]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
i915: Clean up sarea pointers on leavevt
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32#include <linux/swap.h>
33
34static int
35i915_gem_object_set_domain(struct drm_gem_object *obj,
36 uint32_t read_domains,
37 uint32_t write_domain);
38static int
39i915_gem_object_set_domain_range(struct drm_gem_object *obj,
40 uint64_t offset,
41 uint64_t size,
42 uint32_t read_domains,
43 uint32_t write_domain);
44static int
45i915_gem_set_domain(struct drm_gem_object *obj,
46 struct drm_file *file_priv,
47 uint32_t read_domains,
48 uint32_t write_domain);
49static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
50static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
52
6dbe2772
KP
53static void
54i915_gem_cleanup_ringbuffer(struct drm_device *dev);
55
673a394b
EA
56int
57i915_gem_init_ioctl(struct drm_device *dev, void *data,
58 struct drm_file *file_priv)
59{
60 drm_i915_private_t *dev_priv = dev->dev_private;
61 struct drm_i915_gem_init *args = data;
62
63 mutex_lock(&dev->struct_mutex);
64
65 if (args->gtt_start >= args->gtt_end ||
66 (args->gtt_start & (PAGE_SIZE - 1)) != 0 ||
67 (args->gtt_end & (PAGE_SIZE - 1)) != 0) {
68 mutex_unlock(&dev->struct_mutex);
69 return -EINVAL;
70 }
71
72 drm_mm_init(&dev_priv->mm.gtt_space, args->gtt_start,
73 args->gtt_end - args->gtt_start);
74
75 dev->gtt_total = (uint32_t) (args->gtt_end - args->gtt_start);
76
77 mutex_unlock(&dev->struct_mutex);
78
79 return 0;
80}
81
5a125c3c
EA
82int
83i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
84 struct drm_file *file_priv)
85{
86 drm_i915_private_t *dev_priv = dev->dev_private;
87 struct drm_i915_gem_get_aperture *args = data;
88 struct drm_i915_gem_object *obj_priv;
89
90 if (!(dev->driver->driver_features & DRIVER_GEM))
91 return -ENODEV;
92
93 args->aper_size = dev->gtt_total;
94 args->aper_available_size = args->aper_size;
95
96 list_for_each_entry(obj_priv, &dev_priv->mm.active_list, list) {
97 if (obj_priv->pin_count > 0)
98 args->aper_available_size -= obj_priv->obj->size;
99 }
100
101 return 0;
102}
103
673a394b
EA
104
105/**
106 * Creates a new mm object and returns a handle to it.
107 */
108int
109i915_gem_create_ioctl(struct drm_device *dev, void *data,
110 struct drm_file *file_priv)
111{
112 struct drm_i915_gem_create *args = data;
113 struct drm_gem_object *obj;
114 int handle, ret;
115
116 args->size = roundup(args->size, PAGE_SIZE);
117
118 /* Allocate the new object */
119 obj = drm_gem_object_alloc(dev, args->size);
120 if (obj == NULL)
121 return -ENOMEM;
122
123 ret = drm_gem_handle_create(file_priv, obj, &handle);
124 mutex_lock(&dev->struct_mutex);
125 drm_gem_object_handle_unreference(obj);
126 mutex_unlock(&dev->struct_mutex);
127
128 if (ret)
129 return ret;
130
131 args->handle = handle;
132
133 return 0;
134}
135
136/**
137 * Reads data from the object referenced by handle.
138 *
139 * On error, the contents of *data are undefined.
140 */
141int
142i915_gem_pread_ioctl(struct drm_device *dev, void *data,
143 struct drm_file *file_priv)
144{
145 struct drm_i915_gem_pread *args = data;
146 struct drm_gem_object *obj;
147 struct drm_i915_gem_object *obj_priv;
148 ssize_t read;
149 loff_t offset;
150 int ret;
151
152 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
153 if (obj == NULL)
154 return -EBADF;
155 obj_priv = obj->driver_private;
156
157 /* Bounds check source.
158 *
159 * XXX: This could use review for overflow issues...
160 */
161 if (args->offset > obj->size || args->size > obj->size ||
162 args->offset + args->size > obj->size) {
163 drm_gem_object_unreference(obj);
164 return -EINVAL;
165 }
166
167 mutex_lock(&dev->struct_mutex);
168
169 ret = i915_gem_object_set_domain_range(obj, args->offset, args->size,
170 I915_GEM_DOMAIN_CPU, 0);
171 if (ret != 0) {
172 drm_gem_object_unreference(obj);
173 mutex_unlock(&dev->struct_mutex);
e7d22bc3 174 return ret;
673a394b
EA
175 }
176
177 offset = args->offset;
178
179 read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
180 args->size, &offset);
181 if (read != args->size) {
182 drm_gem_object_unreference(obj);
183 mutex_unlock(&dev->struct_mutex);
184 if (read < 0)
185 return read;
186 else
187 return -EINVAL;
188 }
189
190 drm_gem_object_unreference(obj);
191 mutex_unlock(&dev->struct_mutex);
192
193 return 0;
194}
195
0839ccb8
KP
196/* This is the fast write path which cannot handle
197 * page faults in the source data
9b7530cc 198 */
0839ccb8
KP
199
200static inline int
201fast_user_write(struct io_mapping *mapping,
202 loff_t page_base, int page_offset,
203 char __user *user_data,
204 int length)
9b7530cc 205{
9b7530cc 206 char *vaddr_atomic;
0839ccb8 207 unsigned long unwritten;
9b7530cc 208
0839ccb8
KP
209 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
210 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
211 user_data, length);
212 io_mapping_unmap_atomic(vaddr_atomic);
213 if (unwritten)
214 return -EFAULT;
215 return 0;
216}
217
218/* Here's the write path which can sleep for
219 * page faults
220 */
221
222static inline int
223slow_user_write(struct io_mapping *mapping,
224 loff_t page_base, int page_offset,
225 char __user *user_data,
226 int length)
227{
228 char __iomem *vaddr;
229 unsigned long unwritten;
230
231 vaddr = io_mapping_map_wc(mapping, page_base);
232 if (vaddr == NULL)
233 return -EFAULT;
234 unwritten = __copy_from_user(vaddr + page_offset,
235 user_data, length);
236 io_mapping_unmap(vaddr);
237 if (unwritten)
238 return -EFAULT;
9b7530cc 239 return 0;
9b7530cc
LT
240}
241
673a394b
EA
242static int
243i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
244 struct drm_i915_gem_pwrite *args,
245 struct drm_file *file_priv)
246{
247 struct drm_i915_gem_object *obj_priv = obj->driver_private;
0839ccb8 248 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 249 ssize_t remain;
0839ccb8 250 loff_t offset, page_base;
673a394b 251 char __user *user_data;
0839ccb8
KP
252 int page_offset, page_length;
253 int ret;
673a394b
EA
254
255 user_data = (char __user *) (uintptr_t) args->data_ptr;
256 remain = args->size;
257 if (!access_ok(VERIFY_READ, user_data, remain))
258 return -EFAULT;
259
260
261 mutex_lock(&dev->struct_mutex);
262 ret = i915_gem_object_pin(obj, 0);
263 if (ret) {
264 mutex_unlock(&dev->struct_mutex);
265 return ret;
266 }
267 ret = i915_gem_set_domain(obj, file_priv,
268 I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
269 if (ret)
270 goto fail;
271
272 obj_priv = obj->driver_private;
273 offset = obj_priv->gtt_offset + args->offset;
274 obj_priv->dirty = 1;
275
276 while (remain > 0) {
277 /* Operation in this page
278 *
0839ccb8
KP
279 * page_base = page offset within aperture
280 * page_offset = offset within page
281 * page_length = bytes to copy for this page
673a394b 282 */
0839ccb8
KP
283 page_base = (offset & ~(PAGE_SIZE-1));
284 page_offset = offset & (PAGE_SIZE-1);
285 page_length = remain;
286 if ((page_offset + remain) > PAGE_SIZE)
287 page_length = PAGE_SIZE - page_offset;
288
289 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
290 page_offset, user_data, page_length);
291
292 /* If we get a fault while copying data, then (presumably) our
293 * source page isn't available. In this case, use the
294 * non-atomic function
295 */
296 if (ret) {
297 ret = slow_user_write (dev_priv->mm.gtt_mapping,
298 page_base, page_offset,
299 user_data, page_length);
300 if (ret)
673a394b 301 goto fail;
673a394b
EA
302 }
303
0839ccb8
KP
304 remain -= page_length;
305 user_data += page_length;
306 offset += page_length;
673a394b 307 }
673a394b
EA
308
309fail:
310 i915_gem_object_unpin(obj);
311 mutex_unlock(&dev->struct_mutex);
312
313 return ret;
314}
315
3043c60c 316static int
673a394b
EA
317i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
318 struct drm_i915_gem_pwrite *args,
319 struct drm_file *file_priv)
320{
321 int ret;
322 loff_t offset;
323 ssize_t written;
324
325 mutex_lock(&dev->struct_mutex);
326
327 ret = i915_gem_set_domain(obj, file_priv,
328 I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU);
329 if (ret) {
330 mutex_unlock(&dev->struct_mutex);
331 return ret;
332 }
333
334 offset = args->offset;
335
336 written = vfs_write(obj->filp,
337 (char __user *)(uintptr_t) args->data_ptr,
338 args->size, &offset);
339 if (written != args->size) {
340 mutex_unlock(&dev->struct_mutex);
341 if (written < 0)
342 return written;
343 else
344 return -EINVAL;
345 }
346
347 mutex_unlock(&dev->struct_mutex);
348
349 return 0;
350}
351
352/**
353 * Writes data to the object referenced by handle.
354 *
355 * On error, the contents of the buffer that were to be modified are undefined.
356 */
357int
358i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
359 struct drm_file *file_priv)
360{
361 struct drm_i915_gem_pwrite *args = data;
362 struct drm_gem_object *obj;
363 struct drm_i915_gem_object *obj_priv;
364 int ret = 0;
365
366 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
367 if (obj == NULL)
368 return -EBADF;
369 obj_priv = obj->driver_private;
370
371 /* Bounds check destination.
372 *
373 * XXX: This could use review for overflow issues...
374 */
375 if (args->offset > obj->size || args->size > obj->size ||
376 args->offset + args->size > obj->size) {
377 drm_gem_object_unreference(obj);
378 return -EINVAL;
379 }
380
381 /* We can only do the GTT pwrite on untiled buffers, as otherwise
382 * it would end up going through the fenced access, and we'll get
383 * different detiling behavior between reading and writing.
384 * pread/pwrite currently are reading and writing from the CPU
385 * perspective, requiring manual detiling by the client.
386 */
387 if (obj_priv->tiling_mode == I915_TILING_NONE &&
388 dev->gtt_total != 0)
389 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
390 else
391 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
392
393#if WATCH_PWRITE
394 if (ret)
395 DRM_INFO("pwrite failed %d\n", ret);
396#endif
397
398 drm_gem_object_unreference(obj);
399
400 return ret;
401}
402
403/**
404 * Called when user space prepares to use an object
405 */
406int
407i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
408 struct drm_file *file_priv)
409{
410 struct drm_i915_gem_set_domain *args = data;
411 struct drm_gem_object *obj;
412 int ret;
413
414 if (!(dev->driver->driver_features & DRIVER_GEM))
415 return -ENODEV;
416
417 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
418 if (obj == NULL)
419 return -EBADF;
420
421 mutex_lock(&dev->struct_mutex);
422#if WATCH_BUF
423 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
424 obj, obj->size, args->read_domains, args->write_domain);
425#endif
426 ret = i915_gem_set_domain(obj, file_priv,
427 args->read_domains, args->write_domain);
428 drm_gem_object_unreference(obj);
429 mutex_unlock(&dev->struct_mutex);
430 return ret;
431}
432
433/**
434 * Called when user space has done writes to this buffer
435 */
436int
437i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
438 struct drm_file *file_priv)
439{
440 struct drm_i915_gem_sw_finish *args = data;
441 struct drm_gem_object *obj;
442 struct drm_i915_gem_object *obj_priv;
443 int ret = 0;
444
445 if (!(dev->driver->driver_features & DRIVER_GEM))
446 return -ENODEV;
447
448 mutex_lock(&dev->struct_mutex);
449 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
450 if (obj == NULL) {
451 mutex_unlock(&dev->struct_mutex);
452 return -EBADF;
453 }
454
455#if WATCH_BUF
456 DRM_INFO("%s: sw_finish %d (%p %d)\n",
457 __func__, args->handle, obj, obj->size);
458#endif
459 obj_priv = obj->driver_private;
460
461 /* Pinned buffers may be scanout, so flush the cache */
462 if ((obj->write_domain & I915_GEM_DOMAIN_CPU) && obj_priv->pin_count) {
463 i915_gem_clflush_object(obj);
464 drm_agp_chipset_flush(dev);
465 }
466 drm_gem_object_unreference(obj);
467 mutex_unlock(&dev->struct_mutex);
468 return ret;
469}
470
471/**
472 * Maps the contents of an object, returning the address it is mapped
473 * into.
474 *
475 * While the mapping holds a reference on the contents of the object, it doesn't
476 * imply a ref on the object itself.
477 */
478int
479i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
480 struct drm_file *file_priv)
481{
482 struct drm_i915_gem_mmap *args = data;
483 struct drm_gem_object *obj;
484 loff_t offset;
485 unsigned long addr;
486
487 if (!(dev->driver->driver_features & DRIVER_GEM))
488 return -ENODEV;
489
490 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
491 if (obj == NULL)
492 return -EBADF;
493
494 offset = args->offset;
495
496 down_write(&current->mm->mmap_sem);
497 addr = do_mmap(obj->filp, 0, args->size,
498 PROT_READ | PROT_WRITE, MAP_SHARED,
499 args->offset);
500 up_write(&current->mm->mmap_sem);
501 mutex_lock(&dev->struct_mutex);
502 drm_gem_object_unreference(obj);
503 mutex_unlock(&dev->struct_mutex);
504 if (IS_ERR((void *)addr))
505 return addr;
506
507 args->addr_ptr = (uint64_t) addr;
508
509 return 0;
510}
511
512static void
513i915_gem_object_free_page_list(struct drm_gem_object *obj)
514{
515 struct drm_i915_gem_object *obj_priv = obj->driver_private;
516 int page_count = obj->size / PAGE_SIZE;
517 int i;
518
519 if (obj_priv->page_list == NULL)
520 return;
521
522
523 for (i = 0; i < page_count; i++)
524 if (obj_priv->page_list[i] != NULL) {
525 if (obj_priv->dirty)
526 set_page_dirty(obj_priv->page_list[i]);
527 mark_page_accessed(obj_priv->page_list[i]);
528 page_cache_release(obj_priv->page_list[i]);
529 }
530 obj_priv->dirty = 0;
531
532 drm_free(obj_priv->page_list,
533 page_count * sizeof(struct page *),
534 DRM_MEM_DRIVER);
535 obj_priv->page_list = NULL;
536}
537
538static void
539i915_gem_object_move_to_active(struct drm_gem_object *obj)
540{
541 struct drm_device *dev = obj->dev;
542 drm_i915_private_t *dev_priv = dev->dev_private;
543 struct drm_i915_gem_object *obj_priv = obj->driver_private;
544
545 /* Add a reference if we're newly entering the active list. */
546 if (!obj_priv->active) {
547 drm_gem_object_reference(obj);
548 obj_priv->active = 1;
549 }
550 /* Move from whatever list we were on to the tail of execution. */
551 list_move_tail(&obj_priv->list,
552 &dev_priv->mm.active_list);
553}
554
555
556static void
557i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
558{
559 struct drm_device *dev = obj->dev;
560 drm_i915_private_t *dev_priv = dev->dev_private;
561 struct drm_i915_gem_object *obj_priv = obj->driver_private;
562
563 i915_verify_inactive(dev, __FILE__, __LINE__);
564 if (obj_priv->pin_count != 0)
565 list_del_init(&obj_priv->list);
566 else
567 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
568
569 if (obj_priv->active) {
570 obj_priv->active = 0;
571 drm_gem_object_unreference(obj);
572 }
573 i915_verify_inactive(dev, __FILE__, __LINE__);
574}
575
576/**
577 * Creates a new sequence number, emitting a write of it to the status page
578 * plus an interrupt, which will trigger i915_user_interrupt_handler.
579 *
580 * Must be called with struct_lock held.
581 *
582 * Returned sequence numbers are nonzero on success.
583 */
584static uint32_t
585i915_add_request(struct drm_device *dev, uint32_t flush_domains)
586{
587 drm_i915_private_t *dev_priv = dev->dev_private;
588 struct drm_i915_gem_request *request;
589 uint32_t seqno;
590 int was_empty;
591 RING_LOCALS;
592
593 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
594 if (request == NULL)
595 return 0;
596
597 /* Grab the seqno we're going to make this request be, and bump the
598 * next (skipping 0 so it can be the reserved no-seqno value).
599 */
600 seqno = dev_priv->mm.next_gem_seqno;
601 dev_priv->mm.next_gem_seqno++;
602 if (dev_priv->mm.next_gem_seqno == 0)
603 dev_priv->mm.next_gem_seqno++;
604
605 BEGIN_LP_RING(4);
606 OUT_RING(MI_STORE_DWORD_INDEX);
607 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
608 OUT_RING(seqno);
609
610 OUT_RING(MI_USER_INTERRUPT);
611 ADVANCE_LP_RING();
612
613 DRM_DEBUG("%d\n", seqno);
614
615 request->seqno = seqno;
616 request->emitted_jiffies = jiffies;
617 request->flush_domains = flush_domains;
618 was_empty = list_empty(&dev_priv->mm.request_list);
619 list_add_tail(&request->list, &dev_priv->mm.request_list);
620
6dbe2772 621 if (was_empty && !dev_priv->mm.suspended)
673a394b
EA
622 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
623 return seqno;
624}
625
626/**
627 * Command execution barrier
628 *
629 * Ensures that all commands in the ring are finished
630 * before signalling the CPU
631 */
3043c60c 632static uint32_t
673a394b
EA
633i915_retire_commands(struct drm_device *dev)
634{
635 drm_i915_private_t *dev_priv = dev->dev_private;
636 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
637 uint32_t flush_domains = 0;
638 RING_LOCALS;
639
640 /* The sampler always gets flushed on i965 (sigh) */
641 if (IS_I965G(dev))
642 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
643 BEGIN_LP_RING(2);
644 OUT_RING(cmd);
645 OUT_RING(0); /* noop */
646 ADVANCE_LP_RING();
647 return flush_domains;
648}
649
650/**
651 * Moves buffers associated only with the given active seqno from the active
652 * to inactive list, potentially freeing them.
653 */
654static void
655i915_gem_retire_request(struct drm_device *dev,
656 struct drm_i915_gem_request *request)
657{
658 drm_i915_private_t *dev_priv = dev->dev_private;
659
660 /* Move any buffers on the active list that are no longer referenced
661 * by the ringbuffer to the flushing/inactive lists as appropriate.
662 */
663 while (!list_empty(&dev_priv->mm.active_list)) {
664 struct drm_gem_object *obj;
665 struct drm_i915_gem_object *obj_priv;
666
667 obj_priv = list_first_entry(&dev_priv->mm.active_list,
668 struct drm_i915_gem_object,
669 list);
670 obj = obj_priv->obj;
671
672 /* If the seqno being retired doesn't match the oldest in the
673 * list, then the oldest in the list must still be newer than
674 * this seqno.
675 */
676 if (obj_priv->last_rendering_seqno != request->seqno)
677 return;
678#if WATCH_LRU
679 DRM_INFO("%s: retire %d moves to inactive list %p\n",
680 __func__, request->seqno, obj);
681#endif
682
683 if (obj->write_domain != 0) {
684 list_move_tail(&obj_priv->list,
685 &dev_priv->mm.flushing_list);
686 } else {
687 i915_gem_object_move_to_inactive(obj);
688 }
689 }
690
691 if (request->flush_domains != 0) {
692 struct drm_i915_gem_object *obj_priv, *next;
693
694 /* Clear the write domain and activity from any buffers
695 * that are just waiting for a flush matching the one retired.
696 */
697 list_for_each_entry_safe(obj_priv, next,
698 &dev_priv->mm.flushing_list, list) {
699 struct drm_gem_object *obj = obj_priv->obj;
700
701 if (obj->write_domain & request->flush_domains) {
702 obj->write_domain = 0;
703 i915_gem_object_move_to_inactive(obj);
704 }
705 }
706
707 }
708}
709
710/**
711 * Returns true if seq1 is later than seq2.
712 */
713static int
714i915_seqno_passed(uint32_t seq1, uint32_t seq2)
715{
716 return (int32_t)(seq1 - seq2) >= 0;
717}
718
719uint32_t
720i915_get_gem_seqno(struct drm_device *dev)
721{
722 drm_i915_private_t *dev_priv = dev->dev_private;
723
724 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
725}
726
727/**
728 * This function clears the request list as sequence numbers are passed.
729 */
730void
731i915_gem_retire_requests(struct drm_device *dev)
732{
733 drm_i915_private_t *dev_priv = dev->dev_private;
734 uint32_t seqno;
735
736 seqno = i915_get_gem_seqno(dev);
737
738 while (!list_empty(&dev_priv->mm.request_list)) {
739 struct drm_i915_gem_request *request;
740 uint32_t retiring_seqno;
741
742 request = list_first_entry(&dev_priv->mm.request_list,
743 struct drm_i915_gem_request,
744 list);
745 retiring_seqno = request->seqno;
746
747 if (i915_seqno_passed(seqno, retiring_seqno) ||
748 dev_priv->mm.wedged) {
749 i915_gem_retire_request(dev, request);
750
751 list_del(&request->list);
752 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
753 } else
754 break;
755 }
756}
757
758void
759i915_gem_retire_work_handler(struct work_struct *work)
760{
761 drm_i915_private_t *dev_priv;
762 struct drm_device *dev;
763
764 dev_priv = container_of(work, drm_i915_private_t,
765 mm.retire_work.work);
766 dev = dev_priv->dev;
767
768 mutex_lock(&dev->struct_mutex);
769 i915_gem_retire_requests(dev);
6dbe2772
KP
770 if (!dev_priv->mm.suspended &&
771 !list_empty(&dev_priv->mm.request_list))
673a394b
EA
772 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
773 mutex_unlock(&dev->struct_mutex);
774}
775
776/**
777 * Waits for a sequence number to be signaled, and cleans up the
778 * request and object lists appropriately for that event.
779 */
3043c60c 780static int
673a394b
EA
781i915_wait_request(struct drm_device *dev, uint32_t seqno)
782{
783 drm_i915_private_t *dev_priv = dev->dev_private;
784 int ret = 0;
785
786 BUG_ON(seqno == 0);
787
788 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
789 dev_priv->mm.waiting_gem_seqno = seqno;
790 i915_user_irq_get(dev);
791 ret = wait_event_interruptible(dev_priv->irq_queue,
792 i915_seqno_passed(i915_get_gem_seqno(dev),
793 seqno) ||
794 dev_priv->mm.wedged);
795 i915_user_irq_put(dev);
796 dev_priv->mm.waiting_gem_seqno = 0;
797 }
798 if (dev_priv->mm.wedged)
799 ret = -EIO;
800
801 if (ret && ret != -ERESTARTSYS)
802 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
803 __func__, ret, seqno, i915_get_gem_seqno(dev));
804
805 /* Directly dispatch request retiring. While we have the work queue
806 * to handle this, the waiter on a request often wants an associated
807 * buffer to have made it to the inactive list, and we would need
808 * a separate wait queue to handle that.
809 */
810 if (ret == 0)
811 i915_gem_retire_requests(dev);
812
813 return ret;
814}
815
816static void
817i915_gem_flush(struct drm_device *dev,
818 uint32_t invalidate_domains,
819 uint32_t flush_domains)
820{
821 drm_i915_private_t *dev_priv = dev->dev_private;
822 uint32_t cmd;
823 RING_LOCALS;
824
825#if WATCH_EXEC
826 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
827 invalidate_domains, flush_domains);
828#endif
829
830 if (flush_domains & I915_GEM_DOMAIN_CPU)
831 drm_agp_chipset_flush(dev);
832
833 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
834 I915_GEM_DOMAIN_GTT)) {
835 /*
836 * read/write caches:
837 *
838 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
839 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
840 * also flushed at 2d versus 3d pipeline switches.
841 *
842 * read-only caches:
843 *
844 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
845 * MI_READ_FLUSH is set, and is always flushed on 965.
846 *
847 * I915_GEM_DOMAIN_COMMAND may not exist?
848 *
849 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
850 * invalidated when MI_EXE_FLUSH is set.
851 *
852 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
853 * invalidated with every MI_FLUSH.
854 *
855 * TLBs:
856 *
857 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
858 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
859 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
860 * are flushed at any MI_FLUSH.
861 */
862
863 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
864 if ((invalidate_domains|flush_domains) &
865 I915_GEM_DOMAIN_RENDER)
866 cmd &= ~MI_NO_WRITE_FLUSH;
867 if (!IS_I965G(dev)) {
868 /*
869 * On the 965, the sampler cache always gets flushed
870 * and this bit is reserved.
871 */
872 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
873 cmd |= MI_READ_FLUSH;
874 }
875 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
876 cmd |= MI_EXE_FLUSH;
877
878#if WATCH_EXEC
879 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
880#endif
881 BEGIN_LP_RING(2);
882 OUT_RING(cmd);
883 OUT_RING(0); /* noop */
884 ADVANCE_LP_RING();
885 }
886}
887
888/**
889 * Ensures that all rendering to the object has completed and the object is
890 * safe to unbind from the GTT or access from the CPU.
891 */
892static int
893i915_gem_object_wait_rendering(struct drm_gem_object *obj)
894{
895 struct drm_device *dev = obj->dev;
896 struct drm_i915_gem_object *obj_priv = obj->driver_private;
897 int ret;
898
899 /* If there are writes queued to the buffer, flush and
900 * create a new seqno to wait for.
901 */
902 if (obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT)) {
903 uint32_t write_domain = obj->write_domain;
904#if WATCH_BUF
905 DRM_INFO("%s: flushing object %p from write domain %08x\n",
906 __func__, obj, write_domain);
907#endif
908 i915_gem_flush(dev, 0, write_domain);
909
910 i915_gem_object_move_to_active(obj);
911 obj_priv->last_rendering_seqno = i915_add_request(dev,
912 write_domain);
913 BUG_ON(obj_priv->last_rendering_seqno == 0);
914#if WATCH_LRU
915 DRM_INFO("%s: flush moves to exec list %p\n", __func__, obj);
916#endif
917 }
918
919 /* If there is rendering queued on the buffer being evicted, wait for
920 * it.
921 */
922 if (obj_priv->active) {
923#if WATCH_BUF
924 DRM_INFO("%s: object %p wait for seqno %08x\n",
925 __func__, obj, obj_priv->last_rendering_seqno);
926#endif
927 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
928 if (ret != 0)
929 return ret;
930 }
931
932 return 0;
933}
934
935/**
936 * Unbinds an object from the GTT aperture.
937 */
938static int
939i915_gem_object_unbind(struct drm_gem_object *obj)
940{
941 struct drm_device *dev = obj->dev;
942 struct drm_i915_gem_object *obj_priv = obj->driver_private;
943 int ret = 0;
944
945#if WATCH_BUF
946 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
947 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
948#endif
949 if (obj_priv->gtt_space == NULL)
950 return 0;
951
952 if (obj_priv->pin_count != 0) {
953 DRM_ERROR("Attempting to unbind pinned buffer\n");
954 return -EINVAL;
955 }
956
957 /* Wait for any rendering to complete
958 */
959 ret = i915_gem_object_wait_rendering(obj);
960 if (ret) {
961 DRM_ERROR("wait_rendering failed: %d\n", ret);
962 return ret;
963 }
964
965 /* Move the object to the CPU domain to ensure that
966 * any possible CPU writes while it's not in the GTT
967 * are flushed when we go to remap it. This will
968 * also ensure that all pending GPU writes are finished
969 * before we unbind.
970 */
971 ret = i915_gem_object_set_domain(obj, I915_GEM_DOMAIN_CPU,
972 I915_GEM_DOMAIN_CPU);
973 if (ret) {
974 DRM_ERROR("set_domain failed: %d\n", ret);
975 return ret;
976 }
977
978 if (obj_priv->agp_mem != NULL) {
979 drm_unbind_agp(obj_priv->agp_mem);
980 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
981 obj_priv->agp_mem = NULL;
982 }
983
984 BUG_ON(obj_priv->active);
985
986 i915_gem_object_free_page_list(obj);
987
988 if (obj_priv->gtt_space) {
989 atomic_dec(&dev->gtt_count);
990 atomic_sub(obj->size, &dev->gtt_memory);
991
992 drm_mm_put_block(obj_priv->gtt_space);
993 obj_priv->gtt_space = NULL;
994 }
995
996 /* Remove ourselves from the LRU list if present. */
997 if (!list_empty(&obj_priv->list))
998 list_del_init(&obj_priv->list);
999
1000 return 0;
1001}
1002
1003static int
1004i915_gem_evict_something(struct drm_device *dev)
1005{
1006 drm_i915_private_t *dev_priv = dev->dev_private;
1007 struct drm_gem_object *obj;
1008 struct drm_i915_gem_object *obj_priv;
1009 int ret = 0;
1010
1011 for (;;) {
1012 /* If there's an inactive buffer available now, grab it
1013 * and be done.
1014 */
1015 if (!list_empty(&dev_priv->mm.inactive_list)) {
1016 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1017 struct drm_i915_gem_object,
1018 list);
1019 obj = obj_priv->obj;
1020 BUG_ON(obj_priv->pin_count != 0);
1021#if WATCH_LRU
1022 DRM_INFO("%s: evicting %p\n", __func__, obj);
1023#endif
1024 BUG_ON(obj_priv->active);
1025
1026 /* Wait on the rendering and unbind the buffer. */
1027 ret = i915_gem_object_unbind(obj);
1028 break;
1029 }
1030
1031 /* If we didn't get anything, but the ring is still processing
1032 * things, wait for one of those things to finish and hopefully
1033 * leave us a buffer to evict.
1034 */
1035 if (!list_empty(&dev_priv->mm.request_list)) {
1036 struct drm_i915_gem_request *request;
1037
1038 request = list_first_entry(&dev_priv->mm.request_list,
1039 struct drm_i915_gem_request,
1040 list);
1041
1042 ret = i915_wait_request(dev, request->seqno);
1043 if (ret)
1044 break;
1045
1046 /* if waiting caused an object to become inactive,
1047 * then loop around and wait for it. Otherwise, we
1048 * assume that waiting freed and unbound something,
1049 * so there should now be some space in the GTT
1050 */
1051 if (!list_empty(&dev_priv->mm.inactive_list))
1052 continue;
1053 break;
1054 }
1055
1056 /* If we didn't have anything on the request list but there
1057 * are buffers awaiting a flush, emit one and try again.
1058 * When we wait on it, those buffers waiting for that flush
1059 * will get moved to inactive.
1060 */
1061 if (!list_empty(&dev_priv->mm.flushing_list)) {
1062 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1063 struct drm_i915_gem_object,
1064 list);
1065 obj = obj_priv->obj;
1066
1067 i915_gem_flush(dev,
1068 obj->write_domain,
1069 obj->write_domain);
1070 i915_add_request(dev, obj->write_domain);
1071
1072 obj = NULL;
1073 continue;
1074 }
1075
1076 DRM_ERROR("inactive empty %d request empty %d "
1077 "flushing empty %d\n",
1078 list_empty(&dev_priv->mm.inactive_list),
1079 list_empty(&dev_priv->mm.request_list),
1080 list_empty(&dev_priv->mm.flushing_list));
1081 /* If we didn't do any of the above, there's nothing to be done
1082 * and we just can't fit it in.
1083 */
1084 return -ENOMEM;
1085 }
1086 return ret;
1087}
1088
1089static int
1090i915_gem_object_get_page_list(struct drm_gem_object *obj)
1091{
1092 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1093 int page_count, i;
1094 struct address_space *mapping;
1095 struct inode *inode;
1096 struct page *page;
1097 int ret;
1098
1099 if (obj_priv->page_list)
1100 return 0;
1101
1102 /* Get the list of pages out of our struct file. They'll be pinned
1103 * at this point until we release them.
1104 */
1105 page_count = obj->size / PAGE_SIZE;
1106 BUG_ON(obj_priv->page_list != NULL);
1107 obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1108 DRM_MEM_DRIVER);
1109 if (obj_priv->page_list == NULL) {
1110 DRM_ERROR("Faled to allocate page list\n");
1111 return -ENOMEM;
1112 }
1113
1114 inode = obj->filp->f_path.dentry->d_inode;
1115 mapping = inode->i_mapping;
1116 for (i = 0; i < page_count; i++) {
1117 page = read_mapping_page(mapping, i, NULL);
1118 if (IS_ERR(page)) {
1119 ret = PTR_ERR(page);
1120 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1121 i915_gem_object_free_page_list(obj);
1122 return ret;
1123 }
1124 obj_priv->page_list[i] = page;
1125 }
1126 return 0;
1127}
1128
1129/**
1130 * Finds free space in the GTT aperture and binds the object there.
1131 */
1132static int
1133i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1134{
1135 struct drm_device *dev = obj->dev;
1136 drm_i915_private_t *dev_priv = dev->dev_private;
1137 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1138 struct drm_mm_node *free_space;
1139 int page_count, ret;
1140
1141 if (alignment == 0)
1142 alignment = PAGE_SIZE;
1143 if (alignment & (PAGE_SIZE - 1)) {
1144 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1145 return -EINVAL;
1146 }
1147
1148 search_free:
1149 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1150 obj->size, alignment, 0);
1151 if (free_space != NULL) {
1152 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1153 alignment);
1154 if (obj_priv->gtt_space != NULL) {
1155 obj_priv->gtt_space->private = obj;
1156 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1157 }
1158 }
1159 if (obj_priv->gtt_space == NULL) {
1160 /* If the gtt is empty and we're still having trouble
1161 * fitting our object in, we're out of memory.
1162 */
1163#if WATCH_LRU
1164 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1165#endif
1166 if (list_empty(&dev_priv->mm.inactive_list) &&
1167 list_empty(&dev_priv->mm.flushing_list) &&
1168 list_empty(&dev_priv->mm.active_list)) {
1169 DRM_ERROR("GTT full, but LRU list empty\n");
1170 return -ENOMEM;
1171 }
1172
1173 ret = i915_gem_evict_something(dev);
1174 if (ret != 0) {
1175 DRM_ERROR("Failed to evict a buffer %d\n", ret);
1176 return ret;
1177 }
1178 goto search_free;
1179 }
1180
1181#if WATCH_BUF
1182 DRM_INFO("Binding object of size %d at 0x%08x\n",
1183 obj->size, obj_priv->gtt_offset);
1184#endif
1185 ret = i915_gem_object_get_page_list(obj);
1186 if (ret) {
1187 drm_mm_put_block(obj_priv->gtt_space);
1188 obj_priv->gtt_space = NULL;
1189 return ret;
1190 }
1191
1192 page_count = obj->size / PAGE_SIZE;
1193 /* Create an AGP memory structure pointing at our pages, and bind it
1194 * into the GTT.
1195 */
1196 obj_priv->agp_mem = drm_agp_bind_pages(dev,
1197 obj_priv->page_list,
1198 page_count,
ba1eb1d8
KP
1199 obj_priv->gtt_offset,
1200 obj_priv->agp_type);
673a394b
EA
1201 if (obj_priv->agp_mem == NULL) {
1202 i915_gem_object_free_page_list(obj);
1203 drm_mm_put_block(obj_priv->gtt_space);
1204 obj_priv->gtt_space = NULL;
1205 return -ENOMEM;
1206 }
1207 atomic_inc(&dev->gtt_count);
1208 atomic_add(obj->size, &dev->gtt_memory);
1209
1210 /* Assert that the object is not currently in any GPU domain. As it
1211 * wasn't in the GTT, there shouldn't be any way it could have been in
1212 * a GPU cache
1213 */
1214 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1215 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1216
1217 return 0;
1218}
1219
1220void
1221i915_gem_clflush_object(struct drm_gem_object *obj)
1222{
1223 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1224
1225 /* If we don't have a page list set up, then we're not pinned
1226 * to GPU, and we can ignore the cache flush because it'll happen
1227 * again at bind time.
1228 */
1229 if (obj_priv->page_list == NULL)
1230 return;
1231
1232 drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1233}
1234
1235/*
1236 * Set the next domain for the specified object. This
1237 * may not actually perform the necessary flushing/invaliding though,
1238 * as that may want to be batched with other set_domain operations
1239 *
1240 * This is (we hope) the only really tricky part of gem. The goal
1241 * is fairly simple -- track which caches hold bits of the object
1242 * and make sure they remain coherent. A few concrete examples may
1243 * help to explain how it works. For shorthand, we use the notation
1244 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1245 * a pair of read and write domain masks.
1246 *
1247 * Case 1: the batch buffer
1248 *
1249 * 1. Allocated
1250 * 2. Written by CPU
1251 * 3. Mapped to GTT
1252 * 4. Read by GPU
1253 * 5. Unmapped from GTT
1254 * 6. Freed
1255 *
1256 * Let's take these a step at a time
1257 *
1258 * 1. Allocated
1259 * Pages allocated from the kernel may still have
1260 * cache contents, so we set them to (CPU, CPU) always.
1261 * 2. Written by CPU (using pwrite)
1262 * The pwrite function calls set_domain (CPU, CPU) and
1263 * this function does nothing (as nothing changes)
1264 * 3. Mapped by GTT
1265 * This function asserts that the object is not
1266 * currently in any GPU-based read or write domains
1267 * 4. Read by GPU
1268 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
1269 * As write_domain is zero, this function adds in the
1270 * current read domains (CPU+COMMAND, 0).
1271 * flush_domains is set to CPU.
1272 * invalidate_domains is set to COMMAND
1273 * clflush is run to get data out of the CPU caches
1274 * then i915_dev_set_domain calls i915_gem_flush to
1275 * emit an MI_FLUSH and drm_agp_chipset_flush
1276 * 5. Unmapped from GTT
1277 * i915_gem_object_unbind calls set_domain (CPU, CPU)
1278 * flush_domains and invalidate_domains end up both zero
1279 * so no flushing/invalidating happens
1280 * 6. Freed
1281 * yay, done
1282 *
1283 * Case 2: The shared render buffer
1284 *
1285 * 1. Allocated
1286 * 2. Mapped to GTT
1287 * 3. Read/written by GPU
1288 * 4. set_domain to (CPU,CPU)
1289 * 5. Read/written by CPU
1290 * 6. Read/written by GPU
1291 *
1292 * 1. Allocated
1293 * Same as last example, (CPU, CPU)
1294 * 2. Mapped to GTT
1295 * Nothing changes (assertions find that it is not in the GPU)
1296 * 3. Read/written by GPU
1297 * execbuffer calls set_domain (RENDER, RENDER)
1298 * flush_domains gets CPU
1299 * invalidate_domains gets GPU
1300 * clflush (obj)
1301 * MI_FLUSH and drm_agp_chipset_flush
1302 * 4. set_domain (CPU, CPU)
1303 * flush_domains gets GPU
1304 * invalidate_domains gets CPU
1305 * wait_rendering (obj) to make sure all drawing is complete.
1306 * This will include an MI_FLUSH to get the data from GPU
1307 * to memory
1308 * clflush (obj) to invalidate the CPU cache
1309 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1310 * 5. Read/written by CPU
1311 * cache lines are loaded and dirtied
1312 * 6. Read written by GPU
1313 * Same as last GPU access
1314 *
1315 * Case 3: The constant buffer
1316 *
1317 * 1. Allocated
1318 * 2. Written by CPU
1319 * 3. Read by GPU
1320 * 4. Updated (written) by CPU again
1321 * 5. Read by GPU
1322 *
1323 * 1. Allocated
1324 * (CPU, CPU)
1325 * 2. Written by CPU
1326 * (CPU, CPU)
1327 * 3. Read by GPU
1328 * (CPU+RENDER, 0)
1329 * flush_domains = CPU
1330 * invalidate_domains = RENDER
1331 * clflush (obj)
1332 * MI_FLUSH
1333 * drm_agp_chipset_flush
1334 * 4. Updated (written) by CPU again
1335 * (CPU, CPU)
1336 * flush_domains = 0 (no previous write domain)
1337 * invalidate_domains = 0 (no new read domains)
1338 * 5. Read by GPU
1339 * (CPU+RENDER, 0)
1340 * flush_domains = CPU
1341 * invalidate_domains = RENDER
1342 * clflush (obj)
1343 * MI_FLUSH
1344 * drm_agp_chipset_flush
1345 */
1346static int
1347i915_gem_object_set_domain(struct drm_gem_object *obj,
1348 uint32_t read_domains,
1349 uint32_t write_domain)
1350{
1351 struct drm_device *dev = obj->dev;
1352 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1353 uint32_t invalidate_domains = 0;
1354 uint32_t flush_domains = 0;
1355 int ret;
1356
1357#if WATCH_BUF
1358 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
1359 __func__, obj,
1360 obj->read_domains, read_domains,
1361 obj->write_domain, write_domain);
1362#endif
1363 /*
1364 * If the object isn't moving to a new write domain,
1365 * let the object stay in multiple read domains
1366 */
1367 if (write_domain == 0)
1368 read_domains |= obj->read_domains;
1369 else
1370 obj_priv->dirty = 1;
1371
1372 /*
1373 * Flush the current write domain if
1374 * the new read domains don't match. Invalidate
1375 * any read domains which differ from the old
1376 * write domain
1377 */
1378 if (obj->write_domain && obj->write_domain != read_domains) {
1379 flush_domains |= obj->write_domain;
1380 invalidate_domains |= read_domains & ~obj->write_domain;
1381 }
1382 /*
1383 * Invalidate any read caches which may have
1384 * stale data. That is, any new read domains.
1385 */
1386 invalidate_domains |= read_domains & ~obj->read_domains;
1387 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
1388#if WATCH_BUF
1389 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
1390 __func__, flush_domains, invalidate_domains);
1391#endif
1392 /*
1393 * If we're invaliding the CPU cache and flushing a GPU cache,
1394 * then pause for rendering so that the GPU caches will be
1395 * flushed before the cpu cache is invalidated
1396 */
1397 if ((invalidate_domains & I915_GEM_DOMAIN_CPU) &&
1398 (flush_domains & ~(I915_GEM_DOMAIN_CPU |
1399 I915_GEM_DOMAIN_GTT))) {
1400 ret = i915_gem_object_wait_rendering(obj);
1401 if (ret)
1402 return ret;
1403 }
1404 i915_gem_clflush_object(obj);
1405 }
1406
1407 if ((write_domain | flush_domains) != 0)
1408 obj->write_domain = write_domain;
1409
1410 /* If we're invalidating the CPU domain, clear the per-page CPU
1411 * domain list as well.
1412 */
1413 if (obj_priv->page_cpu_valid != NULL &&
1414 (write_domain != 0 ||
1415 read_domains & I915_GEM_DOMAIN_CPU)) {
1416 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
1417 DRM_MEM_DRIVER);
1418 obj_priv->page_cpu_valid = NULL;
1419 }
1420 obj->read_domains = read_domains;
1421
1422 dev->invalidate_domains |= invalidate_domains;
1423 dev->flush_domains |= flush_domains;
1424#if WATCH_BUF
1425 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
1426 __func__,
1427 obj->read_domains, obj->write_domain,
1428 dev->invalidate_domains, dev->flush_domains);
1429#endif
1430 return 0;
1431}
1432
1433/**
1434 * Set the read/write domain on a range of the object.
1435 *
1436 * Currently only implemented for CPU reads, otherwise drops to normal
1437 * i915_gem_object_set_domain().
1438 */
1439static int
1440i915_gem_object_set_domain_range(struct drm_gem_object *obj,
1441 uint64_t offset,
1442 uint64_t size,
1443 uint32_t read_domains,
1444 uint32_t write_domain)
1445{
1446 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1447 int ret, i;
1448
1449 if (obj->read_domains & I915_GEM_DOMAIN_CPU)
1450 return 0;
1451
1452 if (read_domains != I915_GEM_DOMAIN_CPU ||
1453 write_domain != 0)
1454 return i915_gem_object_set_domain(obj,
1455 read_domains, write_domain);
1456
1457 /* Wait on any GPU rendering to the object to be flushed. */
1458 if (obj->write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT)) {
1459 ret = i915_gem_object_wait_rendering(obj);
1460 if (ret)
1461 return ret;
1462 }
1463
1464 if (obj_priv->page_cpu_valid == NULL) {
1465 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
1466 DRM_MEM_DRIVER);
1467 }
1468
1469 /* Flush the cache on any pages that are still invalid from the CPU's
1470 * perspective.
1471 */
1472 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE; i++) {
1473 if (obj_priv->page_cpu_valid[i])
1474 continue;
1475
1476 drm_clflush_pages(obj_priv->page_list + i, 1);
1477
1478 obj_priv->page_cpu_valid[i] = 1;
1479 }
1480
1481 return 0;
1482}
1483
1484/**
1485 * Once all of the objects have been set in the proper domain,
1486 * perform the necessary flush and invalidate operations.
1487 *
1488 * Returns the write domains flushed, for use in flush tracking.
1489 */
1490static uint32_t
1491i915_gem_dev_set_domain(struct drm_device *dev)
1492{
1493 uint32_t flush_domains = dev->flush_domains;
1494
1495 /*
1496 * Now that all the buffers are synced to the proper domains,
1497 * flush and invalidate the collected domains
1498 */
1499 if (dev->invalidate_domains | dev->flush_domains) {
1500#if WATCH_EXEC
1501 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
1502 __func__,
1503 dev->invalidate_domains,
1504 dev->flush_domains);
1505#endif
1506 i915_gem_flush(dev,
1507 dev->invalidate_domains,
1508 dev->flush_domains);
1509 dev->invalidate_domains = 0;
1510 dev->flush_domains = 0;
1511 }
1512
1513 return flush_domains;
1514}
1515
1516/**
1517 * Pin an object to the GTT and evaluate the relocations landing in it.
1518 */
1519static int
1520i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
1521 struct drm_file *file_priv,
1522 struct drm_i915_gem_exec_object *entry)
1523{
1524 struct drm_device *dev = obj->dev;
0839ccb8 1525 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
1526 struct drm_i915_gem_relocation_entry reloc;
1527 struct drm_i915_gem_relocation_entry __user *relocs;
1528 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1529 int i, ret;
0839ccb8 1530 void __iomem *reloc_page;
673a394b
EA
1531
1532 /* Choose the GTT offset for our buffer and put it there. */
1533 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
1534 if (ret)
1535 return ret;
1536
1537 entry->offset = obj_priv->gtt_offset;
1538
1539 relocs = (struct drm_i915_gem_relocation_entry __user *)
1540 (uintptr_t) entry->relocs_ptr;
1541 /* Apply the relocations, using the GTT aperture to avoid cache
1542 * flushing requirements.
1543 */
1544 for (i = 0; i < entry->relocation_count; i++) {
1545 struct drm_gem_object *target_obj;
1546 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
1547 uint32_t reloc_val, reloc_offset;
1548 uint32_t __iomem *reloc_entry;
673a394b
EA
1549
1550 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
1551 if (ret != 0) {
1552 i915_gem_object_unpin(obj);
1553 return ret;
1554 }
1555
1556 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
1557 reloc.target_handle);
1558 if (target_obj == NULL) {
1559 i915_gem_object_unpin(obj);
1560 return -EBADF;
1561 }
1562 target_obj_priv = target_obj->driver_private;
1563
1564 /* The target buffer should have appeared before us in the
1565 * exec_object list, so it should have a GTT space bound by now.
1566 */
1567 if (target_obj_priv->gtt_space == NULL) {
1568 DRM_ERROR("No GTT space found for object %d\n",
1569 reloc.target_handle);
1570 drm_gem_object_unreference(target_obj);
1571 i915_gem_object_unpin(obj);
1572 return -EINVAL;
1573 }
1574
1575 if (reloc.offset > obj->size - 4) {
1576 DRM_ERROR("Relocation beyond object bounds: "
1577 "obj %p target %d offset %d size %d.\n",
1578 obj, reloc.target_handle,
1579 (int) reloc.offset, (int) obj->size);
1580 drm_gem_object_unreference(target_obj);
1581 i915_gem_object_unpin(obj);
1582 return -EINVAL;
1583 }
1584 if (reloc.offset & 3) {
1585 DRM_ERROR("Relocation not 4-byte aligned: "
1586 "obj %p target %d offset %d.\n",
1587 obj, reloc.target_handle,
1588 (int) reloc.offset);
1589 drm_gem_object_unreference(target_obj);
1590 i915_gem_object_unpin(obj);
1591 return -EINVAL;
1592 }
1593
1594 if (reloc.write_domain && target_obj->pending_write_domain &&
1595 reloc.write_domain != target_obj->pending_write_domain) {
1596 DRM_ERROR("Write domain conflict: "
1597 "obj %p target %d offset %d "
1598 "new %08x old %08x\n",
1599 obj, reloc.target_handle,
1600 (int) reloc.offset,
1601 reloc.write_domain,
1602 target_obj->pending_write_domain);
1603 drm_gem_object_unreference(target_obj);
1604 i915_gem_object_unpin(obj);
1605 return -EINVAL;
1606 }
1607
1608#if WATCH_RELOC
1609 DRM_INFO("%s: obj %p offset %08x target %d "
1610 "read %08x write %08x gtt %08x "
1611 "presumed %08x delta %08x\n",
1612 __func__,
1613 obj,
1614 (int) reloc.offset,
1615 (int) reloc.target_handle,
1616 (int) reloc.read_domains,
1617 (int) reloc.write_domain,
1618 (int) target_obj_priv->gtt_offset,
1619 (int) reloc.presumed_offset,
1620 reloc.delta);
1621#endif
1622
1623 target_obj->pending_read_domains |= reloc.read_domains;
1624 target_obj->pending_write_domain |= reloc.write_domain;
1625
1626 /* If the relocation already has the right value in it, no
1627 * more work needs to be done.
1628 */
1629 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
1630 drm_gem_object_unreference(target_obj);
1631 continue;
1632 }
1633
1634 /* Now that we're going to actually write some data in,
1635 * make sure that any rendering using this buffer's contents
1636 * is completed.
1637 */
1638 i915_gem_object_wait_rendering(obj);
1639
1640 /* As we're writing through the gtt, flush
1641 * any CPU writes before we write the relocations
1642 */
1643 if (obj->write_domain & I915_GEM_DOMAIN_CPU) {
1644 i915_gem_clflush_object(obj);
1645 drm_agp_chipset_flush(dev);
1646 obj->write_domain = 0;
1647 }
1648
1649 /* Map the page containing the relocation we're going to
1650 * perform.
1651 */
1652 reloc_offset = obj_priv->gtt_offset + reloc.offset;
0839ccb8
KP
1653 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
1654 (reloc_offset &
1655 ~(PAGE_SIZE - 1)));
3043c60c 1656 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 1657 (reloc_offset & (PAGE_SIZE - 1)));
673a394b
EA
1658 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
1659
1660#if WATCH_BUF
1661 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
1662 obj, (unsigned int) reloc.offset,
1663 readl(reloc_entry), reloc_val);
1664#endif
1665 writel(reloc_val, reloc_entry);
0839ccb8 1666 io_mapping_unmap_atomic(reloc_page);
673a394b
EA
1667
1668 /* Write the updated presumed offset for this entry back out
1669 * to the user.
1670 */
1671 reloc.presumed_offset = target_obj_priv->gtt_offset;
1672 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
1673 if (ret != 0) {
1674 drm_gem_object_unreference(target_obj);
1675 i915_gem_object_unpin(obj);
1676 return ret;
1677 }
1678
1679 drm_gem_object_unreference(target_obj);
1680 }
1681
673a394b
EA
1682#if WATCH_BUF
1683 if (0)
1684 i915_gem_dump_object(obj, 128, __func__, ~0);
1685#endif
1686 return 0;
1687}
1688
1689/** Dispatch a batchbuffer to the ring
1690 */
1691static int
1692i915_dispatch_gem_execbuffer(struct drm_device *dev,
1693 struct drm_i915_gem_execbuffer *exec,
1694 uint64_t exec_offset)
1695{
1696 drm_i915_private_t *dev_priv = dev->dev_private;
1697 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
1698 (uintptr_t) exec->cliprects_ptr;
1699 int nbox = exec->num_cliprects;
1700 int i = 0, count;
1701 uint32_t exec_start, exec_len;
1702 RING_LOCALS;
1703
1704 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
1705 exec_len = (uint32_t) exec->batch_len;
1706
1707 if ((exec_start | exec_len) & 0x7) {
1708 DRM_ERROR("alignment\n");
1709 return -EINVAL;
1710 }
1711
1712 if (!exec_start)
1713 return -EINVAL;
1714
1715 count = nbox ? nbox : 1;
1716
1717 for (i = 0; i < count; i++) {
1718 if (i < nbox) {
1719 int ret = i915_emit_box(dev, boxes, i,
1720 exec->DR1, exec->DR4);
1721 if (ret)
1722 return ret;
1723 }
1724
1725 if (IS_I830(dev) || IS_845G(dev)) {
1726 BEGIN_LP_RING(4);
1727 OUT_RING(MI_BATCH_BUFFER);
1728 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
1729 OUT_RING(exec_start + exec_len - 4);
1730 OUT_RING(0);
1731 ADVANCE_LP_RING();
1732 } else {
1733 BEGIN_LP_RING(2);
1734 if (IS_I965G(dev)) {
1735 OUT_RING(MI_BATCH_BUFFER_START |
1736 (2 << 6) |
1737 MI_BATCH_NON_SECURE_I965);
1738 OUT_RING(exec_start);
1739 } else {
1740 OUT_RING(MI_BATCH_BUFFER_START |
1741 (2 << 6));
1742 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
1743 }
1744 ADVANCE_LP_RING();
1745 }
1746 }
1747
1748 /* XXX breadcrumb */
1749 return 0;
1750}
1751
1752/* Throttle our rendering by waiting until the ring has completed our requests
1753 * emitted over 20 msec ago.
1754 *
1755 * This should get us reasonable parallelism between CPU and GPU but also
1756 * relatively low latency when blocking on a particular request to finish.
1757 */
1758static int
1759i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
1760{
1761 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
1762 int ret = 0;
1763 uint32_t seqno;
1764
1765 mutex_lock(&dev->struct_mutex);
1766 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
1767 i915_file_priv->mm.last_gem_throttle_seqno =
1768 i915_file_priv->mm.last_gem_seqno;
1769 if (seqno)
1770 ret = i915_wait_request(dev, seqno);
1771 mutex_unlock(&dev->struct_mutex);
1772 return ret;
1773}
1774
1775int
1776i915_gem_execbuffer(struct drm_device *dev, void *data,
1777 struct drm_file *file_priv)
1778{
1779 drm_i915_private_t *dev_priv = dev->dev_private;
1780 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
1781 struct drm_i915_gem_execbuffer *args = data;
1782 struct drm_i915_gem_exec_object *exec_list = NULL;
1783 struct drm_gem_object **object_list = NULL;
1784 struct drm_gem_object *batch_obj;
1785 int ret, i, pinned = 0;
1786 uint64_t exec_offset;
1787 uint32_t seqno, flush_domains;
1788
1789#if WATCH_EXEC
1790 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
1791 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1792#endif
1793
4f481ed2
EA
1794 if (args->buffer_count < 1) {
1795 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1796 return -EINVAL;
1797 }
673a394b
EA
1798 /* Copy in the exec list from userland */
1799 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
1800 DRM_MEM_DRIVER);
1801 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
1802 DRM_MEM_DRIVER);
1803 if (exec_list == NULL || object_list == NULL) {
1804 DRM_ERROR("Failed to allocate exec or object list "
1805 "for %d buffers\n",
1806 args->buffer_count);
1807 ret = -ENOMEM;
1808 goto pre_mutex_err;
1809 }
1810 ret = copy_from_user(exec_list,
1811 (struct drm_i915_relocation_entry __user *)
1812 (uintptr_t) args->buffers_ptr,
1813 sizeof(*exec_list) * args->buffer_count);
1814 if (ret != 0) {
1815 DRM_ERROR("copy %d exec entries failed %d\n",
1816 args->buffer_count, ret);
1817 goto pre_mutex_err;
1818 }
1819
1820 mutex_lock(&dev->struct_mutex);
1821
1822 i915_verify_inactive(dev, __FILE__, __LINE__);
1823
1824 if (dev_priv->mm.wedged) {
1825 DRM_ERROR("Execbuf while wedged\n");
1826 mutex_unlock(&dev->struct_mutex);
1827 return -EIO;
1828 }
1829
1830 if (dev_priv->mm.suspended) {
1831 DRM_ERROR("Execbuf while VT-switched.\n");
1832 mutex_unlock(&dev->struct_mutex);
1833 return -EBUSY;
1834 }
1835
1836 /* Zero the gloabl flush/invalidate flags. These
1837 * will be modified as each object is bound to the
1838 * gtt
1839 */
1840 dev->invalidate_domains = 0;
1841 dev->flush_domains = 0;
1842
1843 /* Look up object handles and perform the relocations */
1844 for (i = 0; i < args->buffer_count; i++) {
1845 object_list[i] = drm_gem_object_lookup(dev, file_priv,
1846 exec_list[i].handle);
1847 if (object_list[i] == NULL) {
1848 DRM_ERROR("Invalid object handle %d at index %d\n",
1849 exec_list[i].handle, i);
1850 ret = -EBADF;
1851 goto err;
1852 }
1853
1854 object_list[i]->pending_read_domains = 0;
1855 object_list[i]->pending_write_domain = 0;
1856 ret = i915_gem_object_pin_and_relocate(object_list[i],
1857 file_priv,
1858 &exec_list[i]);
1859 if (ret) {
1860 DRM_ERROR("object bind and relocate failed %d\n", ret);
1861 goto err;
1862 }
1863 pinned = i + 1;
1864 }
1865
1866 /* Set the pending read domains for the batch buffer to COMMAND */
1867 batch_obj = object_list[args->buffer_count-1];
1868 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
1869 batch_obj->pending_write_domain = 0;
1870
1871 i915_verify_inactive(dev, __FILE__, __LINE__);
1872
1873 for (i = 0; i < args->buffer_count; i++) {
1874 struct drm_gem_object *obj = object_list[i];
1875 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1876
1877 if (obj_priv->gtt_space == NULL) {
1878 /* We evicted the buffer in the process of validating
1879 * our set of buffers in. We could try to recover by
1880 * kicking them everything out and trying again from
1881 * the start.
1882 */
1883 ret = -ENOMEM;
1884 goto err;
1885 }
1886
1887 /* make sure all previous memory operations have passed */
1888 ret = i915_gem_object_set_domain(obj,
1889 obj->pending_read_domains,
1890 obj->pending_write_domain);
1891 if (ret)
1892 goto err;
1893 }
1894
1895 i915_verify_inactive(dev, __FILE__, __LINE__);
1896
1897 /* Flush/invalidate caches and chipset buffer */
1898 flush_domains = i915_gem_dev_set_domain(dev);
1899
1900 i915_verify_inactive(dev, __FILE__, __LINE__);
1901
1902#if WATCH_COHERENCY
1903 for (i = 0; i < args->buffer_count; i++) {
1904 i915_gem_object_check_coherency(object_list[i],
1905 exec_list[i].handle);
1906 }
1907#endif
1908
1909 exec_offset = exec_list[args->buffer_count - 1].offset;
1910
1911#if WATCH_EXEC
1912 i915_gem_dump_object(object_list[args->buffer_count - 1],
1913 args->batch_len,
1914 __func__,
1915 ~0);
1916#endif
1917
1918 (void)i915_add_request(dev, flush_domains);
1919
1920 /* Exec the batchbuffer */
1921 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
1922 if (ret) {
1923 DRM_ERROR("dispatch failed %d\n", ret);
1924 goto err;
1925 }
1926
1927 /*
1928 * Ensure that the commands in the batch buffer are
1929 * finished before the interrupt fires
1930 */
1931 flush_domains = i915_retire_commands(dev);
1932
1933 i915_verify_inactive(dev, __FILE__, __LINE__);
1934
1935 /*
1936 * Get a seqno representing the execution of the current buffer,
1937 * which we can wait on. We would like to mitigate these interrupts,
1938 * likely by only creating seqnos occasionally (so that we have
1939 * *some* interrupts representing completion of buffers that we can
1940 * wait on when trying to clear up gtt space).
1941 */
1942 seqno = i915_add_request(dev, flush_domains);
1943 BUG_ON(seqno == 0);
1944 i915_file_priv->mm.last_gem_seqno = seqno;
1945 for (i = 0; i < args->buffer_count; i++) {
1946 struct drm_gem_object *obj = object_list[i];
1947 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1948
1949 i915_gem_object_move_to_active(obj);
1950 obj_priv->last_rendering_seqno = seqno;
1951#if WATCH_LRU
1952 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
1953#endif
1954 }
1955#if WATCH_LRU
1956 i915_dump_lru(dev, __func__);
1957#endif
1958
1959 i915_verify_inactive(dev, __FILE__, __LINE__);
1960
1961 /* Copy the new buffer offsets back to the user's exec list. */
1962 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1963 (uintptr_t) args->buffers_ptr,
1964 exec_list,
1965 sizeof(*exec_list) * args->buffer_count);
1966 if (ret)
1967 DRM_ERROR("failed to copy %d exec entries "
1968 "back to user (%d)\n",
1969 args->buffer_count, ret);
1970err:
1971 if (object_list != NULL) {
1972 for (i = 0; i < pinned; i++)
1973 i915_gem_object_unpin(object_list[i]);
1974
1975 for (i = 0; i < args->buffer_count; i++)
1976 drm_gem_object_unreference(object_list[i]);
1977 }
1978 mutex_unlock(&dev->struct_mutex);
1979
1980pre_mutex_err:
1981 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
1982 DRM_MEM_DRIVER);
1983 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
1984 DRM_MEM_DRIVER);
1985
1986 return ret;
1987}
1988
1989int
1990i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
1991{
1992 struct drm_device *dev = obj->dev;
1993 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1994 int ret;
1995
1996 i915_verify_inactive(dev, __FILE__, __LINE__);
1997 if (obj_priv->gtt_space == NULL) {
1998 ret = i915_gem_object_bind_to_gtt(obj, alignment);
1999 if (ret != 0) {
2000 DRM_ERROR("Failure to bind: %d", ret);
2001 return ret;
2002 }
2003 }
2004 obj_priv->pin_count++;
2005
2006 /* If the object is not active and not pending a flush,
2007 * remove it from the inactive list
2008 */
2009 if (obj_priv->pin_count == 1) {
2010 atomic_inc(&dev->pin_count);
2011 atomic_add(obj->size, &dev->pin_memory);
2012 if (!obj_priv->active &&
2013 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2014 I915_GEM_DOMAIN_GTT)) == 0 &&
2015 !list_empty(&obj_priv->list))
2016 list_del_init(&obj_priv->list);
2017 }
2018 i915_verify_inactive(dev, __FILE__, __LINE__);
2019
2020 return 0;
2021}
2022
2023void
2024i915_gem_object_unpin(struct drm_gem_object *obj)
2025{
2026 struct drm_device *dev = obj->dev;
2027 drm_i915_private_t *dev_priv = dev->dev_private;
2028 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2029
2030 i915_verify_inactive(dev, __FILE__, __LINE__);
2031 obj_priv->pin_count--;
2032 BUG_ON(obj_priv->pin_count < 0);
2033 BUG_ON(obj_priv->gtt_space == NULL);
2034
2035 /* If the object is no longer pinned, and is
2036 * neither active nor being flushed, then stick it on
2037 * the inactive list
2038 */
2039 if (obj_priv->pin_count == 0) {
2040 if (!obj_priv->active &&
2041 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2042 I915_GEM_DOMAIN_GTT)) == 0)
2043 list_move_tail(&obj_priv->list,
2044 &dev_priv->mm.inactive_list);
2045 atomic_dec(&dev->pin_count);
2046 atomic_sub(obj->size, &dev->pin_memory);
2047 }
2048 i915_verify_inactive(dev, __FILE__, __LINE__);
2049}
2050
2051int
2052i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2053 struct drm_file *file_priv)
2054{
2055 struct drm_i915_gem_pin *args = data;
2056 struct drm_gem_object *obj;
2057 struct drm_i915_gem_object *obj_priv;
2058 int ret;
2059
2060 mutex_lock(&dev->struct_mutex);
2061
2062 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2063 if (obj == NULL) {
2064 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2065 args->handle);
2066 mutex_unlock(&dev->struct_mutex);
2067 return -EBADF;
2068 }
2069 obj_priv = obj->driver_private;
2070
2071 ret = i915_gem_object_pin(obj, args->alignment);
2072 if (ret != 0) {
2073 drm_gem_object_unreference(obj);
2074 mutex_unlock(&dev->struct_mutex);
2075 return ret;
2076 }
2077
2078 /* XXX - flush the CPU caches for pinned objects
2079 * as the X server doesn't manage domains yet
2080 */
2081 if (obj->write_domain & I915_GEM_DOMAIN_CPU) {
2082 i915_gem_clflush_object(obj);
2083 drm_agp_chipset_flush(dev);
2084 obj->write_domain = 0;
2085 }
2086 args->offset = obj_priv->gtt_offset;
2087 drm_gem_object_unreference(obj);
2088 mutex_unlock(&dev->struct_mutex);
2089
2090 return 0;
2091}
2092
2093int
2094i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2095 struct drm_file *file_priv)
2096{
2097 struct drm_i915_gem_pin *args = data;
2098 struct drm_gem_object *obj;
2099
2100 mutex_lock(&dev->struct_mutex);
2101
2102 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2103 if (obj == NULL) {
2104 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2105 args->handle);
2106 mutex_unlock(&dev->struct_mutex);
2107 return -EBADF;
2108 }
2109
2110 i915_gem_object_unpin(obj);
2111
2112 drm_gem_object_unreference(obj);
2113 mutex_unlock(&dev->struct_mutex);
2114 return 0;
2115}
2116
2117int
2118i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2119 struct drm_file *file_priv)
2120{
2121 struct drm_i915_gem_busy *args = data;
2122 struct drm_gem_object *obj;
2123 struct drm_i915_gem_object *obj_priv;
2124
2125 mutex_lock(&dev->struct_mutex);
2126 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2127 if (obj == NULL) {
2128 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2129 args->handle);
2130 mutex_unlock(&dev->struct_mutex);
2131 return -EBADF;
2132 }
2133
2134 obj_priv = obj->driver_private;
2135 args->busy = obj_priv->active;
2136
2137 drm_gem_object_unreference(obj);
2138 mutex_unlock(&dev->struct_mutex);
2139 return 0;
2140}
2141
2142int
2143i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2144 struct drm_file *file_priv)
2145{
2146 return i915_gem_ring_throttle(dev, file_priv);
2147}
2148
2149int i915_gem_init_object(struct drm_gem_object *obj)
2150{
2151 struct drm_i915_gem_object *obj_priv;
2152
2153 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2154 if (obj_priv == NULL)
2155 return -ENOMEM;
2156
2157 /*
2158 * We've just allocated pages from the kernel,
2159 * so they've just been written by the CPU with
2160 * zeros. They'll need to be clflushed before we
2161 * use them with the GPU.
2162 */
2163 obj->write_domain = I915_GEM_DOMAIN_CPU;
2164 obj->read_domains = I915_GEM_DOMAIN_CPU;
2165
ba1eb1d8
KP
2166 obj_priv->agp_type = AGP_USER_MEMORY;
2167
673a394b
EA
2168 obj->driver_private = obj_priv;
2169 obj_priv->obj = obj;
2170 INIT_LIST_HEAD(&obj_priv->list);
2171 return 0;
2172}
2173
2174void i915_gem_free_object(struct drm_gem_object *obj)
2175{
2176 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2177
2178 while (obj_priv->pin_count > 0)
2179 i915_gem_object_unpin(obj);
2180
2181 i915_gem_object_unbind(obj);
2182
2183 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2184 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2185}
2186
2187static int
2188i915_gem_set_domain(struct drm_gem_object *obj,
2189 struct drm_file *file_priv,
2190 uint32_t read_domains,
2191 uint32_t write_domain)
2192{
2193 struct drm_device *dev = obj->dev;
2194 int ret;
2195 uint32_t flush_domains;
2196
2197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
2198
2199 ret = i915_gem_object_set_domain(obj, read_domains, write_domain);
2200 if (ret)
2201 return ret;
2202 flush_domains = i915_gem_dev_set_domain(obj->dev);
2203
2204 if (flush_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT))
2205 (void) i915_add_request(dev, flush_domains);
2206
2207 return 0;
2208}
2209
2210/** Unbinds all objects that are on the given buffer list. */
2211static int
2212i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2213{
2214 struct drm_gem_object *obj;
2215 struct drm_i915_gem_object *obj_priv;
2216 int ret;
2217
2218 while (!list_empty(head)) {
2219 obj_priv = list_first_entry(head,
2220 struct drm_i915_gem_object,
2221 list);
2222 obj = obj_priv->obj;
2223
2224 if (obj_priv->pin_count != 0) {
2225 DRM_ERROR("Pinned object in unbind list\n");
2226 mutex_unlock(&dev->struct_mutex);
2227 return -EINVAL;
2228 }
2229
2230 ret = i915_gem_object_unbind(obj);
2231 if (ret != 0) {
2232 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2233 ret);
2234 mutex_unlock(&dev->struct_mutex);
2235 return ret;
2236 }
2237 }
2238
2239
2240 return 0;
2241}
2242
2243static int
2244i915_gem_idle(struct drm_device *dev)
2245{
2246 drm_i915_private_t *dev_priv = dev->dev_private;
2247 uint32_t seqno, cur_seqno, last_seqno;
2248 int stuck, ret;
2249
6dbe2772
KP
2250 mutex_lock(&dev->struct_mutex);
2251
2252 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2253 mutex_unlock(&dev->struct_mutex);
673a394b 2254 return 0;
6dbe2772 2255 }
673a394b
EA
2256
2257 /* Hack! Don't let anybody do execbuf while we don't control the chip.
2258 * We need to replace this with a semaphore, or something.
2259 */
2260 dev_priv->mm.suspended = 1;
2261
6dbe2772
KP
2262 /* Cancel the retire work handler, wait for it to finish if running
2263 */
2264 mutex_unlock(&dev->struct_mutex);
2265 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2266 mutex_lock(&dev->struct_mutex);
2267
673a394b
EA
2268 i915_kernel_lost_context(dev);
2269
2270 /* Flush the GPU along with all non-CPU write domains
2271 */
2272 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
2273 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2274 seqno = i915_add_request(dev, ~(I915_GEM_DOMAIN_CPU |
2275 I915_GEM_DOMAIN_GTT));
2276
2277 if (seqno == 0) {
2278 mutex_unlock(&dev->struct_mutex);
2279 return -ENOMEM;
2280 }
2281
2282 dev_priv->mm.waiting_gem_seqno = seqno;
2283 last_seqno = 0;
2284 stuck = 0;
2285 for (;;) {
2286 cur_seqno = i915_get_gem_seqno(dev);
2287 if (i915_seqno_passed(cur_seqno, seqno))
2288 break;
2289 if (last_seqno == cur_seqno) {
2290 if (stuck++ > 100) {
2291 DRM_ERROR("hardware wedged\n");
2292 dev_priv->mm.wedged = 1;
2293 DRM_WAKEUP(&dev_priv->irq_queue);
2294 break;
2295 }
2296 }
2297 msleep(10);
2298 last_seqno = cur_seqno;
2299 }
2300 dev_priv->mm.waiting_gem_seqno = 0;
2301
2302 i915_gem_retire_requests(dev);
2303
2304 /* Active and flushing should now be empty as we've
2305 * waited for a sequence higher than any pending execbuffer
2306 */
2307 BUG_ON(!list_empty(&dev_priv->mm.active_list));
2308 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2309
2310 /* Request should now be empty as we've also waited
2311 * for the last request in the list
2312 */
2313 BUG_ON(!list_empty(&dev_priv->mm.request_list));
2314
2315 /* Move all buffers out of the GTT. */
2316 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
6dbe2772
KP
2317 if (ret) {
2318 mutex_unlock(&dev->struct_mutex);
673a394b 2319 return ret;
6dbe2772 2320 }
673a394b
EA
2321
2322 BUG_ON(!list_empty(&dev_priv->mm.active_list));
2323 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2324 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
2325 BUG_ON(!list_empty(&dev_priv->mm.request_list));
6dbe2772
KP
2326
2327 i915_gem_cleanup_ringbuffer(dev);
2328 mutex_unlock(&dev->struct_mutex);
2329
673a394b
EA
2330 return 0;
2331}
2332
2333static int
2334i915_gem_init_hws(struct drm_device *dev)
2335{
2336 drm_i915_private_t *dev_priv = dev->dev_private;
2337 struct drm_gem_object *obj;
2338 struct drm_i915_gem_object *obj_priv;
2339 int ret;
2340
2341 /* If we need a physical address for the status page, it's already
2342 * initialized at driver load time.
2343 */
2344 if (!I915_NEED_GFX_HWS(dev))
2345 return 0;
2346
2347 obj = drm_gem_object_alloc(dev, 4096);
2348 if (obj == NULL) {
2349 DRM_ERROR("Failed to allocate status page\n");
2350 return -ENOMEM;
2351 }
2352 obj_priv = obj->driver_private;
ba1eb1d8 2353 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
2354
2355 ret = i915_gem_object_pin(obj, 4096);
2356 if (ret != 0) {
2357 drm_gem_object_unreference(obj);
2358 return ret;
2359 }
2360
2361 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 2362
ba1eb1d8
KP
2363 dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
2364 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
2365 DRM_ERROR("Failed to map status page.\n");
2366 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
2367 drm_gem_object_unreference(obj);
2368 return -EINVAL;
2369 }
2370 dev_priv->hws_obj = obj;
673a394b
EA
2371 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
2372 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
ba1eb1d8 2373 I915_READ(HWS_PGA); /* posting read */
673a394b
EA
2374 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
2375
2376 return 0;
2377}
2378
2379static int
2380i915_gem_init_ringbuffer(struct drm_device *dev)
2381{
2382 drm_i915_private_t *dev_priv = dev->dev_private;
2383 struct drm_gem_object *obj;
2384 struct drm_i915_gem_object *obj_priv;
2385 int ret;
50aa253d 2386 u32 head;
673a394b
EA
2387
2388 ret = i915_gem_init_hws(dev);
2389 if (ret != 0)
2390 return ret;
2391
2392 obj = drm_gem_object_alloc(dev, 128 * 1024);
2393 if (obj == NULL) {
2394 DRM_ERROR("Failed to allocate ringbuffer\n");
2395 return -ENOMEM;
2396 }
2397 obj_priv = obj->driver_private;
2398
2399 ret = i915_gem_object_pin(obj, 4096);
2400 if (ret != 0) {
2401 drm_gem_object_unreference(obj);
2402 return ret;
2403 }
2404
2405 /* Set up the kernel mapping for the ring. */
2406 dev_priv->ring.Size = obj->size;
2407 dev_priv->ring.tail_mask = obj->size - 1;
2408
2409 dev_priv->ring.map.offset = dev->agp->base + obj_priv->gtt_offset;
2410 dev_priv->ring.map.size = obj->size;
2411 dev_priv->ring.map.type = 0;
2412 dev_priv->ring.map.flags = 0;
2413 dev_priv->ring.map.mtrr = 0;
2414
bd88ee4c 2415 drm_core_ioremap_wc(&dev_priv->ring.map, dev);
673a394b
EA
2416 if (dev_priv->ring.map.handle == NULL) {
2417 DRM_ERROR("Failed to map ringbuffer.\n");
2418 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
2419 drm_gem_object_unreference(obj);
2420 return -EINVAL;
2421 }
2422 dev_priv->ring.ring_obj = obj;
2423 dev_priv->ring.virtual_start = dev_priv->ring.map.handle;
2424
2425 /* Stop the ring if it's running. */
2426 I915_WRITE(PRB0_CTL, 0);
673a394b 2427 I915_WRITE(PRB0_TAIL, 0);
50aa253d 2428 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
2429
2430 /* Initialize the ring. */
2431 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
2432 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
2433
2434 /* G45 ring initialization fails to reset head to zero */
2435 if (head != 0) {
2436 DRM_ERROR("Ring head not reset to zero "
2437 "ctl %08x head %08x tail %08x start %08x\n",
2438 I915_READ(PRB0_CTL),
2439 I915_READ(PRB0_HEAD),
2440 I915_READ(PRB0_TAIL),
2441 I915_READ(PRB0_START));
2442 I915_WRITE(PRB0_HEAD, 0);
2443
2444 DRM_ERROR("Ring head forced to zero "
2445 "ctl %08x head %08x tail %08x start %08x\n",
2446 I915_READ(PRB0_CTL),
2447 I915_READ(PRB0_HEAD),
2448 I915_READ(PRB0_TAIL),
2449 I915_READ(PRB0_START));
2450 }
2451
673a394b
EA
2452 I915_WRITE(PRB0_CTL,
2453 ((obj->size - 4096) & RING_NR_PAGES) |
2454 RING_NO_REPORT |
2455 RING_VALID);
2456
50aa253d
KP
2457 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
2458
2459 /* If the head is still not zero, the ring is dead */
2460 if (head != 0) {
2461 DRM_ERROR("Ring initialization failed "
2462 "ctl %08x head %08x tail %08x start %08x\n",
2463 I915_READ(PRB0_CTL),
2464 I915_READ(PRB0_HEAD),
2465 I915_READ(PRB0_TAIL),
2466 I915_READ(PRB0_START));
2467 return -EIO;
2468 }
2469
673a394b
EA
2470 /* Update our cache of the ring state */
2471 i915_kernel_lost_context(dev);
2472
2473 return 0;
2474}
2475
2476static void
2477i915_gem_cleanup_ringbuffer(struct drm_device *dev)
2478{
2479 drm_i915_private_t *dev_priv = dev->dev_private;
2480
2481 if (dev_priv->ring.ring_obj == NULL)
2482 return;
2483
2484 drm_core_ioremapfree(&dev_priv->ring.map, dev);
2485
2486 i915_gem_object_unpin(dev_priv->ring.ring_obj);
2487 drm_gem_object_unreference(dev_priv->ring.ring_obj);
2488 dev_priv->ring.ring_obj = NULL;
2489 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
2490
2491 if (dev_priv->hws_obj != NULL) {
ba1eb1d8
KP
2492 struct drm_gem_object *obj = dev_priv->hws_obj;
2493 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2494
2495 kunmap(obj_priv->page_list[0]);
2496 i915_gem_object_unpin(obj);
2497 drm_gem_object_unreference(obj);
673a394b
EA
2498 dev_priv->hws_obj = NULL;
2499 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
ba1eb1d8 2500 dev_priv->hw_status_page = NULL;
673a394b
EA
2501
2502 /* Write high address into HWS_PGA when disabling. */
2503 I915_WRITE(HWS_PGA, 0x1ffff000);
2504 }
2505}
2506
2507int
2508i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
2509 struct drm_file *file_priv)
2510{
2511 drm_i915_private_t *dev_priv = dev->dev_private;
2512 int ret;
2513
2514 if (dev_priv->mm.wedged) {
2515 DRM_ERROR("Reenabling wedged hardware, good luck\n");
2516 dev_priv->mm.wedged = 0;
2517 }
2518
2519 ret = i915_gem_init_ringbuffer(dev);
2520 if (ret != 0)
2521 return ret;
2522
0839ccb8
KP
2523 dev_priv->mm.gtt_mapping = io_mapping_create_wc(dev->agp->base,
2524 dev->agp->agp_info.aper_size
2525 * 1024 * 1024);
2526
673a394b
EA
2527 mutex_lock(&dev->struct_mutex);
2528 BUG_ON(!list_empty(&dev_priv->mm.active_list));
2529 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2530 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
2531 BUG_ON(!list_empty(&dev_priv->mm.request_list));
2532 dev_priv->mm.suspended = 0;
2533 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
2534
2535 drm_irq_install(dev);
2536
673a394b
EA
2537 return 0;
2538}
2539
2540int
2541i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
2542 struct drm_file *file_priv)
2543{
0839ccb8 2544 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
2545 int ret;
2546
673a394b 2547 ret = i915_gem_idle(dev);
dbb19d30
KH
2548 drm_irq_uninstall(dev);
2549
0839ccb8 2550 io_mapping_free(dev_priv->mm.gtt_mapping);
6dbe2772 2551 return ret;
673a394b
EA
2552}
2553
2554void
2555i915_gem_lastclose(struct drm_device *dev)
2556{
2557 int ret;
673a394b 2558
6dbe2772
KP
2559 ret = i915_gem_idle(dev);
2560 if (ret)
2561 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
2562}
2563
2564void
2565i915_gem_load(struct drm_device *dev)
2566{
2567 drm_i915_private_t *dev_priv = dev->dev_private;
2568
2569 INIT_LIST_HEAD(&dev_priv->mm.active_list);
2570 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
2571 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
2572 INIT_LIST_HEAD(&dev_priv->mm.request_list);
2573 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
2574 i915_gem_retire_work_handler);
2575 dev_priv->mm.next_gem_seqno = 1;
2576
2577 i915_gem_detect_bit_6_swizzle(dev);
2578}