]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Only insert the mb() before updating the fence parameter
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
86a1ee26
CW
43 bool map_and_fenceable,
44 bool nonblocking);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
21dd3734 89static int
33196ded 90i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 91{
30dbf0c0
CW
92 int ret;
93
1f83fee0
DV
94#define EXIT_COND (!i915_reset_in_progress(error))
95 if (EXIT_COND)
30dbf0c0
CW
96 return 0;
97
1f83fee0
DV
98 /* GPU is already declared terminally dead, give up. */
99 if (i915_terminally_wedged(error))
100 return -EIO;
101
0a6759c6
DV
102 /*
103 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
104 * userspace. If it takes that long something really bad is going on and
105 * we should simply try to bail out and fail as gracefully as possible.
106 */
1f83fee0
DV
107 ret = wait_event_interruptible_timeout(error->reset_queue,
108 EXIT_COND,
109 10*HZ);
0a6759c6
DV
110 if (ret == 0) {
111 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
112 return -EIO;
113 } else if (ret < 0) {
30dbf0c0 114 return ret;
0a6759c6 115 }
1f83fee0 116#undef EXIT_COND
30dbf0c0 117
21dd3734 118 return 0;
30dbf0c0
CW
119}
120
54cf91dc 121int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 122{
33196ded 123 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
124 int ret;
125
33196ded 126 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
127 if (ret)
128 return ret;
129
130 ret = mutex_lock_interruptible(&dev->struct_mutex);
131 if (ret)
132 return ret;
133
23bc5982 134 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
135 return 0;
136}
30dbf0c0 137
7d1c4804 138static inline bool
05394f39 139i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 140{
6c085a72 141 return obj->gtt_space && !obj->active;
7d1c4804
CW
142}
143
79e53945
JB
144int
145i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 146 struct drm_file *file)
79e53945 147{
93d18799 148 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 149 struct drm_i915_gem_init *args = data;
2021746e 150
7bb6fb8d
DV
151 if (drm_core_check_feature(dev, DRIVER_MODESET))
152 return -ENODEV;
153
2021746e
CW
154 if (args->gtt_start >= args->gtt_end ||
155 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
156 return -EINVAL;
79e53945 157
f534bc0b
DV
158 /* GEM with user mode setting was never supported on ilk and later. */
159 if (INTEL_INFO(dev)->gen >= 5)
160 return -ENODEV;
161
79e53945 162 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
163 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
164 args->gtt_end);
93d18799 165 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
166 mutex_unlock(&dev->struct_mutex);
167
2021746e 168 return 0;
673a394b
EA
169}
170
5a125c3c
EA
171int
172i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 173 struct drm_file *file)
5a125c3c 174{
73aa808f 175 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 176 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
177 struct drm_i915_gem_object *obj;
178 size_t pinned;
5a125c3c 179
6299f992 180 pinned = 0;
73aa808f 181 mutex_lock(&dev->struct_mutex);
6c085a72 182 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
183 if (obj->pin_count)
184 pinned += obj->gtt_space->size;
73aa808f 185 mutex_unlock(&dev->struct_mutex);
5a125c3c 186
5d4545ae 187 args->aper_size = dev_priv->gtt.total;
0206e353 188 args->aper_available_size = args->aper_size - pinned;
6299f992 189
5a125c3c
EA
190 return 0;
191}
192
42dcedd4
CW
193void *i915_gem_object_alloc(struct drm_device *dev)
194{
195 struct drm_i915_private *dev_priv = dev->dev_private;
196 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
197}
198
199void i915_gem_object_free(struct drm_i915_gem_object *obj)
200{
201 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
202 kmem_cache_free(dev_priv->slab, obj);
203}
204
ff72145b
DA
205static int
206i915_gem_create(struct drm_file *file,
207 struct drm_device *dev,
208 uint64_t size,
209 uint32_t *handle_p)
673a394b 210{
05394f39 211 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
212 int ret;
213 u32 handle;
673a394b 214
ff72145b 215 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
216 if (size == 0)
217 return -EINVAL;
673a394b
EA
218
219 /* Allocate the new object */
ff72145b 220 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
221 if (obj == NULL)
222 return -ENOMEM;
223
05394f39 224 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 225 if (ret) {
05394f39
CW
226 drm_gem_object_release(&obj->base);
227 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
42dcedd4 228 i915_gem_object_free(obj);
673a394b 229 return ret;
1dfd9754 230 }
673a394b 231
202f2fef 232 /* drop reference from allocate - handle holds it now */
05394f39 233 drm_gem_object_unreference(&obj->base);
202f2fef
CW
234 trace_i915_gem_object_create(obj);
235
ff72145b 236 *handle_p = handle;
673a394b
EA
237 return 0;
238}
239
ff72145b
DA
240int
241i915_gem_dumb_create(struct drm_file *file,
242 struct drm_device *dev,
243 struct drm_mode_create_dumb *args)
244{
245 /* have to work out size/pitch and return them */
ed0291fd 246 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
247 args->size = args->pitch * args->height;
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
250}
251
252int i915_gem_dumb_destroy(struct drm_file *file,
253 struct drm_device *dev,
254 uint32_t handle)
255{
256 return drm_gem_handle_delete(file, handle);
257}
258
259/**
260 * Creates a new mm object and returns a handle to it.
261 */
262int
263i915_gem_create_ioctl(struct drm_device *dev, void *data,
264 struct drm_file *file)
265{
266 struct drm_i915_gem_create *args = data;
63ed2cb2 267
ff72145b
DA
268 return i915_gem_create(file, dev,
269 args->size, &args->handle);
270}
271
8461d226
DV
272static inline int
273__copy_to_user_swizzled(char __user *cpu_vaddr,
274 const char *gpu_vaddr, int gpu_offset,
275 int length)
276{
277 int ret, cpu_offset = 0;
278
279 while (length > 0) {
280 int cacheline_end = ALIGN(gpu_offset + 1, 64);
281 int this_length = min(cacheline_end - gpu_offset, length);
282 int swizzled_gpu_offset = gpu_offset ^ 64;
283
284 ret = __copy_to_user(cpu_vaddr + cpu_offset,
285 gpu_vaddr + swizzled_gpu_offset,
286 this_length);
287 if (ret)
288 return ret + length;
289
290 cpu_offset += this_length;
291 gpu_offset += this_length;
292 length -= this_length;
293 }
294
295 return 0;
296}
297
8c59967c 298static inline int
4f0c7cfb
BW
299__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
300 const char __user *cpu_vaddr,
8c59967c
DV
301 int length)
302{
303 int ret, cpu_offset = 0;
304
305 while (length > 0) {
306 int cacheline_end = ALIGN(gpu_offset + 1, 64);
307 int this_length = min(cacheline_end - gpu_offset, length);
308 int swizzled_gpu_offset = gpu_offset ^ 64;
309
310 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
311 cpu_vaddr + cpu_offset,
312 this_length);
313 if (ret)
314 return ret + length;
315
316 cpu_offset += this_length;
317 gpu_offset += this_length;
318 length -= this_length;
319 }
320
321 return 0;
322}
323
d174bd64
DV
324/* Per-page copy function for the shmem pread fastpath.
325 * Flushes invalid cachelines before reading the target if
326 * needs_clflush is set. */
eb01459f 327static int
d174bd64
DV
328shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
329 char __user *user_data,
330 bool page_do_bit17_swizzling, bool needs_clflush)
331{
332 char *vaddr;
333 int ret;
334
e7e58eb5 335 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
336 return -EINVAL;
337
338 vaddr = kmap_atomic(page);
339 if (needs_clflush)
340 drm_clflush_virt_range(vaddr + shmem_page_offset,
341 page_length);
342 ret = __copy_to_user_inatomic(user_data,
343 vaddr + shmem_page_offset,
344 page_length);
345 kunmap_atomic(vaddr);
346
f60d7f0c 347 return ret ? -EFAULT : 0;
d174bd64
DV
348}
349
23c18c71
DV
350static void
351shmem_clflush_swizzled_range(char *addr, unsigned long length,
352 bool swizzled)
353{
e7e58eb5 354 if (unlikely(swizzled)) {
23c18c71
DV
355 unsigned long start = (unsigned long) addr;
356 unsigned long end = (unsigned long) addr + length;
357
358 /* For swizzling simply ensure that we always flush both
359 * channels. Lame, but simple and it works. Swizzled
360 * pwrite/pread is far from a hotpath - current userspace
361 * doesn't use it at all. */
362 start = round_down(start, 128);
363 end = round_up(end, 128);
364
365 drm_clflush_virt_range((void *)start, end - start);
366 } else {
367 drm_clflush_virt_range(addr, length);
368 }
369
370}
371
d174bd64
DV
372/* Only difference to the fast-path function is that this can handle bit17
373 * and uses non-atomic copy and kmap functions. */
374static int
375shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
376 char __user *user_data,
377 bool page_do_bit17_swizzling, bool needs_clflush)
378{
379 char *vaddr;
380 int ret;
381
382 vaddr = kmap(page);
383 if (needs_clflush)
23c18c71
DV
384 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
385 page_length,
386 page_do_bit17_swizzling);
d174bd64
DV
387
388 if (page_do_bit17_swizzling)
389 ret = __copy_to_user_swizzled(user_data,
390 vaddr, shmem_page_offset,
391 page_length);
392 else
393 ret = __copy_to_user(user_data,
394 vaddr + shmem_page_offset,
395 page_length);
396 kunmap(page);
397
f60d7f0c 398 return ret ? - EFAULT : 0;
d174bd64
DV
399}
400
eb01459f 401static int
dbf7bff0
DV
402i915_gem_shmem_pread(struct drm_device *dev,
403 struct drm_i915_gem_object *obj,
404 struct drm_i915_gem_pread *args,
405 struct drm_file *file)
eb01459f 406{
8461d226 407 char __user *user_data;
eb01459f 408 ssize_t remain;
8461d226 409 loff_t offset;
eb2c0c81 410 int shmem_page_offset, page_length, ret = 0;
8461d226 411 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 412 int prefaulted = 0;
8489731c 413 int needs_clflush = 0;
9da3da66
CW
414 struct scatterlist *sg;
415 int i;
eb01459f 416
8461d226 417 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
418 remain = args->size;
419
8461d226 420 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 421
8489731c
DV
422 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
423 /* If we're not in the cpu read domain, set ourself into the gtt
424 * read domain and manually flush cachelines (if required). This
425 * optimizes for the case when the gpu will dirty the data
426 * anyway again before the next pread happens. */
427 if (obj->cache_level == I915_CACHE_NONE)
428 needs_clflush = 1;
6c085a72
CW
429 if (obj->gtt_space) {
430 ret = i915_gem_object_set_to_gtt_domain(obj, false);
431 if (ret)
432 return ret;
433 }
8489731c 434 }
eb01459f 435
f60d7f0c
CW
436 ret = i915_gem_object_get_pages(obj);
437 if (ret)
438 return ret;
439
440 i915_gem_object_pin_pages(obj);
441
8461d226 442 offset = args->offset;
eb01459f 443
9da3da66 444 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd
CW
445 struct page *page;
446
9da3da66
CW
447 if (i < offset >> PAGE_SHIFT)
448 continue;
449
450 if (remain <= 0)
451 break;
452
eb01459f
EA
453 /* Operation in this page
454 *
eb01459f 455 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
456 * page_length = bytes to copy for this page
457 */
c8cbbb8b 458 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
459 page_length = remain;
460 if ((shmem_page_offset + page_length) > PAGE_SIZE)
461 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 462
9da3da66 463 page = sg_page(sg);
8461d226
DV
464 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
465 (page_to_phys(page) & (1 << 17)) != 0;
466
d174bd64
DV
467 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
468 user_data, page_do_bit17_swizzling,
469 needs_clflush);
470 if (ret == 0)
471 goto next_page;
dbf7bff0 472
dbf7bff0
DV
473 mutex_unlock(&dev->struct_mutex);
474
96d79b52 475 if (!prefaulted) {
f56f821f 476 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
477 /* Userspace is tricking us, but we've already clobbered
478 * its pages with the prefault and promised to write the
479 * data up to the first fault. Hence ignore any errors
480 * and just continue. */
481 (void)ret;
482 prefaulted = 1;
483 }
eb01459f 484
d174bd64
DV
485 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 user_data, page_do_bit17_swizzling,
487 needs_clflush);
eb01459f 488
dbf7bff0 489 mutex_lock(&dev->struct_mutex);
f60d7f0c 490
dbf7bff0 491next_page:
e5281ccd 492 mark_page_accessed(page);
e5281ccd 493
f60d7f0c 494 if (ret)
8461d226 495 goto out;
8461d226 496
eb01459f 497 remain -= page_length;
8461d226 498 user_data += page_length;
eb01459f
EA
499 offset += page_length;
500 }
501
4f27b75d 502out:
f60d7f0c
CW
503 i915_gem_object_unpin_pages(obj);
504
eb01459f
EA
505 return ret;
506}
507
673a394b
EA
508/**
509 * Reads data from the object referenced by handle.
510 *
511 * On error, the contents of *data are undefined.
512 */
513int
514i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 515 struct drm_file *file)
673a394b
EA
516{
517 struct drm_i915_gem_pread *args = data;
05394f39 518 struct drm_i915_gem_object *obj;
35b62a89 519 int ret = 0;
673a394b 520
51311d0a
CW
521 if (args->size == 0)
522 return 0;
523
524 if (!access_ok(VERIFY_WRITE,
525 (char __user *)(uintptr_t)args->data_ptr,
526 args->size))
527 return -EFAULT;
528
4f27b75d 529 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 530 if (ret)
4f27b75d 531 return ret;
673a394b 532
05394f39 533 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 534 if (&obj->base == NULL) {
1d7cfea1
CW
535 ret = -ENOENT;
536 goto unlock;
4f27b75d 537 }
673a394b 538
7dcd2499 539 /* Bounds check source. */
05394f39
CW
540 if (args->offset > obj->base.size ||
541 args->size > obj->base.size - args->offset) {
ce9d419d 542 ret = -EINVAL;
35b62a89 543 goto out;
ce9d419d
CW
544 }
545
1286ff73
DV
546 /* prime objects have no backing filp to GEM pread/pwrite
547 * pages from.
548 */
549 if (!obj->base.filp) {
550 ret = -EINVAL;
551 goto out;
552 }
553
db53a302
CW
554 trace_i915_gem_object_pread(obj, args->offset, args->size);
555
dbf7bff0 556 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 557
35b62a89 558out:
05394f39 559 drm_gem_object_unreference(&obj->base);
1d7cfea1 560unlock:
4f27b75d 561 mutex_unlock(&dev->struct_mutex);
eb01459f 562 return ret;
673a394b
EA
563}
564
0839ccb8
KP
565/* This is the fast write path which cannot handle
566 * page faults in the source data
9b7530cc 567 */
0839ccb8
KP
568
569static inline int
570fast_user_write(struct io_mapping *mapping,
571 loff_t page_base, int page_offset,
572 char __user *user_data,
573 int length)
9b7530cc 574{
4f0c7cfb
BW
575 void __iomem *vaddr_atomic;
576 void *vaddr;
0839ccb8 577 unsigned long unwritten;
9b7530cc 578
3e4d3af5 579 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
580 /* We can use the cpu mem copy function because this is X86. */
581 vaddr = (void __force*)vaddr_atomic + page_offset;
582 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 583 user_data, length);
3e4d3af5 584 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 585 return unwritten;
0839ccb8
KP
586}
587
3de09aa3
EA
588/**
589 * This is the fast pwrite path, where we copy the data directly from the
590 * user into the GTT, uncached.
591 */
673a394b 592static int
05394f39
CW
593i915_gem_gtt_pwrite_fast(struct drm_device *dev,
594 struct drm_i915_gem_object *obj,
3de09aa3 595 struct drm_i915_gem_pwrite *args,
05394f39 596 struct drm_file *file)
673a394b 597{
0839ccb8 598 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 599 ssize_t remain;
0839ccb8 600 loff_t offset, page_base;
673a394b 601 char __user *user_data;
935aaa69
DV
602 int page_offset, page_length, ret;
603
86a1ee26 604 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
605 if (ret)
606 goto out;
607
608 ret = i915_gem_object_set_to_gtt_domain(obj, true);
609 if (ret)
610 goto out_unpin;
611
612 ret = i915_gem_object_put_fence(obj);
613 if (ret)
614 goto out_unpin;
673a394b
EA
615
616 user_data = (char __user *) (uintptr_t) args->data_ptr;
617 remain = args->size;
673a394b 618
05394f39 619 offset = obj->gtt_offset + args->offset;
673a394b
EA
620
621 while (remain > 0) {
622 /* Operation in this page
623 *
0839ccb8
KP
624 * page_base = page offset within aperture
625 * page_offset = offset within page
626 * page_length = bytes to copy for this page
673a394b 627 */
c8cbbb8b
CW
628 page_base = offset & PAGE_MASK;
629 page_offset = offset_in_page(offset);
0839ccb8
KP
630 page_length = remain;
631 if ((page_offset + remain) > PAGE_SIZE)
632 page_length = PAGE_SIZE - page_offset;
633
0839ccb8 634 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
635 * source page isn't available. Return the error and we'll
636 * retry in the slow path.
0839ccb8 637 */
5d4545ae 638 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
639 page_offset, user_data, page_length)) {
640 ret = -EFAULT;
641 goto out_unpin;
642 }
673a394b 643
0839ccb8
KP
644 remain -= page_length;
645 user_data += page_length;
646 offset += page_length;
673a394b 647 }
673a394b 648
935aaa69
DV
649out_unpin:
650 i915_gem_object_unpin(obj);
651out:
3de09aa3 652 return ret;
673a394b
EA
653}
654
d174bd64
DV
655/* Per-page copy function for the shmem pwrite fastpath.
656 * Flushes invalid cachelines before writing to the target if
657 * needs_clflush_before is set and flushes out any written cachelines after
658 * writing if needs_clflush is set. */
3043c60c 659static int
d174bd64
DV
660shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
661 char __user *user_data,
662 bool page_do_bit17_swizzling,
663 bool needs_clflush_before,
664 bool needs_clflush_after)
673a394b 665{
d174bd64 666 char *vaddr;
673a394b 667 int ret;
3de09aa3 668
e7e58eb5 669 if (unlikely(page_do_bit17_swizzling))
d174bd64 670 return -EINVAL;
3de09aa3 671
d174bd64
DV
672 vaddr = kmap_atomic(page);
673 if (needs_clflush_before)
674 drm_clflush_virt_range(vaddr + shmem_page_offset,
675 page_length);
676 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
677 user_data,
678 page_length);
679 if (needs_clflush_after)
680 drm_clflush_virt_range(vaddr + shmem_page_offset,
681 page_length);
682 kunmap_atomic(vaddr);
3de09aa3 683
755d2218 684 return ret ? -EFAULT : 0;
3de09aa3
EA
685}
686
d174bd64
DV
687/* Only difference to the fast-path function is that this can handle bit17
688 * and uses non-atomic copy and kmap functions. */
3043c60c 689static int
d174bd64
DV
690shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
691 char __user *user_data,
692 bool page_do_bit17_swizzling,
693 bool needs_clflush_before,
694 bool needs_clflush_after)
673a394b 695{
d174bd64
DV
696 char *vaddr;
697 int ret;
e5281ccd 698
d174bd64 699 vaddr = kmap(page);
e7e58eb5 700 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
701 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
702 page_length,
703 page_do_bit17_swizzling);
d174bd64
DV
704 if (page_do_bit17_swizzling)
705 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
706 user_data,
707 page_length);
d174bd64
DV
708 else
709 ret = __copy_from_user(vaddr + shmem_page_offset,
710 user_data,
711 page_length);
712 if (needs_clflush_after)
23c18c71
DV
713 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
714 page_length,
715 page_do_bit17_swizzling);
d174bd64 716 kunmap(page);
40123c1f 717
755d2218 718 return ret ? -EFAULT : 0;
40123c1f
EA
719}
720
40123c1f 721static int
e244a443
DV
722i915_gem_shmem_pwrite(struct drm_device *dev,
723 struct drm_i915_gem_object *obj,
724 struct drm_i915_gem_pwrite *args,
725 struct drm_file *file)
40123c1f 726{
40123c1f 727 ssize_t remain;
8c59967c
DV
728 loff_t offset;
729 char __user *user_data;
eb2c0c81 730 int shmem_page_offset, page_length, ret = 0;
8c59967c 731 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 732 int hit_slowpath = 0;
58642885
DV
733 int needs_clflush_after = 0;
734 int needs_clflush_before = 0;
9da3da66
CW
735 int i;
736 struct scatterlist *sg;
40123c1f 737
8c59967c 738 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
739 remain = args->size;
740
8c59967c 741 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 742
58642885
DV
743 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
744 /* If we're not in the cpu write domain, set ourself into the gtt
745 * write domain and manually flush cachelines (if required). This
746 * optimizes for the case when the gpu will use the data
747 * right away and we therefore have to clflush anyway. */
748 if (obj->cache_level == I915_CACHE_NONE)
749 needs_clflush_after = 1;
6c085a72
CW
750 if (obj->gtt_space) {
751 ret = i915_gem_object_set_to_gtt_domain(obj, true);
752 if (ret)
753 return ret;
754 }
58642885
DV
755 }
756 /* Same trick applies for invalidate partially written cachelines before
757 * writing. */
758 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
759 && obj->cache_level == I915_CACHE_NONE)
760 needs_clflush_before = 1;
761
755d2218
CW
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
673a394b 768 offset = args->offset;
05394f39 769 obj->dirty = 1;
673a394b 770
9da3da66 771 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd 772 struct page *page;
58642885 773 int partial_cacheline_write;
e5281ccd 774
9da3da66
CW
775 if (i < offset >> PAGE_SHIFT)
776 continue;
777
778 if (remain <= 0)
779 break;
780
40123c1f
EA
781 /* Operation in this page
782 *
40123c1f 783 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
784 * page_length = bytes to copy for this page
785 */
c8cbbb8b 786 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
787
788 page_length = remain;
789 if ((shmem_page_offset + page_length) > PAGE_SIZE)
790 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 791
58642885
DV
792 /* If we don't overwrite a cacheline completely we need to be
793 * careful to have up-to-date data by first clflushing. Don't
794 * overcomplicate things and flush the entire patch. */
795 partial_cacheline_write = needs_clflush_before &&
796 ((shmem_page_offset | page_length)
797 & (boot_cpu_data.x86_clflush_size - 1));
798
9da3da66 799 page = sg_page(sg);
8c59967c
DV
800 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
801 (page_to_phys(page) & (1 << 17)) != 0;
802
d174bd64
DV
803 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
804 user_data, page_do_bit17_swizzling,
805 partial_cacheline_write,
806 needs_clflush_after);
807 if (ret == 0)
808 goto next_page;
e244a443
DV
809
810 hit_slowpath = 1;
e244a443 811 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
812 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
813 user_data, page_do_bit17_swizzling,
814 partial_cacheline_write,
815 needs_clflush_after);
40123c1f 816
e244a443 817 mutex_lock(&dev->struct_mutex);
755d2218 818
e244a443 819next_page:
e5281ccd
CW
820 set_page_dirty(page);
821 mark_page_accessed(page);
e5281ccd 822
755d2218 823 if (ret)
8c59967c 824 goto out;
8c59967c 825
40123c1f 826 remain -= page_length;
8c59967c 827 user_data += page_length;
40123c1f 828 offset += page_length;
673a394b
EA
829 }
830
fbd5a26d 831out:
755d2218
CW
832 i915_gem_object_unpin_pages(obj);
833
e244a443 834 if (hit_slowpath) {
8dcf015e
DV
835 /*
836 * Fixup: Flush cpu caches in case we didn't flush the dirty
837 * cachelines in-line while writing and the object moved
838 * out of the cpu write domain while we've dropped the lock.
839 */
840 if (!needs_clflush_after &&
841 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
e244a443 842 i915_gem_clflush_object(obj);
e76e9aeb 843 i915_gem_chipset_flush(dev);
e244a443 844 }
8c59967c 845 }
673a394b 846
58642885 847 if (needs_clflush_after)
e76e9aeb 848 i915_gem_chipset_flush(dev);
58642885 849
40123c1f 850 return ret;
673a394b
EA
851}
852
853/**
854 * Writes data to the object referenced by handle.
855 *
856 * On error, the contents of the buffer that were to be modified are undefined.
857 */
858int
859i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 860 struct drm_file *file)
673a394b
EA
861{
862 struct drm_i915_gem_pwrite *args = data;
05394f39 863 struct drm_i915_gem_object *obj;
51311d0a
CW
864 int ret;
865
866 if (args->size == 0)
867 return 0;
868
869 if (!access_ok(VERIFY_READ,
870 (char __user *)(uintptr_t)args->data_ptr,
871 args->size))
872 return -EFAULT;
873
f56f821f
DV
874 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
875 args->size);
51311d0a
CW
876 if (ret)
877 return -EFAULT;
673a394b 878
fbd5a26d 879 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 880 if (ret)
fbd5a26d 881 return ret;
1d7cfea1 882
05394f39 883 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 884 if (&obj->base == NULL) {
1d7cfea1
CW
885 ret = -ENOENT;
886 goto unlock;
fbd5a26d 887 }
673a394b 888
7dcd2499 889 /* Bounds check destination. */
05394f39
CW
890 if (args->offset > obj->base.size ||
891 args->size > obj->base.size - args->offset) {
ce9d419d 892 ret = -EINVAL;
35b62a89 893 goto out;
ce9d419d
CW
894 }
895
1286ff73
DV
896 /* prime objects have no backing filp to GEM pread/pwrite
897 * pages from.
898 */
899 if (!obj->base.filp) {
900 ret = -EINVAL;
901 goto out;
902 }
903
db53a302
CW
904 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
905
935aaa69 906 ret = -EFAULT;
673a394b
EA
907 /* We can only do the GTT pwrite on untiled buffers, as otherwise
908 * it would end up going through the fenced access, and we'll get
909 * different detiling behavior between reading and writing.
910 * pread/pwrite currently are reading and writing from the CPU
911 * perspective, requiring manual detiling by the client.
912 */
5c0480f2 913 if (obj->phys_obj) {
fbd5a26d 914 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
915 goto out;
916 }
917
86a1ee26 918 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 919 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 920 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 921 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
922 /* Note that the gtt paths might fail with non-page-backed user
923 * pointers (e.g. gtt mappings when moving data between
924 * textures). Fallback to the shmem path in that case. */
fbd5a26d 925 }
673a394b 926
86a1ee26 927 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 928 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 929
35b62a89 930out:
05394f39 931 drm_gem_object_unreference(&obj->base);
1d7cfea1 932unlock:
fbd5a26d 933 mutex_unlock(&dev->struct_mutex);
673a394b
EA
934 return ret;
935}
936
b361237b 937int
33196ded 938i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
939 bool interruptible)
940{
1f83fee0 941 if (i915_reset_in_progress(error)) {
b361237b
CW
942 /* Non-interruptible callers can't handle -EAGAIN, hence return
943 * -EIO unconditionally for these. */
944 if (!interruptible)
945 return -EIO;
946
1f83fee0
DV
947 /* Recovery complete, but the reset failed ... */
948 if (i915_terminally_wedged(error))
b361237b
CW
949 return -EIO;
950
951 return -EAGAIN;
952 }
953
954 return 0;
955}
956
957/*
958 * Compare seqno against outstanding lazy request. Emit a request if they are
959 * equal.
960 */
961static int
962i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
963{
964 int ret;
965
966 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
967
968 ret = 0;
969 if (seqno == ring->outstanding_lazy_request)
970 ret = i915_add_request(ring, NULL, NULL);
971
972 return ret;
973}
974
975/**
976 * __wait_seqno - wait until execution of seqno has finished
977 * @ring: the ring expected to report seqno
978 * @seqno: duh!
979 * @interruptible: do an interruptible wait (normally yes)
980 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
981 *
982 * Returns 0 if the seqno was found within the alloted time. Else returns the
983 * errno with remaining time filled in timeout argument.
984 */
985static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
986 bool interruptible, struct timespec *timeout)
987{
988 drm_i915_private_t *dev_priv = ring->dev->dev_private;
989 struct timespec before, now, wait_time={1,0};
990 unsigned long timeout_jiffies;
991 long end;
992 bool wait_forever = true;
993 int ret;
994
995 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
996 return 0;
997
998 trace_i915_gem_request_wait_begin(ring, seqno);
999
1000 if (timeout != NULL) {
1001 wait_time = *timeout;
1002 wait_forever = false;
1003 }
1004
1005 timeout_jiffies = timespec_to_jiffies(&wait_time);
1006
1007 if (WARN_ON(!ring->irq_get(ring)))
1008 return -ENODEV;
1009
1010 /* Record current time in case interrupted by signal, or wedged * */
1011 getrawmonotonic(&before);
1012
1013#define EXIT_COND \
1014 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1f83fee0 1015 i915_reset_in_progress(&dev_priv->gpu_error))
b361237b
CW
1016 do {
1017 if (interruptible)
1018 end = wait_event_interruptible_timeout(ring->irq_queue,
1019 EXIT_COND,
1020 timeout_jiffies);
1021 else
1022 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1023 timeout_jiffies);
1024
33196ded 1025 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1026 if (ret)
1027 end = ret;
1028 } while (end == 0 && wait_forever);
1029
1030 getrawmonotonic(&now);
1031
1032 ring->irq_put(ring);
1033 trace_i915_gem_request_wait_end(ring, seqno);
1034#undef EXIT_COND
1035
1036 if (timeout) {
1037 struct timespec sleep_time = timespec_sub(now, before);
1038 *timeout = timespec_sub(*timeout, sleep_time);
1039 }
1040
1041 switch (end) {
1042 case -EIO:
1043 case -EAGAIN: /* Wedged */
1044 case -ERESTARTSYS: /* Signal */
1045 return (int)end;
1046 case 0: /* Timeout */
1047 if (timeout)
1048 set_normalized_timespec(timeout, 0, 0);
1049 return -ETIME;
1050 default: /* Completed */
1051 WARN_ON(end < 0); /* We're not aware of other errors */
1052 return 0;
1053 }
1054}
1055
1056/**
1057 * Waits for a sequence number to be signaled, and cleans up the
1058 * request and object lists appropriately for that event.
1059 */
1060int
1061i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1062{
1063 struct drm_device *dev = ring->dev;
1064 struct drm_i915_private *dev_priv = dev->dev_private;
1065 bool interruptible = dev_priv->mm.interruptible;
1066 int ret;
1067
1068 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1069 BUG_ON(seqno == 0);
1070
33196ded 1071 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1072 if (ret)
1073 return ret;
1074
1075 ret = i915_gem_check_olr(ring, seqno);
1076 if (ret)
1077 return ret;
1078
1079 return __wait_seqno(ring, seqno, interruptible, NULL);
1080}
1081
1082/**
1083 * Ensures that all rendering to the object has completed and the object is
1084 * safe to unbind from the GTT or access from the CPU.
1085 */
1086static __must_check int
1087i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1088 bool readonly)
1089{
1090 struct intel_ring_buffer *ring = obj->ring;
1091 u32 seqno;
1092 int ret;
1093
1094 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1095 if (seqno == 0)
1096 return 0;
1097
1098 ret = i915_wait_seqno(ring, seqno);
1099 if (ret)
1100 return ret;
1101
1102 i915_gem_retire_requests_ring(ring);
1103
1104 /* Manually manage the write flush as we may have not yet
1105 * retired the buffer.
1106 */
1107 if (obj->last_write_seqno &&
1108 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1109 obj->last_write_seqno = 0;
1110 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1111 }
1112
1113 return 0;
1114}
1115
3236f57a
CW
1116/* A nonblocking variant of the above wait. This is a highly dangerous routine
1117 * as the object state may change during this call.
1118 */
1119static __must_check int
1120i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1121 bool readonly)
1122{
1123 struct drm_device *dev = obj->base.dev;
1124 struct drm_i915_private *dev_priv = dev->dev_private;
1125 struct intel_ring_buffer *ring = obj->ring;
1126 u32 seqno;
1127 int ret;
1128
1129 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1130 BUG_ON(!dev_priv->mm.interruptible);
1131
1132 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1133 if (seqno == 0)
1134 return 0;
1135
33196ded 1136 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1137 if (ret)
1138 return ret;
1139
1140 ret = i915_gem_check_olr(ring, seqno);
1141 if (ret)
1142 return ret;
1143
1144 mutex_unlock(&dev->struct_mutex);
1145 ret = __wait_seqno(ring, seqno, true, NULL);
1146 mutex_lock(&dev->struct_mutex);
1147
1148 i915_gem_retire_requests_ring(ring);
1149
1150 /* Manually manage the write flush as we may have not yet
1151 * retired the buffer.
1152 */
1153 if (obj->last_write_seqno &&
1154 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1155 obj->last_write_seqno = 0;
1156 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1157 }
1158
1159 return ret;
1160}
1161
673a394b 1162/**
2ef7eeaa
EA
1163 * Called when user space prepares to use an object with the CPU, either
1164 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1165 */
1166int
1167i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1168 struct drm_file *file)
673a394b
EA
1169{
1170 struct drm_i915_gem_set_domain *args = data;
05394f39 1171 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1172 uint32_t read_domains = args->read_domains;
1173 uint32_t write_domain = args->write_domain;
673a394b
EA
1174 int ret;
1175
2ef7eeaa 1176 /* Only handle setting domains to types used by the CPU. */
21d509e3 1177 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1178 return -EINVAL;
1179
21d509e3 1180 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1181 return -EINVAL;
1182
1183 /* Having something in the write domain implies it's in the read
1184 * domain, and only that read domain. Enforce that in the request.
1185 */
1186 if (write_domain != 0 && read_domains != write_domain)
1187 return -EINVAL;
1188
76c1dec1 1189 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1190 if (ret)
76c1dec1 1191 return ret;
1d7cfea1 1192
05394f39 1193 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1194 if (&obj->base == NULL) {
1d7cfea1
CW
1195 ret = -ENOENT;
1196 goto unlock;
76c1dec1 1197 }
673a394b 1198
3236f57a
CW
1199 /* Try to flush the object off the GPU without holding the lock.
1200 * We will repeat the flush holding the lock in the normal manner
1201 * to catch cases where we are gazumped.
1202 */
1203 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1204 if (ret)
1205 goto unref;
1206
2ef7eeaa
EA
1207 if (read_domains & I915_GEM_DOMAIN_GTT) {
1208 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1209
1210 /* Silently promote "you're not bound, there was nothing to do"
1211 * to success, since the client was just asking us to
1212 * make sure everything was done.
1213 */
1214 if (ret == -EINVAL)
1215 ret = 0;
2ef7eeaa 1216 } else {
e47c68e9 1217 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1218 }
1219
3236f57a 1220unref:
05394f39 1221 drm_gem_object_unreference(&obj->base);
1d7cfea1 1222unlock:
673a394b
EA
1223 mutex_unlock(&dev->struct_mutex);
1224 return ret;
1225}
1226
1227/**
1228 * Called when user space has done writes to this buffer
1229 */
1230int
1231i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1232 struct drm_file *file)
673a394b
EA
1233{
1234 struct drm_i915_gem_sw_finish *args = data;
05394f39 1235 struct drm_i915_gem_object *obj;
673a394b
EA
1236 int ret = 0;
1237
76c1dec1 1238 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1239 if (ret)
76c1dec1 1240 return ret;
1d7cfea1 1241
05394f39 1242 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1243 if (&obj->base == NULL) {
1d7cfea1
CW
1244 ret = -ENOENT;
1245 goto unlock;
673a394b
EA
1246 }
1247
673a394b 1248 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1249 if (obj->pin_count)
e47c68e9
EA
1250 i915_gem_object_flush_cpu_write_domain(obj);
1251
05394f39 1252 drm_gem_object_unreference(&obj->base);
1d7cfea1 1253unlock:
673a394b
EA
1254 mutex_unlock(&dev->struct_mutex);
1255 return ret;
1256}
1257
1258/**
1259 * Maps the contents of an object, returning the address it is mapped
1260 * into.
1261 *
1262 * While the mapping holds a reference on the contents of the object, it doesn't
1263 * imply a ref on the object itself.
1264 */
1265int
1266i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1267 struct drm_file *file)
673a394b
EA
1268{
1269 struct drm_i915_gem_mmap *args = data;
1270 struct drm_gem_object *obj;
673a394b
EA
1271 unsigned long addr;
1272
05394f39 1273 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1274 if (obj == NULL)
bf79cb91 1275 return -ENOENT;
673a394b 1276
1286ff73
DV
1277 /* prime objects have no backing filp to GEM mmap
1278 * pages from.
1279 */
1280 if (!obj->filp) {
1281 drm_gem_object_unreference_unlocked(obj);
1282 return -EINVAL;
1283 }
1284
6be5ceb0 1285 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1286 PROT_READ | PROT_WRITE, MAP_SHARED,
1287 args->offset);
bc9025bd 1288 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1289 if (IS_ERR((void *)addr))
1290 return addr;
1291
1292 args->addr_ptr = (uint64_t) addr;
1293
1294 return 0;
1295}
1296
de151cf6
JB
1297/**
1298 * i915_gem_fault - fault a page into the GTT
1299 * vma: VMA in question
1300 * vmf: fault info
1301 *
1302 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1303 * from userspace. The fault handler takes care of binding the object to
1304 * the GTT (if needed), allocating and programming a fence register (again,
1305 * only if needed based on whether the old reg is still valid or the object
1306 * is tiled) and inserting a new PTE into the faulting process.
1307 *
1308 * Note that the faulting process may involve evicting existing objects
1309 * from the GTT and/or fence registers to make room. So performance may
1310 * suffer if the GTT working set is large or there are few fence registers
1311 * left.
1312 */
1313int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1314{
05394f39
CW
1315 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1316 struct drm_device *dev = obj->base.dev;
7d1c4804 1317 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1318 pgoff_t page_offset;
1319 unsigned long pfn;
1320 int ret = 0;
0f973f27 1321 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1322
1323 /* We don't use vmf->pgoff since that has the fake offset */
1324 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1325 PAGE_SHIFT;
1326
d9bc7e9f
CW
1327 ret = i915_mutex_lock_interruptible(dev);
1328 if (ret)
1329 goto out;
a00b10c3 1330
db53a302
CW
1331 trace_i915_gem_object_fault(obj, page_offset, true, write);
1332
eb119bd6
CW
1333 /* Access to snoopable pages through the GTT is incoherent. */
1334 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1335 ret = -EINVAL;
1336 goto unlock;
1337 }
1338
d9bc7e9f 1339 /* Now bind it into the GTT if needed */
c9839303
CW
1340 ret = i915_gem_object_pin(obj, 0, true, false);
1341 if (ret)
1342 goto unlock;
4a684a41 1343
c9839303
CW
1344 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1345 if (ret)
1346 goto unpin;
74898d7e 1347
06d98131 1348 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1349 if (ret)
c9839303 1350 goto unpin;
7d1c4804 1351
6299f992
CW
1352 obj->fault_mappable = true;
1353
5d4545ae 1354 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1355 page_offset;
1356
1357 /* Finally, remap it using the new GTT offset */
1358 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1359unpin:
1360 i915_gem_object_unpin(obj);
c715089f 1361unlock:
de151cf6 1362 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1363out:
de151cf6 1364 switch (ret) {
d9bc7e9f 1365 case -EIO:
a9340cca
DV
1366 /* If this -EIO is due to a gpu hang, give the reset code a
1367 * chance to clean up the mess. Otherwise return the proper
1368 * SIGBUS. */
1f83fee0 1369 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1370 return VM_FAULT_SIGBUS;
045e769a 1371 case -EAGAIN:
d9bc7e9f
CW
1372 /* Give the error handler a chance to run and move the
1373 * objects off the GPU active list. Next time we service the
1374 * fault, we should be able to transition the page into the
1375 * GTT without touching the GPU (and so avoid further
1376 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1377 * with coherency, just lost writes.
1378 */
045e769a 1379 set_need_resched();
c715089f
CW
1380 case 0:
1381 case -ERESTARTSYS:
bed636ab 1382 case -EINTR:
e79e0fe3
DR
1383 case -EBUSY:
1384 /*
1385 * EBUSY is ok: this just means that another thread
1386 * already did the job.
1387 */
c715089f 1388 return VM_FAULT_NOPAGE;
de151cf6 1389 case -ENOMEM:
de151cf6 1390 return VM_FAULT_OOM;
a7c2e1aa
DV
1391 case -ENOSPC:
1392 return VM_FAULT_SIGBUS;
de151cf6 1393 default:
a7c2e1aa 1394 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1395 return VM_FAULT_SIGBUS;
de151cf6
JB
1396 }
1397}
1398
901782b2
CW
1399/**
1400 * i915_gem_release_mmap - remove physical page mappings
1401 * @obj: obj in question
1402 *
af901ca1 1403 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1404 * relinquish ownership of the pages back to the system.
1405 *
1406 * It is vital that we remove the page mapping if we have mapped a tiled
1407 * object through the GTT and then lose the fence register due to
1408 * resource pressure. Similarly if the object has been moved out of the
1409 * aperture, than pages mapped into userspace must be revoked. Removing the
1410 * mapping will then trigger a page fault on the next user access, allowing
1411 * fixup by i915_gem_fault().
1412 */
d05ca301 1413void
05394f39 1414i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1415{
6299f992
CW
1416 if (!obj->fault_mappable)
1417 return;
901782b2 1418
f6e47884
CW
1419 if (obj->base.dev->dev_mapping)
1420 unmap_mapping_range(obj->base.dev->dev_mapping,
1421 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1422 obj->base.size, 1);
fb7d516a 1423
6299f992 1424 obj->fault_mappable = false;
901782b2
CW
1425}
1426
0fa87796 1427uint32_t
e28f8711 1428i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1429{
e28f8711 1430 uint32_t gtt_size;
92b88aeb
CW
1431
1432 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1433 tiling_mode == I915_TILING_NONE)
1434 return size;
92b88aeb
CW
1435
1436 /* Previous chips need a power-of-two fence region when tiling */
1437 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1438 gtt_size = 1024*1024;
92b88aeb 1439 else
e28f8711 1440 gtt_size = 512*1024;
92b88aeb 1441
e28f8711
CW
1442 while (gtt_size < size)
1443 gtt_size <<= 1;
92b88aeb 1444
e28f8711 1445 return gtt_size;
92b88aeb
CW
1446}
1447
de151cf6
JB
1448/**
1449 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1450 * @obj: object to check
1451 *
1452 * Return the required GTT alignment for an object, taking into account
5e783301 1453 * potential fence register mapping.
de151cf6 1454 */
d865110c
ID
1455uint32_t
1456i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1457 int tiling_mode, bool fenced)
de151cf6 1458{
de151cf6
JB
1459 /*
1460 * Minimum alignment is 4k (GTT page size), but might be greater
1461 * if a fence register is needed for the object.
1462 */
d865110c 1463 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1464 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1465 return 4096;
1466
a00b10c3
CW
1467 /*
1468 * Previous chips need to be aligned to the size of the smallest
1469 * fence register that can contain the object.
1470 */
e28f8711 1471 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1472}
1473
d8cb5086
CW
1474static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1475{
1476 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1477 int ret;
1478
1479 if (obj->base.map_list.map)
1480 return 0;
1481
da494d7c
DV
1482 dev_priv->mm.shrinker_no_lock_stealing = true;
1483
d8cb5086
CW
1484 ret = drm_gem_create_mmap_offset(&obj->base);
1485 if (ret != -ENOSPC)
da494d7c 1486 goto out;
d8cb5086
CW
1487
1488 /* Badly fragmented mmap space? The only way we can recover
1489 * space is by destroying unwanted objects. We can't randomly release
1490 * mmap_offsets as userspace expects them to be persistent for the
1491 * lifetime of the objects. The closest we can is to release the
1492 * offsets on purgeable objects by truncating it and marking it purged,
1493 * which prevents userspace from ever using that object again.
1494 */
1495 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1496 ret = drm_gem_create_mmap_offset(&obj->base);
1497 if (ret != -ENOSPC)
da494d7c 1498 goto out;
d8cb5086
CW
1499
1500 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1501 ret = drm_gem_create_mmap_offset(&obj->base);
1502out:
1503 dev_priv->mm.shrinker_no_lock_stealing = false;
1504
1505 return ret;
d8cb5086
CW
1506}
1507
1508static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1509{
1510 if (!obj->base.map_list.map)
1511 return;
1512
1513 drm_gem_free_mmap_offset(&obj->base);
1514}
1515
de151cf6 1516int
ff72145b
DA
1517i915_gem_mmap_gtt(struct drm_file *file,
1518 struct drm_device *dev,
1519 uint32_t handle,
1520 uint64_t *offset)
de151cf6 1521{
da761a6e 1522 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1523 struct drm_i915_gem_object *obj;
de151cf6
JB
1524 int ret;
1525
76c1dec1 1526 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1527 if (ret)
76c1dec1 1528 return ret;
de151cf6 1529
ff72145b 1530 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1531 if (&obj->base == NULL) {
1d7cfea1
CW
1532 ret = -ENOENT;
1533 goto unlock;
1534 }
de151cf6 1535
5d4545ae 1536 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1537 ret = -E2BIG;
ff56b0bc 1538 goto out;
da761a6e
CW
1539 }
1540
05394f39 1541 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1542 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1543 ret = -EINVAL;
1544 goto out;
ab18282d
CW
1545 }
1546
d8cb5086
CW
1547 ret = i915_gem_object_create_mmap_offset(obj);
1548 if (ret)
1549 goto out;
de151cf6 1550
ff72145b 1551 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1552
1d7cfea1 1553out:
05394f39 1554 drm_gem_object_unreference(&obj->base);
1d7cfea1 1555unlock:
de151cf6 1556 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1557 return ret;
de151cf6
JB
1558}
1559
ff72145b
DA
1560/**
1561 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1562 * @dev: DRM device
1563 * @data: GTT mapping ioctl data
1564 * @file: GEM object info
1565 *
1566 * Simply returns the fake offset to userspace so it can mmap it.
1567 * The mmap call will end up in drm_gem_mmap(), which will set things
1568 * up so we can get faults in the handler above.
1569 *
1570 * The fault handler will take care of binding the object into the GTT
1571 * (since it may have been evicted to make room for something), allocating
1572 * a fence register, and mapping the appropriate aperture address into
1573 * userspace.
1574 */
1575int
1576i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1577 struct drm_file *file)
1578{
1579 struct drm_i915_gem_mmap_gtt *args = data;
1580
ff72145b
DA
1581 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1582}
1583
225067ee
DV
1584/* Immediately discard the backing storage */
1585static void
1586i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1587{
e5281ccd 1588 struct inode *inode;
e5281ccd 1589
4d6294bf 1590 i915_gem_object_free_mmap_offset(obj);
1286ff73 1591
4d6294bf
CW
1592 if (obj->base.filp == NULL)
1593 return;
e5281ccd 1594
225067ee
DV
1595 /* Our goal here is to return as much of the memory as
1596 * is possible back to the system as we are called from OOM.
1597 * To do this we must instruct the shmfs to drop all of its
1598 * backing pages, *now*.
1599 */
05394f39 1600 inode = obj->base.filp->f_path.dentry->d_inode;
225067ee 1601 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1602
225067ee
DV
1603 obj->madv = __I915_MADV_PURGED;
1604}
e5281ccd 1605
225067ee
DV
1606static inline int
1607i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1608{
1609 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1610}
1611
5cdf5881 1612static void
05394f39 1613i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1614{
05394f39 1615 int page_count = obj->base.size / PAGE_SIZE;
9da3da66 1616 struct scatterlist *sg;
6c085a72 1617 int ret, i;
1286ff73 1618
05394f39 1619 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1620
6c085a72
CW
1621 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1622 if (ret) {
1623 /* In the event of a disaster, abandon all caches and
1624 * hope for the best.
1625 */
1626 WARN_ON(ret != -EIO);
1627 i915_gem_clflush_object(obj);
1628 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1629 }
1630
6dacfd2f 1631 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1632 i915_gem_object_save_bit_17_swizzle(obj);
1633
05394f39
CW
1634 if (obj->madv == I915_MADV_DONTNEED)
1635 obj->dirty = 0;
3ef94daa 1636
9da3da66
CW
1637 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1638 struct page *page = sg_page(sg);
1639
05394f39 1640 if (obj->dirty)
9da3da66 1641 set_page_dirty(page);
3ef94daa 1642
05394f39 1643 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1644 mark_page_accessed(page);
3ef94daa 1645
9da3da66 1646 page_cache_release(page);
3ef94daa 1647 }
05394f39 1648 obj->dirty = 0;
673a394b 1649
9da3da66
CW
1650 sg_free_table(obj->pages);
1651 kfree(obj->pages);
37e680a1 1652}
6c085a72 1653
dd624afd 1654int
37e680a1
CW
1655i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1656{
1657 const struct drm_i915_gem_object_ops *ops = obj->ops;
1658
2f745ad3 1659 if (obj->pages == NULL)
37e680a1
CW
1660 return 0;
1661
1662 BUG_ON(obj->gtt_space);
6c085a72 1663
a5570178
CW
1664 if (obj->pages_pin_count)
1665 return -EBUSY;
1666
a2165e31
CW
1667 /* ->put_pages might need to allocate memory for the bit17 swizzle
1668 * array, hence protect them from being reaped by removing them from gtt
1669 * lists early. */
1670 list_del(&obj->gtt_list);
1671
37e680a1 1672 ops->put_pages(obj);
05394f39 1673 obj->pages = NULL;
37e680a1 1674
6c085a72
CW
1675 if (i915_gem_object_is_purgeable(obj))
1676 i915_gem_object_truncate(obj);
1677
1678 return 0;
1679}
1680
1681static long
1682i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1683{
1684 struct drm_i915_gem_object *obj, *next;
1685 long count = 0;
1686
1687 list_for_each_entry_safe(obj, next,
1688 &dev_priv->mm.unbound_list,
1689 gtt_list) {
1690 if (i915_gem_object_is_purgeable(obj) &&
37e680a1 1691 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1692 count += obj->base.size >> PAGE_SHIFT;
1693 if (count >= target)
1694 return count;
1695 }
1696 }
1697
1698 list_for_each_entry_safe(obj, next,
1699 &dev_priv->mm.inactive_list,
1700 mm_list) {
1701 if (i915_gem_object_is_purgeable(obj) &&
1702 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1703 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1704 count += obj->base.size >> PAGE_SHIFT;
1705 if (count >= target)
1706 return count;
1707 }
1708 }
1709
1710 return count;
1711}
1712
1713static void
1714i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1715{
1716 struct drm_i915_gem_object *obj, *next;
1717
1718 i915_gem_evict_everything(dev_priv->dev);
1719
1720 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
37e680a1 1721 i915_gem_object_put_pages(obj);
225067ee
DV
1722}
1723
37e680a1 1724static int
6c085a72 1725i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1726{
6c085a72 1727 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1728 int page_count, i;
1729 struct address_space *mapping;
9da3da66
CW
1730 struct sg_table *st;
1731 struct scatterlist *sg;
e5281ccd 1732 struct page *page;
6c085a72 1733 gfp_t gfp;
e5281ccd 1734
6c085a72
CW
1735 /* Assert that the object is not currently in any GPU domain. As it
1736 * wasn't in the GTT, there shouldn't be any way it could have been in
1737 * a GPU cache
1738 */
1739 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1740 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1741
9da3da66
CW
1742 st = kmalloc(sizeof(*st), GFP_KERNEL);
1743 if (st == NULL)
1744 return -ENOMEM;
1745
05394f39 1746 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1747 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1748 sg_free_table(st);
1749 kfree(st);
e5281ccd 1750 return -ENOMEM;
9da3da66 1751 }
e5281ccd 1752
9da3da66
CW
1753 /* Get the list of pages out of our struct file. They'll be pinned
1754 * at this point until we release them.
1755 *
1756 * Fail silently without starting the shrinker
1757 */
6c085a72
CW
1758 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1759 gfp = mapping_gfp_mask(mapping);
caf49191 1760 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1761 gfp &= ~(__GFP_IO | __GFP_WAIT);
9da3da66 1762 for_each_sg(st->sgl, sg, page_count, i) {
6c085a72
CW
1763 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1764 if (IS_ERR(page)) {
1765 i915_gem_purge(dev_priv, page_count);
1766 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1767 }
1768 if (IS_ERR(page)) {
1769 /* We've tried hard to allocate the memory by reaping
1770 * our own buffer, now let the real VM do its job and
1771 * go down in flames if truly OOM.
1772 */
caf49191 1773 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1774 gfp |= __GFP_IO | __GFP_WAIT;
1775
1776 i915_gem_shrink_all(dev_priv);
1777 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1778 if (IS_ERR(page))
1779 goto err_pages;
1780
caf49191 1781 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1782 gfp &= ~(__GFP_IO | __GFP_WAIT);
1783 }
e5281ccd 1784
9da3da66 1785 sg_set_page(sg, page, PAGE_SIZE, 0);
e5281ccd
CW
1786 }
1787
74ce6b6c
CW
1788 obj->pages = st;
1789
6dacfd2f 1790 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1791 i915_gem_object_do_bit_17_swizzle(obj);
1792
1793 return 0;
1794
1795err_pages:
9da3da66
CW
1796 for_each_sg(st->sgl, sg, i, page_count)
1797 page_cache_release(sg_page(sg));
1798 sg_free_table(st);
1799 kfree(st);
e5281ccd 1800 return PTR_ERR(page);
673a394b
EA
1801}
1802
37e680a1
CW
1803/* Ensure that the associated pages are gathered from the backing storage
1804 * and pinned into our object. i915_gem_object_get_pages() may be called
1805 * multiple times before they are released by a single call to
1806 * i915_gem_object_put_pages() - once the pages are no longer referenced
1807 * either as a result of memory pressure (reaping pages under the shrinker)
1808 * or as the object is itself released.
1809 */
1810int
1811i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1812{
1813 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1814 const struct drm_i915_gem_object_ops *ops = obj->ops;
1815 int ret;
1816
2f745ad3 1817 if (obj->pages)
37e680a1
CW
1818 return 0;
1819
43e28f09
CW
1820 if (obj->madv != I915_MADV_WILLNEED) {
1821 DRM_ERROR("Attempting to obtain a purgeable object\n");
1822 return -EINVAL;
1823 }
1824
a5570178
CW
1825 BUG_ON(obj->pages_pin_count);
1826
37e680a1
CW
1827 ret = ops->get_pages(obj);
1828 if (ret)
1829 return ret;
1830
1831 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1832 return 0;
673a394b
EA
1833}
1834
54cf91dc 1835void
05394f39 1836i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1837 struct intel_ring_buffer *ring)
673a394b 1838{
05394f39 1839 struct drm_device *dev = obj->base.dev;
69dc4987 1840 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1841 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1842
852835f3 1843 BUG_ON(ring == NULL);
05394f39 1844 obj->ring = ring;
673a394b
EA
1845
1846 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1847 if (!obj->active) {
1848 drm_gem_object_reference(&obj->base);
1849 obj->active = 1;
673a394b 1850 }
e35a41de 1851
673a394b 1852 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1853 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1854 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1855
0201f1ec 1856 obj->last_read_seqno = seqno;
caea7476 1857
7dd49065 1858 if (obj->fenced_gpu_access) {
caea7476 1859 obj->last_fenced_seqno = seqno;
caea7476 1860
7dd49065
CW
1861 /* Bump MRU to take account of the delayed flush */
1862 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1863 struct drm_i915_fence_reg *reg;
1864
1865 reg = &dev_priv->fence_regs[obj->fence_reg];
1866 list_move_tail(&reg->lru_list,
1867 &dev_priv->mm.fence_list);
1868 }
caea7476
CW
1869 }
1870}
1871
1872static void
caea7476 1873i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1874{
05394f39 1875 struct drm_device *dev = obj->base.dev;
caea7476 1876 struct drm_i915_private *dev_priv = dev->dev_private;
ce44b0ea 1877
65ce3027 1878 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1879 BUG_ON(!obj->active);
caea7476 1880
f047e395
CW
1881 if (obj->pin_count) /* are we a framebuffer? */
1882 intel_mark_fb_idle(obj);
caea7476 1883
1b50247a 1884 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476 1885
65ce3027 1886 list_del_init(&obj->ring_list);
caea7476
CW
1887 obj->ring = NULL;
1888
65ce3027
CW
1889 obj->last_read_seqno = 0;
1890 obj->last_write_seqno = 0;
1891 obj->base.write_domain = 0;
1892
1893 obj->last_fenced_seqno = 0;
caea7476 1894 obj->fenced_gpu_access = false;
caea7476
CW
1895
1896 obj->active = 0;
1897 drm_gem_object_unreference(&obj->base);
1898
1899 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1900}
673a394b 1901
9d773091 1902static int
fca26bb4 1903i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1904{
9d773091
CW
1905 struct drm_i915_private *dev_priv = dev->dev_private;
1906 struct intel_ring_buffer *ring;
1907 int ret, i, j;
53d227f2 1908
107f27a5 1909 /* Carefully retire all requests without writing to the rings */
9d773091 1910 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1911 ret = intel_ring_idle(ring);
1912 if (ret)
1913 return ret;
9d773091 1914 }
9d773091 1915 i915_gem_retire_requests(dev);
107f27a5
CW
1916
1917 /* Finally reset hw state */
9d773091 1918 for_each_ring(ring, dev_priv, i) {
fca26bb4 1919 intel_ring_init_seqno(ring, seqno);
498d2ac1 1920
9d773091
CW
1921 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1922 ring->sync_seqno[j] = 0;
1923 }
53d227f2 1924
9d773091 1925 return 0;
53d227f2
DV
1926}
1927
fca26bb4
MK
1928int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1929{
1930 struct drm_i915_private *dev_priv = dev->dev_private;
1931 int ret;
1932
1933 if (seqno == 0)
1934 return -EINVAL;
1935
1936 /* HWS page needs to be set less than what we
1937 * will inject to ring
1938 */
1939 ret = i915_gem_init_seqno(dev, seqno - 1);
1940 if (ret)
1941 return ret;
1942
1943 /* Carefully set the last_seqno value so that wrap
1944 * detection still works
1945 */
1946 dev_priv->next_seqno = seqno;
1947 dev_priv->last_seqno = seqno - 1;
1948 if (dev_priv->last_seqno == 0)
1949 dev_priv->last_seqno--;
1950
1951 return 0;
1952}
1953
9d773091
CW
1954int
1955i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 1956{
9d773091
CW
1957 struct drm_i915_private *dev_priv = dev->dev_private;
1958
1959 /* reserve 0 for non-seqno */
1960 if (dev_priv->next_seqno == 0) {
fca26bb4 1961 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
1962 if (ret)
1963 return ret;
53d227f2 1964
9d773091
CW
1965 dev_priv->next_seqno = 1;
1966 }
53d227f2 1967
f72b3435 1968 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 1969 return 0;
53d227f2
DV
1970}
1971
3cce469c 1972int
db53a302 1973i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1974 struct drm_file *file,
acb868d3 1975 u32 *out_seqno)
673a394b 1976{
db53a302 1977 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 1978 struct drm_i915_gem_request *request;
a71d8d94 1979 u32 request_ring_position;
673a394b 1980 int was_empty;
3cce469c
CW
1981 int ret;
1982
cc889e0f
DV
1983 /*
1984 * Emit any outstanding flushes - execbuf can fail to emit the flush
1985 * after having emitted the batchbuffer command. Hence we need to fix
1986 * things up similar to emitting the lazy request. The difference here
1987 * is that the flush _must_ happen before the next request, no matter
1988 * what.
1989 */
a7b9761d
CW
1990 ret = intel_ring_flush_all_caches(ring);
1991 if (ret)
1992 return ret;
cc889e0f 1993
acb868d3
CW
1994 request = kmalloc(sizeof(*request), GFP_KERNEL);
1995 if (request == NULL)
1996 return -ENOMEM;
cc889e0f 1997
673a394b 1998
a71d8d94
CW
1999 /* Record the position of the start of the request so that
2000 * should we detect the updated seqno part-way through the
2001 * GPU processing the request, we never over-estimate the
2002 * position of the head.
2003 */
2004 request_ring_position = intel_ring_get_tail(ring);
2005
9d773091 2006 ret = ring->add_request(ring);
3bb73aba
CW
2007 if (ret) {
2008 kfree(request);
2009 return ret;
2010 }
673a394b 2011
9d773091 2012 request->seqno = intel_ring_get_seqno(ring);
852835f3 2013 request->ring = ring;
a71d8d94 2014 request->tail = request_ring_position;
673a394b 2015 request->emitted_jiffies = jiffies;
852835f3
ZN
2016 was_empty = list_empty(&ring->request_list);
2017 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2018 request->file_priv = NULL;
852835f3 2019
db53a302
CW
2020 if (file) {
2021 struct drm_i915_file_private *file_priv = file->driver_priv;
2022
1c25595f 2023 spin_lock(&file_priv->mm.lock);
f787a5f5 2024 request->file_priv = file_priv;
b962442e 2025 list_add_tail(&request->client_list,
f787a5f5 2026 &file_priv->mm.request_list);
1c25595f 2027 spin_unlock(&file_priv->mm.lock);
b962442e 2028 }
673a394b 2029
9d773091 2030 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2031 ring->outstanding_lazy_request = 0;
db53a302 2032
f65d9421 2033 if (!dev_priv->mm.suspended) {
3e0dc6b0 2034 if (i915_enable_hangcheck) {
99584db3 2035 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
cecc21fe 2036 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3e0dc6b0 2037 }
f047e395 2038 if (was_empty) {
b3b079db 2039 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2040 &dev_priv->mm.retire_work,
2041 round_jiffies_up_relative(HZ));
f047e395
CW
2042 intel_mark_busy(dev_priv->dev);
2043 }
f65d9421 2044 }
cc889e0f 2045
acb868d3 2046 if (out_seqno)
9d773091 2047 *out_seqno = request->seqno;
3cce469c 2048 return 0;
673a394b
EA
2049}
2050
f787a5f5
CW
2051static inline void
2052i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2053{
1c25595f 2054 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2055
1c25595f
CW
2056 if (!file_priv)
2057 return;
1c5d22f7 2058
1c25595f 2059 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2060 if (request->file_priv) {
2061 list_del(&request->client_list);
2062 request->file_priv = NULL;
2063 }
1c25595f 2064 spin_unlock(&file_priv->mm.lock);
673a394b 2065}
673a394b 2066
dfaae392
CW
2067static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2068 struct intel_ring_buffer *ring)
9375e446 2069{
dfaae392
CW
2070 while (!list_empty(&ring->request_list)) {
2071 struct drm_i915_gem_request *request;
673a394b 2072
dfaae392
CW
2073 request = list_first_entry(&ring->request_list,
2074 struct drm_i915_gem_request,
2075 list);
de151cf6 2076
dfaae392 2077 list_del(&request->list);
f787a5f5 2078 i915_gem_request_remove_from_client(request);
dfaae392
CW
2079 kfree(request);
2080 }
673a394b 2081
dfaae392 2082 while (!list_empty(&ring->active_list)) {
05394f39 2083 struct drm_i915_gem_object *obj;
9375e446 2084
05394f39
CW
2085 obj = list_first_entry(&ring->active_list,
2086 struct drm_i915_gem_object,
2087 ring_list);
9375e446 2088
05394f39 2089 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2090 }
2091}
2092
312817a3
CW
2093static void i915_gem_reset_fences(struct drm_device *dev)
2094{
2095 struct drm_i915_private *dev_priv = dev->dev_private;
2096 int i;
2097
4b9de737 2098 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2099 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2100
ada726c7 2101 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 2102
ada726c7
CW
2103 if (reg->obj)
2104 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2105
ada726c7
CW
2106 reg->pin_count = 0;
2107 reg->obj = NULL;
2108 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2109 }
ada726c7
CW
2110
2111 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2112}
2113
069efc1d 2114void i915_gem_reset(struct drm_device *dev)
673a394b 2115{
77f01230 2116 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2117 struct drm_i915_gem_object *obj;
b4519513 2118 struct intel_ring_buffer *ring;
1ec14ad3 2119 int i;
673a394b 2120
b4519513
CW
2121 for_each_ring(ring, dev_priv, i)
2122 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2123
dfaae392
CW
2124 /* Move everything out of the GPU domains to ensure we do any
2125 * necessary invalidation upon reuse.
2126 */
05394f39 2127 list_for_each_entry(obj,
77f01230 2128 &dev_priv->mm.inactive_list,
69dc4987 2129 mm_list)
77f01230 2130 {
05394f39 2131 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2132 }
069efc1d
CW
2133
2134 /* The fence registers are invalidated so clear them out */
312817a3 2135 i915_gem_reset_fences(dev);
673a394b
EA
2136}
2137
2138/**
2139 * This function clears the request list as sequence numbers are passed.
2140 */
a71d8d94 2141void
db53a302 2142i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2143{
673a394b
EA
2144 uint32_t seqno;
2145
db53a302 2146 if (list_empty(&ring->request_list))
6c0594a3
KW
2147 return;
2148
db53a302 2149 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2150
b2eadbc8 2151 seqno = ring->get_seqno(ring, true);
1ec14ad3 2152
852835f3 2153 while (!list_empty(&ring->request_list)) {
673a394b 2154 struct drm_i915_gem_request *request;
673a394b 2155
852835f3 2156 request = list_first_entry(&ring->request_list,
673a394b
EA
2157 struct drm_i915_gem_request,
2158 list);
673a394b 2159
dfaae392 2160 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2161 break;
2162
db53a302 2163 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2164 /* We know the GPU must have read the request to have
2165 * sent us the seqno + interrupt, so use the position
2166 * of tail of the request to update the last known position
2167 * of the GPU head.
2168 */
2169 ring->last_retired_head = request->tail;
b84d5f0c
CW
2170
2171 list_del(&request->list);
f787a5f5 2172 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
2173 kfree(request);
2174 }
673a394b 2175
b84d5f0c
CW
2176 /* Move any buffers on the active list that are no longer referenced
2177 * by the ringbuffer to the flushing/inactive lists as appropriate.
2178 */
2179 while (!list_empty(&ring->active_list)) {
05394f39 2180 struct drm_i915_gem_object *obj;
b84d5f0c 2181
0206e353 2182 obj = list_first_entry(&ring->active_list,
05394f39
CW
2183 struct drm_i915_gem_object,
2184 ring_list);
673a394b 2185
0201f1ec 2186 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2187 break;
b84d5f0c 2188
65ce3027 2189 i915_gem_object_move_to_inactive(obj);
673a394b 2190 }
9d34e5db 2191
db53a302
CW
2192 if (unlikely(ring->trace_irq_seqno &&
2193 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2194 ring->irq_put(ring);
db53a302 2195 ring->trace_irq_seqno = 0;
9d34e5db 2196 }
23bc5982 2197
db53a302 2198 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2199}
2200
b09a1fec
CW
2201void
2202i915_gem_retire_requests(struct drm_device *dev)
2203{
2204 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2205 struct intel_ring_buffer *ring;
1ec14ad3 2206 int i;
b09a1fec 2207
b4519513
CW
2208 for_each_ring(ring, dev_priv, i)
2209 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2210}
2211
75ef9da2 2212static void
673a394b
EA
2213i915_gem_retire_work_handler(struct work_struct *work)
2214{
2215 drm_i915_private_t *dev_priv;
2216 struct drm_device *dev;
b4519513 2217 struct intel_ring_buffer *ring;
0a58705b
CW
2218 bool idle;
2219 int i;
673a394b
EA
2220
2221 dev_priv = container_of(work, drm_i915_private_t,
2222 mm.retire_work.work);
2223 dev = dev_priv->dev;
2224
891b48cf
CW
2225 /* Come back later if the device is busy... */
2226 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2227 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2228 round_jiffies_up_relative(HZ));
891b48cf
CW
2229 return;
2230 }
673a394b 2231
b09a1fec 2232 i915_gem_retire_requests(dev);
673a394b 2233
0a58705b
CW
2234 /* Send a periodic flush down the ring so we don't hold onto GEM
2235 * objects indefinitely.
673a394b 2236 */
0a58705b 2237 idle = true;
b4519513 2238 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
2239 if (ring->gpu_caches_dirty)
2240 i915_add_request(ring, NULL, NULL);
0a58705b
CW
2241
2242 idle &= list_empty(&ring->request_list);
673a394b
EA
2243 }
2244
0a58705b 2245 if (!dev_priv->mm.suspended && !idle)
bcb45086
CW
2246 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2247 round_jiffies_up_relative(HZ));
f047e395
CW
2248 if (idle)
2249 intel_mark_idle(dev);
0a58705b 2250
673a394b 2251 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2252}
2253
30dfebf3
DV
2254/**
2255 * Ensures that an object will eventually get non-busy by flushing any required
2256 * write domains, emitting any outstanding lazy request and retiring and
2257 * completed requests.
2258 */
2259static int
2260i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2261{
2262 int ret;
2263
2264 if (obj->active) {
0201f1ec 2265 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2266 if (ret)
2267 return ret;
2268
30dfebf3
DV
2269 i915_gem_retire_requests_ring(obj->ring);
2270 }
2271
2272 return 0;
2273}
2274
23ba4fd0
BW
2275/**
2276 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2277 * @DRM_IOCTL_ARGS: standard ioctl arguments
2278 *
2279 * Returns 0 if successful, else an error is returned with the remaining time in
2280 * the timeout parameter.
2281 * -ETIME: object is still busy after timeout
2282 * -ERESTARTSYS: signal interrupted the wait
2283 * -ENONENT: object doesn't exist
2284 * Also possible, but rare:
2285 * -EAGAIN: GPU wedged
2286 * -ENOMEM: damn
2287 * -ENODEV: Internal IRQ fail
2288 * -E?: The add request failed
2289 *
2290 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2291 * non-zero timeout parameter the wait ioctl will wait for the given number of
2292 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2293 * without holding struct_mutex the object may become re-busied before this
2294 * function completes. A similar but shorter * race condition exists in the busy
2295 * ioctl
2296 */
2297int
2298i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2299{
2300 struct drm_i915_gem_wait *args = data;
2301 struct drm_i915_gem_object *obj;
2302 struct intel_ring_buffer *ring = NULL;
eac1f14f 2303 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2304 u32 seqno = 0;
2305 int ret = 0;
2306
eac1f14f
BW
2307 if (args->timeout_ns >= 0) {
2308 timeout_stack = ns_to_timespec(args->timeout_ns);
2309 timeout = &timeout_stack;
2310 }
23ba4fd0
BW
2311
2312 ret = i915_mutex_lock_interruptible(dev);
2313 if (ret)
2314 return ret;
2315
2316 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2317 if (&obj->base == NULL) {
2318 mutex_unlock(&dev->struct_mutex);
2319 return -ENOENT;
2320 }
2321
30dfebf3
DV
2322 /* Need to make sure the object gets inactive eventually. */
2323 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2324 if (ret)
2325 goto out;
2326
2327 if (obj->active) {
0201f1ec 2328 seqno = obj->last_read_seqno;
23ba4fd0
BW
2329 ring = obj->ring;
2330 }
2331
2332 if (seqno == 0)
2333 goto out;
2334
23ba4fd0
BW
2335 /* Do this after OLR check to make sure we make forward progress polling
2336 * on this IOCTL with a 0 timeout (like busy ioctl)
2337 */
2338 if (!args->timeout_ns) {
2339 ret = -ETIME;
2340 goto out;
2341 }
2342
2343 drm_gem_object_unreference(&obj->base);
2344 mutex_unlock(&dev->struct_mutex);
2345
eac1f14f
BW
2346 ret = __wait_seqno(ring, seqno, true, timeout);
2347 if (timeout) {
2348 WARN_ON(!timespec_valid(timeout));
2349 args->timeout_ns = timespec_to_ns(timeout);
2350 }
23ba4fd0
BW
2351 return ret;
2352
2353out:
2354 drm_gem_object_unreference(&obj->base);
2355 mutex_unlock(&dev->struct_mutex);
2356 return ret;
2357}
2358
5816d648
BW
2359/**
2360 * i915_gem_object_sync - sync an object to a ring.
2361 *
2362 * @obj: object which may be in use on another ring.
2363 * @to: ring we wish to use the object on. May be NULL.
2364 *
2365 * This code is meant to abstract object synchronization with the GPU.
2366 * Calling with NULL implies synchronizing the object with the CPU
2367 * rather than a particular GPU ring.
2368 *
2369 * Returns 0 if successful, else propagates up the lower layer error.
2370 */
2911a35b
BW
2371int
2372i915_gem_object_sync(struct drm_i915_gem_object *obj,
2373 struct intel_ring_buffer *to)
2374{
2375 struct intel_ring_buffer *from = obj->ring;
2376 u32 seqno;
2377 int ret, idx;
2378
2379 if (from == NULL || to == from)
2380 return 0;
2381
5816d648 2382 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2383 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2384
2385 idx = intel_ring_sync_index(from, to);
2386
0201f1ec 2387 seqno = obj->last_read_seqno;
2911a35b
BW
2388 if (seqno <= from->sync_seqno[idx])
2389 return 0;
2390
b4aca010
BW
2391 ret = i915_gem_check_olr(obj->ring, seqno);
2392 if (ret)
2393 return ret;
2911a35b 2394
1500f7ea 2395 ret = to->sync_to(to, from, seqno);
e3a5a225 2396 if (!ret)
7b01e260
MK
2397 /* We use last_read_seqno because sync_to()
2398 * might have just caused seqno wrap under
2399 * the radar.
2400 */
2401 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2402
e3a5a225 2403 return ret;
2911a35b
BW
2404}
2405
b5ffc9bc
CW
2406static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2407{
2408 u32 old_write_domain, old_read_domains;
2409
b5ffc9bc
CW
2410 /* Act a barrier for all accesses through the GTT */
2411 mb();
2412
2413 /* Force a pagefault for domain tracking on next user access */
2414 i915_gem_release_mmap(obj);
2415
b97c3d9c
KP
2416 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2417 return;
2418
b5ffc9bc
CW
2419 old_read_domains = obj->base.read_domains;
2420 old_write_domain = obj->base.write_domain;
2421
2422 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2423 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2424
2425 trace_i915_gem_object_change_domain(obj,
2426 old_read_domains,
2427 old_write_domain);
2428}
2429
673a394b
EA
2430/**
2431 * Unbinds an object from the GTT aperture.
2432 */
0f973f27 2433int
05394f39 2434i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2435{
7bddb01f 2436 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2437 int ret;
673a394b 2438
05394f39 2439 if (obj->gtt_space == NULL)
673a394b
EA
2440 return 0;
2441
31d8d651
CW
2442 if (obj->pin_count)
2443 return -EBUSY;
673a394b 2444
c4670ad0
CW
2445 BUG_ON(obj->pages == NULL);
2446
a8198eea 2447 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2448 if (ret)
a8198eea
CW
2449 return ret;
2450 /* Continue on if we fail due to EIO, the GPU is hung so we
2451 * should be safe and we need to cleanup or else we might
2452 * cause memory corruption through use-after-free.
2453 */
2454
b5ffc9bc 2455 i915_gem_object_finish_gtt(obj);
5323fd04 2456
96b47b65 2457 /* release the fence reg _after_ flushing */
d9e86c0e 2458 ret = i915_gem_object_put_fence(obj);
1488fc08 2459 if (ret)
d9e86c0e 2460 return ret;
96b47b65 2461
db53a302
CW
2462 trace_i915_gem_object_unbind(obj);
2463
74898d7e
DV
2464 if (obj->has_global_gtt_mapping)
2465 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2466 if (obj->has_aliasing_ppgtt_mapping) {
2467 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2468 obj->has_aliasing_ppgtt_mapping = 0;
2469 }
74163907 2470 i915_gem_gtt_finish_object(obj);
7bddb01f 2471
6c085a72
CW
2472 list_del(&obj->mm_list);
2473 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2474 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2475 obj->map_and_fenceable = true;
673a394b 2476
05394f39
CW
2477 drm_mm_put_block(obj->gtt_space);
2478 obj->gtt_space = NULL;
2479 obj->gtt_offset = 0;
673a394b 2480
88241785 2481 return 0;
54cf91dc
CW
2482}
2483
b2da9fe5 2484int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2485{
2486 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2487 struct intel_ring_buffer *ring;
1ec14ad3 2488 int ret, i;
4df2faf4 2489
4df2faf4 2490 /* Flush everything onto the inactive list. */
b4519513 2491 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2492 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2493 if (ret)
2494 return ret;
2495
3e960501 2496 ret = intel_ring_idle(ring);
1ec14ad3
CW
2497 if (ret)
2498 return ret;
2499 }
4df2faf4 2500
8a1a49f9 2501 return 0;
4df2faf4
DV
2502}
2503
9ce079e4
CW
2504static void i965_write_fence_reg(struct drm_device *dev, int reg,
2505 struct drm_i915_gem_object *obj)
de151cf6 2506{
de151cf6 2507 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2508 int fence_reg;
2509 int fence_pitch_shift;
de151cf6
JB
2510 uint64_t val;
2511
56c844e5
ID
2512 if (INTEL_INFO(dev)->gen >= 6) {
2513 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2514 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2515 } else {
2516 fence_reg = FENCE_REG_965_0;
2517 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2518 }
2519
9ce079e4
CW
2520 if (obj) {
2521 u32 size = obj->gtt_space->size;
de151cf6 2522
9ce079e4
CW
2523 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2524 0xfffff000) << 32;
2525 val |= obj->gtt_offset & 0xfffff000;
56c844e5 2526 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2527 if (obj->tiling_mode == I915_TILING_Y)
2528 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2529 val |= I965_FENCE_REG_VALID;
2530 } else
2531 val = 0;
c6642782 2532
56c844e5
ID
2533 fence_reg += reg * 8;
2534 I915_WRITE64(fence_reg, val);
2535 POSTING_READ(fence_reg);
de151cf6
JB
2536}
2537
9ce079e4
CW
2538static void i915_write_fence_reg(struct drm_device *dev, int reg,
2539 struct drm_i915_gem_object *obj)
de151cf6 2540{
de151cf6 2541 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2542 u32 val;
de151cf6 2543
9ce079e4
CW
2544 if (obj) {
2545 u32 size = obj->gtt_space->size;
2546 int pitch_val;
2547 int tile_width;
c6642782 2548
9ce079e4
CW
2549 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2550 (size & -size) != size ||
2551 (obj->gtt_offset & (size - 1)),
2552 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2553 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2554
9ce079e4
CW
2555 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2556 tile_width = 128;
2557 else
2558 tile_width = 512;
2559
2560 /* Note: pitch better be a power of two tile widths */
2561 pitch_val = obj->stride / tile_width;
2562 pitch_val = ffs(pitch_val) - 1;
2563
2564 val = obj->gtt_offset;
2565 if (obj->tiling_mode == I915_TILING_Y)
2566 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2567 val |= I915_FENCE_SIZE_BITS(size);
2568 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2569 val |= I830_FENCE_REG_VALID;
2570 } else
2571 val = 0;
2572
2573 if (reg < 8)
2574 reg = FENCE_REG_830_0 + reg * 4;
2575 else
2576 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2577
2578 I915_WRITE(reg, val);
2579 POSTING_READ(reg);
de151cf6
JB
2580}
2581
9ce079e4
CW
2582static void i830_write_fence_reg(struct drm_device *dev, int reg,
2583 struct drm_i915_gem_object *obj)
de151cf6 2584{
de151cf6 2585 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2586 uint32_t val;
de151cf6 2587
9ce079e4
CW
2588 if (obj) {
2589 u32 size = obj->gtt_space->size;
2590 uint32_t pitch_val;
de151cf6 2591
9ce079e4
CW
2592 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2593 (size & -size) != size ||
2594 (obj->gtt_offset & (size - 1)),
2595 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2596 obj->gtt_offset, size);
e76a16de 2597
9ce079e4
CW
2598 pitch_val = obj->stride / 128;
2599 pitch_val = ffs(pitch_val) - 1;
de151cf6 2600
9ce079e4
CW
2601 val = obj->gtt_offset;
2602 if (obj->tiling_mode == I915_TILING_Y)
2603 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2604 val |= I830_FENCE_SIZE_BITS(size);
2605 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2606 val |= I830_FENCE_REG_VALID;
2607 } else
2608 val = 0;
c6642782 2609
9ce079e4
CW
2610 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2611 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2612}
2613
d0a57789
CW
2614inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2615{
2616 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2617}
2618
9ce079e4
CW
2619static void i915_gem_write_fence(struct drm_device *dev, int reg,
2620 struct drm_i915_gem_object *obj)
2621{
d0a57789
CW
2622 struct drm_i915_private *dev_priv = dev->dev_private;
2623
2624 /* Ensure that all CPU reads are completed before installing a fence
2625 * and all writes before removing the fence.
2626 */
2627 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2628 mb();
2629
9ce079e4
CW
2630 switch (INTEL_INFO(dev)->gen) {
2631 case 7:
56c844e5 2632 case 6:
9ce079e4
CW
2633 case 5:
2634 case 4: i965_write_fence_reg(dev, reg, obj); break;
2635 case 3: i915_write_fence_reg(dev, reg, obj); break;
2636 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2637 default: BUG();
9ce079e4 2638 }
d0a57789
CW
2639
2640 /* And similarly be paranoid that no direct access to this region
2641 * is reordered to before the fence is installed.
2642 */
2643 if (i915_gem_object_needs_mb(obj))
2644 mb();
de151cf6
JB
2645}
2646
61050808
CW
2647static inline int fence_number(struct drm_i915_private *dev_priv,
2648 struct drm_i915_fence_reg *fence)
2649{
2650 return fence - dev_priv->fence_regs;
2651}
2652
2653static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2654 struct drm_i915_fence_reg *fence,
2655 bool enable)
2656{
2657 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2658 int reg = fence_number(dev_priv, fence);
2659
2660 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2661
2662 if (enable) {
2663 obj->fence_reg = reg;
2664 fence->obj = obj;
2665 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2666 } else {
2667 obj->fence_reg = I915_FENCE_REG_NONE;
2668 fence->obj = NULL;
2669 list_del_init(&fence->lru_list);
2670 }
2671}
2672
d9e86c0e 2673static int
d0a57789 2674i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2675{
1c293ea3 2676 if (obj->last_fenced_seqno) {
86d5bc37 2677 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2678 if (ret)
2679 return ret;
d9e86c0e
CW
2680
2681 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2682 }
2683
86d5bc37 2684 obj->fenced_gpu_access = false;
d9e86c0e
CW
2685 return 0;
2686}
2687
2688int
2689i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2690{
61050808 2691 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2692 int ret;
2693
d0a57789 2694 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
2695 if (ret)
2696 return ret;
2697
61050808
CW
2698 if (obj->fence_reg == I915_FENCE_REG_NONE)
2699 return 0;
d9e86c0e 2700
61050808
CW
2701 i915_gem_object_update_fence(obj,
2702 &dev_priv->fence_regs[obj->fence_reg],
2703 false);
2704 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2705
2706 return 0;
2707}
2708
2709static struct drm_i915_fence_reg *
a360bb1a 2710i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2711{
ae3db24a 2712 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2713 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2714 int i;
ae3db24a
DV
2715
2716 /* First try to find a free reg */
d9e86c0e 2717 avail = NULL;
ae3db24a
DV
2718 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2719 reg = &dev_priv->fence_regs[i];
2720 if (!reg->obj)
d9e86c0e 2721 return reg;
ae3db24a 2722
1690e1eb 2723 if (!reg->pin_count)
d9e86c0e 2724 avail = reg;
ae3db24a
DV
2725 }
2726
d9e86c0e
CW
2727 if (avail == NULL)
2728 return NULL;
ae3db24a
DV
2729
2730 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2731 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2732 if (reg->pin_count)
ae3db24a
DV
2733 continue;
2734
8fe301ad 2735 return reg;
ae3db24a
DV
2736 }
2737
8fe301ad 2738 return NULL;
ae3db24a
DV
2739}
2740
de151cf6 2741/**
9a5a53b3 2742 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2743 * @obj: object to map through a fence reg
2744 *
2745 * When mapping objects through the GTT, userspace wants to be able to write
2746 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2747 * This function walks the fence regs looking for a free one for @obj,
2748 * stealing one if it can't find any.
2749 *
2750 * It then sets up the reg based on the object's properties: address, pitch
2751 * and tiling format.
9a5a53b3
CW
2752 *
2753 * For an untiled surface, this removes any existing fence.
de151cf6 2754 */
8c4b8c3f 2755int
06d98131 2756i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2757{
05394f39 2758 struct drm_device *dev = obj->base.dev;
79e53945 2759 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2760 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2761 struct drm_i915_fence_reg *reg;
ae3db24a 2762 int ret;
de151cf6 2763
14415745
CW
2764 /* Have we updated the tiling parameters upon the object and so
2765 * will need to serialise the write to the associated fence register?
2766 */
5d82e3e6 2767 if (obj->fence_dirty) {
d0a57789 2768 ret = i915_gem_object_wait_fence(obj);
14415745
CW
2769 if (ret)
2770 return ret;
2771 }
9a5a53b3 2772
d9e86c0e 2773 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2774 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2775 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2776 if (!obj->fence_dirty) {
14415745
CW
2777 list_move_tail(&reg->lru_list,
2778 &dev_priv->mm.fence_list);
2779 return 0;
2780 }
2781 } else if (enable) {
2782 reg = i915_find_fence_reg(dev);
2783 if (reg == NULL)
2784 return -EDEADLK;
d9e86c0e 2785
14415745
CW
2786 if (reg->obj) {
2787 struct drm_i915_gem_object *old = reg->obj;
2788
d0a57789 2789 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
2790 if (ret)
2791 return ret;
2792
14415745 2793 i915_gem_object_fence_lost(old);
29c5a587 2794 }
14415745 2795 } else
a09ba7fa 2796 return 0;
a09ba7fa 2797
14415745 2798 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2799 obj->fence_dirty = false;
14415745 2800
9ce079e4 2801 return 0;
de151cf6
JB
2802}
2803
42d6ab48
CW
2804static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2805 struct drm_mm_node *gtt_space,
2806 unsigned long cache_level)
2807{
2808 struct drm_mm_node *other;
2809
2810 /* On non-LLC machines we have to be careful when putting differing
2811 * types of snoopable memory together to avoid the prefetcher
4239ca77 2812 * crossing memory domains and dying.
42d6ab48
CW
2813 */
2814 if (HAS_LLC(dev))
2815 return true;
2816
2817 if (gtt_space == NULL)
2818 return true;
2819
2820 if (list_empty(&gtt_space->node_list))
2821 return true;
2822
2823 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2824 if (other->allocated && !other->hole_follows && other->color != cache_level)
2825 return false;
2826
2827 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2828 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2829 return false;
2830
2831 return true;
2832}
2833
2834static void i915_gem_verify_gtt(struct drm_device *dev)
2835{
2836#if WATCH_GTT
2837 struct drm_i915_private *dev_priv = dev->dev_private;
2838 struct drm_i915_gem_object *obj;
2839 int err = 0;
2840
2841 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2842 if (obj->gtt_space == NULL) {
2843 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2844 err++;
2845 continue;
2846 }
2847
2848 if (obj->cache_level != obj->gtt_space->color) {
2849 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2850 obj->gtt_space->start,
2851 obj->gtt_space->start + obj->gtt_space->size,
2852 obj->cache_level,
2853 obj->gtt_space->color);
2854 err++;
2855 continue;
2856 }
2857
2858 if (!i915_gem_valid_gtt_space(dev,
2859 obj->gtt_space,
2860 obj->cache_level)) {
2861 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2862 obj->gtt_space->start,
2863 obj->gtt_space->start + obj->gtt_space->size,
2864 obj->cache_level);
2865 err++;
2866 continue;
2867 }
2868 }
2869
2870 WARN_ON(err);
2871#endif
2872}
2873
673a394b
EA
2874/**
2875 * Finds free space in the GTT aperture and binds the object there.
2876 */
2877static int
05394f39 2878i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2879 unsigned alignment,
86a1ee26
CW
2880 bool map_and_fenceable,
2881 bool nonblocking)
673a394b 2882{
05394f39 2883 struct drm_device *dev = obj->base.dev;
673a394b 2884 drm_i915_private_t *dev_priv = dev->dev_private;
dc9dd7a2 2885 struct drm_mm_node *node;
5e783301 2886 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2887 bool mappable, fenceable;
07f73f69 2888 int ret;
673a394b 2889
e28f8711
CW
2890 fence_size = i915_gem_get_gtt_size(dev,
2891 obj->base.size,
2892 obj->tiling_mode);
2893 fence_alignment = i915_gem_get_gtt_alignment(dev,
2894 obj->base.size,
d865110c 2895 obj->tiling_mode, true);
e28f8711 2896 unfenced_alignment =
d865110c 2897 i915_gem_get_gtt_alignment(dev,
e28f8711 2898 obj->base.size,
d865110c 2899 obj->tiling_mode, false);
a00b10c3 2900
673a394b 2901 if (alignment == 0)
5e783301
DV
2902 alignment = map_and_fenceable ? fence_alignment :
2903 unfenced_alignment;
75e9e915 2904 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2905 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2906 return -EINVAL;
2907 }
2908
05394f39 2909 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2910
654fc607
CW
2911 /* If the object is bigger than the entire aperture, reject it early
2912 * before evicting everything in a vain attempt to find space.
2913 */
05394f39 2914 if (obj->base.size >
5d4545ae 2915 (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
654fc607
CW
2916 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2917 return -E2BIG;
2918 }
2919
37e680a1 2920 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
2921 if (ret)
2922 return ret;
2923
fbdda6fb
CW
2924 i915_gem_object_pin_pages(obj);
2925
dc9dd7a2
CW
2926 node = kzalloc(sizeof(*node), GFP_KERNEL);
2927 if (node == NULL) {
2928 i915_gem_object_unpin_pages(obj);
2929 return -ENOMEM;
2930 }
2931
673a394b 2932 search_free:
75e9e915 2933 if (map_and_fenceable)
dc9dd7a2
CW
2934 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2935 size, alignment, obj->cache_level,
5d4545ae 2936 0, dev_priv->gtt.mappable_end);
920afa77 2937 else
dc9dd7a2
CW
2938 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2939 size, alignment, obj->cache_level);
2940 if (ret) {
75e9e915 2941 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 2942 obj->cache_level,
86a1ee26
CW
2943 map_and_fenceable,
2944 nonblocking);
dc9dd7a2
CW
2945 if (ret == 0)
2946 goto search_free;
9731129c 2947
dc9dd7a2
CW
2948 i915_gem_object_unpin_pages(obj);
2949 kfree(node);
2950 return ret;
673a394b 2951 }
dc9dd7a2 2952 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
fbdda6fb 2953 i915_gem_object_unpin_pages(obj);
dc9dd7a2 2954 drm_mm_put_block(node);
42d6ab48 2955 return -EINVAL;
673a394b
EA
2956 }
2957
74163907 2958 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2959 if (ret) {
fbdda6fb 2960 i915_gem_object_unpin_pages(obj);
dc9dd7a2 2961 drm_mm_put_block(node);
6c085a72 2962 return ret;
673a394b 2963 }
673a394b 2964
6c085a72 2965 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 2966 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2967
dc9dd7a2
CW
2968 obj->gtt_space = node;
2969 obj->gtt_offset = node->start;
1c5d22f7 2970
75e9e915 2971 fenceable =
dc9dd7a2
CW
2972 node->size == fence_size &&
2973 (node->start & (fence_alignment - 1)) == 0;
a00b10c3 2974
75e9e915 2975 mappable =
5d4545ae 2976 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
a00b10c3 2977
05394f39 2978 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2979
fbdda6fb 2980 i915_gem_object_unpin_pages(obj);
db53a302 2981 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 2982 i915_gem_verify_gtt(dev);
673a394b
EA
2983 return 0;
2984}
2985
2986void
05394f39 2987i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2988{
673a394b
EA
2989 /* If we don't have a page list set up, then we're not pinned
2990 * to GPU, and we can ignore the cache flush because it'll happen
2991 * again at bind time.
2992 */
05394f39 2993 if (obj->pages == NULL)
673a394b
EA
2994 return;
2995
9c23f7fc
CW
2996 /* If the GPU is snooping the contents of the CPU cache,
2997 * we do not need to manually clear the CPU cache lines. However,
2998 * the caches are only snooped when the render cache is
2999 * flushed/invalidated. As we always have to emit invalidations
3000 * and flushes when moving into and out of the RENDER domain, correct
3001 * snooping behaviour occurs naturally as the result of our domain
3002 * tracking.
3003 */
3004 if (obj->cache_level != I915_CACHE_NONE)
3005 return;
3006
1c5d22f7 3007 trace_i915_gem_object_clflush(obj);
cfa16a0d 3008
9da3da66 3009 drm_clflush_sg(obj->pages);
e47c68e9
EA
3010}
3011
3012/** Flushes the GTT write domain for the object if it's dirty. */
3013static void
05394f39 3014i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3015{
1c5d22f7
CW
3016 uint32_t old_write_domain;
3017
05394f39 3018 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3019 return;
3020
63256ec5 3021 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3022 * to it immediately go to main memory as far as we know, so there's
3023 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3024 *
3025 * However, we do have to enforce the order so that all writes through
3026 * the GTT land before any writes to the device, such as updates to
3027 * the GATT itself.
e47c68e9 3028 */
63256ec5
CW
3029 wmb();
3030
05394f39
CW
3031 old_write_domain = obj->base.write_domain;
3032 obj->base.write_domain = 0;
1c5d22f7
CW
3033
3034 trace_i915_gem_object_change_domain(obj,
05394f39 3035 obj->base.read_domains,
1c5d22f7 3036 old_write_domain);
e47c68e9
EA
3037}
3038
3039/** Flushes the CPU write domain for the object if it's dirty. */
3040static void
05394f39 3041i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3042{
1c5d22f7 3043 uint32_t old_write_domain;
e47c68e9 3044
05394f39 3045 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3046 return;
3047
3048 i915_gem_clflush_object(obj);
e76e9aeb 3049 i915_gem_chipset_flush(obj->base.dev);
05394f39
CW
3050 old_write_domain = obj->base.write_domain;
3051 obj->base.write_domain = 0;
1c5d22f7
CW
3052
3053 trace_i915_gem_object_change_domain(obj,
05394f39 3054 obj->base.read_domains,
1c5d22f7 3055 old_write_domain);
e47c68e9
EA
3056}
3057
2ef7eeaa
EA
3058/**
3059 * Moves a single object to the GTT read, and possibly write domain.
3060 *
3061 * This function returns when the move is complete, including waiting on
3062 * flushes to occur.
3063 */
79e53945 3064int
2021746e 3065i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3066{
8325a09d 3067 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3068 uint32_t old_write_domain, old_read_domains;
e47c68e9 3069 int ret;
2ef7eeaa 3070
02354392 3071 /* Not valid to be called on unbound objects. */
05394f39 3072 if (obj->gtt_space == NULL)
02354392
EA
3073 return -EINVAL;
3074
8d7e3de1
CW
3075 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3076 return 0;
3077
0201f1ec 3078 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3079 if (ret)
3080 return ret;
3081
7213342d 3082 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3083
d0a57789
CW
3084 /* Serialise direct access to this object with the barriers for
3085 * coherent writes from the GPU, by effectively invalidating the
3086 * GTT domain upon first access.
3087 */
3088 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3089 mb();
3090
05394f39
CW
3091 old_write_domain = obj->base.write_domain;
3092 old_read_domains = obj->base.read_domains;
1c5d22f7 3093
e47c68e9
EA
3094 /* It should now be out of any other write domains, and we can update
3095 * the domain values for our changes.
3096 */
05394f39
CW
3097 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3098 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3099 if (write) {
05394f39
CW
3100 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3101 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3102 obj->dirty = 1;
2ef7eeaa
EA
3103 }
3104
1c5d22f7
CW
3105 trace_i915_gem_object_change_domain(obj,
3106 old_read_domains,
3107 old_write_domain);
3108
8325a09d
CW
3109 /* And bump the LRU for this access */
3110 if (i915_gem_object_is_inactive(obj))
3111 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3112
e47c68e9
EA
3113 return 0;
3114}
3115
e4ffd173
CW
3116int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3117 enum i915_cache_level cache_level)
3118{
7bddb01f
DV
3119 struct drm_device *dev = obj->base.dev;
3120 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3121 int ret;
3122
3123 if (obj->cache_level == cache_level)
3124 return 0;
3125
3126 if (obj->pin_count) {
3127 DRM_DEBUG("can not change the cache level of pinned objects\n");
3128 return -EBUSY;
3129 }
3130
42d6ab48
CW
3131 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3132 ret = i915_gem_object_unbind(obj);
3133 if (ret)
3134 return ret;
3135 }
3136
e4ffd173
CW
3137 if (obj->gtt_space) {
3138 ret = i915_gem_object_finish_gpu(obj);
3139 if (ret)
3140 return ret;
3141
3142 i915_gem_object_finish_gtt(obj);
3143
3144 /* Before SandyBridge, you could not use tiling or fence
3145 * registers with snooped memory, so relinquish any fences
3146 * currently pointing to our region in the aperture.
3147 */
42d6ab48 3148 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3149 ret = i915_gem_object_put_fence(obj);
3150 if (ret)
3151 return ret;
3152 }
3153
74898d7e
DV
3154 if (obj->has_global_gtt_mapping)
3155 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3156 if (obj->has_aliasing_ppgtt_mapping)
3157 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3158 obj, cache_level);
42d6ab48
CW
3159
3160 obj->gtt_space->color = cache_level;
e4ffd173
CW
3161 }
3162
3163 if (cache_level == I915_CACHE_NONE) {
3164 u32 old_read_domains, old_write_domain;
3165
3166 /* If we're coming from LLC cached, then we haven't
3167 * actually been tracking whether the data is in the
3168 * CPU cache or not, since we only allow one bit set
3169 * in obj->write_domain and have been skipping the clflushes.
3170 * Just set it to the CPU cache for now.
3171 */
3172 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3173 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3174
3175 old_read_domains = obj->base.read_domains;
3176 old_write_domain = obj->base.write_domain;
3177
3178 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3179 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3180
3181 trace_i915_gem_object_change_domain(obj,
3182 old_read_domains,
3183 old_write_domain);
3184 }
3185
3186 obj->cache_level = cache_level;
42d6ab48 3187 i915_gem_verify_gtt(dev);
e4ffd173
CW
3188 return 0;
3189}
3190
199adf40
BW
3191int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3192 struct drm_file *file)
e6994aee 3193{
199adf40 3194 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3195 struct drm_i915_gem_object *obj;
3196 int ret;
3197
3198 ret = i915_mutex_lock_interruptible(dev);
3199 if (ret)
3200 return ret;
3201
3202 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3203 if (&obj->base == NULL) {
3204 ret = -ENOENT;
3205 goto unlock;
3206 }
3207
199adf40 3208 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3209
3210 drm_gem_object_unreference(&obj->base);
3211unlock:
3212 mutex_unlock(&dev->struct_mutex);
3213 return ret;
3214}
3215
199adf40
BW
3216int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3217 struct drm_file *file)
e6994aee 3218{
199adf40 3219 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3220 struct drm_i915_gem_object *obj;
3221 enum i915_cache_level level;
3222 int ret;
3223
199adf40
BW
3224 switch (args->caching) {
3225 case I915_CACHING_NONE:
e6994aee
CW
3226 level = I915_CACHE_NONE;
3227 break;
199adf40 3228 case I915_CACHING_CACHED:
e6994aee
CW
3229 level = I915_CACHE_LLC;
3230 break;
3231 default:
3232 return -EINVAL;
3233 }
3234
3bc2913e
BW
3235 ret = i915_mutex_lock_interruptible(dev);
3236 if (ret)
3237 return ret;
3238
e6994aee
CW
3239 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3240 if (&obj->base == NULL) {
3241 ret = -ENOENT;
3242 goto unlock;
3243 }
3244
3245 ret = i915_gem_object_set_cache_level(obj, level);
3246
3247 drm_gem_object_unreference(&obj->base);
3248unlock:
3249 mutex_unlock(&dev->struct_mutex);
3250 return ret;
3251}
3252
b9241ea3 3253/*
2da3b9b9
CW
3254 * Prepare buffer for display plane (scanout, cursors, etc).
3255 * Can be called from an uninterruptible phase (modesetting) and allows
3256 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3257 */
3258int
2da3b9b9
CW
3259i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3260 u32 alignment,
919926ae 3261 struct intel_ring_buffer *pipelined)
b9241ea3 3262{
2da3b9b9 3263 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3264 int ret;
3265
0be73284 3266 if (pipelined != obj->ring) {
2911a35b
BW
3267 ret = i915_gem_object_sync(obj, pipelined);
3268 if (ret)
b9241ea3
ZW
3269 return ret;
3270 }
3271
a7ef0640
EA
3272 /* The display engine is not coherent with the LLC cache on gen6. As
3273 * a result, we make sure that the pinning that is about to occur is
3274 * done with uncached PTEs. This is lowest common denominator for all
3275 * chipsets.
3276 *
3277 * However for gen6+, we could do better by using the GFDT bit instead
3278 * of uncaching, which would allow us to flush all the LLC-cached data
3279 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3280 */
3281 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3282 if (ret)
3283 return ret;
3284
2da3b9b9
CW
3285 /* As the user may map the buffer once pinned in the display plane
3286 * (e.g. libkms for the bootup splash), we have to ensure that we
3287 * always use map_and_fenceable for all scanout buffers.
3288 */
86a1ee26 3289 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3290 if (ret)
3291 return ret;
3292
b118c1e3
CW
3293 i915_gem_object_flush_cpu_write_domain(obj);
3294
2da3b9b9 3295 old_write_domain = obj->base.write_domain;
05394f39 3296 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3297
3298 /* It should now be out of any other write domains, and we can update
3299 * the domain values for our changes.
3300 */
e5f1d962 3301 obj->base.write_domain = 0;
05394f39 3302 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3303
3304 trace_i915_gem_object_change_domain(obj,
3305 old_read_domains,
2da3b9b9 3306 old_write_domain);
b9241ea3
ZW
3307
3308 return 0;
3309}
3310
85345517 3311int
a8198eea 3312i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3313{
88241785
CW
3314 int ret;
3315
a8198eea 3316 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3317 return 0;
3318
0201f1ec 3319 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3320 if (ret)
3321 return ret;
3322
a8198eea
CW
3323 /* Ensure that we invalidate the GPU's caches and TLBs. */
3324 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3325 return 0;
85345517
CW
3326}
3327
e47c68e9
EA
3328/**
3329 * Moves a single object to the CPU read, and possibly write domain.
3330 *
3331 * This function returns when the move is complete, including waiting on
3332 * flushes to occur.
3333 */
dabdfe02 3334int
919926ae 3335i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3336{
1c5d22f7 3337 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3338 int ret;
3339
8d7e3de1
CW
3340 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3341 return 0;
3342
0201f1ec 3343 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3344 if (ret)
3345 return ret;
3346
e47c68e9 3347 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3348
05394f39
CW
3349 old_write_domain = obj->base.write_domain;
3350 old_read_domains = obj->base.read_domains;
1c5d22f7 3351
e47c68e9 3352 /* Flush the CPU cache if it's still invalid. */
05394f39 3353 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3354 i915_gem_clflush_object(obj);
2ef7eeaa 3355
05394f39 3356 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3357 }
3358
3359 /* It should now be out of any other write domains, and we can update
3360 * the domain values for our changes.
3361 */
05394f39 3362 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3363
3364 /* If we're writing through the CPU, then the GPU read domains will
3365 * need to be invalidated at next use.
3366 */
3367 if (write) {
05394f39
CW
3368 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3369 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3370 }
2ef7eeaa 3371
1c5d22f7
CW
3372 trace_i915_gem_object_change_domain(obj,
3373 old_read_domains,
3374 old_write_domain);
3375
2ef7eeaa
EA
3376 return 0;
3377}
3378
673a394b
EA
3379/* Throttle our rendering by waiting until the ring has completed our requests
3380 * emitted over 20 msec ago.
3381 *
b962442e
EA
3382 * Note that if we were to use the current jiffies each time around the loop,
3383 * we wouldn't escape the function with any frames outstanding if the time to
3384 * render a frame was over 20ms.
3385 *
673a394b
EA
3386 * This should get us reasonable parallelism between CPU and GPU but also
3387 * relatively low latency when blocking on a particular request to finish.
3388 */
40a5f0de 3389static int
f787a5f5 3390i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3391{
f787a5f5
CW
3392 struct drm_i915_private *dev_priv = dev->dev_private;
3393 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3394 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3395 struct drm_i915_gem_request *request;
3396 struct intel_ring_buffer *ring = NULL;
3397 u32 seqno = 0;
3398 int ret;
93533c29 3399
308887aa
DV
3400 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3401 if (ret)
3402 return ret;
3403
3404 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3405 if (ret)
3406 return ret;
e110e8d6 3407
1c25595f 3408 spin_lock(&file_priv->mm.lock);
f787a5f5 3409 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3410 if (time_after_eq(request->emitted_jiffies, recent_enough))
3411 break;
40a5f0de 3412
f787a5f5
CW
3413 ring = request->ring;
3414 seqno = request->seqno;
b962442e 3415 }
1c25595f 3416 spin_unlock(&file_priv->mm.lock);
40a5f0de 3417
f787a5f5
CW
3418 if (seqno == 0)
3419 return 0;
2bc43b5c 3420
5c81fe85 3421 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3422 if (ret == 0)
3423 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3424
3425 return ret;
3426}
3427
673a394b 3428int
05394f39
CW
3429i915_gem_object_pin(struct drm_i915_gem_object *obj,
3430 uint32_t alignment,
86a1ee26
CW
3431 bool map_and_fenceable,
3432 bool nonblocking)
673a394b 3433{
673a394b
EA
3434 int ret;
3435
7e81a42e
CW
3436 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3437 return -EBUSY;
ac0c6b5a 3438
05394f39
CW
3439 if (obj->gtt_space != NULL) {
3440 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3441 (map_and_fenceable && !obj->map_and_fenceable)) {
3442 WARN(obj->pin_count,
ae7d49d8 3443 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3444 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3445 " obj->map_and_fenceable=%d\n",
05394f39 3446 obj->gtt_offset, alignment,
75e9e915 3447 map_and_fenceable,
05394f39 3448 obj->map_and_fenceable);
ac0c6b5a
CW
3449 ret = i915_gem_object_unbind(obj);
3450 if (ret)
3451 return ret;
3452 }
3453 }
3454
05394f39 3455 if (obj->gtt_space == NULL) {
8742267a
CW
3456 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3457
a00b10c3 3458 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3459 map_and_fenceable,
3460 nonblocking);
9731129c 3461 if (ret)
673a394b 3462 return ret;
8742267a
CW
3463
3464 if (!dev_priv->mm.aliasing_ppgtt)
3465 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3466 }
76446cac 3467
74898d7e
DV
3468 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3469 i915_gem_gtt_bind_object(obj, obj->cache_level);
3470
1b50247a 3471 obj->pin_count++;
6299f992 3472 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3473
3474 return 0;
3475}
3476
3477void
05394f39 3478i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3479{
05394f39
CW
3480 BUG_ON(obj->pin_count == 0);
3481 BUG_ON(obj->gtt_space == NULL);
673a394b 3482
1b50247a 3483 if (--obj->pin_count == 0)
6299f992 3484 obj->pin_mappable = false;
673a394b
EA
3485}
3486
3487int
3488i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3489 struct drm_file *file)
673a394b
EA
3490{
3491 struct drm_i915_gem_pin *args = data;
05394f39 3492 struct drm_i915_gem_object *obj;
673a394b
EA
3493 int ret;
3494
1d7cfea1
CW
3495 ret = i915_mutex_lock_interruptible(dev);
3496 if (ret)
3497 return ret;
673a394b 3498
05394f39 3499 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3500 if (&obj->base == NULL) {
1d7cfea1
CW
3501 ret = -ENOENT;
3502 goto unlock;
673a394b 3503 }
673a394b 3504
05394f39 3505 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3506 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3507 ret = -EINVAL;
3508 goto out;
3ef94daa
CW
3509 }
3510
05394f39 3511 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3512 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3513 args->handle);
1d7cfea1
CW
3514 ret = -EINVAL;
3515 goto out;
79e53945
JB
3516 }
3517
05394f39
CW
3518 obj->user_pin_count++;
3519 obj->pin_filp = file;
3520 if (obj->user_pin_count == 1) {
86a1ee26 3521 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3522 if (ret)
3523 goto out;
673a394b
EA
3524 }
3525
3526 /* XXX - flush the CPU caches for pinned objects
3527 * as the X server doesn't manage domains yet
3528 */
e47c68e9 3529 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3530 args->offset = obj->gtt_offset;
1d7cfea1 3531out:
05394f39 3532 drm_gem_object_unreference(&obj->base);
1d7cfea1 3533unlock:
673a394b 3534 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3535 return ret;
673a394b
EA
3536}
3537
3538int
3539i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3540 struct drm_file *file)
673a394b
EA
3541{
3542 struct drm_i915_gem_pin *args = data;
05394f39 3543 struct drm_i915_gem_object *obj;
76c1dec1 3544 int ret;
673a394b 3545
1d7cfea1
CW
3546 ret = i915_mutex_lock_interruptible(dev);
3547 if (ret)
3548 return ret;
673a394b 3549
05394f39 3550 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3551 if (&obj->base == NULL) {
1d7cfea1
CW
3552 ret = -ENOENT;
3553 goto unlock;
673a394b 3554 }
76c1dec1 3555
05394f39 3556 if (obj->pin_filp != file) {
79e53945
JB
3557 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3558 args->handle);
1d7cfea1
CW
3559 ret = -EINVAL;
3560 goto out;
79e53945 3561 }
05394f39
CW
3562 obj->user_pin_count--;
3563 if (obj->user_pin_count == 0) {
3564 obj->pin_filp = NULL;
79e53945
JB
3565 i915_gem_object_unpin(obj);
3566 }
673a394b 3567
1d7cfea1 3568out:
05394f39 3569 drm_gem_object_unreference(&obj->base);
1d7cfea1 3570unlock:
673a394b 3571 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3572 return ret;
673a394b
EA
3573}
3574
3575int
3576i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3577 struct drm_file *file)
673a394b
EA
3578{
3579 struct drm_i915_gem_busy *args = data;
05394f39 3580 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3581 int ret;
3582
76c1dec1 3583 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3584 if (ret)
76c1dec1 3585 return ret;
673a394b 3586
05394f39 3587 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3588 if (&obj->base == NULL) {
1d7cfea1
CW
3589 ret = -ENOENT;
3590 goto unlock;
673a394b 3591 }
d1b851fc 3592
0be555b6
CW
3593 /* Count all active objects as busy, even if they are currently not used
3594 * by the gpu. Users of this interface expect objects to eventually
3595 * become non-busy without any further actions, therefore emit any
3596 * necessary flushes here.
c4de0a5d 3597 */
30dfebf3 3598 ret = i915_gem_object_flush_active(obj);
0be555b6 3599
30dfebf3 3600 args->busy = obj->active;
e9808edd
CW
3601 if (obj->ring) {
3602 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3603 args->busy |= intel_ring_flag(obj->ring) << 16;
3604 }
673a394b 3605
05394f39 3606 drm_gem_object_unreference(&obj->base);
1d7cfea1 3607unlock:
673a394b 3608 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3609 return ret;
673a394b
EA
3610}
3611
3612int
3613i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3614 struct drm_file *file_priv)
3615{
0206e353 3616 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3617}
3618
3ef94daa
CW
3619int
3620i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3621 struct drm_file *file_priv)
3622{
3623 struct drm_i915_gem_madvise *args = data;
05394f39 3624 struct drm_i915_gem_object *obj;
76c1dec1 3625 int ret;
3ef94daa
CW
3626
3627 switch (args->madv) {
3628 case I915_MADV_DONTNEED:
3629 case I915_MADV_WILLNEED:
3630 break;
3631 default:
3632 return -EINVAL;
3633 }
3634
1d7cfea1
CW
3635 ret = i915_mutex_lock_interruptible(dev);
3636 if (ret)
3637 return ret;
3638
05394f39 3639 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3640 if (&obj->base == NULL) {
1d7cfea1
CW
3641 ret = -ENOENT;
3642 goto unlock;
3ef94daa 3643 }
3ef94daa 3644
05394f39 3645 if (obj->pin_count) {
1d7cfea1
CW
3646 ret = -EINVAL;
3647 goto out;
3ef94daa
CW
3648 }
3649
05394f39
CW
3650 if (obj->madv != __I915_MADV_PURGED)
3651 obj->madv = args->madv;
3ef94daa 3652
6c085a72
CW
3653 /* if the object is no longer attached, discard its backing storage */
3654 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3655 i915_gem_object_truncate(obj);
3656
05394f39 3657 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3658
1d7cfea1 3659out:
05394f39 3660 drm_gem_object_unreference(&obj->base);
1d7cfea1 3661unlock:
3ef94daa 3662 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3663 return ret;
3ef94daa
CW
3664}
3665
37e680a1
CW
3666void i915_gem_object_init(struct drm_i915_gem_object *obj,
3667 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3668{
0327d6ba
CW
3669 INIT_LIST_HEAD(&obj->mm_list);
3670 INIT_LIST_HEAD(&obj->gtt_list);
3671 INIT_LIST_HEAD(&obj->ring_list);
3672 INIT_LIST_HEAD(&obj->exec_list);
3673
37e680a1
CW
3674 obj->ops = ops;
3675
0327d6ba
CW
3676 obj->fence_reg = I915_FENCE_REG_NONE;
3677 obj->madv = I915_MADV_WILLNEED;
3678 /* Avoid an unnecessary call to unbind on the first bind. */
3679 obj->map_and_fenceable = true;
3680
3681 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3682}
3683
37e680a1
CW
3684static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3685 .get_pages = i915_gem_object_get_pages_gtt,
3686 .put_pages = i915_gem_object_put_pages_gtt,
3687};
3688
05394f39
CW
3689struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3690 size_t size)
ac52bc56 3691{
c397b908 3692 struct drm_i915_gem_object *obj;
5949eac4 3693 struct address_space *mapping;
1a240d4d 3694 gfp_t mask;
ac52bc56 3695
42dcedd4 3696 obj = i915_gem_object_alloc(dev);
c397b908
DV
3697 if (obj == NULL)
3698 return NULL;
673a394b 3699
c397b908 3700 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 3701 i915_gem_object_free(obj);
c397b908
DV
3702 return NULL;
3703 }
673a394b 3704
bed1ea95
CW
3705 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3706 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3707 /* 965gm cannot relocate objects above 4GiB. */
3708 mask &= ~__GFP_HIGHMEM;
3709 mask |= __GFP_DMA32;
3710 }
3711
5949eac4 3712 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3713 mapping_set_gfp_mask(mapping, mask);
5949eac4 3714
37e680a1 3715 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3716
c397b908
DV
3717 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3718 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3719
3d29b842
ED
3720 if (HAS_LLC(dev)) {
3721 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3722 * cache) for about a 10% performance improvement
3723 * compared to uncached. Graphics requests other than
3724 * display scanout are coherent with the CPU in
3725 * accessing this cache. This means in this mode we
3726 * don't need to clflush on the CPU side, and on the
3727 * GPU side we only need to flush internal caches to
3728 * get data visible to the CPU.
3729 *
3730 * However, we maintain the display planes as UC, and so
3731 * need to rebind when first used as such.
3732 */
3733 obj->cache_level = I915_CACHE_LLC;
3734 } else
3735 obj->cache_level = I915_CACHE_NONE;
3736
05394f39 3737 return obj;
c397b908
DV
3738}
3739
3740int i915_gem_init_object(struct drm_gem_object *obj)
3741{
3742 BUG();
de151cf6 3743
673a394b
EA
3744 return 0;
3745}
3746
1488fc08 3747void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3748{
1488fc08 3749 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3750 struct drm_device *dev = obj->base.dev;
be72615b 3751 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3752
26e12f89
CW
3753 trace_i915_gem_object_destroy(obj);
3754
1488fc08
CW
3755 if (obj->phys_obj)
3756 i915_gem_detach_phys_object(dev, obj);
3757
3758 obj->pin_count = 0;
3759 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3760 bool was_interruptible;
3761
3762 was_interruptible = dev_priv->mm.interruptible;
3763 dev_priv->mm.interruptible = false;
3764
3765 WARN_ON(i915_gem_object_unbind(obj));
3766
3767 dev_priv->mm.interruptible = was_interruptible;
3768 }
3769
a5570178 3770 obj->pages_pin_count = 0;
37e680a1 3771 i915_gem_object_put_pages(obj);
d8cb5086 3772 i915_gem_object_free_mmap_offset(obj);
0104fdbb 3773 i915_gem_object_release_stolen(obj);
de151cf6 3774
9da3da66
CW
3775 BUG_ON(obj->pages);
3776
2f745ad3
CW
3777 if (obj->base.import_attach)
3778 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 3779
05394f39
CW
3780 drm_gem_object_release(&obj->base);
3781 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3782
05394f39 3783 kfree(obj->bit_17);
42dcedd4 3784 i915_gem_object_free(obj);
673a394b
EA
3785}
3786
29105ccc
CW
3787int
3788i915_gem_idle(struct drm_device *dev)
3789{
3790 drm_i915_private_t *dev_priv = dev->dev_private;
3791 int ret;
28dfe52a 3792
29105ccc 3793 mutex_lock(&dev->struct_mutex);
1c5d22f7 3794
87acb0a5 3795 if (dev_priv->mm.suspended) {
29105ccc
CW
3796 mutex_unlock(&dev->struct_mutex);
3797 return 0;
28dfe52a
EA
3798 }
3799
b2da9fe5 3800 ret = i915_gpu_idle(dev);
6dbe2772
KP
3801 if (ret) {
3802 mutex_unlock(&dev->struct_mutex);
673a394b 3803 return ret;
6dbe2772 3804 }
b2da9fe5 3805 i915_gem_retire_requests(dev);
673a394b 3806
29105ccc 3807 /* Under UMS, be paranoid and evict. */
a39d7efc 3808 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3809 i915_gem_evict_everything(dev);
29105ccc 3810
312817a3
CW
3811 i915_gem_reset_fences(dev);
3812
29105ccc
CW
3813 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3814 * We need to replace this with a semaphore, or something.
3815 * And not confound mm.suspended!
3816 */
3817 dev_priv->mm.suspended = 1;
99584db3 3818 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc
CW
3819
3820 i915_kernel_lost_context(dev);
6dbe2772 3821 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3822
6dbe2772
KP
3823 mutex_unlock(&dev->struct_mutex);
3824
29105ccc
CW
3825 /* Cancel the retire work handler, which should be idle now. */
3826 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3827
673a394b
EA
3828 return 0;
3829}
3830
b9524a1e
BW
3831void i915_gem_l3_remap(struct drm_device *dev)
3832{
3833 drm_i915_private_t *dev_priv = dev->dev_private;
3834 u32 misccpctl;
3835 int i;
3836
3837 if (!IS_IVYBRIDGE(dev))
3838 return;
3839
a4da4fa4 3840 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
3841 return;
3842
3843 misccpctl = I915_READ(GEN7_MISCCPCTL);
3844 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3845 POSTING_READ(GEN7_MISCCPCTL);
3846
3847 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3848 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 3849 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
3850 DRM_DEBUG("0x%x was already programmed to %x\n",
3851 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 3852 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 3853 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 3854 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
3855 }
3856
3857 /* Make sure all the writes land before disabling dop clock gating */
3858 POSTING_READ(GEN7_L3LOG_BASE);
3859
3860 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3861}
3862
f691e2f4
DV
3863void i915_gem_init_swizzling(struct drm_device *dev)
3864{
3865 drm_i915_private_t *dev_priv = dev->dev_private;
3866
11782b02 3867 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3868 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3869 return;
3870
3871 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3872 DISP_TILE_SURFACE_SWIZZLING);
3873
11782b02
DV
3874 if (IS_GEN5(dev))
3875 return;
3876
f691e2f4
DV
3877 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3878 if (IS_GEN6(dev))
6b26c86d 3879 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 3880 else if (IS_GEN7(dev))
6b26c86d 3881 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
3882 else
3883 BUG();
f691e2f4 3884}
e21af88d 3885
67b1b571
CW
3886static bool
3887intel_enable_blt(struct drm_device *dev)
3888{
3889 if (!HAS_BLT(dev))
3890 return false;
3891
3892 /* The blitter was dysfunctional on early prototypes */
3893 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3894 DRM_INFO("BLT not supported on this pre-production hardware;"
3895 " graphics performance will be degraded.\n");
3896 return false;
3897 }
3898
3899 return true;
3900}
3901
8187a2b7 3902int
f691e2f4 3903i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3904{
3905 drm_i915_private_t *dev_priv = dev->dev_private;
3906 int ret;
68f95ba9 3907
e76e9aeb 3908 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
8ecd1a66
DV
3909 return -EIO;
3910
eda2d7f5
RV
3911 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3912 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3913
b9524a1e
BW
3914 i915_gem_l3_remap(dev);
3915
f691e2f4
DV
3916 i915_gem_init_swizzling(dev);
3917
f7e98ad4
MK
3918 dev_priv->next_seqno = dev_priv->last_seqno = (u32)~0 - 0x1000;
3919
5c1143bb 3920 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3921 if (ret)
b6913e4b 3922 return ret;
68f95ba9
CW
3923
3924 if (HAS_BSD(dev)) {
5c1143bb 3925 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3926 if (ret)
3927 goto cleanup_render_ring;
d1b851fc 3928 }
68f95ba9 3929
67b1b571 3930 if (intel_enable_blt(dev)) {
549f7365
CW
3931 ret = intel_init_blt_ring_buffer(dev);
3932 if (ret)
3933 goto cleanup_bsd_ring;
3934 }
3935
254f965c
BW
3936 /*
3937 * XXX: There was some w/a described somewhere suggesting loading
3938 * contexts before PPGTT.
3939 */
3940 i915_gem_context_init(dev);
e21af88d
DV
3941 i915_gem_init_ppgtt(dev);
3942
68f95ba9
CW
3943 return 0;
3944
549f7365 3945cleanup_bsd_ring:
1ec14ad3 3946 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3947cleanup_render_ring:
1ec14ad3 3948 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3949 return ret;
3950}
3951
1070a42b
CW
3952int i915_gem_init(struct drm_device *dev)
3953{
3954 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
3955 int ret;
3956
1070a42b 3957 mutex_lock(&dev->struct_mutex);
d7e5008f 3958 i915_gem_init_global_gtt(dev);
1070a42b
CW
3959 ret = i915_gem_init_hw(dev);
3960 mutex_unlock(&dev->struct_mutex);
3961 if (ret) {
3962 i915_gem_cleanup_aliasing_ppgtt(dev);
3963 return ret;
3964 }
3965
53ca26ca
DV
3966 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3967 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3968 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
3969 return 0;
3970}
3971
8187a2b7
ZN
3972void
3973i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3974{
3975 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3976 struct intel_ring_buffer *ring;
1ec14ad3 3977 int i;
8187a2b7 3978
b4519513
CW
3979 for_each_ring(ring, dev_priv, i)
3980 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
3981}
3982
673a394b
EA
3983int
3984i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3985 struct drm_file *file_priv)
3986{
3987 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3988 int ret;
673a394b 3989
79e53945
JB
3990 if (drm_core_check_feature(dev, DRIVER_MODESET))
3991 return 0;
3992
1f83fee0 3993 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 3994 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 3995 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
3996 }
3997
673a394b 3998 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3999 dev_priv->mm.suspended = 0;
4000
f691e2f4 4001 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4002 if (ret != 0) {
4003 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4004 return ret;
d816f6ac 4005 }
9bb2d6f9 4006
69dc4987 4007 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4008 mutex_unlock(&dev->struct_mutex);
dbb19d30 4009
5f35308b
CW
4010 ret = drm_irq_install(dev);
4011 if (ret)
4012 goto cleanup_ringbuffer;
dbb19d30 4013
673a394b 4014 return 0;
5f35308b
CW
4015
4016cleanup_ringbuffer:
4017 mutex_lock(&dev->struct_mutex);
4018 i915_gem_cleanup_ringbuffer(dev);
4019 dev_priv->mm.suspended = 1;
4020 mutex_unlock(&dev->struct_mutex);
4021
4022 return ret;
673a394b
EA
4023}
4024
4025int
4026i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4027 struct drm_file *file_priv)
4028{
79e53945
JB
4029 if (drm_core_check_feature(dev, DRIVER_MODESET))
4030 return 0;
4031
dbb19d30 4032 drm_irq_uninstall(dev);
e6890f6f 4033 return i915_gem_idle(dev);
673a394b
EA
4034}
4035
4036void
4037i915_gem_lastclose(struct drm_device *dev)
4038{
4039 int ret;
673a394b 4040
e806b495
EA
4041 if (drm_core_check_feature(dev, DRIVER_MODESET))
4042 return;
4043
6dbe2772
KP
4044 ret = i915_gem_idle(dev);
4045 if (ret)
4046 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4047}
4048
64193406
CW
4049static void
4050init_ring_lists(struct intel_ring_buffer *ring)
4051{
4052 INIT_LIST_HEAD(&ring->active_list);
4053 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4054}
4055
673a394b
EA
4056void
4057i915_gem_load(struct drm_device *dev)
4058{
4059 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4060 int i;
4061
4062 dev_priv->slab =
4063 kmem_cache_create("i915_gem_object",
4064 sizeof(struct drm_i915_gem_object), 0,
4065 SLAB_HWCACHE_ALIGN,
4066 NULL);
673a394b 4067
69dc4987 4068 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4069 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4070 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4071 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4072 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4073 for (i = 0; i < I915_NUM_RINGS; i++)
4074 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4075 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4076 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4077 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4078 i915_gem_retire_work_handler);
1f83fee0 4079 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4080
94400120
DA
4081 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4082 if (IS_GEN3(dev)) {
50743298
DV
4083 I915_WRITE(MI_ARB_STATE,
4084 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4085 }
4086
72bfa19c
CW
4087 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4088
de151cf6 4089 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4090 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4091 dev_priv->fence_reg_start = 3;
de151cf6 4092
a6c45cf0 4093 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4094 dev_priv->num_fence_regs = 16;
4095 else
4096 dev_priv->num_fence_regs = 8;
4097
b5aa8a0f 4098 /* Initialize fence registers to zero */
ada726c7 4099 i915_gem_reset_fences(dev);
10ed13e4 4100
673a394b 4101 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4102 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4103
ce453d81
CW
4104 dev_priv->mm.interruptible = true;
4105
17250b71
CW
4106 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4107 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4108 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4109}
71acb5eb
DA
4110
4111/*
4112 * Create a physically contiguous memory object for this object
4113 * e.g. for cursor + overlay regs
4114 */
995b6762
CW
4115static int i915_gem_init_phys_object(struct drm_device *dev,
4116 int id, int size, int align)
71acb5eb
DA
4117{
4118 drm_i915_private_t *dev_priv = dev->dev_private;
4119 struct drm_i915_gem_phys_object *phys_obj;
4120 int ret;
4121
4122 if (dev_priv->mm.phys_objs[id - 1] || !size)
4123 return 0;
4124
9a298b2a 4125 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4126 if (!phys_obj)
4127 return -ENOMEM;
4128
4129 phys_obj->id = id;
4130
6eeefaf3 4131 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4132 if (!phys_obj->handle) {
4133 ret = -ENOMEM;
4134 goto kfree_obj;
4135 }
4136#ifdef CONFIG_X86
4137 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4138#endif
4139
4140 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4141
4142 return 0;
4143kfree_obj:
9a298b2a 4144 kfree(phys_obj);
71acb5eb
DA
4145 return ret;
4146}
4147
995b6762 4148static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4149{
4150 drm_i915_private_t *dev_priv = dev->dev_private;
4151 struct drm_i915_gem_phys_object *phys_obj;
4152
4153 if (!dev_priv->mm.phys_objs[id - 1])
4154 return;
4155
4156 phys_obj = dev_priv->mm.phys_objs[id - 1];
4157 if (phys_obj->cur_obj) {
4158 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4159 }
4160
4161#ifdef CONFIG_X86
4162 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4163#endif
4164 drm_pci_free(dev, phys_obj->handle);
4165 kfree(phys_obj);
4166 dev_priv->mm.phys_objs[id - 1] = NULL;
4167}
4168
4169void i915_gem_free_all_phys_object(struct drm_device *dev)
4170{
4171 int i;
4172
260883c8 4173 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4174 i915_gem_free_phys_object(dev, i);
4175}
4176
4177void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4178 struct drm_i915_gem_object *obj)
71acb5eb 4179{
05394f39 4180 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4181 char *vaddr;
71acb5eb 4182 int i;
71acb5eb
DA
4183 int page_count;
4184
05394f39 4185 if (!obj->phys_obj)
71acb5eb 4186 return;
05394f39 4187 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4188
05394f39 4189 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4190 for (i = 0; i < page_count; i++) {
5949eac4 4191 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4192 if (!IS_ERR(page)) {
4193 char *dst = kmap_atomic(page);
4194 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4195 kunmap_atomic(dst);
4196
4197 drm_clflush_pages(&page, 1);
4198
4199 set_page_dirty(page);
4200 mark_page_accessed(page);
4201 page_cache_release(page);
4202 }
71acb5eb 4203 }
e76e9aeb 4204 i915_gem_chipset_flush(dev);
d78b47b9 4205
05394f39
CW
4206 obj->phys_obj->cur_obj = NULL;
4207 obj->phys_obj = NULL;
71acb5eb
DA
4208}
4209
4210int
4211i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4212 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4213 int id,
4214 int align)
71acb5eb 4215{
05394f39 4216 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4217 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4218 int ret = 0;
4219 int page_count;
4220 int i;
4221
4222 if (id > I915_MAX_PHYS_OBJECT)
4223 return -EINVAL;
4224
05394f39
CW
4225 if (obj->phys_obj) {
4226 if (obj->phys_obj->id == id)
71acb5eb
DA
4227 return 0;
4228 i915_gem_detach_phys_object(dev, obj);
4229 }
4230
71acb5eb
DA
4231 /* create a new object */
4232 if (!dev_priv->mm.phys_objs[id - 1]) {
4233 ret = i915_gem_init_phys_object(dev, id,
05394f39 4234 obj->base.size, align);
71acb5eb 4235 if (ret) {
05394f39
CW
4236 DRM_ERROR("failed to init phys object %d size: %zu\n",
4237 id, obj->base.size);
e5281ccd 4238 return ret;
71acb5eb
DA
4239 }
4240 }
4241
4242 /* bind to the object */
05394f39
CW
4243 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4244 obj->phys_obj->cur_obj = obj;
71acb5eb 4245
05394f39 4246 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4247
4248 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4249 struct page *page;
4250 char *dst, *src;
4251
5949eac4 4252 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4253 if (IS_ERR(page))
4254 return PTR_ERR(page);
71acb5eb 4255
ff75b9bc 4256 src = kmap_atomic(page);
05394f39 4257 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4258 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4259 kunmap_atomic(src);
71acb5eb 4260
e5281ccd
CW
4261 mark_page_accessed(page);
4262 page_cache_release(page);
4263 }
d78b47b9 4264
71acb5eb 4265 return 0;
71acb5eb
DA
4266}
4267
4268static int
05394f39
CW
4269i915_gem_phys_pwrite(struct drm_device *dev,
4270 struct drm_i915_gem_object *obj,
71acb5eb
DA
4271 struct drm_i915_gem_pwrite *args,
4272 struct drm_file *file_priv)
4273{
05394f39 4274 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4275 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4276
b47b30cc
CW
4277 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4278 unsigned long unwritten;
4279
4280 /* The physical object once assigned is fixed for the lifetime
4281 * of the obj, so we can safely drop the lock and continue
4282 * to access vaddr.
4283 */
4284 mutex_unlock(&dev->struct_mutex);
4285 unwritten = copy_from_user(vaddr, user_data, args->size);
4286 mutex_lock(&dev->struct_mutex);
4287 if (unwritten)
4288 return -EFAULT;
4289 }
71acb5eb 4290
e76e9aeb 4291 i915_gem_chipset_flush(dev);
71acb5eb
DA
4292 return 0;
4293}
b962442e 4294
f787a5f5 4295void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4296{
f787a5f5 4297 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4298
4299 /* Clean up our request list when the client is going away, so that
4300 * later retire_requests won't dereference our soon-to-be-gone
4301 * file_priv.
4302 */
1c25595f 4303 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4304 while (!list_empty(&file_priv->mm.request_list)) {
4305 struct drm_i915_gem_request *request;
4306
4307 request = list_first_entry(&file_priv->mm.request_list,
4308 struct drm_i915_gem_request,
4309 client_list);
4310 list_del(&request->client_list);
4311 request->file_priv = NULL;
4312 }
1c25595f 4313 spin_unlock(&file_priv->mm.lock);
b962442e 4314}
31169714 4315
5774506f
CW
4316static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4317{
4318 if (!mutex_is_locked(mutex))
4319 return false;
4320
4321#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4322 return mutex->owner == task;
4323#else
4324 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4325 return false;
4326#endif
4327}
4328
31169714 4329static int
1495f230 4330i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4331{
17250b71
CW
4332 struct drm_i915_private *dev_priv =
4333 container_of(shrinker,
4334 struct drm_i915_private,
4335 mm.inactive_shrinker);
4336 struct drm_device *dev = dev_priv->dev;
6c085a72 4337 struct drm_i915_gem_object *obj;
1495f230 4338 int nr_to_scan = sc->nr_to_scan;
5774506f 4339 bool unlock = true;
17250b71
CW
4340 int cnt;
4341
5774506f
CW
4342 if (!mutex_trylock(&dev->struct_mutex)) {
4343 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4344 return 0;
4345
677feac2
DV
4346 if (dev_priv->mm.shrinker_no_lock_stealing)
4347 return 0;
4348
5774506f
CW
4349 unlock = false;
4350 }
31169714 4351
6c085a72
CW
4352 if (nr_to_scan) {
4353 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4354 if (nr_to_scan > 0)
4355 i915_gem_shrink_all(dev_priv);
31169714
CW
4356 }
4357
17250b71 4358 cnt = 0;
6c085a72 4359 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
a5570178
CW
4360 if (obj->pages_pin_count == 0)
4361 cnt += obj->base.size >> PAGE_SHIFT;
6c085a72 4362 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
a5570178 4363 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4364 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4365
5774506f
CW
4366 if (unlock)
4367 mutex_unlock(&dev->struct_mutex);
6c085a72 4368 return cnt;
31169714 4369}