]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Remove pch_rq_mask from struct drm_i915_private.
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
86a1ee26
CW
43 bool map_and_fenceable,
44 bool nonblocking);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
21dd3734
CW
89static int
90i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
91{
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
0a6759c6
DV
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
30dbf0c0 110 return ret;
0a6759c6 111 }
30dbf0c0 112
21dd3734
CW
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
30dbf0c0
CW
124}
125
54cf91dc 126int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 127{
76c1dec1
CW
128 int ret;
129
21dd3734 130 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
23bc5982 138 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
139 return 0;
140}
30dbf0c0 141
7d1c4804 142static inline bool
05394f39 143i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 144{
6c085a72 145 return obj->gtt_space && !obj->active;
7d1c4804
CW
146}
147
79e53945
JB
148int
149i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 150 struct drm_file *file)
79e53945
JB
151{
152 struct drm_i915_gem_init *args = data;
2021746e 153
7bb6fb8d
DV
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
2021746e
CW
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
79e53945 160
f534bc0b
DV
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
79e53945 165 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
166 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
167 args->gtt_end);
673a394b
EA
168 mutex_unlock(&dev->struct_mutex);
169
2021746e 170 return 0;
673a394b
EA
171}
172
5a125c3c
EA
173int
174i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 175 struct drm_file *file)
5a125c3c 176{
73aa808f 177 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 178 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
5a125c3c 181
6299f992 182 pinned = 0;
73aa808f 183 mutex_lock(&dev->struct_mutex);
6c085a72 184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
73aa808f 187 mutex_unlock(&dev->struct_mutex);
5a125c3c 188
6299f992 189 args->aper_size = dev_priv->mm.gtt_total;
0206e353 190 args->aper_available_size = args->aper_size - pinned;
6299f992 191
5a125c3c
EA
192 return 0;
193}
194
42dcedd4
CW
195void *i915_gem_object_alloc(struct drm_device *dev)
196{
197 struct drm_i915_private *dev_priv = dev->dev_private;
198 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
199}
200
201void i915_gem_object_free(struct drm_i915_gem_object *obj)
202{
203 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
204 kmem_cache_free(dev_priv->slab, obj);
205}
206
ff72145b
DA
207static int
208i915_gem_create(struct drm_file *file,
209 struct drm_device *dev,
210 uint64_t size,
211 uint32_t *handle_p)
673a394b 212{
05394f39 213 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
214 int ret;
215 u32 handle;
673a394b 216
ff72145b 217 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
218 if (size == 0)
219 return -EINVAL;
673a394b
EA
220
221 /* Allocate the new object */
ff72145b 222 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
223 if (obj == NULL)
224 return -ENOMEM;
225
05394f39 226 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 227 if (ret) {
05394f39
CW
228 drm_gem_object_release(&obj->base);
229 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
42dcedd4 230 i915_gem_object_free(obj);
673a394b 231 return ret;
1dfd9754 232 }
673a394b 233
202f2fef 234 /* drop reference from allocate - handle holds it now */
05394f39 235 drm_gem_object_unreference(&obj->base);
202f2fef
CW
236 trace_i915_gem_object_create(obj);
237
ff72145b 238 *handle_p = handle;
673a394b
EA
239 return 0;
240}
241
ff72145b
DA
242int
243i915_gem_dumb_create(struct drm_file *file,
244 struct drm_device *dev,
245 struct drm_mode_create_dumb *args)
246{
247 /* have to work out size/pitch and return them */
ed0291fd 248 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
249 args->size = args->pitch * args->height;
250 return i915_gem_create(file, dev,
251 args->size, &args->handle);
252}
253
254int i915_gem_dumb_destroy(struct drm_file *file,
255 struct drm_device *dev,
256 uint32_t handle)
257{
258 return drm_gem_handle_delete(file, handle);
259}
260
261/**
262 * Creates a new mm object and returns a handle to it.
263 */
264int
265i915_gem_create_ioctl(struct drm_device *dev, void *data,
266 struct drm_file *file)
267{
268 struct drm_i915_gem_create *args = data;
63ed2cb2 269
ff72145b
DA
270 return i915_gem_create(file, dev,
271 args->size, &args->handle);
272}
273
8461d226
DV
274static inline int
275__copy_to_user_swizzled(char __user *cpu_vaddr,
276 const char *gpu_vaddr, int gpu_offset,
277 int length)
278{
279 int ret, cpu_offset = 0;
280
281 while (length > 0) {
282 int cacheline_end = ALIGN(gpu_offset + 1, 64);
283 int this_length = min(cacheline_end - gpu_offset, length);
284 int swizzled_gpu_offset = gpu_offset ^ 64;
285
286 ret = __copy_to_user(cpu_vaddr + cpu_offset,
287 gpu_vaddr + swizzled_gpu_offset,
288 this_length);
289 if (ret)
290 return ret + length;
291
292 cpu_offset += this_length;
293 gpu_offset += this_length;
294 length -= this_length;
295 }
296
297 return 0;
298}
299
8c59967c 300static inline int
4f0c7cfb
BW
301__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
302 const char __user *cpu_vaddr,
8c59967c
DV
303 int length)
304{
305 int ret, cpu_offset = 0;
306
307 while (length > 0) {
308 int cacheline_end = ALIGN(gpu_offset + 1, 64);
309 int this_length = min(cacheline_end - gpu_offset, length);
310 int swizzled_gpu_offset = gpu_offset ^ 64;
311
312 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
313 cpu_vaddr + cpu_offset,
314 this_length);
315 if (ret)
316 return ret + length;
317
318 cpu_offset += this_length;
319 gpu_offset += this_length;
320 length -= this_length;
321 }
322
323 return 0;
324}
325
d174bd64
DV
326/* Per-page copy function for the shmem pread fastpath.
327 * Flushes invalid cachelines before reading the target if
328 * needs_clflush is set. */
eb01459f 329static int
d174bd64
DV
330shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
331 char __user *user_data,
332 bool page_do_bit17_swizzling, bool needs_clflush)
333{
334 char *vaddr;
335 int ret;
336
e7e58eb5 337 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
338 return -EINVAL;
339
340 vaddr = kmap_atomic(page);
341 if (needs_clflush)
342 drm_clflush_virt_range(vaddr + shmem_page_offset,
343 page_length);
344 ret = __copy_to_user_inatomic(user_data,
345 vaddr + shmem_page_offset,
346 page_length);
347 kunmap_atomic(vaddr);
348
f60d7f0c 349 return ret ? -EFAULT : 0;
d174bd64
DV
350}
351
23c18c71
DV
352static void
353shmem_clflush_swizzled_range(char *addr, unsigned long length,
354 bool swizzled)
355{
e7e58eb5 356 if (unlikely(swizzled)) {
23c18c71
DV
357 unsigned long start = (unsigned long) addr;
358 unsigned long end = (unsigned long) addr + length;
359
360 /* For swizzling simply ensure that we always flush both
361 * channels. Lame, but simple and it works. Swizzled
362 * pwrite/pread is far from a hotpath - current userspace
363 * doesn't use it at all. */
364 start = round_down(start, 128);
365 end = round_up(end, 128);
366
367 drm_clflush_virt_range((void *)start, end - start);
368 } else {
369 drm_clflush_virt_range(addr, length);
370 }
371
372}
373
d174bd64
DV
374/* Only difference to the fast-path function is that this can handle bit17
375 * and uses non-atomic copy and kmap functions. */
376static int
377shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
378 char __user *user_data,
379 bool page_do_bit17_swizzling, bool needs_clflush)
380{
381 char *vaddr;
382 int ret;
383
384 vaddr = kmap(page);
385 if (needs_clflush)
23c18c71
DV
386 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
387 page_length,
388 page_do_bit17_swizzling);
d174bd64
DV
389
390 if (page_do_bit17_swizzling)
391 ret = __copy_to_user_swizzled(user_data,
392 vaddr, shmem_page_offset,
393 page_length);
394 else
395 ret = __copy_to_user(user_data,
396 vaddr + shmem_page_offset,
397 page_length);
398 kunmap(page);
399
f60d7f0c 400 return ret ? - EFAULT : 0;
d174bd64
DV
401}
402
eb01459f 403static int
dbf7bff0
DV
404i915_gem_shmem_pread(struct drm_device *dev,
405 struct drm_i915_gem_object *obj,
406 struct drm_i915_gem_pread *args,
407 struct drm_file *file)
eb01459f 408{
8461d226 409 char __user *user_data;
eb01459f 410 ssize_t remain;
8461d226 411 loff_t offset;
eb2c0c81 412 int shmem_page_offset, page_length, ret = 0;
8461d226 413 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 414 int prefaulted = 0;
8489731c 415 int needs_clflush = 0;
9da3da66
CW
416 struct scatterlist *sg;
417 int i;
eb01459f 418
8461d226 419 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
420 remain = args->size;
421
8461d226 422 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 423
8489731c
DV
424 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
425 /* If we're not in the cpu read domain, set ourself into the gtt
426 * read domain and manually flush cachelines (if required). This
427 * optimizes for the case when the gpu will dirty the data
428 * anyway again before the next pread happens. */
429 if (obj->cache_level == I915_CACHE_NONE)
430 needs_clflush = 1;
6c085a72
CW
431 if (obj->gtt_space) {
432 ret = i915_gem_object_set_to_gtt_domain(obj, false);
433 if (ret)
434 return ret;
435 }
8489731c 436 }
eb01459f 437
f60d7f0c
CW
438 ret = i915_gem_object_get_pages(obj);
439 if (ret)
440 return ret;
441
442 i915_gem_object_pin_pages(obj);
443
8461d226 444 offset = args->offset;
eb01459f 445
9da3da66 446 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd
CW
447 struct page *page;
448
9da3da66
CW
449 if (i < offset >> PAGE_SHIFT)
450 continue;
451
452 if (remain <= 0)
453 break;
454
eb01459f
EA
455 /* Operation in this page
456 *
eb01459f 457 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
458 * page_length = bytes to copy for this page
459 */
c8cbbb8b 460 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
461 page_length = remain;
462 if ((shmem_page_offset + page_length) > PAGE_SIZE)
463 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 464
9da3da66 465 page = sg_page(sg);
8461d226
DV
466 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
467 (page_to_phys(page) & (1 << 17)) != 0;
468
d174bd64
DV
469 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
470 user_data, page_do_bit17_swizzling,
471 needs_clflush);
472 if (ret == 0)
473 goto next_page;
dbf7bff0 474
dbf7bff0
DV
475 mutex_unlock(&dev->struct_mutex);
476
96d79b52 477 if (!prefaulted) {
f56f821f 478 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
479 /* Userspace is tricking us, but we've already clobbered
480 * its pages with the prefault and promised to write the
481 * data up to the first fault. Hence ignore any errors
482 * and just continue. */
483 (void)ret;
484 prefaulted = 1;
485 }
eb01459f 486
d174bd64
DV
487 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
488 user_data, page_do_bit17_swizzling,
489 needs_clflush);
eb01459f 490
dbf7bff0 491 mutex_lock(&dev->struct_mutex);
f60d7f0c 492
dbf7bff0 493next_page:
e5281ccd 494 mark_page_accessed(page);
e5281ccd 495
f60d7f0c 496 if (ret)
8461d226 497 goto out;
8461d226 498
eb01459f 499 remain -= page_length;
8461d226 500 user_data += page_length;
eb01459f
EA
501 offset += page_length;
502 }
503
4f27b75d 504out:
f60d7f0c
CW
505 i915_gem_object_unpin_pages(obj);
506
eb01459f
EA
507 return ret;
508}
509
673a394b
EA
510/**
511 * Reads data from the object referenced by handle.
512 *
513 * On error, the contents of *data are undefined.
514 */
515int
516i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 517 struct drm_file *file)
673a394b
EA
518{
519 struct drm_i915_gem_pread *args = data;
05394f39 520 struct drm_i915_gem_object *obj;
35b62a89 521 int ret = 0;
673a394b 522
51311d0a
CW
523 if (args->size == 0)
524 return 0;
525
526 if (!access_ok(VERIFY_WRITE,
527 (char __user *)(uintptr_t)args->data_ptr,
528 args->size))
529 return -EFAULT;
530
4f27b75d 531 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 532 if (ret)
4f27b75d 533 return ret;
673a394b 534
05394f39 535 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 536 if (&obj->base == NULL) {
1d7cfea1
CW
537 ret = -ENOENT;
538 goto unlock;
4f27b75d 539 }
673a394b 540
7dcd2499 541 /* Bounds check source. */
05394f39
CW
542 if (args->offset > obj->base.size ||
543 args->size > obj->base.size - args->offset) {
ce9d419d 544 ret = -EINVAL;
35b62a89 545 goto out;
ce9d419d
CW
546 }
547
1286ff73
DV
548 /* prime objects have no backing filp to GEM pread/pwrite
549 * pages from.
550 */
551 if (!obj->base.filp) {
552 ret = -EINVAL;
553 goto out;
554 }
555
db53a302
CW
556 trace_i915_gem_object_pread(obj, args->offset, args->size);
557
dbf7bff0 558 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 559
35b62a89 560out:
05394f39 561 drm_gem_object_unreference(&obj->base);
1d7cfea1 562unlock:
4f27b75d 563 mutex_unlock(&dev->struct_mutex);
eb01459f 564 return ret;
673a394b
EA
565}
566
0839ccb8
KP
567/* This is the fast write path which cannot handle
568 * page faults in the source data
9b7530cc 569 */
0839ccb8
KP
570
571static inline int
572fast_user_write(struct io_mapping *mapping,
573 loff_t page_base, int page_offset,
574 char __user *user_data,
575 int length)
9b7530cc 576{
4f0c7cfb
BW
577 void __iomem *vaddr_atomic;
578 void *vaddr;
0839ccb8 579 unsigned long unwritten;
9b7530cc 580
3e4d3af5 581 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
582 /* We can use the cpu mem copy function because this is X86. */
583 vaddr = (void __force*)vaddr_atomic + page_offset;
584 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 585 user_data, length);
3e4d3af5 586 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 587 return unwritten;
0839ccb8
KP
588}
589
3de09aa3
EA
590/**
591 * This is the fast pwrite path, where we copy the data directly from the
592 * user into the GTT, uncached.
593 */
673a394b 594static int
05394f39
CW
595i915_gem_gtt_pwrite_fast(struct drm_device *dev,
596 struct drm_i915_gem_object *obj,
3de09aa3 597 struct drm_i915_gem_pwrite *args,
05394f39 598 struct drm_file *file)
673a394b 599{
0839ccb8 600 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 601 ssize_t remain;
0839ccb8 602 loff_t offset, page_base;
673a394b 603 char __user *user_data;
935aaa69
DV
604 int page_offset, page_length, ret;
605
86a1ee26 606 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
607 if (ret)
608 goto out;
609
610 ret = i915_gem_object_set_to_gtt_domain(obj, true);
611 if (ret)
612 goto out_unpin;
613
614 ret = i915_gem_object_put_fence(obj);
615 if (ret)
616 goto out_unpin;
673a394b
EA
617
618 user_data = (char __user *) (uintptr_t) args->data_ptr;
619 remain = args->size;
673a394b 620
05394f39 621 offset = obj->gtt_offset + args->offset;
673a394b
EA
622
623 while (remain > 0) {
624 /* Operation in this page
625 *
0839ccb8
KP
626 * page_base = page offset within aperture
627 * page_offset = offset within page
628 * page_length = bytes to copy for this page
673a394b 629 */
c8cbbb8b
CW
630 page_base = offset & PAGE_MASK;
631 page_offset = offset_in_page(offset);
0839ccb8
KP
632 page_length = remain;
633 if ((page_offset + remain) > PAGE_SIZE)
634 page_length = PAGE_SIZE - page_offset;
635
0839ccb8 636 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
637 * source page isn't available. Return the error and we'll
638 * retry in the slow path.
0839ccb8 639 */
fbd5a26d 640 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
641 page_offset, user_data, page_length)) {
642 ret = -EFAULT;
643 goto out_unpin;
644 }
673a394b 645
0839ccb8
KP
646 remain -= page_length;
647 user_data += page_length;
648 offset += page_length;
673a394b 649 }
673a394b 650
935aaa69
DV
651out_unpin:
652 i915_gem_object_unpin(obj);
653out:
3de09aa3 654 return ret;
673a394b
EA
655}
656
d174bd64
DV
657/* Per-page copy function for the shmem pwrite fastpath.
658 * Flushes invalid cachelines before writing to the target if
659 * needs_clflush_before is set and flushes out any written cachelines after
660 * writing if needs_clflush is set. */
3043c60c 661static int
d174bd64
DV
662shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
663 char __user *user_data,
664 bool page_do_bit17_swizzling,
665 bool needs_clflush_before,
666 bool needs_clflush_after)
673a394b 667{
d174bd64 668 char *vaddr;
673a394b 669 int ret;
3de09aa3 670
e7e58eb5 671 if (unlikely(page_do_bit17_swizzling))
d174bd64 672 return -EINVAL;
3de09aa3 673
d174bd64
DV
674 vaddr = kmap_atomic(page);
675 if (needs_clflush_before)
676 drm_clflush_virt_range(vaddr + shmem_page_offset,
677 page_length);
678 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
679 user_data,
680 page_length);
681 if (needs_clflush_after)
682 drm_clflush_virt_range(vaddr + shmem_page_offset,
683 page_length);
684 kunmap_atomic(vaddr);
3de09aa3 685
755d2218 686 return ret ? -EFAULT : 0;
3de09aa3
EA
687}
688
d174bd64
DV
689/* Only difference to the fast-path function is that this can handle bit17
690 * and uses non-atomic copy and kmap functions. */
3043c60c 691static int
d174bd64
DV
692shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
693 char __user *user_data,
694 bool page_do_bit17_swizzling,
695 bool needs_clflush_before,
696 bool needs_clflush_after)
673a394b 697{
d174bd64
DV
698 char *vaddr;
699 int ret;
e5281ccd 700
d174bd64 701 vaddr = kmap(page);
e7e58eb5 702 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
703 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
704 page_length,
705 page_do_bit17_swizzling);
d174bd64
DV
706 if (page_do_bit17_swizzling)
707 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
708 user_data,
709 page_length);
d174bd64
DV
710 else
711 ret = __copy_from_user(vaddr + shmem_page_offset,
712 user_data,
713 page_length);
714 if (needs_clflush_after)
23c18c71
DV
715 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
716 page_length,
717 page_do_bit17_swizzling);
d174bd64 718 kunmap(page);
40123c1f 719
755d2218 720 return ret ? -EFAULT : 0;
40123c1f
EA
721}
722
40123c1f 723static int
e244a443
DV
724i915_gem_shmem_pwrite(struct drm_device *dev,
725 struct drm_i915_gem_object *obj,
726 struct drm_i915_gem_pwrite *args,
727 struct drm_file *file)
40123c1f 728{
40123c1f 729 ssize_t remain;
8c59967c
DV
730 loff_t offset;
731 char __user *user_data;
eb2c0c81 732 int shmem_page_offset, page_length, ret = 0;
8c59967c 733 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 734 int hit_slowpath = 0;
58642885
DV
735 int needs_clflush_after = 0;
736 int needs_clflush_before = 0;
9da3da66
CW
737 int i;
738 struct scatterlist *sg;
40123c1f 739
8c59967c 740 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
741 remain = args->size;
742
8c59967c 743 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 744
58642885
DV
745 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
746 /* If we're not in the cpu write domain, set ourself into the gtt
747 * write domain and manually flush cachelines (if required). This
748 * optimizes for the case when the gpu will use the data
749 * right away and we therefore have to clflush anyway. */
750 if (obj->cache_level == I915_CACHE_NONE)
751 needs_clflush_after = 1;
6c085a72
CW
752 if (obj->gtt_space) {
753 ret = i915_gem_object_set_to_gtt_domain(obj, true);
754 if (ret)
755 return ret;
756 }
58642885
DV
757 }
758 /* Same trick applies for invalidate partially written cachelines before
759 * writing. */
760 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
761 && obj->cache_level == I915_CACHE_NONE)
762 needs_clflush_before = 1;
763
755d2218
CW
764 ret = i915_gem_object_get_pages(obj);
765 if (ret)
766 return ret;
767
768 i915_gem_object_pin_pages(obj);
769
673a394b 770 offset = args->offset;
05394f39 771 obj->dirty = 1;
673a394b 772
9da3da66 773 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd 774 struct page *page;
58642885 775 int partial_cacheline_write;
e5281ccd 776
9da3da66
CW
777 if (i < offset >> PAGE_SHIFT)
778 continue;
779
780 if (remain <= 0)
781 break;
782
40123c1f
EA
783 /* Operation in this page
784 *
40123c1f 785 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
786 * page_length = bytes to copy for this page
787 */
c8cbbb8b 788 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
789
790 page_length = remain;
791 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 793
58642885
DV
794 /* If we don't overwrite a cacheline completely we need to be
795 * careful to have up-to-date data by first clflushing. Don't
796 * overcomplicate things and flush the entire patch. */
797 partial_cacheline_write = needs_clflush_before &&
798 ((shmem_page_offset | page_length)
799 & (boot_cpu_data.x86_clflush_size - 1));
800
9da3da66 801 page = sg_page(sg);
8c59967c
DV
802 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803 (page_to_phys(page) & (1 << 17)) != 0;
804
d174bd64
DV
805 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806 user_data, page_do_bit17_swizzling,
807 partial_cacheline_write,
808 needs_clflush_after);
809 if (ret == 0)
810 goto next_page;
e244a443
DV
811
812 hit_slowpath = 1;
e244a443 813 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
814 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
815 user_data, page_do_bit17_swizzling,
816 partial_cacheline_write,
817 needs_clflush_after);
40123c1f 818
e244a443 819 mutex_lock(&dev->struct_mutex);
755d2218 820
e244a443 821next_page:
e5281ccd
CW
822 set_page_dirty(page);
823 mark_page_accessed(page);
e5281ccd 824
755d2218 825 if (ret)
8c59967c 826 goto out;
8c59967c 827
40123c1f 828 remain -= page_length;
8c59967c 829 user_data += page_length;
40123c1f 830 offset += page_length;
673a394b
EA
831 }
832
fbd5a26d 833out:
755d2218
CW
834 i915_gem_object_unpin_pages(obj);
835
e244a443 836 if (hit_slowpath) {
8dcf015e
DV
837 /*
838 * Fixup: Flush cpu caches in case we didn't flush the dirty
839 * cachelines in-line while writing and the object moved
840 * out of the cpu write domain while we've dropped the lock.
841 */
842 if (!needs_clflush_after &&
843 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
e244a443 844 i915_gem_clflush_object(obj);
e76e9aeb 845 i915_gem_chipset_flush(dev);
e244a443 846 }
8c59967c 847 }
673a394b 848
58642885 849 if (needs_clflush_after)
e76e9aeb 850 i915_gem_chipset_flush(dev);
58642885 851
40123c1f 852 return ret;
673a394b
EA
853}
854
855/**
856 * Writes data to the object referenced by handle.
857 *
858 * On error, the contents of the buffer that were to be modified are undefined.
859 */
860int
861i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 862 struct drm_file *file)
673a394b
EA
863{
864 struct drm_i915_gem_pwrite *args = data;
05394f39 865 struct drm_i915_gem_object *obj;
51311d0a
CW
866 int ret;
867
868 if (args->size == 0)
869 return 0;
870
871 if (!access_ok(VERIFY_READ,
872 (char __user *)(uintptr_t)args->data_ptr,
873 args->size))
874 return -EFAULT;
875
f56f821f
DV
876 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
877 args->size);
51311d0a
CW
878 if (ret)
879 return -EFAULT;
673a394b 880
fbd5a26d 881 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 882 if (ret)
fbd5a26d 883 return ret;
1d7cfea1 884
05394f39 885 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 886 if (&obj->base == NULL) {
1d7cfea1
CW
887 ret = -ENOENT;
888 goto unlock;
fbd5a26d 889 }
673a394b 890
7dcd2499 891 /* Bounds check destination. */
05394f39
CW
892 if (args->offset > obj->base.size ||
893 args->size > obj->base.size - args->offset) {
ce9d419d 894 ret = -EINVAL;
35b62a89 895 goto out;
ce9d419d
CW
896 }
897
1286ff73
DV
898 /* prime objects have no backing filp to GEM pread/pwrite
899 * pages from.
900 */
901 if (!obj->base.filp) {
902 ret = -EINVAL;
903 goto out;
904 }
905
db53a302
CW
906 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
907
935aaa69 908 ret = -EFAULT;
673a394b
EA
909 /* We can only do the GTT pwrite on untiled buffers, as otherwise
910 * it would end up going through the fenced access, and we'll get
911 * different detiling behavior between reading and writing.
912 * pread/pwrite currently are reading and writing from the CPU
913 * perspective, requiring manual detiling by the client.
914 */
5c0480f2 915 if (obj->phys_obj) {
fbd5a26d 916 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
917 goto out;
918 }
919
86a1ee26 920 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 921 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 922 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 923 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
924 /* Note that the gtt paths might fail with non-page-backed user
925 * pointers (e.g. gtt mappings when moving data between
926 * textures). Fallback to the shmem path in that case. */
fbd5a26d 927 }
673a394b 928
86a1ee26 929 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 930 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 931
35b62a89 932out:
05394f39 933 drm_gem_object_unreference(&obj->base);
1d7cfea1 934unlock:
fbd5a26d 935 mutex_unlock(&dev->struct_mutex);
673a394b
EA
936 return ret;
937}
938
b361237b
CW
939int
940i915_gem_check_wedge(struct drm_i915_private *dev_priv,
941 bool interruptible)
942{
943 if (atomic_read(&dev_priv->mm.wedged)) {
944 struct completion *x = &dev_priv->error_completion;
945 bool recovery_complete;
946 unsigned long flags;
947
948 /* Give the error handler a chance to run. */
949 spin_lock_irqsave(&x->wait.lock, flags);
950 recovery_complete = x->done > 0;
951 spin_unlock_irqrestore(&x->wait.lock, flags);
952
953 /* Non-interruptible callers can't handle -EAGAIN, hence return
954 * -EIO unconditionally for these. */
955 if (!interruptible)
956 return -EIO;
957
958 /* Recovery complete, but still wedged means reset failure. */
959 if (recovery_complete)
960 return -EIO;
961
962 return -EAGAIN;
963 }
964
965 return 0;
966}
967
968/*
969 * Compare seqno against outstanding lazy request. Emit a request if they are
970 * equal.
971 */
972static int
973i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
974{
975 int ret;
976
977 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
978
979 ret = 0;
980 if (seqno == ring->outstanding_lazy_request)
981 ret = i915_add_request(ring, NULL, NULL);
982
983 return ret;
984}
985
986/**
987 * __wait_seqno - wait until execution of seqno has finished
988 * @ring: the ring expected to report seqno
989 * @seqno: duh!
990 * @interruptible: do an interruptible wait (normally yes)
991 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
992 *
993 * Returns 0 if the seqno was found within the alloted time. Else returns the
994 * errno with remaining time filled in timeout argument.
995 */
996static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
997 bool interruptible, struct timespec *timeout)
998{
999 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1000 struct timespec before, now, wait_time={1,0};
1001 unsigned long timeout_jiffies;
1002 long end;
1003 bool wait_forever = true;
1004 int ret;
1005
1006 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1007 return 0;
1008
1009 trace_i915_gem_request_wait_begin(ring, seqno);
1010
1011 if (timeout != NULL) {
1012 wait_time = *timeout;
1013 wait_forever = false;
1014 }
1015
1016 timeout_jiffies = timespec_to_jiffies(&wait_time);
1017
1018 if (WARN_ON(!ring->irq_get(ring)))
1019 return -ENODEV;
1020
1021 /* Record current time in case interrupted by signal, or wedged * */
1022 getrawmonotonic(&before);
1023
1024#define EXIT_COND \
1025 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1026 atomic_read(&dev_priv->mm.wedged))
1027 do {
1028 if (interruptible)
1029 end = wait_event_interruptible_timeout(ring->irq_queue,
1030 EXIT_COND,
1031 timeout_jiffies);
1032 else
1033 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1034 timeout_jiffies);
1035
1036 ret = i915_gem_check_wedge(dev_priv, interruptible);
1037 if (ret)
1038 end = ret;
1039 } while (end == 0 && wait_forever);
1040
1041 getrawmonotonic(&now);
1042
1043 ring->irq_put(ring);
1044 trace_i915_gem_request_wait_end(ring, seqno);
1045#undef EXIT_COND
1046
1047 if (timeout) {
1048 struct timespec sleep_time = timespec_sub(now, before);
1049 *timeout = timespec_sub(*timeout, sleep_time);
1050 }
1051
1052 switch (end) {
1053 case -EIO:
1054 case -EAGAIN: /* Wedged */
1055 case -ERESTARTSYS: /* Signal */
1056 return (int)end;
1057 case 0: /* Timeout */
1058 if (timeout)
1059 set_normalized_timespec(timeout, 0, 0);
1060 return -ETIME;
1061 default: /* Completed */
1062 WARN_ON(end < 0); /* We're not aware of other errors */
1063 return 0;
1064 }
1065}
1066
1067/**
1068 * Waits for a sequence number to be signaled, and cleans up the
1069 * request and object lists appropriately for that event.
1070 */
1071int
1072i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1073{
1074 struct drm_device *dev = ring->dev;
1075 struct drm_i915_private *dev_priv = dev->dev_private;
1076 bool interruptible = dev_priv->mm.interruptible;
1077 int ret;
1078
1079 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1080 BUG_ON(seqno == 0);
1081
1082 ret = i915_gem_check_wedge(dev_priv, interruptible);
1083 if (ret)
1084 return ret;
1085
1086 ret = i915_gem_check_olr(ring, seqno);
1087 if (ret)
1088 return ret;
1089
1090 return __wait_seqno(ring, seqno, interruptible, NULL);
1091}
1092
1093/**
1094 * Ensures that all rendering to the object has completed and the object is
1095 * safe to unbind from the GTT or access from the CPU.
1096 */
1097static __must_check int
1098i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1099 bool readonly)
1100{
1101 struct intel_ring_buffer *ring = obj->ring;
1102 u32 seqno;
1103 int ret;
1104
1105 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1106 if (seqno == 0)
1107 return 0;
1108
1109 ret = i915_wait_seqno(ring, seqno);
1110 if (ret)
1111 return ret;
1112
1113 i915_gem_retire_requests_ring(ring);
1114
1115 /* Manually manage the write flush as we may have not yet
1116 * retired the buffer.
1117 */
1118 if (obj->last_write_seqno &&
1119 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1120 obj->last_write_seqno = 0;
1121 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1122 }
1123
1124 return 0;
1125}
1126
3236f57a
CW
1127/* A nonblocking variant of the above wait. This is a highly dangerous routine
1128 * as the object state may change during this call.
1129 */
1130static __must_check int
1131i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1132 bool readonly)
1133{
1134 struct drm_device *dev = obj->base.dev;
1135 struct drm_i915_private *dev_priv = dev->dev_private;
1136 struct intel_ring_buffer *ring = obj->ring;
1137 u32 seqno;
1138 int ret;
1139
1140 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1141 BUG_ON(!dev_priv->mm.interruptible);
1142
1143 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1144 if (seqno == 0)
1145 return 0;
1146
1147 ret = i915_gem_check_wedge(dev_priv, true);
1148 if (ret)
1149 return ret;
1150
1151 ret = i915_gem_check_olr(ring, seqno);
1152 if (ret)
1153 return ret;
1154
1155 mutex_unlock(&dev->struct_mutex);
1156 ret = __wait_seqno(ring, seqno, true, NULL);
1157 mutex_lock(&dev->struct_mutex);
1158
1159 i915_gem_retire_requests_ring(ring);
1160
1161 /* Manually manage the write flush as we may have not yet
1162 * retired the buffer.
1163 */
1164 if (obj->last_write_seqno &&
1165 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1166 obj->last_write_seqno = 0;
1167 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1168 }
1169
1170 return ret;
1171}
1172
673a394b 1173/**
2ef7eeaa
EA
1174 * Called when user space prepares to use an object with the CPU, either
1175 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1176 */
1177int
1178i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1179 struct drm_file *file)
673a394b
EA
1180{
1181 struct drm_i915_gem_set_domain *args = data;
05394f39 1182 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1183 uint32_t read_domains = args->read_domains;
1184 uint32_t write_domain = args->write_domain;
673a394b
EA
1185 int ret;
1186
2ef7eeaa 1187 /* Only handle setting domains to types used by the CPU. */
21d509e3 1188 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1189 return -EINVAL;
1190
21d509e3 1191 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1192 return -EINVAL;
1193
1194 /* Having something in the write domain implies it's in the read
1195 * domain, and only that read domain. Enforce that in the request.
1196 */
1197 if (write_domain != 0 && read_domains != write_domain)
1198 return -EINVAL;
1199
76c1dec1 1200 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1201 if (ret)
76c1dec1 1202 return ret;
1d7cfea1 1203
05394f39 1204 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1205 if (&obj->base == NULL) {
1d7cfea1
CW
1206 ret = -ENOENT;
1207 goto unlock;
76c1dec1 1208 }
673a394b 1209
3236f57a
CW
1210 /* Try to flush the object off the GPU without holding the lock.
1211 * We will repeat the flush holding the lock in the normal manner
1212 * to catch cases where we are gazumped.
1213 */
1214 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1215 if (ret)
1216 goto unref;
1217
2ef7eeaa
EA
1218 if (read_domains & I915_GEM_DOMAIN_GTT) {
1219 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1220
1221 /* Silently promote "you're not bound, there was nothing to do"
1222 * to success, since the client was just asking us to
1223 * make sure everything was done.
1224 */
1225 if (ret == -EINVAL)
1226 ret = 0;
2ef7eeaa 1227 } else {
e47c68e9 1228 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1229 }
1230
3236f57a 1231unref:
05394f39 1232 drm_gem_object_unreference(&obj->base);
1d7cfea1 1233unlock:
673a394b
EA
1234 mutex_unlock(&dev->struct_mutex);
1235 return ret;
1236}
1237
1238/**
1239 * Called when user space has done writes to this buffer
1240 */
1241int
1242i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1243 struct drm_file *file)
673a394b
EA
1244{
1245 struct drm_i915_gem_sw_finish *args = data;
05394f39 1246 struct drm_i915_gem_object *obj;
673a394b
EA
1247 int ret = 0;
1248
76c1dec1 1249 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1250 if (ret)
76c1dec1 1251 return ret;
1d7cfea1 1252
05394f39 1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1254 if (&obj->base == NULL) {
1d7cfea1
CW
1255 ret = -ENOENT;
1256 goto unlock;
673a394b
EA
1257 }
1258
673a394b 1259 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1260 if (obj->pin_count)
e47c68e9
EA
1261 i915_gem_object_flush_cpu_write_domain(obj);
1262
05394f39 1263 drm_gem_object_unreference(&obj->base);
1d7cfea1 1264unlock:
673a394b
EA
1265 mutex_unlock(&dev->struct_mutex);
1266 return ret;
1267}
1268
1269/**
1270 * Maps the contents of an object, returning the address it is mapped
1271 * into.
1272 *
1273 * While the mapping holds a reference on the contents of the object, it doesn't
1274 * imply a ref on the object itself.
1275 */
1276int
1277i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1278 struct drm_file *file)
673a394b
EA
1279{
1280 struct drm_i915_gem_mmap *args = data;
1281 struct drm_gem_object *obj;
673a394b
EA
1282 unsigned long addr;
1283
05394f39 1284 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1285 if (obj == NULL)
bf79cb91 1286 return -ENOENT;
673a394b 1287
1286ff73
DV
1288 /* prime objects have no backing filp to GEM mmap
1289 * pages from.
1290 */
1291 if (!obj->filp) {
1292 drm_gem_object_unreference_unlocked(obj);
1293 return -EINVAL;
1294 }
1295
6be5ceb0 1296 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1297 PROT_READ | PROT_WRITE, MAP_SHARED,
1298 args->offset);
bc9025bd 1299 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1300 if (IS_ERR((void *)addr))
1301 return addr;
1302
1303 args->addr_ptr = (uint64_t) addr;
1304
1305 return 0;
1306}
1307
de151cf6
JB
1308/**
1309 * i915_gem_fault - fault a page into the GTT
1310 * vma: VMA in question
1311 * vmf: fault info
1312 *
1313 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1314 * from userspace. The fault handler takes care of binding the object to
1315 * the GTT (if needed), allocating and programming a fence register (again,
1316 * only if needed based on whether the old reg is still valid or the object
1317 * is tiled) and inserting a new PTE into the faulting process.
1318 *
1319 * Note that the faulting process may involve evicting existing objects
1320 * from the GTT and/or fence registers to make room. So performance may
1321 * suffer if the GTT working set is large or there are few fence registers
1322 * left.
1323 */
1324int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1325{
05394f39
CW
1326 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1327 struct drm_device *dev = obj->base.dev;
7d1c4804 1328 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1329 pgoff_t page_offset;
1330 unsigned long pfn;
1331 int ret = 0;
0f973f27 1332 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1333
1334 /* We don't use vmf->pgoff since that has the fake offset */
1335 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1336 PAGE_SHIFT;
1337
d9bc7e9f
CW
1338 ret = i915_mutex_lock_interruptible(dev);
1339 if (ret)
1340 goto out;
a00b10c3 1341
db53a302
CW
1342 trace_i915_gem_object_fault(obj, page_offset, true, write);
1343
eb119bd6
CW
1344 /* Access to snoopable pages through the GTT is incoherent. */
1345 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1346 ret = -EINVAL;
1347 goto unlock;
1348 }
1349
d9bc7e9f 1350 /* Now bind it into the GTT if needed */
c9839303
CW
1351 ret = i915_gem_object_pin(obj, 0, true, false);
1352 if (ret)
1353 goto unlock;
4a684a41 1354
c9839303
CW
1355 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1356 if (ret)
1357 goto unpin;
74898d7e 1358
06d98131 1359 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1360 if (ret)
c9839303 1361 goto unpin;
7d1c4804 1362
6299f992
CW
1363 obj->fault_mappable = true;
1364
dd2757f8 1365 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1366 page_offset;
1367
1368 /* Finally, remap it using the new GTT offset */
1369 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1370unpin:
1371 i915_gem_object_unpin(obj);
c715089f 1372unlock:
de151cf6 1373 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1374out:
de151cf6 1375 switch (ret) {
d9bc7e9f 1376 case -EIO:
a9340cca
DV
1377 /* If this -EIO is due to a gpu hang, give the reset code a
1378 * chance to clean up the mess. Otherwise return the proper
1379 * SIGBUS. */
1380 if (!atomic_read(&dev_priv->mm.wedged))
1381 return VM_FAULT_SIGBUS;
045e769a 1382 case -EAGAIN:
d9bc7e9f
CW
1383 /* Give the error handler a chance to run and move the
1384 * objects off the GPU active list. Next time we service the
1385 * fault, we should be able to transition the page into the
1386 * GTT without touching the GPU (and so avoid further
1387 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1388 * with coherency, just lost writes.
1389 */
045e769a 1390 set_need_resched();
c715089f
CW
1391 case 0:
1392 case -ERESTARTSYS:
bed636ab 1393 case -EINTR:
e79e0fe3
DR
1394 case -EBUSY:
1395 /*
1396 * EBUSY is ok: this just means that another thread
1397 * already did the job.
1398 */
c715089f 1399 return VM_FAULT_NOPAGE;
de151cf6 1400 case -ENOMEM:
de151cf6 1401 return VM_FAULT_OOM;
a7c2e1aa
DV
1402 case -ENOSPC:
1403 return VM_FAULT_SIGBUS;
de151cf6 1404 default:
a7c2e1aa 1405 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1406 return VM_FAULT_SIGBUS;
de151cf6
JB
1407 }
1408}
1409
901782b2
CW
1410/**
1411 * i915_gem_release_mmap - remove physical page mappings
1412 * @obj: obj in question
1413 *
af901ca1 1414 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1415 * relinquish ownership of the pages back to the system.
1416 *
1417 * It is vital that we remove the page mapping if we have mapped a tiled
1418 * object through the GTT and then lose the fence register due to
1419 * resource pressure. Similarly if the object has been moved out of the
1420 * aperture, than pages mapped into userspace must be revoked. Removing the
1421 * mapping will then trigger a page fault on the next user access, allowing
1422 * fixup by i915_gem_fault().
1423 */
d05ca301 1424void
05394f39 1425i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1426{
6299f992
CW
1427 if (!obj->fault_mappable)
1428 return;
901782b2 1429
f6e47884
CW
1430 if (obj->base.dev->dev_mapping)
1431 unmap_mapping_range(obj->base.dev->dev_mapping,
1432 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1433 obj->base.size, 1);
fb7d516a 1434
6299f992 1435 obj->fault_mappable = false;
901782b2
CW
1436}
1437
92b88aeb 1438static uint32_t
e28f8711 1439i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1440{
e28f8711 1441 uint32_t gtt_size;
92b88aeb
CW
1442
1443 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1444 tiling_mode == I915_TILING_NONE)
1445 return size;
92b88aeb
CW
1446
1447 /* Previous chips need a power-of-two fence region when tiling */
1448 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1449 gtt_size = 1024*1024;
92b88aeb 1450 else
e28f8711 1451 gtt_size = 512*1024;
92b88aeb 1452
e28f8711
CW
1453 while (gtt_size < size)
1454 gtt_size <<= 1;
92b88aeb 1455
e28f8711 1456 return gtt_size;
92b88aeb
CW
1457}
1458
de151cf6
JB
1459/**
1460 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1461 * @obj: object to check
1462 *
1463 * Return the required GTT alignment for an object, taking into account
5e783301 1464 * potential fence register mapping.
de151cf6
JB
1465 */
1466static uint32_t
e28f8711
CW
1467i915_gem_get_gtt_alignment(struct drm_device *dev,
1468 uint32_t size,
1469 int tiling_mode)
de151cf6 1470{
de151cf6
JB
1471 /*
1472 * Minimum alignment is 4k (GTT page size), but might be greater
1473 * if a fence register is needed for the object.
1474 */
a00b10c3 1475 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1476 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1477 return 4096;
1478
a00b10c3
CW
1479 /*
1480 * Previous chips need to be aligned to the size of the smallest
1481 * fence register that can contain the object.
1482 */
e28f8711 1483 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1484}
1485
5e783301
DV
1486/**
1487 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1488 * unfenced object
e28f8711
CW
1489 * @dev: the device
1490 * @size: size of the object
1491 * @tiling_mode: tiling mode of the object
5e783301
DV
1492 *
1493 * Return the required GTT alignment for an object, only taking into account
1494 * unfenced tiled surface requirements.
1495 */
467cffba 1496uint32_t
e28f8711
CW
1497i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1498 uint32_t size,
1499 int tiling_mode)
5e783301 1500{
5e783301
DV
1501 /*
1502 * Minimum alignment is 4k (GTT page size) for sane hw.
1503 */
1504 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1505 tiling_mode == I915_TILING_NONE)
5e783301
DV
1506 return 4096;
1507
e28f8711
CW
1508 /* Previous hardware however needs to be aligned to a power-of-two
1509 * tile height. The simplest method for determining this is to reuse
1510 * the power-of-tile object size.
5e783301 1511 */
e28f8711 1512 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1513}
1514
d8cb5086
CW
1515static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1516{
1517 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1518 int ret;
1519
1520 if (obj->base.map_list.map)
1521 return 0;
1522
da494d7c
DV
1523 dev_priv->mm.shrinker_no_lock_stealing = true;
1524
d8cb5086
CW
1525 ret = drm_gem_create_mmap_offset(&obj->base);
1526 if (ret != -ENOSPC)
da494d7c 1527 goto out;
d8cb5086
CW
1528
1529 /* Badly fragmented mmap space? The only way we can recover
1530 * space is by destroying unwanted objects. We can't randomly release
1531 * mmap_offsets as userspace expects them to be persistent for the
1532 * lifetime of the objects. The closest we can is to release the
1533 * offsets on purgeable objects by truncating it and marking it purged,
1534 * which prevents userspace from ever using that object again.
1535 */
1536 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1537 ret = drm_gem_create_mmap_offset(&obj->base);
1538 if (ret != -ENOSPC)
da494d7c 1539 goto out;
d8cb5086
CW
1540
1541 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1542 ret = drm_gem_create_mmap_offset(&obj->base);
1543out:
1544 dev_priv->mm.shrinker_no_lock_stealing = false;
1545
1546 return ret;
d8cb5086
CW
1547}
1548
1549static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1550{
1551 if (!obj->base.map_list.map)
1552 return;
1553
1554 drm_gem_free_mmap_offset(&obj->base);
1555}
1556
de151cf6 1557int
ff72145b
DA
1558i915_gem_mmap_gtt(struct drm_file *file,
1559 struct drm_device *dev,
1560 uint32_t handle,
1561 uint64_t *offset)
de151cf6 1562{
da761a6e 1563 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1564 struct drm_i915_gem_object *obj;
de151cf6
JB
1565 int ret;
1566
76c1dec1 1567 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1568 if (ret)
76c1dec1 1569 return ret;
de151cf6 1570
ff72145b 1571 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1572 if (&obj->base == NULL) {
1d7cfea1
CW
1573 ret = -ENOENT;
1574 goto unlock;
1575 }
de151cf6 1576
05394f39 1577 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1578 ret = -E2BIG;
ff56b0bc 1579 goto out;
da761a6e
CW
1580 }
1581
05394f39 1582 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1583 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1584 ret = -EINVAL;
1585 goto out;
ab18282d
CW
1586 }
1587
d8cb5086
CW
1588 ret = i915_gem_object_create_mmap_offset(obj);
1589 if (ret)
1590 goto out;
de151cf6 1591
ff72145b 1592 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1593
1d7cfea1 1594out:
05394f39 1595 drm_gem_object_unreference(&obj->base);
1d7cfea1 1596unlock:
de151cf6 1597 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1598 return ret;
de151cf6
JB
1599}
1600
ff72145b
DA
1601/**
1602 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1603 * @dev: DRM device
1604 * @data: GTT mapping ioctl data
1605 * @file: GEM object info
1606 *
1607 * Simply returns the fake offset to userspace so it can mmap it.
1608 * The mmap call will end up in drm_gem_mmap(), which will set things
1609 * up so we can get faults in the handler above.
1610 *
1611 * The fault handler will take care of binding the object into the GTT
1612 * (since it may have been evicted to make room for something), allocating
1613 * a fence register, and mapping the appropriate aperture address into
1614 * userspace.
1615 */
1616int
1617i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1618 struct drm_file *file)
1619{
1620 struct drm_i915_gem_mmap_gtt *args = data;
1621
ff72145b
DA
1622 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1623}
1624
225067ee
DV
1625/* Immediately discard the backing storage */
1626static void
1627i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1628{
e5281ccd 1629 struct inode *inode;
e5281ccd 1630
4d6294bf 1631 i915_gem_object_free_mmap_offset(obj);
1286ff73 1632
4d6294bf
CW
1633 if (obj->base.filp == NULL)
1634 return;
e5281ccd 1635
225067ee
DV
1636 /* Our goal here is to return as much of the memory as
1637 * is possible back to the system as we are called from OOM.
1638 * To do this we must instruct the shmfs to drop all of its
1639 * backing pages, *now*.
1640 */
05394f39 1641 inode = obj->base.filp->f_path.dentry->d_inode;
225067ee 1642 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1643
225067ee
DV
1644 obj->madv = __I915_MADV_PURGED;
1645}
e5281ccd 1646
225067ee
DV
1647static inline int
1648i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1649{
1650 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1651}
1652
5cdf5881 1653static void
05394f39 1654i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1655{
05394f39 1656 int page_count = obj->base.size / PAGE_SIZE;
9da3da66 1657 struct scatterlist *sg;
6c085a72 1658 int ret, i;
1286ff73 1659
05394f39 1660 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1661
6c085a72
CW
1662 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1663 if (ret) {
1664 /* In the event of a disaster, abandon all caches and
1665 * hope for the best.
1666 */
1667 WARN_ON(ret != -EIO);
1668 i915_gem_clflush_object(obj);
1669 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1670 }
1671
6dacfd2f 1672 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1673 i915_gem_object_save_bit_17_swizzle(obj);
1674
05394f39
CW
1675 if (obj->madv == I915_MADV_DONTNEED)
1676 obj->dirty = 0;
3ef94daa 1677
9da3da66
CW
1678 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1679 struct page *page = sg_page(sg);
1680
05394f39 1681 if (obj->dirty)
9da3da66 1682 set_page_dirty(page);
3ef94daa 1683
05394f39 1684 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1685 mark_page_accessed(page);
3ef94daa 1686
9da3da66 1687 page_cache_release(page);
3ef94daa 1688 }
05394f39 1689 obj->dirty = 0;
673a394b 1690
9da3da66
CW
1691 sg_free_table(obj->pages);
1692 kfree(obj->pages);
37e680a1 1693}
6c085a72 1694
37e680a1
CW
1695static int
1696i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1697{
1698 const struct drm_i915_gem_object_ops *ops = obj->ops;
1699
2f745ad3 1700 if (obj->pages == NULL)
37e680a1
CW
1701 return 0;
1702
1703 BUG_ON(obj->gtt_space);
6c085a72 1704
a5570178
CW
1705 if (obj->pages_pin_count)
1706 return -EBUSY;
1707
a2165e31
CW
1708 /* ->put_pages might need to allocate memory for the bit17 swizzle
1709 * array, hence protect them from being reaped by removing them from gtt
1710 * lists early. */
1711 list_del(&obj->gtt_list);
1712
37e680a1 1713 ops->put_pages(obj);
05394f39 1714 obj->pages = NULL;
37e680a1 1715
6c085a72
CW
1716 if (i915_gem_object_is_purgeable(obj))
1717 i915_gem_object_truncate(obj);
1718
1719 return 0;
1720}
1721
1722static long
1723i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1724{
1725 struct drm_i915_gem_object *obj, *next;
1726 long count = 0;
1727
1728 list_for_each_entry_safe(obj, next,
1729 &dev_priv->mm.unbound_list,
1730 gtt_list) {
1731 if (i915_gem_object_is_purgeable(obj) &&
37e680a1 1732 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1733 count += obj->base.size >> PAGE_SHIFT;
1734 if (count >= target)
1735 return count;
1736 }
1737 }
1738
1739 list_for_each_entry_safe(obj, next,
1740 &dev_priv->mm.inactive_list,
1741 mm_list) {
1742 if (i915_gem_object_is_purgeable(obj) &&
1743 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1744 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1745 count += obj->base.size >> PAGE_SHIFT;
1746 if (count >= target)
1747 return count;
1748 }
1749 }
1750
1751 return count;
1752}
1753
1754static void
1755i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1756{
1757 struct drm_i915_gem_object *obj, *next;
1758
1759 i915_gem_evict_everything(dev_priv->dev);
1760
1761 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
37e680a1 1762 i915_gem_object_put_pages(obj);
225067ee
DV
1763}
1764
37e680a1 1765static int
6c085a72 1766i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1767{
6c085a72 1768 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1769 int page_count, i;
1770 struct address_space *mapping;
9da3da66
CW
1771 struct sg_table *st;
1772 struct scatterlist *sg;
e5281ccd 1773 struct page *page;
6c085a72 1774 gfp_t gfp;
e5281ccd 1775
6c085a72
CW
1776 /* Assert that the object is not currently in any GPU domain. As it
1777 * wasn't in the GTT, there shouldn't be any way it could have been in
1778 * a GPU cache
1779 */
1780 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1781 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1782
9da3da66
CW
1783 st = kmalloc(sizeof(*st), GFP_KERNEL);
1784 if (st == NULL)
1785 return -ENOMEM;
1786
05394f39 1787 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1788 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1789 sg_free_table(st);
1790 kfree(st);
e5281ccd 1791 return -ENOMEM;
9da3da66 1792 }
e5281ccd 1793
9da3da66
CW
1794 /* Get the list of pages out of our struct file. They'll be pinned
1795 * at this point until we release them.
1796 *
1797 * Fail silently without starting the shrinker
1798 */
6c085a72
CW
1799 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1800 gfp = mapping_gfp_mask(mapping);
caf49191 1801 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1802 gfp &= ~(__GFP_IO | __GFP_WAIT);
9da3da66 1803 for_each_sg(st->sgl, sg, page_count, i) {
6c085a72
CW
1804 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1805 if (IS_ERR(page)) {
1806 i915_gem_purge(dev_priv, page_count);
1807 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1808 }
1809 if (IS_ERR(page)) {
1810 /* We've tried hard to allocate the memory by reaping
1811 * our own buffer, now let the real VM do its job and
1812 * go down in flames if truly OOM.
1813 */
caf49191 1814 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1815 gfp |= __GFP_IO | __GFP_WAIT;
1816
1817 i915_gem_shrink_all(dev_priv);
1818 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1819 if (IS_ERR(page))
1820 goto err_pages;
1821
caf49191 1822 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1823 gfp &= ~(__GFP_IO | __GFP_WAIT);
1824 }
e5281ccd 1825
9da3da66 1826 sg_set_page(sg, page, PAGE_SIZE, 0);
e5281ccd
CW
1827 }
1828
74ce6b6c
CW
1829 obj->pages = st;
1830
6dacfd2f 1831 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1832 i915_gem_object_do_bit_17_swizzle(obj);
1833
1834 return 0;
1835
1836err_pages:
9da3da66
CW
1837 for_each_sg(st->sgl, sg, i, page_count)
1838 page_cache_release(sg_page(sg));
1839 sg_free_table(st);
1840 kfree(st);
e5281ccd 1841 return PTR_ERR(page);
673a394b
EA
1842}
1843
37e680a1
CW
1844/* Ensure that the associated pages are gathered from the backing storage
1845 * and pinned into our object. i915_gem_object_get_pages() may be called
1846 * multiple times before they are released by a single call to
1847 * i915_gem_object_put_pages() - once the pages are no longer referenced
1848 * either as a result of memory pressure (reaping pages under the shrinker)
1849 * or as the object is itself released.
1850 */
1851int
1852i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1853{
1854 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1855 const struct drm_i915_gem_object_ops *ops = obj->ops;
1856 int ret;
1857
2f745ad3 1858 if (obj->pages)
37e680a1
CW
1859 return 0;
1860
a5570178
CW
1861 BUG_ON(obj->pages_pin_count);
1862
37e680a1
CW
1863 ret = ops->get_pages(obj);
1864 if (ret)
1865 return ret;
1866
1867 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1868 return 0;
673a394b
EA
1869}
1870
54cf91dc 1871void
05394f39 1872i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1873 struct intel_ring_buffer *ring)
673a394b 1874{
05394f39 1875 struct drm_device *dev = obj->base.dev;
69dc4987 1876 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1877 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1878
852835f3 1879 BUG_ON(ring == NULL);
05394f39 1880 obj->ring = ring;
673a394b
EA
1881
1882 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1883 if (!obj->active) {
1884 drm_gem_object_reference(&obj->base);
1885 obj->active = 1;
673a394b 1886 }
e35a41de 1887
673a394b 1888 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1889 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1890 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1891
0201f1ec 1892 obj->last_read_seqno = seqno;
caea7476 1893
7dd49065 1894 if (obj->fenced_gpu_access) {
caea7476 1895 obj->last_fenced_seqno = seqno;
caea7476 1896
7dd49065
CW
1897 /* Bump MRU to take account of the delayed flush */
1898 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1899 struct drm_i915_fence_reg *reg;
1900
1901 reg = &dev_priv->fence_regs[obj->fence_reg];
1902 list_move_tail(&reg->lru_list,
1903 &dev_priv->mm.fence_list);
1904 }
caea7476
CW
1905 }
1906}
1907
1908static void
caea7476 1909i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1910{
05394f39 1911 struct drm_device *dev = obj->base.dev;
caea7476 1912 struct drm_i915_private *dev_priv = dev->dev_private;
ce44b0ea 1913
65ce3027 1914 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1915 BUG_ON(!obj->active);
caea7476 1916
f047e395
CW
1917 if (obj->pin_count) /* are we a framebuffer? */
1918 intel_mark_fb_idle(obj);
caea7476 1919
1b50247a 1920 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476 1921
65ce3027 1922 list_del_init(&obj->ring_list);
caea7476
CW
1923 obj->ring = NULL;
1924
65ce3027
CW
1925 obj->last_read_seqno = 0;
1926 obj->last_write_seqno = 0;
1927 obj->base.write_domain = 0;
1928
1929 obj->last_fenced_seqno = 0;
caea7476 1930 obj->fenced_gpu_access = false;
caea7476
CW
1931
1932 obj->active = 0;
1933 drm_gem_object_unreference(&obj->base);
1934
1935 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1936}
673a394b 1937
9d773091 1938static int
fca26bb4 1939i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1940{
9d773091
CW
1941 struct drm_i915_private *dev_priv = dev->dev_private;
1942 struct intel_ring_buffer *ring;
1943 int ret, i, j;
53d227f2 1944
107f27a5 1945 /* Carefully retire all requests without writing to the rings */
9d773091 1946 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1947 ret = intel_ring_idle(ring);
1948 if (ret)
1949 return ret;
9d773091 1950 }
9d773091 1951 i915_gem_retire_requests(dev);
107f27a5
CW
1952
1953 /* Finally reset hw state */
9d773091 1954 for_each_ring(ring, dev_priv, i) {
fca26bb4 1955 intel_ring_init_seqno(ring, seqno);
498d2ac1 1956
9d773091
CW
1957 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1958 ring->sync_seqno[j] = 0;
1959 }
53d227f2 1960
9d773091 1961 return 0;
53d227f2
DV
1962}
1963
fca26bb4
MK
1964int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1965{
1966 struct drm_i915_private *dev_priv = dev->dev_private;
1967 int ret;
1968
1969 if (seqno == 0)
1970 return -EINVAL;
1971
1972 /* HWS page needs to be set less than what we
1973 * will inject to ring
1974 */
1975 ret = i915_gem_init_seqno(dev, seqno - 1);
1976 if (ret)
1977 return ret;
1978
1979 /* Carefully set the last_seqno value so that wrap
1980 * detection still works
1981 */
1982 dev_priv->next_seqno = seqno;
1983 dev_priv->last_seqno = seqno - 1;
1984 if (dev_priv->last_seqno == 0)
1985 dev_priv->last_seqno--;
1986
1987 return 0;
1988}
1989
9d773091
CW
1990int
1991i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 1992{
9d773091
CW
1993 struct drm_i915_private *dev_priv = dev->dev_private;
1994
1995 /* reserve 0 for non-seqno */
1996 if (dev_priv->next_seqno == 0) {
fca26bb4 1997 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
1998 if (ret)
1999 return ret;
53d227f2 2000
9d773091
CW
2001 dev_priv->next_seqno = 1;
2002 }
53d227f2 2003
f72b3435 2004 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2005 return 0;
53d227f2
DV
2006}
2007
3cce469c 2008int
db53a302 2009i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 2010 struct drm_file *file,
acb868d3 2011 u32 *out_seqno)
673a394b 2012{
db53a302 2013 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2014 struct drm_i915_gem_request *request;
a71d8d94 2015 u32 request_ring_position;
673a394b 2016 int was_empty;
3cce469c
CW
2017 int ret;
2018
cc889e0f
DV
2019 /*
2020 * Emit any outstanding flushes - execbuf can fail to emit the flush
2021 * after having emitted the batchbuffer command. Hence we need to fix
2022 * things up similar to emitting the lazy request. The difference here
2023 * is that the flush _must_ happen before the next request, no matter
2024 * what.
2025 */
a7b9761d
CW
2026 ret = intel_ring_flush_all_caches(ring);
2027 if (ret)
2028 return ret;
cc889e0f 2029
acb868d3
CW
2030 request = kmalloc(sizeof(*request), GFP_KERNEL);
2031 if (request == NULL)
2032 return -ENOMEM;
cc889e0f 2033
673a394b 2034
a71d8d94
CW
2035 /* Record the position of the start of the request so that
2036 * should we detect the updated seqno part-way through the
2037 * GPU processing the request, we never over-estimate the
2038 * position of the head.
2039 */
2040 request_ring_position = intel_ring_get_tail(ring);
2041
9d773091 2042 ret = ring->add_request(ring);
3bb73aba
CW
2043 if (ret) {
2044 kfree(request);
2045 return ret;
2046 }
673a394b 2047
9d773091 2048 request->seqno = intel_ring_get_seqno(ring);
852835f3 2049 request->ring = ring;
a71d8d94 2050 request->tail = request_ring_position;
673a394b 2051 request->emitted_jiffies = jiffies;
852835f3
ZN
2052 was_empty = list_empty(&ring->request_list);
2053 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2054 request->file_priv = NULL;
852835f3 2055
db53a302
CW
2056 if (file) {
2057 struct drm_i915_file_private *file_priv = file->driver_priv;
2058
1c25595f 2059 spin_lock(&file_priv->mm.lock);
f787a5f5 2060 request->file_priv = file_priv;
b962442e 2061 list_add_tail(&request->client_list,
f787a5f5 2062 &file_priv->mm.request_list);
1c25595f 2063 spin_unlock(&file_priv->mm.lock);
b962442e 2064 }
673a394b 2065
9d773091 2066 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2067 ring->outstanding_lazy_request = 0;
db53a302 2068
f65d9421 2069 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
2070 if (i915_enable_hangcheck) {
2071 mod_timer(&dev_priv->hangcheck_timer,
cecc21fe 2072 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3e0dc6b0 2073 }
f047e395 2074 if (was_empty) {
b3b079db 2075 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2076 &dev_priv->mm.retire_work,
2077 round_jiffies_up_relative(HZ));
f047e395
CW
2078 intel_mark_busy(dev_priv->dev);
2079 }
f65d9421 2080 }
cc889e0f 2081
acb868d3 2082 if (out_seqno)
9d773091 2083 *out_seqno = request->seqno;
3cce469c 2084 return 0;
673a394b
EA
2085}
2086
f787a5f5
CW
2087static inline void
2088i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2089{
1c25595f 2090 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2091
1c25595f
CW
2092 if (!file_priv)
2093 return;
1c5d22f7 2094
1c25595f 2095 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2096 if (request->file_priv) {
2097 list_del(&request->client_list);
2098 request->file_priv = NULL;
2099 }
1c25595f 2100 spin_unlock(&file_priv->mm.lock);
673a394b 2101}
673a394b 2102
dfaae392
CW
2103static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2104 struct intel_ring_buffer *ring)
9375e446 2105{
dfaae392
CW
2106 while (!list_empty(&ring->request_list)) {
2107 struct drm_i915_gem_request *request;
673a394b 2108
dfaae392
CW
2109 request = list_first_entry(&ring->request_list,
2110 struct drm_i915_gem_request,
2111 list);
de151cf6 2112
dfaae392 2113 list_del(&request->list);
f787a5f5 2114 i915_gem_request_remove_from_client(request);
dfaae392
CW
2115 kfree(request);
2116 }
673a394b 2117
dfaae392 2118 while (!list_empty(&ring->active_list)) {
05394f39 2119 struct drm_i915_gem_object *obj;
9375e446 2120
05394f39
CW
2121 obj = list_first_entry(&ring->active_list,
2122 struct drm_i915_gem_object,
2123 ring_list);
9375e446 2124
05394f39 2125 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2126 }
2127}
2128
312817a3
CW
2129static void i915_gem_reset_fences(struct drm_device *dev)
2130{
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 int i;
2133
4b9de737 2134 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2135 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2136
ada726c7 2137 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 2138
ada726c7
CW
2139 if (reg->obj)
2140 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2141
ada726c7
CW
2142 reg->pin_count = 0;
2143 reg->obj = NULL;
2144 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2145 }
ada726c7
CW
2146
2147 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2148}
2149
069efc1d 2150void i915_gem_reset(struct drm_device *dev)
673a394b 2151{
77f01230 2152 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2153 struct drm_i915_gem_object *obj;
b4519513 2154 struct intel_ring_buffer *ring;
1ec14ad3 2155 int i;
673a394b 2156
b4519513
CW
2157 for_each_ring(ring, dev_priv, i)
2158 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2159
dfaae392
CW
2160 /* Move everything out of the GPU domains to ensure we do any
2161 * necessary invalidation upon reuse.
2162 */
05394f39 2163 list_for_each_entry(obj,
77f01230 2164 &dev_priv->mm.inactive_list,
69dc4987 2165 mm_list)
77f01230 2166 {
05394f39 2167 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2168 }
069efc1d
CW
2169
2170 /* The fence registers are invalidated so clear them out */
312817a3 2171 i915_gem_reset_fences(dev);
673a394b
EA
2172}
2173
2174/**
2175 * This function clears the request list as sequence numbers are passed.
2176 */
a71d8d94 2177void
db53a302 2178i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2179{
673a394b
EA
2180 uint32_t seqno;
2181
db53a302 2182 if (list_empty(&ring->request_list))
6c0594a3
KW
2183 return;
2184
db53a302 2185 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2186
b2eadbc8 2187 seqno = ring->get_seqno(ring, true);
1ec14ad3 2188
852835f3 2189 while (!list_empty(&ring->request_list)) {
673a394b 2190 struct drm_i915_gem_request *request;
673a394b 2191
852835f3 2192 request = list_first_entry(&ring->request_list,
673a394b
EA
2193 struct drm_i915_gem_request,
2194 list);
673a394b 2195
dfaae392 2196 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2197 break;
2198
db53a302 2199 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2200 /* We know the GPU must have read the request to have
2201 * sent us the seqno + interrupt, so use the position
2202 * of tail of the request to update the last known position
2203 * of the GPU head.
2204 */
2205 ring->last_retired_head = request->tail;
b84d5f0c
CW
2206
2207 list_del(&request->list);
f787a5f5 2208 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
2209 kfree(request);
2210 }
673a394b 2211
b84d5f0c
CW
2212 /* Move any buffers on the active list that are no longer referenced
2213 * by the ringbuffer to the flushing/inactive lists as appropriate.
2214 */
2215 while (!list_empty(&ring->active_list)) {
05394f39 2216 struct drm_i915_gem_object *obj;
b84d5f0c 2217
0206e353 2218 obj = list_first_entry(&ring->active_list,
05394f39
CW
2219 struct drm_i915_gem_object,
2220 ring_list);
673a394b 2221
0201f1ec 2222 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2223 break;
b84d5f0c 2224
65ce3027 2225 i915_gem_object_move_to_inactive(obj);
673a394b 2226 }
9d34e5db 2227
db53a302
CW
2228 if (unlikely(ring->trace_irq_seqno &&
2229 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2230 ring->irq_put(ring);
db53a302 2231 ring->trace_irq_seqno = 0;
9d34e5db 2232 }
23bc5982 2233
db53a302 2234 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2235}
2236
b09a1fec
CW
2237void
2238i915_gem_retire_requests(struct drm_device *dev)
2239{
2240 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2241 struct intel_ring_buffer *ring;
1ec14ad3 2242 int i;
b09a1fec 2243
b4519513
CW
2244 for_each_ring(ring, dev_priv, i)
2245 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2246}
2247
75ef9da2 2248static void
673a394b
EA
2249i915_gem_retire_work_handler(struct work_struct *work)
2250{
2251 drm_i915_private_t *dev_priv;
2252 struct drm_device *dev;
b4519513 2253 struct intel_ring_buffer *ring;
0a58705b
CW
2254 bool idle;
2255 int i;
673a394b
EA
2256
2257 dev_priv = container_of(work, drm_i915_private_t,
2258 mm.retire_work.work);
2259 dev = dev_priv->dev;
2260
891b48cf
CW
2261 /* Come back later if the device is busy... */
2262 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2263 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2264 round_jiffies_up_relative(HZ));
891b48cf
CW
2265 return;
2266 }
673a394b 2267
b09a1fec 2268 i915_gem_retire_requests(dev);
673a394b 2269
0a58705b
CW
2270 /* Send a periodic flush down the ring so we don't hold onto GEM
2271 * objects indefinitely.
673a394b 2272 */
0a58705b 2273 idle = true;
b4519513 2274 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
2275 if (ring->gpu_caches_dirty)
2276 i915_add_request(ring, NULL, NULL);
0a58705b
CW
2277
2278 idle &= list_empty(&ring->request_list);
673a394b
EA
2279 }
2280
0a58705b 2281 if (!dev_priv->mm.suspended && !idle)
bcb45086
CW
2282 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2283 round_jiffies_up_relative(HZ));
f047e395
CW
2284 if (idle)
2285 intel_mark_idle(dev);
0a58705b 2286
673a394b 2287 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2288}
2289
30dfebf3
DV
2290/**
2291 * Ensures that an object will eventually get non-busy by flushing any required
2292 * write domains, emitting any outstanding lazy request and retiring and
2293 * completed requests.
2294 */
2295static int
2296i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2297{
2298 int ret;
2299
2300 if (obj->active) {
0201f1ec 2301 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2302 if (ret)
2303 return ret;
2304
30dfebf3
DV
2305 i915_gem_retire_requests_ring(obj->ring);
2306 }
2307
2308 return 0;
2309}
2310
23ba4fd0
BW
2311/**
2312 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2313 * @DRM_IOCTL_ARGS: standard ioctl arguments
2314 *
2315 * Returns 0 if successful, else an error is returned with the remaining time in
2316 * the timeout parameter.
2317 * -ETIME: object is still busy after timeout
2318 * -ERESTARTSYS: signal interrupted the wait
2319 * -ENONENT: object doesn't exist
2320 * Also possible, but rare:
2321 * -EAGAIN: GPU wedged
2322 * -ENOMEM: damn
2323 * -ENODEV: Internal IRQ fail
2324 * -E?: The add request failed
2325 *
2326 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2327 * non-zero timeout parameter the wait ioctl will wait for the given number of
2328 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2329 * without holding struct_mutex the object may become re-busied before this
2330 * function completes. A similar but shorter * race condition exists in the busy
2331 * ioctl
2332 */
2333int
2334i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2335{
2336 struct drm_i915_gem_wait *args = data;
2337 struct drm_i915_gem_object *obj;
2338 struct intel_ring_buffer *ring = NULL;
eac1f14f 2339 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2340 u32 seqno = 0;
2341 int ret = 0;
2342
eac1f14f
BW
2343 if (args->timeout_ns >= 0) {
2344 timeout_stack = ns_to_timespec(args->timeout_ns);
2345 timeout = &timeout_stack;
2346 }
23ba4fd0
BW
2347
2348 ret = i915_mutex_lock_interruptible(dev);
2349 if (ret)
2350 return ret;
2351
2352 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2353 if (&obj->base == NULL) {
2354 mutex_unlock(&dev->struct_mutex);
2355 return -ENOENT;
2356 }
2357
30dfebf3
DV
2358 /* Need to make sure the object gets inactive eventually. */
2359 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2360 if (ret)
2361 goto out;
2362
2363 if (obj->active) {
0201f1ec 2364 seqno = obj->last_read_seqno;
23ba4fd0
BW
2365 ring = obj->ring;
2366 }
2367
2368 if (seqno == 0)
2369 goto out;
2370
23ba4fd0
BW
2371 /* Do this after OLR check to make sure we make forward progress polling
2372 * on this IOCTL with a 0 timeout (like busy ioctl)
2373 */
2374 if (!args->timeout_ns) {
2375 ret = -ETIME;
2376 goto out;
2377 }
2378
2379 drm_gem_object_unreference(&obj->base);
2380 mutex_unlock(&dev->struct_mutex);
2381
eac1f14f
BW
2382 ret = __wait_seqno(ring, seqno, true, timeout);
2383 if (timeout) {
2384 WARN_ON(!timespec_valid(timeout));
2385 args->timeout_ns = timespec_to_ns(timeout);
2386 }
23ba4fd0
BW
2387 return ret;
2388
2389out:
2390 drm_gem_object_unreference(&obj->base);
2391 mutex_unlock(&dev->struct_mutex);
2392 return ret;
2393}
2394
5816d648
BW
2395/**
2396 * i915_gem_object_sync - sync an object to a ring.
2397 *
2398 * @obj: object which may be in use on another ring.
2399 * @to: ring we wish to use the object on. May be NULL.
2400 *
2401 * This code is meant to abstract object synchronization with the GPU.
2402 * Calling with NULL implies synchronizing the object with the CPU
2403 * rather than a particular GPU ring.
2404 *
2405 * Returns 0 if successful, else propagates up the lower layer error.
2406 */
2911a35b
BW
2407int
2408i915_gem_object_sync(struct drm_i915_gem_object *obj,
2409 struct intel_ring_buffer *to)
2410{
2411 struct intel_ring_buffer *from = obj->ring;
2412 u32 seqno;
2413 int ret, idx;
2414
2415 if (from == NULL || to == from)
2416 return 0;
2417
5816d648 2418 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2419 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2420
2421 idx = intel_ring_sync_index(from, to);
2422
0201f1ec 2423 seqno = obj->last_read_seqno;
2911a35b
BW
2424 if (seqno <= from->sync_seqno[idx])
2425 return 0;
2426
b4aca010
BW
2427 ret = i915_gem_check_olr(obj->ring, seqno);
2428 if (ret)
2429 return ret;
2911a35b 2430
1500f7ea 2431 ret = to->sync_to(to, from, seqno);
e3a5a225 2432 if (!ret)
7b01e260
MK
2433 /* We use last_read_seqno because sync_to()
2434 * might have just caused seqno wrap under
2435 * the radar.
2436 */
2437 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2438
e3a5a225 2439 return ret;
2911a35b
BW
2440}
2441
b5ffc9bc
CW
2442static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2443{
2444 u32 old_write_domain, old_read_domains;
2445
b5ffc9bc
CW
2446 /* Act a barrier for all accesses through the GTT */
2447 mb();
2448
2449 /* Force a pagefault for domain tracking on next user access */
2450 i915_gem_release_mmap(obj);
2451
b97c3d9c
KP
2452 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2453 return;
2454
b5ffc9bc
CW
2455 old_read_domains = obj->base.read_domains;
2456 old_write_domain = obj->base.write_domain;
2457
2458 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2459 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2460
2461 trace_i915_gem_object_change_domain(obj,
2462 old_read_domains,
2463 old_write_domain);
2464}
2465
673a394b
EA
2466/**
2467 * Unbinds an object from the GTT aperture.
2468 */
0f973f27 2469int
05394f39 2470i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2471{
7bddb01f 2472 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2473 int ret = 0;
2474
05394f39 2475 if (obj->gtt_space == NULL)
673a394b
EA
2476 return 0;
2477
31d8d651
CW
2478 if (obj->pin_count)
2479 return -EBUSY;
673a394b 2480
c4670ad0
CW
2481 BUG_ON(obj->pages == NULL);
2482
a8198eea 2483 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2484 if (ret)
a8198eea
CW
2485 return ret;
2486 /* Continue on if we fail due to EIO, the GPU is hung so we
2487 * should be safe and we need to cleanup or else we might
2488 * cause memory corruption through use-after-free.
2489 */
2490
b5ffc9bc 2491 i915_gem_object_finish_gtt(obj);
5323fd04 2492
96b47b65 2493 /* release the fence reg _after_ flushing */
d9e86c0e 2494 ret = i915_gem_object_put_fence(obj);
1488fc08 2495 if (ret)
d9e86c0e 2496 return ret;
96b47b65 2497
db53a302
CW
2498 trace_i915_gem_object_unbind(obj);
2499
74898d7e
DV
2500 if (obj->has_global_gtt_mapping)
2501 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2502 if (obj->has_aliasing_ppgtt_mapping) {
2503 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2504 obj->has_aliasing_ppgtt_mapping = 0;
2505 }
74163907 2506 i915_gem_gtt_finish_object(obj);
7bddb01f 2507
6c085a72
CW
2508 list_del(&obj->mm_list);
2509 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2510 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2511 obj->map_and_fenceable = true;
673a394b 2512
05394f39
CW
2513 drm_mm_put_block(obj->gtt_space);
2514 obj->gtt_space = NULL;
2515 obj->gtt_offset = 0;
673a394b 2516
88241785 2517 return 0;
54cf91dc
CW
2518}
2519
b2da9fe5 2520int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2521{
2522 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2523 struct intel_ring_buffer *ring;
1ec14ad3 2524 int ret, i;
4df2faf4 2525
4df2faf4 2526 /* Flush everything onto the inactive list. */
b4519513 2527 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2528 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2529 if (ret)
2530 return ret;
2531
3e960501 2532 ret = intel_ring_idle(ring);
1ec14ad3
CW
2533 if (ret)
2534 return ret;
2535 }
4df2faf4 2536
8a1a49f9 2537 return 0;
4df2faf4
DV
2538}
2539
9ce079e4
CW
2540static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2541 struct drm_i915_gem_object *obj)
4e901fdc 2542{
4e901fdc 2543 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2544 uint64_t val;
2545
9ce079e4
CW
2546 if (obj) {
2547 u32 size = obj->gtt_space->size;
4e901fdc 2548
9ce079e4
CW
2549 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2550 0xfffff000) << 32;
2551 val |= obj->gtt_offset & 0xfffff000;
2552 val |= (uint64_t)((obj->stride / 128) - 1) <<
2553 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2554
9ce079e4
CW
2555 if (obj->tiling_mode == I915_TILING_Y)
2556 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2557 val |= I965_FENCE_REG_VALID;
2558 } else
2559 val = 0;
c6642782 2560
9ce079e4
CW
2561 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2562 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2563}
2564
9ce079e4
CW
2565static void i965_write_fence_reg(struct drm_device *dev, int reg,
2566 struct drm_i915_gem_object *obj)
de151cf6 2567{
de151cf6 2568 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2569 uint64_t val;
2570
9ce079e4
CW
2571 if (obj) {
2572 u32 size = obj->gtt_space->size;
de151cf6 2573
9ce079e4
CW
2574 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2575 0xfffff000) << 32;
2576 val |= obj->gtt_offset & 0xfffff000;
2577 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2578 if (obj->tiling_mode == I915_TILING_Y)
2579 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2580 val |= I965_FENCE_REG_VALID;
2581 } else
2582 val = 0;
c6642782 2583
9ce079e4
CW
2584 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2585 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2586}
2587
9ce079e4
CW
2588static void i915_write_fence_reg(struct drm_device *dev, int reg,
2589 struct drm_i915_gem_object *obj)
de151cf6 2590{
de151cf6 2591 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2592 u32 val;
de151cf6 2593
9ce079e4
CW
2594 if (obj) {
2595 u32 size = obj->gtt_space->size;
2596 int pitch_val;
2597 int tile_width;
c6642782 2598
9ce079e4
CW
2599 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2600 (size & -size) != size ||
2601 (obj->gtt_offset & (size - 1)),
2602 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2603 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2604
9ce079e4
CW
2605 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2606 tile_width = 128;
2607 else
2608 tile_width = 512;
2609
2610 /* Note: pitch better be a power of two tile widths */
2611 pitch_val = obj->stride / tile_width;
2612 pitch_val = ffs(pitch_val) - 1;
2613
2614 val = obj->gtt_offset;
2615 if (obj->tiling_mode == I915_TILING_Y)
2616 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2617 val |= I915_FENCE_SIZE_BITS(size);
2618 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2619 val |= I830_FENCE_REG_VALID;
2620 } else
2621 val = 0;
2622
2623 if (reg < 8)
2624 reg = FENCE_REG_830_0 + reg * 4;
2625 else
2626 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2627
2628 I915_WRITE(reg, val);
2629 POSTING_READ(reg);
de151cf6
JB
2630}
2631
9ce079e4
CW
2632static void i830_write_fence_reg(struct drm_device *dev, int reg,
2633 struct drm_i915_gem_object *obj)
de151cf6 2634{
de151cf6 2635 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2636 uint32_t val;
de151cf6 2637
9ce079e4
CW
2638 if (obj) {
2639 u32 size = obj->gtt_space->size;
2640 uint32_t pitch_val;
de151cf6 2641
9ce079e4
CW
2642 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2643 (size & -size) != size ||
2644 (obj->gtt_offset & (size - 1)),
2645 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2646 obj->gtt_offset, size);
e76a16de 2647
9ce079e4
CW
2648 pitch_val = obj->stride / 128;
2649 pitch_val = ffs(pitch_val) - 1;
de151cf6 2650
9ce079e4
CW
2651 val = obj->gtt_offset;
2652 if (obj->tiling_mode == I915_TILING_Y)
2653 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2654 val |= I830_FENCE_SIZE_BITS(size);
2655 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2656 val |= I830_FENCE_REG_VALID;
2657 } else
2658 val = 0;
c6642782 2659
9ce079e4
CW
2660 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2661 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2662}
2663
2664static void i915_gem_write_fence(struct drm_device *dev, int reg,
2665 struct drm_i915_gem_object *obj)
2666{
2667 switch (INTEL_INFO(dev)->gen) {
2668 case 7:
2669 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2670 case 5:
2671 case 4: i965_write_fence_reg(dev, reg, obj); break;
2672 case 3: i915_write_fence_reg(dev, reg, obj); break;
2673 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2674 default: BUG();
9ce079e4 2675 }
de151cf6
JB
2676}
2677
61050808
CW
2678static inline int fence_number(struct drm_i915_private *dev_priv,
2679 struct drm_i915_fence_reg *fence)
2680{
2681 return fence - dev_priv->fence_regs;
2682}
2683
2684static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2685 struct drm_i915_fence_reg *fence,
2686 bool enable)
2687{
2688 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2689 int reg = fence_number(dev_priv, fence);
2690
2691 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2692
2693 if (enable) {
2694 obj->fence_reg = reg;
2695 fence->obj = obj;
2696 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2697 } else {
2698 obj->fence_reg = I915_FENCE_REG_NONE;
2699 fence->obj = NULL;
2700 list_del_init(&fence->lru_list);
2701 }
2702}
2703
d9e86c0e 2704static int
a360bb1a 2705i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2706{
1c293ea3 2707 if (obj->last_fenced_seqno) {
86d5bc37 2708 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2709 if (ret)
2710 return ret;
d9e86c0e
CW
2711
2712 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2713 }
2714
63256ec5
CW
2715 /* Ensure that all CPU reads are completed before installing a fence
2716 * and all writes before removing the fence.
2717 */
2718 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2719 mb();
2720
86d5bc37 2721 obj->fenced_gpu_access = false;
d9e86c0e
CW
2722 return 0;
2723}
2724
2725int
2726i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2727{
61050808 2728 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2729 int ret;
2730
a360bb1a 2731 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2732 if (ret)
2733 return ret;
2734
61050808
CW
2735 if (obj->fence_reg == I915_FENCE_REG_NONE)
2736 return 0;
d9e86c0e 2737
61050808
CW
2738 i915_gem_object_update_fence(obj,
2739 &dev_priv->fence_regs[obj->fence_reg],
2740 false);
2741 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2742
2743 return 0;
2744}
2745
2746static struct drm_i915_fence_reg *
a360bb1a 2747i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2748{
ae3db24a 2749 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2750 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2751 int i;
ae3db24a
DV
2752
2753 /* First try to find a free reg */
d9e86c0e 2754 avail = NULL;
ae3db24a
DV
2755 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2756 reg = &dev_priv->fence_regs[i];
2757 if (!reg->obj)
d9e86c0e 2758 return reg;
ae3db24a 2759
1690e1eb 2760 if (!reg->pin_count)
d9e86c0e 2761 avail = reg;
ae3db24a
DV
2762 }
2763
d9e86c0e
CW
2764 if (avail == NULL)
2765 return NULL;
ae3db24a
DV
2766
2767 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2768 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2769 if (reg->pin_count)
ae3db24a
DV
2770 continue;
2771
8fe301ad 2772 return reg;
ae3db24a
DV
2773 }
2774
8fe301ad 2775 return NULL;
ae3db24a
DV
2776}
2777
de151cf6 2778/**
9a5a53b3 2779 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2780 * @obj: object to map through a fence reg
2781 *
2782 * When mapping objects through the GTT, userspace wants to be able to write
2783 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2784 * This function walks the fence regs looking for a free one for @obj,
2785 * stealing one if it can't find any.
2786 *
2787 * It then sets up the reg based on the object's properties: address, pitch
2788 * and tiling format.
9a5a53b3
CW
2789 *
2790 * For an untiled surface, this removes any existing fence.
de151cf6 2791 */
8c4b8c3f 2792int
06d98131 2793i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2794{
05394f39 2795 struct drm_device *dev = obj->base.dev;
79e53945 2796 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2797 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2798 struct drm_i915_fence_reg *reg;
ae3db24a 2799 int ret;
de151cf6 2800
14415745
CW
2801 /* Have we updated the tiling parameters upon the object and so
2802 * will need to serialise the write to the associated fence register?
2803 */
5d82e3e6 2804 if (obj->fence_dirty) {
14415745
CW
2805 ret = i915_gem_object_flush_fence(obj);
2806 if (ret)
2807 return ret;
2808 }
9a5a53b3 2809
d9e86c0e 2810 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2811 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2812 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2813 if (!obj->fence_dirty) {
14415745
CW
2814 list_move_tail(&reg->lru_list,
2815 &dev_priv->mm.fence_list);
2816 return 0;
2817 }
2818 } else if (enable) {
2819 reg = i915_find_fence_reg(dev);
2820 if (reg == NULL)
2821 return -EDEADLK;
d9e86c0e 2822
14415745
CW
2823 if (reg->obj) {
2824 struct drm_i915_gem_object *old = reg->obj;
2825
2826 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2827 if (ret)
2828 return ret;
2829
14415745 2830 i915_gem_object_fence_lost(old);
29c5a587 2831 }
14415745 2832 } else
a09ba7fa 2833 return 0;
a09ba7fa 2834
14415745 2835 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2836 obj->fence_dirty = false;
14415745 2837
9ce079e4 2838 return 0;
de151cf6
JB
2839}
2840
42d6ab48
CW
2841static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2842 struct drm_mm_node *gtt_space,
2843 unsigned long cache_level)
2844{
2845 struct drm_mm_node *other;
2846
2847 /* On non-LLC machines we have to be careful when putting differing
2848 * types of snoopable memory together to avoid the prefetcher
4239ca77 2849 * crossing memory domains and dying.
42d6ab48
CW
2850 */
2851 if (HAS_LLC(dev))
2852 return true;
2853
2854 if (gtt_space == NULL)
2855 return true;
2856
2857 if (list_empty(&gtt_space->node_list))
2858 return true;
2859
2860 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2861 if (other->allocated && !other->hole_follows && other->color != cache_level)
2862 return false;
2863
2864 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2865 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2866 return false;
2867
2868 return true;
2869}
2870
2871static void i915_gem_verify_gtt(struct drm_device *dev)
2872{
2873#if WATCH_GTT
2874 struct drm_i915_private *dev_priv = dev->dev_private;
2875 struct drm_i915_gem_object *obj;
2876 int err = 0;
2877
2878 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2879 if (obj->gtt_space == NULL) {
2880 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2881 err++;
2882 continue;
2883 }
2884
2885 if (obj->cache_level != obj->gtt_space->color) {
2886 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2887 obj->gtt_space->start,
2888 obj->gtt_space->start + obj->gtt_space->size,
2889 obj->cache_level,
2890 obj->gtt_space->color);
2891 err++;
2892 continue;
2893 }
2894
2895 if (!i915_gem_valid_gtt_space(dev,
2896 obj->gtt_space,
2897 obj->cache_level)) {
2898 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2899 obj->gtt_space->start,
2900 obj->gtt_space->start + obj->gtt_space->size,
2901 obj->cache_level);
2902 err++;
2903 continue;
2904 }
2905 }
2906
2907 WARN_ON(err);
2908#endif
2909}
2910
673a394b
EA
2911/**
2912 * Finds free space in the GTT aperture and binds the object there.
2913 */
2914static int
05394f39 2915i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2916 unsigned alignment,
86a1ee26
CW
2917 bool map_and_fenceable,
2918 bool nonblocking)
673a394b 2919{
05394f39 2920 struct drm_device *dev = obj->base.dev;
673a394b 2921 drm_i915_private_t *dev_priv = dev->dev_private;
dc9dd7a2 2922 struct drm_mm_node *node;
5e783301 2923 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2924 bool mappable, fenceable;
07f73f69 2925 int ret;
673a394b 2926
05394f39 2927 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2928 DRM_ERROR("Attempting to bind a purgeable object\n");
2929 return -EINVAL;
2930 }
2931
e28f8711
CW
2932 fence_size = i915_gem_get_gtt_size(dev,
2933 obj->base.size,
2934 obj->tiling_mode);
2935 fence_alignment = i915_gem_get_gtt_alignment(dev,
2936 obj->base.size,
2937 obj->tiling_mode);
2938 unfenced_alignment =
2939 i915_gem_get_unfenced_gtt_alignment(dev,
2940 obj->base.size,
2941 obj->tiling_mode);
a00b10c3 2942
673a394b 2943 if (alignment == 0)
5e783301
DV
2944 alignment = map_and_fenceable ? fence_alignment :
2945 unfenced_alignment;
75e9e915 2946 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2947 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2948 return -EINVAL;
2949 }
2950
05394f39 2951 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2952
654fc607
CW
2953 /* If the object is bigger than the entire aperture, reject it early
2954 * before evicting everything in a vain attempt to find space.
2955 */
05394f39 2956 if (obj->base.size >
75e9e915 2957 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2958 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2959 return -E2BIG;
2960 }
2961
37e680a1 2962 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
2963 if (ret)
2964 return ret;
2965
fbdda6fb
CW
2966 i915_gem_object_pin_pages(obj);
2967
dc9dd7a2
CW
2968 node = kzalloc(sizeof(*node), GFP_KERNEL);
2969 if (node == NULL) {
2970 i915_gem_object_unpin_pages(obj);
2971 return -ENOMEM;
2972 }
2973
673a394b 2974 search_free:
75e9e915 2975 if (map_and_fenceable)
dc9dd7a2
CW
2976 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2977 size, alignment, obj->cache_level,
2978 0, dev_priv->mm.gtt_mappable_end);
920afa77 2979 else
dc9dd7a2
CW
2980 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2981 size, alignment, obj->cache_level);
2982 if (ret) {
75e9e915 2983 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 2984 obj->cache_level,
86a1ee26
CW
2985 map_and_fenceable,
2986 nonblocking);
dc9dd7a2
CW
2987 if (ret == 0)
2988 goto search_free;
9731129c 2989
dc9dd7a2
CW
2990 i915_gem_object_unpin_pages(obj);
2991 kfree(node);
2992 return ret;
673a394b 2993 }
dc9dd7a2 2994 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
fbdda6fb 2995 i915_gem_object_unpin_pages(obj);
dc9dd7a2 2996 drm_mm_put_block(node);
42d6ab48 2997 return -EINVAL;
673a394b
EA
2998 }
2999
74163907 3000 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 3001 if (ret) {
fbdda6fb 3002 i915_gem_object_unpin_pages(obj);
dc9dd7a2 3003 drm_mm_put_block(node);
6c085a72 3004 return ret;
673a394b 3005 }
673a394b 3006
6c085a72 3007 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 3008 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 3009
dc9dd7a2
CW
3010 obj->gtt_space = node;
3011 obj->gtt_offset = node->start;
1c5d22f7 3012
75e9e915 3013 fenceable =
dc9dd7a2
CW
3014 node->size == fence_size &&
3015 (node->start & (fence_alignment - 1)) == 0;
a00b10c3 3016
75e9e915 3017 mappable =
05394f39 3018 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 3019
05394f39 3020 obj->map_and_fenceable = mappable && fenceable;
75e9e915 3021
fbdda6fb 3022 i915_gem_object_unpin_pages(obj);
db53a302 3023 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 3024 i915_gem_verify_gtt(dev);
673a394b
EA
3025 return 0;
3026}
3027
3028void
05394f39 3029i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3030{
673a394b
EA
3031 /* If we don't have a page list set up, then we're not pinned
3032 * to GPU, and we can ignore the cache flush because it'll happen
3033 * again at bind time.
3034 */
05394f39 3035 if (obj->pages == NULL)
673a394b
EA
3036 return;
3037
9c23f7fc
CW
3038 /* If the GPU is snooping the contents of the CPU cache,
3039 * we do not need to manually clear the CPU cache lines. However,
3040 * the caches are only snooped when the render cache is
3041 * flushed/invalidated. As we always have to emit invalidations
3042 * and flushes when moving into and out of the RENDER domain, correct
3043 * snooping behaviour occurs naturally as the result of our domain
3044 * tracking.
3045 */
3046 if (obj->cache_level != I915_CACHE_NONE)
3047 return;
3048
1c5d22f7 3049 trace_i915_gem_object_clflush(obj);
cfa16a0d 3050
9da3da66 3051 drm_clflush_sg(obj->pages);
e47c68e9
EA
3052}
3053
3054/** Flushes the GTT write domain for the object if it's dirty. */
3055static void
05394f39 3056i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3057{
1c5d22f7
CW
3058 uint32_t old_write_domain;
3059
05394f39 3060 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3061 return;
3062
63256ec5 3063 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3064 * to it immediately go to main memory as far as we know, so there's
3065 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3066 *
3067 * However, we do have to enforce the order so that all writes through
3068 * the GTT land before any writes to the device, such as updates to
3069 * the GATT itself.
e47c68e9 3070 */
63256ec5
CW
3071 wmb();
3072
05394f39
CW
3073 old_write_domain = obj->base.write_domain;
3074 obj->base.write_domain = 0;
1c5d22f7
CW
3075
3076 trace_i915_gem_object_change_domain(obj,
05394f39 3077 obj->base.read_domains,
1c5d22f7 3078 old_write_domain);
e47c68e9
EA
3079}
3080
3081/** Flushes the CPU write domain for the object if it's dirty. */
3082static void
05394f39 3083i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3084{
1c5d22f7 3085 uint32_t old_write_domain;
e47c68e9 3086
05394f39 3087 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3088 return;
3089
3090 i915_gem_clflush_object(obj);
e76e9aeb 3091 i915_gem_chipset_flush(obj->base.dev);
05394f39
CW
3092 old_write_domain = obj->base.write_domain;
3093 obj->base.write_domain = 0;
1c5d22f7
CW
3094
3095 trace_i915_gem_object_change_domain(obj,
05394f39 3096 obj->base.read_domains,
1c5d22f7 3097 old_write_domain);
e47c68e9
EA
3098}
3099
2ef7eeaa
EA
3100/**
3101 * Moves a single object to the GTT read, and possibly write domain.
3102 *
3103 * This function returns when the move is complete, including waiting on
3104 * flushes to occur.
3105 */
79e53945 3106int
2021746e 3107i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3108{
8325a09d 3109 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3110 uint32_t old_write_domain, old_read_domains;
e47c68e9 3111 int ret;
2ef7eeaa 3112
02354392 3113 /* Not valid to be called on unbound objects. */
05394f39 3114 if (obj->gtt_space == NULL)
02354392
EA
3115 return -EINVAL;
3116
8d7e3de1
CW
3117 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3118 return 0;
3119
0201f1ec 3120 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3121 if (ret)
3122 return ret;
3123
7213342d 3124 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3125
05394f39
CW
3126 old_write_domain = obj->base.write_domain;
3127 old_read_domains = obj->base.read_domains;
1c5d22f7 3128
e47c68e9
EA
3129 /* It should now be out of any other write domains, and we can update
3130 * the domain values for our changes.
3131 */
05394f39
CW
3132 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3133 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3134 if (write) {
05394f39
CW
3135 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3136 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3137 obj->dirty = 1;
2ef7eeaa
EA
3138 }
3139
1c5d22f7
CW
3140 trace_i915_gem_object_change_domain(obj,
3141 old_read_domains,
3142 old_write_domain);
3143
8325a09d
CW
3144 /* And bump the LRU for this access */
3145 if (i915_gem_object_is_inactive(obj))
3146 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3147
e47c68e9
EA
3148 return 0;
3149}
3150
e4ffd173
CW
3151int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3152 enum i915_cache_level cache_level)
3153{
7bddb01f
DV
3154 struct drm_device *dev = obj->base.dev;
3155 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3156 int ret;
3157
3158 if (obj->cache_level == cache_level)
3159 return 0;
3160
3161 if (obj->pin_count) {
3162 DRM_DEBUG("can not change the cache level of pinned objects\n");
3163 return -EBUSY;
3164 }
3165
42d6ab48
CW
3166 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3167 ret = i915_gem_object_unbind(obj);
3168 if (ret)
3169 return ret;
3170 }
3171
e4ffd173
CW
3172 if (obj->gtt_space) {
3173 ret = i915_gem_object_finish_gpu(obj);
3174 if (ret)
3175 return ret;
3176
3177 i915_gem_object_finish_gtt(obj);
3178
3179 /* Before SandyBridge, you could not use tiling or fence
3180 * registers with snooped memory, so relinquish any fences
3181 * currently pointing to our region in the aperture.
3182 */
42d6ab48 3183 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3184 ret = i915_gem_object_put_fence(obj);
3185 if (ret)
3186 return ret;
3187 }
3188
74898d7e
DV
3189 if (obj->has_global_gtt_mapping)
3190 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3191 if (obj->has_aliasing_ppgtt_mapping)
3192 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3193 obj, cache_level);
42d6ab48
CW
3194
3195 obj->gtt_space->color = cache_level;
e4ffd173
CW
3196 }
3197
3198 if (cache_level == I915_CACHE_NONE) {
3199 u32 old_read_domains, old_write_domain;
3200
3201 /* If we're coming from LLC cached, then we haven't
3202 * actually been tracking whether the data is in the
3203 * CPU cache or not, since we only allow one bit set
3204 * in obj->write_domain and have been skipping the clflushes.
3205 * Just set it to the CPU cache for now.
3206 */
3207 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3208 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3209
3210 old_read_domains = obj->base.read_domains;
3211 old_write_domain = obj->base.write_domain;
3212
3213 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3214 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3215
3216 trace_i915_gem_object_change_domain(obj,
3217 old_read_domains,
3218 old_write_domain);
3219 }
3220
3221 obj->cache_level = cache_level;
42d6ab48 3222 i915_gem_verify_gtt(dev);
e4ffd173
CW
3223 return 0;
3224}
3225
199adf40
BW
3226int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3227 struct drm_file *file)
e6994aee 3228{
199adf40 3229 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3230 struct drm_i915_gem_object *obj;
3231 int ret;
3232
3233 ret = i915_mutex_lock_interruptible(dev);
3234 if (ret)
3235 return ret;
3236
3237 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3238 if (&obj->base == NULL) {
3239 ret = -ENOENT;
3240 goto unlock;
3241 }
3242
199adf40 3243 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3244
3245 drm_gem_object_unreference(&obj->base);
3246unlock:
3247 mutex_unlock(&dev->struct_mutex);
3248 return ret;
3249}
3250
199adf40
BW
3251int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3252 struct drm_file *file)
e6994aee 3253{
199adf40 3254 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3255 struct drm_i915_gem_object *obj;
3256 enum i915_cache_level level;
3257 int ret;
3258
199adf40
BW
3259 switch (args->caching) {
3260 case I915_CACHING_NONE:
e6994aee
CW
3261 level = I915_CACHE_NONE;
3262 break;
199adf40 3263 case I915_CACHING_CACHED:
e6994aee
CW
3264 level = I915_CACHE_LLC;
3265 break;
3266 default:
3267 return -EINVAL;
3268 }
3269
3bc2913e
BW
3270 ret = i915_mutex_lock_interruptible(dev);
3271 if (ret)
3272 return ret;
3273
e6994aee
CW
3274 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3275 if (&obj->base == NULL) {
3276 ret = -ENOENT;
3277 goto unlock;
3278 }
3279
3280 ret = i915_gem_object_set_cache_level(obj, level);
3281
3282 drm_gem_object_unreference(&obj->base);
3283unlock:
3284 mutex_unlock(&dev->struct_mutex);
3285 return ret;
3286}
3287
b9241ea3 3288/*
2da3b9b9
CW
3289 * Prepare buffer for display plane (scanout, cursors, etc).
3290 * Can be called from an uninterruptible phase (modesetting) and allows
3291 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3292 */
3293int
2da3b9b9
CW
3294i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3295 u32 alignment,
919926ae 3296 struct intel_ring_buffer *pipelined)
b9241ea3 3297{
2da3b9b9 3298 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3299 int ret;
3300
0be73284 3301 if (pipelined != obj->ring) {
2911a35b
BW
3302 ret = i915_gem_object_sync(obj, pipelined);
3303 if (ret)
b9241ea3
ZW
3304 return ret;
3305 }
3306
a7ef0640
EA
3307 /* The display engine is not coherent with the LLC cache on gen6. As
3308 * a result, we make sure that the pinning that is about to occur is
3309 * done with uncached PTEs. This is lowest common denominator for all
3310 * chipsets.
3311 *
3312 * However for gen6+, we could do better by using the GFDT bit instead
3313 * of uncaching, which would allow us to flush all the LLC-cached data
3314 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3315 */
3316 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3317 if (ret)
3318 return ret;
3319
2da3b9b9
CW
3320 /* As the user may map the buffer once pinned in the display plane
3321 * (e.g. libkms for the bootup splash), we have to ensure that we
3322 * always use map_and_fenceable for all scanout buffers.
3323 */
86a1ee26 3324 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3325 if (ret)
3326 return ret;
3327
b118c1e3
CW
3328 i915_gem_object_flush_cpu_write_domain(obj);
3329
2da3b9b9 3330 old_write_domain = obj->base.write_domain;
05394f39 3331 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3332
3333 /* It should now be out of any other write domains, and we can update
3334 * the domain values for our changes.
3335 */
e5f1d962 3336 obj->base.write_domain = 0;
05394f39 3337 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3338
3339 trace_i915_gem_object_change_domain(obj,
3340 old_read_domains,
2da3b9b9 3341 old_write_domain);
b9241ea3
ZW
3342
3343 return 0;
3344}
3345
85345517 3346int
a8198eea 3347i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3348{
88241785
CW
3349 int ret;
3350
a8198eea 3351 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3352 return 0;
3353
0201f1ec 3354 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3355 if (ret)
3356 return ret;
3357
a8198eea
CW
3358 /* Ensure that we invalidate the GPU's caches and TLBs. */
3359 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3360 return 0;
85345517
CW
3361}
3362
e47c68e9
EA
3363/**
3364 * Moves a single object to the CPU read, and possibly write domain.
3365 *
3366 * This function returns when the move is complete, including waiting on
3367 * flushes to occur.
3368 */
dabdfe02 3369int
919926ae 3370i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3371{
1c5d22f7 3372 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3373 int ret;
3374
8d7e3de1
CW
3375 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3376 return 0;
3377
0201f1ec 3378 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3379 if (ret)
3380 return ret;
3381
e47c68e9 3382 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3383
05394f39
CW
3384 old_write_domain = obj->base.write_domain;
3385 old_read_domains = obj->base.read_domains;
1c5d22f7 3386
e47c68e9 3387 /* Flush the CPU cache if it's still invalid. */
05394f39 3388 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3389 i915_gem_clflush_object(obj);
2ef7eeaa 3390
05394f39 3391 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3392 }
3393
3394 /* It should now be out of any other write domains, and we can update
3395 * the domain values for our changes.
3396 */
05394f39 3397 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3398
3399 /* If we're writing through the CPU, then the GPU read domains will
3400 * need to be invalidated at next use.
3401 */
3402 if (write) {
05394f39
CW
3403 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3404 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3405 }
2ef7eeaa 3406
1c5d22f7
CW
3407 trace_i915_gem_object_change_domain(obj,
3408 old_read_domains,
3409 old_write_domain);
3410
2ef7eeaa
EA
3411 return 0;
3412}
3413
673a394b
EA
3414/* Throttle our rendering by waiting until the ring has completed our requests
3415 * emitted over 20 msec ago.
3416 *
b962442e
EA
3417 * Note that if we were to use the current jiffies each time around the loop,
3418 * we wouldn't escape the function with any frames outstanding if the time to
3419 * render a frame was over 20ms.
3420 *
673a394b
EA
3421 * This should get us reasonable parallelism between CPU and GPU but also
3422 * relatively low latency when blocking on a particular request to finish.
3423 */
40a5f0de 3424static int
f787a5f5 3425i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3426{
f787a5f5
CW
3427 struct drm_i915_private *dev_priv = dev->dev_private;
3428 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3429 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3430 struct drm_i915_gem_request *request;
3431 struct intel_ring_buffer *ring = NULL;
3432 u32 seqno = 0;
3433 int ret;
93533c29 3434
e110e8d6
CW
3435 if (atomic_read(&dev_priv->mm.wedged))
3436 return -EIO;
3437
1c25595f 3438 spin_lock(&file_priv->mm.lock);
f787a5f5 3439 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3440 if (time_after_eq(request->emitted_jiffies, recent_enough))
3441 break;
40a5f0de 3442
f787a5f5
CW
3443 ring = request->ring;
3444 seqno = request->seqno;
b962442e 3445 }
1c25595f 3446 spin_unlock(&file_priv->mm.lock);
40a5f0de 3447
f787a5f5
CW
3448 if (seqno == 0)
3449 return 0;
2bc43b5c 3450
5c81fe85 3451 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3452 if (ret == 0)
3453 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3454
3455 return ret;
3456}
3457
673a394b 3458int
05394f39
CW
3459i915_gem_object_pin(struct drm_i915_gem_object *obj,
3460 uint32_t alignment,
86a1ee26
CW
3461 bool map_and_fenceable,
3462 bool nonblocking)
673a394b 3463{
673a394b
EA
3464 int ret;
3465
7e81a42e
CW
3466 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3467 return -EBUSY;
ac0c6b5a 3468
05394f39
CW
3469 if (obj->gtt_space != NULL) {
3470 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3471 (map_and_fenceable && !obj->map_and_fenceable)) {
3472 WARN(obj->pin_count,
ae7d49d8 3473 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3474 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3475 " obj->map_and_fenceable=%d\n",
05394f39 3476 obj->gtt_offset, alignment,
75e9e915 3477 map_and_fenceable,
05394f39 3478 obj->map_and_fenceable);
ac0c6b5a
CW
3479 ret = i915_gem_object_unbind(obj);
3480 if (ret)
3481 return ret;
3482 }
3483 }
3484
05394f39 3485 if (obj->gtt_space == NULL) {
8742267a
CW
3486 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3487
a00b10c3 3488 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3489 map_and_fenceable,
3490 nonblocking);
9731129c 3491 if (ret)
673a394b 3492 return ret;
8742267a
CW
3493
3494 if (!dev_priv->mm.aliasing_ppgtt)
3495 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3496 }
76446cac 3497
74898d7e
DV
3498 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3499 i915_gem_gtt_bind_object(obj, obj->cache_level);
3500
1b50247a 3501 obj->pin_count++;
6299f992 3502 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3503
3504 return 0;
3505}
3506
3507void
05394f39 3508i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3509{
05394f39
CW
3510 BUG_ON(obj->pin_count == 0);
3511 BUG_ON(obj->gtt_space == NULL);
673a394b 3512
1b50247a 3513 if (--obj->pin_count == 0)
6299f992 3514 obj->pin_mappable = false;
673a394b
EA
3515}
3516
3517int
3518i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3519 struct drm_file *file)
673a394b
EA
3520{
3521 struct drm_i915_gem_pin *args = data;
05394f39 3522 struct drm_i915_gem_object *obj;
673a394b
EA
3523 int ret;
3524
1d7cfea1
CW
3525 ret = i915_mutex_lock_interruptible(dev);
3526 if (ret)
3527 return ret;
673a394b 3528
05394f39 3529 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3530 if (&obj->base == NULL) {
1d7cfea1
CW
3531 ret = -ENOENT;
3532 goto unlock;
673a394b 3533 }
673a394b 3534
05394f39 3535 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3536 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3537 ret = -EINVAL;
3538 goto out;
3ef94daa
CW
3539 }
3540
05394f39 3541 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3542 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3543 args->handle);
1d7cfea1
CW
3544 ret = -EINVAL;
3545 goto out;
79e53945
JB
3546 }
3547
05394f39
CW
3548 obj->user_pin_count++;
3549 obj->pin_filp = file;
3550 if (obj->user_pin_count == 1) {
86a1ee26 3551 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3552 if (ret)
3553 goto out;
673a394b
EA
3554 }
3555
3556 /* XXX - flush the CPU caches for pinned objects
3557 * as the X server doesn't manage domains yet
3558 */
e47c68e9 3559 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3560 args->offset = obj->gtt_offset;
1d7cfea1 3561out:
05394f39 3562 drm_gem_object_unreference(&obj->base);
1d7cfea1 3563unlock:
673a394b 3564 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3565 return ret;
673a394b
EA
3566}
3567
3568int
3569i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3570 struct drm_file *file)
673a394b
EA
3571{
3572 struct drm_i915_gem_pin *args = data;
05394f39 3573 struct drm_i915_gem_object *obj;
76c1dec1 3574 int ret;
673a394b 3575
1d7cfea1
CW
3576 ret = i915_mutex_lock_interruptible(dev);
3577 if (ret)
3578 return ret;
673a394b 3579
05394f39 3580 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3581 if (&obj->base == NULL) {
1d7cfea1
CW
3582 ret = -ENOENT;
3583 goto unlock;
673a394b 3584 }
76c1dec1 3585
05394f39 3586 if (obj->pin_filp != file) {
79e53945
JB
3587 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3588 args->handle);
1d7cfea1
CW
3589 ret = -EINVAL;
3590 goto out;
79e53945 3591 }
05394f39
CW
3592 obj->user_pin_count--;
3593 if (obj->user_pin_count == 0) {
3594 obj->pin_filp = NULL;
79e53945
JB
3595 i915_gem_object_unpin(obj);
3596 }
673a394b 3597
1d7cfea1 3598out:
05394f39 3599 drm_gem_object_unreference(&obj->base);
1d7cfea1 3600unlock:
673a394b 3601 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3602 return ret;
673a394b
EA
3603}
3604
3605int
3606i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3607 struct drm_file *file)
673a394b
EA
3608{
3609 struct drm_i915_gem_busy *args = data;
05394f39 3610 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3611 int ret;
3612
76c1dec1 3613 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3614 if (ret)
76c1dec1 3615 return ret;
673a394b 3616
05394f39 3617 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3618 if (&obj->base == NULL) {
1d7cfea1
CW
3619 ret = -ENOENT;
3620 goto unlock;
673a394b 3621 }
d1b851fc 3622
0be555b6
CW
3623 /* Count all active objects as busy, even if they are currently not used
3624 * by the gpu. Users of this interface expect objects to eventually
3625 * become non-busy without any further actions, therefore emit any
3626 * necessary flushes here.
c4de0a5d 3627 */
30dfebf3 3628 ret = i915_gem_object_flush_active(obj);
0be555b6 3629
30dfebf3 3630 args->busy = obj->active;
e9808edd
CW
3631 if (obj->ring) {
3632 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3633 args->busy |= intel_ring_flag(obj->ring) << 16;
3634 }
673a394b 3635
05394f39 3636 drm_gem_object_unreference(&obj->base);
1d7cfea1 3637unlock:
673a394b 3638 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3639 return ret;
673a394b
EA
3640}
3641
3642int
3643i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3644 struct drm_file *file_priv)
3645{
0206e353 3646 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3647}
3648
3ef94daa
CW
3649int
3650i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3651 struct drm_file *file_priv)
3652{
3653 struct drm_i915_gem_madvise *args = data;
05394f39 3654 struct drm_i915_gem_object *obj;
76c1dec1 3655 int ret;
3ef94daa
CW
3656
3657 switch (args->madv) {
3658 case I915_MADV_DONTNEED:
3659 case I915_MADV_WILLNEED:
3660 break;
3661 default:
3662 return -EINVAL;
3663 }
3664
1d7cfea1
CW
3665 ret = i915_mutex_lock_interruptible(dev);
3666 if (ret)
3667 return ret;
3668
05394f39 3669 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3670 if (&obj->base == NULL) {
1d7cfea1
CW
3671 ret = -ENOENT;
3672 goto unlock;
3ef94daa 3673 }
3ef94daa 3674
05394f39 3675 if (obj->pin_count) {
1d7cfea1
CW
3676 ret = -EINVAL;
3677 goto out;
3ef94daa
CW
3678 }
3679
05394f39
CW
3680 if (obj->madv != __I915_MADV_PURGED)
3681 obj->madv = args->madv;
3ef94daa 3682
6c085a72
CW
3683 /* if the object is no longer attached, discard its backing storage */
3684 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3685 i915_gem_object_truncate(obj);
3686
05394f39 3687 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3688
1d7cfea1 3689out:
05394f39 3690 drm_gem_object_unreference(&obj->base);
1d7cfea1 3691unlock:
3ef94daa 3692 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3693 return ret;
3ef94daa
CW
3694}
3695
37e680a1
CW
3696void i915_gem_object_init(struct drm_i915_gem_object *obj,
3697 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3698{
0327d6ba
CW
3699 INIT_LIST_HEAD(&obj->mm_list);
3700 INIT_LIST_HEAD(&obj->gtt_list);
3701 INIT_LIST_HEAD(&obj->ring_list);
3702 INIT_LIST_HEAD(&obj->exec_list);
3703
37e680a1
CW
3704 obj->ops = ops;
3705
0327d6ba
CW
3706 obj->fence_reg = I915_FENCE_REG_NONE;
3707 obj->madv = I915_MADV_WILLNEED;
3708 /* Avoid an unnecessary call to unbind on the first bind. */
3709 obj->map_and_fenceable = true;
3710
3711 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3712}
3713
37e680a1
CW
3714static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3715 .get_pages = i915_gem_object_get_pages_gtt,
3716 .put_pages = i915_gem_object_put_pages_gtt,
3717};
3718
05394f39
CW
3719struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3720 size_t size)
ac52bc56 3721{
c397b908 3722 struct drm_i915_gem_object *obj;
5949eac4 3723 struct address_space *mapping;
1a240d4d 3724 gfp_t mask;
ac52bc56 3725
42dcedd4 3726 obj = i915_gem_object_alloc(dev);
c397b908
DV
3727 if (obj == NULL)
3728 return NULL;
673a394b 3729
c397b908 3730 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 3731 i915_gem_object_free(obj);
c397b908
DV
3732 return NULL;
3733 }
673a394b 3734
bed1ea95
CW
3735 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3736 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3737 /* 965gm cannot relocate objects above 4GiB. */
3738 mask &= ~__GFP_HIGHMEM;
3739 mask |= __GFP_DMA32;
3740 }
3741
5949eac4 3742 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3743 mapping_set_gfp_mask(mapping, mask);
5949eac4 3744
37e680a1 3745 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3746
c397b908
DV
3747 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3748 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3749
3d29b842
ED
3750 if (HAS_LLC(dev)) {
3751 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3752 * cache) for about a 10% performance improvement
3753 * compared to uncached. Graphics requests other than
3754 * display scanout are coherent with the CPU in
3755 * accessing this cache. This means in this mode we
3756 * don't need to clflush on the CPU side, and on the
3757 * GPU side we only need to flush internal caches to
3758 * get data visible to the CPU.
3759 *
3760 * However, we maintain the display planes as UC, and so
3761 * need to rebind when first used as such.
3762 */
3763 obj->cache_level = I915_CACHE_LLC;
3764 } else
3765 obj->cache_level = I915_CACHE_NONE;
3766
05394f39 3767 return obj;
c397b908
DV
3768}
3769
3770int i915_gem_init_object(struct drm_gem_object *obj)
3771{
3772 BUG();
de151cf6 3773
673a394b
EA
3774 return 0;
3775}
3776
1488fc08 3777void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3778{
1488fc08 3779 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3780 struct drm_device *dev = obj->base.dev;
be72615b 3781 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3782
26e12f89
CW
3783 trace_i915_gem_object_destroy(obj);
3784
1488fc08
CW
3785 if (obj->phys_obj)
3786 i915_gem_detach_phys_object(dev, obj);
3787
3788 obj->pin_count = 0;
3789 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3790 bool was_interruptible;
3791
3792 was_interruptible = dev_priv->mm.interruptible;
3793 dev_priv->mm.interruptible = false;
3794
3795 WARN_ON(i915_gem_object_unbind(obj));
3796
3797 dev_priv->mm.interruptible = was_interruptible;
3798 }
3799
a5570178 3800 obj->pages_pin_count = 0;
37e680a1 3801 i915_gem_object_put_pages(obj);
d8cb5086 3802 i915_gem_object_free_mmap_offset(obj);
0104fdbb 3803 i915_gem_object_release_stolen(obj);
de151cf6 3804
9da3da66
CW
3805 BUG_ON(obj->pages);
3806
2f745ad3
CW
3807 if (obj->base.import_attach)
3808 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 3809
05394f39
CW
3810 drm_gem_object_release(&obj->base);
3811 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3812
05394f39 3813 kfree(obj->bit_17);
42dcedd4 3814 i915_gem_object_free(obj);
673a394b
EA
3815}
3816
29105ccc
CW
3817int
3818i915_gem_idle(struct drm_device *dev)
3819{
3820 drm_i915_private_t *dev_priv = dev->dev_private;
3821 int ret;
28dfe52a 3822
29105ccc 3823 mutex_lock(&dev->struct_mutex);
1c5d22f7 3824
87acb0a5 3825 if (dev_priv->mm.suspended) {
29105ccc
CW
3826 mutex_unlock(&dev->struct_mutex);
3827 return 0;
28dfe52a
EA
3828 }
3829
b2da9fe5 3830 ret = i915_gpu_idle(dev);
6dbe2772
KP
3831 if (ret) {
3832 mutex_unlock(&dev->struct_mutex);
673a394b 3833 return ret;
6dbe2772 3834 }
b2da9fe5 3835 i915_gem_retire_requests(dev);
673a394b 3836
29105ccc 3837 /* Under UMS, be paranoid and evict. */
a39d7efc 3838 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3839 i915_gem_evict_everything(dev);
29105ccc 3840
312817a3
CW
3841 i915_gem_reset_fences(dev);
3842
29105ccc
CW
3843 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3844 * We need to replace this with a semaphore, or something.
3845 * And not confound mm.suspended!
3846 */
3847 dev_priv->mm.suspended = 1;
bc0c7f14 3848 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3849
3850 i915_kernel_lost_context(dev);
6dbe2772 3851 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3852
6dbe2772
KP
3853 mutex_unlock(&dev->struct_mutex);
3854
29105ccc
CW
3855 /* Cancel the retire work handler, which should be idle now. */
3856 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3857
673a394b
EA
3858 return 0;
3859}
3860
b9524a1e
BW
3861void i915_gem_l3_remap(struct drm_device *dev)
3862{
3863 drm_i915_private_t *dev_priv = dev->dev_private;
3864 u32 misccpctl;
3865 int i;
3866
3867 if (!IS_IVYBRIDGE(dev))
3868 return;
3869
a4da4fa4 3870 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
3871 return;
3872
3873 misccpctl = I915_READ(GEN7_MISCCPCTL);
3874 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3875 POSTING_READ(GEN7_MISCCPCTL);
3876
3877 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3878 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 3879 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
3880 DRM_DEBUG("0x%x was already programmed to %x\n",
3881 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 3882 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 3883 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 3884 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
3885 }
3886
3887 /* Make sure all the writes land before disabling dop clock gating */
3888 POSTING_READ(GEN7_L3LOG_BASE);
3889
3890 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3891}
3892
f691e2f4
DV
3893void i915_gem_init_swizzling(struct drm_device *dev)
3894{
3895 drm_i915_private_t *dev_priv = dev->dev_private;
3896
11782b02 3897 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3898 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3899 return;
3900
3901 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3902 DISP_TILE_SURFACE_SWIZZLING);
3903
11782b02
DV
3904 if (IS_GEN5(dev))
3905 return;
3906
f691e2f4
DV
3907 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3908 if (IS_GEN6(dev))
6b26c86d 3909 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 3910 else if (IS_GEN7(dev))
6b26c86d 3911 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
3912 else
3913 BUG();
f691e2f4 3914}
e21af88d 3915
67b1b571
CW
3916static bool
3917intel_enable_blt(struct drm_device *dev)
3918{
3919 if (!HAS_BLT(dev))
3920 return false;
3921
3922 /* The blitter was dysfunctional on early prototypes */
3923 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3924 DRM_INFO("BLT not supported on this pre-production hardware;"
3925 " graphics performance will be degraded.\n");
3926 return false;
3927 }
3928
3929 return true;
3930}
3931
8187a2b7 3932int
f691e2f4 3933i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3934{
3935 drm_i915_private_t *dev_priv = dev->dev_private;
3936 int ret;
68f95ba9 3937
e76e9aeb 3938 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
8ecd1a66
DV
3939 return -EIO;
3940
eda2d7f5
RV
3941 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3942 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3943
b9524a1e
BW
3944 i915_gem_l3_remap(dev);
3945
f691e2f4
DV
3946 i915_gem_init_swizzling(dev);
3947
f7e98ad4
MK
3948 dev_priv->next_seqno = dev_priv->last_seqno = (u32)~0 - 0x1000;
3949
5c1143bb 3950 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3951 if (ret)
b6913e4b 3952 return ret;
68f95ba9
CW
3953
3954 if (HAS_BSD(dev)) {
5c1143bb 3955 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3956 if (ret)
3957 goto cleanup_render_ring;
d1b851fc 3958 }
68f95ba9 3959
67b1b571 3960 if (intel_enable_blt(dev)) {
549f7365
CW
3961 ret = intel_init_blt_ring_buffer(dev);
3962 if (ret)
3963 goto cleanup_bsd_ring;
3964 }
3965
254f965c
BW
3966 /*
3967 * XXX: There was some w/a described somewhere suggesting loading
3968 * contexts before PPGTT.
3969 */
3970 i915_gem_context_init(dev);
e21af88d
DV
3971 i915_gem_init_ppgtt(dev);
3972
68f95ba9
CW
3973 return 0;
3974
549f7365 3975cleanup_bsd_ring:
1ec14ad3 3976 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3977cleanup_render_ring:
1ec14ad3 3978 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3979 return ret;
3980}
3981
1070a42b
CW
3982int i915_gem_init(struct drm_device *dev)
3983{
3984 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
3985 int ret;
3986
1070a42b 3987 mutex_lock(&dev->struct_mutex);
d7e5008f 3988 i915_gem_init_global_gtt(dev);
1070a42b
CW
3989 ret = i915_gem_init_hw(dev);
3990 mutex_unlock(&dev->struct_mutex);
3991 if (ret) {
3992 i915_gem_cleanup_aliasing_ppgtt(dev);
3993 return ret;
3994 }
3995
53ca26ca
DV
3996 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3997 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3998 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
3999 return 0;
4000}
4001
8187a2b7
ZN
4002void
4003i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4004{
4005 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4006 struct intel_ring_buffer *ring;
1ec14ad3 4007 int i;
8187a2b7 4008
b4519513
CW
4009 for_each_ring(ring, dev_priv, i)
4010 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4011}
4012
673a394b
EA
4013int
4014i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4015 struct drm_file *file_priv)
4016{
4017 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4018 int ret;
673a394b 4019
79e53945
JB
4020 if (drm_core_check_feature(dev, DRIVER_MODESET))
4021 return 0;
4022
ba1234d1 4023 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4024 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4025 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4026 }
4027
673a394b 4028 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4029 dev_priv->mm.suspended = 0;
4030
f691e2f4 4031 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4032 if (ret != 0) {
4033 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4034 return ret;
d816f6ac 4035 }
9bb2d6f9 4036
69dc4987 4037 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4038 mutex_unlock(&dev->struct_mutex);
dbb19d30 4039
5f35308b
CW
4040 ret = drm_irq_install(dev);
4041 if (ret)
4042 goto cleanup_ringbuffer;
dbb19d30 4043
673a394b 4044 return 0;
5f35308b
CW
4045
4046cleanup_ringbuffer:
4047 mutex_lock(&dev->struct_mutex);
4048 i915_gem_cleanup_ringbuffer(dev);
4049 dev_priv->mm.suspended = 1;
4050 mutex_unlock(&dev->struct_mutex);
4051
4052 return ret;
673a394b
EA
4053}
4054
4055int
4056i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4057 struct drm_file *file_priv)
4058{
79e53945
JB
4059 if (drm_core_check_feature(dev, DRIVER_MODESET))
4060 return 0;
4061
dbb19d30 4062 drm_irq_uninstall(dev);
e6890f6f 4063 return i915_gem_idle(dev);
673a394b
EA
4064}
4065
4066void
4067i915_gem_lastclose(struct drm_device *dev)
4068{
4069 int ret;
673a394b 4070
e806b495
EA
4071 if (drm_core_check_feature(dev, DRIVER_MODESET))
4072 return;
4073
6dbe2772
KP
4074 ret = i915_gem_idle(dev);
4075 if (ret)
4076 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4077}
4078
64193406
CW
4079static void
4080init_ring_lists(struct intel_ring_buffer *ring)
4081{
4082 INIT_LIST_HEAD(&ring->active_list);
4083 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4084}
4085
673a394b
EA
4086void
4087i915_gem_load(struct drm_device *dev)
4088{
4089 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4090 int i;
4091
4092 dev_priv->slab =
4093 kmem_cache_create("i915_gem_object",
4094 sizeof(struct drm_i915_gem_object), 0,
4095 SLAB_HWCACHE_ALIGN,
4096 NULL);
673a394b 4097
69dc4987 4098 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4099 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4100 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4101 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4102 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4103 for (i = 0; i < I915_NUM_RINGS; i++)
4104 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4105 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4106 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4107 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4108 i915_gem_retire_work_handler);
30dbf0c0 4109 init_completion(&dev_priv->error_completion);
31169714 4110
94400120
DA
4111 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4112 if (IS_GEN3(dev)) {
50743298
DV
4113 I915_WRITE(MI_ARB_STATE,
4114 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4115 }
4116
72bfa19c
CW
4117 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4118
de151cf6 4119 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4120 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4121 dev_priv->fence_reg_start = 3;
de151cf6 4122
a6c45cf0 4123 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4124 dev_priv->num_fence_regs = 16;
4125 else
4126 dev_priv->num_fence_regs = 8;
4127
b5aa8a0f 4128 /* Initialize fence registers to zero */
ada726c7 4129 i915_gem_reset_fences(dev);
10ed13e4 4130
673a394b 4131 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4132 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4133
ce453d81
CW
4134 dev_priv->mm.interruptible = true;
4135
17250b71
CW
4136 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4137 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4138 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4139}
71acb5eb
DA
4140
4141/*
4142 * Create a physically contiguous memory object for this object
4143 * e.g. for cursor + overlay regs
4144 */
995b6762
CW
4145static int i915_gem_init_phys_object(struct drm_device *dev,
4146 int id, int size, int align)
71acb5eb
DA
4147{
4148 drm_i915_private_t *dev_priv = dev->dev_private;
4149 struct drm_i915_gem_phys_object *phys_obj;
4150 int ret;
4151
4152 if (dev_priv->mm.phys_objs[id - 1] || !size)
4153 return 0;
4154
9a298b2a 4155 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4156 if (!phys_obj)
4157 return -ENOMEM;
4158
4159 phys_obj->id = id;
4160
6eeefaf3 4161 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4162 if (!phys_obj->handle) {
4163 ret = -ENOMEM;
4164 goto kfree_obj;
4165 }
4166#ifdef CONFIG_X86
4167 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4168#endif
4169
4170 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4171
4172 return 0;
4173kfree_obj:
9a298b2a 4174 kfree(phys_obj);
71acb5eb
DA
4175 return ret;
4176}
4177
995b6762 4178static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4179{
4180 drm_i915_private_t *dev_priv = dev->dev_private;
4181 struct drm_i915_gem_phys_object *phys_obj;
4182
4183 if (!dev_priv->mm.phys_objs[id - 1])
4184 return;
4185
4186 phys_obj = dev_priv->mm.phys_objs[id - 1];
4187 if (phys_obj->cur_obj) {
4188 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4189 }
4190
4191#ifdef CONFIG_X86
4192 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4193#endif
4194 drm_pci_free(dev, phys_obj->handle);
4195 kfree(phys_obj);
4196 dev_priv->mm.phys_objs[id - 1] = NULL;
4197}
4198
4199void i915_gem_free_all_phys_object(struct drm_device *dev)
4200{
4201 int i;
4202
260883c8 4203 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4204 i915_gem_free_phys_object(dev, i);
4205}
4206
4207void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4208 struct drm_i915_gem_object *obj)
71acb5eb 4209{
05394f39 4210 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4211 char *vaddr;
71acb5eb 4212 int i;
71acb5eb
DA
4213 int page_count;
4214
05394f39 4215 if (!obj->phys_obj)
71acb5eb 4216 return;
05394f39 4217 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4218
05394f39 4219 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4220 for (i = 0; i < page_count; i++) {
5949eac4 4221 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4222 if (!IS_ERR(page)) {
4223 char *dst = kmap_atomic(page);
4224 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4225 kunmap_atomic(dst);
4226
4227 drm_clflush_pages(&page, 1);
4228
4229 set_page_dirty(page);
4230 mark_page_accessed(page);
4231 page_cache_release(page);
4232 }
71acb5eb 4233 }
e76e9aeb 4234 i915_gem_chipset_flush(dev);
d78b47b9 4235
05394f39
CW
4236 obj->phys_obj->cur_obj = NULL;
4237 obj->phys_obj = NULL;
71acb5eb
DA
4238}
4239
4240int
4241i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4242 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4243 int id,
4244 int align)
71acb5eb 4245{
05394f39 4246 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4247 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4248 int ret = 0;
4249 int page_count;
4250 int i;
4251
4252 if (id > I915_MAX_PHYS_OBJECT)
4253 return -EINVAL;
4254
05394f39
CW
4255 if (obj->phys_obj) {
4256 if (obj->phys_obj->id == id)
71acb5eb
DA
4257 return 0;
4258 i915_gem_detach_phys_object(dev, obj);
4259 }
4260
71acb5eb
DA
4261 /* create a new object */
4262 if (!dev_priv->mm.phys_objs[id - 1]) {
4263 ret = i915_gem_init_phys_object(dev, id,
05394f39 4264 obj->base.size, align);
71acb5eb 4265 if (ret) {
05394f39
CW
4266 DRM_ERROR("failed to init phys object %d size: %zu\n",
4267 id, obj->base.size);
e5281ccd 4268 return ret;
71acb5eb
DA
4269 }
4270 }
4271
4272 /* bind to the object */
05394f39
CW
4273 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4274 obj->phys_obj->cur_obj = obj;
71acb5eb 4275
05394f39 4276 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4277
4278 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4279 struct page *page;
4280 char *dst, *src;
4281
5949eac4 4282 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4283 if (IS_ERR(page))
4284 return PTR_ERR(page);
71acb5eb 4285
ff75b9bc 4286 src = kmap_atomic(page);
05394f39 4287 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4288 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4289 kunmap_atomic(src);
71acb5eb 4290
e5281ccd
CW
4291 mark_page_accessed(page);
4292 page_cache_release(page);
4293 }
d78b47b9 4294
71acb5eb 4295 return 0;
71acb5eb
DA
4296}
4297
4298static int
05394f39
CW
4299i915_gem_phys_pwrite(struct drm_device *dev,
4300 struct drm_i915_gem_object *obj,
71acb5eb
DA
4301 struct drm_i915_gem_pwrite *args,
4302 struct drm_file *file_priv)
4303{
05394f39 4304 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4305 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4306
b47b30cc
CW
4307 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4308 unsigned long unwritten;
4309
4310 /* The physical object once assigned is fixed for the lifetime
4311 * of the obj, so we can safely drop the lock and continue
4312 * to access vaddr.
4313 */
4314 mutex_unlock(&dev->struct_mutex);
4315 unwritten = copy_from_user(vaddr, user_data, args->size);
4316 mutex_lock(&dev->struct_mutex);
4317 if (unwritten)
4318 return -EFAULT;
4319 }
71acb5eb 4320
e76e9aeb 4321 i915_gem_chipset_flush(dev);
71acb5eb
DA
4322 return 0;
4323}
b962442e 4324
f787a5f5 4325void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4326{
f787a5f5 4327 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4328
4329 /* Clean up our request list when the client is going away, so that
4330 * later retire_requests won't dereference our soon-to-be-gone
4331 * file_priv.
4332 */
1c25595f 4333 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4334 while (!list_empty(&file_priv->mm.request_list)) {
4335 struct drm_i915_gem_request *request;
4336
4337 request = list_first_entry(&file_priv->mm.request_list,
4338 struct drm_i915_gem_request,
4339 client_list);
4340 list_del(&request->client_list);
4341 request->file_priv = NULL;
4342 }
1c25595f 4343 spin_unlock(&file_priv->mm.lock);
b962442e 4344}
31169714 4345
5774506f
CW
4346static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4347{
4348 if (!mutex_is_locked(mutex))
4349 return false;
4350
4351#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4352 return mutex->owner == task;
4353#else
4354 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4355 return false;
4356#endif
4357}
4358
31169714 4359static int
1495f230 4360i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4361{
17250b71
CW
4362 struct drm_i915_private *dev_priv =
4363 container_of(shrinker,
4364 struct drm_i915_private,
4365 mm.inactive_shrinker);
4366 struct drm_device *dev = dev_priv->dev;
6c085a72 4367 struct drm_i915_gem_object *obj;
1495f230 4368 int nr_to_scan = sc->nr_to_scan;
5774506f 4369 bool unlock = true;
17250b71
CW
4370 int cnt;
4371
5774506f
CW
4372 if (!mutex_trylock(&dev->struct_mutex)) {
4373 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4374 return 0;
4375
677feac2
DV
4376 if (dev_priv->mm.shrinker_no_lock_stealing)
4377 return 0;
4378
5774506f
CW
4379 unlock = false;
4380 }
31169714 4381
6c085a72
CW
4382 if (nr_to_scan) {
4383 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4384 if (nr_to_scan > 0)
4385 i915_gem_shrink_all(dev_priv);
31169714
CW
4386 }
4387
17250b71 4388 cnt = 0;
6c085a72 4389 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
a5570178
CW
4390 if (obj->pages_pin_count == 0)
4391 cnt += obj->base.size >> PAGE_SHIFT;
6c085a72 4392 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
a5570178 4393 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4394 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4395
5774506f
CW
4396 if (unlock)
4397 mutex_unlock(&dev->struct_mutex);
6c085a72 4398 return cnt;
31169714 4399}