683 if (!obj->active) {
1684 drm_gem_object_reference(&obj->base);
1685 obj->active = 1;
673a394b 1686 }
e35a41de 1687
673a394b 1688 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1689 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1690 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1691
05394f39 1692 obj->last_rendering_seqno = seqno;
caea7476
CW
1693 if (obj->fenced_gpu_access) {
1694 struct drm_i915_fence_reg *reg;
1695
1696 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1697
1698 obj->last_fenced_seqno = seqno;
1699 obj->last_fenced_ring = ring;
1700
1701 reg = &dev_priv->fence_regs[obj->fence_reg];
1702 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1703 }
1704}
1705
1706static void
1707i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1708{
1709 list_del_init(&obj->ring_list);
1710 obj->last_rendering_seqno = 0;
1711 obj->last_fenced_seqno = 0;
673a394b
EA
1712}
1713
ce44b0ea 1714static void
05394f39 1715i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1716{
05394f39 1717 struct drm_device *dev = obj->base.dev;
ce44b0ea 1718 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1719
05394f39
CW
1720 BUG_ON(!obj->active);
1721 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1722
1723 i915_gem_object_move_off_active(obj);
1724}
1725
1726static void
1727i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1728{
1729 struct drm_device *dev = obj->base.dev;
1730 struct drm_i915_private *dev_priv = dev->dev_private;
1731
1732 if (obj->pin_count != 0)
1733 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1734 else
1735 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1736
1737 BUG_ON(!list_empty(&obj->gpu_write_list));
1738 BUG_ON(!obj->active);
1739 obj->ring = NULL;
1740
1741 i915_gem_object_move_off_active(obj);
1742 obj->fenced_gpu_access = false;
1743 obj->last_fenced_ring = NULL;
1744
1745 obj->active = 0;
1746 drm_gem_object_unreference(&obj->base);
1747
1748 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1749}
673a394b 1750
963b4836
CW
1751/* Immediately discard the backing storage */
1752static void
05394f39 1753i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1754{
bb6baf76 1755 struct inode *inode;
963b4836 1756
ae9fed6b
CW
1757 /* Our goal here is to return as much of the memory as
1758 * is possible back to the system as we are called from OOM.
1759 * To do this we must instruct the shmfs to drop all of its
1760 * backing pages, *now*. Here we mirror the actions taken
1761 * when by shmem_delete_inode() to release the backing store.
1762 */
05394f39 1763 inode = obj->base.filp->f_path.dentry->d_inode;
ae9fed6b
CW
1764 truncate_inode_pages(inode->i_mapping, 0);
1765 if (inode->i_op->truncate_range)
1766 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1767
05394f39 1768 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1769}
1770
1771static inline int
05394f39 1772i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1773{
05394f39 1774 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1775}
1776
63560396
DV
1777static void
1778i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1779 uint32_t flush_domains,
852835f3 1780 struct intel_ring_buffer *ring)
63560396 1781{
05394f39 1782 struct drm_i915_gem_object *obj, *next;
63560396 1783
05394f39 1784 list_for_each_entry_safe(obj, next,
64193406 1785 &ring->gpu_write_list,
63560396 1786 gpu_write_list) {
05394f39
CW
1787 if (obj->base.write_domain & flush_domains) {
1788 uint32_t old_write_domain = obj->base.write_domain;
63560396 1789
05394f39
CW
1790 obj->base.write_domain = 0;
1791 list_del_init(&obj->gpu_write_list);
617dbe27 1792 i915_gem_object_move_to_active(obj, ring);
63560396 1793
63560396 1794 trace_i915_gem_object_change_domain(obj,
05394f39 1795 obj->base.read_domains,
63560396
DV
1796 old_write_domain);
1797 }
1798 }
1799}
8187a2b7 1800
3cce469c 1801int
8a1a49f9 1802i915_add_request(struct drm_device *dev,
f787a5f5 1803 struct drm_file *file,
8dc5d147 1804 struct drm_i915_gem_request *request,
8a1a49f9 1805 struct intel_ring_buffer *ring)
673a394b
EA
1806{
1807 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1808 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1809 uint32_t seqno;
1810 int was_empty;
3cce469c
CW
1811 int ret;
1812
1813 BUG_ON(request == NULL);
673a394b 1814
f787a5f5
CW
1815 if (file != NULL)
1816 file_priv = file->driver_priv;
b962442e 1817
3cce469c
CW
1818 ret = ring->add_request(ring, &seqno);
1819 if (ret)
1820 return ret;
673a394b 1821
a56ba56c 1822 ring->outstanding_lazy_request = false;
673a394b
EA
1823
1824 request->seqno = seqno;
852835f3 1825 request->ring = ring;
673a394b 1826 request->emitted_jiffies = jiffies;
852835f3
ZN
1827 was_empty = list_empty(&ring->request_list);
1828 list_add_tail(&request->list, &ring->request_list);
1829
f787a5f5 1830 if (file_priv) {
1c25595f 1831 spin_lock(&file_priv->mm.lock);
f787a5f5 1832 request->file_priv = file_priv;
b962442e 1833 list_add_tail(&request->client_list,
f787a5f5 1834 &file_priv->mm.request_list);
1c25595f 1835 spin_unlock(&file_priv->mm.lock);
b962442e 1836 }
673a394b 1837
f65d9421 1838 if (!dev_priv->mm.suspended) {
b3b079db
CW
1839 mod_timer(&dev_priv->hangcheck_timer,
1840 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1841 if (was_empty)
b3b079db
CW
1842 queue_delayed_work(dev_priv->wq,
1843 &dev_priv->mm.retire_work, HZ);
f65d9421 1844 }
3cce469c 1845 return 0;
673a394b
EA
1846}
1847
1848/**
1849 * Command execution barrier
1850 *
1851 * Ensures that all commands in the ring are finished
1852 * before signalling the CPU
1853 */
8a1a49f9 1854static void
852835f3 1855i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1856{
673a394b 1857 uint32_t flush_domains = 0;
673a394b
EA
1858
1859 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1860 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1861 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3 1862
78501eac 1863 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1864}
1865
f787a5f5
CW
1866static inline void
1867i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1868{
1c25595f 1869 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1870
1c25595f
CW
1871 if (!file_priv)
1872 return;
1c5d22f7 1873
1c25595f
CW
1874 spin_lock(&file_priv->mm.lock);
1875 list_del(&request->client_list);
1876 request->file_priv = NULL;
1877 spin_unlock(&file_priv->mm.lock);
673a394b 1878}
673a394b 1879
dfaae392
CW
1880static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1881 struct intel_ring_buffer *ring)
9375e446 1882{
dfaae392
CW
1883 while (!list_empty(&ring->request_list)) {
1884 struct drm_i915_gem_request *request;
673a394b 1885
dfaae392
CW
1886 request = list_first_entry(&ring->request_list,
1887 struct drm_i915_gem_request,
1888 list);
de151cf6 1889
dfaae392 1890 list_del(&request->list);
f787a5f5 1891 i915_gem_request_remove_from_client(request);
dfaae392
CW
1892 kfree(request);
1893 }
673a394b 1894
dfaae392 1895 while (!list_empty(&ring->active_list)) {
05394f39 1896 struct drm_i915_gem_object *obj;
9375e446 1897
05394f39
CW
1898 obj = list_first_entry(&ring->active_list,
1899 struct drm_i915_gem_object,
1900 ring_list);
9375e446 1901
05394f39
CW
1902 obj->base.write_domain = 0;
1903 list_del_init(&obj->gpu_write_list);
1904 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1905 }
1906}
1907
312817a3
CW
1908static void i915_gem_reset_fences(struct drm_device *dev)
1909{
1910 struct drm_i915_private *dev_priv = dev->dev_private;
1911 int i;
1912
1913 for (i = 0; i < 16; i++) {
1914 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1915 if (reg->obj)
1916 i915_gem_clear_fence_reg(reg->obj);
1917 }
1918}
1919
069efc1d 1920void i915_gem_reset(struct drm_device *dev)
673a394b 1921{
77f01230 1922 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1923 struct drm_i915_gem_object *obj;
673a394b 1924
dfaae392 1925 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1926 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
549f7365 1927 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
dfaae392
CW
1928
1929 /* Remove anything from the flushing lists. The GPU cache is likely
1930 * to be lost on reset along with the data, so simply move the
1931 * lost bo to the inactive list.
1932 */
1933 while (!list_empty(&dev_priv->mm.flushing_list)) {
05394f39
CW
1934 obj= list_first_entry(&dev_priv->mm.flushing_list,
1935 struct drm_i915_gem_object,
1936 mm_list);
dfaae392 1937
05394f39
CW
1938 obj->base.write_domain = 0;
1939 list_del_init(&obj->gpu_write_list);
1940 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1941 }
1942
1943 /* Move everything out of the GPU domains to ensure we do any
1944 * necessary invalidation upon reuse.
1945 */
05394f39 1946 list_for_each_entry(obj,
77f01230 1947 &dev_priv->mm.inactive_list,
69dc4987 1948 mm_list)
77f01230 1949 {
05394f39 1950 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1951 }
069efc1d
CW
1952
1953 /* The fence registers are invalidated so clear them out */
312817a3 1954 i915_gem_reset_fences(dev);
673a394b
EA
1955}
1956
1957/**
1958 * This function clears the request list as sequence numbers are passed.
1959 */
b09a1fec
CW
1960static void
1961i915_gem_retire_requests_ring(struct drm_device *dev,
1962 struct intel_ring_buffer *ring)
673a394b
EA
1963{
1964 drm_i915_private_t *dev_priv = dev->dev_private;
1965 uint32_t seqno;
1966
b84d5f0c
CW
1967 if (!ring->status_page.page_addr ||
1968 list_empty(&ring->request_list))
6c0594a3
KW
1969 return;
1970
23bc5982 1971 WARN_ON(i915_verify_lists(dev));
673a394b 1972
78501eac 1973 seqno = ring->get_seqno(ring);
852835f3 1974 while (!list_empty(&ring->request_list)) {
673a394b 1975 struct drm_i915_gem_request *request;
673a394b 1976
852835f3 1977 request = list_first_entry(&ring->request_list,
673a394b
EA
1978 struct drm_i915_gem_request,
1979 list);
673a394b 1980
dfaae392 1981 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1982 break;
1983
1984 trace_i915_gem_request_retire(dev, request->seqno);
1985
1986 list_del(&request->list);
f787a5f5 1987 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1988 kfree(request);
1989 }
673a394b 1990
b84d5f0c
CW
1991 /* Move any buffers on the active list that are no longer referenced
1992 * by the ringbuffer to the flushing/inactive lists as appropriate.
1993 */
1994 while (!list_empty(&ring->active_list)) {
05394f39 1995 struct drm_i915_gem_object *obj;
b84d5f0c 1996
05394f39
CW
1997 obj= list_first_entry(&ring->active_list,
1998 struct drm_i915_gem_object,
1999 ring_list);
673a394b 2000
05394f39 2001 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 2002 break;
b84d5f0c 2003
05394f39 2004 if (obj->base.write_domain != 0)
b84d5f0c
CW
2005 i915_gem_object_move_to_flushing(obj);
2006 else
2007 i915_gem_object_move_to_inactive(obj);
673a394b 2008 }
9d34e5db
CW
2009
2010 if (unlikely (dev_priv->trace_irq_seqno &&
2011 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
78501eac 2012 ring->user_irq_put(ring);
9d34e5db
CW
2013 dev_priv->trace_irq_seqno = 0;
2014 }
23bc5982
CW
2015
2016 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2017}
2018
b09a1fec
CW
2019void
2020i915_gem_retire_requests(struct drm_device *dev)
2021{
2022 drm_i915_private_t *dev_priv = dev->dev_private;
2023
be72615b 2024 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 2025 struct drm_i915_gem_object *obj, *next;
be72615b
CW
2026
2027 /* We must be careful that during unbind() we do not
2028 * accidentally infinitely recurse into retire requests.
2029 * Currently:
2030 * retire -> free -> unbind -> wait -> retire_ring
2031 */
05394f39 2032 list_for_each_entry_safe(obj, next,
be72615b 2033 &dev_priv->mm.deferred_free_list,
69dc4987 2034 mm_list)
05394f39 2035 i915_gem_free_object_tail(obj);
be72615b
CW
2036 }
2037
b09a1fec 2038 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 2039 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
549f7365 2040 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
b09a1fec
CW
2041}
2042
75ef9da2 2043static void
673a394b
EA
2044i915_gem_retire_work_handler(struct work_struct *work)
2045{
2046 drm_i915_private_t *dev_priv;
2047 struct drm_device *dev;
2048
2049 dev_priv = container_of(work, drm_i915_private_t,
2050 mm.retire_work.work);
2051 dev = dev_priv->dev;
2052
891b48cf
CW
2053 /* Come back later if the device is busy... */
2054 if (!mutex_trylock(&dev->struct_mutex)) {
2055 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2056 return;
2057 }
2058
b09a1fec 2059 i915_gem_retire_requests(dev);
d1b851fc 2060
6dbe2772 2061 if (!dev_priv->mm.suspended &&
d1b851fc 2062 (!list_empty(&dev_priv->render_ring.request_list) ||
549f7365
CW
2063 !list_empty(&dev_priv->bsd_ring.request_list) ||
2064 !list_empty(&dev_priv->blt_ring.request_list)))
9c9fe1f8 2065 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
2066 mutex_unlock(&dev->struct_mutex);
2067}
2068
5a5a0c64 2069int
852835f3 2070i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 2071 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
2072{
2073 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 2074 u32 ier;
673a394b
EA
2075 int ret = 0;
2076
2077 BUG_ON(seqno == 0);
2078
ba1234d1 2079 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
2080 return -EAGAIN;
2081
5d97eb69 2082 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
2083 struct drm_i915_gem_request *request;
2084
2085 request = kzalloc(sizeof(*request), GFP_KERNEL);
2086 if (request == NULL)
e35a41de 2087 return -ENOMEM;
3cce469c
CW
2088
2089 ret = i915_add_request(dev, NULL, request, ring);
2090 if (ret) {
2091 kfree(request);
2092 return ret;
2093 }
2094
2095 seqno = request->seqno;
e35a41de 2096 }
ffed1d09 2097
78501eac 2098 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
bad720ff 2099 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
2100 ier = I915_READ(DEIER) | I915_READ(GTIER);
2101 else
2102 ier = I915_READ(IER);
802c7eb6
JB
2103 if (!ier) {
2104 DRM_ERROR("something (likely vbetool) disabled "
2105 "interrupts, re-enabling\n");
2106 i915_driver_irq_preinstall(dev);
2107 i915_driver_irq_postinstall(dev);
2108 }
2109
1c5d22f7
CW
2110 trace_i915_gem_request_wait_begin(dev, seqno);
2111
b2223497 2112 ring->waiting_seqno = seqno;
78501eac 2113 ring->user_irq_get(ring);
48764bf4 2114 if (interruptible)
852835f3 2115 ret = wait_event_interruptible(ring->irq_queue,
78501eac 2116 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2117 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2118 else
852835f3 2119 wait_event(ring->irq_queue,
78501eac 2120 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2121 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2122
78501eac 2123 ring->user_irq_put(ring);
b2223497 2124 ring->waiting_seqno = 0;
1c5d22f7
CW
2125
2126 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2127 }
ba1234d1 2128 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2129 ret = -EAGAIN;
673a394b
EA
2130
2131 if (ret && ret != -ERESTARTSYS)
8bff917c 2132 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2133 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2134 dev_priv->next_seqno);
673a394b
EA
2135
2136 /* Directly dispatch request retiring. While we have the work queue
2137 * to handle this, the waiter on a request often wants an associated
2138 * buffer to have made it to the inactive list, and we would need
2139 * a separate wait queue to handle that.
2140 */
2141 if (ret == 0)
b09a1fec 2142 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2143
2144 return ret;
2145}
2146
48764bf4
DV
2147/**
2148 * Waits for a sequence number to be signaled, and cleans up the
2149 * request and object lists appropriately for that event.
2150 */
2151static int
852835f3 2152i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2153 struct intel_ring_buffer *ring)
48764bf4 2154{
852835f3 2155 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2156}
2157
20f0cd55 2158static void
9220434a
CW
2159i915_gem_flush_ring(struct drm_device *dev,
2160 struct intel_ring_buffer *ring,
2161 uint32_t invalidate_domains,
2162 uint32_t flush_domains)
2163{
78501eac 2164 ring->flush(ring, invalidate_domains, flush_domains);
9220434a
CW
2165 i915_gem_process_flushing_list(dev, flush_domains, ring);
2166}
2167
8187a2b7
ZN
2168static void
2169i915_gem_flush(struct drm_device *dev,
2170 uint32_t invalidate_domains,
9220434a
CW
2171 uint32_t flush_domains,
2172 uint32_t flush_rings)
8187a2b7
ZN
2173{
2174 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2175
8187a2b7 2176 if (flush_domains & I915_GEM_DOMAIN_CPU)
40ce6575 2177 intel_gtt_chipset_flush();
8bff917c 2178
9220434a
CW
2179 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2180 if (flush_rings & RING_RENDER)
05394f39 2181 i915_gem_flush_ring(dev, &dev_priv->render_ring,
9220434a
CW
2182 invalidate_domains, flush_domains);
2183 if (flush_rings & RING_BSD)
05394f39 2184 i915_gem_flush_ring(dev, &dev_priv->bsd_ring,
9220434a 2185 invalidate_domains, flush_domains);
549f7365 2186 if (flush_rings & RING_BLT)
05394f39 2187 i915_gem_flush_ring(dev, &dev_priv->blt_ring,
549f7365 2188 invalidate_domains, flush_domains);
9220434a 2189 }
8187a2b7
ZN
2190}
2191
673a394b
EA
2192/**
2193 * Ensures that all rendering to the object has completed and the object is
2194 * safe to unbind from the GTT or access from the CPU.
2195 */
2196static int
05394f39 2197i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2cf34d7b 2198 bool interruptible)
673a394b 2199{
05394f39 2200 struct drm_device *dev = obj->base.dev;
673a394b
EA
2201 int ret;
2202
e47c68e9
EA
2203 /* This function only exists to support waiting for existing rendering,
2204 * not for emitting required flushes.
673a394b 2205 */
05394f39 2206 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2207
2208 /* If there is rendering queued on the buffer being evicted, wait for
2209 * it.
2210 */
05394f39 2211 if (obj->active) {
2cf34d7b 2212 ret = i915_do_wait_request(dev,
05394f39 2213 obj->last_rendering_seqno,
2cf34d7b 2214 interruptible,
05394f39 2215 obj->ring);
2cf34d7b 2216 if (ret)
673a394b
EA
2217 return ret;
2218 }
2219
2220 return 0;
2221}
2222
2223/**
2224 * Unbinds an object from the GTT aperture.
2225 */
0f973f27 2226int
05394f39 2227i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2228{
05394f39 2229 struct drm_device *dev = obj->base.dev;
73aa808f 2230 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
2231 int ret = 0;
2232
05394f39 2233 if (obj->gtt_space == NULL)
673a394b
EA
2234 return 0;
2235
05394f39 2236 if (obj->pin_count != 0) {
673a394b
EA
2237 DRM_ERROR("Attempting to unbind pinned buffer\n");
2238 return -EINVAL;
2239 }
2240
5323fd04
EA
2241 /* blow away mappings if mapped through GTT */
2242 i915_gem_release_mmap(obj);
2243
673a394b
EA
2244 /* Move the object to the CPU domain to ensure that
2245 * any possible CPU writes while it's not in the GTT
2246 * are flushed when we go to remap it. This will
2247 * also ensure that all pending GPU writes are finished
2248 * before we unbind.
2249 */
e47c68e9 2250 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2251 if (ret == -ERESTARTSYS)
673a394b 2252 return ret;
8dc1775d
CW
2253 /* Continue on if we fail due to EIO, the GPU is hung so we
2254 * should be safe and we need to cleanup or else we might
2255 * cause memory corruption through use-after-free.
2256 */
812ed492
CW
2257 if (ret) {
2258 i915_gem_clflush_object(obj);
05394f39 2259 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2260 }
673a394b 2261
96b47b65 2262 /* release the fence reg _after_ flushing */
05394f39 2263 if (obj->fence_reg != I915_FENCE_REG_NONE)
96b47b65
DV
2264 i915_gem_clear_fence_reg(obj);
2265
7c2e6fdf 2266 i915_gem_gtt_unbind_object(obj);
673a394b 2267
e5281ccd 2268 i915_gem_object_put_pages_gtt(obj);
673a394b 2269
05394f39
CW
2270 i915_gem_info_remove_gtt(dev_priv, obj);
2271 list_del_init(&obj->mm_list);
75e9e915 2272 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2273 obj->map_and_fenceable = true;
673a394b 2274
05394f39
CW
2275 drm_mm_put_block(obj->gtt_space);
2276 obj->gtt_space = NULL;
2277 obj->gtt_offset = 0;
673a394b 2278
05394f39 2279 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2280 i915_gem_object_truncate(obj);
2281
1c5d22f7
CW
2282 trace_i915_gem_object_unbind(obj);
2283
8dc1775d 2284 return ret;
673a394b
EA
2285}
2286
a56ba56c
CW
2287static int i915_ring_idle(struct drm_device *dev,
2288 struct intel_ring_buffer *ring)
2289{
395b70be 2290 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2291 return 0;
2292
05394f39 2293 i915_gem_flush_ring(dev, ring,
a56ba56c
CW
2294 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2295 return i915_wait_request(dev,
2296 i915_gem_next_request_seqno(dev, ring),
2297 ring);
2298}
2299
b47eb4a2 2300int
4df2faf4
DV
2301i915_gpu_idle(struct drm_device *dev)
2302{
2303 drm_i915_private_t *dev_priv = dev->dev_private;
2304 bool lists_empty;
852835f3 2305 int ret;
4df2faf4 2306
d1b851fc 2307 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2308 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2309 if (lists_empty)
2310 return 0;
2311
2312 /* Flush everything onto the inactive list. */
a56ba56c 2313 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2314 if (ret)
2315 return ret;
d1b851fc 2316
87acb0a5
CW
2317 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2318 if (ret)
2319 return ret;
d1b851fc 2320
549f7365
CW
2321 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2322 if (ret)
2323 return ret;
4df2faf4 2324
8a1a49f9 2325 return 0;
4df2faf4
DV
2326}
2327
c6642782
DV
2328static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2329 struct intel_ring_buffer *pipelined)
4e901fdc 2330{
05394f39 2331 struct drm_device *dev = obj->base.dev;
4e901fdc 2332 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2333 u32 size = obj->gtt_space->size;
2334 int regnum = obj->fence_reg;
4e901fdc
EA
2335 uint64_t val;
2336
05394f39 2337 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2338 0xfffff000) << 32;
05394f39
CW
2339 val |= obj->gtt_offset & 0xfffff000;
2340 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2341 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2342
05394f39 2343 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2344 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2345 val |= I965_FENCE_REG_VALID;
2346
c6642782
DV
2347 if (pipelined) {
2348 int ret = intel_ring_begin(pipelined, 6);
2349 if (ret)
2350 return ret;
2351
2352 intel_ring_emit(pipelined, MI_NOOP);
2353 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2354 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2355 intel_ring_emit(pipelined, (u32)val);
2356 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2357 intel_ring_emit(pipelined, (u32)(val >> 32));
2358 intel_ring_advance(pipelined);
2359 } else
2360 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2361
2362 return 0;
4e901fdc
EA
2363}
2364
c6642782
DV
2365static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2366 struct intel_ring_buffer *pipelined)
de151cf6 2367{
05394f39 2368 struct drm_device *dev = obj->base.dev;
de151cf6 2369 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2370 u32 size = obj->gtt_space->size;
2371 int regnum = obj->fence_reg;
de151cf6
JB
2372 uint64_t val;
2373
05394f39 2374 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2375 0xfffff000) << 32;
05394f39
CW
2376 val |= obj->gtt_offset & 0xfffff000;
2377 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2378 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2379 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2380 val |= I965_FENCE_REG_VALID;
2381
c6642782
DV
2382 if (pipelined) {
2383 int ret = intel_ring_begin(pipelined, 6);
2384 if (ret)
2385 return ret;
2386
2387 intel_ring_emit(pipelined, MI_NOOP);
2388 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2389 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2390 intel_ring_emit(pipelined, (u32)val);
2391 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2392 intel_ring_emit(pipelined, (u32)(val >> 32));
2393 intel_ring_advance(pipelined);
2394 } else
2395 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2396
2397 return 0;
de151cf6
JB
2398}
2399
c6642782
DV
2400static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2401 struct intel_ring_buffer *pipelined)
de151cf6 2402{
05394f39 2403 struct drm_device *dev = obj->base.dev;
de151cf6 2404 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2405 u32 size = obj->gtt_space->size;
c6642782 2406 u32 fence_reg, val, pitch_val;
0f973f27 2407 int tile_width;
de151cf6 2408
c6642782
DV
2409 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2410 (size & -size) != size ||
2411 (obj->gtt_offset & (size - 1)),
2412 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2413 obj->gtt_offset, obj->map_and_fenceable, size))
2414 return -EINVAL;
de151cf6 2415
c6642782 2416 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2417 tile_width = 128;
de151cf6 2418 else
0f973f27
JB
2419 tile_width = 512;
2420
2421 /* Note: pitch better be a power of two tile widths */
05394f39 2422 pitch_val = obj->stride / tile_width;
0f973f27 2423 pitch_val = ffs(pitch_val) - 1;
de151cf6 2424
05394f39
CW
2425 val = obj->gtt_offset;
2426 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2427 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2428 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2429 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2430 val |= I830_FENCE_REG_VALID;
2431
05394f39 2432 fence_reg = obj->fence_reg;
a00b10c3
CW
2433 if (fence_reg < 8)
2434 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2435 else
a00b10c3 2436 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2437
2438 if (pipelined) {
2439 int ret = intel_ring_begin(pipelined, 4);
2440 if (ret)
2441 return ret;
2442
2443 intel_ring_emit(pipelined, MI_NOOP);
2444 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2445 intel_ring_emit(pipelined, fence_reg);
2446 intel_ring_emit(pipelined, val);
2447 intel_ring_advance(pipelined);
2448 } else
2449 I915_WRITE(fence_reg, val);
2450
2451 return 0;
de151cf6
JB
2452}
2453
c6642782
DV
2454static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2455 struct intel_ring_buffer *pipelined)
de151cf6 2456{
05394f39 2457 struct drm_device *dev = obj->base.dev;
de151cf6 2458 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2459 u32 size = obj->gtt_space->size;
2460 int regnum = obj->fence_reg;
de151cf6
JB
2461 uint32_t val;
2462 uint32_t pitch_val;
2463
c6642782
DV
2464 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2465 (size & -size) != size ||
2466 (obj->gtt_offset & (size - 1)),
2467 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2468 obj->gtt_offset, size))
2469 return -EINVAL;
de151cf6 2470
05394f39 2471 pitch_val = obj->stride / 128;
e76a16de 2472 pitch_val = ffs(pitch_val) - 1;
e76a16de 2473
05394f39
CW
2474 val = obj->gtt_offset;
2475 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2476 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2477 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2478 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2479 val |= I830_FENCE_REG_VALID;
2480
c6642782
DV
2481 if (pipelined) {
2482 int ret = intel_ring_begin(pipelined, 4);
2483 if (ret)
2484 return ret;
2485
2486 intel_ring_emit(pipelined, MI_NOOP);
2487 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2488 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2489 intel_ring_emit(pipelined, val);
2490 intel_ring_advance(pipelined);
2491 } else
2492 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2493
2494 return 0;
de151cf6
JB
2495}
2496
2cf34d7b
CW
2497static int i915_find_fence_reg(struct drm_device *dev,
2498 bool interruptible)
ae3db24a 2499{
ae3db24a 2500 struct drm_i915_private *dev_priv = dev->dev_private;
a00b10c3 2501 struct drm_i915_fence_reg *reg;
05394f39 2502 struct drm_i915_gem_object *obj = NULL;
ae3db24a
DV
2503 int i, avail, ret;
2504
2505 /* First try to find a free reg */
2506 avail = 0;
2507 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2508 reg = &dev_priv->fence_regs[i];
2509 if (!reg->obj)
2510 return i;
2511
05394f39
CW
2512 if (!reg->obj->pin_count)
2513 avail++;
ae3db24a
DV
2514 }
2515
2516 if (avail == 0)
2517 return -ENOSPC;
2518
2519 /* None available, try to steal one or wait for a user to finish */
a00b10c3 2520 avail = I915_FENCE_REG_NONE;
007cc8ac
DV
2521 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2522 lru_list) {
05394f39
CW
2523 obj = reg->obj;
2524 if (obj->pin_count)
ae3db24a
DV
2525 continue;
2526
2527 /* found one! */
05394f39 2528 avail = obj->fence_reg;
ae3db24a
DV
2529 break;
2530 }
2531
a00b10c3 2532 BUG_ON(avail == I915_FENCE_REG_NONE);
ae3db24a
DV
2533
2534 /* We only have a reference on obj from the active list. put_fence_reg
2535 * might drop that one, causing a use-after-free in it. So hold a
2536 * private reference to obj like the other callers of put_fence_reg
2537 * (set_tiling ioctl) do. */
05394f39
CW
2538 drm_gem_object_reference(&obj->base);
2539 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2540 drm_gem_object_unreference(&obj->base);
ae3db24a
DV
2541 if (ret != 0)
2542 return ret;
2543
a00b10c3 2544 return avail;
ae3db24a
DV
2545}
2546
de151cf6
JB
2547/**
2548 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2549 * @obj: object to map through a fence reg
2550 *
2551 * When mapping objects through the GTT, userspace wants to be able to write
2552 * to them without having to worry about swizzling if the object is tiled.
2553 *
2554 * This function walks the fence regs looking for a free one for @obj,
2555 * stealing one if it can't find any.
2556 *
2557 * It then sets up the reg based on the object's properties: address, pitch
2558 * and tiling format.
2559 */
8c4b8c3f 2560int
05394f39 2561i915_gem_object_get_fence_reg(struct drm_i915_gem_object *obj,
2cf34d7b 2562 bool interruptible)
de151cf6 2563{
05394f39 2564 struct drm_device *dev = obj->base.dev;
79e53945 2565 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 2566 struct drm_i915_fence_reg *reg = NULL;
c6642782 2567 struct intel_ring_buffer *pipelined = NULL;
ae3db24a 2568 int ret;
de151cf6 2569
a09ba7fa 2570 /* Just update our place in the LRU if our fence is getting used. */
05394f39
CW
2571 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2572 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2573 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2574 return 0;
2575 }
2576
05394f39 2577 switch (obj->tiling_mode) {
de151cf6
JB
2578 case I915_TILING_NONE:
2579 WARN(1, "allocating a fence for non-tiled object?\n");
2580 break;
2581 case I915_TILING_X:
05394f39 2582 if (!obj->stride)
0f973f27 2583 return -EINVAL;
05394f39 2584 WARN((obj->stride & (512 - 1)),
0f973f27 2585 "object 0x%08x is X tiled but has non-512B pitch\n",
05394f39 2586 obj->gtt_offset);
de151cf6
JB
2587 break;
2588 case I915_TILING_Y:
05394f39 2589 if (!obj->stride)
0f973f27 2590 return -EINVAL;
05394f39 2591 WARN((obj->stride & (128 - 1)),
0f973f27 2592 "object 0x%08x is Y tiled but has non-128B pitch\n",
05394f39 2593 obj->gtt_offset);
de151cf6
JB
2594 break;
2595 }
2596
2cf34d7b 2597 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2598 if (ret < 0)
2599 return ret;
de151cf6 2600
05394f39
CW
2601 obj->fence_reg = ret;
2602 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2603 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2604
de151cf6
JB
2605 reg->obj = obj;
2606
e259befd
CW
2607 switch (INTEL_INFO(dev)->gen) {
2608 case 6:
c6642782 2609 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2610 break;
2611 case 5:
2612 case 4:
c6642782 2613 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2614 break;
2615 case 3:
c6642782 2616 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2617 break;
2618 case 2:
c6642782 2619 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2620 break;
2621 }
d9ddcb96 2622
a00b10c3 2623 trace_i915_gem_object_get_fence(obj,
05394f39
CW
2624 obj->fence_reg,
2625 obj->tiling_mode);
c6642782 2626 return ret;
de151cf6
JB
2627}
2628
2629/**
2630 * i915_gem_clear_fence_reg - clear out fence register info
2631 * @obj: object to clear
2632 *
2633 * Zeroes out the fence register itself and clears out the associated
05394f39 2634 * data structures in dev_priv and obj.
de151cf6
JB
2635 */
2636static void
05394f39 2637i915_gem_clear_fence_reg(struct drm_i915_gem_object *obj)
de151cf6 2638{
05394f39 2639 struct drm_device *dev = obj->base.dev;
79e53945 2640 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2641 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[obj->fence_reg];
e259befd 2642 uint32_t fence_reg;
de151cf6 2643
e259befd
CW
2644 switch (INTEL_INFO(dev)->gen) {
2645 case 6:
4e901fdc 2646 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
05394f39 2647 (obj->fence_reg * 8), 0);
e259befd
CW
2648 break;
2649 case 5:
2650 case 4:
05394f39 2651 I915_WRITE64(FENCE_REG_965_0 + (obj->fence_reg * 8), 0);
e259befd
CW
2652 break;
2653 case 3:
05394f39
CW
2654 if (obj->fence_reg >= 8)
2655 fence_reg = FENCE_REG_945_8 + (obj->fence_reg - 8) * 4;
dc529a4f 2656 else
e259befd 2657 case 2:
05394f39 2658 fence_reg = FENCE_REG_830_0 + obj->fence_reg * 4;
dc529a4f
EA
2659
2660 I915_WRITE(fence_reg, 0);
e259befd 2661 break;
dc529a4f 2662 }
de151cf6 2663
007cc8ac 2664 reg->obj = NULL;
05394f39 2665 obj->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2666 list_del_init(&reg->lru_list);
de151cf6
JB
2667}
2668
52dc7d32
CW
2669/**
2670 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2671 * to the buffer to finish, and then resets the fence register.
2672 * @obj: tiled object holding a fence register.
2cf34d7b 2673 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2674 *
2675 * Zeroes out the fence register itself and clears out the associated
05394f39 2676 * data structures in dev_priv and obj.
52dc7d32
CW
2677 */
2678int
05394f39 2679i915_gem_object_put_fence_reg(struct drm_i915_gem_object *obj,
2cf34d7b 2680 bool interruptible)
52dc7d32 2681{
05394f39 2682 struct drm_device *dev = obj->base.dev;
caea7476 2683 int ret;
52dc7d32 2684
05394f39 2685 if (obj->fence_reg == I915_FENCE_REG_NONE)
52dc7d32
CW
2686 return 0;
2687
10ae9bd2
DV
2688 /* If we've changed tiling, GTT-mappings of the object
2689 * need to re-fault to ensure that the correct fence register
2690 * setup is in place.
2691 */
2692 i915_gem_release_mmap(obj);
2693
52dc7d32
CW
2694 /* On the i915, GPU access to tiled buffers is via a fence,
2695 * therefore we must wait for any outstanding access to complete
2696 * before clearing the fence.
2697 */
caea7476 2698 if (obj->fenced_gpu_access) {
919926ae 2699 ret = i915_gem_object_flush_gpu_write_domain(obj, NULL);
0bc23aad 2700 if (ret)
2dafb1e0
CW
2701 return ret;
2702
caea7476
CW
2703 obj->fenced_gpu_access = false;
2704 }
2705
2706 if (obj->last_fenced_seqno) {
2707 ret = i915_do_wait_request(dev,
2708 obj->last_fenced_seqno,
2709 interruptible,
2710 obj->last_fenced_ring);
0bc23aad 2711 if (ret)
52dc7d32 2712 return ret;
53640e1d 2713
caea7476 2714 obj->last_fenced_seqno = false;
52dc7d32
CW
2715 }
2716
4a726612 2717 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2718 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2719
2720 return 0;
2721}
2722
673a394b
EA
2723/**
2724 * Finds free space in the GTT aperture and binds the object there.
2725 */
2726static int
05394f39 2727i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2728 unsigned alignment,
75e9e915 2729 bool map_and_fenceable)
673a394b 2730{
05394f39 2731 struct drm_device *dev = obj->base.dev;
673a394b 2732 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2733 struct drm_mm_node *free_space;
a00b10c3 2734 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2735 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2736 bool mappable, fenceable;
07f73f69 2737 int ret;
673a394b 2738
05394f39 2739 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2740 DRM_ERROR("Attempting to bind a purgeable object\n");
2741 return -EINVAL;
2742 }
2743
05394f39
CW
2744 fence_size = i915_gem_get_gtt_size(obj);
2745 fence_alignment = i915_gem_get_gtt_alignment(obj);
2746 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
a00b10c3 2747
673a394b 2748 if (alignment == 0)
5e783301
DV
2749 alignment = map_and_fenceable ? fence_alignment :
2750 unfenced_alignment;
75e9e915 2751 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2752 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2753 return -EINVAL;
2754 }
2755
05394f39 2756 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2757
654fc607
CW
2758 /* If the object is bigger than the entire aperture, reject it early
2759 * before evicting everything in a vain attempt to find space.
2760 */
05394f39 2761 if (obj->base.size >
75e9e915 2762 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2763 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2764 return -E2BIG;
2765 }
2766
673a394b 2767 search_free:
75e9e915 2768 if (map_and_fenceable)
920afa77
DV
2769 free_space =
2770 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2771 size, alignment, 0,
920afa77
DV
2772 dev_priv->mm.gtt_mappable_end,
2773 0);
2774 else
2775 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2776 size, alignment, 0);
920afa77
DV
2777
2778 if (free_space != NULL) {
75e9e915 2779 if (map_and_fenceable)
05394f39 2780 obj->gtt_space =
920afa77 2781 drm_mm_get_block_range_generic(free_space,
a00b10c3 2782 size, alignment, 0,
920afa77
DV
2783 dev_priv->mm.gtt_mappable_end,
2784 0);
2785 else
05394f39 2786 obj->gtt_space =
a00b10c3 2787 drm_mm_get_block(free_space, size, alignment);
920afa77 2788 }
05394f39 2789 if (obj->gtt_space == NULL) {
673a394b
EA
2790 /* If the gtt is empty and we're still having trouble
2791 * fitting our object in, we're out of memory.
2792 */
75e9e915
DV
2793 ret = i915_gem_evict_something(dev, size, alignment,
2794 map_and_fenceable);
9731129c 2795 if (ret)
673a394b 2796 return ret;
9731129c 2797
673a394b
EA
2798 goto search_free;
2799 }
2800
e5281ccd 2801 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2802 if (ret) {
05394f39
CW
2803 drm_mm_put_block(obj->gtt_space);
2804 obj->gtt_space = NULL;
07f73f69
CW
2805
2806 if (ret == -ENOMEM) {
2807 /* first try to clear up some space from the GTT */
a00b10c3 2808 ret = i915_gem_evict_something(dev, size,
75e9e915
DV
2809 alignment,
2810 map_and_fenceable);
07f73f69 2811 if (ret) {
07f73f69 2812 /* now try to shrink everyone else */
4bdadb97
CW
2813 if (gfpmask) {
2814 gfpmask = 0;
2815 goto search_free;
07f73f69
CW
2816 }
2817
2818 return ret;
2819 }
2820
2821 goto search_free;
2822 }
2823
673a394b
EA
2824 return ret;
2825 }
2826
7c2e6fdf
DV
2827 ret = i915_gem_gtt_bind_object(obj);
2828 if (ret) {
e5281ccd 2829 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2830 drm_mm_put_block(obj->gtt_space);
2831 obj->gtt_space = NULL;
07f73f69 2832
a00b10c3 2833 ret = i915_gem_evict_something(dev, size,
75e9e915 2834 alignment, map_and_fenceable);
9731129c 2835 if (ret)
07f73f69 2836 return ret;
07f73f69
CW
2837
2838 goto search_free;
673a394b 2839 }
673a394b 2840
05394f39 2841 obj->gtt_offset = obj->gtt_space->start;
fb7d516a 2842
bf1a1092 2843 /* keep track of bounds object by adding it to the inactive list */
05394f39
CW
2844 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2845 i915_gem_info_add_gtt(dev_priv, obj);
bf1a1092 2846
673a394b
EA
2847 /* Assert that the object is not currently in any GPU domain. As it
2848 * wasn't in the GTT, there shouldn't be any way it could have been in
2849 * a GPU cache
2850 */
05394f39
CW
2851 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2852 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2853
05394f39 2854 trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
1c5d22f7 2855
75e9e915 2856 fenceable =
05394f39
CW
2857 obj->gtt_space->size == fence_size &&
2858 (obj->gtt_space->start & (fence_alignment -1)) == 0;
a00b10c3 2859
75e9e915 2860 mappable =
05394f39 2861 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2862
05394f39 2863 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2864
673a394b
EA
2865 return 0;
2866}
2867
2868void
05394f39 2869i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2870{
673a394b
EA
2871 /* If we don't have a page list set up, then we're not pinned
2872 * to GPU, and we can ignore the cache flush because it'll happen
2873 * again at bind time.
2874 */
05394f39 2875 if (obj->pages == NULL)
673a394b
EA
2876 return;
2877
1c5d22f7 2878 trace_i915_gem_object_clflush(obj);
cfa16a0d 2879
05394f39 2880 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2881}
2882
e47c68e9 2883/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2884static int
05394f39 2885i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj,
919926ae 2886 struct intel_ring_buffer *pipelined)
e47c68e9 2887{
05394f39 2888 struct drm_device *dev = obj->base.dev;
e47c68e9 2889
05394f39 2890 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2891 return 0;
e47c68e9
EA
2892
2893 /* Queue the GPU write cache flushing we need. */
05394f39
CW
2894 i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
2895 BUG_ON(obj->base.write_domain);
1c5d22f7 2896
919926ae 2897 if (pipelined && pipelined == obj->ring)
ba3d8d74
DV
2898 return 0;
2899
2cf34d7b 2900 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2901}
2902
2903/** Flushes the GTT write domain for the object if it's dirty. */
2904static void
05394f39 2905i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2906{
1c5d22f7
CW
2907 uint32_t old_write_domain;
2908
05394f39 2909 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2910 return;
2911
2912 /* No actual flushing is required for the GTT write domain. Writes
2913 * to it immediately go to main memory as far as we know, so there's
2914 * no chipset flush. It also doesn't land in render cache.
2915 */
4a684a41
CW
2916 i915_gem_release_mmap(obj);
2917
05394f39
CW
2918 old_write_domain = obj->base.write_domain;
2919 obj->base.write_domain = 0;
1c5d22f7
CW
2920
2921 trace_i915_gem_object_change_domain(obj,
05394f39 2922 obj->base.read_domains,
1c5d22f7 2923 old_write_domain);
e47c68e9
EA
2924}
2925
2926/** Flushes the CPU write domain for the object if it's dirty. */
2927static void
05394f39 2928i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2929{
1c5d22f7 2930 uint32_t old_write_domain;
e47c68e9 2931
05394f39 2932 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2933 return;
2934
2935 i915_gem_clflush_object(obj);
40ce6575 2936 intel_gtt_chipset_flush();
05394f39
CW
2937 old_write_domain = obj->base.write_domain;
2938 obj->base.write_domain = 0;
1c5d22f7
CW
2939
2940 trace_i915_gem_object_change_domain(obj,
05394f39 2941 obj->base.read_domains,
1c5d22f7 2942 old_write_domain);
e47c68e9
EA
2943}
2944
2ef7eeaa
EA
2945/**
2946 * Moves a single object to the GTT read, and possibly write domain.
2947 *
2948 * This function returns when the move is complete, including waiting on
2949 * flushes to occur.
2950 */
79e53945 2951int
05394f39 2952i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, int write)
2ef7eeaa 2953{
1c5d22f7 2954 uint32_t old_write_domain, old_read_domains;
e47c68e9 2955 int ret;
2ef7eeaa 2956
02354392 2957 /* Not valid to be called on unbound objects. */
05394f39 2958 if (obj->gtt_space == NULL)
02354392
EA
2959 return -EINVAL;
2960
919926ae 2961 ret = i915_gem_object_flush_gpu_write_domain(obj, NULL);
2dafb1e0
CW
2962 if (ret != 0)
2963 return ret;
2964
7213342d 2965 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2966
ba3d8d74 2967 if (write) {
2cf34d7b 2968 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2969 if (ret)
2970 return ret;
ba3d8d74 2971 }
e47c68e9 2972
05394f39
CW
2973 old_write_domain = obj->base.write_domain;
2974 old_read_domains = obj->base.read_domains;
1c5d22f7 2975
e47c68e9
EA
2976 /* It should now be out of any other write domains, and we can update
2977 * the domain values for our changes.
2978 */
05394f39
CW
2979 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2980 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2981 if (write) {
05394f39
CW
2982 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2983 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2984 obj->dirty = 1;
2ef7eeaa
EA
2985 }
2986
1c5d22f7
CW
2987 trace_i915_gem_object_change_domain(obj,
2988 old_read_domains,
2989 old_write_domain);
2990
e47c68e9
EA
2991 return 0;
2992}
2993
b9241ea3
ZW
2994/*
2995 * Prepare buffer for display plane. Use uninterruptible for possible flush
2996 * wait, as in modesetting process we're not supposed to be interrupted.
2997 */
2998int
05394f39 2999i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
919926ae 3000 struct intel_ring_buffer *pipelined)
b9241ea3 3001{
ba3d8d74 3002 uint32_t old_read_domains;
b9241ea3
ZW
3003 int ret;
3004
3005 /* Not valid to be called on unbound objects. */
05394f39 3006 if (obj->gtt_space == NULL)
b9241ea3
ZW
3007 return -EINVAL;
3008
919926ae 3009 ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
2dafb1e0
CW
3010 if (ret)
3011 return ret;
b9241ea3 3012
ced270fa
CW
3013 /* Currently, we are always called from an non-interruptible context. */
3014 if (!pipelined) {
3015 ret = i915_gem_object_wait_rendering(obj, false);
3016 if (ret)
b9241ea3
ZW
3017 return ret;
3018 }
3019
b118c1e3
CW
3020 i915_gem_object_flush_cpu_write_domain(obj);
3021
05394f39
CW
3022 old_read_domains = obj->base.read_domains;
3023 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3024
3025 trace_i915_gem_object_change_domain(obj,
3026 old_read_domains,
05394f39 3027 obj->base.write_domain);
b9241ea3
ZW
3028
3029 return 0;
3030}
3031
85345517
CW
3032int
3033i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
3034 bool interruptible)
3035{
3036 if (!obj->active)
3037 return 0;
3038
3039 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
05394f39 3040 i915_gem_flush_ring(obj->base.dev, obj->ring,
85345517
CW
3041 0, obj->base.write_domain);
3042
05394f39 3043 return i915_gem_object_wait_rendering(obj, interruptible);
85345517
CW
3044}
3045
e47c68e9
EA
3046/**
3047 * Moves a single object to the CPU read, and possibly write domain.
3048 *
3049 * This function returns when the move is complete, including waiting on
3050 * flushes to occur.
3051 */
3052static int
919926ae 3053i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3054{
1c5d22f7 3055 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3056 int ret;
3057
ba3d8d74 3058 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
3059 if (ret != 0)
3060 return ret;
2ef7eeaa 3061
e47c68e9 3062 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3063
e47c68e9
EA
3064 /* If we have a partially-valid cache of the object in the CPU,
3065 * finish invalidating it and free the per-page flags.
2ef7eeaa 3066 */
e47c68e9 3067 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3068
7213342d 3069 if (write) {
2cf34d7b 3070 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
3071 if (ret)
3072 return ret;
3073 }
3074
05394f39
CW
3075 old_write_domain = obj->base.write_domain;
3076 old_read_domains = obj->base.read_domains;
1c5d22f7 3077
e47c68e9 3078 /* Flush the CPU cache if it's still invalid. */
05394f39 3079 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3080 i915_gem_clflush_object(obj);
2ef7eeaa 3081
05394f39 3082 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3083 }
3084
3085 /* It should now be out of any other write domains, and we can update
3086 * the domain values for our changes.
3087 */
05394f39 3088 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3089
3090 /* If we're writing through the CPU, then the GPU read domains will
3091 * need to be invalidated at next use.
3092 */
3093 if (write) {
05394f39
CW
3094 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3095 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3096 }
2ef7eeaa 3097
1c5d22f7
CW
3098 trace_i915_gem_object_change_domain(obj,
3099 old_read_domains,
3100 old_write_domain);
3101
2ef7eeaa
EA
3102 return 0;
3103}
3104
673a394b
EA
3105/*
3106 * Set the next domain for the specified object. This
3107 * may not actually perform the necessary flushing/invaliding though,
3108 * as that may want to be batched with other set_domain operations
3109 *
3110 * This is (we hope) the only really tricky part of gem. The goal
3111 * is fairly simple -- track which caches hold bits of the object
3112 * and make sure they remain coherent. A few concrete examples may
3113 * help to explain how it works. For shorthand, we use the notation
3114 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3115 * a pair of read and write domain masks.
3116 *
3117 * Case 1: the batch buffer
3118 *
3119 * 1. Allocated
3120 * 2. Written by CPU
3121 * 3. Mapped to GTT
3122 * 4. Read by GPU
3123 * 5. Unmapped from GTT
3124 * 6. Freed
3125 *
3126 * Let's take these a step at a time
3127 *
3128 * 1. Allocated
3129 * Pages allocated from the kernel may still have
3130 * cache contents, so we set them to (CPU, CPU) always.
3131 * 2. Written by CPU (using pwrite)
3132 * The pwrite function calls set_domain (CPU, CPU) and
3133 * this function does nothing (as nothing changes)
3134 * 3. Mapped by GTT
3135 * This function asserts that the object is not
3136 * currently in any GPU-based read or write domains
3137 * 4. Read by GPU
3138 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3139 * As write_domain is zero, this function adds in the
3140 * current read domains (CPU+COMMAND, 0).
3141 * flush_domains is set to CPU.
3142 * invalidate_domains is set to COMMAND
3143 * clflush is run to get data out of the CPU caches
3144 * then i915_dev_set_domain calls i915_gem_flush to
3145 * emit an MI_FLUSH and drm_agp_chipset_flush
3146 * 5. Unmapped from GTT
3147 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3148 * flush_domains and invalidate_domains end up both zero
3149 * so no flushing/invalidating happens
3150 * 6. Freed
3151 * yay, done
3152 *
3153 * Case 2: The shared render buffer
3154 *
3155 * 1. Allocated
3156 * 2. Mapped to GTT
3157 * 3. Read/written by GPU
3158 * 4. set_domain to (CPU,CPU)
3159 * 5. Read/written by CPU
3160 * 6. Read/written by GPU
3161 *
3162 * 1. Allocated
3163 * Same as last example, (CPU, CPU)
3164 * 2. Mapped to GTT
3165 * Nothing changes (assertions find that it is not in the GPU)
3166 * 3. Read/written by GPU
3167 * execbuffer calls set_domain (RENDER, RENDER)
3168 * flush_domains gets CPU
3169 * invalidate_domains gets GPU
3170 * clflush (obj)
3171 * MI_FLUSH and drm_agp_chipset_flush
3172 * 4. set_domain (CPU, CPU)
3173 * flush_domains gets GPU
3174 * invalidate_domains gets CPU
3175 * wait_rendering (obj) to make sure all drawing is complete.
3176 * This will include an MI_FLUSH to get the data from GPU
3177 * to memory
3178 * clflush (obj) to invalidate the CPU cache
3179 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3180 * 5. Read/written by CPU
3181 * cache lines are loaded and dirtied
3182 * 6. Read written by GPU
3183 * Same as last GPU access
3184 *
3185 * Case 3: The constant buffer
3186 *
3187 * 1. Allocated
3188 * 2. Written by CPU
3189 * 3. Read by GPU
3190 * 4. Updated (written) by CPU again
3191 * 5. Read by GPU
3192 *
3193 * 1. Allocated
3194 * (CPU, CPU)
3195 * 2. Written by CPU
3196 * (CPU, CPU)
3197 * 3. Read by GPU
3198 * (CPU+RENDER, 0)
3199 * flush_domains = CPU
3200 * invalidate_domains = RENDER
3201 * clflush (obj)
3202 * MI_FLUSH
3203 * drm_agp_chipset_flush
3204 * 4. Updated (written) by CPU again
3205 * (CPU, CPU)
3206 * flush_domains = 0 (no previous write domain)
3207 * invalidate_domains = 0 (no new read domains)
3208 * 5. Read by GPU
3209 * (CPU+RENDER, 0)
3210 * flush_domains = CPU
3211 * invalidate_domains = RENDER
3212 * clflush (obj)
3213 * MI_FLUSH
3214 * drm_agp_chipset_flush
3215 */
c0d90829 3216static void
05394f39 3217i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
0f8c6d7c
CW
3218 struct intel_ring_buffer *ring,
3219 struct change_domains *cd)
673a394b 3220{
05394f39 3221 uint32_t invalidate_domains = 0, flush_domains = 0;
652c393a 3222
673a394b
EA
3223 /*
3224 * If the object isn't moving to a new write domain,
3225 * let the object stay in multiple read domains
3226 */
05394f39
CW
3227 if (obj->base.pending_write_domain == 0)
3228 obj->base.pending_read_domains |= obj->base.read_domains;
673a394b
EA
3229
3230 /*
3231 * Flush the current write domain if
3232 * the new read domains don't match. Invalidate
3233 * any read domains which differ from the old
3234 * write domain
3235 */
05394f39 3236 if (obj->base.write_domain &&
caea7476
CW
3237 (((obj->base.write_domain != obj->base.pending_read_domains ||
3238 obj->ring != ring)) ||
3239 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
05394f39 3240 flush_domains |= obj->base.write_domain;
8b0e378a 3241 invalidate_domains |=
05394f39 3242 obj->base.pending_read_domains & ~obj->base.write_domain;
673a394b
EA
3243 }
3244 /*
3245 * Invalidate any read caches which may have
3246 * stale data. That is, any new read domains.
3247 */
05394f39 3248 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
3d2a812a 3249 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3250 i915_gem_clflush_object(obj);
673a394b 3251
4a684a41
CW
3252 /* blow away mappings if mapped through GTT */
3253 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
3254 i915_gem_release_mmap(obj);
3255
efbeed96
EA
3256 /* The actual obj->write_domain will be updated with
3257 * pending_write_domain after we emit the accumulated flush for all
3258 * of our domain changes in execbuffers (which clears objects'
3259 * write_domains). So if we have a current write domain that we
3260 * aren't changing, set pending_write_domain to that.
3261 */
05394f39
CW
3262 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
3263 obj->base.pending_write_domain = obj->base.write_domain;
673a394b 3264
0f8c6d7c
CW
3265 cd->invalidate_domains |= invalidate_domains;
3266 cd->flush_domains |= flush_domains;
b6651458 3267 if (flush_domains & I915_GEM_GPU_DOMAINS)
05394f39 3268 cd->flush_rings |= obj->ring->id;
b6651458 3269 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
0f8c6d7c 3270 cd->flush_rings |= ring->id;
673a394b
EA
3271}
3272
3273/**
e47c68e9 3274 * Moves the object from a partially CPU read to a full one.
673a394b 3275 *
e47c68e9
EA
3276 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3277 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3278 */
e47c68e9 3279static void
05394f39 3280i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3281{
05394f39 3282 if (!obj->page_cpu_valid)
e47c68e9
EA
3283 return;
3284
3285 /* If we're partially in the CPU read domain, finish moving it in.
3286 */
05394f39 3287 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3288 int i;
3289
05394f39
CW
3290 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3291 if (obj->page_cpu_valid[i])
e47c68e9 3292 continue;
05394f39 3293 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3294 }
e47c68e9
EA
3295 }
3296
3297 /* Free the page_cpu_valid mappings which are now stale, whether
3298 * or not we've got I915_GEM_DOMAIN_CPU.
3299 */
05394f39
CW
3300 kfree(obj->page_cpu_valid);
3301 obj->page_cpu_valid = NULL;
e47c68e9
EA
3302}
3303
3304/**
3305 * Set the CPU read domain on a range of the object.
3306 *
3307 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3308 * not entirely valid. The page_cpu_valid member of the object flags which
3309 * pages have been flushed, and will be respected by
3310 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3311 * of the whole object.
3312 *
3313 * This function returns when the move is complete, including waiting on
3314 * flushes to occur.
3315 */
3316static int
05394f39 3317i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3318 uint64_t offset, uint64_t size)
3319{
1c5d22f7 3320 uint32_t old_read_domains;
e47c68e9 3321 int i, ret;
673a394b 3322
05394f39 3323 if (offset == 0 && size == obj->base.size)
e47c68e9 3324 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3325
ba3d8d74 3326 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3327 if (ret != 0)
6a47baa6 3328 return ret;
e47c68e9
EA
3329 i915_gem_object_flush_gtt_write_domain(obj);
3330
3331 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3332 if (obj->page_cpu_valid == NULL &&
3333 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3334 return 0;
673a394b 3335
e47c68e9
EA
3336 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3337 * newly adding I915_GEM_DOMAIN_CPU
3338 */
05394f39
CW
3339 if (obj->page_cpu_valid == NULL) {
3340 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3341 GFP_KERNEL);
3342 if (obj->page_cpu_valid == NULL)
e47c68e9 3343 return -ENOMEM;
05394f39
CW
3344 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3345 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3346
3347 /* Flush the cache on any pages that are still invalid from the CPU's
3348 * perspective.
3349 */
e47c68e9
EA
3350 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3351 i++) {
05394f39 3352 if (obj->page_cpu_valid[i])
673a394b
EA
3353 continue;
3354
05394f39 3355 drm_clflush_pages(obj->pages + i, 1);
673a394b 3356
05394f39 3357 obj->page_cpu_valid[i] = 1;
673a394b
EA
3358 }
3359
e47c68e9
EA
3360 /* It should now be out of any other write domains, and we can update
3361 * the domain values for our changes.
3362 */
05394f39 3363 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3364
05394f39
CW
3365 old_read_domains = obj->base.read_domains;
3366 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3367
1c5d22f7
CW
3368 trace_i915_gem_object_change_domain(obj,
3369 old_read_domains,
05394f39 3370 obj->base.write_domain);
1c5d22f7 3371
673a394b
EA
3372 return 0;
3373}
3374
673a394b 3375static int
bcf50e27
CW
3376i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
3377 struct drm_file *file_priv,
3378 struct drm_i915_gem_exec_object2 *entry,
3379 struct drm_i915_gem_relocation_entry *reloc)
673a394b 3380{
9af90d19 3381 struct drm_device *dev = obj->base.dev;
bcf50e27
CW
3382 struct drm_gem_object *target_obj;
3383 uint32_t target_offset;
3384 int ret = -EINVAL;
673a394b 3385
bcf50e27
CW
3386 target_obj = drm_gem_object_lookup(dev, file_priv,
3387 reloc->target_handle);
3388 if (target_obj == NULL)
3389 return -ENOENT;
673a394b 3390
bcf50e27 3391 target_offset = to_intel_bo(target_obj)->gtt_offset;
76446cac 3392
bcf50e27
CW
3393#if WATCH_RELOC
3394 DRM_INFO("%s: obj %p offset %08x target %d "
3395 "read %08x write %08x gtt %08x "
3396 "presumed %08x delta %08x\n",
3397 __func__,
3398 obj,
3399 (int) reloc->offset,
3400 (int) reloc->target_handle,
3401 (int) reloc->read_domains,
3402 (int) reloc->write_domain,
3403 (int) target_offset,
3404 (int) reloc->presumed_offset,
3405 reloc->delta);
3406#endif
673a394b 3407
bcf50e27
CW
3408 /* The target buffer should have appeared before us in the
3409 * exec_object list, so it should have a GTT space bound by now.
3410 */
3411 if (target_offset == 0) {
3412 DRM_ERROR("No GTT space found for object %d\n",
3413 reloc->target_handle);
3414 goto err;
3415 }
9af90d19 3416
bcf50e27
CW
3417 /* Validate that the target is in a valid r/w GPU domain */
3418 if (reloc->write_domain & (reloc->write_domain - 1)) {
3419 DRM_ERROR("reloc with multiple write domains: "
3420 "obj %p target %d offset %d "
3421 "read %08x write %08x",
3422 obj, reloc->target_handle,
3423 (int) reloc->offset,
3424 reloc->read_domains,
3425 reloc->write_domain);
3426 goto err;
3427 }
3428 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3429 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3430 DRM_ERROR("reloc with read/write CPU domains: "
3431 "obj %p target %d offset %d "
3432 "read %08x write %08x",
3433 obj, reloc->target_handle,
3434 (int) reloc->offset,
3435 reloc->read_domains,
3436 reloc->write_domain);
3437 goto err;
3438 }
3439 if (reloc->write_domain && target_obj->pending_write_domain &&
3440 reloc->write_domain != target_obj->pending_write_domain) {
3441 DRM_ERROR("Write domain conflict: "
3442 "obj %p target %d offset %d "
3443 "new %08x old %08x\n",
3444 obj, reloc->target_handle,
3445 (int) reloc->offset,
3446 reloc->write_domain,
3447 target_obj->pending_write_domain);
3448 goto err;
3449 }
673a394b 3450
bcf50e27
CW
3451 target_obj->pending_read_domains |= reloc->read_domains;
3452 target_obj->pending_write_domain |= reloc->write_domain;
8542a0bb 3453
bcf50e27
CW
3454 /* If the relocation already has the right value in it, no
3455 * more work needs to be done.
3456 */
3457 if (target_offset == reloc->presumed_offset)
3458 goto out;
673a394b 3459
bcf50e27
CW
3460 /* Check that the relocation address is valid... */
3461 if (reloc->offset > obj->base.size - 4) {
3462 DRM_ERROR("Relocation beyond object bounds: "
3463 "obj %p target %d offset %d size %d.\n",
3464 obj, reloc->target_handle,
3465 (int) reloc->offset,
3466 (int) obj->base.size);
3467 goto err;
3468 }
3469 if (reloc->offset & 3) {
3470 DRM_ERROR("Relocation not 4-byte aligned: "
3471 "obj %p target %d offset %d.\n",
3472 obj, reloc->target_handle,
3473 (int) reloc->offset);
3474 goto err;
3475 }
673a394b 3476
bcf50e27
CW
3477 /* and points to somewhere within the target object. */
3478 if (reloc->delta >= target_obj->size) {
3479 DRM_ERROR("Relocation beyond target object bounds: "
3480 "obj %p target %d delta %d size %d.\n",
3481 obj, reloc->target_handle,
3482 (int) reloc->delta,
3483 (int) target_obj->size);
3484 goto err;
3485 }
673a394b 3486
bcf50e27
CW
3487 reloc->delta += target_offset;
3488 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3489 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
3490 char *vaddr;
673a394b 3491
bcf50e27
CW
3492 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
3493 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
3494 kunmap_atomic(vaddr);
3495 } else {
3496 struct drm_i915_private *dev_priv = dev->dev_private;
3497 uint32_t __iomem *reloc_entry;
3498 void __iomem *reloc_page;
8542a0bb 3499
05394f39 3500 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
bcf50e27
CW
3501 if (ret)
3502 goto err;
673a394b 3503
bcf50e27
CW
3504 /* Map the page containing the relocation we're going to perform. */
3505 reloc->offset += obj->gtt_offset;
3506 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3507 reloc->offset & PAGE_MASK);
3508 reloc_entry = (uint32_t __iomem *)
3509 (reloc_page + (reloc->offset & ~PAGE_MASK));
3510 iowrite32(reloc->delta, reloc_entry);
3511 io_mapping_unmap_atomic(reloc_page);
3512 }
673a394b 3513
bcf50e27
CW
3514 /* and update the user's relocation entry */
3515 reloc->presumed_offset = target_offset;
b962442e 3516
bcf50e27
CW
3517out:
3518 ret = 0;
3519err:
3520 drm_gem_object_unreference(target_obj);
3521 return ret;
3522}
b962442e 3523
bcf50e27
CW
3524static int
3525i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
3526 struct drm_file *file_priv,
3527 struct drm_i915_gem_exec_object2 *entry)
3528{
3529 struct drm_i915_gem_relocation_entry __user *user_relocs;
3530 int i, ret;
3531
3532 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3533 for (i = 0; i < entry->relocation_count; i++) {
3534 struct drm_i915_gem_relocation_entry reloc;
3535
3536 if (__copy_from_user_inatomic(&reloc,
3537 user_relocs+i,
3538 sizeof(reloc)))
3539 return -EFAULT;
3540
3541 ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc);
3542 if (ret)
3543 return ret;
b962442e 3544
b5dc608c 3545 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
bcf50e27
CW
3546 &reloc.presumed_offset,
3547 sizeof(reloc.presumed_offset)))
3548 return -EFAULT;
b962442e 3549 }
b962442e 3550
bcf50e27
CW
3551 return 0;
3552}
3553
3554static int
3555i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
3556 struct drm_file *file_priv,
3557 struct drm_i915_gem_exec_object2 *entry,
3558 struct drm_i915_gem_relocation_entry *relocs)
3559{
3560 int i, ret;
3561
3562 for (i = 0; i < entry->relocation_count; i++) {
3563 ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]);
3564 if (ret)
3565 return ret;
3566 }
3567
3568 return 0;
673a394b
EA
3569}
3570
40a5f0de 3571static int
bcf50e27
CW
3572i915_gem_execbuffer_relocate(struct drm_device *dev,
3573 struct drm_file *file,
05394f39 3574 struct drm_i915_gem_object **object_list,
bcf50e27
CW
3575 struct drm_i915_gem_exec_object2 *exec_list,
3576 int count)
3577{
3578 int i, ret;
3579
3580 for (i = 0; i < count; i++) {
05394f39 3581 struct drm_i915_gem_object *obj = object_list[i];
bcf50e27
CW
3582 obj->base.pending_read_domains = 0;
3583 obj->base.pending_write_domain = 0;
3584 ret = i915_gem_execbuffer_relocate_object(obj, file,
3585 &exec_list[i]);
3586 if (ret)
3587 return ret;
3588 }
3589
3590 return 0;
673a394b
EA
3591}
3592
40a5f0de 3593static int
bcf50e27
CW
3594i915_gem_execbuffer_reserve(struct drm_device *dev,
3595 struct drm_file *file,
05394f39 3596 struct drm_i915_gem_object **object_list,
bcf50e27
CW
3597 struct drm_i915_gem_exec_object2 *exec_list,
3598 int count)
40a5f0de 3599{
9af90d19 3600 int ret, i, retry;
40a5f0de 3601
a7a09aeb
CW
3602 /* Attempt to pin all of the buffers into the GTT.
3603 * This is done in 3 phases:
3604 *
3605 * 1a. Unbind all objects that do not match the GTT constraints for
3606 * the execbuffer (fenceable, mappable, alignment etc).
3607 * 1b. Increment pin count for already bound objects.
3608 * 2. Bind new objects.
3609 * 3. Decrement pin count.
3610 *
3611 * This avoid unnecessary unbinding of later objects in order to makr
3612 * room for the earlier objects *unless* we need to defragment.
3613 */
5eac3ab4
CW
3614 retry = 0;
3615 do {
9af90d19 3616 ret = 0;
a7a09aeb
CW
3617
3618 /* Unbind any ill-fitting objects or pin. */
9af90d19 3619 for (i = 0; i < count; i++) {
05394f39 3620 struct drm_i915_gem_object *obj = object_list[i];
a7a09aeb
CW
3621 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3622 bool need_fence, need_mappable;
3623
3624 if (!obj->gtt_space)
3625 continue;
3626
3627 need_fence =
9af90d19
CW
3628 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3629 obj->tiling_mode != I915_TILING_NONE;
a7a09aeb 3630 need_mappable =
16e809ac
DV
3631 entry->relocation_count ? true : need_fence;
3632
a7a09aeb
CW
3633 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
3634 (need_mappable && !obj->map_and_fenceable))
05394f39 3635 ret = i915_gem_object_unbind(obj);
a7a09aeb
CW
3636 else
3637 ret = i915_gem_object_pin(obj,
3638 entry->alignment,
3639 need_mappable);
3640 if (ret) {
3641 count = i;
3642 goto err;
3643 }
3644 }
3645
3646 /* Bind fresh objects */
3647 for (i = 0; i < count; i++) {
3648 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3649 struct drm_i915_gem_object *obj = object_list[i];
3650 bool need_fence;
3651
3652 need_fence =
3653 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3654 obj->tiling_mode != I915_TILING_NONE;
3655
3656 if (!obj->gtt_space) {
3657 bool need_mappable =
3658 entry->relocation_count ? true : need_fence;
3659
3660 ret = i915_gem_object_pin(obj,
3661 entry->alignment,
3662 need_mappable);
9af90d19
CW
3663 if (ret)
3664 break;
3665 }
40a5f0de 3666
9af90d19 3667 if (need_fence) {
05394f39 3668 ret = i915_gem_object_get_fence_reg(obj, true);
a7a09aeb 3669 if (ret)
9af90d19 3670 break;
40a5f0de 3671
caea7476 3672 obj->pending_fenced_gpu_access = true;
9af90d19 3673 }
40a5f0de 3674
9af90d19 3675 entry->offset = obj->gtt_offset;
40a5f0de
EA
3676 }
3677
a7a09aeb
CW
3678err: /* Decrement pin count for bound objects */
3679 for (i = 0; i < count; i++) {
3680 struct drm_i915_gem_object *obj = object_list[i];
3681 if (obj->gtt_space)
3682 i915_gem_object_unpin(obj);
3683 }
9af90d19 3684
5eac3ab4 3685 if (ret != -ENOSPC || retry > 1)
9af90d19
CW
3686 return ret;
3687
5eac3ab4
CW
3688 /* First attempt, just clear anything that is purgeable.
3689 * Second attempt, clear the entire GTT.
3690 */
3691 ret = i915_gem_evict_everything(dev, retry == 0);
9af90d19
CW
3692 if (ret)
3693 return ret;
40a5f0de 3694
5eac3ab4
CW
3695 retry++;
3696 } while (1);
40a5f0de
EA
3697}
3698
bcf50e27
CW
3699static int
3700i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
3701 struct drm_file *file,
05394f39 3702 struct drm_i915_gem_object **object_list,
bcf50e27
CW
3703 struct drm_i915_gem_exec_object2 *exec_list,
3704 int count)
3705{
3706 struct drm_i915_gem_relocation_entry *reloc;
3707 int i, total, ret;
3708
05394f39
CW
3709 for (i = 0; i < count; i++)
3710 object_list[i]->in_execbuffer = false;
bcf50e27
CW
3711
3712 mutex_unlock(&dev->struct_mutex);
3713
3714 total = 0;
3715 for (i = 0; i < count; i++)
3716 total += exec_list[i].relocation_count;
3717
3718 reloc = drm_malloc_ab(total, sizeof(*reloc));
3719 if (reloc == NULL) {
3720 mutex_lock(&dev->struct_mutex);
3721 return -ENOMEM;
3722 }
3723
3724 total = 0;
3725 for (i = 0; i < count; i++) {
3726 struct drm_i915_gem_relocation_entry __user *user_relocs;
3727
3728 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3729
3730 if (copy_from_user(reloc+total, user_relocs,
3731 exec_list[i].relocation_count *
3732 sizeof(*reloc))) {
3733 ret = -EFAULT;
3734 mutex_lock(&dev->struct_mutex);
3735 goto err;
3736 }
3737
3738 total += exec_list[i].relocation_count;
3739 }
3740
3741 ret = i915_mutex_lock_interruptible(dev);
3742 if (ret) {
3743 mutex_lock(&dev->struct_mutex);
3744 goto err;
3745 }
3746
3747 ret = i915_gem_execbuffer_reserve(dev, file,
3748 object_list, exec_list,
3749 count);
3750 if (ret)
3751 goto err;
3752
3753 total = 0;
3754 for (i = 0; i < count; i++) {
05394f39 3755 struct drm_i915_gem_object *obj = object_list[i];
bcf50e27
CW
3756 obj->base.pending_read_domains = 0;
3757 obj->base.pending_write_domain = 0;
3758 ret = i915_gem_execbuffer_relocate_object_slow(obj, file,
3759 &exec_list[i],
3760 reloc + total);
3761 if (ret)
3762 goto err;
3763
3764 total += exec_list[i].relocation_count;
3765 }
3766
3767 /* Leave the user relocations as are, this is the painfully slow path,
3768 * and we want to avoid the complication of dropping the lock whilst
3769 * having buffers reserved in the aperture and so causing spurious
3770 * ENOSPC for random operations.
3771 */
3772
3773err:
3774 drm_free_large(reloc);
3775 return ret;
3776}
3777
13b29289
CW
3778static int
3779i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3780 struct drm_file *file,
3781 struct intel_ring_buffer *ring,
05394f39 3782 struct drm_i915_gem_object **objects,
13b29289
CW
3783 int count)
3784{
0f8c6d7c 3785 struct change_domains cd;
13b29289
CW
3786 int ret, i;
3787
0f8c6d7c
CW
3788 cd.invalidate_domains = 0;
3789 cd.flush_domains = 0;
3790 cd.flush_rings = 0;
13b29289 3791 for (i = 0; i < count; i++)
0f8c6d7c 3792 i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
13b29289 3793
0f8c6d7c 3794 if (cd.invalidate_domains | cd.flush_domains) {
13b29289
CW
3795#if WATCH_EXEC
3796 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3797 __func__,
0f8c6d7c
CW
3798 cd.invalidate_domains,
3799 cd.flush_domains);
13b29289 3800#endif
05394f39 3801 i915_gem_flush(dev,
0f8c6d7c
CW
3802 cd.invalidate_domains,
3803 cd.flush_domains,
3804 cd.flush_rings);
13b29289
CW
3805 }
3806
3807 for (i = 0; i < count; i++) {
05394f39 3808 struct drm_i915_gem_object *obj = objects[i];
13b29289
CW
3809 /* XXX replace with semaphores */
3810 if (obj->ring && ring != obj->ring) {
05394f39 3811 ret = i915_gem_object_wait_rendering(obj, true);
13b29289
CW
3812 if (ret)
3813 return ret;
3814 }
3815 }
3816
3817 return 0;
3818}
3819
673a394b
EA
3820/* Throttle our rendering by waiting until the ring has completed our requests
3821 * emitted over 20 msec ago.
3822 *
b962442e
EA
3823 * Note that if we were to use the current jiffies each time around the loop,
3824 * we wouldn't escape the function with any frames outstanding if the time to
3825 * render a frame was over 20ms.
3826 *
673a394b
EA
3827 * This should get us reasonable parallelism between CPU and GPU but also
3828 * relatively low latency when blocking on a particular request to finish.
3829 */
40a5f0de 3830static int
f787a5f5 3831i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3832{
f787a5f5
CW
3833 struct drm_i915_private *dev_priv = dev->dev_private;
3834 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3835 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3836 struct drm_i915_gem_request *request;
3837 struct intel_ring_buffer *ring = NULL;
3838 u32 seqno = 0;
3839 int ret;
93533c29 3840
1c25595f 3841 spin_lock(&file_priv->mm.lock);
f787a5f5 3842 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3843 if (time_after_eq(request->emitted_jiffies, recent_enough))
3844 break;
40a5f0de 3845
f787a5f5
CW
3846 ring = request->ring;
3847 seqno = request->seqno;
b962442e 3848 }
1c25595f 3849 spin_unlock(&file_priv->mm.lock);
40a5f0de 3850
f787a5f5
CW
3851 if (seqno == 0)
3852 return 0;
2bc43b5c 3853
f787a5f5 3854 ret = 0;
78501eac 3855 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3856 /* And wait for the seqno passing without holding any locks and
3857 * causing extra latency for others. This is safe as the irq
3858 * generation is designed to be run atomically and so is
3859 * lockless.
3860 */
78501eac 3861 ring->user_irq_get(ring);
f787a5f5 3862 ret = wait_event_interruptible(ring->irq_queue,
78501eac 3863 i915_seqno_passed(ring->get_seqno(ring), seqno)
f787a5f5 3864 || atomic_read(&dev_priv->mm.wedged));
78501eac 3865 ring->user_irq_put(ring);
40a5f0de 3866
f787a5f5
CW
3867 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3868 ret = -EIO;
40a5f0de
EA
3869 }
3870
f787a5f5
CW
3871 if (ret == 0)
3872 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3873
3874 return ret;
3875}
3876
83d60795 3877static int
2549d6c2
CW
3878i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3879 uint64_t exec_offset)
83d60795
CW
3880{
3881 uint32_t exec_start, exec_len;
3882
3883 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3884 exec_len = (uint32_t) exec->batch_len;
3885
3886 if ((exec_start | exec_len) & 0x7)
3887 return -EINVAL;
3888
3889 if (!exec_start)
3890 return -EINVAL;
3891
3892 return 0;
3893}
3894
6b95a207 3895static int
2549d6c2
CW
3896validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3897 int count)
6b95a207 3898{
2549d6c2 3899 int i;
6b95a207 3900
2549d6c2
CW
3901 for (i = 0; i < count; i++) {
3902 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
d1d78830 3903 int length; /* limited by fault_in_pages_readable() */
6b95a207 3904
d1d78830
CW
3905 /* First check for malicious input causing overflow */
3906 if (exec[i].relocation_count >
3907 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
3908 return -EINVAL;
6b95a207 3909
d1d78830
CW
3910 length = exec[i].relocation_count *
3911 sizeof(struct drm_i915_gem_relocation_entry);
2549d6c2
CW
3912 if (!access_ok(VERIFY_READ, ptr, length))
3913 return -EFAULT;
40a5f0de 3914
b5dc608c
CW
3915 /* we may also need to update the presumed offsets */
3916 if (!access_ok(VERIFY_WRITE, ptr, length))
3917 return -EFAULT;
3918
2549d6c2
CW
3919 if (fault_in_pages_readable(ptr, length))
3920 return -EFAULT;
6b95a207 3921 }
6b95a207 3922
83d60795 3923 return 0;
6b95a207
KH
3924}
3925
8dc5d147 3926static int
76446cac 3927i915_gem_do_execbuffer(struct drm_device *dev, void *data,
9af90d19 3928 struct drm_file *file,
76446cac
JB
3929 struct drm_i915_gem_execbuffer2 *args,
3930 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3931{
3932 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
3933 struct drm_i915_gem_object **object_list = NULL;
3934 struct drm_i915_gem_object *batch_obj;
201361a5 3935 struct drm_clip_rect *cliprects = NULL;
8dc5d147 3936 struct drm_i915_gem_request *request = NULL;
9af90d19 3937 int ret, i, flips;
673a394b 3938 uint64_t exec_offset;
673a394b 3939
852835f3
ZN
3940 struct intel_ring_buffer *ring = NULL;
3941
30dbf0c0
CW
3942 ret = i915_gem_check_is_wedged(dev);
3943 if (ret)
3944 return ret;
3945
2549d6c2
CW
3946 ret = validate_exec_list(exec_list, args->buffer_count);
3947 if (ret)
3948 return ret;
3949
673a394b
EA
3950#if WATCH_EXEC
3951 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3952 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3953#endif
549f7365
CW
3954 switch (args->flags & I915_EXEC_RING_MASK) {
3955 case I915_EXEC_DEFAULT:
3956 case I915_EXEC_RENDER:
3957 ring = &dev_priv->render_ring;
3958 break;
3959 case I915_EXEC_BSD:
d1b851fc 3960 if (!HAS_BSD(dev)) {
549f7365 3961 DRM_ERROR("execbuf with invalid ring (BSD)\n");
d1b851fc
ZN
3962 return -EINVAL;
3963 }
3964 ring = &dev_priv->bsd_ring;
549f7365
CW
3965 break;
3966 case I915_EXEC_BLT:
3967 if (!HAS_BLT(dev)) {
3968 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3969 return -EINVAL;
3970 }
3971 ring = &dev_priv->blt_ring;
3972 break;
3973 default:
3974 DRM_ERROR("execbuf with unknown ring: %d\n",
3975 (int)(args->flags & I915_EXEC_RING_MASK));
3976 return -EINVAL;
d1b851fc
ZN
3977 }
3978
4f481ed2
EA
3979 if (args->buffer_count < 1) {
3980 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3981 return -EINVAL;
3982 }
c8e0f93a 3983 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3984 if (object_list == NULL) {
3985 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3986 args->buffer_count);
3987 ret = -ENOMEM;
3988 goto pre_mutex_err;
3989 }
673a394b 3990
201361a5 3991 if (args->num_cliprects != 0) {
9a298b2a
EA
3992 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3993 GFP_KERNEL);
a40e8d31
OA
3994 if (cliprects == NULL) {
3995 ret = -ENOMEM;
201361a5 3996 goto pre_mutex_err;
a40e8d31 3997 }
201361a5
EA
3998
3999 ret = copy_from_user(cliprects,
4000 (struct drm_clip_rect __user *)
4001 (uintptr_t) args->cliprects_ptr,
4002 sizeof(*cliprects) * args->num_cliprects);
4003 if (ret != 0) {
4004 DRM_ERROR("copy %d cliprects failed: %d\n",
4005 args->num_cliprects, ret);
c877cdce 4006 ret = -EFAULT;
201361a5
EA
4007 goto pre_mutex_err;
4008 }
4009 }
4010
8dc5d147
CW
4011 request = kzalloc(sizeof(*request), GFP_KERNEL);
4012 if (request == NULL) {
4013 ret = -ENOMEM;
40a5f0de 4014 goto pre_mutex_err;
8dc5d147 4015 }
40a5f0de 4016
76c1dec1
CW
4017 ret = i915_mutex_lock_interruptible(dev);
4018 if (ret)
a198bc80 4019 goto pre_mutex_err;
673a394b
EA
4020
4021 if (dev_priv->mm.suspended) {
673a394b 4022 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
4023 ret = -EBUSY;
4024 goto pre_mutex_err;
673a394b
EA
4025 }
4026
ac94a962 4027 /* Look up object handles */
673a394b 4028 for (i = 0; i < args->buffer_count; i++) {
05394f39 4029 struct drm_i915_gem_object *obj;
7e318e18 4030
05394f39
CW
4031 obj = to_intel_bo (drm_gem_object_lookup(dev, file,
4032 exec_list[i].handle));
4033 if (obj == NULL) {
673a394b
EA
4034 DRM_ERROR("Invalid object handle %d at index %d\n",
4035 exec_list[i].handle, i);
0ce907f8 4036 /* prevent error path from reading uninitialized data */
05394f39 4037 args->buffer_count = i;
bf79cb91 4038 ret = -ENOENT;
673a394b
EA
4039 goto err;
4040 }
05394f39 4041 object_list[i] = obj;
b70d11da 4042
05394f39 4043 if (obj->in_execbuffer) {
b70d11da 4044 DRM_ERROR("Object %p appears more than once in object list\n",
05394f39 4045 obj);
0ce907f8
CW
4046 /* prevent error path from reading uninitialized data */
4047 args->buffer_count = i + 1;
bf79cb91 4048 ret = -EINVAL;
b70d11da
KH
4049 goto err;
4050 }
05394f39 4051 obj->in_execbuffer = true;
caea7476 4052 obj->pending_fenced_gpu_access = false;
ac94a962 4053 }
673a394b 4054
9af90d19 4055 /* Move the objects en-masse into the GTT, evicting if necessary. */
bcf50e27
CW
4056 ret = i915_gem_execbuffer_reserve(dev, file,
4057 object_list, exec_list,
4058 args->buffer_count);
9af90d19
CW
4059 if (ret)
4060 goto err;
ac94a962 4061
9af90d19 4062 /* The objects are in their final locations, apply the relocations. */
bcf50e27
CW
4063 ret = i915_gem_execbuffer_relocate(dev, file,
4064 object_list, exec_list,
4065 args->buffer_count);
4066 if (ret) {
4067 if (ret == -EFAULT) {
4068 ret = i915_gem_execbuffer_relocate_slow(dev, file,
4069 object_list,
4070 exec_list,
4071 args->buffer_count);
4072 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
4073 }
9af90d19 4074 if (ret)
ac94a962 4075 goto err;
673a394b
EA
4076 }
4077
4078 /* Set the pending read domains for the batch buffer to COMMAND */
4079 batch_obj = object_list[args->buffer_count-1];
05394f39 4080 if (batch_obj->base.pending_write_domain) {
5f26a2c7
CW
4081 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
4082 ret = -EINVAL;
4083 goto err;
4084 }
05394f39 4085 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 4086
9af90d19 4087 /* Sanity check the batch buffer */
05394f39 4088 exec_offset = batch_obj->gtt_offset;
9af90d19 4089 ret = i915_gem_check_execbuffer(args, exec_offset);
83d60795
CW
4090 if (ret != 0) {
4091 DRM_ERROR("execbuf with invalid offset/length\n");
4092 goto err;
4093 }
4094
13b29289
CW
4095 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
4096 object_list, args->buffer_count);
4097 if (ret)
4098 goto err;
673a394b 4099
673a394b
EA
4100#if WATCH_COHERENCY
4101 for (i = 0; i < args->buffer_count; i++) {
4102 i915_gem_object_check_coherency(object_list[i],
4103 exec_list[i].handle);
4104 }
4105#endif
4106
673a394b 4107#if WATCH_EXEC
6911a9b8 4108 i915_gem_dump_object(batch_obj,
673a394b
EA
4109 args->batch_len,
4110 __func__,
4111 ~0);
4112#endif
4113
e59f2bac
CW
4114 /* Check for any pending flips. As we only maintain a flip queue depth
4115 * of 1, we can simply insert a WAIT for the next display flip prior
4116 * to executing the batch and avoid stalling the CPU.
4117 */
4118 flips = 0;
4119 for (i = 0; i < args->buffer_count; i++) {
05394f39
CW
4120 if (object_list[i]->base.write_domain)
4121 flips |= atomic_read(&object_list[i]->pending_flip);
e59f2bac
CW
4122 }
4123 if (flips) {
4124 int plane, flip_mask;
4125
4126 for (plane = 0; flips >> plane; plane++) {
4127 if (((flips >> plane) & 1) == 0)
4128 continue;
4129
4130 if (plane)
4131 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
4132 else
4133 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
4134
e1f99ce6
CW
4135 ret = intel_ring_begin(ring, 2);
4136 if (ret)
4137 goto err;
4138
78501eac
CW
4139 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
4140 intel_ring_emit(ring, MI_NOOP);
4141 intel_ring_advance(ring);
e59f2bac
CW
4142 }
4143 }
4144
673a394b 4145 /* Exec the batchbuffer */
78501eac 4146 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
673a394b
EA
4147 if (ret) {
4148 DRM_ERROR("dispatch failed %d\n", ret);
4149 goto err;
4150 }
4151
673a394b 4152 for (i = 0; i < args->buffer_count; i++) {
05394f39 4153 struct drm_i915_gem_object *obj = object_list[i];
673a394b 4154
05394f39
CW
4155 obj->base.read_domains = obj->base.pending_read_domains;
4156 obj->base.write_domain = obj->base.pending_write_domain;
caea7476 4157 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
7e318e18 4158
617dbe27 4159 i915_gem_object_move_to_active(obj, ring);
05394f39
CW
4160 if (obj->base.write_domain) {
4161 obj->dirty = 1;
4162 list_move_tail(&obj->gpu_write_list,
64193406 4163 &ring->gpu_write_list);
7e318e18
CW
4164 intel_mark_busy(dev, obj);
4165 }
4166
4167 trace_i915_gem_object_change_domain(obj,
05394f39
CW
4168 obj->base.read_domains,
4169 obj->base.write_domain);
673a394b 4170 }
673a394b 4171
7e318e18
CW
4172 /*
4173 * Ensure that the commands in the batch buffer are
4174 * finished before the interrupt fires
4175 */
4176 i915_retire_commands(dev, ring);
4177
3cce469c 4178 if (i915_add_request(dev, file, request, ring))
5d97eb69 4179 i915_gem_next_request_seqno(dev, ring);
3cce469c
CW
4180 else
4181 request = NULL;
673a394b 4182
673a394b 4183err:
b70d11da 4184 for (i = 0; i < args->buffer_count; i++) {
05394f39
CW
4185 object_list[i]->in_execbuffer = false;
4186 drm_gem_object_unreference(&object_list[i]->base);
b70d11da 4187 }
673a394b 4188
673a394b
EA
4189 mutex_unlock(&dev->struct_mutex);
4190
93533c29 4191pre_mutex_err:
8e7d2b2c 4192 drm_free_large(object_list);
9a298b2a 4193 kfree(cliprects);
8dc5d147 4194 kfree(request);
673a394b
EA
4195
4196 return ret;
4197}
4198
76446cac
JB
4199/*
4200 * Legacy execbuffer just creates an exec2 list from the original exec object
4201 * list array and passes it to the real function.
4202 */
4203int
4204i915_gem_execbuffer(struct drm_device *dev, void *data,
05394f39 4205 struct drm_file *file)
76446cac
JB
4206{
4207 struct drm_i915_gem_execbuffer *args = data;
4208 struct drm_i915_gem_execbuffer2 exec2;
4209 struct drm_i915_gem_exec_object *exec_list = NULL;
4210 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4211 int ret, i;
4212
4213#if WATCH_EXEC
4214 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4215 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4216#endif
4217
4218 if (args->buffer_count < 1) {
4219 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4220 return -EINVAL;
4221 }
4222
4223 /* Copy in the exec list from userland */
4224 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4225 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4226 if (exec_list == NULL || exec2_list == NULL) {
4227 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4228 args->buffer_count);
4229 drm_free_large(exec_list);
4230 drm_free_large(exec2_list);
4231 return -ENOMEM;
4232 }
4233 ret = copy_from_user(exec_list,
4234 (struct drm_i915_relocation_entry __user *)
4235 (uintptr_t) args->buffers_ptr,
4236 sizeof(*exec_list) * args->buffer_count);
4237 if (ret != 0) {
4238 DRM_ERROR("copy %d exec entries failed %d\n",
4239 args->buffer_count, ret);
4240 drm_free_large(exec_list);
4241 drm_free_large(exec2_list);
4242 return -EFAULT;
4243 }
4244
4245 for (i = 0; i < args->buffer_count; i++) {
4246 exec2_list[i].handle = exec_list[i].handle;
4247 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4248 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4249 exec2_list[i].alignment = exec_list[i].alignment;
4250 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 4251 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
4252 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4253 else
4254 exec2_list[i].flags = 0;
4255 }
4256
4257 exec2.buffers_ptr = args->buffers_ptr;
4258 exec2.buffer_count = args->buffer_count;
4259 exec2.batch_start_offset = args->batch_start_offset;
4260 exec2.batch_len = args->batch_len;
4261 exec2.DR1 = args->DR1;
4262 exec2.DR4 = args->DR4;
4263 exec2.num_cliprects = args->num_cliprects;
4264 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 4265 exec2.flags = I915_EXEC_RENDER;
76446cac 4266
05394f39 4267 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
76446cac
JB
4268 if (!ret) {
4269 /* Copy the new buffer offsets back to the user's exec list. */
4270 for (i = 0; i < args->buffer_count; i++)
4271 exec_list[i].offset = exec2_list[i].offset;
4272 /* ... and back out to userspace */
4273 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4274 (uintptr_t) args->buffers_ptr,
4275 exec_list,
4276 sizeof(*exec_list) * args->buffer_count);
4277 if (ret) {
4278 ret = -EFAULT;
4279 DRM_ERROR("failed to copy %d exec entries "
4280 "back to user (%d)\n",
4281 args->buffer_count, ret);
4282 }
76446cac
JB
4283 }
4284
4285 drm_free_large(exec_list);
4286 drm_free_large(exec2_list);
4287 return ret;
4288}
4289
4290int
4291i915_gem_execbuffer2(struct drm_device *dev, void *data,
05394f39 4292 struct drm_file *file)
76446cac
JB
4293{
4294 struct drm_i915_gem_execbuffer2 *args = data;
4295 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4296 int ret;
4297
4298#if WATCH_EXEC
4299 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4300 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4301#endif
4302
4303 if (args->buffer_count < 1) {
4304 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4305 return -EINVAL;
4306 }
4307
4308 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4309 if (exec2_list == NULL) {
4310 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4311 args->buffer_count);
4312 return -ENOMEM;
4313 }
4314 ret = copy_from_user(exec2_list,
4315 (struct drm_i915_relocation_entry __user *)
4316 (uintptr_t) args->buffers_ptr,
4317 sizeof(*exec2_list) * args->buffer_count);
4318 if (ret != 0) {
4319 DRM_ERROR("copy %d exec entries failed %d\n",
4320 args->buffer_count, ret);
4321 drm_free_large(exec2_list);
4322 return -EFAULT;
4323 }
4324
05394f39 4325 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
76446cac
JB
4326 if (!ret) {
4327 /* Copy the new buffer offsets back to the user's exec list. */
4328 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4329 (uintptr_t) args->buffers_ptr,
4330 exec2_list,
4331 sizeof(*exec2_list) * args->buffer_count);
4332 if (ret) {
4333 ret = -EFAULT;
4334 DRM_ERROR("failed to copy %d exec entries "
4335 "back to user (%d)\n",
4336 args->buffer_count, ret);
4337 }
4338 }
4339
4340 drm_free_large(exec2_list);
4341 return ret;
4342}
4343
673a394b 4344int
05394f39
CW
4345i915_gem_object_pin(struct drm_i915_gem_object *obj,
4346 uint32_t alignment,
75e9e915 4347 bool map_and_fenceable)
673a394b 4348{
05394f39 4349 struct drm_device *dev = obj->base.dev;
f13d3f73 4350 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
4351 int ret;
4352
05394f39 4353 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 4354 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 4355
05394f39
CW
4356 if (obj->gtt_space != NULL) {
4357 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
4358 (map_and_fenceable && !obj->map_and_fenceable)) {
4359 WARN(obj->pin_count,
ae7d49d8 4360 "bo is already pinned with incorrect alignment:"
75e9e915
DV
4361 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
4362 " obj->map_and_fenceable=%d\n",
05394f39 4363 obj->gtt_offset, alignment,
75e9e915 4364 map_and_fenceable,
05394f39 4365 obj->map_and_fenceable);
ac0c6b5a
CW
4366 ret = i915_gem_object_unbind(obj);
4367 if (ret)
4368 return ret;
4369 }
4370 }
4371
05394f39 4372 if (obj->gtt_space == NULL) {
a00b10c3 4373 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 4374 map_and_fenceable);
9731129c 4375 if (ret)
673a394b 4376 return ret;
22c344e9 4377 }
76446cac 4378
05394f39
CW
4379 if (obj->pin_count++ == 0) {
4380 i915_gem_info_add_pin(dev_priv, obj, map_and_fenceable);
4381 if (!obj->active)
4382 list_move_tail(&obj->mm_list,
f13d3f73 4383 &dev_priv->mm.pinned_list);
673a394b 4384 }
05394f39 4385 BUG_ON(!obj->pin_mappable && map_and_fenceable);
673a394b 4386
23bc5982 4387 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4388 return 0;
4389}
4390
4391void
05394f39 4392i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 4393{
05394f39 4394 struct drm_device *dev = obj->base.dev;
673a394b 4395 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 4396
23bc5982 4397 WARN_ON(i915_verify_lists(dev));
05394f39
CW
4398 BUG_ON(obj->pin_count == 0);
4399 BUG_ON(obj->gtt_space == NULL);
673a394b 4400
05394f39
CW
4401 if (--obj->pin_count == 0) {
4402 if (!obj->active)
4403 list_move_tail(&obj->mm_list,
673a394b 4404 &dev_priv->mm.inactive_list);
05394f39 4405 i915_gem_info_remove_pin(dev_priv, obj);
673a394b 4406 }
23bc5982 4407 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4408}
4409
4410int
4411i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 4412 struct drm_file *file)
673a394b
EA
4413{
4414 struct drm_i915_gem_pin *args = data;
05394f39 4415 struct drm_i915_gem_object *obj;
673a394b
EA
4416 int ret;
4417
1d7cfea1
CW
4418 ret = i915_mutex_lock_interruptible(dev);
4419 if (ret)
4420 return ret;
673a394b 4421
05394f39 4422 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 4423 if (obj == NULL) {
1d7cfea1
CW
4424 ret = -ENOENT;
4425 goto unlock;
673a394b 4426 }
673a394b 4427
05394f39 4428 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 4429 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
4430 ret = -EINVAL;
4431 goto out;
3ef94daa
CW
4432 }
4433
05394f39 4434 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
4435 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4436 args->handle);
1d7cfea1
CW
4437 ret = -EINVAL;
4438 goto out;
79e53945
JB
4439 }
4440
05394f39
CW
4441 obj->user_pin_count++;
4442 obj->pin_filp = file;
4443 if (obj->user_pin_count == 1) {
75e9e915 4444 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
4445 if (ret)
4446 goto out;
673a394b
EA
4447 }
4448
4449 /* XXX - flush the CPU caches for pinned objects
4450 * as the X server doesn't manage domains yet
4451 */
e47c68e9 4452 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 4453 args->offset = obj->gtt_offset;
1d7cfea1 4454out:
05394f39 4455 drm_gem_object_unreference(&obj->base);
1d7cfea1 4456unlock:
673a394b 4457 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4458 return ret;
673a394b
EA
4459}
4460
4461int
4462i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4463 struct drm_file *file)
673a394b
EA
4464{
4465 struct drm_i915_gem_pin *args = data;
05394f39 4466 struct drm_i915_gem_object *obj;
76c1dec1 4467 int ret;
673a394b 4468
1d7cfea1
CW
4469 ret = i915_mutex_lock_interruptible(dev);
4470 if (ret)
4471 return ret;
673a394b 4472
05394f39 4473 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 4474 if (obj == NULL) {
1d7cfea1
CW
4475 ret = -ENOENT;
4476 goto unlock;
673a394b 4477 }
76c1dec1 4478
05394f39 4479 if (obj->pin_filp != file) {
79e53945
JB
4480 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4481 args->handle);
1d7cfea1
CW
4482 ret = -EINVAL;
4483 goto out;
79e53945 4484 }
05394f39
CW
4485 obj->user_pin_count--;
4486 if (obj->user_pin_count == 0) {
4487 obj->pin_filp = NULL;
79e53945
JB
4488 i915_gem_object_unpin(obj);
4489 }
673a394b 4490
1d7cfea1 4491out:
05394f39 4492 drm_gem_object_unreference(&obj->base);
1d7cfea1 4493unlock:
673a394b 4494 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4495 return ret;
673a394b
EA
4496}
4497
4498int
4499i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4500 struct drm_file *file)
673a394b
EA
4501{
4502 struct drm_i915_gem_busy *args = data;
05394f39 4503 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4504 int ret;
4505
76c1dec1 4506 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4507 if (ret)
76c1dec1 4508 return ret;
673a394b 4509
05394f39 4510 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
673a394b 4511 if (obj == NULL) {
1d7cfea1
CW
4512 ret = -ENOENT;
4513 goto unlock;
673a394b 4514 }
d1b851fc 4515
0be555b6
CW
4516 /* Count all active objects as busy, even if they are currently not used
4517 * by the gpu. Users of this interface expect objects to eventually
4518 * become non-busy without any further actions, therefore emit any
4519 * necessary flushes here.
c4de0a5d 4520 */
05394f39 4521 args->busy = obj->active;
0be555b6
CW
4522 if (args->busy) {
4523 /* Unconditionally flush objects, even when the gpu still uses this
4524 * object. Userspace calling this function indicates that it wants to
4525 * use this buffer rather sooner than later, so issuing the required
4526 * flush earlier is beneficial.
4527 */
05394f39
CW
4528 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
4529 i915_gem_flush_ring(dev, obj->ring,
4530 0, obj->base.write_domain);
0be555b6
CW
4531
4532 /* Update the active list for the hardware's current position.
4533 * Otherwise this only updates on a delayed timer or when irqs
4534 * are actually unmasked, and our working set ends up being
4535 * larger than required.
4536 */
05394f39 4537 i915_gem_retire_requests_ring(dev, obj->ring);
0be555b6 4538
05394f39 4539 args->busy = obj->active;
0be555b6 4540 }
673a394b 4541
05394f39 4542 drm_gem_object_unreference(&obj->base);
1d7cfea1 4543unlock:
673a394b 4544 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4545 return ret;
673a394b
EA
4546}
4547
4548int
4549i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4550 struct drm_file *file_priv)
4551{
4552 return i915_gem_ring_throttle(dev, file_priv);
4553}
4554
3ef94daa
CW
4555int
4556i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4557 struct drm_file *file_priv)
4558{
4559 struct drm_i915_gem_madvise *args = data;
05394f39 4560 struct drm_i915_gem_object *obj;
76c1dec1 4561 int ret;
3ef94daa
CW
4562
4563 switch (args->madv) {
4564 case I915_MADV_DONTNEED:
4565 case I915_MADV_WILLNEED:
4566 break;
4567 default:
4568 return -EINVAL;
4569 }
4570
1d7cfea1
CW
4571 ret = i915_mutex_lock_interruptible(dev);
4572 if (ret)
4573 return ret;
4574
05394f39 4575 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3ef94daa 4576 if (obj == NULL) {
1d7cfea1
CW
4577 ret = -ENOENT;
4578 goto unlock;
3ef94daa 4579 }
3ef94daa 4580
05394f39 4581 if (obj->pin_count) {
1d7cfea1
CW
4582 ret = -EINVAL;
4583 goto out;
3ef94daa
CW
4584 }
4585
05394f39
CW
4586 if (obj->madv != __I915_MADV_PURGED)
4587 obj->madv = args->madv;
3ef94daa 4588
2d7ef395 4589 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
4590 if (i915_gem_object_is_purgeable(obj) &&
4591 obj->gtt_space == NULL)
2d7ef395
CW
4592 i915_gem_object_truncate(obj);
4593
05394f39 4594 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4595
1d7cfea1 4596out:
05394f39 4597 drm_gem_object_unreference(&obj->base);
1d7cfea1 4598unlock:
3ef94daa 4599 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4600 return ret;
3ef94daa
CW
4601}
4602
05394f39
CW
4603struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4604 size_t size)
ac52bc56 4605{
73aa808f 4606 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 4607 struct drm_i915_gem_object *obj;
ac52bc56 4608
c397b908
DV
4609 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4610 if (obj == NULL)
4611 return NULL;
673a394b 4612
c397b908
DV
4613 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4614 kfree(obj);
4615 return NULL;
4616 }
673a394b 4617
73aa808f
CW
4618 i915_gem_info_add_obj(dev_priv, size);
4619
c397b908
DV
4620 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4621 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4622
c397b908 4623 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4624 obj->base.driver_private = NULL;
c397b908 4625 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 4626 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 4627 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 4628 INIT_LIST_HEAD(&obj->ring_list);
c397b908 4629 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4630 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
4631 /* Avoid an unnecessary call to unbind on the first bind. */
4632 obj->map_and_fenceable = true;
de151cf6 4633
05394f39 4634 return obj;
c397b908
DV
4635}
4636
4637int i915_gem_init_object(struct drm_gem_object *obj)
4638{
4639 BUG();
de151cf6 4640
673a394b
EA
4641 return 0;
4642}
4643
05394f39 4644static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 4645{
05394f39 4646 struct drm_device *dev = obj->base.dev;
be72615b 4647 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 4648 int ret;
673a394b 4649
be72615b
CW
4650 ret = i915_gem_object_unbind(obj);
4651 if (ret == -ERESTARTSYS) {
05394f39 4652 list_move(&obj->mm_list,
be72615b
CW
4653 &dev_priv->mm.deferred_free_list);
4654 return;
4655 }
673a394b 4656
05394f39 4657 if (obj->base.map_list.map)
7e616158 4658 i915_gem_free_mmap_offset(obj);
de151cf6 4659
05394f39
CW
4660 drm_gem_object_release(&obj->base);
4661 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4662
05394f39
CW
4663 kfree(obj->page_cpu_valid);
4664 kfree(obj->bit_17);
4665 kfree(obj);
673a394b
EA
4666}
4667
05394f39 4668void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 4669{
05394f39
CW
4670 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4671 struct drm_device *dev = obj->base.dev;
be72615b
CW
4672
4673 trace_i915_gem_object_destroy(obj);
4674
05394f39 4675 while (obj->pin_count > 0)
be72615b
CW
4676 i915_gem_object_unpin(obj);
4677
05394f39 4678 if (obj->phys_obj)
be72615b
CW
4679 i915_gem_detach_phys_object(dev, obj);
4680
4681 i915_gem_free_object_tail(obj);
4682}
4683
29105ccc
CW
4684int
4685i915_gem_idle(struct drm_device *dev)
4686{
4687 drm_i915_private_t *dev_priv = dev->dev_private;
4688 int ret;
28dfe52a 4689
29105ccc 4690 mutex_lock(&dev->struct_mutex);
1c5d22f7 4691
87acb0a5 4692 if (dev_priv->mm.suspended) {
29105ccc
CW
4693 mutex_unlock(&dev->struct_mutex);
4694 return 0;
28dfe52a
EA
4695 }
4696
29105ccc 4697 ret = i915_gpu_idle(dev);
6dbe2772
KP
4698 if (ret) {
4699 mutex_unlock(&dev->struct_mutex);
673a394b 4700 return ret;
6dbe2772 4701 }
673a394b 4702
29105ccc
CW
4703 /* Under UMS, be paranoid and evict. */
4704 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 4705 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
4706 if (ret) {
4707 mutex_unlock(&dev->struct_mutex);
4708 return ret;
4709 }
4710 }
4711
312817a3
CW
4712 i915_gem_reset_fences(dev);
4713
29105ccc
CW
4714 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4715 * We need to replace this with a semaphore, or something.
4716 * And not confound mm.suspended!
4717 */
4718 dev_priv->mm.suspended = 1;
bc0c7f14 4719 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4720
4721 i915_kernel_lost_context(dev);
6dbe2772 4722 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4723
6dbe2772
KP
4724 mutex_unlock(&dev->struct_mutex);
4725
29105ccc
CW
4726 /* Cancel the retire work handler, which should be idle now. */
4727 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4728
673a394b
EA
4729 return 0;
4730}
4731
8187a2b7
ZN
4732int
4733i915_gem_init_ringbuffer(struct drm_device *dev)
4734{
4735 drm_i915_private_t *dev_priv = dev->dev_private;
4736 int ret;
68f95ba9 4737
5c1143bb 4738 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4739 if (ret)
b6913e4b 4740 return ret;
68f95ba9
CW
4741
4742 if (HAS_BSD(dev)) {
5c1143bb 4743 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4744 if (ret)
4745 goto cleanup_render_ring;
d1b851fc 4746 }
68f95ba9 4747
549f7365
CW
4748 if (HAS_BLT(dev)) {
4749 ret = intel_init_blt_ring_buffer(dev);
4750 if (ret)
4751 goto cleanup_bsd_ring;
4752 }
4753
6f392d54
CW
4754 dev_priv->next_seqno = 1;
4755
68f95ba9
CW
4756 return 0;
4757
549f7365 4758cleanup_bsd_ring:
78501eac 4759 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
68f95ba9 4760cleanup_render_ring:
78501eac 4761 intel_cleanup_ring_buffer(&dev_priv->render_ring);
8187a2b7
ZN
4762 return ret;
4763}
4764
4765void
4766i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4767{
4768 drm_i915_private_t *dev_priv = dev->dev_private;
4769
78501eac
CW
4770 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4771 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4772 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
8187a2b7
ZN
4773}
4774
673a394b
EA
4775int
4776i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4777 struct drm_file *file_priv)
4778{
4779 drm_i915_private_t *dev_priv = dev->dev_private;
4780 int ret;
4781
79e53945
JB
4782 if (drm_core_check_feature(dev, DRIVER_MODESET))
4783 return 0;
4784
ba1234d1 4785 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4786 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4787 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4788 }
4789
673a394b 4790 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4791 dev_priv->mm.suspended = 0;
4792
4793 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4794 if (ret != 0) {
4795 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4796 return ret;
d816f6ac 4797 }
9bb2d6f9 4798
69dc4987 4799 BUG_ON(!list_empty(&dev_priv->mm.active_list));
852835f3 4800 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 4801 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
549f7365 4802 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
673a394b
EA
4803 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4804 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4805 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 4806 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
549f7365 4807 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
673a394b 4808 mutex_unlock(&dev->struct_mutex);
dbb19d30 4809
5f35308b
CW
4810 ret = drm_irq_install(dev);
4811 if (ret)
4812 goto cleanup_ringbuffer;
dbb19d30 4813
673a394b 4814 return 0;
5f35308b
CW
4815
4816cleanup_ringbuffer:
4817 mutex_lock(&dev->struct_mutex);
4818 i915_gem_cleanup_ringbuffer(dev);
4819 dev_priv->mm.suspended = 1;
4820 mutex_unlock(&dev->struct_mutex);
4821
4822 return ret;
673a394b
EA
4823}
4824
4825int
4826i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4827 struct drm_file *file_priv)
4828{
79e53945
JB
4829 if (drm_core_check_feature(dev, DRIVER_MODESET))
4830 return 0;
4831
dbb19d30 4832 drm_irq_uninstall(dev);
e6890f6f 4833 return i915_gem_idle(dev);
673a394b
EA
4834}
4835
4836void
4837i915_gem_lastclose(struct drm_device *dev)
4838{
4839 int ret;
673a394b 4840
e806b495
EA
4841 if (drm_core_check_feature(dev, DRIVER_MODESET))
4842 return;
4843
6dbe2772
KP
4844 ret = i915_gem_idle(dev);
4845 if (ret)
4846 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4847}
4848
64193406
CW
4849static void
4850init_ring_lists(struct intel_ring_buffer *ring)
4851{
4852 INIT_LIST_HEAD(&ring->active_list);
4853 INIT_LIST_HEAD(&ring->request_list);
4854 INIT_LIST_HEAD(&ring->gpu_write_list);
4855}
4856
673a394b
EA
4857void
4858i915_gem_load(struct drm_device *dev)
4859{
b5aa8a0f 4860 int i;
673a394b
EA
4861 drm_i915_private_t *dev_priv = dev->dev_private;
4862
69dc4987 4863 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
4864 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4865 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4866 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4867 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4868 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 4869 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
64193406
CW
4870 init_ring_lists(&dev_priv->render_ring);
4871 init_ring_lists(&dev_priv->bsd_ring);
4872 init_ring_lists(&dev_priv->blt_ring);
007cc8ac
DV
4873 for (i = 0; i < 16; i++)
4874 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4875 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4876 i915_gem_retire_work_handler);
30dbf0c0 4877 init_completion(&dev_priv->error_completion);
31169714 4878
94400120
DA
4879 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4880 if (IS_GEN3(dev)) {
4881 u32 tmp = I915_READ(MI_ARB_STATE);
4882 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4883 /* arb state is a masked write, so set bit + bit in mask */
4884 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4885 I915_WRITE(MI_ARB_STATE, tmp);
4886 }
4887 }
4888
de151cf6 4889 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4890 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4891 dev_priv->fence_reg_start = 3;
de151cf6 4892
a6c45cf0 4893 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4894 dev_priv->num_fence_regs = 16;
4895 else
4896 dev_priv->num_fence_regs = 8;
4897
b5aa8a0f 4898 /* Initialize fence registers to zero */
a6c45cf0
CW
4899 switch (INTEL_INFO(dev)->gen) {
4900 case 6:
4901 for (i = 0; i < 16; i++)
4902 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4903 break;
4904 case 5:
4905 case 4:
b5aa8a0f
GH
4906 for (i = 0; i < 16; i++)
4907 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4908 break;
4909 case 3:
b5aa8a0f
GH
4910 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4911 for (i = 0; i < 8; i++)
4912 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4913 case 2:
4914 for (i = 0; i < 8; i++)
4915 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4916 break;
b5aa8a0f 4917 }
673a394b 4918 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4919 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71
CW
4920
4921 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4922 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4923 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4924}
71acb5eb
DA
4925
4926/*
4927 * Create a physically contiguous memory object for this object
4928 * e.g. for cursor + overlay regs
4929 */
995b6762
CW
4930static int i915_gem_init_phys_object(struct drm_device *dev,
4931 int id, int size, int align)
71acb5eb
DA
4932{
4933 drm_i915_private_t *dev_priv = dev->dev_private;
4934 struct drm_i915_gem_phys_object *phys_obj;
4935 int ret;
4936
4937 if (dev_priv->mm.phys_objs[id - 1] || !size)
4938 return 0;
4939
9a298b2a 4940 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4941 if (!phys_obj)
4942 return -ENOMEM;
4943
4944 phys_obj->id = id;
4945
6eeefaf3 4946 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4947 if (!phys_obj->handle) {
4948 ret = -ENOMEM;
4949 goto kfree_obj;
4950 }
4951#ifdef CONFIG_X86
4952 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4953#endif
4954
4955 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4956
4957 return 0;
4958kfree_obj:
9a298b2a 4959 kfree(phys_obj);
71acb5eb
DA
4960 return ret;
4961}
4962
995b6762 4963static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4964{
4965 drm_i915_private_t *dev_priv = dev->dev_private;
4966 struct drm_i915_gem_phys_object *phys_obj;
4967
4968 if (!dev_priv->mm.phys_objs[id - 1])
4969 return;
4970
4971 phys_obj = dev_priv->mm.phys_objs[id - 1];
4972 if (phys_obj->cur_obj) {
4973 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4974 }
4975
4976#ifdef CONFIG_X86
4977 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4978#endif
4979 drm_pci_free(dev, phys_obj->handle);
4980 kfree(phys_obj);
4981 dev_priv->mm.phys_objs[id - 1] = NULL;
4982}
4983
4984void i915_gem_free_all_phys_object(struct drm_device *dev)
4985{
4986 int i;
4987
260883c8 4988 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4989 i915_gem_free_phys_object(dev, i);
4990}
4991
4992void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4993 struct drm_i915_gem_object *obj)
71acb5eb 4994{
05394f39 4995 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4996 char *vaddr;
71acb5eb 4997 int i;
71acb5eb
DA
4998 int page_count;
4999
05394f39 5000 if (!obj->phys_obj)
71acb5eb 5001 return;
05394f39 5002 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 5003
05394f39 5004 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 5005 for (i = 0; i < page_count; i++) {
e5281ccd
CW
5006 struct page *page = read_cache_page_gfp(mapping, i,
5007 GFP_HIGHUSER | __GFP_RECLAIMABLE);
5008 if (!IS_ERR(page)) {
5009 char *dst = kmap_atomic(page);
5010 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
5011 kunmap_atomic(dst);
5012
5013 drm_clflush_pages(&page, 1);
5014
5015 set_page_dirty(page);
5016 mark_page_accessed(page);
5017 page_cache_release(page);
5018 }
71acb5eb 5019 }
40ce6575 5020 intel_gtt_chipset_flush();
d78b47b9 5021
05394f39
CW
5022 obj->phys_obj->cur_obj = NULL;
5023 obj->phys_obj = NULL;
71acb5eb
DA
5024}
5025
5026int
5027i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 5028 struct drm_i915_gem_object *obj,
6eeefaf3
CW
5029 int id,
5030 int align)
71acb5eb 5031{
05394f39 5032 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 5033 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
5034 int ret = 0;
5035 int page_count;
5036 int i;
5037
5038 if (id > I915_MAX_PHYS_OBJECT)
5039 return -EINVAL;
5040
05394f39
CW
5041 if (obj->phys_obj) {
5042 if (obj->phys_obj->id == id)
71acb5eb
DA
5043 return 0;
5044 i915_gem_detach_phys_object(dev, obj);
5045 }
5046
71acb5eb
DA
5047 /* create a new object */
5048 if (!dev_priv->mm.phys_objs[id - 1]) {
5049 ret = i915_gem_init_phys_object(dev, id,
05394f39 5050 obj->base.size, align);
71acb5eb 5051 if (ret) {
05394f39
CW
5052 DRM_ERROR("failed to init phys object %d size: %zu\n",
5053 id, obj->base.size);
e5281ccd 5054 return ret;
71acb5eb
DA
5055 }
5056 }
5057
5058 /* bind to the object */
05394f39
CW
5059 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
5060 obj->phys_obj->cur_obj = obj;
71acb5eb 5061
05394f39 5062 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
5063
5064 for (i = 0; i < page_count; i++) {
e5281ccd
CW
5065 struct page *page;
5066 char *dst, *src;
5067
5068 page = read_cache_page_gfp(mapping, i,
5069 GFP_HIGHUSER | __GFP_RECLAIMABLE);
5070 if (IS_ERR(page))
5071 return PTR_ERR(page);
71acb5eb 5072
ff75b9bc 5073 src = kmap_atomic(page);
05394f39 5074 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 5075 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 5076 kunmap_atomic(src);
71acb5eb 5077
e5281ccd
CW
5078 mark_page_accessed(page);
5079 page_cache_release(page);
5080 }
d78b47b9 5081
71acb5eb 5082 return 0;
71acb5eb
DA
5083}
5084
5085static int
05394f39
CW
5086i915_gem_phys_pwrite(struct drm_device *dev,
5087 struct drm_i915_gem_object *obj,
71acb5eb
DA
5088 struct drm_i915_gem_pwrite *args,
5089 struct drm_file *file_priv)
5090{
05394f39 5091 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 5092 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 5093
b47b30cc
CW
5094 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
5095 unsigned long unwritten;
5096
5097 /* The physical object once assigned is fixed for the lifetime
5098 * of the obj, so we can safely drop the lock and continue
5099 * to access vaddr.
5100 */
5101 mutex_unlock(&dev->struct_mutex);
5102 unwritten = copy_from_user(vaddr, user_data, args->size);
5103 mutex_lock(&dev->struct_mutex);
5104 if (unwritten)
5105 return -EFAULT;
5106 }
71acb5eb 5107
40ce6575 5108 intel_gtt_chipset_flush();
71acb5eb
DA
5109 return 0;
5110}
b962442e 5111
f787a5f5 5112void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5113{
f787a5f5 5114 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5115
5116 /* Clean up our request list when the client is going away, so that
5117 * later retire_requests won't dereference our soon-to-be-gone
5118 * file_priv.
5119 */
1c25595f 5120 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5121 while (!list_empty(&file_priv->mm.request_list)) {
5122 struct drm_i915_gem_request *request;
5123
5124 request = list_first_entry(&file_priv->mm.request_list,
5125 struct drm_i915_gem_request,
5126 client_list);
5127 list_del(&request->client_list);
5128 request->file_priv = NULL;
5129 }
1c25595f 5130 spin_unlock(&file_priv->mm.lock);
b962442e 5131}
31169714 5132
1637ef41
CW
5133static int
5134i915_gpu_is_active(struct drm_device *dev)
5135{
5136 drm_i915_private_t *dev_priv = dev->dev_private;
5137 int lists_empty;
5138
1637ef41 5139 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 5140 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
5141
5142 return !lists_empty;
5143}
5144
31169714 5145static int
17250b71
CW
5146i915_gem_inactive_shrink(struct shrinker *shrinker,
5147 int nr_to_scan,
5148 gfp_t gfp_mask)
31169714 5149{
17250b71
CW
5150 struct drm_i915_private *dev_priv =
5151 container_of(shrinker,
5152 struct drm_i915_private,
5153 mm.inactive_shrinker);
5154 struct drm_device *dev = dev_priv->dev;
5155 struct drm_i915_gem_object *obj, *next;
5156 int cnt;
5157
5158 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 5159 return 0;
31169714
CW
5160
5161 /* "fast-path" to count number of available objects */
5162 if (nr_to_scan == 0) {
17250b71
CW
5163 cnt = 0;
5164 list_for_each_entry(obj,
5165 &dev_priv->mm.inactive_list,
5166 mm_list)
5167 cnt++;
5168 mutex_unlock(&dev->struct_mutex);
5169 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
5170 }
5171
1637ef41 5172rescan:
31169714 5173 /* first scan for clean buffers */
17250b71 5174 i915_gem_retire_requests(dev);
31169714 5175
17250b71
CW
5176 list_for_each_entry_safe(obj, next,
5177 &dev_priv->mm.inactive_list,
5178 mm_list) {
5179 if (i915_gem_object_is_purgeable(obj)) {
05394f39 5180 i915_gem_object_unbind(obj);
17250b71
CW
5181 if (--nr_to_scan == 0)
5182 break;
31169714 5183 }
31169714
CW
5184 }
5185
5186 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
5187 cnt = 0;
5188 list_for_each_entry_safe(obj, next,
5189 &dev_priv->mm.inactive_list,
5190 mm_list) {
5191 if (nr_to_scan) {
05394f39 5192 i915_gem_object_unbind(obj);
17250b71
CW
5193 nr_to_scan--;
5194 } else
5195 cnt++;
5196 }
5197
5198 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
5199 /*
5200 * We are desperate for pages, so as a last resort, wait
5201 * for the GPU to finish and discard whatever we can.
5202 * This has a dramatic impact to reduce the number of
5203 * OOM-killer events whilst running the GPU aggressively.
5204 */
17250b71 5205 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
5206 goto rescan;
5207 }
17250b71
CW
5208 mutex_unlock(&dev->struct_mutex);
5209 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 5210}