]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915/uc: Move fw path check to fetch_uc_fw()
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
57822dc6 32#include "i915_gem_clflush.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
6b5e90f5 38#include <linux/dma-fence-array.h>
fe3288b5 39#include <linux/kthread.h>
c13d87ea 40#include <linux/reservation.h>
5949eac4 41#include <linux/shmem_fs.h>
5a0e3ad6 42#include <linux/slab.h>
20e4933c 43#include <linux/stop_machine.h>
673a394b 44#include <linux/swap.h>
79e53945 45#include <linux/pci.h>
1286ff73 46#include <linux/dma-buf.h>
673a394b 47
fbbd37b3 48static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
05394f39 49static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 50static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 51
2c22569b
CW
52static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53{
b50a5371
AS
54 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
55 return false;
56
e59dc172 57 if (!i915_gem_object_is_coherent(obj))
2c22569b
CW
58 return true;
59
60 return obj->pin_display;
61}
62
4f1959ee 63static int
bb6dc8d9 64insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
65 struct drm_mm_node *node, u32 size)
66{
67 memset(node, 0, sizeof(*node));
4e64e553
CW
68 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
69 size, 0, I915_COLOR_UNEVICTABLE,
70 0, ggtt->mappable_end,
71 DRM_MM_INSERT_LOW);
4f1959ee
AS
72}
73
74static void
75remove_mappable_node(struct drm_mm_node *node)
76{
77 drm_mm_remove_node(node);
78}
79
73aa808f
CW
80/* some bookkeeping */
81static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 82 u64 size)
73aa808f 83{
c20e8355 84 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
85 dev_priv->mm.object_count++;
86 dev_priv->mm.object_memory += size;
c20e8355 87 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
88}
89
90static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 91 u64 size)
73aa808f 92{
c20e8355 93 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
94 dev_priv->mm.object_count--;
95 dev_priv->mm.object_memory -= size;
c20e8355 96 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97}
98
21dd3734 99static int
33196ded 100i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 101{
30dbf0c0
CW
102 int ret;
103
4c7d62c6
CW
104 might_sleep();
105
0a6759c6
DV
106 /*
107 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 * userspace. If it takes that long something really bad is going on and
109 * we should simply try to bail out and fail as gracefully as possible.
110 */
1f83fee0 111 ret = wait_event_interruptible_timeout(error->reset_queue,
8c185eca 112 !i915_reset_backoff(error),
b52992c0 113 I915_RESET_TIMEOUT);
0a6759c6
DV
114 if (ret == 0) {
115 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 return -EIO;
117 } else if (ret < 0) {
30dbf0c0 118 return ret;
d98c52cf
CW
119 } else {
120 return 0;
0a6759c6 121 }
30dbf0c0
CW
122}
123
54cf91dc 124int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 125{
fac5e23e 126 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
127 int ret;
128
33196ded 129 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
130 if (ret)
131 return ret;
132
133 ret = mutex_lock_interruptible(&dev->struct_mutex);
134 if (ret)
135 return ret;
136
76c1dec1
CW
137 return 0;
138}
30dbf0c0 139
5a125c3c
EA
140int
141i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 142 struct drm_file *file)
5a125c3c 143{
72e96d64 144 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 145 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 146 struct drm_i915_gem_get_aperture *args = data;
ca1543be 147 struct i915_vma *vma;
6299f992 148 size_t pinned;
5a125c3c 149
6299f992 150 pinned = 0;
73aa808f 151 mutex_lock(&dev->struct_mutex);
1c7f4bca 152 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 153 if (i915_vma_is_pinned(vma))
ca1543be 154 pinned += vma->node.size;
1c7f4bca 155 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 156 if (i915_vma_is_pinned(vma))
ca1543be 157 pinned += vma->node.size;
73aa808f 158 mutex_unlock(&dev->struct_mutex);
5a125c3c 159
72e96d64 160 args->aper_size = ggtt->base.total;
0206e353 161 args->aper_available_size = args->aper_size - pinned;
6299f992 162
5a125c3c
EA
163 return 0;
164}
165
03ac84f1 166static struct sg_table *
6a2c4232 167i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 168{
93c76a3d 169 struct address_space *mapping = obj->base.filp->f_mapping;
dbb4351b 170 drm_dma_handle_t *phys;
6a2c4232
CW
171 struct sg_table *st;
172 struct scatterlist *sg;
dbb4351b 173 char *vaddr;
6a2c4232 174 int i;
00731155 175
6a2c4232 176 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
03ac84f1 177 return ERR_PTR(-EINVAL);
6a2c4232 178
dbb4351b
CW
179 /* Always aligning to the object size, allows a single allocation
180 * to handle all possible callers, and given typical object sizes,
181 * the alignment of the buddy allocation will naturally match.
182 */
183 phys = drm_pci_alloc(obj->base.dev,
184 obj->base.size,
185 roundup_pow_of_two(obj->base.size));
186 if (!phys)
187 return ERR_PTR(-ENOMEM);
188
189 vaddr = phys->vaddr;
6a2c4232
CW
190 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191 struct page *page;
192 char *src;
193
194 page = shmem_read_mapping_page(mapping, i);
dbb4351b
CW
195 if (IS_ERR(page)) {
196 st = ERR_CAST(page);
197 goto err_phys;
198 }
6a2c4232
CW
199
200 src = kmap_atomic(page);
201 memcpy(vaddr, src, PAGE_SIZE);
202 drm_clflush_virt_range(vaddr, PAGE_SIZE);
203 kunmap_atomic(src);
204
09cbfeaf 205 put_page(page);
6a2c4232
CW
206 vaddr += PAGE_SIZE;
207 }
208
c033666a 209 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
210
211 st = kmalloc(sizeof(*st), GFP_KERNEL);
dbb4351b
CW
212 if (!st) {
213 st = ERR_PTR(-ENOMEM);
214 goto err_phys;
215 }
6a2c4232
CW
216
217 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
218 kfree(st);
dbb4351b
CW
219 st = ERR_PTR(-ENOMEM);
220 goto err_phys;
6a2c4232
CW
221 }
222
223 sg = st->sgl;
224 sg->offset = 0;
225 sg->length = obj->base.size;
00731155 226
dbb4351b 227 sg_dma_address(sg) = phys->busaddr;
6a2c4232
CW
228 sg_dma_len(sg) = obj->base.size;
229
dbb4351b
CW
230 obj->phys_handle = phys;
231 return st;
232
233err_phys:
234 drm_pci_free(obj->base.dev, phys);
03ac84f1 235 return st;
6a2c4232
CW
236}
237
238static void
2b3c8317 239__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
e5facdf9
CW
240 struct sg_table *pages,
241 bool needs_clflush)
6a2c4232 242{
a4f5ea64 243 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 244
a4f5ea64
CW
245 if (obj->mm.madv == I915_MADV_DONTNEED)
246 obj->mm.dirty = false;
6a2c4232 247
e5facdf9
CW
248 if (needs_clflush &&
249 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
e59dc172 250 !i915_gem_object_is_coherent(obj))
2b3c8317 251 drm_clflush_sg(pages);
03ac84f1
CW
252
253 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
254 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
255}
256
257static void
258i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
259 struct sg_table *pages)
260{
e5facdf9 261 __i915_gem_object_release_shmem(obj, pages, false);
03ac84f1 262
a4f5ea64 263 if (obj->mm.dirty) {
93c76a3d 264 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 265 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
266 int i;
267
268 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
269 struct page *page;
270 char *dst;
271
272 page = shmem_read_mapping_page(mapping, i);
273 if (IS_ERR(page))
274 continue;
275
276 dst = kmap_atomic(page);
277 drm_clflush_virt_range(vaddr, PAGE_SIZE);
278 memcpy(dst, vaddr, PAGE_SIZE);
279 kunmap_atomic(dst);
280
281 set_page_dirty(page);
a4f5ea64 282 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 283 mark_page_accessed(page);
09cbfeaf 284 put_page(page);
00731155
CW
285 vaddr += PAGE_SIZE;
286 }
a4f5ea64 287 obj->mm.dirty = false;
00731155
CW
288 }
289
03ac84f1
CW
290 sg_free_table(pages);
291 kfree(pages);
dbb4351b
CW
292
293 drm_pci_free(obj->base.dev, obj->phys_handle);
6a2c4232
CW
294}
295
296static void
297i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
298{
a4f5ea64 299 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
300}
301
302static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
303 .get_pages = i915_gem_object_get_pages_phys,
304 .put_pages = i915_gem_object_put_pages_phys,
305 .release = i915_gem_object_release_phys,
306};
307
581ab1fe
CW
308static const struct drm_i915_gem_object_ops i915_gem_object_ops;
309
35a9611c 310int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
311{
312 struct i915_vma *vma;
313 LIST_HEAD(still_in_list);
02bef8f9
CW
314 int ret;
315
316 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 317
02bef8f9
CW
318 /* Closed vma are removed from the obj->vma_list - but they may
319 * still have an active binding on the object. To remove those we
320 * must wait for all rendering to complete to the object (as unbinding
321 * must anyway), and retire the requests.
aa653a68 322 */
e95433c7
CW
323 ret = i915_gem_object_wait(obj,
324 I915_WAIT_INTERRUPTIBLE |
325 I915_WAIT_LOCKED |
326 I915_WAIT_ALL,
327 MAX_SCHEDULE_TIMEOUT,
328 NULL);
02bef8f9
CW
329 if (ret)
330 return ret;
331
332 i915_gem_retire_requests(to_i915(obj->base.dev));
333
aa653a68
CW
334 while ((vma = list_first_entry_or_null(&obj->vma_list,
335 struct i915_vma,
336 obj_link))) {
337 list_move_tail(&vma->obj_link, &still_in_list);
338 ret = i915_vma_unbind(vma);
339 if (ret)
340 break;
341 }
342 list_splice(&still_in_list, &obj->vma_list);
343
344 return ret;
345}
346
e95433c7
CW
347static long
348i915_gem_object_wait_fence(struct dma_fence *fence,
349 unsigned int flags,
350 long timeout,
351 struct intel_rps_client *rps)
00e60f26 352{
e95433c7 353 struct drm_i915_gem_request *rq;
00e60f26 354
e95433c7 355 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 356
e95433c7
CW
357 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
358 return timeout;
359
360 if (!dma_fence_is_i915(fence))
361 return dma_fence_wait_timeout(fence,
362 flags & I915_WAIT_INTERRUPTIBLE,
363 timeout);
364
365 rq = to_request(fence);
366 if (i915_gem_request_completed(rq))
367 goto out;
368
369 /* This client is about to stall waiting for the GPU. In many cases
370 * this is undesirable and limits the throughput of the system, as
371 * many clients cannot continue processing user input/output whilst
372 * blocked. RPS autotuning may take tens of milliseconds to respond
373 * to the GPU load and thus incurs additional latency for the client.
374 * We can circumvent that by promoting the GPU frequency to maximum
375 * before we wait. This makes the GPU throttle up much more quickly
376 * (good for benchmarks and user experience, e.g. window animations),
377 * but at a cost of spending more power processing the workload
378 * (bad for battery). Not all clients even want their results
379 * immediately and for them we should just let the GPU select its own
380 * frequency to maximise efficiency. To prevent a single client from
381 * forcing the clocks too high for the whole system, we only allow
382 * each client to waitboost once in a busy period.
383 */
384 if (rps) {
385 if (INTEL_GEN(rq->i915) >= 6)
386 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
387 else
388 rps = NULL;
00e60f26
CW
389 }
390
e95433c7
CW
391 timeout = i915_wait_request(rq, flags, timeout);
392
393out:
394 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
395 i915_gem_request_retire_upto(rq);
396
754c9fd5 397 if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
e95433c7
CW
398 /* The GPU is now idle and this client has stalled.
399 * Since no other client has submitted a request in the
400 * meantime, assume that this client is the only one
401 * supplying work to the GPU but is unable to keep that
402 * work supplied because it is waiting. Since the GPU is
403 * then never kept fully busy, RPS autoclocking will
404 * keep the clocks relatively low, causing further delays.
405 * Compensate by giving the synchronous client credit for
406 * a waitboost next time.
407 */
408 spin_lock(&rq->i915->rps.client_lock);
409 list_del_init(&rps->link);
410 spin_unlock(&rq->i915->rps.client_lock);
411 }
412
413 return timeout;
414}
415
416static long
417i915_gem_object_wait_reservation(struct reservation_object *resv,
418 unsigned int flags,
419 long timeout,
420 struct intel_rps_client *rps)
421{
e54ca977 422 unsigned int seq = __read_seqcount_begin(&resv->seq);
e95433c7 423 struct dma_fence *excl;
e54ca977 424 bool prune_fences = false;
e95433c7
CW
425
426 if (flags & I915_WAIT_ALL) {
427 struct dma_fence **shared;
428 unsigned int count, i;
00e60f26
CW
429 int ret;
430
e95433c7
CW
431 ret = reservation_object_get_fences_rcu(resv,
432 &excl, &count, &shared);
00e60f26
CW
433 if (ret)
434 return ret;
00e60f26 435
e95433c7
CW
436 for (i = 0; i < count; i++) {
437 timeout = i915_gem_object_wait_fence(shared[i],
438 flags, timeout,
439 rps);
d892e939 440 if (timeout < 0)
e95433c7 441 break;
00e60f26 442
e95433c7
CW
443 dma_fence_put(shared[i]);
444 }
445
446 for (; i < count; i++)
447 dma_fence_put(shared[i]);
448 kfree(shared);
e54ca977
CW
449
450 prune_fences = count && timeout >= 0;
e95433c7
CW
451 } else {
452 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
453 }
454
e54ca977 455 if (excl && timeout >= 0) {
e95433c7 456 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
e54ca977
CW
457 prune_fences = timeout >= 0;
458 }
e95433c7
CW
459
460 dma_fence_put(excl);
461
03d1cac6
CW
462 /* Oportunistically prune the fences iff we know they have *all* been
463 * signaled and that the reservation object has not been changed (i.e.
464 * no new fences have been added).
465 */
e54ca977 466 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
03d1cac6
CW
467 if (reservation_object_trylock(resv)) {
468 if (!__read_seqcount_retry(&resv->seq, seq))
469 reservation_object_add_excl_fence(resv, NULL);
470 reservation_object_unlock(resv);
471 }
e54ca977
CW
472 }
473
e95433c7 474 return timeout;
00e60f26
CW
475}
476
6b5e90f5
CW
477static void __fence_set_priority(struct dma_fence *fence, int prio)
478{
479 struct drm_i915_gem_request *rq;
480 struct intel_engine_cs *engine;
481
482 if (!dma_fence_is_i915(fence))
483 return;
484
485 rq = to_request(fence);
486 engine = rq->engine;
487 if (!engine->schedule)
488 return;
489
490 engine->schedule(rq, prio);
491}
492
493static void fence_set_priority(struct dma_fence *fence, int prio)
494{
495 /* Recurse once into a fence-array */
496 if (dma_fence_is_array(fence)) {
497 struct dma_fence_array *array = to_dma_fence_array(fence);
498 int i;
499
500 for (i = 0; i < array->num_fences; i++)
501 __fence_set_priority(array->fences[i], prio);
502 } else {
503 __fence_set_priority(fence, prio);
504 }
505}
506
507int
508i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
509 unsigned int flags,
510 int prio)
511{
512 struct dma_fence *excl;
513
514 if (flags & I915_WAIT_ALL) {
515 struct dma_fence **shared;
516 unsigned int count, i;
517 int ret;
518
519 ret = reservation_object_get_fences_rcu(obj->resv,
520 &excl, &count, &shared);
521 if (ret)
522 return ret;
523
524 for (i = 0; i < count; i++) {
525 fence_set_priority(shared[i], prio);
526 dma_fence_put(shared[i]);
527 }
528
529 kfree(shared);
530 } else {
531 excl = reservation_object_get_excl_rcu(obj->resv);
532 }
533
534 if (excl) {
535 fence_set_priority(excl, prio);
536 dma_fence_put(excl);
537 }
538 return 0;
539}
540
e95433c7
CW
541/**
542 * Waits for rendering to the object to be completed
543 * @obj: i915 gem object
544 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
545 * @timeout: how long to wait
546 * @rps: client (user process) to charge for any waitboosting
00e60f26 547 */
e95433c7
CW
548int
549i915_gem_object_wait(struct drm_i915_gem_object *obj,
550 unsigned int flags,
551 long timeout,
552 struct intel_rps_client *rps)
00e60f26 553{
e95433c7
CW
554 might_sleep();
555#if IS_ENABLED(CONFIG_LOCKDEP)
556 GEM_BUG_ON(debug_locks &&
557 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
558 !!(flags & I915_WAIT_LOCKED));
559#endif
560 GEM_BUG_ON(timeout < 0);
00e60f26 561
d07f0e59
CW
562 timeout = i915_gem_object_wait_reservation(obj->resv,
563 flags, timeout,
564 rps);
e95433c7 565 return timeout < 0 ? timeout : 0;
00e60f26
CW
566}
567
568static struct intel_rps_client *to_rps_client(struct drm_file *file)
569{
570 struct drm_i915_file_private *fpriv = file->driver_priv;
571
572 return &fpriv->rps;
573}
574
00731155
CW
575int
576i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
577 int align)
578{
6a2c4232 579 int ret;
00731155 580
dbb4351b
CW
581 if (align > obj->base.size)
582 return -EINVAL;
00731155 583
dbb4351b 584 if (obj->ops == &i915_gem_phys_ops)
00731155 585 return 0;
00731155 586
a4f5ea64 587 if (obj->mm.madv != I915_MADV_WILLNEED)
00731155
CW
588 return -EFAULT;
589
590 if (obj->base.filp == NULL)
591 return -EINVAL;
592
4717ca9e
CW
593 ret = i915_gem_object_unbind(obj);
594 if (ret)
595 return ret;
596
548625ee 597 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
03ac84f1
CW
598 if (obj->mm.pages)
599 return -EBUSY;
6a2c4232 600
581ab1fe 601 GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
6a2c4232
CW
602 obj->ops = &i915_gem_phys_ops;
603
581ab1fe
CW
604 ret = i915_gem_object_pin_pages(obj);
605 if (ret)
606 goto err_xfer;
607
608 return 0;
609
610err_xfer:
611 obj->ops = &i915_gem_object_ops;
612 return ret;
00731155
CW
613}
614
615static int
616i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
617 struct drm_i915_gem_pwrite *args,
03ac84f1 618 struct drm_file *file)
00731155 619{
00731155 620 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 621 char __user *user_data = u64_to_user_ptr(args->data_ptr);
6a2c4232
CW
622
623 /* We manually control the domain here and pretend that it
624 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
625 */
77a0d1ca 626 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
10466d2a
CW
627 if (copy_from_user(vaddr, user_data, args->size))
628 return -EFAULT;
00731155 629
6a2c4232 630 drm_clflush_virt_range(vaddr, args->size);
10466d2a 631 i915_gem_chipset_flush(to_i915(obj->base.dev));
063e4e6b 632
d59b21ec 633 intel_fb_obj_flush(obj, ORIGIN_CPU);
10466d2a 634 return 0;
00731155
CW
635}
636
187685cb 637void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
42dcedd4 638{
efab6d8d 639 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
640}
641
642void i915_gem_object_free(struct drm_i915_gem_object *obj)
643{
fac5e23e 644 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 645 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
646}
647
ff72145b
DA
648static int
649i915_gem_create(struct drm_file *file,
12d79d78 650 struct drm_i915_private *dev_priv,
ff72145b
DA
651 uint64_t size,
652 uint32_t *handle_p)
673a394b 653{
05394f39 654 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
655 int ret;
656 u32 handle;
673a394b 657
ff72145b 658 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
659 if (size == 0)
660 return -EINVAL;
673a394b
EA
661
662 /* Allocate the new object */
12d79d78 663 obj = i915_gem_object_create(dev_priv, size);
fe3db79b
CW
664 if (IS_ERR(obj))
665 return PTR_ERR(obj);
673a394b 666
05394f39 667 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 668 /* drop reference from allocate - handle holds it now */
f0cd5182 669 i915_gem_object_put(obj);
d861e338
DV
670 if (ret)
671 return ret;
202f2fef 672
ff72145b 673 *handle_p = handle;
673a394b
EA
674 return 0;
675}
676
ff72145b
DA
677int
678i915_gem_dumb_create(struct drm_file *file,
679 struct drm_device *dev,
680 struct drm_mode_create_dumb *args)
681{
682 /* have to work out size/pitch and return them */
de45eaf7 683 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b 684 args->size = args->pitch * args->height;
12d79d78 685 return i915_gem_create(file, to_i915(dev),
da6b51d0 686 args->size, &args->handle);
ff72145b
DA
687}
688
ff72145b
DA
689/**
690 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
691 * @dev: drm device pointer
692 * @data: ioctl data blob
693 * @file: drm file pointer
ff72145b
DA
694 */
695int
696i915_gem_create_ioctl(struct drm_device *dev, void *data,
697 struct drm_file *file)
698{
12d79d78 699 struct drm_i915_private *dev_priv = to_i915(dev);
ff72145b 700 struct drm_i915_gem_create *args = data;
63ed2cb2 701
12d79d78 702 i915_gem_flush_free_objects(dev_priv);
fbbd37b3 703
12d79d78 704 return i915_gem_create(file, dev_priv,
da6b51d0 705 args->size, &args->handle);
ff72145b
DA
706}
707
8461d226
DV
708static inline int
709__copy_to_user_swizzled(char __user *cpu_vaddr,
710 const char *gpu_vaddr, int gpu_offset,
711 int length)
712{
713 int ret, cpu_offset = 0;
714
715 while (length > 0) {
716 int cacheline_end = ALIGN(gpu_offset + 1, 64);
717 int this_length = min(cacheline_end - gpu_offset, length);
718 int swizzled_gpu_offset = gpu_offset ^ 64;
719
720 ret = __copy_to_user(cpu_vaddr + cpu_offset,
721 gpu_vaddr + swizzled_gpu_offset,
722 this_length);
723 if (ret)
724 return ret + length;
725
726 cpu_offset += this_length;
727 gpu_offset += this_length;
728 length -= this_length;
729 }
730
731 return 0;
732}
733
8c59967c 734static inline int
4f0c7cfb
BW
735__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
736 const char __user *cpu_vaddr,
8c59967c
DV
737 int length)
738{
739 int ret, cpu_offset = 0;
740
741 while (length > 0) {
742 int cacheline_end = ALIGN(gpu_offset + 1, 64);
743 int this_length = min(cacheline_end - gpu_offset, length);
744 int swizzled_gpu_offset = gpu_offset ^ 64;
745
746 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
747 cpu_vaddr + cpu_offset,
748 this_length);
749 if (ret)
750 return ret + length;
751
752 cpu_offset += this_length;
753 gpu_offset += this_length;
754 length -= this_length;
755 }
756
757 return 0;
758}
759
4c914c0c
BV
760/*
761 * Pins the specified object's pages and synchronizes the object with
762 * GPU accesses. Sets needs_clflush to non-zero if the caller should
763 * flush the object from the CPU cache.
764 */
765int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 766 unsigned int *needs_clflush)
4c914c0c
BV
767{
768 int ret;
769
e95433c7 770 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 771
e95433c7 772 *needs_clflush = 0;
43394c7d
CW
773 if (!i915_gem_object_has_struct_page(obj))
774 return -ENODEV;
4c914c0c 775
e95433c7
CW
776 ret = i915_gem_object_wait(obj,
777 I915_WAIT_INTERRUPTIBLE |
778 I915_WAIT_LOCKED,
779 MAX_SCHEDULE_TIMEOUT,
780 NULL);
c13d87ea
CW
781 if (ret)
782 return ret;
783
a4f5ea64 784 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
785 if (ret)
786 return ret;
787
7f5f95d8
CW
788 if (i915_gem_object_is_coherent(obj) ||
789 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
790 ret = i915_gem_object_set_to_cpu_domain(obj, false);
791 if (ret)
792 goto err_unpin;
793 else
794 goto out;
795 }
796
a314d5cb
CW
797 i915_gem_object_flush_gtt_write_domain(obj);
798
43394c7d
CW
799 /* If we're not in the cpu read domain, set ourself into the gtt
800 * read domain and manually flush cachelines (if required). This
801 * optimizes for the case when the gpu will dirty the data
802 * anyway again before the next pread happens.
803 */
804 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
7f5f95d8 805 *needs_clflush = CLFLUSH_BEFORE;
4c914c0c 806
7f5f95d8 807out:
9764951e 808 /* return with the pages pinned */
43394c7d 809 return 0;
9764951e
CW
810
811err_unpin:
812 i915_gem_object_unpin_pages(obj);
813 return ret;
43394c7d
CW
814}
815
816int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
817 unsigned int *needs_clflush)
818{
819 int ret;
820
e95433c7
CW
821 lockdep_assert_held(&obj->base.dev->struct_mutex);
822
43394c7d
CW
823 *needs_clflush = 0;
824 if (!i915_gem_object_has_struct_page(obj))
825 return -ENODEV;
826
e95433c7
CW
827 ret = i915_gem_object_wait(obj,
828 I915_WAIT_INTERRUPTIBLE |
829 I915_WAIT_LOCKED |
830 I915_WAIT_ALL,
831 MAX_SCHEDULE_TIMEOUT,
832 NULL);
43394c7d
CW
833 if (ret)
834 return ret;
835
a4f5ea64 836 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
837 if (ret)
838 return ret;
839
7f5f95d8
CW
840 if (i915_gem_object_is_coherent(obj) ||
841 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
842 ret = i915_gem_object_set_to_cpu_domain(obj, true);
843 if (ret)
844 goto err_unpin;
845 else
846 goto out;
847 }
848
a314d5cb
CW
849 i915_gem_object_flush_gtt_write_domain(obj);
850
43394c7d
CW
851 /* If we're not in the cpu write domain, set ourself into the
852 * gtt write domain and manually flush cachelines (as required).
853 * This optimizes for the case when the gpu will use the data
854 * right away and we therefore have to clflush anyway.
855 */
856 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
7f5f95d8 857 *needs_clflush |= CLFLUSH_AFTER;
43394c7d
CW
858
859 /* Same trick applies to invalidate partially written cachelines read
860 * before writing.
861 */
862 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
7f5f95d8 863 *needs_clflush |= CLFLUSH_BEFORE;
43394c7d 864
7f5f95d8 865out:
43394c7d 866 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 867 obj->mm.dirty = true;
9764951e 868 /* return with the pages pinned */
43394c7d 869 return 0;
9764951e
CW
870
871err_unpin:
872 i915_gem_object_unpin_pages(obj);
873 return ret;
4c914c0c
BV
874}
875
23c18c71
DV
876static void
877shmem_clflush_swizzled_range(char *addr, unsigned long length,
878 bool swizzled)
879{
e7e58eb5 880 if (unlikely(swizzled)) {
23c18c71
DV
881 unsigned long start = (unsigned long) addr;
882 unsigned long end = (unsigned long) addr + length;
883
884 /* For swizzling simply ensure that we always flush both
885 * channels. Lame, but simple and it works. Swizzled
886 * pwrite/pread is far from a hotpath - current userspace
887 * doesn't use it at all. */
888 start = round_down(start, 128);
889 end = round_up(end, 128);
890
891 drm_clflush_virt_range((void *)start, end - start);
892 } else {
893 drm_clflush_virt_range(addr, length);
894 }
895
896}
897
d174bd64
DV
898/* Only difference to the fast-path function is that this can handle bit17
899 * and uses non-atomic copy and kmap functions. */
900static int
bb6dc8d9 901shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
902 char __user *user_data,
903 bool page_do_bit17_swizzling, bool needs_clflush)
904{
905 char *vaddr;
906 int ret;
907
908 vaddr = kmap(page);
909 if (needs_clflush)
bb6dc8d9 910 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 911 page_do_bit17_swizzling);
d174bd64
DV
912
913 if (page_do_bit17_swizzling)
bb6dc8d9 914 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 915 else
bb6dc8d9 916 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
917 kunmap(page);
918
f60d7f0c 919 return ret ? - EFAULT : 0;
d174bd64
DV
920}
921
bb6dc8d9
CW
922static int
923shmem_pread(struct page *page, int offset, int length, char __user *user_data,
924 bool page_do_bit17_swizzling, bool needs_clflush)
925{
926 int ret;
927
928 ret = -ENODEV;
929 if (!page_do_bit17_swizzling) {
930 char *vaddr = kmap_atomic(page);
931
932 if (needs_clflush)
933 drm_clflush_virt_range(vaddr + offset, length);
934 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
935 kunmap_atomic(vaddr);
936 }
937 if (ret == 0)
938 return 0;
939
940 return shmem_pread_slow(page, offset, length, user_data,
941 page_do_bit17_swizzling, needs_clflush);
942}
943
944static int
945i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
946 struct drm_i915_gem_pread *args)
947{
948 char __user *user_data;
949 u64 remain;
950 unsigned int obj_do_bit17_swizzling;
951 unsigned int needs_clflush;
952 unsigned int idx, offset;
953 int ret;
954
955 obj_do_bit17_swizzling = 0;
956 if (i915_gem_object_needs_bit17_swizzle(obj))
957 obj_do_bit17_swizzling = BIT(17);
958
959 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
960 if (ret)
961 return ret;
962
963 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
964 mutex_unlock(&obj->base.dev->struct_mutex);
965 if (ret)
966 return ret;
967
968 remain = args->size;
969 user_data = u64_to_user_ptr(args->data_ptr);
970 offset = offset_in_page(args->offset);
971 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
972 struct page *page = i915_gem_object_get_page(obj, idx);
973 int length;
974
975 length = remain;
976 if (offset + length > PAGE_SIZE)
977 length = PAGE_SIZE - offset;
978
979 ret = shmem_pread(page, offset, length, user_data,
980 page_to_phys(page) & obj_do_bit17_swizzling,
981 needs_clflush);
982 if (ret)
983 break;
984
985 remain -= length;
986 user_data += length;
987 offset = 0;
988 }
989
990 i915_gem_obj_finish_shmem_access(obj);
991 return ret;
992}
993
994static inline bool
995gtt_user_read(struct io_mapping *mapping,
996 loff_t base, int offset,
997 char __user *user_data, int length)
b50a5371 998{
b50a5371 999 void *vaddr;
bb6dc8d9 1000 unsigned long unwritten;
b50a5371 1001
b50a5371 1002 /* We can use the cpu mem copy function because this is X86. */
bb6dc8d9
CW
1003 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1004 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1005 io_mapping_unmap_atomic(vaddr);
1006 if (unwritten) {
1007 vaddr = (void __force *)
1008 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1009 unwritten = copy_to_user(user_data, vaddr + offset, length);
1010 io_mapping_unmap(vaddr);
1011 }
b50a5371
AS
1012 return unwritten;
1013}
1014
1015static int
bb6dc8d9
CW
1016i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1017 const struct drm_i915_gem_pread *args)
b50a5371 1018{
bb6dc8d9
CW
1019 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1020 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1021 struct drm_mm_node node;
bb6dc8d9
CW
1022 struct i915_vma *vma;
1023 void __user *user_data;
1024 u64 remain, offset;
b50a5371
AS
1025 int ret;
1026
bb6dc8d9
CW
1027 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1028 if (ret)
1029 return ret;
1030
1031 intel_runtime_pm_get(i915);
1032 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1033 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1034 if (!IS_ERR(vma)) {
1035 node.start = i915_ggtt_offset(vma);
1036 node.allocated = false;
49ef5294 1037 ret = i915_vma_put_fence(vma);
18034584
CW
1038 if (ret) {
1039 i915_vma_unpin(vma);
1040 vma = ERR_PTR(ret);
1041 }
1042 }
058d88c4 1043 if (IS_ERR(vma)) {
bb6dc8d9 1044 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1045 if (ret)
bb6dc8d9
CW
1046 goto out_unlock;
1047 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1048 }
1049
1050 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1051 if (ret)
1052 goto out_unpin;
1053
bb6dc8d9 1054 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1055
bb6dc8d9
CW
1056 user_data = u64_to_user_ptr(args->data_ptr);
1057 remain = args->size;
1058 offset = args->offset;
b50a5371
AS
1059
1060 while (remain > 0) {
1061 /* Operation in this page
1062 *
1063 * page_base = page offset within aperture
1064 * page_offset = offset within page
1065 * page_length = bytes to copy for this page
1066 */
1067 u32 page_base = node.start;
1068 unsigned page_offset = offset_in_page(offset);
1069 unsigned page_length = PAGE_SIZE - page_offset;
1070 page_length = remain < page_length ? remain : page_length;
1071 if (node.allocated) {
1072 wmb();
1073 ggtt->base.insert_page(&ggtt->base,
1074 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 1075 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1076 wmb();
1077 } else {
1078 page_base += offset & PAGE_MASK;
1079 }
bb6dc8d9
CW
1080
1081 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1082 user_data, page_length)) {
b50a5371
AS
1083 ret = -EFAULT;
1084 break;
1085 }
1086
1087 remain -= page_length;
1088 user_data += page_length;
1089 offset += page_length;
1090 }
1091
bb6dc8d9 1092 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1093out_unpin:
1094 if (node.allocated) {
1095 wmb();
1096 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1097 node.start, node.size);
b50a5371
AS
1098 remove_mappable_node(&node);
1099 } else {
058d88c4 1100 i915_vma_unpin(vma);
b50a5371 1101 }
bb6dc8d9
CW
1102out_unlock:
1103 intel_runtime_pm_put(i915);
1104 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1105
eb01459f
EA
1106 return ret;
1107}
1108
673a394b
EA
1109/**
1110 * Reads data from the object referenced by handle.
14bb2c11
TU
1111 * @dev: drm device pointer
1112 * @data: ioctl data blob
1113 * @file: drm file pointer
673a394b
EA
1114 *
1115 * On error, the contents of *data are undefined.
1116 */
1117int
1118i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1119 struct drm_file *file)
673a394b
EA
1120{
1121 struct drm_i915_gem_pread *args = data;
05394f39 1122 struct drm_i915_gem_object *obj;
bb6dc8d9 1123 int ret;
673a394b 1124
51311d0a
CW
1125 if (args->size == 0)
1126 return 0;
1127
1128 if (!access_ok(VERIFY_WRITE,
3ed605bc 1129 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1130 args->size))
1131 return -EFAULT;
1132
03ac0642 1133 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1134 if (!obj)
1135 return -ENOENT;
673a394b 1136
7dcd2499 1137 /* Bounds check source. */
966d5bf5 1138 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1139 ret = -EINVAL;
bb6dc8d9 1140 goto out;
ce9d419d
CW
1141 }
1142
db53a302
CW
1143 trace_i915_gem_object_pread(obj, args->offset, args->size);
1144
e95433c7
CW
1145 ret = i915_gem_object_wait(obj,
1146 I915_WAIT_INTERRUPTIBLE,
1147 MAX_SCHEDULE_TIMEOUT,
1148 to_rps_client(file));
258a5ede 1149 if (ret)
bb6dc8d9 1150 goto out;
258a5ede 1151
bb6dc8d9 1152 ret = i915_gem_object_pin_pages(obj);
258a5ede 1153 if (ret)
bb6dc8d9 1154 goto out;
673a394b 1155
bb6dc8d9 1156 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1157 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1158 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1159
bb6dc8d9
CW
1160 i915_gem_object_unpin_pages(obj);
1161out:
f0cd5182 1162 i915_gem_object_put(obj);
eb01459f 1163 return ret;
673a394b
EA
1164}
1165
0839ccb8
KP
1166/* This is the fast write path which cannot handle
1167 * page faults in the source data
9b7530cc 1168 */
0839ccb8 1169
fe115628
CW
1170static inline bool
1171ggtt_write(struct io_mapping *mapping,
1172 loff_t base, int offset,
1173 char __user *user_data, int length)
9b7530cc 1174{
4f0c7cfb 1175 void *vaddr;
0839ccb8 1176 unsigned long unwritten;
9b7530cc 1177
4f0c7cfb 1178 /* We can use the cpu mem copy function because this is X86. */
fe115628
CW
1179 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1180 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
0839ccb8 1181 user_data, length);
fe115628
CW
1182 io_mapping_unmap_atomic(vaddr);
1183 if (unwritten) {
1184 vaddr = (void __force *)
1185 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1186 unwritten = copy_from_user(vaddr + offset, user_data, length);
1187 io_mapping_unmap(vaddr);
1188 }
bb6dc8d9 1189
bb6dc8d9
CW
1190 return unwritten;
1191}
1192
3de09aa3
EA
1193/**
1194 * This is the fast pwrite path, where we copy the data directly from the
1195 * user into the GTT, uncached.
fe115628 1196 * @obj: i915 GEM object
14bb2c11 1197 * @args: pwrite arguments structure
3de09aa3 1198 */
673a394b 1199static int
fe115628
CW
1200i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1201 const struct drm_i915_gem_pwrite *args)
673a394b 1202{
fe115628 1203 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1204 struct i915_ggtt *ggtt = &i915->ggtt;
1205 struct drm_mm_node node;
fe115628
CW
1206 struct i915_vma *vma;
1207 u64 remain, offset;
1208 void __user *user_data;
4f1959ee 1209 int ret;
b50a5371 1210
fe115628
CW
1211 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1212 if (ret)
1213 return ret;
935aaa69 1214
9c870d03 1215 intel_runtime_pm_get(i915);
058d88c4 1216 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
de895082 1217 PIN_MAPPABLE | PIN_NONBLOCK);
18034584
CW
1218 if (!IS_ERR(vma)) {
1219 node.start = i915_ggtt_offset(vma);
1220 node.allocated = false;
49ef5294 1221 ret = i915_vma_put_fence(vma);
18034584
CW
1222 if (ret) {
1223 i915_vma_unpin(vma);
1224 vma = ERR_PTR(ret);
1225 }
1226 }
058d88c4 1227 if (IS_ERR(vma)) {
bb6dc8d9 1228 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1229 if (ret)
fe115628
CW
1230 goto out_unlock;
1231 GEM_BUG_ON(!node.allocated);
4f1959ee 1232 }
935aaa69
DV
1233
1234 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1235 if (ret)
1236 goto out_unpin;
1237
fe115628
CW
1238 mutex_unlock(&i915->drm.struct_mutex);
1239
b19482d7 1240 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1241
4f1959ee
AS
1242 user_data = u64_to_user_ptr(args->data_ptr);
1243 offset = args->offset;
1244 remain = args->size;
1245 while (remain) {
673a394b
EA
1246 /* Operation in this page
1247 *
0839ccb8
KP
1248 * page_base = page offset within aperture
1249 * page_offset = offset within page
1250 * page_length = bytes to copy for this page
673a394b 1251 */
4f1959ee 1252 u32 page_base = node.start;
bb6dc8d9
CW
1253 unsigned int page_offset = offset_in_page(offset);
1254 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1255 page_length = remain < page_length ? remain : page_length;
1256 if (node.allocated) {
1257 wmb(); /* flush the write before we modify the GGTT */
1258 ggtt->base.insert_page(&ggtt->base,
1259 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1260 node.start, I915_CACHE_NONE, 0);
1261 wmb(); /* flush modifications to the GGTT (insert_page) */
1262 } else {
1263 page_base += offset & PAGE_MASK;
1264 }
0839ccb8 1265 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1266 * source page isn't available. Return the error and we'll
1267 * retry in the slow path.
b50a5371
AS
1268 * If the object is non-shmem backed, we retry again with the
1269 * path that handles page fault.
0839ccb8 1270 */
fe115628
CW
1271 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1272 user_data, page_length)) {
1273 ret = -EFAULT;
1274 break;
935aaa69 1275 }
673a394b 1276
0839ccb8
KP
1277 remain -= page_length;
1278 user_data += page_length;
1279 offset += page_length;
673a394b 1280 }
d59b21ec 1281 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628
CW
1282
1283 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1284out_unpin:
4f1959ee
AS
1285 if (node.allocated) {
1286 wmb();
1287 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1288 node.start, node.size);
4f1959ee
AS
1289 remove_mappable_node(&node);
1290 } else {
058d88c4 1291 i915_vma_unpin(vma);
4f1959ee 1292 }
fe115628 1293out_unlock:
9c870d03 1294 intel_runtime_pm_put(i915);
fe115628 1295 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1296 return ret;
673a394b
EA
1297}
1298
3043c60c 1299static int
fe115628 1300shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1301 char __user *user_data,
1302 bool page_do_bit17_swizzling,
1303 bool needs_clflush_before,
1304 bool needs_clflush_after)
673a394b 1305{
d174bd64
DV
1306 char *vaddr;
1307 int ret;
e5281ccd 1308
d174bd64 1309 vaddr = kmap(page);
e7e58eb5 1310 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1311 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1312 page_do_bit17_swizzling);
d174bd64 1313 if (page_do_bit17_swizzling)
fe115628
CW
1314 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1315 length);
d174bd64 1316 else
fe115628 1317 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1318 if (needs_clflush_after)
fe115628 1319 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1320 page_do_bit17_swizzling);
d174bd64 1321 kunmap(page);
40123c1f 1322
755d2218 1323 return ret ? -EFAULT : 0;
40123c1f
EA
1324}
1325
fe115628
CW
1326/* Per-page copy function for the shmem pwrite fastpath.
1327 * Flushes invalid cachelines before writing to the target if
1328 * needs_clflush_before is set and flushes out any written cachelines after
1329 * writing if needs_clflush is set.
1330 */
40123c1f 1331static int
fe115628
CW
1332shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1333 bool page_do_bit17_swizzling,
1334 bool needs_clflush_before,
1335 bool needs_clflush_after)
40123c1f 1336{
fe115628
CW
1337 int ret;
1338
1339 ret = -ENODEV;
1340 if (!page_do_bit17_swizzling) {
1341 char *vaddr = kmap_atomic(page);
1342
1343 if (needs_clflush_before)
1344 drm_clflush_virt_range(vaddr + offset, len);
1345 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1346 if (needs_clflush_after)
1347 drm_clflush_virt_range(vaddr + offset, len);
1348
1349 kunmap_atomic(vaddr);
1350 }
1351 if (ret == 0)
1352 return ret;
1353
1354 return shmem_pwrite_slow(page, offset, len, user_data,
1355 page_do_bit17_swizzling,
1356 needs_clflush_before,
1357 needs_clflush_after);
1358}
1359
1360static int
1361i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1362 const struct drm_i915_gem_pwrite *args)
1363{
1364 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1365 void __user *user_data;
1366 u64 remain;
1367 unsigned int obj_do_bit17_swizzling;
1368 unsigned int partial_cacheline_write;
43394c7d 1369 unsigned int needs_clflush;
fe115628
CW
1370 unsigned int offset, idx;
1371 int ret;
40123c1f 1372
fe115628 1373 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1374 if (ret)
1375 return ret;
1376
fe115628
CW
1377 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1378 mutex_unlock(&i915->drm.struct_mutex);
1379 if (ret)
1380 return ret;
673a394b 1381
fe115628
CW
1382 obj_do_bit17_swizzling = 0;
1383 if (i915_gem_object_needs_bit17_swizzle(obj))
1384 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1385
fe115628
CW
1386 /* If we don't overwrite a cacheline completely we need to be
1387 * careful to have up-to-date data by first clflushing. Don't
1388 * overcomplicate things and flush the entire patch.
1389 */
1390 partial_cacheline_write = 0;
1391 if (needs_clflush & CLFLUSH_BEFORE)
1392 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1393
fe115628
CW
1394 user_data = u64_to_user_ptr(args->data_ptr);
1395 remain = args->size;
1396 offset = offset_in_page(args->offset);
1397 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1398 struct page *page = i915_gem_object_get_page(obj, idx);
1399 int length;
40123c1f 1400
fe115628
CW
1401 length = remain;
1402 if (offset + length > PAGE_SIZE)
1403 length = PAGE_SIZE - offset;
755d2218 1404
fe115628
CW
1405 ret = shmem_pwrite(page, offset, length, user_data,
1406 page_to_phys(page) & obj_do_bit17_swizzling,
1407 (offset | length) & partial_cacheline_write,
1408 needs_clflush & CLFLUSH_AFTER);
755d2218 1409 if (ret)
fe115628 1410 break;
755d2218 1411
fe115628
CW
1412 remain -= length;
1413 user_data += length;
1414 offset = 0;
8c59967c 1415 }
673a394b 1416
d59b21ec 1417 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628 1418 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1419 return ret;
673a394b
EA
1420}
1421
1422/**
1423 * Writes data to the object referenced by handle.
14bb2c11
TU
1424 * @dev: drm device
1425 * @data: ioctl data blob
1426 * @file: drm file
673a394b
EA
1427 *
1428 * On error, the contents of the buffer that were to be modified are undefined.
1429 */
1430int
1431i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1432 struct drm_file *file)
673a394b
EA
1433{
1434 struct drm_i915_gem_pwrite *args = data;
05394f39 1435 struct drm_i915_gem_object *obj;
51311d0a
CW
1436 int ret;
1437
1438 if (args->size == 0)
1439 return 0;
1440
1441 if (!access_ok(VERIFY_READ,
3ed605bc 1442 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1443 args->size))
1444 return -EFAULT;
1445
03ac0642 1446 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1447 if (!obj)
1448 return -ENOENT;
673a394b 1449
7dcd2499 1450 /* Bounds check destination. */
966d5bf5 1451 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1452 ret = -EINVAL;
258a5ede 1453 goto err;
ce9d419d
CW
1454 }
1455
db53a302
CW
1456 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1457
7c55e2c5
CW
1458 ret = -ENODEV;
1459 if (obj->ops->pwrite)
1460 ret = obj->ops->pwrite(obj, args);
1461 if (ret != -ENODEV)
1462 goto err;
1463
e95433c7
CW
1464 ret = i915_gem_object_wait(obj,
1465 I915_WAIT_INTERRUPTIBLE |
1466 I915_WAIT_ALL,
1467 MAX_SCHEDULE_TIMEOUT,
1468 to_rps_client(file));
258a5ede
CW
1469 if (ret)
1470 goto err;
1471
fe115628 1472 ret = i915_gem_object_pin_pages(obj);
258a5ede 1473 if (ret)
fe115628 1474 goto err;
258a5ede 1475
935aaa69 1476 ret = -EFAULT;
673a394b
EA
1477 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1478 * it would end up going through the fenced access, and we'll get
1479 * different detiling behavior between reading and writing.
1480 * pread/pwrite currently are reading and writing from the CPU
1481 * perspective, requiring manual detiling by the client.
1482 */
6eae0059 1483 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1484 cpu_write_needs_clflush(obj))
935aaa69
DV
1485 /* Note that the gtt paths might fail with non-page-backed user
1486 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1487 * textures). Fallback to the shmem path in that case.
1488 */
fe115628 1489 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1490
d1054ee4 1491 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1492 if (obj->phys_handle)
1493 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1494 else
fe115628 1495 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1496 }
5c0480f2 1497
fe115628 1498 i915_gem_object_unpin_pages(obj);
258a5ede 1499err:
f0cd5182 1500 i915_gem_object_put(obj);
258a5ede 1501 return ret;
673a394b
EA
1502}
1503
d243ad82 1504static inline enum fb_op_origin
aeecc969
CW
1505write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1506{
50349247
CW
1507 return (domain == I915_GEM_DOMAIN_GTT ?
1508 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
aeecc969
CW
1509}
1510
40e62d5d
CW
1511static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1512{
1513 struct drm_i915_private *i915;
1514 struct list_head *list;
1515 struct i915_vma *vma;
1516
1517 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1518 if (!i915_vma_is_ggtt(vma))
28f412e0 1519 break;
40e62d5d
CW
1520
1521 if (i915_vma_is_active(vma))
1522 continue;
1523
1524 if (!drm_mm_node_allocated(&vma->node))
1525 continue;
1526
1527 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1528 }
1529
1530 i915 = to_i915(obj->base.dev);
1531 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
56cea323 1532 list_move_tail(&obj->global_link, list);
40e62d5d
CW
1533}
1534
673a394b 1535/**
2ef7eeaa
EA
1536 * Called when user space prepares to use an object with the CPU, either
1537 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1538 * @dev: drm device
1539 * @data: ioctl data blob
1540 * @file: drm file
673a394b
EA
1541 */
1542int
1543i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1544 struct drm_file *file)
673a394b
EA
1545{
1546 struct drm_i915_gem_set_domain *args = data;
05394f39 1547 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1548 uint32_t read_domains = args->read_domains;
1549 uint32_t write_domain = args->write_domain;
40e62d5d 1550 int err;
673a394b 1551
2ef7eeaa 1552 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1553 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1554 return -EINVAL;
1555
1556 /* Having something in the write domain implies it's in the read
1557 * domain, and only that read domain. Enforce that in the request.
1558 */
1559 if (write_domain != 0 && read_domains != write_domain)
1560 return -EINVAL;
1561
03ac0642 1562 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1563 if (!obj)
1564 return -ENOENT;
673a394b 1565
3236f57a
CW
1566 /* Try to flush the object off the GPU without holding the lock.
1567 * We will repeat the flush holding the lock in the normal manner
1568 * to catch cases where we are gazumped.
1569 */
40e62d5d 1570 err = i915_gem_object_wait(obj,
e95433c7
CW
1571 I915_WAIT_INTERRUPTIBLE |
1572 (write_domain ? I915_WAIT_ALL : 0),
1573 MAX_SCHEDULE_TIMEOUT,
1574 to_rps_client(file));
40e62d5d 1575 if (err)
f0cd5182 1576 goto out;
b8f9096d 1577
40e62d5d
CW
1578 /* Flush and acquire obj->pages so that we are coherent through
1579 * direct access in memory with previous cached writes through
1580 * shmemfs and that our cache domain tracking remains valid.
1581 * For example, if the obj->filp was moved to swap without us
1582 * being notified and releasing the pages, we would mistakenly
1583 * continue to assume that the obj remained out of the CPU cached
1584 * domain.
1585 */
1586 err = i915_gem_object_pin_pages(obj);
1587 if (err)
f0cd5182 1588 goto out;
40e62d5d
CW
1589
1590 err = i915_mutex_lock_interruptible(dev);
1591 if (err)
f0cd5182 1592 goto out_unpin;
3236f57a 1593
43566ded 1594 if (read_domains & I915_GEM_DOMAIN_GTT)
40e62d5d 1595 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1596 else
40e62d5d 1597 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1598
40e62d5d
CW
1599 /* And bump the LRU for this access */
1600 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1601
673a394b 1602 mutex_unlock(&dev->struct_mutex);
b8f9096d 1603
40e62d5d
CW
1604 if (write_domain != 0)
1605 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1606
f0cd5182 1607out_unpin:
40e62d5d 1608 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1609out:
1610 i915_gem_object_put(obj);
40e62d5d 1611 return err;
673a394b
EA
1612}
1613
1614/**
1615 * Called when user space has done writes to this buffer
14bb2c11
TU
1616 * @dev: drm device
1617 * @data: ioctl data blob
1618 * @file: drm file
673a394b
EA
1619 */
1620int
1621i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1622 struct drm_file *file)
673a394b
EA
1623{
1624 struct drm_i915_gem_sw_finish *args = data;
05394f39 1625 struct drm_i915_gem_object *obj;
1d7cfea1 1626
03ac0642 1627 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1628 if (!obj)
1629 return -ENOENT;
673a394b 1630
673a394b 1631 /* Pinned buffers may be scanout, so flush the cache */
5a97bcc6 1632 i915_gem_object_flush_if_display(obj);
f0cd5182 1633 i915_gem_object_put(obj);
5a97bcc6
CW
1634
1635 return 0;
673a394b
EA
1636}
1637
1638/**
14bb2c11
TU
1639 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1640 * it is mapped to.
1641 * @dev: drm device
1642 * @data: ioctl data blob
1643 * @file: drm file
673a394b
EA
1644 *
1645 * While the mapping holds a reference on the contents of the object, it doesn't
1646 * imply a ref on the object itself.
34367381
DV
1647 *
1648 * IMPORTANT:
1649 *
1650 * DRM driver writers who look a this function as an example for how to do GEM
1651 * mmap support, please don't implement mmap support like here. The modern way
1652 * to implement DRM mmap support is with an mmap offset ioctl (like
1653 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1654 * That way debug tooling like valgrind will understand what's going on, hiding
1655 * the mmap call in a driver private ioctl will break that. The i915 driver only
1656 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1657 */
1658int
1659i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1660 struct drm_file *file)
673a394b
EA
1661{
1662 struct drm_i915_gem_mmap *args = data;
03ac0642 1663 struct drm_i915_gem_object *obj;
673a394b
EA
1664 unsigned long addr;
1665
1816f923
AG
1666 if (args->flags & ~(I915_MMAP_WC))
1667 return -EINVAL;
1668
568a58e5 1669 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1670 return -ENODEV;
1671
03ac0642
CW
1672 obj = i915_gem_object_lookup(file, args->handle);
1673 if (!obj)
bf79cb91 1674 return -ENOENT;
673a394b 1675
1286ff73
DV
1676 /* prime objects have no backing filp to GEM mmap
1677 * pages from.
1678 */
03ac0642 1679 if (!obj->base.filp) {
f0cd5182 1680 i915_gem_object_put(obj);
1286ff73
DV
1681 return -EINVAL;
1682 }
1683
03ac0642 1684 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1685 PROT_READ | PROT_WRITE, MAP_SHARED,
1686 args->offset);
1816f923
AG
1687 if (args->flags & I915_MMAP_WC) {
1688 struct mm_struct *mm = current->mm;
1689 struct vm_area_struct *vma;
1690
80a89a5e 1691 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1692 i915_gem_object_put(obj);
80a89a5e
MH
1693 return -EINTR;
1694 }
1816f923
AG
1695 vma = find_vma(mm, addr);
1696 if (vma)
1697 vma->vm_page_prot =
1698 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1699 else
1700 addr = -ENOMEM;
1701 up_write(&mm->mmap_sem);
aeecc969
CW
1702
1703 /* This may race, but that's ok, it only gets set */
50349247 1704 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1705 }
f0cd5182 1706 i915_gem_object_put(obj);
673a394b
EA
1707 if (IS_ERR((void *)addr))
1708 return addr;
1709
1710 args->addr_ptr = (uint64_t) addr;
1711
1712 return 0;
1713}
1714
03af84fe
CW
1715static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1716{
6649a0b6 1717 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
03af84fe
CW
1718}
1719
4cc69075
CW
1720/**
1721 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1722 *
1723 * A history of the GTT mmap interface:
1724 *
1725 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1726 * aligned and suitable for fencing, and still fit into the available
1727 * mappable space left by the pinned display objects. A classic problem
1728 * we called the page-fault-of-doom where we would ping-pong between
1729 * two objects that could not fit inside the GTT and so the memcpy
1730 * would page one object in at the expense of the other between every
1731 * single byte.
1732 *
1733 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1734 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1735 * object is too large for the available space (or simply too large
1736 * for the mappable aperture!), a view is created instead and faulted
1737 * into userspace. (This view is aligned and sized appropriately for
1738 * fenced access.)
1739 *
1740 * Restrictions:
1741 *
1742 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1743 * hangs on some architectures, corruption on others. An attempt to service
1744 * a GTT page fault from a snoopable object will generate a SIGBUS.
1745 *
1746 * * the object must be able to fit into RAM (physical memory, though no
1747 * limited to the mappable aperture).
1748 *
1749 *
1750 * Caveats:
1751 *
1752 * * a new GTT page fault will synchronize rendering from the GPU and flush
1753 * all data to system memory. Subsequent access will not be synchronized.
1754 *
1755 * * all mappings are revoked on runtime device suspend.
1756 *
1757 * * there are only 8, 16 or 32 fence registers to share between all users
1758 * (older machines require fence register for display and blitter access
1759 * as well). Contention of the fence registers will cause the previous users
1760 * to be unmapped and any new access will generate new page faults.
1761 *
1762 * * running out of memory while servicing a fault may generate a SIGBUS,
1763 * rather than the expected SIGSEGV.
1764 */
1765int i915_gem_mmap_gtt_version(void)
1766{
1767 return 1;
1768}
1769
2d4281bb
CW
1770static inline struct i915_ggtt_view
1771compute_partial_view(struct drm_i915_gem_object *obj,
2d4281bb
CW
1772 pgoff_t page_offset,
1773 unsigned int chunk)
1774{
1775 struct i915_ggtt_view view;
1776
1777 if (i915_gem_object_is_tiled(obj))
1778 chunk = roundup(chunk, tile_row_pages(obj));
1779
2d4281bb 1780 view.type = I915_GGTT_VIEW_PARTIAL;
8bab1193
CW
1781 view.partial.offset = rounddown(page_offset, chunk);
1782 view.partial.size =
2d4281bb 1783 min_t(unsigned int, chunk,
8bab1193 1784 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
2d4281bb
CW
1785
1786 /* If the partial covers the entire object, just create a normal VMA. */
1787 if (chunk >= obj->base.size >> PAGE_SHIFT)
1788 view.type = I915_GGTT_VIEW_NORMAL;
1789
1790 return view;
1791}
1792
de151cf6
JB
1793/**
1794 * i915_gem_fault - fault a page into the GTT
d9072a3e 1795 * @vmf: fault info
de151cf6
JB
1796 *
1797 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1798 * from userspace. The fault handler takes care of binding the object to
1799 * the GTT (if needed), allocating and programming a fence register (again,
1800 * only if needed based on whether the old reg is still valid or the object
1801 * is tiled) and inserting a new PTE into the faulting process.
1802 *
1803 * Note that the faulting process may involve evicting existing objects
1804 * from the GTT and/or fence registers to make room. So performance may
1805 * suffer if the GTT working set is large or there are few fence registers
1806 * left.
4cc69075
CW
1807 *
1808 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1809 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1810 */
11bac800 1811int i915_gem_fault(struct vm_fault *vmf)
de151cf6 1812{
03af84fe 1813#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
11bac800 1814 struct vm_area_struct *area = vmf->vma;
058d88c4 1815 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1816 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1817 struct drm_i915_private *dev_priv = to_i915(dev);
1818 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1819 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1820 struct i915_vma *vma;
de151cf6 1821 pgoff_t page_offset;
82118877 1822 unsigned int flags;
b8f9096d 1823 int ret;
f65c9168 1824
de151cf6 1825 /* We don't use vmf->pgoff since that has the fake offset */
1a29d85e 1826 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
de151cf6 1827
db53a302
CW
1828 trace_i915_gem_object_fault(obj, page_offset, true, write);
1829
6e4930f6 1830 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1831 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1832 * repeat the flush holding the lock in the normal manner to catch cases
1833 * where we are gazumped.
1834 */
e95433c7
CW
1835 ret = i915_gem_object_wait(obj,
1836 I915_WAIT_INTERRUPTIBLE,
1837 MAX_SCHEDULE_TIMEOUT,
1838 NULL);
6e4930f6 1839 if (ret)
b8f9096d
CW
1840 goto err;
1841
40e62d5d
CW
1842 ret = i915_gem_object_pin_pages(obj);
1843 if (ret)
1844 goto err;
1845
b8f9096d
CW
1846 intel_runtime_pm_get(dev_priv);
1847
1848 ret = i915_mutex_lock_interruptible(dev);
1849 if (ret)
1850 goto err_rpm;
6e4930f6 1851
eb119bd6 1852 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 1853 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 1854 ret = -EFAULT;
b8f9096d 1855 goto err_unlock;
eb119bd6
CW
1856 }
1857
82118877
CW
1858 /* If the object is smaller than a couple of partial vma, it is
1859 * not worth only creating a single partial vma - we may as well
1860 * clear enough space for the full object.
1861 */
1862 flags = PIN_MAPPABLE;
1863 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1864 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1865
a61007a8 1866 /* Now pin it into the GTT as needed */
82118877 1867 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8 1868 if (IS_ERR(vma)) {
a61007a8 1869 /* Use a partial view if it is bigger than available space */
2d4281bb 1870 struct i915_ggtt_view view =
8201c1fa 1871 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
aa136d9d 1872
50349247
CW
1873 /* Userspace is now writing through an untracked VMA, abandon
1874 * all hope that the hardware is able to track future writes.
1875 */
1876 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1877
a61007a8
CW
1878 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1879 }
058d88c4
CW
1880 if (IS_ERR(vma)) {
1881 ret = PTR_ERR(vma);
b8f9096d 1882 goto err_unlock;
058d88c4 1883 }
4a684a41 1884
c9839303
CW
1885 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1886 if (ret)
b8f9096d 1887 goto err_unpin;
74898d7e 1888
49ef5294 1889 ret = i915_vma_get_fence(vma);
d9e86c0e 1890 if (ret)
b8f9096d 1891 goto err_unpin;
7d1c4804 1892
275f039d 1893 /* Mark as being mmapped into userspace for later revocation */
9c870d03 1894 assert_rpm_wakelock_held(dev_priv);
275f039d
CW
1895 if (list_empty(&obj->userfault_link))
1896 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
275f039d 1897
b90b91d8 1898 /* Finally, remap it using the new GTT offset */
c58305af 1899 ret = remap_io_mapping(area,
8bab1193 1900 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
c58305af
CW
1901 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1902 min_t(u64, vma->size, area->vm_end - area->vm_start),
1903 &ggtt->mappable);
a61007a8 1904
b8f9096d 1905err_unpin:
058d88c4 1906 __i915_vma_unpin(vma);
b8f9096d 1907err_unlock:
de151cf6 1908 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1909err_rpm:
1910 intel_runtime_pm_put(dev_priv);
40e62d5d 1911 i915_gem_object_unpin_pages(obj);
b8f9096d 1912err:
de151cf6 1913 switch (ret) {
d9bc7e9f 1914 case -EIO:
2232f031
DV
1915 /*
1916 * We eat errors when the gpu is terminally wedged to avoid
1917 * userspace unduly crashing (gl has no provisions for mmaps to
1918 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1919 * and so needs to be reported.
1920 */
1921 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1922 ret = VM_FAULT_SIGBUS;
1923 break;
1924 }
045e769a 1925 case -EAGAIN:
571c608d
DV
1926 /*
1927 * EAGAIN means the gpu is hung and we'll wait for the error
1928 * handler to reset everything when re-faulting in
1929 * i915_mutex_lock_interruptible.
d9bc7e9f 1930 */
c715089f
CW
1931 case 0:
1932 case -ERESTARTSYS:
bed636ab 1933 case -EINTR:
e79e0fe3
DR
1934 case -EBUSY:
1935 /*
1936 * EBUSY is ok: this just means that another thread
1937 * already did the job.
1938 */
f65c9168
PZ
1939 ret = VM_FAULT_NOPAGE;
1940 break;
de151cf6 1941 case -ENOMEM:
f65c9168
PZ
1942 ret = VM_FAULT_OOM;
1943 break;
a7c2e1aa 1944 case -ENOSPC:
45d67817 1945 case -EFAULT:
f65c9168
PZ
1946 ret = VM_FAULT_SIGBUS;
1947 break;
de151cf6 1948 default:
a7c2e1aa 1949 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1950 ret = VM_FAULT_SIGBUS;
1951 break;
de151cf6 1952 }
f65c9168 1953 return ret;
de151cf6
JB
1954}
1955
901782b2
CW
1956/**
1957 * i915_gem_release_mmap - remove physical page mappings
1958 * @obj: obj in question
1959 *
af901ca1 1960 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1961 * relinquish ownership of the pages back to the system.
1962 *
1963 * It is vital that we remove the page mapping if we have mapped a tiled
1964 * object through the GTT and then lose the fence register due to
1965 * resource pressure. Similarly if the object has been moved out of the
1966 * aperture, than pages mapped into userspace must be revoked. Removing the
1967 * mapping will then trigger a page fault on the next user access, allowing
1968 * fixup by i915_gem_fault().
1969 */
d05ca301 1970void
05394f39 1971i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1972{
275f039d 1973 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 1974
349f2ccf
CW
1975 /* Serialisation between user GTT access and our code depends upon
1976 * revoking the CPU's PTE whilst the mutex is held. The next user
1977 * pagefault then has to wait until we release the mutex.
9c870d03
CW
1978 *
1979 * Note that RPM complicates somewhat by adding an additional
1980 * requirement that operations to the GGTT be made holding the RPM
1981 * wakeref.
349f2ccf 1982 */
275f039d 1983 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 1984 intel_runtime_pm_get(i915);
349f2ccf 1985
3594a3e2 1986 if (list_empty(&obj->userfault_link))
9c870d03 1987 goto out;
901782b2 1988
3594a3e2 1989 list_del_init(&obj->userfault_link);
6796cb16
DH
1990 drm_vma_node_unmap(&obj->base.vma_node,
1991 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1992
1993 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1994 * memory transactions from userspace before we return. The TLB
1995 * flushing implied above by changing the PTE above *should* be
1996 * sufficient, an extra barrier here just provides us with a bit
1997 * of paranoid documentation about our requirement to serialise
1998 * memory writes before touching registers / GSM.
1999 */
2000 wmb();
9c870d03
CW
2001
2002out:
2003 intel_runtime_pm_put(i915);
901782b2
CW
2004}
2005
7c108fd8 2006void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 2007{
3594a3e2 2008 struct drm_i915_gem_object *obj, *on;
7c108fd8 2009 int i;
eedd10f4 2010
3594a3e2
CW
2011 /*
2012 * Only called during RPM suspend. All users of the userfault_list
2013 * must be holding an RPM wakeref to ensure that this can not
2014 * run concurrently with themselves (and use the struct_mutex for
2015 * protection between themselves).
2016 */
275f039d 2017
3594a3e2
CW
2018 list_for_each_entry_safe(obj, on,
2019 &dev_priv->mm.userfault_list, userfault_link) {
2020 list_del_init(&obj->userfault_link);
275f039d
CW
2021 drm_vma_node_unmap(&obj->base.vma_node,
2022 obj->base.dev->anon_inode->i_mapping);
275f039d 2023 }
7c108fd8
CW
2024
2025 /* The fence will be lost when the device powers down. If any were
2026 * in use by hardware (i.e. they are pinned), we should not be powering
2027 * down! All other fences will be reacquired by the user upon waking.
2028 */
2029 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2030 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2031
e0ec3ec6
CW
2032 /* Ideally we want to assert that the fence register is not
2033 * live at this point (i.e. that no piece of code will be
2034 * trying to write through fence + GTT, as that both violates
2035 * our tracking of activity and associated locking/barriers,
2036 * but also is illegal given that the hw is powered down).
2037 *
2038 * Previously we used reg->pin_count as a "liveness" indicator.
2039 * That is not sufficient, and we need a more fine-grained
2040 * tool if we want to have a sanity check here.
2041 */
7c108fd8
CW
2042
2043 if (!reg->vma)
2044 continue;
2045
2046 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2047 reg->dirty = true;
2048 }
eedd10f4
CW
2049}
2050
d8cb5086
CW
2051static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2052{
fac5e23e 2053 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2054 int err;
da494d7c 2055
f3f6184c 2056 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9 2057 if (likely(!err))
f3f6184c 2058 return 0;
d8cb5086 2059
b42a13d9
CW
2060 /* Attempt to reap some mmap space from dead objects */
2061 do {
2062 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2063 if (err)
2064 break;
f3f6184c 2065
b42a13d9 2066 i915_gem_drain_freed_objects(dev_priv);
f3f6184c 2067 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9
CW
2068 if (!err)
2069 break;
2070
2071 } while (flush_delayed_work(&dev_priv->gt.retire_work));
da494d7c 2072
f3f6184c 2073 return err;
d8cb5086
CW
2074}
2075
2076static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2077{
d8cb5086
CW
2078 drm_gem_free_mmap_offset(&obj->base);
2079}
2080
da6b51d0 2081int
ff72145b
DA
2082i915_gem_mmap_gtt(struct drm_file *file,
2083 struct drm_device *dev,
da6b51d0 2084 uint32_t handle,
ff72145b 2085 uint64_t *offset)
de151cf6 2086{
05394f39 2087 struct drm_i915_gem_object *obj;
de151cf6
JB
2088 int ret;
2089
03ac0642 2090 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2091 if (!obj)
2092 return -ENOENT;
ab18282d 2093
d8cb5086 2094 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2095 if (ret == 0)
2096 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2097
f0cd5182 2098 i915_gem_object_put(obj);
1d7cfea1 2099 return ret;
de151cf6
JB
2100}
2101
ff72145b
DA
2102/**
2103 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2104 * @dev: DRM device
2105 * @data: GTT mapping ioctl data
2106 * @file: GEM object info
2107 *
2108 * Simply returns the fake offset to userspace so it can mmap it.
2109 * The mmap call will end up in drm_gem_mmap(), which will set things
2110 * up so we can get faults in the handler above.
2111 *
2112 * The fault handler will take care of binding the object into the GTT
2113 * (since it may have been evicted to make room for something), allocating
2114 * a fence register, and mapping the appropriate aperture address into
2115 * userspace.
2116 */
2117int
2118i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2119 struct drm_file *file)
2120{
2121 struct drm_i915_gem_mmap_gtt *args = data;
2122
da6b51d0 2123 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2124}
2125
225067ee
DV
2126/* Immediately discard the backing storage */
2127static void
2128i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2129{
4d6294bf 2130 i915_gem_object_free_mmap_offset(obj);
1286ff73 2131
4d6294bf
CW
2132 if (obj->base.filp == NULL)
2133 return;
e5281ccd 2134
225067ee
DV
2135 /* Our goal here is to return as much of the memory as
2136 * is possible back to the system as we are called from OOM.
2137 * To do this we must instruct the shmfs to drop all of its
2138 * backing pages, *now*.
2139 */
5537252b 2140 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2141 obj->mm.madv = __I915_MADV_PURGED;
4e5462ee 2142 obj->mm.pages = ERR_PTR(-EFAULT);
225067ee 2143}
e5281ccd 2144
5537252b 2145/* Try to discard unwanted pages */
03ac84f1 2146void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2147{
5537252b
CW
2148 struct address_space *mapping;
2149
1233e2db
CW
2150 lockdep_assert_held(&obj->mm.lock);
2151 GEM_BUG_ON(obj->mm.pages);
2152
a4f5ea64 2153 switch (obj->mm.madv) {
5537252b
CW
2154 case I915_MADV_DONTNEED:
2155 i915_gem_object_truncate(obj);
2156 case __I915_MADV_PURGED:
2157 return;
2158 }
2159
2160 if (obj->base.filp == NULL)
2161 return;
2162
93c76a3d 2163 mapping = obj->base.filp->f_mapping,
5537252b 2164 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2165}
2166
5cdf5881 2167static void
03ac84f1
CW
2168i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2169 struct sg_table *pages)
673a394b 2170{
85d1225e
DG
2171 struct sgt_iter sgt_iter;
2172 struct page *page;
1286ff73 2173
e5facdf9 2174 __i915_gem_object_release_shmem(obj, pages, true);
673a394b 2175
03ac84f1 2176 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2177
6dacfd2f 2178 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2179 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2180
03ac84f1 2181 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2182 if (obj->mm.dirty)
9da3da66 2183 set_page_dirty(page);
3ef94daa 2184
a4f5ea64 2185 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2186 mark_page_accessed(page);
3ef94daa 2187
09cbfeaf 2188 put_page(page);
3ef94daa 2189 }
a4f5ea64 2190 obj->mm.dirty = false;
673a394b 2191
03ac84f1
CW
2192 sg_free_table(pages);
2193 kfree(pages);
37e680a1 2194}
6c085a72 2195
96d77634
CW
2196static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2197{
2198 struct radix_tree_iter iter;
2199 void **slot;
2200
a4f5ea64
CW
2201 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2202 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2203}
2204
548625ee
CW
2205void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2206 enum i915_mm_subclass subclass)
37e680a1 2207{
03ac84f1 2208 struct sg_table *pages;
37e680a1 2209
a4f5ea64 2210 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2211 return;
a5570178 2212
15717de2 2213 GEM_BUG_ON(obj->bind_count);
1233e2db
CW
2214 if (!READ_ONCE(obj->mm.pages))
2215 return;
2216
2217 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2218 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2219 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2220 goto unlock;
3e123027 2221
a2165e31
CW
2222 /* ->put_pages might need to allocate memory for the bit17 swizzle
2223 * array, hence protect them from being reaped by removing them from gtt
2224 * lists early. */
03ac84f1
CW
2225 pages = fetch_and_zero(&obj->mm.pages);
2226 GEM_BUG_ON(!pages);
a2165e31 2227
a4f5ea64 2228 if (obj->mm.mapping) {
4b30cb23
CW
2229 void *ptr;
2230
a4f5ea64 2231 ptr = ptr_mask_bits(obj->mm.mapping);
4b30cb23
CW
2232 if (is_vmalloc_addr(ptr))
2233 vunmap(ptr);
fb8621d3 2234 else
4b30cb23
CW
2235 kunmap(kmap_to_page(ptr));
2236
a4f5ea64 2237 obj->mm.mapping = NULL;
0a798eb9
CW
2238 }
2239
96d77634
CW
2240 __i915_gem_object_reset_page_iter(obj);
2241
4e5462ee
CW
2242 if (!IS_ERR(pages))
2243 obj->ops->put_pages(obj, pages);
2244
1233e2db
CW
2245unlock:
2246 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2247}
2248
935a2f77 2249static bool i915_sg_trim(struct sg_table *orig_st)
0c40ce13
TU
2250{
2251 struct sg_table new_st;
2252 struct scatterlist *sg, *new_sg;
2253 unsigned int i;
2254
2255 if (orig_st->nents == orig_st->orig_nents)
935a2f77 2256 return false;
0c40ce13 2257
8bfc478f 2258 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
935a2f77 2259 return false;
0c40ce13
TU
2260
2261 new_sg = new_st.sgl;
2262 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2263 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2264 /* called before being DMA mapped, no need to copy sg->dma_* */
2265 new_sg = sg_next(new_sg);
2266 }
c2dc6cc9 2267 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
0c40ce13
TU
2268
2269 sg_free_table(orig_st);
2270
2271 *orig_st = new_st;
935a2f77 2272 return true;
0c40ce13
TU
2273}
2274
03ac84f1 2275static struct sg_table *
6c085a72 2276i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2277{
fac5e23e 2278 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d766ef53
CW
2279 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2280 unsigned long i;
e5281ccd 2281 struct address_space *mapping;
9da3da66
CW
2282 struct sg_table *st;
2283 struct scatterlist *sg;
85d1225e 2284 struct sgt_iter sgt_iter;
e5281ccd 2285 struct page *page;
90797e6d 2286 unsigned long last_pfn = 0; /* suppress gcc warning */
4ff340f0 2287 unsigned int max_segment;
e2273302 2288 int ret;
6c085a72 2289 gfp_t gfp;
e5281ccd 2290
6c085a72
CW
2291 /* Assert that the object is not currently in any GPU domain. As it
2292 * wasn't in the GTT, there shouldn't be any way it could have been in
2293 * a GPU cache
2294 */
03ac84f1
CW
2295 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2296 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2297
7453c549 2298 max_segment = swiotlb_max_segment();
871dfbd6 2299 if (!max_segment)
4ff340f0 2300 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
871dfbd6 2301
9da3da66
CW
2302 st = kmalloc(sizeof(*st), GFP_KERNEL);
2303 if (st == NULL)
03ac84f1 2304 return ERR_PTR(-ENOMEM);
9da3da66 2305
d766ef53 2306rebuild_st:
9da3da66 2307 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2308 kfree(st);
03ac84f1 2309 return ERR_PTR(-ENOMEM);
9da3da66 2310 }
e5281ccd 2311
9da3da66
CW
2312 /* Get the list of pages out of our struct file. They'll be pinned
2313 * at this point until we release them.
2314 *
2315 * Fail silently without starting the shrinker
2316 */
93c76a3d 2317 mapping = obj->base.filp->f_mapping;
c62d2555 2318 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2319 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2320 sg = st->sgl;
2321 st->nents = 0;
2322 for (i = 0; i < page_count; i++) {
6c085a72 2323 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
24f8e00a 2324 if (unlikely(IS_ERR(page))) {
21ab4e74
CW
2325 i915_gem_shrink(dev_priv,
2326 page_count,
2327 I915_SHRINK_BOUND |
2328 I915_SHRINK_UNBOUND |
2329 I915_SHRINK_PURGEABLE);
6c085a72
CW
2330 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2331 }
24f8e00a
CW
2332 if (unlikely(IS_ERR(page))) {
2333 gfp_t reclaim;
2334
6c085a72
CW
2335 /* We've tried hard to allocate the memory by reaping
2336 * our own buffer, now let the real VM do its job and
2337 * go down in flames if truly OOM.
24f8e00a
CW
2338 *
2339 * However, since graphics tend to be disposable,
2340 * defer the oom here by reporting the ENOMEM back
2341 * to userspace.
6c085a72 2342 */
24f8e00a
CW
2343 reclaim = mapping_gfp_constraint(mapping, 0);
2344 reclaim |= __GFP_NORETRY; /* reclaim, but no oom */
2345
40149f00 2346 page = shmem_read_mapping_page_gfp(mapping, i, reclaim);
e2273302
ID
2347 if (IS_ERR(page)) {
2348 ret = PTR_ERR(page);
b17993b7 2349 goto err_sg;
e2273302 2350 }
6c085a72 2351 }
871dfbd6
CW
2352 if (!i ||
2353 sg->length >= max_segment ||
2354 page_to_pfn(page) != last_pfn + 1) {
90797e6d
ID
2355 if (i)
2356 sg = sg_next(sg);
2357 st->nents++;
2358 sg_set_page(sg, page, PAGE_SIZE, 0);
2359 } else {
2360 sg->length += PAGE_SIZE;
2361 }
2362 last_pfn = page_to_pfn(page);
3bbbe706
DV
2363
2364 /* Check that the i965g/gm workaround works. */
2365 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2366 }
871dfbd6 2367 if (sg) /* loop terminated early; short sg table */
426729dc 2368 sg_mark_end(sg);
74ce6b6c 2369
0c40ce13
TU
2370 /* Trim unused sg entries to avoid wasting memory. */
2371 i915_sg_trim(st);
2372
03ac84f1 2373 ret = i915_gem_gtt_prepare_pages(obj, st);
d766ef53
CW
2374 if (ret) {
2375 /* DMA remapping failed? One possible cause is that
2376 * it could not reserve enough large entries, asking
2377 * for PAGE_SIZE chunks instead may be helpful.
2378 */
2379 if (max_segment > PAGE_SIZE) {
2380 for_each_sgt_page(page, sgt_iter, st)
2381 put_page(page);
2382 sg_free_table(st);
2383
2384 max_segment = PAGE_SIZE;
2385 goto rebuild_st;
2386 } else {
2387 dev_warn(&dev_priv->drm.pdev->dev,
2388 "Failed to DMA remap %lu pages\n",
2389 page_count);
2390 goto err_pages;
2391 }
2392 }
e2273302 2393
6dacfd2f 2394 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2395 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2396
03ac84f1 2397 return st;
e5281ccd 2398
b17993b7 2399err_sg:
90797e6d 2400 sg_mark_end(sg);
b17993b7 2401err_pages:
85d1225e
DG
2402 for_each_sgt_page(page, sgt_iter, st)
2403 put_page(page);
9da3da66
CW
2404 sg_free_table(st);
2405 kfree(st);
0820baf3
CW
2406
2407 /* shmemfs first checks if there is enough memory to allocate the page
2408 * and reports ENOSPC should there be insufficient, along with the usual
2409 * ENOMEM for a genuine allocation failure.
2410 *
2411 * We use ENOSPC in our driver to mean that we have run out of aperture
2412 * space and so want to translate the error from shmemfs back to our
2413 * usual understanding of ENOMEM.
2414 */
e2273302
ID
2415 if (ret == -ENOSPC)
2416 ret = -ENOMEM;
2417
03ac84f1
CW
2418 return ERR_PTR(ret);
2419}
2420
2421void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2422 struct sg_table *pages)
2423{
1233e2db 2424 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2425
2426 obj->mm.get_page.sg_pos = pages->sgl;
2427 obj->mm.get_page.sg_idx = 0;
2428
2429 obj->mm.pages = pages;
2c3a3f44
CW
2430
2431 if (i915_gem_object_is_tiled(obj) &&
2432 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2433 GEM_BUG_ON(obj->mm.quirked);
2434 __i915_gem_object_pin_pages(obj);
2435 obj->mm.quirked = true;
2436 }
03ac84f1
CW
2437}
2438
2439static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2440{
2441 struct sg_table *pages;
2442
2c3a3f44
CW
2443 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2444
03ac84f1
CW
2445 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2446 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2447 return -EFAULT;
2448 }
2449
2450 pages = obj->ops->get_pages(obj);
2451 if (unlikely(IS_ERR(pages)))
2452 return PTR_ERR(pages);
2453
2454 __i915_gem_object_set_pages(obj, pages);
2455 return 0;
673a394b
EA
2456}
2457
37e680a1 2458/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2459 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2460 * multiple times before they are released by a single call to
1233e2db 2461 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2462 * either as a result of memory pressure (reaping pages under the shrinker)
2463 * or as the object is itself released.
2464 */
a4f5ea64 2465int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2466{
03ac84f1 2467 int err;
37e680a1 2468
1233e2db
CW
2469 err = mutex_lock_interruptible(&obj->mm.lock);
2470 if (err)
2471 return err;
4c7d62c6 2472
4e5462ee 2473 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2c3a3f44
CW
2474 err = ____i915_gem_object_get_pages(obj);
2475 if (err)
2476 goto unlock;
37e680a1 2477
2c3a3f44
CW
2478 smp_mb__before_atomic();
2479 }
2480 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2481
1233e2db
CW
2482unlock:
2483 mutex_unlock(&obj->mm.lock);
03ac84f1 2484 return err;
673a394b
EA
2485}
2486
dd6034c6 2487/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2488static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2489 enum i915_map_type type)
dd6034c6
DG
2490{
2491 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2492 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2493 struct sgt_iter sgt_iter;
2494 struct page *page;
b338fa47
DG
2495 struct page *stack_pages[32];
2496 struct page **pages = stack_pages;
dd6034c6 2497 unsigned long i = 0;
d31d7cb1 2498 pgprot_t pgprot;
dd6034c6
DG
2499 void *addr;
2500
2501 /* A single page can always be kmapped */
d31d7cb1 2502 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2503 return kmap(sg_page(sgt->sgl));
2504
b338fa47
DG
2505 if (n_pages > ARRAY_SIZE(stack_pages)) {
2506 /* Too big for stack -- allocate temporary array instead */
2507 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2508 if (!pages)
2509 return NULL;
2510 }
dd6034c6 2511
85d1225e
DG
2512 for_each_sgt_page(page, sgt_iter, sgt)
2513 pages[i++] = page;
dd6034c6
DG
2514
2515 /* Check that we have the expected number of pages */
2516 GEM_BUG_ON(i != n_pages);
2517
d31d7cb1
CW
2518 switch (type) {
2519 case I915_MAP_WB:
2520 pgprot = PAGE_KERNEL;
2521 break;
2522 case I915_MAP_WC:
2523 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2524 break;
2525 }
2526 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2527
b338fa47
DG
2528 if (pages != stack_pages)
2529 drm_free_large(pages);
dd6034c6
DG
2530
2531 return addr;
2532}
2533
2534/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2535void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2536 enum i915_map_type type)
0a798eb9 2537{
d31d7cb1
CW
2538 enum i915_map_type has_type;
2539 bool pinned;
2540 void *ptr;
0a798eb9
CW
2541 int ret;
2542
d31d7cb1 2543 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2544
1233e2db 2545 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2546 if (ret)
2547 return ERR_PTR(ret);
2548
1233e2db
CW
2549 pinned = true;
2550 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
4e5462ee 2551 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2c3a3f44
CW
2552 ret = ____i915_gem_object_get_pages(obj);
2553 if (ret)
2554 goto err_unlock;
1233e2db 2555
2c3a3f44
CW
2556 smp_mb__before_atomic();
2557 }
2558 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2559 pinned = false;
2560 }
2561 GEM_BUG_ON(!obj->mm.pages);
0a798eb9 2562
a4f5ea64 2563 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
d31d7cb1
CW
2564 if (ptr && has_type != type) {
2565 if (pinned) {
2566 ret = -EBUSY;
1233e2db 2567 goto err_unpin;
0a798eb9 2568 }
d31d7cb1
CW
2569
2570 if (is_vmalloc_addr(ptr))
2571 vunmap(ptr);
2572 else
2573 kunmap(kmap_to_page(ptr));
2574
a4f5ea64 2575 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2576 }
2577
d31d7cb1
CW
2578 if (!ptr) {
2579 ptr = i915_gem_object_map(obj, type);
2580 if (!ptr) {
2581 ret = -ENOMEM;
1233e2db 2582 goto err_unpin;
d31d7cb1
CW
2583 }
2584
a4f5ea64 2585 obj->mm.mapping = ptr_pack_bits(ptr, type);
d31d7cb1
CW
2586 }
2587
1233e2db
CW
2588out_unlock:
2589 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2590 return ptr;
2591
1233e2db
CW
2592err_unpin:
2593 atomic_dec(&obj->mm.pages_pin_count);
2594err_unlock:
2595 ptr = ERR_PTR(ret);
2596 goto out_unlock;
0a798eb9
CW
2597}
2598
7c55e2c5
CW
2599static int
2600i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2601 const struct drm_i915_gem_pwrite *arg)
2602{
2603 struct address_space *mapping = obj->base.filp->f_mapping;
2604 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2605 u64 remain, offset;
2606 unsigned int pg;
2607
2608 /* Before we instantiate/pin the backing store for our use, we
2609 * can prepopulate the shmemfs filp efficiently using a write into
2610 * the pagecache. We avoid the penalty of instantiating all the
2611 * pages, important if the user is just writing to a few and never
2612 * uses the object on the GPU, and using a direct write into shmemfs
2613 * allows it to avoid the cost of retrieving a page (either swapin
2614 * or clearing-before-use) before it is overwritten.
2615 */
2616 if (READ_ONCE(obj->mm.pages))
2617 return -ENODEV;
2618
2619 /* Before the pages are instantiated the object is treated as being
2620 * in the CPU domain. The pages will be clflushed as required before
2621 * use, and we can freely write into the pages directly. If userspace
2622 * races pwrite with any other operation; corruption will ensue -
2623 * that is userspace's prerogative!
2624 */
2625
2626 remain = arg->size;
2627 offset = arg->offset;
2628 pg = offset_in_page(offset);
2629
2630 do {
2631 unsigned int len, unwritten;
2632 struct page *page;
2633 void *data, *vaddr;
2634 int err;
2635
2636 len = PAGE_SIZE - pg;
2637 if (len > remain)
2638 len = remain;
2639
2640 err = pagecache_write_begin(obj->base.filp, mapping,
2641 offset, len, 0,
2642 &page, &data);
2643 if (err < 0)
2644 return err;
2645
2646 vaddr = kmap(page);
2647 unwritten = copy_from_user(vaddr + pg, user_data, len);
2648 kunmap(page);
2649
2650 err = pagecache_write_end(obj->base.filp, mapping,
2651 offset, len, len - unwritten,
2652 page, data);
2653 if (err < 0)
2654 return err;
2655
2656 if (unwritten)
2657 return -EFAULT;
2658
2659 remain -= len;
2660 user_data += len;
2661 offset += len;
2662 pg = 0;
2663 } while (remain);
2664
2665 return 0;
2666}
2667
6095868a 2668static bool ban_context(const struct i915_gem_context *ctx)
be62acb4 2669{
6095868a
CW
2670 return (i915_gem_context_is_bannable(ctx) &&
2671 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
be62acb4
MK
2672}
2673
e5e1fc47 2674static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
aa60c664 2675{
bc1d53c6 2676 ctx->guilty_count++;
6095868a
CW
2677 ctx->ban_score += CONTEXT_SCORE_GUILTY;
2678 if (ban_context(ctx))
2679 i915_gem_context_set_banned(ctx);
b083a087
MK
2680
2681 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
bc1d53c6 2682 ctx->name, ctx->ban_score,
6095868a 2683 yesno(i915_gem_context_is_banned(ctx)));
b083a087 2684
6095868a 2685 if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
b083a087
MK
2686 return;
2687
d9e9da64
CW
2688 ctx->file_priv->context_bans++;
2689 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2690 ctx->name, ctx->file_priv->context_bans);
e5e1fc47
MK
2691}
2692
2693static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2694{
bc1d53c6 2695 ctx->active_count++;
aa60c664
MK
2696}
2697
8d9fc7fd 2698struct drm_i915_gem_request *
0bc40be8 2699i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2700{
754c9fd5
CW
2701 struct drm_i915_gem_request *request, *active = NULL;
2702 unsigned long flags;
4db080f9 2703
f69a02c9
CW
2704 /* We are called by the error capture and reset at a random
2705 * point in time. In particular, note that neither is crucially
2706 * ordered with an interrupt. After a hang, the GPU is dead and we
2707 * assume that no more writes can happen (we waited long enough for
2708 * all writes that were in transaction to be flushed) - adding an
2709 * extra delay for a recent interrupt is pointless. Hence, we do
2710 * not need an engine->irq_seqno_barrier() before the seqno reads.
2711 */
754c9fd5 2712 spin_lock_irqsave(&engine->timeline->lock, flags);
73cb9701 2713 list_for_each_entry(request, &engine->timeline->requests, link) {
754c9fd5
CW
2714 if (__i915_gem_request_completed(request,
2715 request->global_seqno))
4db080f9 2716 continue;
aa60c664 2717
36193acd 2718 GEM_BUG_ON(request->engine != engine);
c00122f3
CW
2719 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2720 &request->fence.flags));
754c9fd5
CW
2721
2722 active = request;
2723 break;
4db080f9 2724 }
754c9fd5 2725 spin_unlock_irqrestore(&engine->timeline->lock, flags);
b6b0fac0 2726
754c9fd5 2727 return active;
b6b0fac0
MK
2728}
2729
bf2f0436
MK
2730static bool engine_stalled(struct intel_engine_cs *engine)
2731{
2732 if (!engine->hangcheck.stalled)
2733 return false;
2734
2735 /* Check for possible seqno movement after hang declaration */
2736 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2737 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2738 return false;
2739 }
2740
2741 return true;
2742}
2743
0e178aef 2744int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
4c965543
CW
2745{
2746 struct intel_engine_cs *engine;
2747 enum intel_engine_id id;
0e178aef 2748 int err = 0;
4c965543
CW
2749
2750 /* Ensure irq handler finishes, and not run again. */
0e178aef
CW
2751 for_each_engine(engine, dev_priv, id) {
2752 struct drm_i915_gem_request *request;
2753
fe3288b5
CW
2754 /* Prevent the signaler thread from updating the request
2755 * state (by calling dma_fence_signal) as we are processing
2756 * the reset. The write from the GPU of the seqno is
2757 * asynchronous and the signaler thread may see a different
2758 * value to us and declare the request complete, even though
2759 * the reset routine have picked that request as the active
2760 * (incomplete) request. This conflict is not handled
2761 * gracefully!
2762 */
2763 kthread_park(engine->breadcrumbs.signaler);
2764
1f7b847d
CW
2765 /* Prevent request submission to the hardware until we have
2766 * completed the reset in i915_gem_reset_finish(). If a request
2767 * is completed by one engine, it may then queue a request
2768 * to a second via its engine->irq_tasklet *just* as we are
2769 * calling engine->init_hw() and also writing the ELSP.
2770 * Turning off the engine->irq_tasklet until the reset is over
2771 * prevents the race.
2772 */
4c965543 2773 tasklet_kill(&engine->irq_tasklet);
1d309634 2774 tasklet_disable(&engine->irq_tasklet);
4c965543 2775
8c12d121
CW
2776 if (engine->irq_seqno_barrier)
2777 engine->irq_seqno_barrier(engine);
2778
0e178aef
CW
2779 if (engine_stalled(engine)) {
2780 request = i915_gem_find_active_request(engine);
2781 if (request && request->fence.error == -EIO)
2782 err = -EIO; /* Previous reset failed! */
2783 }
2784 }
2785
4c965543 2786 i915_gem_revoke_fences(dev_priv);
0e178aef
CW
2787
2788 return err;
4c965543
CW
2789}
2790
36193acd 2791static void skip_request(struct drm_i915_gem_request *request)
821ed7df
CW
2792{
2793 void *vaddr = request->ring->vaddr;
2794 u32 head;
2795
2796 /* As this request likely depends on state from the lost
2797 * context, clear out all the user operations leaving the
2798 * breadcrumb at the end (so we get the fence notifications).
2799 */
2800 head = request->head;
2801 if (request->postfix < head) {
2802 memset(vaddr + head, 0, request->ring->size - head);
2803 head = 0;
2804 }
2805 memset(vaddr + head, 0, request->postfix - head);
c0d5f32c
CW
2806
2807 dma_fence_set_error(&request->fence, -EIO);
821ed7df
CW
2808}
2809
36193acd
MK
2810static void engine_skip_context(struct drm_i915_gem_request *request)
2811{
2812 struct intel_engine_cs *engine = request->engine;
2813 struct i915_gem_context *hung_ctx = request->ctx;
2814 struct intel_timeline *timeline;
2815 unsigned long flags;
2816
2817 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2818
2819 spin_lock_irqsave(&engine->timeline->lock, flags);
2820 spin_lock(&timeline->lock);
2821
2822 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2823 if (request->ctx == hung_ctx)
2824 skip_request(request);
2825
2826 list_for_each_entry(request, &timeline->requests, link)
2827 skip_request(request);
2828
2829 spin_unlock(&timeline->lock);
2830 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2831}
2832
61da5362
MK
2833/* Returns true if the request was guilty of hang */
2834static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2835{
2836 /* Read once and return the resolution */
2837 const bool guilty = engine_stalled(request->engine);
2838
71895a08
MK
2839 /* The guilty request will get skipped on a hung engine.
2840 *
2841 * Users of client default contexts do not rely on logical
2842 * state preserved between batches so it is safe to execute
2843 * queued requests following the hang. Non default contexts
2844 * rely on preserved state, so skipping a batch loses the
2845 * evolution of the state and it needs to be considered corrupted.
2846 * Executing more queued batches on top of corrupted state is
2847 * risky. But we take the risk by trying to advance through
2848 * the queued requests in order to make the client behaviour
2849 * more predictable around resets, by not throwing away random
2850 * amount of batches it has prepared for execution. Sophisticated
2851 * clients can use gem_reset_stats_ioctl and dma fence status
2852 * (exported via sync_file info ioctl on explicit fences) to observe
2853 * when it loses the context state and should rebuild accordingly.
2854 *
2855 * The context ban, and ultimately the client ban, mechanism are safety
2856 * valves if client submission ends up resulting in nothing more than
2857 * subsequent hangs.
2858 */
2859
61da5362
MK
2860 if (guilty) {
2861 i915_gem_context_mark_guilty(request->ctx);
2862 skip_request(request);
2863 } else {
2864 i915_gem_context_mark_innocent(request->ctx);
2865 dma_fence_set_error(&request->fence, -EAGAIN);
2866 }
2867
2868 return guilty;
2869}
2870
821ed7df 2871static void i915_gem_reset_engine(struct intel_engine_cs *engine)
b6b0fac0
MK
2872{
2873 struct drm_i915_gem_request *request;
b6b0fac0 2874
0bc40be8 2875 request = i915_gem_find_active_request(engine);
c0dcb203
CW
2876 if (request && i915_gem_reset_request(request)) {
2877 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2878 engine->name, request->global_seqno);
821ed7df 2879
c0dcb203
CW
2880 /* If this context is now banned, skip all pending requests. */
2881 if (i915_gem_context_is_banned(request->ctx))
2882 engine_skip_context(request);
2883 }
821ed7df
CW
2884
2885 /* Setup the CS to resume from the breadcrumb of the hung request */
2886 engine->reset_hw(engine, request);
4db080f9 2887}
aa60c664 2888
d8027093 2889void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 2890{
821ed7df 2891 struct intel_engine_cs *engine;
3b3f1650 2892 enum intel_engine_id id;
608c1a52 2893
4c7d62c6
CW
2894 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2895
821ed7df
CW
2896 i915_gem_retire_requests(dev_priv);
2897
2ae55738
CW
2898 for_each_engine(engine, dev_priv, id) {
2899 struct i915_gem_context *ctx;
2900
821ed7df 2901 i915_gem_reset_engine(engine);
2ae55738
CW
2902 ctx = fetch_and_zero(&engine->last_retired_context);
2903 if (ctx)
2904 engine->context_unpin(engine, ctx);
2905 }
821ed7df 2906
4362f4f6 2907 i915_gem_restore_fences(dev_priv);
f2a91d1a
CW
2908
2909 if (dev_priv->gt.awake) {
2910 intel_sanitize_gt_powersave(dev_priv);
2911 intel_enable_gt_powersave(dev_priv);
2912 if (INTEL_GEN(dev_priv) >= 6)
2913 gen6_rps_busy(dev_priv);
2914 }
821ed7df
CW
2915}
2916
d8027093
CW
2917void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2918{
1f7b847d
CW
2919 struct intel_engine_cs *engine;
2920 enum intel_engine_id id;
2921
d8027093 2922 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1f7b847d 2923
fe3288b5 2924 for_each_engine(engine, dev_priv, id) {
1f7b847d 2925 tasklet_enable(&engine->irq_tasklet);
fe3288b5
CW
2926 kthread_unpark(engine->breadcrumbs.signaler);
2927 }
d8027093
CW
2928}
2929
821ed7df
CW
2930static void nop_submit_request(struct drm_i915_gem_request *request)
2931{
3cd9442f 2932 dma_fence_set_error(&request->fence, -EIO);
3dcf93f7
CW
2933 i915_gem_request_submit(request);
2934 intel_engine_init_global_seqno(request->engine, request->global_seqno);
821ed7df
CW
2935}
2936
2a20d6f8 2937static void engine_set_wedged(struct intel_engine_cs *engine)
821ed7df 2938{
3cd9442f
CW
2939 struct drm_i915_gem_request *request;
2940 unsigned long flags;
2941
20e4933c
CW
2942 /* We need to be sure that no thread is running the old callback as
2943 * we install the nop handler (otherwise we would submit a request
2944 * to hardware that will never complete). In order to prevent this
2945 * race, we wait until the machine is idle before making the swap
2946 * (using stop_machine()).
2947 */
821ed7df 2948 engine->submit_request = nop_submit_request;
70c2a24d 2949
3cd9442f
CW
2950 /* Mark all executing requests as skipped */
2951 spin_lock_irqsave(&engine->timeline->lock, flags);
2952 list_for_each_entry(request, &engine->timeline->requests, link)
2953 dma_fence_set_error(&request->fence, -EIO);
2954 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2955
c4b0930b
CW
2956 /* Mark all pending requests as complete so that any concurrent
2957 * (lockless) lookup doesn't try and wait upon the request as we
2958 * reset it.
2959 */
73cb9701 2960 intel_engine_init_global_seqno(engine,
cb399eab 2961 intel_engine_last_submit(engine));
c4b0930b 2962
dcb4c12a
OM
2963 /*
2964 * Clear the execlists queue up before freeing the requests, as those
2965 * are the ones that keep the context and ringbuffer backing objects
2966 * pinned in place.
2967 */
dcb4c12a 2968
7de1691a 2969 if (i915.enable_execlists) {
663f71e7
CW
2970 unsigned long flags;
2971
2972 spin_lock_irqsave(&engine->timeline->lock, flags);
2973
70c2a24d
CW
2974 i915_gem_request_put(engine->execlist_port[0].request);
2975 i915_gem_request_put(engine->execlist_port[1].request);
2976 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
20311bd3
CW
2977 engine->execlist_queue = RB_ROOT;
2978 engine->execlist_first = NULL;
663f71e7
CW
2979
2980 spin_unlock_irqrestore(&engine->timeline->lock, flags);
dcb4c12a 2981 }
673a394b
EA
2982}
2983
20e4933c 2984static int __i915_gem_set_wedged_BKL(void *data)
673a394b 2985{
20e4933c 2986 struct drm_i915_private *i915 = data;
e2f80391 2987 struct intel_engine_cs *engine;
3b3f1650 2988 enum intel_engine_id id;
673a394b 2989
20e4933c 2990 for_each_engine(engine, i915, id)
2a20d6f8 2991 engine_set_wedged(engine);
20e4933c
CW
2992
2993 return 0;
2994}
2995
2996void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2997{
821ed7df
CW
2998 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2999 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
4db080f9 3000
2c170af7
CW
3001 /* Retire completed requests first so the list of inflight/incomplete
3002 * requests is accurate and we don't try and mark successful requests
3003 * as in error during __i915_gem_set_wedged_BKL().
3004 */
3005 i915_gem_retire_requests(dev_priv);
3006
20e4933c 3007 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
dfaae392 3008
20e4933c 3009 i915_gem_context_lost(dev_priv);
20e4933c
CW
3010
3011 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
673a394b
EA
3012}
3013
2e8f9d32
CW
3014bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3015{
3016 struct i915_gem_timeline *tl;
3017 int i;
3018
3019 lockdep_assert_held(&i915->drm.struct_mutex);
3020 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3021 return true;
3022
3023 /* Before unwedging, make sure that all pending operations
3024 * are flushed and errored out - we may have requests waiting upon
3025 * third party fences. We marked all inflight requests as EIO, and
3026 * every execbuf since returned EIO, for consistency we want all
3027 * the currently pending requests to also be marked as EIO, which
3028 * is done inside our nop_submit_request - and so we must wait.
3029 *
3030 * No more can be submitted until we reset the wedged bit.
3031 */
3032 list_for_each_entry(tl, &i915->gt.timelines, link) {
3033 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3034 struct drm_i915_gem_request *rq;
3035
3036 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3037 &i915->drm.struct_mutex);
3038 if (!rq)
3039 continue;
3040
3041 /* We can't use our normal waiter as we want to
3042 * avoid recursively trying to handle the current
3043 * reset. The basic dma_fence_default_wait() installs
3044 * a callback for dma_fence_signal(), which is
3045 * triggered by our nop handler (indirectly, the
3046 * callback enables the signaler thread which is
3047 * woken by the nop_submit_request() advancing the seqno
3048 * and when the seqno passes the fence, the signaler
3049 * then signals the fence waking us up).
3050 */
3051 if (dma_fence_default_wait(&rq->fence, true,
3052 MAX_SCHEDULE_TIMEOUT) < 0)
3053 return false;
3054 }
3055 }
3056
3057 /* Undo nop_submit_request. We prevent all new i915 requests from
3058 * being queued (by disallowing execbuf whilst wedged) so having
3059 * waited for all active requests above, we know the system is idle
3060 * and do not have to worry about a thread being inside
3061 * engine->submit_request() as we swap over. So unlike installing
3062 * the nop_submit_request on reset, we can do this from normal
3063 * context and do not require stop_machine().
3064 */
3065 intel_engines_reset_default_submission(i915);
3066
3067 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3068 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3069
3070 return true;
3071}
3072
75ef9da2 3073static void
673a394b
EA
3074i915_gem_retire_work_handler(struct work_struct *work)
3075{
b29c19b6 3076 struct drm_i915_private *dev_priv =
67d97da3 3077 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 3078 struct drm_device *dev = &dev_priv->drm;
673a394b 3079
891b48cf 3080 /* Come back later if the device is busy... */
b29c19b6 3081 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 3082 i915_gem_retire_requests(dev_priv);
b29c19b6 3083 mutex_unlock(&dev->struct_mutex);
673a394b 3084 }
67d97da3
CW
3085
3086 /* Keep the retire handler running until we are finally idle.
3087 * We do not need to do this test under locking as in the worst-case
3088 * we queue the retire worker once too often.
3089 */
c9615613
CW
3090 if (READ_ONCE(dev_priv->gt.awake)) {
3091 i915_queue_hangcheck(dev_priv);
67d97da3
CW
3092 queue_delayed_work(dev_priv->wq,
3093 &dev_priv->gt.retire_work,
bcb45086 3094 round_jiffies_up_relative(HZ));
c9615613 3095 }
b29c19b6 3096}
0a58705b 3097
b29c19b6
CW
3098static void
3099i915_gem_idle_work_handler(struct work_struct *work)
3100{
3101 struct drm_i915_private *dev_priv =
67d97da3 3102 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 3103 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 3104 struct intel_engine_cs *engine;
3b3f1650 3105 enum intel_engine_id id;
67d97da3
CW
3106 bool rearm_hangcheck;
3107
3108 if (!READ_ONCE(dev_priv->gt.awake))
3109 return;
3110
0cb5670b
ID
3111 /*
3112 * Wait for last execlists context complete, but bail out in case a
3113 * new request is submitted.
3114 */
8490ae20 3115 wait_for(intel_engines_are_idle(dev_priv), 10);
28176ef4 3116 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
3117 return;
3118
3119 rearm_hangcheck =
3120 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3121
3122 if (!mutex_trylock(&dev->struct_mutex)) {
3123 /* Currently busy, come back later */
3124 mod_delayed_work(dev_priv->wq,
3125 &dev_priv->gt.idle_work,
3126 msecs_to_jiffies(50));
3127 goto out_rearm;
3128 }
3129
93c97dc1
ID
3130 /*
3131 * New request retired after this work handler started, extend active
3132 * period until next instance of the work.
3133 */
3134 if (work_pending(work))
3135 goto out_unlock;
3136
28176ef4 3137 if (dev_priv->gt.active_requests)
67d97da3 3138 goto out_unlock;
b29c19b6 3139
05425249 3140 if (wait_for(intel_engines_are_idle(dev_priv), 10))
0cb5670b
ID
3141 DRM_ERROR("Timeout waiting for engines to idle\n");
3142
67b807a8
CW
3143 for_each_engine(engine, dev_priv, id) {
3144 intel_engine_disarm_breadcrumbs(engine);
67d97da3 3145 i915_gem_batch_pool_fini(&engine->batch_pool);
67b807a8 3146 }
35c94185 3147
67d97da3
CW
3148 GEM_BUG_ON(!dev_priv->gt.awake);
3149 dev_priv->gt.awake = false;
3150 rearm_hangcheck = false;
30ecad77 3151
67d97da3
CW
3152 if (INTEL_GEN(dev_priv) >= 6)
3153 gen6_rps_idle(dev_priv);
3154 intel_runtime_pm_put(dev_priv);
3155out_unlock:
3156 mutex_unlock(&dev->struct_mutex);
b29c19b6 3157
67d97da3
CW
3158out_rearm:
3159 if (rearm_hangcheck) {
3160 GEM_BUG_ON(!dev_priv->gt.awake);
3161 i915_queue_hangcheck(dev_priv);
35c94185 3162 }
673a394b
EA
3163}
3164
b1f788c6
CW
3165void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3166{
3167 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3168 struct drm_i915_file_private *fpriv = file->driver_priv;
3169 struct i915_vma *vma, *vn;
3170
3171 mutex_lock(&obj->base.dev->struct_mutex);
3172 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3173 if (vma->vm->file == fpriv)
3174 i915_vma_close(vma);
f8a7fde4
CW
3175
3176 if (i915_gem_object_is_active(obj) &&
3177 !i915_gem_object_has_active_reference(obj)) {
3178 i915_gem_object_set_active_reference(obj);
3179 i915_gem_object_get(obj);
3180 }
b1f788c6
CW
3181 mutex_unlock(&obj->base.dev->struct_mutex);
3182}
3183
e95433c7
CW
3184static unsigned long to_wait_timeout(s64 timeout_ns)
3185{
3186 if (timeout_ns < 0)
3187 return MAX_SCHEDULE_TIMEOUT;
3188
3189 if (timeout_ns == 0)
3190 return 0;
3191
3192 return nsecs_to_jiffies_timeout(timeout_ns);
3193}
3194
23ba4fd0
BW
3195/**
3196 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3197 * @dev: drm device pointer
3198 * @data: ioctl data blob
3199 * @file: drm file pointer
23ba4fd0
BW
3200 *
3201 * Returns 0 if successful, else an error is returned with the remaining time in
3202 * the timeout parameter.
3203 * -ETIME: object is still busy after timeout
3204 * -ERESTARTSYS: signal interrupted the wait
3205 * -ENONENT: object doesn't exist
3206 * Also possible, but rare:
3207 * -EAGAIN: GPU wedged
3208 * -ENOMEM: damn
3209 * -ENODEV: Internal IRQ fail
3210 * -E?: The add request failed
3211 *
3212 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3213 * non-zero timeout parameter the wait ioctl will wait for the given number of
3214 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3215 * without holding struct_mutex the object may become re-busied before this
3216 * function completes. A similar but shorter * race condition exists in the busy
3217 * ioctl
3218 */
3219int
3220i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3221{
3222 struct drm_i915_gem_wait *args = data;
3223 struct drm_i915_gem_object *obj;
e95433c7
CW
3224 ktime_t start;
3225 long ret;
23ba4fd0 3226
11b5d511
DV
3227 if (args->flags != 0)
3228 return -EINVAL;
3229
03ac0642 3230 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 3231 if (!obj)
23ba4fd0 3232 return -ENOENT;
23ba4fd0 3233
e95433c7
CW
3234 start = ktime_get();
3235
3236 ret = i915_gem_object_wait(obj,
3237 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3238 to_wait_timeout(args->timeout_ns),
3239 to_rps_client(file));
3240
3241 if (args->timeout_ns > 0) {
3242 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3243 if (args->timeout_ns < 0)
3244 args->timeout_ns = 0;
c1d2061b
CW
3245
3246 /*
3247 * Apparently ktime isn't accurate enough and occasionally has a
3248 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3249 * things up to make the test happy. We allow up to 1 jiffy.
3250 *
3251 * This is a regression from the timespec->ktime conversion.
3252 */
3253 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3254 args->timeout_ns = 0;
b4716185
CW
3255 }
3256
f0cd5182 3257 i915_gem_object_put(obj);
ff865885 3258 return ret;
23ba4fd0
BW
3259}
3260
73cb9701 3261static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 3262{
73cb9701 3263 int ret, i;
4df2faf4 3264
73cb9701
CW
3265 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3266 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3267 if (ret)
3268 return ret;
3269 }
62e63007 3270
73cb9701
CW
3271 return 0;
3272}
3273
3274int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3275{
73cb9701
CW
3276 int ret;
3277
9caa34aa
CW
3278 if (flags & I915_WAIT_LOCKED) {
3279 struct i915_gem_timeline *tl;
3280
3281 lockdep_assert_held(&i915->drm.struct_mutex);
3282
3283 list_for_each_entry(tl, &i915->gt.timelines, link) {
3284 ret = wait_for_timeline(tl, flags);
3285 if (ret)
3286 return ret;
3287 }
3288 } else {
3289 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
1ec14ad3
CW
3290 if (ret)
3291 return ret;
3292 }
4df2faf4 3293
8a1a49f9 3294 return 0;
4df2faf4
DV
3295}
3296
e47c68e9
EA
3297/** Flushes the GTT write domain for the object if it's dirty. */
3298static void
05394f39 3299i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3300{
3b5724d7 3301 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1c5d22f7 3302
05394f39 3303 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3304 return;
3305
63256ec5 3306 /* No actual flushing is required for the GTT write domain. Writes
3b5724d7 3307 * to it "immediately" go to main memory as far as we know, so there's
e47c68e9 3308 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3309 *
3310 * However, we do have to enforce the order so that all writes through
3311 * the GTT land before any writes to the device, such as updates to
3312 * the GATT itself.
3b5724d7
CW
3313 *
3314 * We also have to wait a bit for the writes to land from the GTT.
3315 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3316 * timing. This issue has only been observed when switching quickly
3317 * between GTT writes and CPU reads from inside the kernel on recent hw,
3318 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3319 * system agents we cannot reproduce this behaviour).
e47c68e9 3320 */
63256ec5 3321 wmb();
54ec12af 3322 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
e2a2aa36
CW
3323 if (intel_runtime_pm_get_if_in_use(dev_priv)) {
3324 spin_lock_irq(&dev_priv->uncore.lock);
3325 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3326 spin_unlock_irq(&dev_priv->uncore.lock);
3327 intel_runtime_pm_put(dev_priv);
3328 }
54ec12af 3329 }
63256ec5 3330
d59b21ec 3331 intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
f99d7069 3332
b0dc465f 3333 obj->base.write_domain = 0;
e47c68e9
EA
3334}
3335
3336/** Flushes the CPU write domain for the object if it's dirty. */
3337static void
e62b59e4 3338i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3339{
05394f39 3340 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3341 return;
3342
57822dc6 3343 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
b0dc465f 3344 obj->base.write_domain = 0;
e47c68e9
EA
3345}
3346
5a97bcc6
CW
3347static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3348{
3349 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
3350 return;
3351
57822dc6 3352 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
5a97bcc6
CW
3353 obj->base.write_domain = 0;
3354}
3355
3356void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3357{
3358 if (!READ_ONCE(obj->pin_display))
3359 return;
3360
3361 mutex_lock(&obj->base.dev->struct_mutex);
3362 __i915_gem_object_flush_for_display(obj);
3363 mutex_unlock(&obj->base.dev->struct_mutex);
3364}
3365
2ef7eeaa
EA
3366/**
3367 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3368 * @obj: object to act on
3369 * @write: ask for write access or read only
2ef7eeaa
EA
3370 *
3371 * This function returns when the move is complete, including waiting on
3372 * flushes to occur.
3373 */
79e53945 3374int
2021746e 3375i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3376{
e47c68e9 3377 int ret;
2ef7eeaa 3378
e95433c7 3379 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3380
e95433c7
CW
3381 ret = i915_gem_object_wait(obj,
3382 I915_WAIT_INTERRUPTIBLE |
3383 I915_WAIT_LOCKED |
3384 (write ? I915_WAIT_ALL : 0),
3385 MAX_SCHEDULE_TIMEOUT,
3386 NULL);
88241785
CW
3387 if (ret)
3388 return ret;
3389
c13d87ea
CW
3390 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3391 return 0;
3392
43566ded
CW
3393 /* Flush and acquire obj->pages so that we are coherent through
3394 * direct access in memory with previous cached writes through
3395 * shmemfs and that our cache domain tracking remains valid.
3396 * For example, if the obj->filp was moved to swap without us
3397 * being notified and releasing the pages, we would mistakenly
3398 * continue to assume that the obj remained out of the CPU cached
3399 * domain.
3400 */
a4f5ea64 3401 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3402 if (ret)
3403 return ret;
3404
e62b59e4 3405 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3406
d0a57789
CW
3407 /* Serialise direct access to this object with the barriers for
3408 * coherent writes from the GPU, by effectively invalidating the
3409 * GTT domain upon first access.
3410 */
3411 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3412 mb();
3413
e47c68e9
EA
3414 /* It should now be out of any other write domains, and we can update
3415 * the domain values for our changes.
3416 */
40e62d5d 3417 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3418 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3419 if (write) {
05394f39
CW
3420 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3421 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3422 obj->mm.dirty = true;
2ef7eeaa
EA
3423 }
3424
a4f5ea64 3425 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3426 return 0;
3427}
3428
ef55f92a
CW
3429/**
3430 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3431 * @obj: object to act on
3432 * @cache_level: new cache level to set for the object
ef55f92a
CW
3433 *
3434 * After this function returns, the object will be in the new cache-level
3435 * across all GTT and the contents of the backing storage will be coherent,
3436 * with respect to the new cache-level. In order to keep the backing storage
3437 * coherent for all users, we only allow a single cache level to be set
3438 * globally on the object and prevent it from being changed whilst the
3439 * hardware is reading from the object. That is if the object is currently
3440 * on the scanout it will be set to uncached (or equivalent display
3441 * cache coherency) and all non-MOCS GPU access will also be uncached so
3442 * that all direct access to the scanout remains coherent.
3443 */
e4ffd173
CW
3444int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3445 enum i915_cache_level cache_level)
3446{
aa653a68 3447 struct i915_vma *vma;
a6a7cc4b 3448 int ret;
e4ffd173 3449
4c7d62c6
CW
3450 lockdep_assert_held(&obj->base.dev->struct_mutex);
3451
e4ffd173 3452 if (obj->cache_level == cache_level)
a6a7cc4b 3453 return 0;
e4ffd173 3454
ef55f92a
CW
3455 /* Inspect the list of currently bound VMA and unbind any that would
3456 * be invalid given the new cache-level. This is principally to
3457 * catch the issue of the CS prefetch crossing page boundaries and
3458 * reading an invalid PTE on older architectures.
3459 */
aa653a68
CW
3460restart:
3461 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3462 if (!drm_mm_node_allocated(&vma->node))
3463 continue;
3464
20dfbde4 3465 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3466 DRM_DEBUG("can not change the cache level of pinned objects\n");
3467 return -EBUSY;
3468 }
3469
aa653a68
CW
3470 if (i915_gem_valid_gtt_space(vma, cache_level))
3471 continue;
3472
3473 ret = i915_vma_unbind(vma);
3474 if (ret)
3475 return ret;
3476
3477 /* As unbinding may affect other elements in the
3478 * obj->vma_list (due to side-effects from retiring
3479 * an active vma), play safe and restart the iterator.
3480 */
3481 goto restart;
42d6ab48
CW
3482 }
3483
ef55f92a
CW
3484 /* We can reuse the existing drm_mm nodes but need to change the
3485 * cache-level on the PTE. We could simply unbind them all and
3486 * rebind with the correct cache-level on next use. However since
3487 * we already have a valid slot, dma mapping, pages etc, we may as
3488 * rewrite the PTE in the belief that doing so tramples upon less
3489 * state and so involves less work.
3490 */
15717de2 3491 if (obj->bind_count) {
ef55f92a
CW
3492 /* Before we change the PTE, the GPU must not be accessing it.
3493 * If we wait upon the object, we know that all the bound
3494 * VMA are no longer active.
3495 */
e95433c7
CW
3496 ret = i915_gem_object_wait(obj,
3497 I915_WAIT_INTERRUPTIBLE |
3498 I915_WAIT_LOCKED |
3499 I915_WAIT_ALL,
3500 MAX_SCHEDULE_TIMEOUT,
3501 NULL);
e4ffd173
CW
3502 if (ret)
3503 return ret;
3504
0031fb96
TU
3505 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3506 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3507 /* Access to snoopable pages through the GTT is
3508 * incoherent and on some machines causes a hard
3509 * lockup. Relinquish the CPU mmaping to force
3510 * userspace to refault in the pages and we can
3511 * then double check if the GTT mapping is still
3512 * valid for that pointer access.
3513 */
3514 i915_gem_release_mmap(obj);
3515
3516 /* As we no longer need a fence for GTT access,
3517 * we can relinquish it now (and so prevent having
3518 * to steal a fence from someone else on the next
3519 * fence request). Note GPU activity would have
3520 * dropped the fence as all snoopable access is
3521 * supposed to be linear.
3522 */
49ef5294
CW
3523 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3524 ret = i915_vma_put_fence(vma);
3525 if (ret)
3526 return ret;
3527 }
ef55f92a
CW
3528 } else {
3529 /* We either have incoherent backing store and
3530 * so no GTT access or the architecture is fully
3531 * coherent. In such cases, existing GTT mmaps
3532 * ignore the cache bit in the PTE and we can
3533 * rewrite it without confusing the GPU or having
3534 * to force userspace to fault back in its mmaps.
3535 */
e4ffd173
CW
3536 }
3537
1c7f4bca 3538 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3539 if (!drm_mm_node_allocated(&vma->node))
3540 continue;
3541
3542 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3543 if (ret)
3544 return ret;
3545 }
e4ffd173
CW
3546 }
3547
a6a7cc4b 3548 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
e59dc172 3549 i915_gem_object_is_coherent(obj))
a6a7cc4b
CW
3550 obj->cache_dirty = true;
3551
1c7f4bca 3552 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3553 vma->node.color = cache_level;
3554 obj->cache_level = cache_level;
3555
e4ffd173
CW
3556 return 0;
3557}
3558
199adf40
BW
3559int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3560 struct drm_file *file)
e6994aee 3561{
199adf40 3562 struct drm_i915_gem_caching *args = data;
e6994aee 3563 struct drm_i915_gem_object *obj;
fbbd37b3 3564 int err = 0;
e6994aee 3565
fbbd37b3
CW
3566 rcu_read_lock();
3567 obj = i915_gem_object_lookup_rcu(file, args->handle);
3568 if (!obj) {
3569 err = -ENOENT;
3570 goto out;
3571 }
e6994aee 3572
651d794f
CW
3573 switch (obj->cache_level) {
3574 case I915_CACHE_LLC:
3575 case I915_CACHE_L3_LLC:
3576 args->caching = I915_CACHING_CACHED;
3577 break;
3578
4257d3ba
CW
3579 case I915_CACHE_WT:
3580 args->caching = I915_CACHING_DISPLAY;
3581 break;
3582
651d794f
CW
3583 default:
3584 args->caching = I915_CACHING_NONE;
3585 break;
3586 }
fbbd37b3
CW
3587out:
3588 rcu_read_unlock();
3589 return err;
e6994aee
CW
3590}
3591
199adf40
BW
3592int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3593 struct drm_file *file)
e6994aee 3594{
9c870d03 3595 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3596 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3597 struct drm_i915_gem_object *obj;
3598 enum i915_cache_level level;
d65415df 3599 int ret = 0;
e6994aee 3600
199adf40
BW
3601 switch (args->caching) {
3602 case I915_CACHING_NONE:
e6994aee
CW
3603 level = I915_CACHE_NONE;
3604 break;
199adf40 3605 case I915_CACHING_CACHED:
e5756c10
ID
3606 /*
3607 * Due to a HW issue on BXT A stepping, GPU stores via a
3608 * snooped mapping may leave stale data in a corresponding CPU
3609 * cacheline, whereas normally such cachelines would get
3610 * invalidated.
3611 */
9c870d03 3612 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3613 return -ENODEV;
3614
e6994aee
CW
3615 level = I915_CACHE_LLC;
3616 break;
4257d3ba 3617 case I915_CACHING_DISPLAY:
9c870d03 3618 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3619 break;
e6994aee
CW
3620 default:
3621 return -EINVAL;
3622 }
3623
d65415df
CW
3624 obj = i915_gem_object_lookup(file, args->handle);
3625 if (!obj)
3626 return -ENOENT;
3627
3628 if (obj->cache_level == level)
3629 goto out;
3630
3631 ret = i915_gem_object_wait(obj,
3632 I915_WAIT_INTERRUPTIBLE,
3633 MAX_SCHEDULE_TIMEOUT,
3634 to_rps_client(file));
3bc2913e 3635 if (ret)
d65415df 3636 goto out;
3bc2913e 3637
d65415df
CW
3638 ret = i915_mutex_lock_interruptible(dev);
3639 if (ret)
3640 goto out;
e6994aee
CW
3641
3642 ret = i915_gem_object_set_cache_level(obj, level);
e6994aee 3643 mutex_unlock(&dev->struct_mutex);
d65415df
CW
3644
3645out:
3646 i915_gem_object_put(obj);
e6994aee
CW
3647 return ret;
3648}
3649
b9241ea3 3650/*
2da3b9b9
CW
3651 * Prepare buffer for display plane (scanout, cursors, etc).
3652 * Can be called from an uninterruptible phase (modesetting) and allows
3653 * any flushes to be pipelined (for pageflips).
b9241ea3 3654 */
058d88c4 3655struct i915_vma *
2da3b9b9
CW
3656i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3657 u32 alignment,
e6617330 3658 const struct i915_ggtt_view *view)
b9241ea3 3659{
058d88c4 3660 struct i915_vma *vma;
b9241ea3
ZW
3661 int ret;
3662
4c7d62c6
CW
3663 lockdep_assert_held(&obj->base.dev->struct_mutex);
3664
cc98b413
CW
3665 /* Mark the pin_display early so that we account for the
3666 * display coherency whilst setting up the cache domains.
3667 */
8a0c39b1 3668 obj->pin_display++;
cc98b413 3669
a7ef0640
EA
3670 /* The display engine is not coherent with the LLC cache on gen6. As
3671 * a result, we make sure that the pinning that is about to occur is
3672 * done with uncached PTEs. This is lowest common denominator for all
3673 * chipsets.
3674 *
3675 * However for gen6+, we could do better by using the GFDT bit instead
3676 * of uncaching, which would allow us to flush all the LLC-cached data
3677 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3678 */
651d794f 3679 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3680 HAS_WT(to_i915(obj->base.dev)) ?
3681 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3682 if (ret) {
3683 vma = ERR_PTR(ret);
cc98b413 3684 goto err_unpin_display;
058d88c4 3685 }
a7ef0640 3686
2da3b9b9
CW
3687 /* As the user may map the buffer once pinned in the display plane
3688 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3689 * always use map_and_fenceable for all scanout buffers. However,
3690 * it may simply be too big to fit into mappable, in which case
3691 * put it anyway and hope that userspace can cope (but always first
3692 * try to preserve the existing ABI).
2da3b9b9 3693 */
2efb813d 3694 vma = ERR_PTR(-ENOSPC);
47a8e3f6 3695 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
2efb813d
CW
3696 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3697 PIN_MAPPABLE | PIN_NONBLOCK);
767a222e
CW
3698 if (IS_ERR(vma)) {
3699 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3700 unsigned int flags;
3701
3702 /* Valleyview is definitely limited to scanning out the first
3703 * 512MiB. Lets presume this behaviour was inherited from the
3704 * g4x display engine and that all earlier gen are similarly
3705 * limited. Testing suggests that it is a little more
3706 * complicated than this. For example, Cherryview appears quite
3707 * happy to scanout from anywhere within its global aperture.
3708 */
3709 flags = 0;
3710 if (HAS_GMCH_DISPLAY(i915))
3711 flags = PIN_MAPPABLE;
3712 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3713 }
058d88c4 3714 if (IS_ERR(vma))
cc98b413 3715 goto err_unpin_display;
2da3b9b9 3716
d8923dcf
CW
3717 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3718
a6a7cc4b 3719 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
5a97bcc6 3720 __i915_gem_object_flush_for_display(obj);
d59b21ec 3721 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
b118c1e3 3722
2da3b9b9
CW
3723 /* It should now be out of any other write domains, and we can update
3724 * the domain values for our changes.
3725 */
05394f39 3726 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3 3727
058d88c4 3728 return vma;
cc98b413
CW
3729
3730err_unpin_display:
8a0c39b1 3731 obj->pin_display--;
058d88c4 3732 return vma;
cc98b413
CW
3733}
3734
3735void
058d88c4 3736i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3737{
49d73912 3738 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4c7d62c6 3739
058d88c4 3740 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3741 return;
3742
d8923dcf 3743 if (--vma->obj->pin_display == 0)
f51455d4 3744 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
e6617330 3745
383d5823 3746 /* Bump the LRU to try and avoid premature eviction whilst flipping */
befedbb7 3747 i915_gem_object_bump_inactive_ggtt(vma->obj);
383d5823 3748
058d88c4 3749 i915_vma_unpin(vma);
b9241ea3
ZW
3750}
3751
e47c68e9
EA
3752/**
3753 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3754 * @obj: object to act on
3755 * @write: requesting write or read-only access
e47c68e9
EA
3756 *
3757 * This function returns when the move is complete, including waiting on
3758 * flushes to occur.
3759 */
dabdfe02 3760int
919926ae 3761i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3762{
e47c68e9
EA
3763 int ret;
3764
e95433c7 3765 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3766
e95433c7
CW
3767 ret = i915_gem_object_wait(obj,
3768 I915_WAIT_INTERRUPTIBLE |
3769 I915_WAIT_LOCKED |
3770 (write ? I915_WAIT_ALL : 0),
3771 MAX_SCHEDULE_TIMEOUT,
3772 NULL);
88241785
CW
3773 if (ret)
3774 return ret;
3775
c13d87ea
CW
3776 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3777 return 0;
3778
e47c68e9 3779 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3780
e47c68e9 3781 /* Flush the CPU cache if it's still invalid. */
05394f39 3782 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
57822dc6 3783 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
05394f39 3784 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3785 }
3786
3787 /* It should now be out of any other write domains, and we can update
3788 * the domain values for our changes.
3789 */
40e62d5d 3790 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3791
3792 /* If we're writing through the CPU, then the GPU read domains will
3793 * need to be invalidated at next use.
3794 */
3795 if (write) {
05394f39
CW
3796 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3797 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3798 }
2ef7eeaa
EA
3799
3800 return 0;
3801}
3802
673a394b
EA
3803/* Throttle our rendering by waiting until the ring has completed our requests
3804 * emitted over 20 msec ago.
3805 *
b962442e
EA
3806 * Note that if we were to use the current jiffies each time around the loop,
3807 * we wouldn't escape the function with any frames outstanding if the time to
3808 * render a frame was over 20ms.
3809 *
673a394b
EA
3810 * This should get us reasonable parallelism between CPU and GPU but also
3811 * relatively low latency when blocking on a particular request to finish.
3812 */
40a5f0de 3813static int
f787a5f5 3814i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3815{
fac5e23e 3816 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3817 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3818 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3819 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 3820 long ret;
93533c29 3821
f4457ae7
CW
3822 /* ABI: return -EIO if already wedged */
3823 if (i915_terminally_wedged(&dev_priv->gpu_error))
3824 return -EIO;
e110e8d6 3825
1c25595f 3826 spin_lock(&file_priv->mm.lock);
c8659efa 3827 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
b962442e
EA
3828 if (time_after_eq(request->emitted_jiffies, recent_enough))
3829 break;
40a5f0de 3830
c8659efa
CW
3831 if (target) {
3832 list_del(&target->client_link);
3833 target->file_priv = NULL;
3834 }
fcfa423c 3835
54fb2411 3836 target = request;
b962442e 3837 }
ff865885 3838 if (target)
e8a261ea 3839 i915_gem_request_get(target);
1c25595f 3840 spin_unlock(&file_priv->mm.lock);
40a5f0de 3841
54fb2411 3842 if (target == NULL)
f787a5f5 3843 return 0;
2bc43b5c 3844
e95433c7
CW
3845 ret = i915_wait_request(target,
3846 I915_WAIT_INTERRUPTIBLE,
3847 MAX_SCHEDULE_TIMEOUT);
e8a261ea 3848 i915_gem_request_put(target);
ff865885 3849
e95433c7 3850 return ret < 0 ? ret : 0;
40a5f0de
EA
3851}
3852
058d88c4 3853struct i915_vma *
ec7adb6e
JL
3854i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3855 const struct i915_ggtt_view *view,
91b2db6f 3856 u64 size,
2ffffd0f
CW
3857 u64 alignment,
3858 u64 flags)
ec7adb6e 3859{
ad16d2ed
CW
3860 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3861 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
3862 struct i915_vma *vma;
3863 int ret;
72e96d64 3864
4c7d62c6
CW
3865 lockdep_assert_held(&obj->base.dev->struct_mutex);
3866
718659a6 3867 vma = i915_vma_instance(obj, vm, view);
e0216b76 3868 if (unlikely(IS_ERR(vma)))
058d88c4 3869 return vma;
59bfa124
CW
3870
3871 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3872 if (flags & PIN_NONBLOCK &&
3873 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
058d88c4 3874 return ERR_PTR(-ENOSPC);
59bfa124 3875
ad16d2ed 3876 if (flags & PIN_MAPPABLE) {
ad16d2ed
CW
3877 /* If the required space is larger than the available
3878 * aperture, we will not able to find a slot for the
3879 * object and unbinding the object now will be in
3880 * vain. Worse, doing so may cause us to ping-pong
3881 * the object in and out of the Global GTT and
3882 * waste a lot of cycles under the mutex.
3883 */
944397f0 3884 if (vma->fence_size > dev_priv->ggtt.mappable_end)
ad16d2ed
CW
3885 return ERR_PTR(-E2BIG);
3886
3887 /* If NONBLOCK is set the caller is optimistically
3888 * trying to cache the full object within the mappable
3889 * aperture, and *must* have a fallback in place for
3890 * situations where we cannot bind the object. We
3891 * can be a little more lax here and use the fallback
3892 * more often to avoid costly migrations of ourselves
3893 * and other objects within the aperture.
3894 *
3895 * Half-the-aperture is used as a simple heuristic.
3896 * More interesting would to do search for a free
3897 * block prior to making the commitment to unbind.
3898 * That caters for the self-harm case, and with a
3899 * little more heuristics (e.g. NOFAULT, NOEVICT)
3900 * we could try to minimise harm to others.
3901 */
3902 if (flags & PIN_NONBLOCK &&
944397f0 3903 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
ad16d2ed
CW
3904 return ERR_PTR(-ENOSPC);
3905 }
3906
59bfa124
CW
3907 WARN(i915_vma_is_pinned(vma),
3908 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
3909 " offset=%08x, req.alignment=%llx,"
3910 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3911 i915_ggtt_offset(vma), alignment,
59bfa124 3912 !!(flags & PIN_MAPPABLE),
05a20d09 3913 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
3914 ret = i915_vma_unbind(vma);
3915 if (ret)
058d88c4 3916 return ERR_PTR(ret);
59bfa124
CW
3917 }
3918
058d88c4
CW
3919 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3920 if (ret)
3921 return ERR_PTR(ret);
ec7adb6e 3922
058d88c4 3923 return vma;
673a394b
EA
3924}
3925
edf6b76f 3926static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
3927{
3928 /* Note that we could alias engines in the execbuf API, but
3929 * that would be very unwise as it prevents userspace from
3930 * fine control over engine selection. Ahem.
3931 *
3932 * This should be something like EXEC_MAX_ENGINE instead of
3933 * I915_NUM_ENGINES.
3934 */
3935 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3936 return 0x10000 << id;
3937}
3938
3939static __always_inline unsigned int __busy_write_id(unsigned int id)
3940{
70cb472c
CW
3941 /* The uABI guarantees an active writer is also amongst the read
3942 * engines. This would be true if we accessed the activity tracking
3943 * under the lock, but as we perform the lookup of the object and
3944 * its activity locklessly we can not guarantee that the last_write
3945 * being active implies that we have set the same engine flag from
3946 * last_read - hence we always set both read and write busy for
3947 * last_write.
3948 */
3949 return id | __busy_read_flag(id);
3fdc13c7
CW
3950}
3951
edf6b76f 3952static __always_inline unsigned int
d07f0e59 3953__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
3954 unsigned int (*flag)(unsigned int id))
3955{
d07f0e59 3956 struct drm_i915_gem_request *rq;
3fdc13c7 3957
d07f0e59
CW
3958 /* We have to check the current hw status of the fence as the uABI
3959 * guarantees forward progress. We could rely on the idle worker
3960 * to eventually flush us, but to minimise latency just ask the
3961 * hardware.
1255501d 3962 *
d07f0e59 3963 * Note we only report on the status of native fences.
1255501d 3964 */
d07f0e59
CW
3965 if (!dma_fence_is_i915(fence))
3966 return 0;
3967
3968 /* opencode to_request() in order to avoid const warnings */
3969 rq = container_of(fence, struct drm_i915_gem_request, fence);
3970 if (i915_gem_request_completed(rq))
3971 return 0;
3972
3973 return flag(rq->engine->exec_id);
3fdc13c7
CW
3974}
3975
edf6b76f 3976static __always_inline unsigned int
d07f0e59 3977busy_check_reader(const struct dma_fence *fence)
3fdc13c7 3978{
d07f0e59 3979 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
3980}
3981
edf6b76f 3982static __always_inline unsigned int
d07f0e59 3983busy_check_writer(const struct dma_fence *fence)
3fdc13c7 3984{
d07f0e59
CW
3985 if (!fence)
3986 return 0;
3987
3988 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
3989}
3990
673a394b
EA
3991int
3992i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3993 struct drm_file *file)
673a394b
EA
3994{
3995 struct drm_i915_gem_busy *args = data;
05394f39 3996 struct drm_i915_gem_object *obj;
d07f0e59
CW
3997 struct reservation_object_list *list;
3998 unsigned int seq;
fbbd37b3 3999 int err;
673a394b 4000
d07f0e59 4001 err = -ENOENT;
fbbd37b3
CW
4002 rcu_read_lock();
4003 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 4004 if (!obj)
fbbd37b3 4005 goto out;
d1b851fc 4006
d07f0e59
CW
4007 /* A discrepancy here is that we do not report the status of
4008 * non-i915 fences, i.e. even though we may report the object as idle,
4009 * a call to set-domain may still stall waiting for foreign rendering.
4010 * This also means that wait-ioctl may report an object as busy,
4011 * where busy-ioctl considers it idle.
4012 *
4013 * We trade the ability to warn of foreign fences to report on which
4014 * i915 engines are active for the object.
4015 *
4016 * Alternatively, we can trade that extra information on read/write
4017 * activity with
4018 * args->busy =
4019 * !reservation_object_test_signaled_rcu(obj->resv, true);
4020 * to report the overall busyness. This is what the wait-ioctl does.
4021 *
4022 */
4023retry:
4024 seq = raw_read_seqcount(&obj->resv->seq);
426960be 4025
d07f0e59
CW
4026 /* Translate the exclusive fence to the READ *and* WRITE engine */
4027 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 4028
d07f0e59
CW
4029 /* Translate shared fences to READ set of engines */
4030 list = rcu_dereference(obj->resv->fence);
4031 if (list) {
4032 unsigned int shared_count = list->shared_count, i;
3fdc13c7 4033
d07f0e59
CW
4034 for (i = 0; i < shared_count; ++i) {
4035 struct dma_fence *fence =
4036 rcu_dereference(list->shared[i]);
4037
4038 args->busy |= busy_check_reader(fence);
4039 }
426960be 4040 }
673a394b 4041
d07f0e59
CW
4042 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4043 goto retry;
4044
4045 err = 0;
fbbd37b3
CW
4046out:
4047 rcu_read_unlock();
4048 return err;
673a394b
EA
4049}
4050
4051int
4052i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4053 struct drm_file *file_priv)
4054{
0206e353 4055 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4056}
4057
3ef94daa
CW
4058int
4059i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4060 struct drm_file *file_priv)
4061{
fac5e23e 4062 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4063 struct drm_i915_gem_madvise *args = data;
05394f39 4064 struct drm_i915_gem_object *obj;
1233e2db 4065 int err;
3ef94daa
CW
4066
4067 switch (args->madv) {
4068 case I915_MADV_DONTNEED:
4069 case I915_MADV_WILLNEED:
4070 break;
4071 default:
4072 return -EINVAL;
4073 }
4074
03ac0642 4075 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
4076 if (!obj)
4077 return -ENOENT;
4078
4079 err = mutex_lock_interruptible(&obj->mm.lock);
4080 if (err)
4081 goto out;
3ef94daa 4082
a4f5ea64 4083 if (obj->mm.pages &&
3e510a8e 4084 i915_gem_object_is_tiled(obj) &&
656bfa3a 4085 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
4086 if (obj->mm.madv == I915_MADV_WILLNEED) {
4087 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 4088 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
4089 obj->mm.quirked = false;
4090 }
4091 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 4092 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 4093 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
4094 obj->mm.quirked = true;
4095 }
656bfa3a
DV
4096 }
4097
a4f5ea64
CW
4098 if (obj->mm.madv != __I915_MADV_PURGED)
4099 obj->mm.madv = args->madv;
3ef94daa 4100
6c085a72 4101 /* if the object is no longer attached, discard its backing storage */
a4f5ea64 4102 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
2d7ef395
CW
4103 i915_gem_object_truncate(obj);
4104
a4f5ea64 4105 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 4106 mutex_unlock(&obj->mm.lock);
bb6baf76 4107
1233e2db 4108out:
f8c417cd 4109 i915_gem_object_put(obj);
1233e2db 4110 return err;
3ef94daa
CW
4111}
4112
5b8c8aec
CW
4113static void
4114frontbuffer_retire(struct i915_gem_active *active,
4115 struct drm_i915_gem_request *request)
4116{
4117 struct drm_i915_gem_object *obj =
4118 container_of(active, typeof(*obj), frontbuffer_write);
4119
d59b21ec 4120 intel_fb_obj_flush(obj, ORIGIN_CS);
5b8c8aec
CW
4121}
4122
37e680a1
CW
4123void i915_gem_object_init(struct drm_i915_gem_object *obj,
4124 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4125{
1233e2db
CW
4126 mutex_init(&obj->mm.lock);
4127
56cea323 4128 INIT_LIST_HEAD(&obj->global_link);
275f039d 4129 INIT_LIST_HEAD(&obj->userfault_link);
b25cb2f8 4130 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4131 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4132 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4133
37e680a1
CW
4134 obj->ops = ops;
4135
d07f0e59
CW
4136 reservation_object_init(&obj->__builtin_resv);
4137 obj->resv = &obj->__builtin_resv;
4138
50349247 4139 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 4140 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
4141
4142 obj->mm.madv = I915_MADV_WILLNEED;
4143 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4144 mutex_init(&obj->mm.get_page.lock);
0327d6ba 4145
f19ec8cb 4146 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4147}
4148
37e680a1 4149static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
4150 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4151 I915_GEM_OBJECT_IS_SHRINKABLE,
7c55e2c5 4152
37e680a1
CW
4153 .get_pages = i915_gem_object_get_pages_gtt,
4154 .put_pages = i915_gem_object_put_pages_gtt,
7c55e2c5
CW
4155
4156 .pwrite = i915_gem_object_pwrite_gtt,
37e680a1
CW
4157};
4158
b4bcbe2a 4159struct drm_i915_gem_object *
12d79d78 4160i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
ac52bc56 4161{
c397b908 4162 struct drm_i915_gem_object *obj;
5949eac4 4163 struct address_space *mapping;
1a240d4d 4164 gfp_t mask;
fe3db79b 4165 int ret;
ac52bc56 4166
b4bcbe2a
CW
4167 /* There is a prevalence of the assumption that we fit the object's
4168 * page count inside a 32bit _signed_ variable. Let's document this and
4169 * catch if we ever need to fix it. In the meantime, if you do spot
4170 * such a local variable, please consider fixing!
4171 */
4172 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4173 return ERR_PTR(-E2BIG);
4174
4175 if (overflows_type(size, obj->base.size))
4176 return ERR_PTR(-E2BIG);
4177
187685cb 4178 obj = i915_gem_object_alloc(dev_priv);
c397b908 4179 if (obj == NULL)
fe3db79b 4180 return ERR_PTR(-ENOMEM);
673a394b 4181
12d79d78 4182 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
fe3db79b
CW
4183 if (ret)
4184 goto fail;
673a394b 4185
bed1ea95 4186 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
c0f86832 4187 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
bed1ea95
CW
4188 /* 965gm cannot relocate objects above 4GiB. */
4189 mask &= ~__GFP_HIGHMEM;
4190 mask |= __GFP_DMA32;
4191 }
4192
93c76a3d 4193 mapping = obj->base.filp->f_mapping;
bed1ea95 4194 mapping_set_gfp_mask(mapping, mask);
5949eac4 4195
37e680a1 4196 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4197
c397b908
DV
4198 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4199 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4200
0031fb96 4201 if (HAS_LLC(dev_priv)) {
3d29b842 4202 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4203 * cache) for about a 10% performance improvement
4204 * compared to uncached. Graphics requests other than
4205 * display scanout are coherent with the CPU in
4206 * accessing this cache. This means in this mode we
4207 * don't need to clflush on the CPU side, and on the
4208 * GPU side we only need to flush internal caches to
4209 * get data visible to the CPU.
4210 *
4211 * However, we maintain the display planes as UC, and so
4212 * need to rebind when first used as such.
4213 */
4214 obj->cache_level = I915_CACHE_LLC;
4215 } else
4216 obj->cache_level = I915_CACHE_NONE;
4217
d861e338
DV
4218 trace_i915_gem_object_create(obj);
4219
05394f39 4220 return obj;
fe3db79b
CW
4221
4222fail:
4223 i915_gem_object_free(obj);
fe3db79b 4224 return ERR_PTR(ret);
c397b908
DV
4225}
4226
340fbd8c
CW
4227static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4228{
4229 /* If we are the last user of the backing storage (be it shmemfs
4230 * pages or stolen etc), we know that the pages are going to be
4231 * immediately released. In this case, we can then skip copying
4232 * back the contents from the GPU.
4233 */
4234
a4f5ea64 4235 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4236 return false;
4237
4238 if (obj->base.filp == NULL)
4239 return true;
4240
4241 /* At first glance, this looks racy, but then again so would be
4242 * userspace racing mmap against close. However, the first external
4243 * reference to the filp can only be obtained through the
4244 * i915_gem_mmap_ioctl() which safeguards us against the user
4245 * acquiring such a reference whilst we are in the middle of
4246 * freeing the object.
4247 */
4248 return atomic_long_read(&obj->base.filp->f_count) == 1;
4249}
4250
fbbd37b3
CW
4251static void __i915_gem_free_objects(struct drm_i915_private *i915,
4252 struct llist_node *freed)
673a394b 4253{
fbbd37b3 4254 struct drm_i915_gem_object *obj, *on;
673a394b 4255
fbbd37b3
CW
4256 mutex_lock(&i915->drm.struct_mutex);
4257 intel_runtime_pm_get(i915);
4258 llist_for_each_entry(obj, freed, freed) {
4259 struct i915_vma *vma, *vn;
4260
4261 trace_i915_gem_object_destroy(obj);
4262
4263 GEM_BUG_ON(i915_gem_object_is_active(obj));
4264 list_for_each_entry_safe(vma, vn,
4265 &obj->vma_list, obj_link) {
4266 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4267 GEM_BUG_ON(i915_vma_is_active(vma));
4268 vma->flags &= ~I915_VMA_PIN_MASK;
4269 i915_vma_close(vma);
4270 }
db6c2b41
CW
4271 GEM_BUG_ON(!list_empty(&obj->vma_list));
4272 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4273
56cea323 4274 list_del(&obj->global_link);
fbbd37b3
CW
4275 }
4276 intel_runtime_pm_put(i915);
4277 mutex_unlock(&i915->drm.struct_mutex);
4278
4279 llist_for_each_entry_safe(obj, on, freed, freed) {
4280 GEM_BUG_ON(obj->bind_count);
4281 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4282
4283 if (obj->ops->release)
4284 obj->ops->release(obj);
f65c9168 4285
fbbd37b3
CW
4286 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4287 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4288 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
fbbd37b3
CW
4289 GEM_BUG_ON(obj->mm.pages);
4290
4291 if (obj->base.import_attach)
4292 drm_prime_gem_destroy(&obj->base, NULL);
4293
d07f0e59 4294 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4295 drm_gem_object_release(&obj->base);
4296 i915_gem_info_remove_obj(i915, obj->base.size);
4297
4298 kfree(obj->bit_17);
4299 i915_gem_object_free(obj);
4300 }
4301}
4302
4303static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4304{
4305 struct llist_node *freed;
4306
4307 freed = llist_del_all(&i915->mm.free_list);
4308 if (unlikely(freed))
4309 __i915_gem_free_objects(i915, freed);
4310}
4311
4312static void __i915_gem_free_work(struct work_struct *work)
4313{
4314 struct drm_i915_private *i915 =
4315 container_of(work, struct drm_i915_private, mm.free_work);
4316 struct llist_node *freed;
26e12f89 4317
b1f788c6
CW
4318 /* All file-owned VMA should have been released by this point through
4319 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4320 * However, the object may also be bound into the global GTT (e.g.
4321 * older GPUs without per-process support, or for direct access through
4322 * the GTT either for the user or for scanout). Those VMA still need to
4323 * unbound now.
4324 */
1488fc08 4325
fbbd37b3
CW
4326 while ((freed = llist_del_all(&i915->mm.free_list)))
4327 __i915_gem_free_objects(i915, freed);
4328}
a071fa00 4329
fbbd37b3
CW
4330static void __i915_gem_free_object_rcu(struct rcu_head *head)
4331{
4332 struct drm_i915_gem_object *obj =
4333 container_of(head, typeof(*obj), rcu);
4334 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4335
4336 /* We can't simply use call_rcu() from i915_gem_free_object()
4337 * as we need to block whilst unbinding, and the call_rcu
4338 * task may be called from softirq context. So we take a
4339 * detour through a worker.
4340 */
4341 if (llist_add(&obj->freed, &i915->mm.free_list))
4342 schedule_work(&i915->mm.free_work);
4343}
656bfa3a 4344
fbbd37b3
CW
4345void i915_gem_free_object(struct drm_gem_object *gem_obj)
4346{
4347 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4348
bc0629a7
CW
4349 if (obj->mm.quirked)
4350 __i915_gem_object_unpin_pages(obj);
4351
340fbd8c 4352 if (discard_backing_storage(obj))
a4f5ea64 4353 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4354
fbbd37b3
CW
4355 /* Before we free the object, make sure any pure RCU-only
4356 * read-side critical sections are complete, e.g.
4357 * i915_gem_busy_ioctl(). For the corresponding synchronized
4358 * lookup see i915_gem_object_lookup_rcu().
4359 */
4360 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4361}
4362
f8a7fde4
CW
4363void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4364{
4365 lockdep_assert_held(&obj->base.dev->struct_mutex);
4366
4367 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4368 if (i915_gem_object_is_active(obj))
4369 i915_gem_object_set_active_reference(obj);
4370 else
4371 i915_gem_object_put(obj);
4372}
4373
3033acab
CW
4374static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4375{
4376 struct intel_engine_cs *engine;
4377 enum intel_engine_id id;
4378
4379 for_each_engine(engine, dev_priv, id)
f131e356
CW
4380 GEM_BUG_ON(engine->last_retired_context &&
4381 !i915_gem_context_is_kernel(engine->last_retired_context));
3033acab
CW
4382}
4383
24145517
CW
4384void i915_gem_sanitize(struct drm_i915_private *i915)
4385{
4386 /*
4387 * If we inherit context state from the BIOS or earlier occupants
4388 * of the GPU, the GPU may be in an inconsistent state when we
4389 * try to take over. The only way to remove the earlier state
4390 * is by resetting. However, resetting on earlier gen is tricky as
4391 * it may impact the display and we are uncertain about the stability
4392 * of the reset, so we only reset recent machines with logical
4393 * context support (that must be reset to remove any stray contexts).
4394 */
4395 if (HAS_HW_CONTEXTS(i915)) {
4396 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4397 WARN_ON(reset && reset != -ENODEV);
4398 }
4399}
4400
bf9e8429 4401int i915_gem_suspend(struct drm_i915_private *dev_priv)
29105ccc 4402{
bf9e8429 4403 struct drm_device *dev = &dev_priv->drm;
dcff85c8 4404 int ret;
28dfe52a 4405
c998e8a0 4406 intel_runtime_pm_get(dev_priv);
54b4f68f
CW
4407 intel_suspend_gt_powersave(dev_priv);
4408
45c5f202 4409 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4410
4411 /* We have to flush all the executing contexts to main memory so
4412 * that they can saved in the hibernation image. To ensure the last
4413 * context image is coherent, we have to switch away from it. That
4414 * leaves the dev_priv->kernel_context still active when
4415 * we actually suspend, and its image in memory may not match the GPU
4416 * state. Fortunately, the kernel_context is disposable and we do
4417 * not rely on its state.
4418 */
4419 ret = i915_gem_switch_to_kernel_context(dev_priv);
4420 if (ret)
c998e8a0 4421 goto err_unlock;
5ab57c70 4422
22dd3bb9
CW
4423 ret = i915_gem_wait_for_idle(dev_priv,
4424 I915_WAIT_INTERRUPTIBLE |
4425 I915_WAIT_LOCKED);
f7403347 4426 if (ret)
c998e8a0 4427 goto err_unlock;
f7403347 4428
c033666a 4429 i915_gem_retire_requests(dev_priv);
28176ef4 4430 GEM_BUG_ON(dev_priv->gt.active_requests);
673a394b 4431
3033acab 4432 assert_kernel_context_is_current(dev_priv);
b2e862d0 4433 i915_gem_context_lost(dev_priv);
45c5f202
CW
4434 mutex_unlock(&dev->struct_mutex);
4435
737b1506 4436 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3 4437 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
bdeb9785
CW
4438
4439 /* As the idle_work is rearming if it detects a race, play safe and
4440 * repeat the flush until it is definitely idle.
4441 */
4442 while (flush_delayed_work(&dev_priv->gt.idle_work))
4443 ;
4444
4445 i915_gem_drain_freed_objects(dev_priv);
29105ccc 4446
bdcf120b
CW
4447 /* Assert that we sucessfully flushed all the work and
4448 * reset the GPU back to its idle, low power state.
4449 */
67d97da3 4450 WARN_ON(dev_priv->gt.awake);
05425249 4451 WARN_ON(!intel_engines_are_idle(dev_priv));
bdcf120b 4452
1c777c5d
ID
4453 /*
4454 * Neither the BIOS, ourselves or any other kernel
4455 * expects the system to be in execlists mode on startup,
4456 * so we need to reset the GPU back to legacy mode. And the only
4457 * known way to disable logical contexts is through a GPU reset.
4458 *
4459 * So in order to leave the system in a known default configuration,
4460 * always reset the GPU upon unload and suspend. Afterwards we then
4461 * clean up the GEM state tracking, flushing off the requests and
4462 * leaving the system in a known idle state.
4463 *
4464 * Note that is of the upmost importance that the GPU is idle and
4465 * all stray writes are flushed *before* we dismantle the backing
4466 * storage for the pinned objects.
4467 *
4468 * However, since we are uncertain that resetting the GPU on older
4469 * machines is a good idea, we don't - just in case it leaves the
4470 * machine in an unusable condition.
4471 */
24145517 4472 i915_gem_sanitize(dev_priv);
c998e8a0 4473 goto out_rpm_put;
1c777c5d 4474
c998e8a0 4475err_unlock:
45c5f202 4476 mutex_unlock(&dev->struct_mutex);
c998e8a0
CW
4477out_rpm_put:
4478 intel_runtime_pm_put(dev_priv);
45c5f202 4479 return ret;
673a394b
EA
4480}
4481
bf9e8429 4482void i915_gem_resume(struct drm_i915_private *dev_priv)
5ab57c70 4483{
bf9e8429 4484 struct drm_device *dev = &dev_priv->drm;
5ab57c70 4485
31ab49ab
ID
4486 WARN_ON(dev_priv->gt.awake);
4487
5ab57c70 4488 mutex_lock(&dev->struct_mutex);
275a991c 4489 i915_gem_restore_gtt_mappings(dev_priv);
5ab57c70
CW
4490
4491 /* As we didn't flush the kernel context before suspend, we cannot
4492 * guarantee that the context image is complete. So let's just reset
4493 * it and start again.
4494 */
821ed7df 4495 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4496
4497 mutex_unlock(&dev->struct_mutex);
4498}
4499
c6be607a 4500void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 4501{
c6be607a 4502 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
4503 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4504 return;
4505
4506 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4507 DISP_TILE_SURFACE_SWIZZLING);
4508
5db94019 4509 if (IS_GEN5(dev_priv))
11782b02
DV
4510 return;
4511
f691e2f4 4512 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4513 if (IS_GEN6(dev_priv))
6b26c86d 4514 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4515 else if (IS_GEN7(dev_priv))
6b26c86d 4516 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4517 else if (IS_GEN8(dev_priv))
31a5336e 4518 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4519 else
4520 BUG();
f691e2f4 4521}
e21af88d 4522
50a0bc90 4523static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4524{
81e7f200
VS
4525 I915_WRITE(RING_CTL(base), 0);
4526 I915_WRITE(RING_HEAD(base), 0);
4527 I915_WRITE(RING_TAIL(base), 0);
4528 I915_WRITE(RING_START(base), 0);
4529}
4530
50a0bc90 4531static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4532{
50a0bc90
TU
4533 if (IS_I830(dev_priv)) {
4534 init_unused_ring(dev_priv, PRB1_BASE);
4535 init_unused_ring(dev_priv, SRB0_BASE);
4536 init_unused_ring(dev_priv, SRB1_BASE);
4537 init_unused_ring(dev_priv, SRB2_BASE);
4538 init_unused_ring(dev_priv, SRB3_BASE);
4539 } else if (IS_GEN2(dev_priv)) {
4540 init_unused_ring(dev_priv, SRB0_BASE);
4541 init_unused_ring(dev_priv, SRB1_BASE);
4542 } else if (IS_GEN3(dev_priv)) {
4543 init_unused_ring(dev_priv, PRB1_BASE);
4544 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4545 }
4546}
4547
20a8a74a 4548static int __i915_gem_restart_engines(void *data)
4fc7c971 4549{
20a8a74a 4550 struct drm_i915_private *i915 = data;
e2f80391 4551 struct intel_engine_cs *engine;
3b3f1650 4552 enum intel_engine_id id;
20a8a74a
CW
4553 int err;
4554
4555 for_each_engine(engine, i915, id) {
4556 err = engine->init_hw(engine);
4557 if (err)
4558 return err;
4559 }
4560
4561 return 0;
4562}
4563
4564int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4565{
d200cda6 4566 int ret;
4fc7c971 4567
de867c20
CW
4568 dev_priv->gt.last_init_time = ktime_get();
4569
5e4f5189
CW
4570 /* Double layer security blanket, see i915_gem_init() */
4571 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4572
0031fb96 4573 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4574 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4575
772c2a51 4576 if (IS_HASWELL(dev_priv))
50a0bc90 4577 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4578 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4579
6e266956 4580 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4581 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4582 u32 temp = I915_READ(GEN7_MSG_CTL);
4583 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4584 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 4585 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
4586 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4587 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4588 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4589 }
88a2b2a3
BW
4590 }
4591
c6be607a 4592 i915_gem_init_swizzling(dev_priv);
4fc7c971 4593
d5abdfda
DV
4594 /*
4595 * At least 830 can leave some of the unused rings
4596 * "active" (ie. head != tail) after resume which
4597 * will prevent c3 entry. Makes sure all unused rings
4598 * are totally idle.
4599 */
50a0bc90 4600 init_unused_rings(dev_priv);
d5abdfda 4601
ed54c1a1 4602 BUG_ON(!dev_priv->kernel_context);
90638cc1 4603
c6be607a 4604 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88
JH
4605 if (ret) {
4606 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4607 goto out;
4608 }
4609
4610 /* Need to do basic initialisation of all rings first: */
20a8a74a
CW
4611 ret = __i915_gem_restart_engines(dev_priv);
4612 if (ret)
4613 goto out;
99433931 4614
bf9e8429 4615 intel_mocs_init_l3cc_table(dev_priv);
0ccdacf6 4616
b8991403
OM
4617 /* We can't enable contexts until all firmware is loaded */
4618 ret = intel_uc_init_hw(dev_priv);
4619 if (ret)
4620 goto out;
33a732f4 4621
5e4f5189
CW
4622out:
4623 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4624 return ret;
8187a2b7
ZN
4625}
4626
39df9190
CW
4627bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4628{
4629 if (INTEL_INFO(dev_priv)->gen < 6)
4630 return false;
4631
4632 /* TODO: make semaphores and Execlists play nicely together */
4633 if (i915.enable_execlists)
4634 return false;
4635
4636 if (value >= 0)
4637 return value;
4638
4639#ifdef CONFIG_INTEL_IOMMU
4640 /* Enable semaphores on SNB when IO remapping is off */
4641 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4642 return false;
4643#endif
4644
4645 return true;
4646}
4647
bf9e8429 4648int i915_gem_init(struct drm_i915_private *dev_priv)
1070a42b 4649{
1070a42b
CW
4650 int ret;
4651
bf9e8429 4652 mutex_lock(&dev_priv->drm.struct_mutex);
d62b4892 4653
57822dc6
CW
4654 i915_gem_clflush_init(dev_priv);
4655
a83014d3 4656 if (!i915.enable_execlists) {
821ed7df 4657 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4658 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4659 } else {
821ed7df 4660 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4661 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4662 }
4663
5e4f5189
CW
4664 /* This is just a security blanket to placate dragons.
4665 * On some systems, we very sporadically observe that the first TLBs
4666 * used by the CS may be stale, despite us poking the TLB reset. If
4667 * we hold the forcewake during initialisation these problems
4668 * just magically go away.
4669 */
4670 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4671
72778cb2 4672 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4673
4674 ret = i915_gem_init_ggtt(dev_priv);
4675 if (ret)
4676 goto out_unlock;
d62b4892 4677
bf9e8429 4678 ret = i915_gem_context_init(dev_priv);
7bcc3777
JN
4679 if (ret)
4680 goto out_unlock;
2fa48d8d 4681
bf9e8429 4682 ret = intel_engines_init(dev_priv);
35a57ffb 4683 if (ret)
7bcc3777 4684 goto out_unlock;
2fa48d8d 4685
bf9e8429 4686 ret = i915_gem_init_hw(dev_priv);
60990320 4687 if (ret == -EIO) {
7e21d648 4688 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4689 * wedged. But we only want to do this where the GPU is angry,
4690 * for all other failure, such as an allocation failure, bail.
4691 */
4692 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4693 i915_gem_set_wedged(dev_priv);
60990320 4694 ret = 0;
1070a42b 4695 }
7bcc3777
JN
4696
4697out_unlock:
5e4f5189 4698 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
bf9e8429 4699 mutex_unlock(&dev_priv->drm.struct_mutex);
1070a42b 4700
60990320 4701 return ret;
1070a42b
CW
4702}
4703
24145517
CW
4704void i915_gem_init_mmio(struct drm_i915_private *i915)
4705{
4706 i915_gem_sanitize(i915);
4707}
4708
8187a2b7 4709void
cb15d9f8 4710i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
8187a2b7 4711{
e2f80391 4712 struct intel_engine_cs *engine;
3b3f1650 4713 enum intel_engine_id id;
8187a2b7 4714
3b3f1650 4715 for_each_engine(engine, dev_priv, id)
117897f4 4716 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4717}
4718
40ae4e16
ID
4719void
4720i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4721{
49ef5294 4722 int i;
40ae4e16
ID
4723
4724 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4725 !IS_CHERRYVIEW(dev_priv))
4726 dev_priv->num_fence_regs = 32;
73f67aa8
JN
4727 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4728 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4729 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
40ae4e16
ID
4730 dev_priv->num_fence_regs = 16;
4731 else
4732 dev_priv->num_fence_regs = 8;
4733
c033666a 4734 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4735 dev_priv->num_fence_regs =
4736 I915_READ(vgtif_reg(avail_rs.fence_num));
4737
4738 /* Initialize fence registers to zero */
49ef5294
CW
4739 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4740 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4741
4742 fence->i915 = dev_priv;
4743 fence->id = i;
4744 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4745 }
4362f4f6 4746 i915_gem_restore_fences(dev_priv);
40ae4e16 4747
4362f4f6 4748 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
4749}
4750
73cb9701 4751int
cb15d9f8 4752i915_gem_load_init(struct drm_i915_private *dev_priv)
673a394b 4753{
a933568e 4754 int err = -ENOMEM;
42dcedd4 4755
a933568e
TU
4756 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4757 if (!dev_priv->objects)
73cb9701 4758 goto err_out;
73cb9701 4759
a933568e
TU
4760 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4761 if (!dev_priv->vmas)
73cb9701 4762 goto err_objects;
73cb9701 4763
a933568e
TU
4764 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4765 SLAB_HWCACHE_ALIGN |
4766 SLAB_RECLAIM_ACCOUNT |
4767 SLAB_DESTROY_BY_RCU);
4768 if (!dev_priv->requests)
73cb9701 4769 goto err_vmas;
73cb9701 4770
52e54209
CW
4771 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4772 SLAB_HWCACHE_ALIGN |
4773 SLAB_RECLAIM_ACCOUNT);
4774 if (!dev_priv->dependencies)
4775 goto err_requests;
4776
73cb9701
CW
4777 mutex_lock(&dev_priv->drm.struct_mutex);
4778 INIT_LIST_HEAD(&dev_priv->gt.timelines);
bb89485e 4779 err = i915_gem_timeline_init__global(dev_priv);
73cb9701
CW
4780 mutex_unlock(&dev_priv->drm.struct_mutex);
4781 if (err)
52e54209 4782 goto err_dependencies;
673a394b 4783
a33afea5 4784 INIT_LIST_HEAD(&dev_priv->context_list);
fbbd37b3
CW
4785 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4786 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
4787 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4788 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4789 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 4790 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
67d97da3 4791 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4792 i915_gem_retire_work_handler);
67d97da3 4793 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4794 i915_gem_idle_work_handler);
1f15b76f 4795 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4796 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4797
6b95a207 4798 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4799
ce453d81
CW
4800 dev_priv->mm.interruptible = true;
4801
6f633402
JL
4802 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4803
b5add959 4804 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701
CW
4805
4806 return 0;
4807
52e54209
CW
4808err_dependencies:
4809 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
4810err_requests:
4811 kmem_cache_destroy(dev_priv->requests);
4812err_vmas:
4813 kmem_cache_destroy(dev_priv->vmas);
4814err_objects:
4815 kmem_cache_destroy(dev_priv->objects);
4816err_out:
4817 return err;
673a394b 4818}
71acb5eb 4819
cb15d9f8 4820void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
d64aa096 4821{
c4d4c1c6 4822 i915_gem_drain_freed_objects(dev_priv);
7d5d59e5 4823 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
c4d4c1c6 4824 WARN_ON(dev_priv->mm.object_count);
7d5d59e5 4825
ea84aa77
MA
4826 mutex_lock(&dev_priv->drm.struct_mutex);
4827 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4828 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4829 mutex_unlock(&dev_priv->drm.struct_mutex);
4830
52e54209 4831 kmem_cache_destroy(dev_priv->dependencies);
d64aa096
ID
4832 kmem_cache_destroy(dev_priv->requests);
4833 kmem_cache_destroy(dev_priv->vmas);
4834 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
4835
4836 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4837 rcu_barrier();
d64aa096
ID
4838}
4839
6a800eab
CW
4840int i915_gem_freeze(struct drm_i915_private *dev_priv)
4841{
6a800eab
CW
4842 mutex_lock(&dev_priv->drm.struct_mutex);
4843 i915_gem_shrink_all(dev_priv);
4844 mutex_unlock(&dev_priv->drm.struct_mutex);
4845
6a800eab
CW
4846 return 0;
4847}
4848
461fb99c
CW
4849int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4850{
4851 struct drm_i915_gem_object *obj;
7aab2d53
CW
4852 struct list_head *phases[] = {
4853 &dev_priv->mm.unbound_list,
4854 &dev_priv->mm.bound_list,
4855 NULL
4856 }, **p;
461fb99c
CW
4857
4858 /* Called just before we write the hibernation image.
4859 *
4860 * We need to update the domain tracking to reflect that the CPU
4861 * will be accessing all the pages to create and restore from the
4862 * hibernation, and so upon restoration those pages will be in the
4863 * CPU domain.
4864 *
4865 * To make sure the hibernation image contains the latest state,
4866 * we update that state just before writing out the image.
7aab2d53
CW
4867 *
4868 * To try and reduce the hibernation image, we manually shrink
4869 * the objects as well.
461fb99c
CW
4870 */
4871
6a800eab
CW
4872 mutex_lock(&dev_priv->drm.struct_mutex);
4873 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
461fb99c 4874
7aab2d53 4875 for (p = phases; *p; p++) {
56cea323 4876 list_for_each_entry(obj, *p, global_link) {
7aab2d53
CW
4877 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4878 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4879 }
461fb99c 4880 }
6a800eab 4881 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
4882
4883 return 0;
4884}
4885
f787a5f5 4886void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4887{
f787a5f5 4888 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4889 struct drm_i915_gem_request *request;
b962442e
EA
4890
4891 /* Clean up our request list when the client is going away, so that
4892 * later retire_requests won't dereference our soon-to-be-gone
4893 * file_priv.
4894 */
1c25595f 4895 spin_lock(&file_priv->mm.lock);
c8659efa 4896 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
f787a5f5 4897 request->file_priv = NULL;
1c25595f 4898 spin_unlock(&file_priv->mm.lock);
b29c19b6 4899
2e1b8730 4900 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4901 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4902 list_del(&file_priv->rps.link);
8d3afd7d 4903 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4904 }
b29c19b6
CW
4905}
4906
4907int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4908{
4909 struct drm_i915_file_private *file_priv;
e422b888 4910 int ret;
b29c19b6 4911
c4c29d7b 4912 DRM_DEBUG("\n");
b29c19b6
CW
4913
4914 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4915 if (!file_priv)
4916 return -ENOMEM;
4917
4918 file->driver_priv = file_priv;
f19ec8cb 4919 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4920 file_priv->file = file;
2e1b8730 4921 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4922
4923 spin_lock_init(&file_priv->mm.lock);
4924 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4925
c80ff16e 4926 file_priv->bsd_engine = -1;
de1add36 4927
e422b888
BW
4928 ret = i915_gem_context_open(dev, file);
4929 if (ret)
4930 kfree(file_priv);
b29c19b6 4931
e422b888 4932 return ret;
b29c19b6
CW
4933}
4934
b680c37a
DV
4935/**
4936 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4937 * @old: current GEM buffer for the frontbuffer slots
4938 * @new: new GEM buffer for the frontbuffer slots
4939 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4940 *
4941 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4942 * from @old and setting them in @new. Both @old and @new can be NULL.
4943 */
a071fa00
DV
4944void i915_gem_track_fb(struct drm_i915_gem_object *old,
4945 struct drm_i915_gem_object *new,
4946 unsigned frontbuffer_bits)
4947{
faf5bf0a
CW
4948 /* Control of individual bits within the mask are guarded by
4949 * the owning plane->mutex, i.e. we can never see concurrent
4950 * manipulation of individual bits. But since the bitfield as a whole
4951 * is updated using RMW, we need to use atomics in order to update
4952 * the bits.
4953 */
4954 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4955 sizeof(atomic_t) * BITS_PER_BYTE);
4956
a071fa00 4957 if (old) {
faf5bf0a
CW
4958 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4959 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
4960 }
4961
4962 if (new) {
faf5bf0a
CW
4963 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4964 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
4965 }
4966}
4967
ea70299d
DG
4968/* Allocate a new GEM object and fill it with the supplied data */
4969struct drm_i915_gem_object *
12d79d78 4970i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
ea70299d
DG
4971 const void *data, size_t size)
4972{
4973 struct drm_i915_gem_object *obj;
be062fa4
CW
4974 struct file *file;
4975 size_t offset;
4976 int err;
ea70299d 4977
12d79d78 4978 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
fe3db79b 4979 if (IS_ERR(obj))
ea70299d
DG
4980 return obj;
4981
ce8ff099 4982 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
ea70299d 4983
be062fa4
CW
4984 file = obj->base.filp;
4985 offset = 0;
4986 do {
4987 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
4988 struct page *page;
4989 void *pgdata, *vaddr;
ea70299d 4990
be062fa4
CW
4991 err = pagecache_write_begin(file, file->f_mapping,
4992 offset, len, 0,
4993 &page, &pgdata);
4994 if (err < 0)
4995 goto fail;
ea70299d 4996
be062fa4
CW
4997 vaddr = kmap(page);
4998 memcpy(vaddr, data, len);
4999 kunmap(page);
5000
5001 err = pagecache_write_end(file, file->f_mapping,
5002 offset, len, len,
5003 page, pgdata);
5004 if (err < 0)
5005 goto fail;
5006
5007 size -= len;
5008 data += len;
5009 offset += len;
5010 } while (size);
ea70299d
DG
5011
5012 return obj;
5013
5014fail:
f8c417cd 5015 i915_gem_object_put(obj);
be062fa4 5016 return ERR_PTR(err);
ea70299d 5017}
96d77634
CW
5018
5019struct scatterlist *
5020i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5021 unsigned int n,
5022 unsigned int *offset)
5023{
a4f5ea64 5024 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
5025 struct scatterlist *sg;
5026 unsigned int idx, count;
5027
5028 might_sleep();
5029 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 5030 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
5031
5032 /* As we iterate forward through the sg, we record each entry in a
5033 * radixtree for quick repeated (backwards) lookups. If we have seen
5034 * this index previously, we will have an entry for it.
5035 *
5036 * Initial lookup is O(N), but this is amortized to O(1) for
5037 * sequential page access (where each new request is consecutive
5038 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5039 * i.e. O(1) with a large constant!
5040 */
5041 if (n < READ_ONCE(iter->sg_idx))
5042 goto lookup;
5043
5044 mutex_lock(&iter->lock);
5045
5046 /* We prefer to reuse the last sg so that repeated lookup of this
5047 * (or the subsequent) sg are fast - comparing against the last
5048 * sg is faster than going through the radixtree.
5049 */
5050
5051 sg = iter->sg_pos;
5052 idx = iter->sg_idx;
5053 count = __sg_page_count(sg);
5054
5055 while (idx + count <= n) {
5056 unsigned long exception, i;
5057 int ret;
5058
5059 /* If we cannot allocate and insert this entry, or the
5060 * individual pages from this range, cancel updating the
5061 * sg_idx so that on this lookup we are forced to linearly
5062 * scan onwards, but on future lookups we will try the
5063 * insertion again (in which case we need to be careful of
5064 * the error return reporting that we have already inserted
5065 * this index).
5066 */
5067 ret = radix_tree_insert(&iter->radix, idx, sg);
5068 if (ret && ret != -EEXIST)
5069 goto scan;
5070
5071 exception =
5072 RADIX_TREE_EXCEPTIONAL_ENTRY |
5073 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5074 for (i = 1; i < count; i++) {
5075 ret = radix_tree_insert(&iter->radix, idx + i,
5076 (void *)exception);
5077 if (ret && ret != -EEXIST)
5078 goto scan;
5079 }
5080
5081 idx += count;
5082 sg = ____sg_next(sg);
5083 count = __sg_page_count(sg);
5084 }
5085
5086scan:
5087 iter->sg_pos = sg;
5088 iter->sg_idx = idx;
5089
5090 mutex_unlock(&iter->lock);
5091
5092 if (unlikely(n < idx)) /* insertion completed by another thread */
5093 goto lookup;
5094
5095 /* In case we failed to insert the entry into the radixtree, we need
5096 * to look beyond the current sg.
5097 */
5098 while (idx + count <= n) {
5099 idx += count;
5100 sg = ____sg_next(sg);
5101 count = __sg_page_count(sg);
5102 }
5103
5104 *offset = n - idx;
5105 return sg;
5106
5107lookup:
5108 rcu_read_lock();
5109
5110 sg = radix_tree_lookup(&iter->radix, n);
5111 GEM_BUG_ON(!sg);
5112
5113 /* If this index is in the middle of multi-page sg entry,
5114 * the radixtree will contain an exceptional entry that points
5115 * to the start of that range. We will return the pointer to
5116 * the base page and the offset of this page within the
5117 * sg entry's range.
5118 */
5119 *offset = 0;
5120 if (unlikely(radix_tree_exception(sg))) {
5121 unsigned long base =
5122 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5123
5124 sg = radix_tree_lookup(&iter->radix, base);
5125 GEM_BUG_ON(!sg);
5126
5127 *offset = n - base;
5128 }
5129
5130 rcu_read_unlock();
5131
5132 return sg;
5133}
5134
5135struct page *
5136i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5137{
5138 struct scatterlist *sg;
5139 unsigned int offset;
5140
5141 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5142
5143 sg = i915_gem_object_get_sg(obj, n, &offset);
5144 return nth_page(sg_page(sg), offset);
5145}
5146
5147/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5148struct page *
5149i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5150 unsigned int n)
5151{
5152 struct page *page;
5153
5154 page = i915_gem_object_get_page(obj, n);
a4f5ea64 5155 if (!obj->mm.dirty)
96d77634
CW
5156 set_page_dirty(page);
5157
5158 return page;
5159}
5160
5161dma_addr_t
5162i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5163 unsigned long n)
5164{
5165 struct scatterlist *sg;
5166 unsigned int offset;
5167
5168 sg = i915_gem_object_get_sg(obj, n, &offset);
5169 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5170}
935a2f77
CW
5171
5172#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5173#include "selftests/scatterlist.c"
66d9cb5d 5174#include "selftests/mock_gem_device.c"
44653988 5175#include "selftests/huge_gem_object.c"
8335fd65 5176#include "selftests/i915_gem_object.c"
17059450 5177#include "selftests/i915_gem_coherency.c"
935a2f77 5178#endif