]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Show pin count in debugfs
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
21dd3734
CW
89static int
90i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
91{
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
0a6759c6
DV
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
30dbf0c0 110 return ret;
0a6759c6 111 }
30dbf0c0 112
21dd3734
CW
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
30dbf0c0
CW
124}
125
54cf91dc 126int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 127{
76c1dec1
CW
128 int ret;
129
21dd3734 130 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
23bc5982 138 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
139 return 0;
140}
30dbf0c0 141
7d1c4804 142static inline bool
05394f39 143i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 144{
6c085a72 145 return obj->gtt_space && !obj->active;
7d1c4804
CW
146}
147
79e53945
JB
148int
149i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 150 struct drm_file *file)
79e53945
JB
151{
152 struct drm_i915_gem_init *args = data;
2021746e 153
7bb6fb8d
DV
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
2021746e
CW
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
79e53945 160
f534bc0b
DV
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
79e53945 165 mutex_lock(&dev->struct_mutex);
644ec02b
DV
166 i915_gem_init_global_gtt(dev, args->gtt_start,
167 args->gtt_end, args->gtt_end);
673a394b
EA
168 mutex_unlock(&dev->struct_mutex);
169
2021746e 170 return 0;
673a394b
EA
171}
172
5a125c3c
EA
173int
174i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 175 struct drm_file *file)
5a125c3c 176{
73aa808f 177 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 178 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
5a125c3c 181
6299f992 182 pinned = 0;
73aa808f 183 mutex_lock(&dev->struct_mutex);
6c085a72 184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
73aa808f 187 mutex_unlock(&dev->struct_mutex);
5a125c3c 188
6299f992 189 args->aper_size = dev_priv->mm.gtt_total;
0206e353 190 args->aper_available_size = args->aper_size - pinned;
6299f992 191
5a125c3c
EA
192 return 0;
193}
194
ff72145b
DA
195static int
196i915_gem_create(struct drm_file *file,
197 struct drm_device *dev,
198 uint64_t size,
199 uint32_t *handle_p)
673a394b 200{
05394f39 201 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
202 int ret;
203 u32 handle;
673a394b 204
ff72145b 205 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
206 if (size == 0)
207 return -EINVAL;
673a394b
EA
208
209 /* Allocate the new object */
ff72145b 210 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
211 if (obj == NULL)
212 return -ENOMEM;
213
05394f39 214 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 215 if (ret) {
05394f39
CW
216 drm_gem_object_release(&obj->base);
217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 218 kfree(obj);
673a394b 219 return ret;
1dfd9754 220 }
673a394b 221
202f2fef 222 /* drop reference from allocate - handle holds it now */
05394f39 223 drm_gem_object_unreference(&obj->base);
202f2fef
CW
224 trace_i915_gem_object_create(obj);
225
ff72145b 226 *handle_p = handle;
673a394b
EA
227 return 0;
228}
229
ff72145b
DA
230int
231i915_gem_dumb_create(struct drm_file *file,
232 struct drm_device *dev,
233 struct drm_mode_create_dumb *args)
234{
235 /* have to work out size/pitch and return them */
ed0291fd 236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
237 args->size = args->pitch * args->height;
238 return i915_gem_create(file, dev,
239 args->size, &args->handle);
240}
241
242int i915_gem_dumb_destroy(struct drm_file *file,
243 struct drm_device *dev,
244 uint32_t handle)
245{
246 return drm_gem_handle_delete(file, handle);
247}
248
249/**
250 * Creates a new mm object and returns a handle to it.
251 */
252int
253i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 struct drm_file *file)
255{
256 struct drm_i915_gem_create *args = data;
63ed2cb2 257
ff72145b
DA
258 return i915_gem_create(file, dev,
259 args->size, &args->handle);
260}
261
05394f39 262static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 263{
05394f39 264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
265
266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 267 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
268}
269
8461d226
DV
270static inline int
271__copy_to_user_swizzled(char __user *cpu_vaddr,
272 const char *gpu_vaddr, int gpu_offset,
273 int length)
274{
275 int ret, cpu_offset = 0;
276
277 while (length > 0) {
278 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 int this_length = min(cacheline_end - gpu_offset, length);
280 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 gpu_vaddr + swizzled_gpu_offset,
284 this_length);
285 if (ret)
286 return ret + length;
287
288 cpu_offset += this_length;
289 gpu_offset += this_length;
290 length -= this_length;
291 }
292
293 return 0;
294}
295
8c59967c 296static inline int
4f0c7cfb
BW
297__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 const char __user *cpu_vaddr,
8c59967c
DV
299 int length)
300{
301 int ret, cpu_offset = 0;
302
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 cpu_vaddr + cpu_offset,
310 this_length);
311 if (ret)
312 return ret + length;
313
314 cpu_offset += this_length;
315 gpu_offset += this_length;
316 length -= this_length;
317 }
318
319 return 0;
320}
321
d174bd64
DV
322/* Per-page copy function for the shmem pread fastpath.
323 * Flushes invalid cachelines before reading the target if
324 * needs_clflush is set. */
eb01459f 325static int
d174bd64
DV
326shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 char __user *user_data,
328 bool page_do_bit17_swizzling, bool needs_clflush)
329{
330 char *vaddr;
331 int ret;
332
e7e58eb5 333 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
334 return -EINVAL;
335
336 vaddr = kmap_atomic(page);
337 if (needs_clflush)
338 drm_clflush_virt_range(vaddr + shmem_page_offset,
339 page_length);
340 ret = __copy_to_user_inatomic(user_data,
341 vaddr + shmem_page_offset,
342 page_length);
343 kunmap_atomic(vaddr);
344
345 return ret;
346}
347
23c18c71
DV
348static void
349shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 bool swizzled)
351{
e7e58eb5 352 if (unlikely(swizzled)) {
23c18c71
DV
353 unsigned long start = (unsigned long) addr;
354 unsigned long end = (unsigned long) addr + length;
355
356 /* For swizzling simply ensure that we always flush both
357 * channels. Lame, but simple and it works. Swizzled
358 * pwrite/pread is far from a hotpath - current userspace
359 * doesn't use it at all. */
360 start = round_down(start, 128);
361 end = round_up(end, 128);
362
363 drm_clflush_virt_range((void *)start, end - start);
364 } else {
365 drm_clflush_virt_range(addr, length);
366 }
367
368}
369
d174bd64
DV
370/* Only difference to the fast-path function is that this can handle bit17
371 * and uses non-atomic copy and kmap functions. */
372static int
373shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 char __user *user_data,
375 bool page_do_bit17_swizzling, bool needs_clflush)
376{
377 char *vaddr;
378 int ret;
379
380 vaddr = kmap(page);
381 if (needs_clflush)
23c18c71
DV
382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 page_length,
384 page_do_bit17_swizzling);
d174bd64
DV
385
386 if (page_do_bit17_swizzling)
387 ret = __copy_to_user_swizzled(user_data,
388 vaddr, shmem_page_offset,
389 page_length);
390 else
391 ret = __copy_to_user(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap(page);
395
396 return ret;
397}
398
eb01459f 399static int
dbf7bff0
DV
400i915_gem_shmem_pread(struct drm_device *dev,
401 struct drm_i915_gem_object *obj,
402 struct drm_i915_gem_pread *args,
403 struct drm_file *file)
eb01459f 404{
05394f39 405 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 406 char __user *user_data;
eb01459f 407 ssize_t remain;
8461d226 408 loff_t offset;
eb2c0c81 409 int shmem_page_offset, page_length, ret = 0;
8461d226 410 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 411 int hit_slowpath = 0;
96d79b52 412 int prefaulted = 0;
8489731c 413 int needs_clflush = 0;
692a576b 414 int release_page;
eb01459f 415
8461d226 416 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
417 remain = args->size;
418
8461d226 419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 420
8489731c
DV
421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 /* If we're not in the cpu read domain, set ourself into the gtt
423 * read domain and manually flush cachelines (if required). This
424 * optimizes for the case when the gpu will dirty the data
425 * anyway again before the next pread happens. */
426 if (obj->cache_level == I915_CACHE_NONE)
427 needs_clflush = 1;
6c085a72
CW
428 if (obj->gtt_space) {
429 ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 if (ret)
431 return ret;
432 }
8489731c 433 }
eb01459f 434
8461d226 435 offset = args->offset;
eb01459f
EA
436
437 while (remain > 0) {
e5281ccd
CW
438 struct page *page;
439
eb01459f
EA
440 /* Operation in this page
441 *
eb01459f 442 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
443 * page_length = bytes to copy for this page
444 */
c8cbbb8b 445 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
446 page_length = remain;
447 if ((shmem_page_offset + page_length) > PAGE_SIZE)
448 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 449
692a576b
DV
450 if (obj->pages) {
451 page = obj->pages[offset >> PAGE_SHIFT];
452 release_page = 0;
453 } else {
454 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
455 if (IS_ERR(page)) {
456 ret = PTR_ERR(page);
457 goto out;
458 }
459 release_page = 1;
b65552f0 460 }
e5281ccd 461
8461d226
DV
462 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
463 (page_to_phys(page) & (1 << 17)) != 0;
464
d174bd64
DV
465 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
466 user_data, page_do_bit17_swizzling,
467 needs_clflush);
468 if (ret == 0)
469 goto next_page;
dbf7bff0
DV
470
471 hit_slowpath = 1;
692a576b 472 page_cache_get(page);
dbf7bff0
DV
473 mutex_unlock(&dev->struct_mutex);
474
96d79b52 475 if (!prefaulted) {
f56f821f 476 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
477 /* Userspace is tricking us, but we've already clobbered
478 * its pages with the prefault and promised to write the
479 * data up to the first fault. Hence ignore any errors
480 * and just continue. */
481 (void)ret;
482 prefaulted = 1;
483 }
eb01459f 484
d174bd64
DV
485 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 user_data, page_do_bit17_swizzling,
487 needs_clflush);
eb01459f 488
dbf7bff0 489 mutex_lock(&dev->struct_mutex);
e5281ccd 490 page_cache_release(page);
dbf7bff0 491next_page:
e5281ccd 492 mark_page_accessed(page);
692a576b
DV
493 if (release_page)
494 page_cache_release(page);
e5281ccd 495
8461d226
DV
496 if (ret) {
497 ret = -EFAULT;
498 goto out;
499 }
500
eb01459f 501 remain -= page_length;
8461d226 502 user_data += page_length;
eb01459f
EA
503 offset += page_length;
504 }
505
4f27b75d 506out:
dbf7bff0
DV
507 if (hit_slowpath) {
508 /* Fixup: Kill any reinstated backing storage pages */
509 if (obj->madv == __I915_MADV_PURGED)
510 i915_gem_object_truncate(obj);
511 }
eb01459f
EA
512
513 return ret;
514}
515
673a394b
EA
516/**
517 * Reads data from the object referenced by handle.
518 *
519 * On error, the contents of *data are undefined.
520 */
521int
522i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 523 struct drm_file *file)
673a394b
EA
524{
525 struct drm_i915_gem_pread *args = data;
05394f39 526 struct drm_i915_gem_object *obj;
35b62a89 527 int ret = 0;
673a394b 528
51311d0a
CW
529 if (args->size == 0)
530 return 0;
531
532 if (!access_ok(VERIFY_WRITE,
533 (char __user *)(uintptr_t)args->data_ptr,
534 args->size))
535 return -EFAULT;
536
4f27b75d 537 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 538 if (ret)
4f27b75d 539 return ret;
673a394b 540
05394f39 541 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 542 if (&obj->base == NULL) {
1d7cfea1
CW
543 ret = -ENOENT;
544 goto unlock;
4f27b75d 545 }
673a394b 546
7dcd2499 547 /* Bounds check source. */
05394f39
CW
548 if (args->offset > obj->base.size ||
549 args->size > obj->base.size - args->offset) {
ce9d419d 550 ret = -EINVAL;
35b62a89 551 goto out;
ce9d419d
CW
552 }
553
1286ff73
DV
554 /* prime objects have no backing filp to GEM pread/pwrite
555 * pages from.
556 */
557 if (!obj->base.filp) {
558 ret = -EINVAL;
559 goto out;
560 }
561
db53a302
CW
562 trace_i915_gem_object_pread(obj, args->offset, args->size);
563
dbf7bff0 564 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 565
35b62a89 566out:
05394f39 567 drm_gem_object_unreference(&obj->base);
1d7cfea1 568unlock:
4f27b75d 569 mutex_unlock(&dev->struct_mutex);
eb01459f 570 return ret;
673a394b
EA
571}
572
0839ccb8
KP
573/* This is the fast write path which cannot handle
574 * page faults in the source data
9b7530cc 575 */
0839ccb8
KP
576
577static inline int
578fast_user_write(struct io_mapping *mapping,
579 loff_t page_base, int page_offset,
580 char __user *user_data,
581 int length)
9b7530cc 582{
4f0c7cfb
BW
583 void __iomem *vaddr_atomic;
584 void *vaddr;
0839ccb8 585 unsigned long unwritten;
9b7530cc 586
3e4d3af5 587 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
588 /* We can use the cpu mem copy function because this is X86. */
589 vaddr = (void __force*)vaddr_atomic + page_offset;
590 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 591 user_data, length);
3e4d3af5 592 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 593 return unwritten;
0839ccb8
KP
594}
595
3de09aa3
EA
596/**
597 * This is the fast pwrite path, where we copy the data directly from the
598 * user into the GTT, uncached.
599 */
673a394b 600static int
05394f39
CW
601i915_gem_gtt_pwrite_fast(struct drm_device *dev,
602 struct drm_i915_gem_object *obj,
3de09aa3 603 struct drm_i915_gem_pwrite *args,
05394f39 604 struct drm_file *file)
673a394b 605{
0839ccb8 606 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 607 ssize_t remain;
0839ccb8 608 loff_t offset, page_base;
673a394b 609 char __user *user_data;
935aaa69
DV
610 int page_offset, page_length, ret;
611
612 ret = i915_gem_object_pin(obj, 0, true);
613 if (ret)
614 goto out;
615
616 ret = i915_gem_object_set_to_gtt_domain(obj, true);
617 if (ret)
618 goto out_unpin;
619
620 ret = i915_gem_object_put_fence(obj);
621 if (ret)
622 goto out_unpin;
673a394b
EA
623
624 user_data = (char __user *) (uintptr_t) args->data_ptr;
625 remain = args->size;
673a394b 626
05394f39 627 offset = obj->gtt_offset + args->offset;
673a394b
EA
628
629 while (remain > 0) {
630 /* Operation in this page
631 *
0839ccb8
KP
632 * page_base = page offset within aperture
633 * page_offset = offset within page
634 * page_length = bytes to copy for this page
673a394b 635 */
c8cbbb8b
CW
636 page_base = offset & PAGE_MASK;
637 page_offset = offset_in_page(offset);
0839ccb8
KP
638 page_length = remain;
639 if ((page_offset + remain) > PAGE_SIZE)
640 page_length = PAGE_SIZE - page_offset;
641
0839ccb8 642 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
643 * source page isn't available. Return the error and we'll
644 * retry in the slow path.
0839ccb8 645 */
fbd5a26d 646 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
647 page_offset, user_data, page_length)) {
648 ret = -EFAULT;
649 goto out_unpin;
650 }
673a394b 651
0839ccb8
KP
652 remain -= page_length;
653 user_data += page_length;
654 offset += page_length;
673a394b 655 }
673a394b 656
935aaa69
DV
657out_unpin:
658 i915_gem_object_unpin(obj);
659out:
3de09aa3 660 return ret;
673a394b
EA
661}
662
d174bd64
DV
663/* Per-page copy function for the shmem pwrite fastpath.
664 * Flushes invalid cachelines before writing to the target if
665 * needs_clflush_before is set and flushes out any written cachelines after
666 * writing if needs_clflush is set. */
3043c60c 667static int
d174bd64
DV
668shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
669 char __user *user_data,
670 bool page_do_bit17_swizzling,
671 bool needs_clflush_before,
672 bool needs_clflush_after)
673a394b 673{
d174bd64 674 char *vaddr;
673a394b 675 int ret;
3de09aa3 676
e7e58eb5 677 if (unlikely(page_do_bit17_swizzling))
d174bd64 678 return -EINVAL;
3de09aa3 679
d174bd64
DV
680 vaddr = kmap_atomic(page);
681 if (needs_clflush_before)
682 drm_clflush_virt_range(vaddr + shmem_page_offset,
683 page_length);
684 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
685 user_data,
686 page_length);
687 if (needs_clflush_after)
688 drm_clflush_virt_range(vaddr + shmem_page_offset,
689 page_length);
690 kunmap_atomic(vaddr);
3de09aa3
EA
691
692 return ret;
693}
694
d174bd64
DV
695/* Only difference to the fast-path function is that this can handle bit17
696 * and uses non-atomic copy and kmap functions. */
3043c60c 697static int
d174bd64
DV
698shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
699 char __user *user_data,
700 bool page_do_bit17_swizzling,
701 bool needs_clflush_before,
702 bool needs_clflush_after)
673a394b 703{
d174bd64
DV
704 char *vaddr;
705 int ret;
e5281ccd 706
d174bd64 707 vaddr = kmap(page);
e7e58eb5 708 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
709 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
710 page_length,
711 page_do_bit17_swizzling);
d174bd64
DV
712 if (page_do_bit17_swizzling)
713 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
714 user_data,
715 page_length);
d174bd64
DV
716 else
717 ret = __copy_from_user(vaddr + shmem_page_offset,
718 user_data,
719 page_length);
720 if (needs_clflush_after)
23c18c71
DV
721 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
722 page_length,
723 page_do_bit17_swizzling);
d174bd64 724 kunmap(page);
40123c1f 725
d174bd64 726 return ret;
40123c1f
EA
727}
728
40123c1f 729static int
e244a443
DV
730i915_gem_shmem_pwrite(struct drm_device *dev,
731 struct drm_i915_gem_object *obj,
732 struct drm_i915_gem_pwrite *args,
733 struct drm_file *file)
40123c1f 734{
05394f39 735 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 736 ssize_t remain;
8c59967c
DV
737 loff_t offset;
738 char __user *user_data;
eb2c0c81 739 int shmem_page_offset, page_length, ret = 0;
8c59967c 740 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 741 int hit_slowpath = 0;
58642885
DV
742 int needs_clflush_after = 0;
743 int needs_clflush_before = 0;
692a576b 744 int release_page;
40123c1f 745
8c59967c 746 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
747 remain = args->size;
748
8c59967c 749 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 750
58642885
DV
751 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
752 /* If we're not in the cpu write domain, set ourself into the gtt
753 * write domain and manually flush cachelines (if required). This
754 * optimizes for the case when the gpu will use the data
755 * right away and we therefore have to clflush anyway. */
756 if (obj->cache_level == I915_CACHE_NONE)
757 needs_clflush_after = 1;
6c085a72
CW
758 if (obj->gtt_space) {
759 ret = i915_gem_object_set_to_gtt_domain(obj, true);
760 if (ret)
761 return ret;
762 }
58642885
DV
763 }
764 /* Same trick applies for invalidate partially written cachelines before
765 * writing. */
766 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
767 && obj->cache_level == I915_CACHE_NONE)
768 needs_clflush_before = 1;
769
673a394b 770 offset = args->offset;
05394f39 771 obj->dirty = 1;
673a394b 772
40123c1f 773 while (remain > 0) {
e5281ccd 774 struct page *page;
58642885 775 int partial_cacheline_write;
e5281ccd 776
40123c1f
EA
777 /* Operation in this page
778 *
40123c1f 779 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
780 * page_length = bytes to copy for this page
781 */
c8cbbb8b 782 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
783
784 page_length = remain;
785 if ((shmem_page_offset + page_length) > PAGE_SIZE)
786 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 787
58642885
DV
788 /* If we don't overwrite a cacheline completely we need to be
789 * careful to have up-to-date data by first clflushing. Don't
790 * overcomplicate things and flush the entire patch. */
791 partial_cacheline_write = needs_clflush_before &&
792 ((shmem_page_offset | page_length)
793 & (boot_cpu_data.x86_clflush_size - 1));
794
692a576b
DV
795 if (obj->pages) {
796 page = obj->pages[offset >> PAGE_SHIFT];
797 release_page = 0;
798 } else {
799 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
800 if (IS_ERR(page)) {
801 ret = PTR_ERR(page);
802 goto out;
803 }
804 release_page = 1;
e5281ccd
CW
805 }
806
8c59967c
DV
807 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
808 (page_to_phys(page) & (1 << 17)) != 0;
809
d174bd64
DV
810 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
811 user_data, page_do_bit17_swizzling,
812 partial_cacheline_write,
813 needs_clflush_after);
814 if (ret == 0)
815 goto next_page;
e244a443
DV
816
817 hit_slowpath = 1;
692a576b 818 page_cache_get(page);
e244a443
DV
819 mutex_unlock(&dev->struct_mutex);
820
d174bd64
DV
821 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
822 user_data, page_do_bit17_swizzling,
823 partial_cacheline_write,
824 needs_clflush_after);
40123c1f 825
e244a443 826 mutex_lock(&dev->struct_mutex);
692a576b 827 page_cache_release(page);
e244a443 828next_page:
e5281ccd
CW
829 set_page_dirty(page);
830 mark_page_accessed(page);
692a576b
DV
831 if (release_page)
832 page_cache_release(page);
e5281ccd 833
8c59967c
DV
834 if (ret) {
835 ret = -EFAULT;
836 goto out;
837 }
838
40123c1f 839 remain -= page_length;
8c59967c 840 user_data += page_length;
40123c1f 841 offset += page_length;
673a394b
EA
842 }
843
fbd5a26d 844out:
e244a443
DV
845 if (hit_slowpath) {
846 /* Fixup: Kill any reinstated backing storage pages */
847 if (obj->madv == __I915_MADV_PURGED)
848 i915_gem_object_truncate(obj);
849 /* and flush dirty cachelines in case the object isn't in the cpu write
850 * domain anymore. */
851 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
852 i915_gem_clflush_object(obj);
853 intel_gtt_chipset_flush();
854 }
8c59967c 855 }
673a394b 856
58642885
DV
857 if (needs_clflush_after)
858 intel_gtt_chipset_flush();
859
40123c1f 860 return ret;
673a394b
EA
861}
862
863/**
864 * Writes data to the object referenced by handle.
865 *
866 * On error, the contents of the buffer that were to be modified are undefined.
867 */
868int
869i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 870 struct drm_file *file)
673a394b
EA
871{
872 struct drm_i915_gem_pwrite *args = data;
05394f39 873 struct drm_i915_gem_object *obj;
51311d0a
CW
874 int ret;
875
876 if (args->size == 0)
877 return 0;
878
879 if (!access_ok(VERIFY_READ,
880 (char __user *)(uintptr_t)args->data_ptr,
881 args->size))
882 return -EFAULT;
883
f56f821f
DV
884 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
885 args->size);
51311d0a
CW
886 if (ret)
887 return -EFAULT;
673a394b 888
fbd5a26d 889 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 890 if (ret)
fbd5a26d 891 return ret;
1d7cfea1 892
05394f39 893 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 894 if (&obj->base == NULL) {
1d7cfea1
CW
895 ret = -ENOENT;
896 goto unlock;
fbd5a26d 897 }
673a394b 898
7dcd2499 899 /* Bounds check destination. */
05394f39
CW
900 if (args->offset > obj->base.size ||
901 args->size > obj->base.size - args->offset) {
ce9d419d 902 ret = -EINVAL;
35b62a89 903 goto out;
ce9d419d
CW
904 }
905
1286ff73
DV
906 /* prime objects have no backing filp to GEM pread/pwrite
907 * pages from.
908 */
909 if (!obj->base.filp) {
910 ret = -EINVAL;
911 goto out;
912 }
913
db53a302
CW
914 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
915
935aaa69 916 ret = -EFAULT;
673a394b
EA
917 /* We can only do the GTT pwrite on untiled buffers, as otherwise
918 * it would end up going through the fenced access, and we'll get
919 * different detiling behavior between reading and writing.
920 * pread/pwrite currently are reading and writing from the CPU
921 * perspective, requiring manual detiling by the client.
922 */
5c0480f2 923 if (obj->phys_obj) {
fbd5a26d 924 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
925 goto out;
926 }
927
928 if (obj->gtt_space &&
3ae53783 929 obj->cache_level == I915_CACHE_NONE &&
c07496fa 930 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 931 obj->map_and_fenceable &&
5c0480f2 932 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 933 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
934 /* Note that the gtt paths might fail with non-page-backed user
935 * pointers (e.g. gtt mappings when moving data between
936 * textures). Fallback to the shmem path in that case. */
fbd5a26d 937 }
673a394b 938
5c0480f2 939 if (ret == -EFAULT)
935aaa69 940 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 941
35b62a89 942out:
05394f39 943 drm_gem_object_unreference(&obj->base);
1d7cfea1 944unlock:
fbd5a26d 945 mutex_unlock(&dev->struct_mutex);
673a394b
EA
946 return ret;
947}
948
949/**
2ef7eeaa
EA
950 * Called when user space prepares to use an object with the CPU, either
951 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
952 */
953int
954i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 955 struct drm_file *file)
673a394b
EA
956{
957 struct drm_i915_gem_set_domain *args = data;
05394f39 958 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
959 uint32_t read_domains = args->read_domains;
960 uint32_t write_domain = args->write_domain;
673a394b
EA
961 int ret;
962
2ef7eeaa 963 /* Only handle setting domains to types used by the CPU. */
21d509e3 964 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
965 return -EINVAL;
966
21d509e3 967 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
968 return -EINVAL;
969
970 /* Having something in the write domain implies it's in the read
971 * domain, and only that read domain. Enforce that in the request.
972 */
973 if (write_domain != 0 && read_domains != write_domain)
974 return -EINVAL;
975
76c1dec1 976 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 977 if (ret)
76c1dec1 978 return ret;
1d7cfea1 979
05394f39 980 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 981 if (&obj->base == NULL) {
1d7cfea1
CW
982 ret = -ENOENT;
983 goto unlock;
76c1dec1 984 }
673a394b 985
2ef7eeaa
EA
986 if (read_domains & I915_GEM_DOMAIN_GTT) {
987 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
988
989 /* Silently promote "you're not bound, there was nothing to do"
990 * to success, since the client was just asking us to
991 * make sure everything was done.
992 */
993 if (ret == -EINVAL)
994 ret = 0;
2ef7eeaa 995 } else {
e47c68e9 996 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
997 }
998
05394f39 999 drm_gem_object_unreference(&obj->base);
1d7cfea1 1000unlock:
673a394b
EA
1001 mutex_unlock(&dev->struct_mutex);
1002 return ret;
1003}
1004
1005/**
1006 * Called when user space has done writes to this buffer
1007 */
1008int
1009i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1010 struct drm_file *file)
673a394b
EA
1011{
1012 struct drm_i915_gem_sw_finish *args = data;
05394f39 1013 struct drm_i915_gem_object *obj;
673a394b
EA
1014 int ret = 0;
1015
76c1dec1 1016 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1017 if (ret)
76c1dec1 1018 return ret;
1d7cfea1 1019
05394f39 1020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1021 if (&obj->base == NULL) {
1d7cfea1
CW
1022 ret = -ENOENT;
1023 goto unlock;
673a394b
EA
1024 }
1025
673a394b 1026 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1027 if (obj->pin_count)
e47c68e9
EA
1028 i915_gem_object_flush_cpu_write_domain(obj);
1029
05394f39 1030 drm_gem_object_unreference(&obj->base);
1d7cfea1 1031unlock:
673a394b
EA
1032 mutex_unlock(&dev->struct_mutex);
1033 return ret;
1034}
1035
1036/**
1037 * Maps the contents of an object, returning the address it is mapped
1038 * into.
1039 *
1040 * While the mapping holds a reference on the contents of the object, it doesn't
1041 * imply a ref on the object itself.
1042 */
1043int
1044i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1045 struct drm_file *file)
673a394b
EA
1046{
1047 struct drm_i915_gem_mmap *args = data;
1048 struct drm_gem_object *obj;
673a394b
EA
1049 unsigned long addr;
1050
05394f39 1051 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1052 if (obj == NULL)
bf79cb91 1053 return -ENOENT;
673a394b 1054
1286ff73
DV
1055 /* prime objects have no backing filp to GEM mmap
1056 * pages from.
1057 */
1058 if (!obj->filp) {
1059 drm_gem_object_unreference_unlocked(obj);
1060 return -EINVAL;
1061 }
1062
6be5ceb0 1063 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1064 PROT_READ | PROT_WRITE, MAP_SHARED,
1065 args->offset);
bc9025bd 1066 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1067 if (IS_ERR((void *)addr))
1068 return addr;
1069
1070 args->addr_ptr = (uint64_t) addr;
1071
1072 return 0;
1073}
1074
de151cf6
JB
1075/**
1076 * i915_gem_fault - fault a page into the GTT
1077 * vma: VMA in question
1078 * vmf: fault info
1079 *
1080 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1081 * from userspace. The fault handler takes care of binding the object to
1082 * the GTT (if needed), allocating and programming a fence register (again,
1083 * only if needed based on whether the old reg is still valid or the object
1084 * is tiled) and inserting a new PTE into the faulting process.
1085 *
1086 * Note that the faulting process may involve evicting existing objects
1087 * from the GTT and/or fence registers to make room. So performance may
1088 * suffer if the GTT working set is large or there are few fence registers
1089 * left.
1090 */
1091int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1092{
05394f39
CW
1093 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1094 struct drm_device *dev = obj->base.dev;
7d1c4804 1095 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1096 pgoff_t page_offset;
1097 unsigned long pfn;
1098 int ret = 0;
0f973f27 1099 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1100
1101 /* We don't use vmf->pgoff since that has the fake offset */
1102 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1103 PAGE_SHIFT;
1104
d9bc7e9f
CW
1105 ret = i915_mutex_lock_interruptible(dev);
1106 if (ret)
1107 goto out;
a00b10c3 1108
db53a302
CW
1109 trace_i915_gem_object_fault(obj, page_offset, true, write);
1110
d9bc7e9f 1111 /* Now bind it into the GTT if needed */
919926ae
CW
1112 if (!obj->map_and_fenceable) {
1113 ret = i915_gem_object_unbind(obj);
1114 if (ret)
1115 goto unlock;
a00b10c3 1116 }
05394f39 1117 if (!obj->gtt_space) {
75e9e915 1118 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1119 if (ret)
1120 goto unlock;
de151cf6 1121
e92d03bf
EA
1122 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1123 if (ret)
1124 goto unlock;
1125 }
4a684a41 1126
74898d7e
DV
1127 if (!obj->has_global_gtt_mapping)
1128 i915_gem_gtt_bind_object(obj, obj->cache_level);
1129
06d98131 1130 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1131 if (ret)
1132 goto unlock;
de151cf6 1133
05394f39
CW
1134 if (i915_gem_object_is_inactive(obj))
1135 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1136
6299f992
CW
1137 obj->fault_mappable = true;
1138
dd2757f8 1139 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1140 page_offset;
1141
1142 /* Finally, remap it using the new GTT offset */
1143 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1144unlock:
de151cf6 1145 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1146out:
de151cf6 1147 switch (ret) {
d9bc7e9f 1148 case -EIO:
a9340cca
DV
1149 /* If this -EIO is due to a gpu hang, give the reset code a
1150 * chance to clean up the mess. Otherwise return the proper
1151 * SIGBUS. */
1152 if (!atomic_read(&dev_priv->mm.wedged))
1153 return VM_FAULT_SIGBUS;
045e769a 1154 case -EAGAIN:
d9bc7e9f
CW
1155 /* Give the error handler a chance to run and move the
1156 * objects off the GPU active list. Next time we service the
1157 * fault, we should be able to transition the page into the
1158 * GTT without touching the GPU (and so avoid further
1159 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1160 * with coherency, just lost writes.
1161 */
045e769a 1162 set_need_resched();
c715089f
CW
1163 case 0:
1164 case -ERESTARTSYS:
bed636ab 1165 case -EINTR:
c715089f 1166 return VM_FAULT_NOPAGE;
de151cf6 1167 case -ENOMEM:
de151cf6 1168 return VM_FAULT_OOM;
de151cf6 1169 default:
c715089f 1170 return VM_FAULT_SIGBUS;
de151cf6
JB
1171 }
1172}
1173
901782b2
CW
1174/**
1175 * i915_gem_release_mmap - remove physical page mappings
1176 * @obj: obj in question
1177 *
af901ca1 1178 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1179 * relinquish ownership of the pages back to the system.
1180 *
1181 * It is vital that we remove the page mapping if we have mapped a tiled
1182 * object through the GTT and then lose the fence register due to
1183 * resource pressure. Similarly if the object has been moved out of the
1184 * aperture, than pages mapped into userspace must be revoked. Removing the
1185 * mapping will then trigger a page fault on the next user access, allowing
1186 * fixup by i915_gem_fault().
1187 */
d05ca301 1188void
05394f39 1189i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1190{
6299f992
CW
1191 if (!obj->fault_mappable)
1192 return;
901782b2 1193
f6e47884
CW
1194 if (obj->base.dev->dev_mapping)
1195 unmap_mapping_range(obj->base.dev->dev_mapping,
1196 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1197 obj->base.size, 1);
fb7d516a 1198
6299f992 1199 obj->fault_mappable = false;
901782b2
CW
1200}
1201
92b88aeb 1202static uint32_t
e28f8711 1203i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1204{
e28f8711 1205 uint32_t gtt_size;
92b88aeb
CW
1206
1207 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1208 tiling_mode == I915_TILING_NONE)
1209 return size;
92b88aeb
CW
1210
1211 /* Previous chips need a power-of-two fence region when tiling */
1212 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1213 gtt_size = 1024*1024;
92b88aeb 1214 else
e28f8711 1215 gtt_size = 512*1024;
92b88aeb 1216
e28f8711
CW
1217 while (gtt_size < size)
1218 gtt_size <<= 1;
92b88aeb 1219
e28f8711 1220 return gtt_size;
92b88aeb
CW
1221}
1222
de151cf6
JB
1223/**
1224 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1225 * @obj: object to check
1226 *
1227 * Return the required GTT alignment for an object, taking into account
5e783301 1228 * potential fence register mapping.
de151cf6
JB
1229 */
1230static uint32_t
e28f8711
CW
1231i915_gem_get_gtt_alignment(struct drm_device *dev,
1232 uint32_t size,
1233 int tiling_mode)
de151cf6 1234{
de151cf6
JB
1235 /*
1236 * Minimum alignment is 4k (GTT page size), but might be greater
1237 * if a fence register is needed for the object.
1238 */
a00b10c3 1239 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1240 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1241 return 4096;
1242
a00b10c3
CW
1243 /*
1244 * Previous chips need to be aligned to the size of the smallest
1245 * fence register that can contain the object.
1246 */
e28f8711 1247 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1248}
1249
5e783301
DV
1250/**
1251 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1252 * unfenced object
e28f8711
CW
1253 * @dev: the device
1254 * @size: size of the object
1255 * @tiling_mode: tiling mode of the object
5e783301
DV
1256 *
1257 * Return the required GTT alignment for an object, only taking into account
1258 * unfenced tiled surface requirements.
1259 */
467cffba 1260uint32_t
e28f8711
CW
1261i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1262 uint32_t size,
1263 int tiling_mode)
5e783301 1264{
5e783301
DV
1265 /*
1266 * Minimum alignment is 4k (GTT page size) for sane hw.
1267 */
1268 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1269 tiling_mode == I915_TILING_NONE)
5e783301
DV
1270 return 4096;
1271
e28f8711
CW
1272 /* Previous hardware however needs to be aligned to a power-of-two
1273 * tile height. The simplest method for determining this is to reuse
1274 * the power-of-tile object size.
5e783301 1275 */
e28f8711 1276 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1277}
1278
de151cf6 1279int
ff72145b
DA
1280i915_gem_mmap_gtt(struct drm_file *file,
1281 struct drm_device *dev,
1282 uint32_t handle,
1283 uint64_t *offset)
de151cf6 1284{
da761a6e 1285 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1286 struct drm_i915_gem_object *obj;
de151cf6
JB
1287 int ret;
1288
76c1dec1 1289 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1290 if (ret)
76c1dec1 1291 return ret;
de151cf6 1292
ff72145b 1293 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1294 if (&obj->base == NULL) {
1d7cfea1
CW
1295 ret = -ENOENT;
1296 goto unlock;
1297 }
de151cf6 1298
05394f39 1299 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1300 ret = -E2BIG;
ff56b0bc 1301 goto out;
da761a6e
CW
1302 }
1303
05394f39 1304 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1305 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1306 ret = -EINVAL;
1307 goto out;
ab18282d
CW
1308 }
1309
05394f39 1310 if (!obj->base.map_list.map) {
b464e9a2 1311 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1312 if (ret)
1313 goto out;
de151cf6
JB
1314 }
1315
ff72145b 1316 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1317
1d7cfea1 1318out:
05394f39 1319 drm_gem_object_unreference(&obj->base);
1d7cfea1 1320unlock:
de151cf6 1321 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1322 return ret;
de151cf6
JB
1323}
1324
ff72145b
DA
1325/**
1326 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1327 * @dev: DRM device
1328 * @data: GTT mapping ioctl data
1329 * @file: GEM object info
1330 *
1331 * Simply returns the fake offset to userspace so it can mmap it.
1332 * The mmap call will end up in drm_gem_mmap(), which will set things
1333 * up so we can get faults in the handler above.
1334 *
1335 * The fault handler will take care of binding the object into the GTT
1336 * (since it may have been evicted to make room for something), allocating
1337 * a fence register, and mapping the appropriate aperture address into
1338 * userspace.
1339 */
1340int
1341i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1342 struct drm_file *file)
1343{
1344 struct drm_i915_gem_mmap_gtt *args = data;
1345
ff72145b
DA
1346 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1347}
1348
225067ee
DV
1349/* Immediately discard the backing storage */
1350static void
1351i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1352{
1353 struct inode *inode;
1354
1355 /* Our goal here is to return as much of the memory as
1356 * is possible back to the system as we are called from OOM.
1357 * To do this we must instruct the shmfs to drop all of its
1358 * backing pages, *now*.
1359 */
1360 inode = obj->base.filp->f_path.dentry->d_inode;
1361 shmem_truncate_range(inode, 0, (loff_t)-1);
1362
1363 if (obj->base.map_list.map)
1364 drm_gem_free_mmap_offset(&obj->base);
1365
1366 obj->madv = __I915_MADV_PURGED;
1367}
1368
1369static inline int
1370i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1371{
1372 return obj->madv == I915_MADV_DONTNEED;
1373}
1374
6c085a72 1375static int
225067ee
DV
1376i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1377{
1378 int page_count = obj->base.size / PAGE_SIZE;
6c085a72 1379 int ret, i;
225067ee 1380
c4670ad0
CW
1381 BUG_ON(obj->gtt_space);
1382
6c085a72
CW
1383 if (obj->pages == NULL)
1384 return 0;
225067ee 1385
6c085a72 1386 BUG_ON(obj->gtt_space);
225067ee
DV
1387 BUG_ON(obj->madv == __I915_MADV_PURGED);
1388
6c085a72
CW
1389 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1390 if (ret) {
1391 /* In the event of a disaster, abandon all caches and
1392 * hope for the best.
1393 */
1394 WARN_ON(ret != -EIO);
1395 i915_gem_clflush_object(obj);
1396 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1397 }
1398
225067ee
DV
1399 if (i915_gem_object_needs_bit17_swizzle(obj))
1400 i915_gem_object_save_bit_17_swizzle(obj);
1401
1402 if (obj->madv == I915_MADV_DONTNEED)
1403 obj->dirty = 0;
1404
1405 for (i = 0; i < page_count; i++) {
1406 if (obj->dirty)
1407 set_page_dirty(obj->pages[i]);
1408
1409 if (obj->madv == I915_MADV_WILLNEED)
1410 mark_page_accessed(obj->pages[i]);
1411
1412 page_cache_release(obj->pages[i]);
1413 }
1414 obj->dirty = 0;
1415
1416 drm_free_large(obj->pages);
1417 obj->pages = NULL;
6c085a72
CW
1418
1419 list_del(&obj->gtt_list);
1420
1421 if (i915_gem_object_is_purgeable(obj))
1422 i915_gem_object_truncate(obj);
1423
1424 return 0;
1425}
1426
1427static long
1428i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1429{
1430 struct drm_i915_gem_object *obj, *next;
1431 long count = 0;
1432
1433 list_for_each_entry_safe(obj, next,
1434 &dev_priv->mm.unbound_list,
1435 gtt_list) {
1436 if (i915_gem_object_is_purgeable(obj) &&
1437 i915_gem_object_put_pages_gtt(obj) == 0) {
1438 count += obj->base.size >> PAGE_SHIFT;
1439 if (count >= target)
1440 return count;
1441 }
1442 }
1443
1444 list_for_each_entry_safe(obj, next,
1445 &dev_priv->mm.inactive_list,
1446 mm_list) {
1447 if (i915_gem_object_is_purgeable(obj) &&
1448 i915_gem_object_unbind(obj) == 0 &&
1449 i915_gem_object_put_pages_gtt(obj) == 0) {
1450 count += obj->base.size >> PAGE_SHIFT;
1451 if (count >= target)
1452 return count;
1453 }
1454 }
1455
1456 return count;
1457}
1458
1459static void
1460i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1461{
1462 struct drm_i915_gem_object *obj, *next;
1463
1464 i915_gem_evict_everything(dev_priv->dev);
1465
1466 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1467 i915_gem_object_put_pages_gtt(obj);
225067ee
DV
1468}
1469
1286ff73 1470int
6c085a72 1471i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1472{
6c085a72 1473 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1474 int page_count, i;
1475 struct address_space *mapping;
e5281ccd 1476 struct page *page;
6c085a72 1477 gfp_t gfp;
e5281ccd 1478
1286ff73
DV
1479 if (obj->pages || obj->sg_table)
1480 return 0;
1481
6c085a72
CW
1482 /* Assert that the object is not currently in any GPU domain. As it
1483 * wasn't in the GTT, there shouldn't be any way it could have been in
1484 * a GPU cache
1485 */
1486 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1487 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1488
e5281ccd
CW
1489 /* Get the list of pages out of our struct file. They'll be pinned
1490 * at this point until we release them.
1491 */
05394f39 1492 page_count = obj->base.size / PAGE_SIZE;
05394f39
CW
1493 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1494 if (obj->pages == NULL)
e5281ccd
CW
1495 return -ENOMEM;
1496
6c085a72
CW
1497 /* Fail silently without starting the shrinker */
1498 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1499 gfp = mapping_gfp_mask(mapping);
1500 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1501 gfp &= ~(__GFP_IO | __GFP_WAIT);
e5281ccd 1502 for (i = 0; i < page_count; i++) {
6c085a72
CW
1503 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1504 if (IS_ERR(page)) {
1505 i915_gem_purge(dev_priv, page_count);
1506 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1507 }
1508 if (IS_ERR(page)) {
1509 /* We've tried hard to allocate the memory by reaping
1510 * our own buffer, now let the real VM do its job and
1511 * go down in flames if truly OOM.
1512 */
1513 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1514 gfp |= __GFP_IO | __GFP_WAIT;
1515
1516 i915_gem_shrink_all(dev_priv);
1517 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1518 if (IS_ERR(page))
1519 goto err_pages;
1520
1521 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1522 gfp &= ~(__GFP_IO | __GFP_WAIT);
1523 }
e5281ccd 1524
05394f39 1525 obj->pages[i] = page;
e5281ccd
CW
1526 }
1527
6dacfd2f 1528 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1529 i915_gem_object_do_bit_17_swizzle(obj);
1530
6c085a72 1531 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
e5281ccd
CW
1532 return 0;
1533
1534err_pages:
1535 while (i--)
05394f39 1536 page_cache_release(obj->pages[i]);
e5281ccd 1537
05394f39
CW
1538 drm_free_large(obj->pages);
1539 obj->pages = NULL;
e5281ccd
CW
1540 return PTR_ERR(page);
1541}
1542
54cf91dc 1543void
05394f39 1544i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1545 struct intel_ring_buffer *ring,
1546 u32 seqno)
673a394b 1547{
05394f39 1548 struct drm_device *dev = obj->base.dev;
69dc4987 1549 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1550
852835f3 1551 BUG_ON(ring == NULL);
05394f39 1552 obj->ring = ring;
673a394b
EA
1553
1554 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1555 if (!obj->active) {
1556 drm_gem_object_reference(&obj->base);
1557 obj->active = 1;
673a394b 1558 }
e35a41de 1559
673a394b 1560 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1561 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1562 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1563
0201f1ec 1564 obj->last_read_seqno = seqno;
caea7476 1565
7dd49065 1566 if (obj->fenced_gpu_access) {
caea7476 1567 obj->last_fenced_seqno = seqno;
caea7476 1568
7dd49065
CW
1569 /* Bump MRU to take account of the delayed flush */
1570 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1571 struct drm_i915_fence_reg *reg;
1572
1573 reg = &dev_priv->fence_regs[obj->fence_reg];
1574 list_move_tail(&reg->lru_list,
1575 &dev_priv->mm.fence_list);
1576 }
caea7476
CW
1577 }
1578}
1579
caea7476
CW
1580static void
1581i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1582{
1583 struct drm_device *dev = obj->base.dev;
1584 struct drm_i915_private *dev_priv = dev->dev_private;
1585
65ce3027 1586 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
caea7476 1587 BUG_ON(!obj->active);
65ce3027 1588
f047e395
CW
1589 if (obj->pin_count) /* are we a framebuffer? */
1590 intel_mark_fb_idle(obj);
1591
1592 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1593
65ce3027 1594 list_del_init(&obj->ring_list);
caea7476
CW
1595 obj->ring = NULL;
1596
65ce3027
CW
1597 obj->last_read_seqno = 0;
1598 obj->last_write_seqno = 0;
1599 obj->base.write_domain = 0;
1600
1601 obj->last_fenced_seqno = 0;
caea7476 1602 obj->fenced_gpu_access = false;
caea7476
CW
1603
1604 obj->active = 0;
1605 drm_gem_object_unreference(&obj->base);
1606
1607 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1608}
673a394b 1609
53d227f2
DV
1610static u32
1611i915_gem_get_seqno(struct drm_device *dev)
1612{
1613 drm_i915_private_t *dev_priv = dev->dev_private;
1614 u32 seqno = dev_priv->next_seqno;
1615
1616 /* reserve 0 for non-seqno */
1617 if (++dev_priv->next_seqno == 0)
1618 dev_priv->next_seqno = 1;
1619
1620 return seqno;
1621}
1622
1623u32
1624i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1625{
1626 if (ring->outstanding_lazy_request == 0)
1627 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1628
1629 return ring->outstanding_lazy_request;
1630}
1631
3cce469c 1632int
db53a302 1633i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1634 struct drm_file *file,
db53a302 1635 struct drm_i915_gem_request *request)
673a394b 1636{
db53a302 1637 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1638 uint32_t seqno;
a71d8d94 1639 u32 request_ring_position;
673a394b 1640 int was_empty;
3cce469c
CW
1641 int ret;
1642
cc889e0f
DV
1643 /*
1644 * Emit any outstanding flushes - execbuf can fail to emit the flush
1645 * after having emitted the batchbuffer command. Hence we need to fix
1646 * things up similar to emitting the lazy request. The difference here
1647 * is that the flush _must_ happen before the next request, no matter
1648 * what.
1649 */
a7b9761d
CW
1650 ret = intel_ring_flush_all_caches(ring);
1651 if (ret)
1652 return ret;
cc889e0f 1653
3bb73aba
CW
1654 if (request == NULL) {
1655 request = kmalloc(sizeof(*request), GFP_KERNEL);
1656 if (request == NULL)
1657 return -ENOMEM;
1658 }
1659
53d227f2 1660 seqno = i915_gem_next_request_seqno(ring);
673a394b 1661
a71d8d94
CW
1662 /* Record the position of the start of the request so that
1663 * should we detect the updated seqno part-way through the
1664 * GPU processing the request, we never over-estimate the
1665 * position of the head.
1666 */
1667 request_ring_position = intel_ring_get_tail(ring);
1668
3cce469c 1669 ret = ring->add_request(ring, &seqno);
3bb73aba
CW
1670 if (ret) {
1671 kfree(request);
1672 return ret;
1673 }
673a394b 1674
db53a302 1675 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1676
1677 request->seqno = seqno;
852835f3 1678 request->ring = ring;
a71d8d94 1679 request->tail = request_ring_position;
673a394b 1680 request->emitted_jiffies = jiffies;
852835f3
ZN
1681 was_empty = list_empty(&ring->request_list);
1682 list_add_tail(&request->list, &ring->request_list);
3bb73aba 1683 request->file_priv = NULL;
852835f3 1684
db53a302
CW
1685 if (file) {
1686 struct drm_i915_file_private *file_priv = file->driver_priv;
1687
1c25595f 1688 spin_lock(&file_priv->mm.lock);
f787a5f5 1689 request->file_priv = file_priv;
b962442e 1690 list_add_tail(&request->client_list,
f787a5f5 1691 &file_priv->mm.request_list);
1c25595f 1692 spin_unlock(&file_priv->mm.lock);
b962442e 1693 }
673a394b 1694
5391d0cf 1695 ring->outstanding_lazy_request = 0;
db53a302 1696
f65d9421 1697 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1698 if (i915_enable_hangcheck) {
1699 mod_timer(&dev_priv->hangcheck_timer,
1700 jiffies +
1701 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1702 }
f047e395 1703 if (was_empty) {
b3b079db
CW
1704 queue_delayed_work(dev_priv->wq,
1705 &dev_priv->mm.retire_work, HZ);
f047e395
CW
1706 intel_mark_busy(dev_priv->dev);
1707 }
f65d9421 1708 }
cc889e0f 1709
3cce469c 1710 return 0;
673a394b
EA
1711}
1712
f787a5f5
CW
1713static inline void
1714i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1715{
1c25595f 1716 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1717
1c25595f
CW
1718 if (!file_priv)
1719 return;
1c5d22f7 1720
1c25595f 1721 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1722 if (request->file_priv) {
1723 list_del(&request->client_list);
1724 request->file_priv = NULL;
1725 }
1c25595f 1726 spin_unlock(&file_priv->mm.lock);
673a394b 1727}
673a394b 1728
dfaae392
CW
1729static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1730 struct intel_ring_buffer *ring)
9375e446 1731{
dfaae392
CW
1732 while (!list_empty(&ring->request_list)) {
1733 struct drm_i915_gem_request *request;
673a394b 1734
dfaae392
CW
1735 request = list_first_entry(&ring->request_list,
1736 struct drm_i915_gem_request,
1737 list);
de151cf6 1738
dfaae392 1739 list_del(&request->list);
f787a5f5 1740 i915_gem_request_remove_from_client(request);
dfaae392
CW
1741 kfree(request);
1742 }
673a394b 1743
dfaae392 1744 while (!list_empty(&ring->active_list)) {
05394f39 1745 struct drm_i915_gem_object *obj;
9375e446 1746
05394f39
CW
1747 obj = list_first_entry(&ring->active_list,
1748 struct drm_i915_gem_object,
1749 ring_list);
9375e446 1750
05394f39 1751 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1752 }
1753}
1754
312817a3
CW
1755static void i915_gem_reset_fences(struct drm_device *dev)
1756{
1757 struct drm_i915_private *dev_priv = dev->dev_private;
1758 int i;
1759
4b9de737 1760 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1761 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 1762
ada726c7 1763 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 1764
ada726c7
CW
1765 if (reg->obj)
1766 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 1767
ada726c7
CW
1768 reg->pin_count = 0;
1769 reg->obj = NULL;
1770 INIT_LIST_HEAD(&reg->lru_list);
312817a3 1771 }
ada726c7
CW
1772
1773 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
1774}
1775
069efc1d 1776void i915_gem_reset(struct drm_device *dev)
673a394b 1777{
77f01230 1778 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1779 struct drm_i915_gem_object *obj;
b4519513 1780 struct intel_ring_buffer *ring;
1ec14ad3 1781 int i;
673a394b 1782
b4519513
CW
1783 for_each_ring(ring, dev_priv, i)
1784 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 1785
dfaae392
CW
1786 /* Move everything out of the GPU domains to ensure we do any
1787 * necessary invalidation upon reuse.
1788 */
05394f39 1789 list_for_each_entry(obj,
77f01230 1790 &dev_priv->mm.inactive_list,
69dc4987 1791 mm_list)
77f01230 1792 {
05394f39 1793 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1794 }
069efc1d 1795
6c085a72 1796
069efc1d 1797 /* The fence registers are invalidated so clear them out */
312817a3 1798 i915_gem_reset_fences(dev);
673a394b
EA
1799}
1800
1801/**
1802 * This function clears the request list as sequence numbers are passed.
1803 */
a71d8d94 1804void
db53a302 1805i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1806{
673a394b 1807 uint32_t seqno;
1ec14ad3 1808 int i;
673a394b 1809
db53a302 1810 if (list_empty(&ring->request_list))
6c0594a3
KW
1811 return;
1812
db53a302 1813 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1814
b2eadbc8 1815 seqno = ring->get_seqno(ring, true);
1ec14ad3 1816
076e2c0e 1817 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1818 if (seqno >= ring->sync_seqno[i])
1819 ring->sync_seqno[i] = 0;
1820
852835f3 1821 while (!list_empty(&ring->request_list)) {
673a394b 1822 struct drm_i915_gem_request *request;
673a394b 1823
852835f3 1824 request = list_first_entry(&ring->request_list,
673a394b
EA
1825 struct drm_i915_gem_request,
1826 list);
673a394b 1827
dfaae392 1828 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1829 break;
1830
db53a302 1831 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1832 /* We know the GPU must have read the request to have
1833 * sent us the seqno + interrupt, so use the position
1834 * of tail of the request to update the last known position
1835 * of the GPU head.
1836 */
1837 ring->last_retired_head = request->tail;
b84d5f0c
CW
1838
1839 list_del(&request->list);
f787a5f5 1840 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1841 kfree(request);
1842 }
673a394b 1843
b84d5f0c
CW
1844 /* Move any buffers on the active list that are no longer referenced
1845 * by the ringbuffer to the flushing/inactive lists as appropriate.
1846 */
1847 while (!list_empty(&ring->active_list)) {
05394f39 1848 struct drm_i915_gem_object *obj;
b84d5f0c 1849
0206e353 1850 obj = list_first_entry(&ring->active_list,
05394f39
CW
1851 struct drm_i915_gem_object,
1852 ring_list);
673a394b 1853
0201f1ec 1854 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 1855 break;
b84d5f0c 1856
65ce3027 1857 i915_gem_object_move_to_inactive(obj);
673a394b 1858 }
9d34e5db 1859
db53a302
CW
1860 if (unlikely(ring->trace_irq_seqno &&
1861 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1862 ring->irq_put(ring);
db53a302 1863 ring->trace_irq_seqno = 0;
9d34e5db 1864 }
23bc5982 1865
db53a302 1866 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1867}
1868
b09a1fec
CW
1869void
1870i915_gem_retire_requests(struct drm_device *dev)
1871{
1872 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 1873 struct intel_ring_buffer *ring;
1ec14ad3 1874 int i;
b09a1fec 1875
b4519513
CW
1876 for_each_ring(ring, dev_priv, i)
1877 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
1878}
1879
75ef9da2 1880static void
673a394b
EA
1881i915_gem_retire_work_handler(struct work_struct *work)
1882{
1883 drm_i915_private_t *dev_priv;
1884 struct drm_device *dev;
b4519513 1885 struct intel_ring_buffer *ring;
0a58705b
CW
1886 bool idle;
1887 int i;
673a394b
EA
1888
1889 dev_priv = container_of(work, drm_i915_private_t,
1890 mm.retire_work.work);
1891 dev = dev_priv->dev;
1892
891b48cf
CW
1893 /* Come back later if the device is busy... */
1894 if (!mutex_trylock(&dev->struct_mutex)) {
1895 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1896 return;
1897 }
1898
b09a1fec 1899 i915_gem_retire_requests(dev);
d1b851fc 1900
0a58705b
CW
1901 /* Send a periodic flush down the ring so we don't hold onto GEM
1902 * objects indefinitely.
1903 */
1904 idle = true;
b4519513 1905 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
1906 if (ring->gpu_caches_dirty)
1907 i915_add_request(ring, NULL, NULL);
0a58705b
CW
1908
1909 idle &= list_empty(&ring->request_list);
1910 }
1911
1912 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1913 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
f047e395
CW
1914 if (idle)
1915 intel_mark_idle(dev);
0a58705b 1916
673a394b
EA
1917 mutex_unlock(&dev->struct_mutex);
1918}
1919
d6b2c790
DV
1920int
1921i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1922 bool interruptible)
b4aca010 1923{
b4aca010
BW
1924 if (atomic_read(&dev_priv->mm.wedged)) {
1925 struct completion *x = &dev_priv->error_completion;
1926 bool recovery_complete;
1927 unsigned long flags;
1928
1929 /* Give the error handler a chance to run. */
1930 spin_lock_irqsave(&x->wait.lock, flags);
1931 recovery_complete = x->done > 0;
1932 spin_unlock_irqrestore(&x->wait.lock, flags);
1933
d6b2c790
DV
1934 /* Non-interruptible callers can't handle -EAGAIN, hence return
1935 * -EIO unconditionally for these. */
1936 if (!interruptible)
1937 return -EIO;
1938
1939 /* Recovery complete, but still wedged means reset failure. */
1940 if (recovery_complete)
1941 return -EIO;
1942
1943 return -EAGAIN;
b4aca010
BW
1944 }
1945
1946 return 0;
1947}
1948
1949/*
1950 * Compare seqno against outstanding lazy request. Emit a request if they are
1951 * equal.
1952 */
1953static int
1954i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1955{
3bb73aba 1956 int ret;
b4aca010
BW
1957
1958 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1959
3bb73aba
CW
1960 ret = 0;
1961 if (seqno == ring->outstanding_lazy_request)
1962 ret = i915_add_request(ring, NULL, NULL);
b4aca010
BW
1963
1964 return ret;
1965}
1966
5c81fe85
BW
1967/**
1968 * __wait_seqno - wait until execution of seqno has finished
1969 * @ring: the ring expected to report seqno
1970 * @seqno: duh!
1971 * @interruptible: do an interruptible wait (normally yes)
1972 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1973 *
1974 * Returns 0 if the seqno was found within the alloted time. Else returns the
1975 * errno with remaining time filled in timeout argument.
1976 */
604dd3ec 1977static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
5c81fe85 1978 bool interruptible, struct timespec *timeout)
604dd3ec
BW
1979{
1980 drm_i915_private_t *dev_priv = ring->dev->dev_private;
5c81fe85
BW
1981 struct timespec before, now, wait_time={1,0};
1982 unsigned long timeout_jiffies;
1983 long end;
1984 bool wait_forever = true;
d6b2c790 1985 int ret;
604dd3ec 1986
b2eadbc8 1987 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
604dd3ec
BW
1988 return 0;
1989
1990 trace_i915_gem_request_wait_begin(ring, seqno);
5c81fe85
BW
1991
1992 if (timeout != NULL) {
1993 wait_time = *timeout;
1994 wait_forever = false;
1995 }
1996
1997 timeout_jiffies = timespec_to_jiffies(&wait_time);
1998
604dd3ec
BW
1999 if (WARN_ON(!ring->irq_get(ring)))
2000 return -ENODEV;
2001
5c81fe85
BW
2002 /* Record current time in case interrupted by signal, or wedged * */
2003 getrawmonotonic(&before);
2004
604dd3ec 2005#define EXIT_COND \
b2eadbc8 2006 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
604dd3ec 2007 atomic_read(&dev_priv->mm.wedged))
5c81fe85
BW
2008 do {
2009 if (interruptible)
2010 end = wait_event_interruptible_timeout(ring->irq_queue,
2011 EXIT_COND,
2012 timeout_jiffies);
2013 else
2014 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
2015 timeout_jiffies);
604dd3ec 2016
d6b2c790
DV
2017 ret = i915_gem_check_wedge(dev_priv, interruptible);
2018 if (ret)
2019 end = ret;
5c81fe85
BW
2020 } while (end == 0 && wait_forever);
2021
2022 getrawmonotonic(&now);
604dd3ec
BW
2023
2024 ring->irq_put(ring);
2025 trace_i915_gem_request_wait_end(ring, seqno);
2026#undef EXIT_COND
2027
5c81fe85
BW
2028 if (timeout) {
2029 struct timespec sleep_time = timespec_sub(now, before);
2030 *timeout = timespec_sub(*timeout, sleep_time);
2031 }
2032
2033 switch (end) {
eeef9b38 2034 case -EIO:
5c81fe85
BW
2035 case -EAGAIN: /* Wedged */
2036 case -ERESTARTSYS: /* Signal */
2037 return (int)end;
2038 case 0: /* Timeout */
2039 if (timeout)
2040 set_normalized_timespec(timeout, 0, 0);
2041 return -ETIME;
2042 default: /* Completed */
2043 WARN_ON(end < 0); /* We're not aware of other errors */
2044 return 0;
2045 }
604dd3ec
BW
2046}
2047
db53a302
CW
2048/**
2049 * Waits for a sequence number to be signaled, and cleans up the
2050 * request and object lists appropriately for that event.
2051 */
5a5a0c64 2052int
199b2bc2 2053i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
673a394b 2054{
db53a302 2055 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
2056 int ret = 0;
2057
2058 BUG_ON(seqno == 0);
2059
d6b2c790 2060 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
b4aca010
BW
2061 if (ret)
2062 return ret;
3cce469c 2063
b4aca010
BW
2064 ret = i915_gem_check_olr(ring, seqno);
2065 if (ret)
2066 return ret;
ffed1d09 2067
5c81fe85 2068 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
673a394b 2069
673a394b
EA
2070 return ret;
2071}
2072
673a394b
EA
2073/**
2074 * Ensures that all rendering to the object has completed and the object is
2075 * safe to unbind from the GTT or access from the CPU.
2076 */
0201f1ec
CW
2077static __must_check int
2078i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2079 bool readonly)
673a394b 2080{
0201f1ec 2081 u32 seqno;
673a394b
EA
2082 int ret;
2083
673a394b
EA
2084 /* If there is rendering queued on the buffer being evicted, wait for
2085 * it.
2086 */
0201f1ec
CW
2087 if (readonly)
2088 seqno = obj->last_write_seqno;
2089 else
2090 seqno = obj->last_read_seqno;
2091 if (seqno == 0)
2092 return 0;
2093
2094 ret = i915_wait_seqno(obj->ring, seqno);
2095 if (ret)
2096 return ret;
2097
2098 /* Manually manage the write flush as we may have not yet retired
2099 * the buffer.
2100 */
2101 if (obj->last_write_seqno &&
2102 i915_seqno_passed(seqno, obj->last_write_seqno)) {
2103 obj->last_write_seqno = 0;
2104 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
673a394b
EA
2105 }
2106
0201f1ec 2107 i915_gem_retire_requests_ring(obj->ring);
673a394b
EA
2108 return 0;
2109}
2110
30dfebf3
DV
2111/**
2112 * Ensures that an object will eventually get non-busy by flushing any required
2113 * write domains, emitting any outstanding lazy request and retiring and
2114 * completed requests.
2115 */
2116static int
2117i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2118{
2119 int ret;
2120
2121 if (obj->active) {
0201f1ec 2122 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2123 if (ret)
2124 return ret;
0201f1ec 2125
30dfebf3
DV
2126 i915_gem_retire_requests_ring(obj->ring);
2127 }
2128
2129 return 0;
2130}
2131
23ba4fd0
BW
2132/**
2133 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2134 * @DRM_IOCTL_ARGS: standard ioctl arguments
2135 *
2136 * Returns 0 if successful, else an error is returned with the remaining time in
2137 * the timeout parameter.
2138 * -ETIME: object is still busy after timeout
2139 * -ERESTARTSYS: signal interrupted the wait
2140 * -ENONENT: object doesn't exist
2141 * Also possible, but rare:
2142 * -EAGAIN: GPU wedged
2143 * -ENOMEM: damn
2144 * -ENODEV: Internal IRQ fail
2145 * -E?: The add request failed
2146 *
2147 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2148 * non-zero timeout parameter the wait ioctl will wait for the given number of
2149 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2150 * without holding struct_mutex the object may become re-busied before this
2151 * function completes. A similar but shorter * race condition exists in the busy
2152 * ioctl
2153 */
2154int
2155i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2156{
2157 struct drm_i915_gem_wait *args = data;
2158 struct drm_i915_gem_object *obj;
2159 struct intel_ring_buffer *ring = NULL;
eac1f14f 2160 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2161 u32 seqno = 0;
2162 int ret = 0;
2163
eac1f14f
BW
2164 if (args->timeout_ns >= 0) {
2165 timeout_stack = ns_to_timespec(args->timeout_ns);
2166 timeout = &timeout_stack;
2167 }
23ba4fd0
BW
2168
2169 ret = i915_mutex_lock_interruptible(dev);
2170 if (ret)
2171 return ret;
2172
2173 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2174 if (&obj->base == NULL) {
2175 mutex_unlock(&dev->struct_mutex);
2176 return -ENOENT;
2177 }
2178
30dfebf3
DV
2179 /* Need to make sure the object gets inactive eventually. */
2180 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2181 if (ret)
2182 goto out;
2183
2184 if (obj->active) {
0201f1ec 2185 seqno = obj->last_read_seqno;
23ba4fd0
BW
2186 ring = obj->ring;
2187 }
2188
2189 if (seqno == 0)
2190 goto out;
2191
23ba4fd0
BW
2192 /* Do this after OLR check to make sure we make forward progress polling
2193 * on this IOCTL with a 0 timeout (like busy ioctl)
2194 */
2195 if (!args->timeout_ns) {
2196 ret = -ETIME;
2197 goto out;
2198 }
2199
2200 drm_gem_object_unreference(&obj->base);
2201 mutex_unlock(&dev->struct_mutex);
2202
eac1f14f
BW
2203 ret = __wait_seqno(ring, seqno, true, timeout);
2204 if (timeout) {
2205 WARN_ON(!timespec_valid(timeout));
2206 args->timeout_ns = timespec_to_ns(timeout);
2207 }
23ba4fd0
BW
2208 return ret;
2209
2210out:
2211 drm_gem_object_unreference(&obj->base);
2212 mutex_unlock(&dev->struct_mutex);
2213 return ret;
2214}
2215
5816d648
BW
2216/**
2217 * i915_gem_object_sync - sync an object to a ring.
2218 *
2219 * @obj: object which may be in use on another ring.
2220 * @to: ring we wish to use the object on. May be NULL.
2221 *
2222 * This code is meant to abstract object synchronization with the GPU.
2223 * Calling with NULL implies synchronizing the object with the CPU
2224 * rather than a particular GPU ring.
2225 *
2226 * Returns 0 if successful, else propagates up the lower layer error.
2227 */
2911a35b
BW
2228int
2229i915_gem_object_sync(struct drm_i915_gem_object *obj,
2230 struct intel_ring_buffer *to)
2231{
2232 struct intel_ring_buffer *from = obj->ring;
2233 u32 seqno;
2234 int ret, idx;
2235
2236 if (from == NULL || to == from)
2237 return 0;
2238
5816d648 2239 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2240 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2241
2242 idx = intel_ring_sync_index(from, to);
2243
0201f1ec 2244 seqno = obj->last_read_seqno;
2911a35b
BW
2245 if (seqno <= from->sync_seqno[idx])
2246 return 0;
2247
b4aca010
BW
2248 ret = i915_gem_check_olr(obj->ring, seqno);
2249 if (ret)
2250 return ret;
2911a35b 2251
1500f7ea 2252 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2253 if (!ret)
2254 from->sync_seqno[idx] = seqno;
2911a35b 2255
e3a5a225 2256 return ret;
2911a35b
BW
2257}
2258
b5ffc9bc
CW
2259static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2260{
2261 u32 old_write_domain, old_read_domains;
2262
b5ffc9bc
CW
2263 /* Act a barrier for all accesses through the GTT */
2264 mb();
2265
2266 /* Force a pagefault for domain tracking on next user access */
2267 i915_gem_release_mmap(obj);
2268
b97c3d9c
KP
2269 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2270 return;
2271
b5ffc9bc
CW
2272 old_read_domains = obj->base.read_domains;
2273 old_write_domain = obj->base.write_domain;
2274
2275 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2276 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2277
2278 trace_i915_gem_object_change_domain(obj,
2279 old_read_domains,
2280 old_write_domain);
2281}
2282
673a394b
EA
2283/**
2284 * Unbinds an object from the GTT aperture.
2285 */
0f973f27 2286int
05394f39 2287i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2288{
7bddb01f 2289 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2290 int ret = 0;
2291
05394f39 2292 if (obj->gtt_space == NULL)
673a394b
EA
2293 return 0;
2294
31d8d651
CW
2295 if (obj->pin_count)
2296 return -EBUSY;
673a394b 2297
c4670ad0
CW
2298 BUG_ON(obj->pages == NULL);
2299
a8198eea 2300 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2301 if (ret)
a8198eea
CW
2302 return ret;
2303 /* Continue on if we fail due to EIO, the GPU is hung so we
2304 * should be safe and we need to cleanup or else we might
2305 * cause memory corruption through use-after-free.
2306 */
2307
b5ffc9bc 2308 i915_gem_object_finish_gtt(obj);
5323fd04 2309
96b47b65 2310 /* release the fence reg _after_ flushing */
d9e86c0e 2311 ret = i915_gem_object_put_fence(obj);
1488fc08 2312 if (ret)
d9e86c0e 2313 return ret;
96b47b65 2314
db53a302
CW
2315 trace_i915_gem_object_unbind(obj);
2316
74898d7e
DV
2317 if (obj->has_global_gtt_mapping)
2318 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2319 if (obj->has_aliasing_ppgtt_mapping) {
2320 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2321 obj->has_aliasing_ppgtt_mapping = 0;
2322 }
74163907 2323 i915_gem_gtt_finish_object(obj);
7bddb01f 2324
6c085a72
CW
2325 list_del(&obj->mm_list);
2326 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2327 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2328 obj->map_and_fenceable = true;
673a394b 2329
05394f39
CW
2330 drm_mm_put_block(obj->gtt_space);
2331 obj->gtt_space = NULL;
2332 obj->gtt_offset = 0;
673a394b 2333
6c085a72 2334 return 0;
673a394b
EA
2335}
2336
b2da9fe5 2337static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2338{
69c2fc89 2339 if (list_empty(&ring->active_list))
64193406
CW
2340 return 0;
2341
199b2bc2 2342 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2343}
2344
b2da9fe5 2345int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2346{
2347 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2348 struct intel_ring_buffer *ring;
1ec14ad3 2349 int ret, i;
4df2faf4 2350
4df2faf4 2351 /* Flush everything onto the inactive list. */
b4519513
CW
2352 for_each_ring(ring, dev_priv, i) {
2353 ret = i915_ring_idle(ring);
1ec14ad3
CW
2354 if (ret)
2355 return ret;
b4519513 2356
f2ef6eb1
BW
2357 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2358 if (ret)
2359 return ret;
1ec14ad3 2360 }
4df2faf4 2361
8a1a49f9 2362 return 0;
4df2faf4
DV
2363}
2364
9ce079e4
CW
2365static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2366 struct drm_i915_gem_object *obj)
4e901fdc 2367{
4e901fdc 2368 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2369 uint64_t val;
2370
9ce079e4
CW
2371 if (obj) {
2372 u32 size = obj->gtt_space->size;
4e901fdc 2373
9ce079e4
CW
2374 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2375 0xfffff000) << 32;
2376 val |= obj->gtt_offset & 0xfffff000;
2377 val |= (uint64_t)((obj->stride / 128) - 1) <<
2378 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2379
9ce079e4
CW
2380 if (obj->tiling_mode == I915_TILING_Y)
2381 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2382 val |= I965_FENCE_REG_VALID;
2383 } else
2384 val = 0;
c6642782 2385
9ce079e4
CW
2386 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2387 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2388}
2389
9ce079e4
CW
2390static void i965_write_fence_reg(struct drm_device *dev, int reg,
2391 struct drm_i915_gem_object *obj)
de151cf6 2392{
de151cf6 2393 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2394 uint64_t val;
2395
9ce079e4
CW
2396 if (obj) {
2397 u32 size = obj->gtt_space->size;
de151cf6 2398
9ce079e4
CW
2399 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2400 0xfffff000) << 32;
2401 val |= obj->gtt_offset & 0xfffff000;
2402 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2403 if (obj->tiling_mode == I915_TILING_Y)
2404 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2405 val |= I965_FENCE_REG_VALID;
2406 } else
2407 val = 0;
c6642782 2408
9ce079e4
CW
2409 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2410 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2411}
2412
9ce079e4
CW
2413static void i915_write_fence_reg(struct drm_device *dev, int reg,
2414 struct drm_i915_gem_object *obj)
de151cf6 2415{
de151cf6 2416 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2417 u32 val;
de151cf6 2418
9ce079e4
CW
2419 if (obj) {
2420 u32 size = obj->gtt_space->size;
2421 int pitch_val;
2422 int tile_width;
c6642782 2423
9ce079e4
CW
2424 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2425 (size & -size) != size ||
2426 (obj->gtt_offset & (size - 1)),
2427 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2428 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2429
9ce079e4
CW
2430 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2431 tile_width = 128;
2432 else
2433 tile_width = 512;
2434
2435 /* Note: pitch better be a power of two tile widths */
2436 pitch_val = obj->stride / tile_width;
2437 pitch_val = ffs(pitch_val) - 1;
2438
2439 val = obj->gtt_offset;
2440 if (obj->tiling_mode == I915_TILING_Y)
2441 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2442 val |= I915_FENCE_SIZE_BITS(size);
2443 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2444 val |= I830_FENCE_REG_VALID;
2445 } else
2446 val = 0;
2447
2448 if (reg < 8)
2449 reg = FENCE_REG_830_0 + reg * 4;
2450 else
2451 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2452
2453 I915_WRITE(reg, val);
2454 POSTING_READ(reg);
de151cf6
JB
2455}
2456
9ce079e4
CW
2457static void i830_write_fence_reg(struct drm_device *dev, int reg,
2458 struct drm_i915_gem_object *obj)
de151cf6 2459{
de151cf6 2460 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2461 uint32_t val;
de151cf6 2462
9ce079e4
CW
2463 if (obj) {
2464 u32 size = obj->gtt_space->size;
2465 uint32_t pitch_val;
de151cf6 2466
9ce079e4
CW
2467 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2468 (size & -size) != size ||
2469 (obj->gtt_offset & (size - 1)),
2470 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2471 obj->gtt_offset, size);
e76a16de 2472
9ce079e4
CW
2473 pitch_val = obj->stride / 128;
2474 pitch_val = ffs(pitch_val) - 1;
de151cf6 2475
9ce079e4
CW
2476 val = obj->gtt_offset;
2477 if (obj->tiling_mode == I915_TILING_Y)
2478 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2479 val |= I830_FENCE_SIZE_BITS(size);
2480 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2481 val |= I830_FENCE_REG_VALID;
2482 } else
2483 val = 0;
c6642782 2484
9ce079e4
CW
2485 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2486 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2487}
2488
2489static void i915_gem_write_fence(struct drm_device *dev, int reg,
2490 struct drm_i915_gem_object *obj)
2491{
2492 switch (INTEL_INFO(dev)->gen) {
2493 case 7:
2494 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2495 case 5:
2496 case 4: i965_write_fence_reg(dev, reg, obj); break;
2497 case 3: i915_write_fence_reg(dev, reg, obj); break;
2498 case 2: i830_write_fence_reg(dev, reg, obj); break;
2499 default: break;
2500 }
de151cf6
JB
2501}
2502
61050808
CW
2503static inline int fence_number(struct drm_i915_private *dev_priv,
2504 struct drm_i915_fence_reg *fence)
2505{
2506 return fence - dev_priv->fence_regs;
2507}
2508
2509static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2510 struct drm_i915_fence_reg *fence,
2511 bool enable)
2512{
2513 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2514 int reg = fence_number(dev_priv, fence);
2515
2516 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2517
2518 if (enable) {
2519 obj->fence_reg = reg;
2520 fence->obj = obj;
2521 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2522 } else {
2523 obj->fence_reg = I915_FENCE_REG_NONE;
2524 fence->obj = NULL;
2525 list_del_init(&fence->lru_list);
2526 }
2527}
2528
d9e86c0e 2529static int
a360bb1a 2530i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2531{
1c293ea3 2532 if (obj->last_fenced_seqno) {
86d5bc37 2533 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2534 if (ret)
2535 return ret;
d9e86c0e
CW
2536
2537 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2538 }
2539
63256ec5
CW
2540 /* Ensure that all CPU reads are completed before installing a fence
2541 * and all writes before removing the fence.
2542 */
2543 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2544 mb();
2545
86d5bc37 2546 obj->fenced_gpu_access = false;
d9e86c0e
CW
2547 return 0;
2548}
2549
2550int
2551i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2552{
61050808 2553 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2554 int ret;
2555
a360bb1a 2556 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2557 if (ret)
2558 return ret;
2559
61050808
CW
2560 if (obj->fence_reg == I915_FENCE_REG_NONE)
2561 return 0;
d9e86c0e 2562
61050808
CW
2563 i915_gem_object_update_fence(obj,
2564 &dev_priv->fence_regs[obj->fence_reg],
2565 false);
2566 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2567
2568 return 0;
2569}
2570
2571static struct drm_i915_fence_reg *
a360bb1a 2572i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2573{
ae3db24a 2574 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2575 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2576 int i;
ae3db24a
DV
2577
2578 /* First try to find a free reg */
d9e86c0e 2579 avail = NULL;
ae3db24a
DV
2580 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2581 reg = &dev_priv->fence_regs[i];
2582 if (!reg->obj)
d9e86c0e 2583 return reg;
ae3db24a 2584
1690e1eb 2585 if (!reg->pin_count)
d9e86c0e 2586 avail = reg;
ae3db24a
DV
2587 }
2588
d9e86c0e
CW
2589 if (avail == NULL)
2590 return NULL;
ae3db24a
DV
2591
2592 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2593 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2594 if (reg->pin_count)
ae3db24a
DV
2595 continue;
2596
8fe301ad 2597 return reg;
ae3db24a
DV
2598 }
2599
8fe301ad 2600 return NULL;
ae3db24a
DV
2601}
2602
de151cf6 2603/**
9a5a53b3 2604 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2605 * @obj: object to map through a fence reg
2606 *
2607 * When mapping objects through the GTT, userspace wants to be able to write
2608 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2609 * This function walks the fence regs looking for a free one for @obj,
2610 * stealing one if it can't find any.
2611 *
2612 * It then sets up the reg based on the object's properties: address, pitch
2613 * and tiling format.
9a5a53b3
CW
2614 *
2615 * For an untiled surface, this removes any existing fence.
de151cf6 2616 */
8c4b8c3f 2617int
06d98131 2618i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2619{
05394f39 2620 struct drm_device *dev = obj->base.dev;
79e53945 2621 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2622 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2623 struct drm_i915_fence_reg *reg;
ae3db24a 2624 int ret;
de151cf6 2625
14415745
CW
2626 /* Have we updated the tiling parameters upon the object and so
2627 * will need to serialise the write to the associated fence register?
2628 */
5d82e3e6 2629 if (obj->fence_dirty) {
14415745
CW
2630 ret = i915_gem_object_flush_fence(obj);
2631 if (ret)
2632 return ret;
2633 }
9a5a53b3 2634
d9e86c0e 2635 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2636 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2637 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2638 if (!obj->fence_dirty) {
14415745
CW
2639 list_move_tail(&reg->lru_list,
2640 &dev_priv->mm.fence_list);
2641 return 0;
2642 }
2643 } else if (enable) {
2644 reg = i915_find_fence_reg(dev);
2645 if (reg == NULL)
2646 return -EDEADLK;
d9e86c0e 2647
14415745
CW
2648 if (reg->obj) {
2649 struct drm_i915_gem_object *old = reg->obj;
2650
2651 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2652 if (ret)
2653 return ret;
2654
14415745 2655 i915_gem_object_fence_lost(old);
29c5a587 2656 }
14415745 2657 } else
a09ba7fa 2658 return 0;
a09ba7fa 2659
14415745 2660 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2661 obj->fence_dirty = false;
14415745 2662
9ce079e4 2663 return 0;
de151cf6
JB
2664}
2665
42d6ab48
CW
2666static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2667 struct drm_mm_node *gtt_space,
2668 unsigned long cache_level)
2669{
2670 struct drm_mm_node *other;
2671
2672 /* On non-LLC machines we have to be careful when putting differing
2673 * types of snoopable memory together to avoid the prefetcher
2674 * crossing memory domains and dieing.
2675 */
2676 if (HAS_LLC(dev))
2677 return true;
2678
2679 if (gtt_space == NULL)
2680 return true;
2681
2682 if (list_empty(&gtt_space->node_list))
2683 return true;
2684
2685 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2686 if (other->allocated && !other->hole_follows && other->color != cache_level)
2687 return false;
2688
2689 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2690 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2691 return false;
2692
2693 return true;
2694}
2695
2696static void i915_gem_verify_gtt(struct drm_device *dev)
2697{
2698#if WATCH_GTT
2699 struct drm_i915_private *dev_priv = dev->dev_private;
2700 struct drm_i915_gem_object *obj;
2701 int err = 0;
2702
2703 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2704 if (obj->gtt_space == NULL) {
2705 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2706 err++;
2707 continue;
2708 }
2709
2710 if (obj->cache_level != obj->gtt_space->color) {
2711 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2712 obj->gtt_space->start,
2713 obj->gtt_space->start + obj->gtt_space->size,
2714 obj->cache_level,
2715 obj->gtt_space->color);
2716 err++;
2717 continue;
2718 }
2719
2720 if (!i915_gem_valid_gtt_space(dev,
2721 obj->gtt_space,
2722 obj->cache_level)) {
2723 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2724 obj->gtt_space->start,
2725 obj->gtt_space->start + obj->gtt_space->size,
2726 obj->cache_level);
2727 err++;
2728 continue;
2729 }
2730 }
2731
2732 WARN_ON(err);
2733#endif
2734}
2735
673a394b
EA
2736/**
2737 * Finds free space in the GTT aperture and binds the object there.
2738 */
2739static int
05394f39 2740i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2741 unsigned alignment,
75e9e915 2742 bool map_and_fenceable)
673a394b 2743{
05394f39 2744 struct drm_device *dev = obj->base.dev;
673a394b 2745 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2746 struct drm_mm_node *free_space;
5e783301 2747 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2748 bool mappable, fenceable;
07f73f69 2749 int ret;
673a394b 2750
05394f39 2751 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2752 DRM_ERROR("Attempting to bind a purgeable object\n");
2753 return -EINVAL;
2754 }
2755
e28f8711
CW
2756 fence_size = i915_gem_get_gtt_size(dev,
2757 obj->base.size,
2758 obj->tiling_mode);
2759 fence_alignment = i915_gem_get_gtt_alignment(dev,
2760 obj->base.size,
2761 obj->tiling_mode);
2762 unfenced_alignment =
2763 i915_gem_get_unfenced_gtt_alignment(dev,
2764 obj->base.size,
2765 obj->tiling_mode);
a00b10c3 2766
673a394b 2767 if (alignment == 0)
5e783301
DV
2768 alignment = map_and_fenceable ? fence_alignment :
2769 unfenced_alignment;
75e9e915 2770 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2771 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2772 return -EINVAL;
2773 }
2774
05394f39 2775 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2776
654fc607
CW
2777 /* If the object is bigger than the entire aperture, reject it early
2778 * before evicting everything in a vain attempt to find space.
2779 */
05394f39 2780 if (obj->base.size >
75e9e915 2781 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2782 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2783 return -E2BIG;
2784 }
2785
6c085a72
CW
2786 ret = i915_gem_object_get_pages_gtt(obj);
2787 if (ret)
2788 return ret;
2789
673a394b 2790 search_free:
75e9e915 2791 if (map_and_fenceable)
920afa77 2792 free_space =
42d6ab48
CW
2793 drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2794 size, alignment, obj->cache_level,
2795 0, dev_priv->mm.gtt_mappable_end,
2796 false);
920afa77 2797 else
42d6ab48
CW
2798 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2799 size, alignment, obj->cache_level,
2800 false);
920afa77
DV
2801
2802 if (free_space != NULL) {
75e9e915 2803 if (map_and_fenceable)
05394f39 2804 obj->gtt_space =
920afa77 2805 drm_mm_get_block_range_generic(free_space,
42d6ab48 2806 size, alignment, obj->cache_level,
6b9d89b4 2807 0, dev_priv->mm.gtt_mappable_end,
42d6ab48 2808 false);
920afa77 2809 else
05394f39 2810 obj->gtt_space =
42d6ab48
CW
2811 drm_mm_get_block_generic(free_space,
2812 size, alignment, obj->cache_level,
2813 false);
920afa77 2814 }
05394f39 2815 if (obj->gtt_space == NULL) {
75e9e915 2816 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 2817 obj->cache_level,
75e9e915 2818 map_and_fenceable);
9731129c 2819 if (ret)
673a394b 2820 return ret;
9731129c 2821
673a394b
EA
2822 goto search_free;
2823 }
42d6ab48
CW
2824 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2825 obj->gtt_space,
2826 obj->cache_level))) {
2827 drm_mm_put_block(obj->gtt_space);
2828 obj->gtt_space = NULL;
2829 return -EINVAL;
2830 }
673a394b 2831
673a394b 2832
74163907 2833 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2834 if (ret) {
05394f39
CW
2835 drm_mm_put_block(obj->gtt_space);
2836 obj->gtt_space = NULL;
6c085a72 2837 return ret;
673a394b 2838 }
673a394b 2839
0ebb9829
DV
2840 if (!dev_priv->mm.aliasing_ppgtt)
2841 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2842
6c085a72 2843 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 2844 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2845
6299f992 2846 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2847
75e9e915 2848 fenceable =
05394f39 2849 obj->gtt_space->size == fence_size &&
0206e353 2850 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2851
75e9e915 2852 mappable =
05394f39 2853 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2854
05394f39 2855 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2856
db53a302 2857 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 2858 i915_gem_verify_gtt(dev);
673a394b
EA
2859 return 0;
2860}
2861
2862void
05394f39 2863i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2864{
673a394b
EA
2865 /* If we don't have a page list set up, then we're not pinned
2866 * to GPU, and we can ignore the cache flush because it'll happen
2867 * again at bind time.
2868 */
05394f39 2869 if (obj->pages == NULL)
673a394b
EA
2870 return;
2871
9c23f7fc
CW
2872 /* If the GPU is snooping the contents of the CPU cache,
2873 * we do not need to manually clear the CPU cache lines. However,
2874 * the caches are only snooped when the render cache is
2875 * flushed/invalidated. As we always have to emit invalidations
2876 * and flushes when moving into and out of the RENDER domain, correct
2877 * snooping behaviour occurs naturally as the result of our domain
2878 * tracking.
2879 */
2880 if (obj->cache_level != I915_CACHE_NONE)
2881 return;
2882
1c5d22f7 2883 trace_i915_gem_object_clflush(obj);
cfa16a0d 2884
05394f39 2885 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2886}
2887
e47c68e9
EA
2888/** Flushes the GTT write domain for the object if it's dirty. */
2889static void
05394f39 2890i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2891{
1c5d22f7
CW
2892 uint32_t old_write_domain;
2893
05394f39 2894 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2895 return;
2896
63256ec5 2897 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2898 * to it immediately go to main memory as far as we know, so there's
2899 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2900 *
2901 * However, we do have to enforce the order so that all writes through
2902 * the GTT land before any writes to the device, such as updates to
2903 * the GATT itself.
e47c68e9 2904 */
63256ec5
CW
2905 wmb();
2906
05394f39
CW
2907 old_write_domain = obj->base.write_domain;
2908 obj->base.write_domain = 0;
1c5d22f7
CW
2909
2910 trace_i915_gem_object_change_domain(obj,
05394f39 2911 obj->base.read_domains,
1c5d22f7 2912 old_write_domain);
e47c68e9
EA
2913}
2914
2915/** Flushes the CPU write domain for the object if it's dirty. */
2916static void
05394f39 2917i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2918{
1c5d22f7 2919 uint32_t old_write_domain;
e47c68e9 2920
05394f39 2921 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2922 return;
2923
2924 i915_gem_clflush_object(obj);
40ce6575 2925 intel_gtt_chipset_flush();
05394f39
CW
2926 old_write_domain = obj->base.write_domain;
2927 obj->base.write_domain = 0;
1c5d22f7
CW
2928
2929 trace_i915_gem_object_change_domain(obj,
05394f39 2930 obj->base.read_domains,
1c5d22f7 2931 old_write_domain);
e47c68e9
EA
2932}
2933
2ef7eeaa
EA
2934/**
2935 * Moves a single object to the GTT read, and possibly write domain.
2936 *
2937 * This function returns when the move is complete, including waiting on
2938 * flushes to occur.
2939 */
79e53945 2940int
2021746e 2941i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2942{
8325a09d 2943 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 2944 uint32_t old_write_domain, old_read_domains;
e47c68e9 2945 int ret;
2ef7eeaa 2946
02354392 2947 /* Not valid to be called on unbound objects. */
05394f39 2948 if (obj->gtt_space == NULL)
02354392
EA
2949 return -EINVAL;
2950
8d7e3de1
CW
2951 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2952 return 0;
2953
0201f1ec
CW
2954 ret = i915_gem_object_wait_rendering(obj, !write);
2955 if (ret)
2956 return ret;
2dafb1e0 2957
7213342d 2958 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2959
05394f39
CW
2960 old_write_domain = obj->base.write_domain;
2961 old_read_domains = obj->base.read_domains;
1c5d22f7 2962
e47c68e9
EA
2963 /* It should now be out of any other write domains, and we can update
2964 * the domain values for our changes.
2965 */
05394f39
CW
2966 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2967 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2968 if (write) {
05394f39
CW
2969 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2970 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2971 obj->dirty = 1;
2ef7eeaa
EA
2972 }
2973
1c5d22f7
CW
2974 trace_i915_gem_object_change_domain(obj,
2975 old_read_domains,
2976 old_write_domain);
2977
8325a09d
CW
2978 /* And bump the LRU for this access */
2979 if (i915_gem_object_is_inactive(obj))
2980 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2981
e47c68e9
EA
2982 return 0;
2983}
2984
e4ffd173
CW
2985int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2986 enum i915_cache_level cache_level)
2987{
7bddb01f
DV
2988 struct drm_device *dev = obj->base.dev;
2989 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2990 int ret;
2991
2992 if (obj->cache_level == cache_level)
2993 return 0;
2994
2995 if (obj->pin_count) {
2996 DRM_DEBUG("can not change the cache level of pinned objects\n");
2997 return -EBUSY;
2998 }
2999
42d6ab48
CW
3000 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3001 ret = i915_gem_object_unbind(obj);
3002 if (ret)
3003 return ret;
3004 }
3005
e4ffd173
CW
3006 if (obj->gtt_space) {
3007 ret = i915_gem_object_finish_gpu(obj);
3008 if (ret)
3009 return ret;
3010
3011 i915_gem_object_finish_gtt(obj);
3012
3013 /* Before SandyBridge, you could not use tiling or fence
3014 * registers with snooped memory, so relinquish any fences
3015 * currently pointing to our region in the aperture.
3016 */
42d6ab48 3017 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3018 ret = i915_gem_object_put_fence(obj);
3019 if (ret)
3020 return ret;
3021 }
3022
74898d7e
DV
3023 if (obj->has_global_gtt_mapping)
3024 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3025 if (obj->has_aliasing_ppgtt_mapping)
3026 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3027 obj, cache_level);
42d6ab48
CW
3028
3029 obj->gtt_space->color = cache_level;
e4ffd173
CW
3030 }
3031
3032 if (cache_level == I915_CACHE_NONE) {
3033 u32 old_read_domains, old_write_domain;
3034
3035 /* If we're coming from LLC cached, then we haven't
3036 * actually been tracking whether the data is in the
3037 * CPU cache or not, since we only allow one bit set
3038 * in obj->write_domain and have been skipping the clflushes.
3039 * Just set it to the CPU cache for now.
3040 */
3041 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3042 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3043
3044 old_read_domains = obj->base.read_domains;
3045 old_write_domain = obj->base.write_domain;
3046
3047 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3048 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3049
3050 trace_i915_gem_object_change_domain(obj,
3051 old_read_domains,
3052 old_write_domain);
3053 }
3054
3055 obj->cache_level = cache_level;
42d6ab48 3056 i915_gem_verify_gtt(dev);
e4ffd173
CW
3057 return 0;
3058}
3059
e6994aee
CW
3060int i915_gem_get_cacheing_ioctl(struct drm_device *dev, void *data,
3061 struct drm_file *file)
3062{
3063 struct drm_i915_gem_cacheing *args = data;
3064 struct drm_i915_gem_object *obj;
3065 int ret;
3066
3067 ret = i915_mutex_lock_interruptible(dev);
3068 if (ret)
3069 return ret;
3070
3071 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3072 if (&obj->base == NULL) {
3073 ret = -ENOENT;
3074 goto unlock;
3075 }
3076
3077 args->cacheing = obj->cache_level != I915_CACHE_NONE;
3078
3079 drm_gem_object_unreference(&obj->base);
3080unlock:
3081 mutex_unlock(&dev->struct_mutex);
3082 return ret;
3083}
3084
3085int i915_gem_set_cacheing_ioctl(struct drm_device *dev, void *data,
3086 struct drm_file *file)
3087{
3088 struct drm_i915_gem_cacheing *args = data;
3089 struct drm_i915_gem_object *obj;
3090 enum i915_cache_level level;
3091 int ret;
3092
3093 ret = i915_mutex_lock_interruptible(dev);
3094 if (ret)
3095 return ret;
3096
3097 switch (args->cacheing) {
3098 case I915_CACHEING_NONE:
3099 level = I915_CACHE_NONE;
3100 break;
3101 case I915_CACHEING_CACHED:
3102 level = I915_CACHE_LLC;
3103 break;
3104 default:
3105 return -EINVAL;
3106 }
3107
3108 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3109 if (&obj->base == NULL) {
3110 ret = -ENOENT;
3111 goto unlock;
3112 }
3113
3114 ret = i915_gem_object_set_cache_level(obj, level);
3115
3116 drm_gem_object_unreference(&obj->base);
3117unlock:
3118 mutex_unlock(&dev->struct_mutex);
3119 return ret;
3120}
3121
b9241ea3 3122/*
2da3b9b9
CW
3123 * Prepare buffer for display plane (scanout, cursors, etc).
3124 * Can be called from an uninterruptible phase (modesetting) and allows
3125 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3126 */
3127int
2da3b9b9
CW
3128i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3129 u32 alignment,
919926ae 3130 struct intel_ring_buffer *pipelined)
b9241ea3 3131{
2da3b9b9 3132 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3133 int ret;
3134
0be73284 3135 if (pipelined != obj->ring) {
2911a35b
BW
3136 ret = i915_gem_object_sync(obj, pipelined);
3137 if (ret)
b9241ea3
ZW
3138 return ret;
3139 }
3140
a7ef0640
EA
3141 /* The display engine is not coherent with the LLC cache on gen6. As
3142 * a result, we make sure that the pinning that is about to occur is
3143 * done with uncached PTEs. This is lowest common denominator for all
3144 * chipsets.
3145 *
3146 * However for gen6+, we could do better by using the GFDT bit instead
3147 * of uncaching, which would allow us to flush all the LLC-cached data
3148 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3149 */
3150 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3151 if (ret)
3152 return ret;
3153
2da3b9b9
CW
3154 /* As the user may map the buffer once pinned in the display plane
3155 * (e.g. libkms for the bootup splash), we have to ensure that we
3156 * always use map_and_fenceable for all scanout buffers.
3157 */
3158 ret = i915_gem_object_pin(obj, alignment, true);
3159 if (ret)
3160 return ret;
3161
b118c1e3
CW
3162 i915_gem_object_flush_cpu_write_domain(obj);
3163
2da3b9b9 3164 old_write_domain = obj->base.write_domain;
05394f39 3165 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3166
3167 /* It should now be out of any other write domains, and we can update
3168 * the domain values for our changes.
3169 */
e5f1d962 3170 obj->base.write_domain = 0;
05394f39 3171 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3172
3173 trace_i915_gem_object_change_domain(obj,
3174 old_read_domains,
2da3b9b9 3175 old_write_domain);
b9241ea3
ZW
3176
3177 return 0;
3178}
3179
85345517 3180int
a8198eea 3181i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3182{
88241785
CW
3183 int ret;
3184
a8198eea 3185 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3186 return 0;
3187
0201f1ec 3188 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3189 if (ret)
3190 return ret;
3191
a8198eea
CW
3192 /* Ensure that we invalidate the GPU's caches and TLBs. */
3193 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3194 return 0;
85345517
CW
3195}
3196
e47c68e9
EA
3197/**
3198 * Moves a single object to the CPU read, and possibly write domain.
3199 *
3200 * This function returns when the move is complete, including waiting on
3201 * flushes to occur.
3202 */
dabdfe02 3203int
919926ae 3204i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3205{
1c5d22f7 3206 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3207 int ret;
3208
8d7e3de1
CW
3209 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3210 return 0;
3211
0201f1ec
CW
3212 ret = i915_gem_object_wait_rendering(obj, !write);
3213 if (ret)
3214 return ret;
2ef7eeaa 3215
e47c68e9 3216 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3217
05394f39
CW
3218 old_write_domain = obj->base.write_domain;
3219 old_read_domains = obj->base.read_domains;
1c5d22f7 3220
e47c68e9 3221 /* Flush the CPU cache if it's still invalid. */
05394f39 3222 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3223 i915_gem_clflush_object(obj);
2ef7eeaa 3224
05394f39 3225 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3226 }
3227
3228 /* It should now be out of any other write domains, and we can update
3229 * the domain values for our changes.
3230 */
05394f39 3231 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3232
3233 /* If we're writing through the CPU, then the GPU read domains will
3234 * need to be invalidated at next use.
3235 */
3236 if (write) {
05394f39
CW
3237 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3238 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3239 }
2ef7eeaa 3240
1c5d22f7
CW
3241 trace_i915_gem_object_change_domain(obj,
3242 old_read_domains,
3243 old_write_domain);
3244
2ef7eeaa
EA
3245 return 0;
3246}
3247
673a394b
EA
3248/* Throttle our rendering by waiting until the ring has completed our requests
3249 * emitted over 20 msec ago.
3250 *
b962442e
EA
3251 * Note that if we were to use the current jiffies each time around the loop,
3252 * we wouldn't escape the function with any frames outstanding if the time to
3253 * render a frame was over 20ms.
3254 *
673a394b
EA
3255 * This should get us reasonable parallelism between CPU and GPU but also
3256 * relatively low latency when blocking on a particular request to finish.
3257 */
40a5f0de 3258static int
f787a5f5 3259i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3260{
f787a5f5
CW
3261 struct drm_i915_private *dev_priv = dev->dev_private;
3262 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3263 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3264 struct drm_i915_gem_request *request;
3265 struct intel_ring_buffer *ring = NULL;
3266 u32 seqno = 0;
3267 int ret;
93533c29 3268
e110e8d6
CW
3269 if (atomic_read(&dev_priv->mm.wedged))
3270 return -EIO;
3271
1c25595f 3272 spin_lock(&file_priv->mm.lock);
f787a5f5 3273 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3274 if (time_after_eq(request->emitted_jiffies, recent_enough))
3275 break;
40a5f0de 3276
f787a5f5
CW
3277 ring = request->ring;
3278 seqno = request->seqno;
b962442e 3279 }
1c25595f 3280 spin_unlock(&file_priv->mm.lock);
40a5f0de 3281
f787a5f5
CW
3282 if (seqno == 0)
3283 return 0;
2bc43b5c 3284
5c81fe85 3285 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3286 if (ret == 0)
3287 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3288
3289 return ret;
3290}
3291
673a394b 3292int
05394f39
CW
3293i915_gem_object_pin(struct drm_i915_gem_object *obj,
3294 uint32_t alignment,
75e9e915 3295 bool map_and_fenceable)
673a394b 3296{
673a394b
EA
3297 int ret;
3298
05394f39 3299 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
ac0c6b5a 3300
05394f39
CW
3301 if (obj->gtt_space != NULL) {
3302 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3303 (map_and_fenceable && !obj->map_and_fenceable)) {
3304 WARN(obj->pin_count,
ae7d49d8 3305 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3306 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3307 " obj->map_and_fenceable=%d\n",
05394f39 3308 obj->gtt_offset, alignment,
75e9e915 3309 map_and_fenceable,
05394f39 3310 obj->map_and_fenceable);
ac0c6b5a
CW
3311 ret = i915_gem_object_unbind(obj);
3312 if (ret)
3313 return ret;
3314 }
3315 }
3316
05394f39 3317 if (obj->gtt_space == NULL) {
a00b10c3 3318 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3319 map_and_fenceable);
9731129c 3320 if (ret)
673a394b 3321 return ret;
22c344e9 3322 }
76446cac 3323
74898d7e
DV
3324 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3325 i915_gem_gtt_bind_object(obj, obj->cache_level);
3326
1b50247a 3327 obj->pin_count++;
6299f992 3328 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3329
3330 return 0;
3331}
3332
3333void
05394f39 3334i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3335{
05394f39
CW
3336 BUG_ON(obj->pin_count == 0);
3337 BUG_ON(obj->gtt_space == NULL);
673a394b 3338
1b50247a 3339 if (--obj->pin_count == 0)
6299f992 3340 obj->pin_mappable = false;
673a394b
EA
3341}
3342
3343int
3344i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3345 struct drm_file *file)
673a394b
EA
3346{
3347 struct drm_i915_gem_pin *args = data;
05394f39 3348 struct drm_i915_gem_object *obj;
673a394b
EA
3349 int ret;
3350
1d7cfea1
CW
3351 ret = i915_mutex_lock_interruptible(dev);
3352 if (ret)
3353 return ret;
673a394b 3354
05394f39 3355 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3356 if (&obj->base == NULL) {
1d7cfea1
CW
3357 ret = -ENOENT;
3358 goto unlock;
673a394b 3359 }
673a394b 3360
05394f39 3361 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3362 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3363 ret = -EINVAL;
3364 goto out;
3ef94daa
CW
3365 }
3366
05394f39 3367 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3368 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3369 args->handle);
1d7cfea1
CW
3370 ret = -EINVAL;
3371 goto out;
79e53945
JB
3372 }
3373
05394f39
CW
3374 obj->user_pin_count++;
3375 obj->pin_filp = file;
3376 if (obj->user_pin_count == 1) {
75e9e915 3377 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3378 if (ret)
3379 goto out;
673a394b
EA
3380 }
3381
3382 /* XXX - flush the CPU caches for pinned objects
3383 * as the X server doesn't manage domains yet
3384 */
e47c68e9 3385 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3386 args->offset = obj->gtt_offset;
1d7cfea1 3387out:
05394f39 3388 drm_gem_object_unreference(&obj->base);
1d7cfea1 3389unlock:
673a394b 3390 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3391 return ret;
673a394b
EA
3392}
3393
3394int
3395i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3396 struct drm_file *file)
673a394b
EA
3397{
3398 struct drm_i915_gem_pin *args = data;
05394f39 3399 struct drm_i915_gem_object *obj;
76c1dec1 3400 int ret;
673a394b 3401
1d7cfea1
CW
3402 ret = i915_mutex_lock_interruptible(dev);
3403 if (ret)
3404 return ret;
673a394b 3405
05394f39 3406 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3407 if (&obj->base == NULL) {
1d7cfea1
CW
3408 ret = -ENOENT;
3409 goto unlock;
673a394b 3410 }
76c1dec1 3411
05394f39 3412 if (obj->pin_filp != file) {
79e53945
JB
3413 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3414 args->handle);
1d7cfea1
CW
3415 ret = -EINVAL;
3416 goto out;
79e53945 3417 }
05394f39
CW
3418 obj->user_pin_count--;
3419 if (obj->user_pin_count == 0) {
3420 obj->pin_filp = NULL;
79e53945
JB
3421 i915_gem_object_unpin(obj);
3422 }
673a394b 3423
1d7cfea1 3424out:
05394f39 3425 drm_gem_object_unreference(&obj->base);
1d7cfea1 3426unlock:
673a394b 3427 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3428 return ret;
673a394b
EA
3429}
3430
3431int
3432i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3433 struct drm_file *file)
673a394b
EA
3434{
3435 struct drm_i915_gem_busy *args = data;
05394f39 3436 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3437 int ret;
3438
76c1dec1 3439 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3440 if (ret)
76c1dec1 3441 return ret;
673a394b 3442
05394f39 3443 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3444 if (&obj->base == NULL) {
1d7cfea1
CW
3445 ret = -ENOENT;
3446 goto unlock;
673a394b 3447 }
d1b851fc 3448
0be555b6
CW
3449 /* Count all active objects as busy, even if they are currently not used
3450 * by the gpu. Users of this interface expect objects to eventually
3451 * become non-busy without any further actions, therefore emit any
3452 * necessary flushes here.
c4de0a5d 3453 */
30dfebf3 3454 ret = i915_gem_object_flush_active(obj);
0be555b6 3455
30dfebf3 3456 args->busy = obj->active;
e9808edd
CW
3457 if (obj->ring) {
3458 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3459 args->busy |= intel_ring_flag(obj->ring) << 16;
3460 }
673a394b 3461
05394f39 3462 drm_gem_object_unreference(&obj->base);
1d7cfea1 3463unlock:
673a394b 3464 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3465 return ret;
673a394b
EA
3466}
3467
3468int
3469i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3470 struct drm_file *file_priv)
3471{
0206e353 3472 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3473}
3474
3ef94daa
CW
3475int
3476i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3477 struct drm_file *file_priv)
3478{
3479 struct drm_i915_gem_madvise *args = data;
05394f39 3480 struct drm_i915_gem_object *obj;
76c1dec1 3481 int ret;
3ef94daa
CW
3482
3483 switch (args->madv) {
3484 case I915_MADV_DONTNEED:
3485 case I915_MADV_WILLNEED:
3486 break;
3487 default:
3488 return -EINVAL;
3489 }
3490
1d7cfea1
CW
3491 ret = i915_mutex_lock_interruptible(dev);
3492 if (ret)
3493 return ret;
3494
05394f39 3495 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3496 if (&obj->base == NULL) {
1d7cfea1
CW
3497 ret = -ENOENT;
3498 goto unlock;
3ef94daa 3499 }
3ef94daa 3500
05394f39 3501 if (obj->pin_count) {
1d7cfea1
CW
3502 ret = -EINVAL;
3503 goto out;
3ef94daa
CW
3504 }
3505
05394f39
CW
3506 if (obj->madv != __I915_MADV_PURGED)
3507 obj->madv = args->madv;
3ef94daa 3508
6c085a72
CW
3509 /* if the object is no longer attached, discard its backing storage */
3510 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3511 i915_gem_object_truncate(obj);
3512
05394f39 3513 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3514
1d7cfea1 3515out:
05394f39 3516 drm_gem_object_unreference(&obj->base);
1d7cfea1 3517unlock:
3ef94daa 3518 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3519 return ret;
3ef94daa
CW
3520}
3521
05394f39
CW
3522struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3523 size_t size)
ac52bc56 3524{
73aa808f 3525 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3526 struct drm_i915_gem_object *obj;
5949eac4 3527 struct address_space *mapping;
bed1ea95 3528 u32 mask;
ac52bc56 3529
c397b908
DV
3530 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3531 if (obj == NULL)
3532 return NULL;
673a394b 3533
c397b908
DV
3534 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3535 kfree(obj);
3536 return NULL;
3537 }
673a394b 3538
bed1ea95
CW
3539 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3540 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3541 /* 965gm cannot relocate objects above 4GiB. */
3542 mask &= ~__GFP_HIGHMEM;
3543 mask |= __GFP_DMA32;
3544 }
3545
5949eac4 3546 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3547 mapping_set_gfp_mask(mapping, mask);
5949eac4 3548
73aa808f
CW
3549 i915_gem_info_add_obj(dev_priv, size);
3550
c397b908
DV
3551 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3552 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3553
3d29b842
ED
3554 if (HAS_LLC(dev)) {
3555 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3556 * cache) for about a 10% performance improvement
3557 * compared to uncached. Graphics requests other than
3558 * display scanout are coherent with the CPU in
3559 * accessing this cache. This means in this mode we
3560 * don't need to clflush on the CPU side, and on the
3561 * GPU side we only need to flush internal caches to
3562 * get data visible to the CPU.
3563 *
3564 * However, we maintain the display planes as UC, and so
3565 * need to rebind when first used as such.
3566 */
3567 obj->cache_level = I915_CACHE_LLC;
3568 } else
3569 obj->cache_level = I915_CACHE_NONE;
3570
62b8b215 3571 obj->base.driver_private = NULL;
c397b908 3572 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3573 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3574 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3575 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3576 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3577 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3578 /* Avoid an unnecessary call to unbind on the first bind. */
3579 obj->map_and_fenceable = true;
de151cf6 3580
05394f39 3581 return obj;
c397b908
DV
3582}
3583
3584int i915_gem_init_object(struct drm_gem_object *obj)
3585{
3586 BUG();
de151cf6 3587
673a394b
EA
3588 return 0;
3589}
3590
1488fc08 3591void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3592{
1488fc08 3593 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3594 struct drm_device *dev = obj->base.dev;
be72615b 3595 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3596
26e12f89
CW
3597 trace_i915_gem_object_destroy(obj);
3598
1286ff73
DV
3599 if (gem_obj->import_attach)
3600 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3601
1488fc08
CW
3602 if (obj->phys_obj)
3603 i915_gem_detach_phys_object(dev, obj);
3604
3605 obj->pin_count = 0;
3606 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3607 bool was_interruptible;
3608
3609 was_interruptible = dev_priv->mm.interruptible;
3610 dev_priv->mm.interruptible = false;
3611
3612 WARN_ON(i915_gem_object_unbind(obj));
3613
3614 dev_priv->mm.interruptible = was_interruptible;
3615 }
3616
6c085a72 3617 i915_gem_object_put_pages_gtt(obj);
05394f39 3618 if (obj->base.map_list.map)
b464e9a2 3619 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3620
05394f39
CW
3621 drm_gem_object_release(&obj->base);
3622 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3623
05394f39
CW
3624 kfree(obj->bit_17);
3625 kfree(obj);
673a394b
EA
3626}
3627
29105ccc
CW
3628int
3629i915_gem_idle(struct drm_device *dev)
3630{
3631 drm_i915_private_t *dev_priv = dev->dev_private;
3632 int ret;
28dfe52a 3633
29105ccc 3634 mutex_lock(&dev->struct_mutex);
1c5d22f7 3635
87acb0a5 3636 if (dev_priv->mm.suspended) {
29105ccc
CW
3637 mutex_unlock(&dev->struct_mutex);
3638 return 0;
28dfe52a
EA
3639 }
3640
b2da9fe5 3641 ret = i915_gpu_idle(dev);
6dbe2772
KP
3642 if (ret) {
3643 mutex_unlock(&dev->struct_mutex);
673a394b 3644 return ret;
6dbe2772 3645 }
b2da9fe5 3646 i915_gem_retire_requests(dev);
673a394b 3647
29105ccc 3648 /* Under UMS, be paranoid and evict. */
a39d7efc 3649 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3650 i915_gem_evict_everything(dev);
29105ccc 3651
312817a3
CW
3652 i915_gem_reset_fences(dev);
3653
29105ccc
CW
3654 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3655 * We need to replace this with a semaphore, or something.
3656 * And not confound mm.suspended!
3657 */
3658 dev_priv->mm.suspended = 1;
bc0c7f14 3659 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3660
3661 i915_kernel_lost_context(dev);
6dbe2772 3662 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3663
6dbe2772
KP
3664 mutex_unlock(&dev->struct_mutex);
3665
29105ccc
CW
3666 /* Cancel the retire work handler, which should be idle now. */
3667 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3668
673a394b
EA
3669 return 0;
3670}
3671
b9524a1e
BW
3672void i915_gem_l3_remap(struct drm_device *dev)
3673{
3674 drm_i915_private_t *dev_priv = dev->dev_private;
3675 u32 misccpctl;
3676 int i;
3677
3678 if (!IS_IVYBRIDGE(dev))
3679 return;
3680
3681 if (!dev_priv->mm.l3_remap_info)
3682 return;
3683
3684 misccpctl = I915_READ(GEN7_MISCCPCTL);
3685 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3686 POSTING_READ(GEN7_MISCCPCTL);
3687
3688 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3689 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3690 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3691 DRM_DEBUG("0x%x was already programmed to %x\n",
3692 GEN7_L3LOG_BASE + i, remap);
3693 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3694 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3695 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3696 }
3697
3698 /* Make sure all the writes land before disabling dop clock gating */
3699 POSTING_READ(GEN7_L3LOG_BASE);
3700
3701 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3702}
3703
f691e2f4
DV
3704void i915_gem_init_swizzling(struct drm_device *dev)
3705{
3706 drm_i915_private_t *dev_priv = dev->dev_private;
3707
11782b02 3708 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3709 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3710 return;
3711
3712 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3713 DISP_TILE_SURFACE_SWIZZLING);
3714
11782b02
DV
3715 if (IS_GEN5(dev))
3716 return;
3717
f691e2f4
DV
3718 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3719 if (IS_GEN6(dev))
6b26c86d 3720 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3721 else
6b26c86d 3722 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3723}
e21af88d
DV
3724
3725void i915_gem_init_ppgtt(struct drm_device *dev)
3726{
3727 drm_i915_private_t *dev_priv = dev->dev_private;
3728 uint32_t pd_offset;
3729 struct intel_ring_buffer *ring;
55a254ac
DV
3730 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3731 uint32_t __iomem *pd_addr;
3732 uint32_t pd_entry;
e21af88d
DV
3733 int i;
3734
3735 if (!dev_priv->mm.aliasing_ppgtt)
3736 return;
3737
55a254ac
DV
3738
3739 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3740 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3741 dma_addr_t pt_addr;
3742
3743 if (dev_priv->mm.gtt->needs_dmar)
3744 pt_addr = ppgtt->pt_dma_addr[i];
3745 else
3746 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3747
3748 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3749 pd_entry |= GEN6_PDE_VALID;
3750
3751 writel(pd_entry, pd_addr + i);
3752 }
3753 readl(pd_addr);
3754
3755 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3756 pd_offset /= 64; /* in cachelines, */
3757 pd_offset <<= 16;
3758
3759 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3760 uint32_t ecochk, gab_ctl, ecobits;
3761
3762 ecobits = I915_READ(GAC_ECO_BITS);
3763 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3764
3765 gab_ctl = I915_READ(GAB_CTL);
3766 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3767
3768 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3769 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3770 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3771 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3772 } else if (INTEL_INFO(dev)->gen >= 7) {
3773 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3774 /* GFX_MODE is per-ring on gen7+ */
3775 }
3776
b4519513 3777 for_each_ring(ring, dev_priv, i) {
e21af88d
DV
3778 if (INTEL_INFO(dev)->gen >= 7)
3779 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3780 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3781
3782 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3783 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3784 }
3785}
3786
67b1b571
CW
3787static bool
3788intel_enable_blt(struct drm_device *dev)
3789{
3790 if (!HAS_BLT(dev))
3791 return false;
3792
3793 /* The blitter was dysfunctional on early prototypes */
3794 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3795 DRM_INFO("BLT not supported on this pre-production hardware;"
3796 " graphics performance will be degraded.\n");
3797 return false;
3798 }
3799
3800 return true;
3801}
3802
8187a2b7 3803int
f691e2f4 3804i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3805{
3806 drm_i915_private_t *dev_priv = dev->dev_private;
3807 int ret;
68f95ba9 3808
8ecd1a66
DV
3809 if (!intel_enable_gtt())
3810 return -EIO;
3811
b9524a1e
BW
3812 i915_gem_l3_remap(dev);
3813
f691e2f4
DV
3814 i915_gem_init_swizzling(dev);
3815
5c1143bb 3816 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3817 if (ret)
b6913e4b 3818 return ret;
68f95ba9
CW
3819
3820 if (HAS_BSD(dev)) {
5c1143bb 3821 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3822 if (ret)
3823 goto cleanup_render_ring;
d1b851fc 3824 }
68f95ba9 3825
67b1b571 3826 if (intel_enable_blt(dev)) {
549f7365
CW
3827 ret = intel_init_blt_ring_buffer(dev);
3828 if (ret)
3829 goto cleanup_bsd_ring;
3830 }
3831
6f392d54
CW
3832 dev_priv->next_seqno = 1;
3833
254f965c
BW
3834 /*
3835 * XXX: There was some w/a described somewhere suggesting loading
3836 * contexts before PPGTT.
3837 */
3838 i915_gem_context_init(dev);
e21af88d
DV
3839 i915_gem_init_ppgtt(dev);
3840
68f95ba9
CW
3841 return 0;
3842
549f7365 3843cleanup_bsd_ring:
1ec14ad3 3844 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3845cleanup_render_ring:
1ec14ad3 3846 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3847 return ret;
3848}
3849
1070a42b
CW
3850static bool
3851intel_enable_ppgtt(struct drm_device *dev)
3852{
3853 if (i915_enable_ppgtt >= 0)
3854 return i915_enable_ppgtt;
3855
3856#ifdef CONFIG_INTEL_IOMMU
3857 /* Disable ppgtt on SNB if VT-d is on. */
3858 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3859 return false;
3860#endif
3861
3862 return true;
3863}
3864
3865int i915_gem_init(struct drm_device *dev)
3866{
3867 struct drm_i915_private *dev_priv = dev->dev_private;
3868 unsigned long gtt_size, mappable_size;
3869 int ret;
3870
3871 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3872 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3873
3874 mutex_lock(&dev->struct_mutex);
3875 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3876 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3877 * aperture accordingly when using aliasing ppgtt. */
3878 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3879
3880 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3881
3882 ret = i915_gem_init_aliasing_ppgtt(dev);
3883 if (ret) {
3884 mutex_unlock(&dev->struct_mutex);
3885 return ret;
3886 }
3887 } else {
3888 /* Let GEM Manage all of the aperture.
3889 *
3890 * However, leave one page at the end still bound to the scratch
3891 * page. There are a number of places where the hardware
3892 * apparently prefetches past the end of the object, and we've
3893 * seen multiple hangs with the GPU head pointer stuck in a
3894 * batchbuffer bound at the last page of the aperture. One page
3895 * should be enough to keep any prefetching inside of the
3896 * aperture.
3897 */
3898 i915_gem_init_global_gtt(dev, 0, mappable_size,
3899 gtt_size);
3900 }
3901
3902 ret = i915_gem_init_hw(dev);
3903 mutex_unlock(&dev->struct_mutex);
3904 if (ret) {
3905 i915_gem_cleanup_aliasing_ppgtt(dev);
3906 return ret;
3907 }
3908
53ca26ca
DV
3909 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3910 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3911 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
3912 return 0;
3913}
3914
8187a2b7
ZN
3915void
3916i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3917{
3918 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3919 struct intel_ring_buffer *ring;
1ec14ad3 3920 int i;
8187a2b7 3921
b4519513
CW
3922 for_each_ring(ring, dev_priv, i)
3923 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
3924}
3925
673a394b
EA
3926int
3927i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3928 struct drm_file *file_priv)
3929{
3930 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3931 int ret;
673a394b 3932
79e53945
JB
3933 if (drm_core_check_feature(dev, DRIVER_MODESET))
3934 return 0;
3935
ba1234d1 3936 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3937 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3938 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3939 }
3940
673a394b 3941 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3942 dev_priv->mm.suspended = 0;
3943
f691e2f4 3944 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3945 if (ret != 0) {
3946 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3947 return ret;
d816f6ac 3948 }
9bb2d6f9 3949
69dc4987 3950 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 3951 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
673a394b 3952 mutex_unlock(&dev->struct_mutex);
dbb19d30 3953
5f35308b
CW
3954 ret = drm_irq_install(dev);
3955 if (ret)
3956 goto cleanup_ringbuffer;
dbb19d30 3957
673a394b 3958 return 0;
5f35308b
CW
3959
3960cleanup_ringbuffer:
3961 mutex_lock(&dev->struct_mutex);
3962 i915_gem_cleanup_ringbuffer(dev);
3963 dev_priv->mm.suspended = 1;
3964 mutex_unlock(&dev->struct_mutex);
3965
3966 return ret;
673a394b
EA
3967}
3968
3969int
3970i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3971 struct drm_file *file_priv)
3972{
79e53945
JB
3973 if (drm_core_check_feature(dev, DRIVER_MODESET))
3974 return 0;
3975
dbb19d30 3976 drm_irq_uninstall(dev);
e6890f6f 3977 return i915_gem_idle(dev);
673a394b
EA
3978}
3979
3980void
3981i915_gem_lastclose(struct drm_device *dev)
3982{
3983 int ret;
673a394b 3984
e806b495
EA
3985 if (drm_core_check_feature(dev, DRIVER_MODESET))
3986 return;
3987
6dbe2772
KP
3988 ret = i915_gem_idle(dev);
3989 if (ret)
3990 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3991}
3992
64193406
CW
3993static void
3994init_ring_lists(struct intel_ring_buffer *ring)
3995{
3996 INIT_LIST_HEAD(&ring->active_list);
3997 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
3998}
3999
673a394b
EA
4000void
4001i915_gem_load(struct drm_device *dev)
4002{
b5aa8a0f 4003 int i;
673a394b
EA
4004 drm_i915_private_t *dev_priv = dev->dev_private;
4005
69dc4987 4006 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4007 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4008 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4009 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4010 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4011 for (i = 0; i < I915_NUM_RINGS; i++)
4012 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4013 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4014 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4015 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4016 i915_gem_retire_work_handler);
30dbf0c0 4017 init_completion(&dev_priv->error_completion);
31169714 4018
94400120
DA
4019 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4020 if (IS_GEN3(dev)) {
50743298
DV
4021 I915_WRITE(MI_ARB_STATE,
4022 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4023 }
4024
72bfa19c
CW
4025 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4026
de151cf6 4027 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4028 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4029 dev_priv->fence_reg_start = 3;
de151cf6 4030
a6c45cf0 4031 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4032 dev_priv->num_fence_regs = 16;
4033 else
4034 dev_priv->num_fence_regs = 8;
4035
b5aa8a0f 4036 /* Initialize fence registers to zero */
ada726c7 4037 i915_gem_reset_fences(dev);
10ed13e4 4038
673a394b 4039 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4040 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4041
ce453d81
CW
4042 dev_priv->mm.interruptible = true;
4043
17250b71
CW
4044 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4045 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4046 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4047}
71acb5eb
DA
4048
4049/*
4050 * Create a physically contiguous memory object for this object
4051 * e.g. for cursor + overlay regs
4052 */
995b6762
CW
4053static int i915_gem_init_phys_object(struct drm_device *dev,
4054 int id, int size, int align)
71acb5eb
DA
4055{
4056 drm_i915_private_t *dev_priv = dev->dev_private;
4057 struct drm_i915_gem_phys_object *phys_obj;
4058 int ret;
4059
4060 if (dev_priv->mm.phys_objs[id - 1] || !size)
4061 return 0;
4062
9a298b2a 4063 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4064 if (!phys_obj)
4065 return -ENOMEM;
4066
4067 phys_obj->id = id;
4068
6eeefaf3 4069 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4070 if (!phys_obj->handle) {
4071 ret = -ENOMEM;
4072 goto kfree_obj;
4073 }
4074#ifdef CONFIG_X86
4075 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4076#endif
4077
4078 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4079
4080 return 0;
4081kfree_obj:
9a298b2a 4082 kfree(phys_obj);
71acb5eb
DA
4083 return ret;
4084}
4085
995b6762 4086static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4087{
4088 drm_i915_private_t *dev_priv = dev->dev_private;
4089 struct drm_i915_gem_phys_object *phys_obj;
4090
4091 if (!dev_priv->mm.phys_objs[id - 1])
4092 return;
4093
4094 phys_obj = dev_priv->mm.phys_objs[id - 1];
4095 if (phys_obj->cur_obj) {
4096 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4097 }
4098
4099#ifdef CONFIG_X86
4100 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4101#endif
4102 drm_pci_free(dev, phys_obj->handle);
4103 kfree(phys_obj);
4104 dev_priv->mm.phys_objs[id - 1] = NULL;
4105}
4106
4107void i915_gem_free_all_phys_object(struct drm_device *dev)
4108{
4109 int i;
4110
260883c8 4111 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4112 i915_gem_free_phys_object(dev, i);
4113}
4114
4115void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4116 struct drm_i915_gem_object *obj)
71acb5eb 4117{
05394f39 4118 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4119 char *vaddr;
71acb5eb 4120 int i;
71acb5eb
DA
4121 int page_count;
4122
05394f39 4123 if (!obj->phys_obj)
71acb5eb 4124 return;
05394f39 4125 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4126
05394f39 4127 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4128 for (i = 0; i < page_count; i++) {
5949eac4 4129 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4130 if (!IS_ERR(page)) {
4131 char *dst = kmap_atomic(page);
4132 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4133 kunmap_atomic(dst);
4134
4135 drm_clflush_pages(&page, 1);
4136
4137 set_page_dirty(page);
4138 mark_page_accessed(page);
4139 page_cache_release(page);
4140 }
71acb5eb 4141 }
40ce6575 4142 intel_gtt_chipset_flush();
d78b47b9 4143
05394f39
CW
4144 obj->phys_obj->cur_obj = NULL;
4145 obj->phys_obj = NULL;
71acb5eb
DA
4146}
4147
4148int
4149i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4150 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4151 int id,
4152 int align)
71acb5eb 4153{
05394f39 4154 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4155 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4156 int ret = 0;
4157 int page_count;
4158 int i;
4159
4160 if (id > I915_MAX_PHYS_OBJECT)
4161 return -EINVAL;
4162
05394f39
CW
4163 if (obj->phys_obj) {
4164 if (obj->phys_obj->id == id)
71acb5eb
DA
4165 return 0;
4166 i915_gem_detach_phys_object(dev, obj);
4167 }
4168
71acb5eb
DA
4169 /* create a new object */
4170 if (!dev_priv->mm.phys_objs[id - 1]) {
4171 ret = i915_gem_init_phys_object(dev, id,
05394f39 4172 obj->base.size, align);
71acb5eb 4173 if (ret) {
05394f39
CW
4174 DRM_ERROR("failed to init phys object %d size: %zu\n",
4175 id, obj->base.size);
e5281ccd 4176 return ret;
71acb5eb
DA
4177 }
4178 }
4179
4180 /* bind to the object */
05394f39
CW
4181 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4182 obj->phys_obj->cur_obj = obj;
71acb5eb 4183
05394f39 4184 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4185
4186 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4187 struct page *page;
4188 char *dst, *src;
4189
5949eac4 4190 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4191 if (IS_ERR(page))
4192 return PTR_ERR(page);
71acb5eb 4193
ff75b9bc 4194 src = kmap_atomic(page);
05394f39 4195 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4196 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4197 kunmap_atomic(src);
71acb5eb 4198
e5281ccd
CW
4199 mark_page_accessed(page);
4200 page_cache_release(page);
4201 }
d78b47b9 4202
71acb5eb 4203 return 0;
71acb5eb
DA
4204}
4205
4206static int
05394f39
CW
4207i915_gem_phys_pwrite(struct drm_device *dev,
4208 struct drm_i915_gem_object *obj,
71acb5eb
DA
4209 struct drm_i915_gem_pwrite *args,
4210 struct drm_file *file_priv)
4211{
05394f39 4212 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4213 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4214
b47b30cc
CW
4215 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4216 unsigned long unwritten;
4217
4218 /* The physical object once assigned is fixed for the lifetime
4219 * of the obj, so we can safely drop the lock and continue
4220 * to access vaddr.
4221 */
4222 mutex_unlock(&dev->struct_mutex);
4223 unwritten = copy_from_user(vaddr, user_data, args->size);
4224 mutex_lock(&dev->struct_mutex);
4225 if (unwritten)
4226 return -EFAULT;
4227 }
71acb5eb 4228
40ce6575 4229 intel_gtt_chipset_flush();
71acb5eb
DA
4230 return 0;
4231}
b962442e 4232
f787a5f5 4233void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4234{
f787a5f5 4235 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4236
4237 /* Clean up our request list when the client is going away, so that
4238 * later retire_requests won't dereference our soon-to-be-gone
4239 * file_priv.
4240 */
1c25595f 4241 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4242 while (!list_empty(&file_priv->mm.request_list)) {
4243 struct drm_i915_gem_request *request;
4244
4245 request = list_first_entry(&file_priv->mm.request_list,
4246 struct drm_i915_gem_request,
4247 client_list);
4248 list_del(&request->client_list);
4249 request->file_priv = NULL;
4250 }
1c25595f 4251 spin_unlock(&file_priv->mm.lock);
b962442e 4252}
31169714 4253
31169714 4254static int
1495f230 4255i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4256{
17250b71
CW
4257 struct drm_i915_private *dev_priv =
4258 container_of(shrinker,
4259 struct drm_i915_private,
4260 mm.inactive_shrinker);
4261 struct drm_device *dev = dev_priv->dev;
6c085a72 4262 struct drm_i915_gem_object *obj;
1495f230 4263 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4264 int cnt;
4265
4266 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4267 return 0;
31169714 4268
6c085a72
CW
4269 if (nr_to_scan) {
4270 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4271 if (nr_to_scan > 0)
4272 i915_gem_shrink_all(dev_priv);
31169714
CW
4273 }
4274
17250b71 4275 cnt = 0;
6c085a72
CW
4276 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4277 cnt += obj->base.size >> PAGE_SHIFT;
4278 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4279 if (obj->pin_count == 0)
4280 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4281
17250b71 4282 mutex_unlock(&dev->struct_mutex);
6c085a72 4283 return cnt;
31169714 4284}