]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
Merge remote-tracking branches 'spi/topic/adi-v3', 'spi/topic/atmel', 'spi/topic...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43
CW
63static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 65
c76ce038
CW
66static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
68{
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
70}
71
2c22569b
CW
72static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73{
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
76
77 return obj->pin_display;
78}
79
61050808
CW
80static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81{
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
84
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
87 */
5d82e3e6 88 obj->fence_dirty = false;
61050808
CW
89 obj->fence_reg = I915_FENCE_REG_NONE;
90}
91
73aa808f
CW
92/* some bookkeeping */
93static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
102static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104{
c20e8355 105 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
c20e8355 108 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
109}
110
21dd3734 111static int
33196ded 112i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 113{
30dbf0c0
CW
114 int ret;
115
7abb690a
DV
116#define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
1f83fee0 118 if (EXIT_COND)
30dbf0c0
CW
119 return 0;
120
0a6759c6
DV
121 /*
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
125 */
1f83fee0
DV
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
0a6759c6
DV
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
30dbf0c0 133 return ret;
0a6759c6 134 }
1f83fee0 135#undef EXIT_COND
30dbf0c0 136
21dd3734 137 return 0;
30dbf0c0
CW
138}
139
54cf91dc 140int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 141{
33196ded 142 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
143 int ret;
144
33196ded 145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
146 if (ret)
147 return ret;
148
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
152
23bc5982 153 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
154 return 0;
155}
30dbf0c0 156
7d1c4804 157static inline bool
05394f39 158i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 159{
9843877d 160 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
161}
162
79e53945
JB
163int
164i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 165 struct drm_file *file)
79e53945 166{
93d18799 167 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 168 struct drm_i915_gem_init *args = data;
2021746e 169
7bb6fb8d
DV
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
172
2021746e
CW
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
79e53945 176
f534bc0b
DV
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
180
79e53945 181 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
93d18799 184 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
185 mutex_unlock(&dev->struct_mutex);
186
2021746e 187 return 0;
673a394b
EA
188}
189
5a125c3c
EA
190int
191i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 192 struct drm_file *file)
5a125c3c 193{
73aa808f 194 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 195 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
5a125c3c 198
6299f992 199 pinned = 0;
73aa808f 200 mutex_lock(&dev->struct_mutex);
35c20a60 201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 202 if (i915_gem_obj_is_pinned(obj))
f343c5f6 203 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 204 mutex_unlock(&dev->struct_mutex);
5a125c3c 205
853ba5d2 206 args->aper_size = dev_priv->gtt.base.total;
0206e353 207 args->aper_available_size = args->aper_size - pinned;
6299f992 208
5a125c3c
EA
209 return 0;
210}
211
00731155
CW
212static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
213{
214 drm_dma_handle_t *phys = obj->phys_handle;
215
216 if (!phys)
217 return;
218
219 if (obj->madv == I915_MADV_WILLNEED) {
220 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221 char *vaddr = phys->vaddr;
222 int i;
223
224 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225 struct page *page = shmem_read_mapping_page(mapping, i);
226 if (!IS_ERR(page)) {
227 char *dst = kmap_atomic(page);
228 memcpy(dst, vaddr, PAGE_SIZE);
229 drm_clflush_virt_range(dst, PAGE_SIZE);
230 kunmap_atomic(dst);
231
232 set_page_dirty(page);
233 mark_page_accessed(page);
234 page_cache_release(page);
235 }
236 vaddr += PAGE_SIZE;
237 }
238 i915_gem_chipset_flush(obj->base.dev);
239 }
240
241#ifdef CONFIG_X86
242 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
243#endif
244 drm_pci_free(obj->base.dev, phys);
245 obj->phys_handle = NULL;
246}
247
248int
249i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
250 int align)
251{
252 drm_dma_handle_t *phys;
253 struct address_space *mapping;
254 char *vaddr;
255 int i;
256
257 if (obj->phys_handle) {
258 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
259 return -EBUSY;
260
261 return 0;
262 }
263
264 if (obj->madv != I915_MADV_WILLNEED)
265 return -EFAULT;
266
267 if (obj->base.filp == NULL)
268 return -EINVAL;
269
270 /* create a new object */
271 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
272 if (!phys)
273 return -ENOMEM;
274
275 vaddr = phys->vaddr;
276#ifdef CONFIG_X86
277 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
278#endif
279 mapping = file_inode(obj->base.filp)->i_mapping;
280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281 struct page *page;
282 char *src;
283
284 page = shmem_read_mapping_page(mapping, i);
285 if (IS_ERR(page)) {
286#ifdef CONFIG_X86
287 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
288#endif
289 drm_pci_free(obj->base.dev, phys);
290 return PTR_ERR(page);
291 }
292
293 src = kmap_atomic(page);
294 memcpy(vaddr, src, PAGE_SIZE);
295 kunmap_atomic(src);
296
297 mark_page_accessed(page);
298 page_cache_release(page);
299
300 vaddr += PAGE_SIZE;
301 }
302
303 obj->phys_handle = phys;
304 return 0;
305}
306
307static int
308i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309 struct drm_i915_gem_pwrite *args,
310 struct drm_file *file_priv)
311{
312 struct drm_device *dev = obj->base.dev;
313 void *vaddr = obj->phys_handle->vaddr + args->offset;
314 char __user *user_data = to_user_ptr(args->data_ptr);
315
316 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317 unsigned long unwritten;
318
319 /* The physical object once assigned is fixed for the lifetime
320 * of the obj, so we can safely drop the lock and continue
321 * to access vaddr.
322 */
323 mutex_unlock(&dev->struct_mutex);
324 unwritten = copy_from_user(vaddr, user_data, args->size);
325 mutex_lock(&dev->struct_mutex);
326 if (unwritten)
327 return -EFAULT;
328 }
329
330 i915_gem_chipset_flush(dev);
331 return 0;
332}
333
42dcedd4
CW
334void *i915_gem_object_alloc(struct drm_device *dev)
335{
336 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 337 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
338}
339
340void i915_gem_object_free(struct drm_i915_gem_object *obj)
341{
342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343 kmem_cache_free(dev_priv->slab, obj);
344}
345
ff72145b
DA
346static int
347i915_gem_create(struct drm_file *file,
348 struct drm_device *dev,
349 uint64_t size,
350 uint32_t *handle_p)
673a394b 351{
05394f39 352 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
353 int ret;
354 u32 handle;
673a394b 355
ff72145b 356 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
357 if (size == 0)
358 return -EINVAL;
673a394b
EA
359
360 /* Allocate the new object */
ff72145b 361 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
362 if (obj == NULL)
363 return -ENOMEM;
364
05394f39 365 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 366 /* drop reference from allocate - handle holds it now */
d861e338
DV
367 drm_gem_object_unreference_unlocked(&obj->base);
368 if (ret)
369 return ret;
202f2fef 370
ff72145b 371 *handle_p = handle;
673a394b
EA
372 return 0;
373}
374
ff72145b
DA
375int
376i915_gem_dumb_create(struct drm_file *file,
377 struct drm_device *dev,
378 struct drm_mode_create_dumb *args)
379{
380 /* have to work out size/pitch and return them */
de45eaf7 381 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
382 args->size = args->pitch * args->height;
383 return i915_gem_create(file, dev,
384 args->size, &args->handle);
385}
386
ff72145b
DA
387/**
388 * Creates a new mm object and returns a handle to it.
389 */
390int
391i915_gem_create_ioctl(struct drm_device *dev, void *data,
392 struct drm_file *file)
393{
394 struct drm_i915_gem_create *args = data;
63ed2cb2 395
ff72145b
DA
396 return i915_gem_create(file, dev,
397 args->size, &args->handle);
398}
399
8461d226
DV
400static inline int
401__copy_to_user_swizzled(char __user *cpu_vaddr,
402 const char *gpu_vaddr, int gpu_offset,
403 int length)
404{
405 int ret, cpu_offset = 0;
406
407 while (length > 0) {
408 int cacheline_end = ALIGN(gpu_offset + 1, 64);
409 int this_length = min(cacheline_end - gpu_offset, length);
410 int swizzled_gpu_offset = gpu_offset ^ 64;
411
412 ret = __copy_to_user(cpu_vaddr + cpu_offset,
413 gpu_vaddr + swizzled_gpu_offset,
414 this_length);
415 if (ret)
416 return ret + length;
417
418 cpu_offset += this_length;
419 gpu_offset += this_length;
420 length -= this_length;
421 }
422
423 return 0;
424}
425
8c59967c 426static inline int
4f0c7cfb
BW
427__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428 const char __user *cpu_vaddr,
8c59967c
DV
429 int length)
430{
431 int ret, cpu_offset = 0;
432
433 while (length > 0) {
434 int cacheline_end = ALIGN(gpu_offset + 1, 64);
435 int this_length = min(cacheline_end - gpu_offset, length);
436 int swizzled_gpu_offset = gpu_offset ^ 64;
437
438 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439 cpu_vaddr + cpu_offset,
440 this_length);
441 if (ret)
442 return ret + length;
443
444 cpu_offset += this_length;
445 gpu_offset += this_length;
446 length -= this_length;
447 }
448
449 return 0;
450}
451
4c914c0c
BV
452/*
453 * Pins the specified object's pages and synchronizes the object with
454 * GPU accesses. Sets needs_clflush to non-zero if the caller should
455 * flush the object from the CPU cache.
456 */
457int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
458 int *needs_clflush)
459{
460 int ret;
461
462 *needs_clflush = 0;
463
464 if (!obj->base.filp)
465 return -EINVAL;
466
467 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468 /* If we're not in the cpu read domain, set ourself into the gtt
469 * read domain and manually flush cachelines (if required). This
470 * optimizes for the case when the gpu will dirty the data
471 * anyway again before the next pread happens. */
472 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
473 obj->cache_level);
474 ret = i915_gem_object_wait_rendering(obj, true);
475 if (ret)
476 return ret;
c8725f3d
CW
477
478 i915_gem_object_retire(obj);
4c914c0c
BV
479 }
480
481 ret = i915_gem_object_get_pages(obj);
482 if (ret)
483 return ret;
484
485 i915_gem_object_pin_pages(obj);
486
487 return ret;
488}
489
d174bd64
DV
490/* Per-page copy function for the shmem pread fastpath.
491 * Flushes invalid cachelines before reading the target if
492 * needs_clflush is set. */
eb01459f 493static int
d174bd64
DV
494shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495 char __user *user_data,
496 bool page_do_bit17_swizzling, bool needs_clflush)
497{
498 char *vaddr;
499 int ret;
500
e7e58eb5 501 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
502 return -EINVAL;
503
504 vaddr = kmap_atomic(page);
505 if (needs_clflush)
506 drm_clflush_virt_range(vaddr + shmem_page_offset,
507 page_length);
508 ret = __copy_to_user_inatomic(user_data,
509 vaddr + shmem_page_offset,
510 page_length);
511 kunmap_atomic(vaddr);
512
f60d7f0c 513 return ret ? -EFAULT : 0;
d174bd64
DV
514}
515
23c18c71
DV
516static void
517shmem_clflush_swizzled_range(char *addr, unsigned long length,
518 bool swizzled)
519{
e7e58eb5 520 if (unlikely(swizzled)) {
23c18c71
DV
521 unsigned long start = (unsigned long) addr;
522 unsigned long end = (unsigned long) addr + length;
523
524 /* For swizzling simply ensure that we always flush both
525 * channels. Lame, but simple and it works. Swizzled
526 * pwrite/pread is far from a hotpath - current userspace
527 * doesn't use it at all. */
528 start = round_down(start, 128);
529 end = round_up(end, 128);
530
531 drm_clflush_virt_range((void *)start, end - start);
532 } else {
533 drm_clflush_virt_range(addr, length);
534 }
535
536}
537
d174bd64
DV
538/* Only difference to the fast-path function is that this can handle bit17
539 * and uses non-atomic copy and kmap functions. */
540static int
541shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542 char __user *user_data,
543 bool page_do_bit17_swizzling, bool needs_clflush)
544{
545 char *vaddr;
546 int ret;
547
548 vaddr = kmap(page);
549 if (needs_clflush)
23c18c71
DV
550 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
551 page_length,
552 page_do_bit17_swizzling);
d174bd64
DV
553
554 if (page_do_bit17_swizzling)
555 ret = __copy_to_user_swizzled(user_data,
556 vaddr, shmem_page_offset,
557 page_length);
558 else
559 ret = __copy_to_user(user_data,
560 vaddr + shmem_page_offset,
561 page_length);
562 kunmap(page);
563
f60d7f0c 564 return ret ? - EFAULT : 0;
d174bd64
DV
565}
566
eb01459f 567static int
dbf7bff0
DV
568i915_gem_shmem_pread(struct drm_device *dev,
569 struct drm_i915_gem_object *obj,
570 struct drm_i915_gem_pread *args,
571 struct drm_file *file)
eb01459f 572{
8461d226 573 char __user *user_data;
eb01459f 574 ssize_t remain;
8461d226 575 loff_t offset;
eb2c0c81 576 int shmem_page_offset, page_length, ret = 0;
8461d226 577 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 578 int prefaulted = 0;
8489731c 579 int needs_clflush = 0;
67d5a50c 580 struct sg_page_iter sg_iter;
eb01459f 581
2bb4629a 582 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
583 remain = args->size;
584
8461d226 585 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 586
4c914c0c 587 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
588 if (ret)
589 return ret;
590
8461d226 591 offset = args->offset;
eb01459f 592
67d5a50c
ID
593 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594 offset >> PAGE_SHIFT) {
2db76d7c 595 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
596
597 if (remain <= 0)
598 break;
599
eb01459f
EA
600 /* Operation in this page
601 *
eb01459f 602 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
603 * page_length = bytes to copy for this page
604 */
c8cbbb8b 605 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
606 page_length = remain;
607 if ((shmem_page_offset + page_length) > PAGE_SIZE)
608 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 609
8461d226
DV
610 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
611 (page_to_phys(page) & (1 << 17)) != 0;
612
d174bd64
DV
613 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
614 user_data, page_do_bit17_swizzling,
615 needs_clflush);
616 if (ret == 0)
617 goto next_page;
dbf7bff0 618
dbf7bff0
DV
619 mutex_unlock(&dev->struct_mutex);
620
d330a953 621 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 622 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
623 /* Userspace is tricking us, but we've already clobbered
624 * its pages with the prefault and promised to write the
625 * data up to the first fault. Hence ignore any errors
626 * and just continue. */
627 (void)ret;
628 prefaulted = 1;
629 }
eb01459f 630
d174bd64
DV
631 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
632 user_data, page_do_bit17_swizzling,
633 needs_clflush);
eb01459f 634
dbf7bff0 635 mutex_lock(&dev->struct_mutex);
f60d7f0c 636
f60d7f0c 637 if (ret)
8461d226 638 goto out;
8461d226 639
17793c9a 640next_page:
eb01459f 641 remain -= page_length;
8461d226 642 user_data += page_length;
eb01459f
EA
643 offset += page_length;
644 }
645
4f27b75d 646out:
f60d7f0c
CW
647 i915_gem_object_unpin_pages(obj);
648
eb01459f
EA
649 return ret;
650}
651
673a394b
EA
652/**
653 * Reads data from the object referenced by handle.
654 *
655 * On error, the contents of *data are undefined.
656 */
657int
658i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 659 struct drm_file *file)
673a394b
EA
660{
661 struct drm_i915_gem_pread *args = data;
05394f39 662 struct drm_i915_gem_object *obj;
35b62a89 663 int ret = 0;
673a394b 664
51311d0a
CW
665 if (args->size == 0)
666 return 0;
667
668 if (!access_ok(VERIFY_WRITE,
2bb4629a 669 to_user_ptr(args->data_ptr),
51311d0a
CW
670 args->size))
671 return -EFAULT;
672
4f27b75d 673 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 674 if (ret)
4f27b75d 675 return ret;
673a394b 676
05394f39 677 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 678 if (&obj->base == NULL) {
1d7cfea1
CW
679 ret = -ENOENT;
680 goto unlock;
4f27b75d 681 }
673a394b 682
7dcd2499 683 /* Bounds check source. */
05394f39
CW
684 if (args->offset > obj->base.size ||
685 args->size > obj->base.size - args->offset) {
ce9d419d 686 ret = -EINVAL;
35b62a89 687 goto out;
ce9d419d
CW
688 }
689
1286ff73
DV
690 /* prime objects have no backing filp to GEM pread/pwrite
691 * pages from.
692 */
693 if (!obj->base.filp) {
694 ret = -EINVAL;
695 goto out;
696 }
697
db53a302
CW
698 trace_i915_gem_object_pread(obj, args->offset, args->size);
699
dbf7bff0 700 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 701
35b62a89 702out:
05394f39 703 drm_gem_object_unreference(&obj->base);
1d7cfea1 704unlock:
4f27b75d 705 mutex_unlock(&dev->struct_mutex);
eb01459f 706 return ret;
673a394b
EA
707}
708
0839ccb8
KP
709/* This is the fast write path which cannot handle
710 * page faults in the source data
9b7530cc 711 */
0839ccb8
KP
712
713static inline int
714fast_user_write(struct io_mapping *mapping,
715 loff_t page_base, int page_offset,
716 char __user *user_data,
717 int length)
9b7530cc 718{
4f0c7cfb
BW
719 void __iomem *vaddr_atomic;
720 void *vaddr;
0839ccb8 721 unsigned long unwritten;
9b7530cc 722
3e4d3af5 723 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
724 /* We can use the cpu mem copy function because this is X86. */
725 vaddr = (void __force*)vaddr_atomic + page_offset;
726 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 727 user_data, length);
3e4d3af5 728 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 729 return unwritten;
0839ccb8
KP
730}
731
3de09aa3
EA
732/**
733 * This is the fast pwrite path, where we copy the data directly from the
734 * user into the GTT, uncached.
735 */
673a394b 736static int
05394f39
CW
737i915_gem_gtt_pwrite_fast(struct drm_device *dev,
738 struct drm_i915_gem_object *obj,
3de09aa3 739 struct drm_i915_gem_pwrite *args,
05394f39 740 struct drm_file *file)
673a394b 741{
3e31c6c0 742 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 743 ssize_t remain;
0839ccb8 744 loff_t offset, page_base;
673a394b 745 char __user *user_data;
935aaa69
DV
746 int page_offset, page_length, ret;
747
1ec9e26d 748 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
749 if (ret)
750 goto out;
751
752 ret = i915_gem_object_set_to_gtt_domain(obj, true);
753 if (ret)
754 goto out_unpin;
755
756 ret = i915_gem_object_put_fence(obj);
757 if (ret)
758 goto out_unpin;
673a394b 759
2bb4629a 760 user_data = to_user_ptr(args->data_ptr);
673a394b 761 remain = args->size;
673a394b 762
f343c5f6 763 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
764
765 while (remain > 0) {
766 /* Operation in this page
767 *
0839ccb8
KP
768 * page_base = page offset within aperture
769 * page_offset = offset within page
770 * page_length = bytes to copy for this page
673a394b 771 */
c8cbbb8b
CW
772 page_base = offset & PAGE_MASK;
773 page_offset = offset_in_page(offset);
0839ccb8
KP
774 page_length = remain;
775 if ((page_offset + remain) > PAGE_SIZE)
776 page_length = PAGE_SIZE - page_offset;
777
0839ccb8 778 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
779 * source page isn't available. Return the error and we'll
780 * retry in the slow path.
0839ccb8 781 */
5d4545ae 782 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
783 page_offset, user_data, page_length)) {
784 ret = -EFAULT;
785 goto out_unpin;
786 }
673a394b 787
0839ccb8
KP
788 remain -= page_length;
789 user_data += page_length;
790 offset += page_length;
673a394b 791 }
673a394b 792
935aaa69 793out_unpin:
d7f46fc4 794 i915_gem_object_ggtt_unpin(obj);
935aaa69 795out:
3de09aa3 796 return ret;
673a394b
EA
797}
798
d174bd64
DV
799/* Per-page copy function for the shmem pwrite fastpath.
800 * Flushes invalid cachelines before writing to the target if
801 * needs_clflush_before is set and flushes out any written cachelines after
802 * writing if needs_clflush is set. */
3043c60c 803static int
d174bd64
DV
804shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
805 char __user *user_data,
806 bool page_do_bit17_swizzling,
807 bool needs_clflush_before,
808 bool needs_clflush_after)
673a394b 809{
d174bd64 810 char *vaddr;
673a394b 811 int ret;
3de09aa3 812
e7e58eb5 813 if (unlikely(page_do_bit17_swizzling))
d174bd64 814 return -EINVAL;
3de09aa3 815
d174bd64
DV
816 vaddr = kmap_atomic(page);
817 if (needs_clflush_before)
818 drm_clflush_virt_range(vaddr + shmem_page_offset,
819 page_length);
c2831a94
CW
820 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
821 user_data, page_length);
d174bd64
DV
822 if (needs_clflush_after)
823 drm_clflush_virt_range(vaddr + shmem_page_offset,
824 page_length);
825 kunmap_atomic(vaddr);
3de09aa3 826
755d2218 827 return ret ? -EFAULT : 0;
3de09aa3
EA
828}
829
d174bd64
DV
830/* Only difference to the fast-path function is that this can handle bit17
831 * and uses non-atomic copy and kmap functions. */
3043c60c 832static int
d174bd64
DV
833shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
834 char __user *user_data,
835 bool page_do_bit17_swizzling,
836 bool needs_clflush_before,
837 bool needs_clflush_after)
673a394b 838{
d174bd64
DV
839 char *vaddr;
840 int ret;
e5281ccd 841
d174bd64 842 vaddr = kmap(page);
e7e58eb5 843 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
844 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
845 page_length,
846 page_do_bit17_swizzling);
d174bd64
DV
847 if (page_do_bit17_swizzling)
848 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
849 user_data,
850 page_length);
d174bd64
DV
851 else
852 ret = __copy_from_user(vaddr + shmem_page_offset,
853 user_data,
854 page_length);
855 if (needs_clflush_after)
23c18c71
DV
856 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
857 page_length,
858 page_do_bit17_swizzling);
d174bd64 859 kunmap(page);
40123c1f 860
755d2218 861 return ret ? -EFAULT : 0;
40123c1f
EA
862}
863
40123c1f 864static int
e244a443
DV
865i915_gem_shmem_pwrite(struct drm_device *dev,
866 struct drm_i915_gem_object *obj,
867 struct drm_i915_gem_pwrite *args,
868 struct drm_file *file)
40123c1f 869{
40123c1f 870 ssize_t remain;
8c59967c
DV
871 loff_t offset;
872 char __user *user_data;
eb2c0c81 873 int shmem_page_offset, page_length, ret = 0;
8c59967c 874 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 875 int hit_slowpath = 0;
58642885
DV
876 int needs_clflush_after = 0;
877 int needs_clflush_before = 0;
67d5a50c 878 struct sg_page_iter sg_iter;
40123c1f 879
2bb4629a 880 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
881 remain = args->size;
882
8c59967c 883 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 884
58642885
DV
885 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
886 /* If we're not in the cpu write domain, set ourself into the gtt
887 * write domain and manually flush cachelines (if required). This
888 * optimizes for the case when the gpu will use the data
889 * right away and we therefore have to clflush anyway. */
2c22569b 890 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
891 ret = i915_gem_object_wait_rendering(obj, false);
892 if (ret)
893 return ret;
c8725f3d
CW
894
895 i915_gem_object_retire(obj);
58642885 896 }
c76ce038
CW
897 /* Same trick applies to invalidate partially written cachelines read
898 * before writing. */
899 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
900 needs_clflush_before =
901 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 902
755d2218
CW
903 ret = i915_gem_object_get_pages(obj);
904 if (ret)
905 return ret;
906
907 i915_gem_object_pin_pages(obj);
908
673a394b 909 offset = args->offset;
05394f39 910 obj->dirty = 1;
673a394b 911
67d5a50c
ID
912 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
913 offset >> PAGE_SHIFT) {
2db76d7c 914 struct page *page = sg_page_iter_page(&sg_iter);
58642885 915 int partial_cacheline_write;
e5281ccd 916
9da3da66
CW
917 if (remain <= 0)
918 break;
919
40123c1f
EA
920 /* Operation in this page
921 *
40123c1f 922 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
923 * page_length = bytes to copy for this page
924 */
c8cbbb8b 925 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
926
927 page_length = remain;
928 if ((shmem_page_offset + page_length) > PAGE_SIZE)
929 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 930
58642885
DV
931 /* If we don't overwrite a cacheline completely we need to be
932 * careful to have up-to-date data by first clflushing. Don't
933 * overcomplicate things and flush the entire patch. */
934 partial_cacheline_write = needs_clflush_before &&
935 ((shmem_page_offset | page_length)
936 & (boot_cpu_data.x86_clflush_size - 1));
937
8c59967c
DV
938 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
939 (page_to_phys(page) & (1 << 17)) != 0;
940
d174bd64
DV
941 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
942 user_data, page_do_bit17_swizzling,
943 partial_cacheline_write,
944 needs_clflush_after);
945 if (ret == 0)
946 goto next_page;
e244a443
DV
947
948 hit_slowpath = 1;
e244a443 949 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
950 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
951 user_data, page_do_bit17_swizzling,
952 partial_cacheline_write,
953 needs_clflush_after);
40123c1f 954
e244a443 955 mutex_lock(&dev->struct_mutex);
755d2218 956
755d2218 957 if (ret)
8c59967c 958 goto out;
8c59967c 959
17793c9a 960next_page:
40123c1f 961 remain -= page_length;
8c59967c 962 user_data += page_length;
40123c1f 963 offset += page_length;
673a394b
EA
964 }
965
fbd5a26d 966out:
755d2218
CW
967 i915_gem_object_unpin_pages(obj);
968
e244a443 969 if (hit_slowpath) {
8dcf015e
DV
970 /*
971 * Fixup: Flush cpu caches in case we didn't flush the dirty
972 * cachelines in-line while writing and the object moved
973 * out of the cpu write domain while we've dropped the lock.
974 */
975 if (!needs_clflush_after &&
976 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
977 if (i915_gem_clflush_object(obj, obj->pin_display))
978 i915_gem_chipset_flush(dev);
e244a443 979 }
8c59967c 980 }
673a394b 981
58642885 982 if (needs_clflush_after)
e76e9aeb 983 i915_gem_chipset_flush(dev);
58642885 984
40123c1f 985 return ret;
673a394b
EA
986}
987
988/**
989 * Writes data to the object referenced by handle.
990 *
991 * On error, the contents of the buffer that were to be modified are undefined.
992 */
993int
994i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 995 struct drm_file *file)
673a394b
EA
996{
997 struct drm_i915_gem_pwrite *args = data;
05394f39 998 struct drm_i915_gem_object *obj;
51311d0a
CW
999 int ret;
1000
1001 if (args->size == 0)
1002 return 0;
1003
1004 if (!access_ok(VERIFY_READ,
2bb4629a 1005 to_user_ptr(args->data_ptr),
51311d0a
CW
1006 args->size))
1007 return -EFAULT;
1008
d330a953 1009 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1010 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1011 args->size);
1012 if (ret)
1013 return -EFAULT;
1014 }
673a394b 1015
fbd5a26d 1016 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1017 if (ret)
fbd5a26d 1018 return ret;
1d7cfea1 1019
05394f39 1020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1021 if (&obj->base == NULL) {
1d7cfea1
CW
1022 ret = -ENOENT;
1023 goto unlock;
fbd5a26d 1024 }
673a394b 1025
7dcd2499 1026 /* Bounds check destination. */
05394f39
CW
1027 if (args->offset > obj->base.size ||
1028 args->size > obj->base.size - args->offset) {
ce9d419d 1029 ret = -EINVAL;
35b62a89 1030 goto out;
ce9d419d
CW
1031 }
1032
1286ff73
DV
1033 /* prime objects have no backing filp to GEM pread/pwrite
1034 * pages from.
1035 */
1036 if (!obj->base.filp) {
1037 ret = -EINVAL;
1038 goto out;
1039 }
1040
db53a302
CW
1041 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1042
935aaa69 1043 ret = -EFAULT;
673a394b
EA
1044 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1045 * it would end up going through the fenced access, and we'll get
1046 * different detiling behavior between reading and writing.
1047 * pread/pwrite currently are reading and writing from the CPU
1048 * perspective, requiring manual detiling by the client.
1049 */
00731155
CW
1050 if (obj->phys_handle) {
1051 ret = i915_gem_phys_pwrite(obj, args, file);
5c0480f2
DV
1052 goto out;
1053 }
1054
2c22569b
CW
1055 if (obj->tiling_mode == I915_TILING_NONE &&
1056 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1057 cpu_write_needs_clflush(obj)) {
fbd5a26d 1058 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1059 /* Note that the gtt paths might fail with non-page-backed user
1060 * pointers (e.g. gtt mappings when moving data between
1061 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1062 }
673a394b 1063
86a1ee26 1064 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 1065 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 1066
35b62a89 1067out:
05394f39 1068 drm_gem_object_unreference(&obj->base);
1d7cfea1 1069unlock:
fbd5a26d 1070 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1071 return ret;
1072}
1073
b361237b 1074int
33196ded 1075i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1076 bool interruptible)
1077{
1f83fee0 1078 if (i915_reset_in_progress(error)) {
b361237b
CW
1079 /* Non-interruptible callers can't handle -EAGAIN, hence return
1080 * -EIO unconditionally for these. */
1081 if (!interruptible)
1082 return -EIO;
1083
1f83fee0
DV
1084 /* Recovery complete, but the reset failed ... */
1085 if (i915_terminally_wedged(error))
b361237b
CW
1086 return -EIO;
1087
1088 return -EAGAIN;
1089 }
1090
1091 return 0;
1092}
1093
1094/*
1095 * Compare seqno against outstanding lazy request. Emit a request if they are
1096 * equal.
1097 */
1098static int
a4872ba6 1099i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
b361237b
CW
1100{
1101 int ret;
1102
1103 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1104
1105 ret = 0;
1823521d 1106 if (seqno == ring->outstanding_lazy_seqno)
0025c077 1107 ret = i915_add_request(ring, NULL);
b361237b
CW
1108
1109 return ret;
1110}
1111
094f9a54
CW
1112static void fake_irq(unsigned long data)
1113{
1114 wake_up_process((struct task_struct *)data);
1115}
1116
1117static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1118 struct intel_engine_cs *ring)
094f9a54
CW
1119{
1120 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1121}
1122
b29c19b6
CW
1123static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1124{
1125 if (file_priv == NULL)
1126 return true;
1127
1128 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1129}
1130
b361237b
CW
1131/**
1132 * __wait_seqno - wait until execution of seqno has finished
1133 * @ring: the ring expected to report seqno
1134 * @seqno: duh!
f69061be 1135 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1136 * @interruptible: do an interruptible wait (normally yes)
1137 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1138 *
f69061be
DV
1139 * Note: It is of utmost importance that the passed in seqno and reset_counter
1140 * values have been read by the caller in an smp safe manner. Where read-side
1141 * locks are involved, it is sufficient to read the reset_counter before
1142 * unlocking the lock that protects the seqno. For lockless tricks, the
1143 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1144 * inserted.
1145 *
b361237b
CW
1146 * Returns 0 if the seqno was found within the alloted time. Else returns the
1147 * errno with remaining time filled in timeout argument.
1148 */
a4872ba6 1149static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
f69061be 1150 unsigned reset_counter,
b29c19b6
CW
1151 bool interruptible,
1152 struct timespec *timeout,
1153 struct drm_i915_file_private *file_priv)
b361237b 1154{
3d13ef2e 1155 struct drm_device *dev = ring->dev;
3e31c6c0 1156 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1157 const bool irq_test_in_progress =
1158 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1159 struct timespec before, now;
1160 DEFINE_WAIT(wait);
47e9766d 1161 unsigned long timeout_expire;
b361237b
CW
1162 int ret;
1163
5d584b2e 1164 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
c67a470b 1165
b361237b
CW
1166 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1167 return 0;
1168
47e9766d 1169 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1170
3d13ef2e 1171 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
b29c19b6
CW
1172 gen6_rps_boost(dev_priv);
1173 if (file_priv)
1174 mod_delayed_work(dev_priv->wq,
1175 &file_priv->mm.idle_work,
1176 msecs_to_jiffies(100));
1177 }
1178
168c3f21 1179 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1180 return -ENODEV;
1181
094f9a54
CW
1182 /* Record current time in case interrupted by signal, or wedged */
1183 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1184 getrawmonotonic(&before);
094f9a54
CW
1185 for (;;) {
1186 struct timer_list timer;
b361237b 1187
094f9a54
CW
1188 prepare_to_wait(&ring->irq_queue, &wait,
1189 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1190
f69061be
DV
1191 /* We need to check whether any gpu reset happened in between
1192 * the caller grabbing the seqno and now ... */
094f9a54
CW
1193 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1194 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1195 * is truely gone. */
1196 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1197 if (ret == 0)
1198 ret = -EAGAIN;
1199 break;
1200 }
f69061be 1201
094f9a54
CW
1202 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1203 ret = 0;
1204 break;
1205 }
b361237b 1206
094f9a54
CW
1207 if (interruptible && signal_pending(current)) {
1208 ret = -ERESTARTSYS;
1209 break;
1210 }
1211
47e9766d 1212 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1213 ret = -ETIME;
1214 break;
1215 }
1216
1217 timer.function = NULL;
1218 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1219 unsigned long expire;
1220
094f9a54 1221 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1222 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1223 mod_timer(&timer, expire);
1224 }
1225
5035c275 1226 io_schedule();
094f9a54 1227
094f9a54
CW
1228 if (timer.function) {
1229 del_singleshot_timer_sync(&timer);
1230 destroy_timer_on_stack(&timer);
1231 }
1232 }
b361237b 1233 getrawmonotonic(&now);
094f9a54 1234 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1235
168c3f21
MK
1236 if (!irq_test_in_progress)
1237 ring->irq_put(ring);
094f9a54
CW
1238
1239 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1240
1241 if (timeout) {
1242 struct timespec sleep_time = timespec_sub(now, before);
1243 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1244 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1245 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1246 }
1247
094f9a54 1248 return ret;
b361237b
CW
1249}
1250
1251/**
1252 * Waits for a sequence number to be signaled, and cleans up the
1253 * request and object lists appropriately for that event.
1254 */
1255int
a4872ba6 1256i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
b361237b
CW
1257{
1258 struct drm_device *dev = ring->dev;
1259 struct drm_i915_private *dev_priv = dev->dev_private;
1260 bool interruptible = dev_priv->mm.interruptible;
1261 int ret;
1262
1263 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1264 BUG_ON(seqno == 0);
1265
33196ded 1266 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1267 if (ret)
1268 return ret;
1269
1270 ret = i915_gem_check_olr(ring, seqno);
1271 if (ret)
1272 return ret;
1273
f69061be
DV
1274 return __wait_seqno(ring, seqno,
1275 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1276 interruptible, NULL, NULL);
b361237b
CW
1277}
1278
d26e3af8
CW
1279static int
1280i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
a4872ba6 1281 struct intel_engine_cs *ring)
d26e3af8 1282{
c8725f3d
CW
1283 if (!obj->active)
1284 return 0;
d26e3af8
CW
1285
1286 /* Manually manage the write flush as we may have not yet
1287 * retired the buffer.
1288 *
1289 * Note that the last_write_seqno is always the earlier of
1290 * the two (read/write) seqno, so if we haved successfully waited,
1291 * we know we have passed the last write.
1292 */
1293 obj->last_write_seqno = 0;
d26e3af8
CW
1294
1295 return 0;
1296}
1297
b361237b
CW
1298/**
1299 * Ensures that all rendering to the object has completed and the object is
1300 * safe to unbind from the GTT or access from the CPU.
1301 */
1302static __must_check int
1303i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1304 bool readonly)
1305{
a4872ba6 1306 struct intel_engine_cs *ring = obj->ring;
b361237b
CW
1307 u32 seqno;
1308 int ret;
1309
1310 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1311 if (seqno == 0)
1312 return 0;
1313
1314 ret = i915_wait_seqno(ring, seqno);
1315 if (ret)
1316 return ret;
1317
d26e3af8 1318 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1319}
1320
3236f57a
CW
1321/* A nonblocking variant of the above wait. This is a highly dangerous routine
1322 * as the object state may change during this call.
1323 */
1324static __must_check int
1325i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1326 struct drm_i915_file_private *file_priv,
3236f57a
CW
1327 bool readonly)
1328{
1329 struct drm_device *dev = obj->base.dev;
1330 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 1331 struct intel_engine_cs *ring = obj->ring;
f69061be 1332 unsigned reset_counter;
3236f57a
CW
1333 u32 seqno;
1334 int ret;
1335
1336 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1337 BUG_ON(!dev_priv->mm.interruptible);
1338
1339 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1340 if (seqno == 0)
1341 return 0;
1342
33196ded 1343 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1344 if (ret)
1345 return ret;
1346
1347 ret = i915_gem_check_olr(ring, seqno);
1348 if (ret)
1349 return ret;
1350
f69061be 1351 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1352 mutex_unlock(&dev->struct_mutex);
6e4930f6 1353 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1354 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1355 if (ret)
1356 return ret;
3236f57a 1357
d26e3af8 1358 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1359}
1360
673a394b 1361/**
2ef7eeaa
EA
1362 * Called when user space prepares to use an object with the CPU, either
1363 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1364 */
1365int
1366i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1367 struct drm_file *file)
673a394b
EA
1368{
1369 struct drm_i915_gem_set_domain *args = data;
05394f39 1370 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1371 uint32_t read_domains = args->read_domains;
1372 uint32_t write_domain = args->write_domain;
673a394b
EA
1373 int ret;
1374
2ef7eeaa 1375 /* Only handle setting domains to types used by the CPU. */
21d509e3 1376 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1377 return -EINVAL;
1378
21d509e3 1379 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1380 return -EINVAL;
1381
1382 /* Having something in the write domain implies it's in the read
1383 * domain, and only that read domain. Enforce that in the request.
1384 */
1385 if (write_domain != 0 && read_domains != write_domain)
1386 return -EINVAL;
1387
76c1dec1 1388 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1389 if (ret)
76c1dec1 1390 return ret;
1d7cfea1 1391
05394f39 1392 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1393 if (&obj->base == NULL) {
1d7cfea1
CW
1394 ret = -ENOENT;
1395 goto unlock;
76c1dec1 1396 }
673a394b 1397
3236f57a
CW
1398 /* Try to flush the object off the GPU without holding the lock.
1399 * We will repeat the flush holding the lock in the normal manner
1400 * to catch cases where we are gazumped.
1401 */
6e4930f6
CW
1402 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1403 file->driver_priv,
1404 !write_domain);
3236f57a
CW
1405 if (ret)
1406 goto unref;
1407
2ef7eeaa
EA
1408 if (read_domains & I915_GEM_DOMAIN_GTT) {
1409 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1410
1411 /* Silently promote "you're not bound, there was nothing to do"
1412 * to success, since the client was just asking us to
1413 * make sure everything was done.
1414 */
1415 if (ret == -EINVAL)
1416 ret = 0;
2ef7eeaa 1417 } else {
e47c68e9 1418 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1419 }
1420
3236f57a 1421unref:
05394f39 1422 drm_gem_object_unreference(&obj->base);
1d7cfea1 1423unlock:
673a394b
EA
1424 mutex_unlock(&dev->struct_mutex);
1425 return ret;
1426}
1427
1428/**
1429 * Called when user space has done writes to this buffer
1430 */
1431int
1432i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1433 struct drm_file *file)
673a394b
EA
1434{
1435 struct drm_i915_gem_sw_finish *args = data;
05394f39 1436 struct drm_i915_gem_object *obj;
673a394b
EA
1437 int ret = 0;
1438
76c1dec1 1439 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1440 if (ret)
76c1dec1 1441 return ret;
1d7cfea1 1442
05394f39 1443 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1444 if (&obj->base == NULL) {
1d7cfea1
CW
1445 ret = -ENOENT;
1446 goto unlock;
673a394b
EA
1447 }
1448
673a394b 1449 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1450 if (obj->pin_display)
1451 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1452
05394f39 1453 drm_gem_object_unreference(&obj->base);
1d7cfea1 1454unlock:
673a394b
EA
1455 mutex_unlock(&dev->struct_mutex);
1456 return ret;
1457}
1458
1459/**
1460 * Maps the contents of an object, returning the address it is mapped
1461 * into.
1462 *
1463 * While the mapping holds a reference on the contents of the object, it doesn't
1464 * imply a ref on the object itself.
1465 */
1466int
1467i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1468 struct drm_file *file)
673a394b
EA
1469{
1470 struct drm_i915_gem_mmap *args = data;
1471 struct drm_gem_object *obj;
673a394b
EA
1472 unsigned long addr;
1473
05394f39 1474 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1475 if (obj == NULL)
bf79cb91 1476 return -ENOENT;
673a394b 1477
1286ff73
DV
1478 /* prime objects have no backing filp to GEM mmap
1479 * pages from.
1480 */
1481 if (!obj->filp) {
1482 drm_gem_object_unreference_unlocked(obj);
1483 return -EINVAL;
1484 }
1485
6be5ceb0 1486 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1487 PROT_READ | PROT_WRITE, MAP_SHARED,
1488 args->offset);
bc9025bd 1489 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1490 if (IS_ERR((void *)addr))
1491 return addr;
1492
1493 args->addr_ptr = (uint64_t) addr;
1494
1495 return 0;
1496}
1497
de151cf6
JB
1498/**
1499 * i915_gem_fault - fault a page into the GTT
1500 * vma: VMA in question
1501 * vmf: fault info
1502 *
1503 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1504 * from userspace. The fault handler takes care of binding the object to
1505 * the GTT (if needed), allocating and programming a fence register (again,
1506 * only if needed based on whether the old reg is still valid or the object
1507 * is tiled) and inserting a new PTE into the faulting process.
1508 *
1509 * Note that the faulting process may involve evicting existing objects
1510 * from the GTT and/or fence registers to make room. So performance may
1511 * suffer if the GTT working set is large or there are few fence registers
1512 * left.
1513 */
1514int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1515{
05394f39
CW
1516 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1517 struct drm_device *dev = obj->base.dev;
3e31c6c0 1518 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1519 pgoff_t page_offset;
1520 unsigned long pfn;
1521 int ret = 0;
0f973f27 1522 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1523
f65c9168
PZ
1524 intel_runtime_pm_get(dev_priv);
1525
de151cf6
JB
1526 /* We don't use vmf->pgoff since that has the fake offset */
1527 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1528 PAGE_SHIFT;
1529
d9bc7e9f
CW
1530 ret = i915_mutex_lock_interruptible(dev);
1531 if (ret)
1532 goto out;
a00b10c3 1533
db53a302
CW
1534 trace_i915_gem_object_fault(obj, page_offset, true, write);
1535
6e4930f6
CW
1536 /* Try to flush the object off the GPU first without holding the lock.
1537 * Upon reacquiring the lock, we will perform our sanity checks and then
1538 * repeat the flush holding the lock in the normal manner to catch cases
1539 * where we are gazumped.
1540 */
1541 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1542 if (ret)
1543 goto unlock;
1544
eb119bd6
CW
1545 /* Access to snoopable pages through the GTT is incoherent. */
1546 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1547 ret = -EFAULT;
eb119bd6
CW
1548 goto unlock;
1549 }
1550
d9bc7e9f 1551 /* Now bind it into the GTT if needed */
1ec9e26d 1552 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1553 if (ret)
1554 goto unlock;
4a684a41 1555
c9839303
CW
1556 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1557 if (ret)
1558 goto unpin;
74898d7e 1559
06d98131 1560 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1561 if (ret)
c9839303 1562 goto unpin;
7d1c4804 1563
6299f992
CW
1564 obj->fault_mappable = true;
1565
f343c5f6
BW
1566 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1567 pfn >>= PAGE_SHIFT;
1568 pfn += page_offset;
de151cf6
JB
1569
1570 /* Finally, remap it using the new GTT offset */
1571 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303 1572unpin:
d7f46fc4 1573 i915_gem_object_ggtt_unpin(obj);
c715089f 1574unlock:
de151cf6 1575 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1576out:
de151cf6 1577 switch (ret) {
d9bc7e9f 1578 case -EIO:
a9340cca
DV
1579 /* If this -EIO is due to a gpu hang, give the reset code a
1580 * chance to clean up the mess. Otherwise return the proper
1581 * SIGBUS. */
f65c9168
PZ
1582 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1583 ret = VM_FAULT_SIGBUS;
1584 break;
1585 }
045e769a 1586 case -EAGAIN:
571c608d
DV
1587 /*
1588 * EAGAIN means the gpu is hung and we'll wait for the error
1589 * handler to reset everything when re-faulting in
1590 * i915_mutex_lock_interruptible.
d9bc7e9f 1591 */
c715089f
CW
1592 case 0:
1593 case -ERESTARTSYS:
bed636ab 1594 case -EINTR:
e79e0fe3
DR
1595 case -EBUSY:
1596 /*
1597 * EBUSY is ok: this just means that another thread
1598 * already did the job.
1599 */
f65c9168
PZ
1600 ret = VM_FAULT_NOPAGE;
1601 break;
de151cf6 1602 case -ENOMEM:
f65c9168
PZ
1603 ret = VM_FAULT_OOM;
1604 break;
a7c2e1aa 1605 case -ENOSPC:
45d67817 1606 case -EFAULT:
f65c9168
PZ
1607 ret = VM_FAULT_SIGBUS;
1608 break;
de151cf6 1609 default:
a7c2e1aa 1610 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1611 ret = VM_FAULT_SIGBUS;
1612 break;
de151cf6 1613 }
f65c9168
PZ
1614
1615 intel_runtime_pm_put(dev_priv);
1616 return ret;
de151cf6
JB
1617}
1618
901782b2
CW
1619/**
1620 * i915_gem_release_mmap - remove physical page mappings
1621 * @obj: obj in question
1622 *
af901ca1 1623 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1624 * relinquish ownership of the pages back to the system.
1625 *
1626 * It is vital that we remove the page mapping if we have mapped a tiled
1627 * object through the GTT and then lose the fence register due to
1628 * resource pressure. Similarly if the object has been moved out of the
1629 * aperture, than pages mapped into userspace must be revoked. Removing the
1630 * mapping will then trigger a page fault on the next user access, allowing
1631 * fixup by i915_gem_fault().
1632 */
d05ca301 1633void
05394f39 1634i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1635{
6299f992
CW
1636 if (!obj->fault_mappable)
1637 return;
901782b2 1638
6796cb16
DH
1639 drm_vma_node_unmap(&obj->base.vma_node,
1640 obj->base.dev->anon_inode->i_mapping);
6299f992 1641 obj->fault_mappable = false;
901782b2
CW
1642}
1643
eedd10f4
CW
1644void
1645i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1646{
1647 struct drm_i915_gem_object *obj;
1648
1649 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1650 i915_gem_release_mmap(obj);
1651}
1652
0fa87796 1653uint32_t
e28f8711 1654i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1655{
e28f8711 1656 uint32_t gtt_size;
92b88aeb
CW
1657
1658 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1659 tiling_mode == I915_TILING_NONE)
1660 return size;
92b88aeb
CW
1661
1662 /* Previous chips need a power-of-two fence region when tiling */
1663 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1664 gtt_size = 1024*1024;
92b88aeb 1665 else
e28f8711 1666 gtt_size = 512*1024;
92b88aeb 1667
e28f8711
CW
1668 while (gtt_size < size)
1669 gtt_size <<= 1;
92b88aeb 1670
e28f8711 1671 return gtt_size;
92b88aeb
CW
1672}
1673
de151cf6
JB
1674/**
1675 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1676 * @obj: object to check
1677 *
1678 * Return the required GTT alignment for an object, taking into account
5e783301 1679 * potential fence register mapping.
de151cf6 1680 */
d865110c
ID
1681uint32_t
1682i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1683 int tiling_mode, bool fenced)
de151cf6 1684{
de151cf6
JB
1685 /*
1686 * Minimum alignment is 4k (GTT page size), but might be greater
1687 * if a fence register is needed for the object.
1688 */
d865110c 1689 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1690 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1691 return 4096;
1692
a00b10c3
CW
1693 /*
1694 * Previous chips need to be aligned to the size of the smallest
1695 * fence register that can contain the object.
1696 */
e28f8711 1697 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1698}
1699
d8cb5086
CW
1700static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1701{
1702 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1703 int ret;
1704
0de23977 1705 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1706 return 0;
1707
da494d7c
DV
1708 dev_priv->mm.shrinker_no_lock_stealing = true;
1709
d8cb5086
CW
1710 ret = drm_gem_create_mmap_offset(&obj->base);
1711 if (ret != -ENOSPC)
da494d7c 1712 goto out;
d8cb5086
CW
1713
1714 /* Badly fragmented mmap space? The only way we can recover
1715 * space is by destroying unwanted objects. We can't randomly release
1716 * mmap_offsets as userspace expects them to be persistent for the
1717 * lifetime of the objects. The closest we can is to release the
1718 * offsets on purgeable objects by truncating it and marking it purged,
1719 * which prevents userspace from ever using that object again.
1720 */
1721 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1722 ret = drm_gem_create_mmap_offset(&obj->base);
1723 if (ret != -ENOSPC)
da494d7c 1724 goto out;
d8cb5086
CW
1725
1726 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1727 ret = drm_gem_create_mmap_offset(&obj->base);
1728out:
1729 dev_priv->mm.shrinker_no_lock_stealing = false;
1730
1731 return ret;
d8cb5086
CW
1732}
1733
1734static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1735{
d8cb5086
CW
1736 drm_gem_free_mmap_offset(&obj->base);
1737}
1738
de151cf6 1739int
ff72145b
DA
1740i915_gem_mmap_gtt(struct drm_file *file,
1741 struct drm_device *dev,
1742 uint32_t handle,
1743 uint64_t *offset)
de151cf6 1744{
da761a6e 1745 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1746 struct drm_i915_gem_object *obj;
de151cf6
JB
1747 int ret;
1748
76c1dec1 1749 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1750 if (ret)
76c1dec1 1751 return ret;
de151cf6 1752
ff72145b 1753 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1754 if (&obj->base == NULL) {
1d7cfea1
CW
1755 ret = -ENOENT;
1756 goto unlock;
1757 }
de151cf6 1758
5d4545ae 1759 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1760 ret = -E2BIG;
ff56b0bc 1761 goto out;
da761a6e
CW
1762 }
1763
05394f39 1764 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1765 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1766 ret = -EFAULT;
1d7cfea1 1767 goto out;
ab18282d
CW
1768 }
1769
d8cb5086
CW
1770 ret = i915_gem_object_create_mmap_offset(obj);
1771 if (ret)
1772 goto out;
de151cf6 1773
0de23977 1774 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1775
1d7cfea1 1776out:
05394f39 1777 drm_gem_object_unreference(&obj->base);
1d7cfea1 1778unlock:
de151cf6 1779 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1780 return ret;
de151cf6
JB
1781}
1782
ff72145b
DA
1783/**
1784 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1785 * @dev: DRM device
1786 * @data: GTT mapping ioctl data
1787 * @file: GEM object info
1788 *
1789 * Simply returns the fake offset to userspace so it can mmap it.
1790 * The mmap call will end up in drm_gem_mmap(), which will set things
1791 * up so we can get faults in the handler above.
1792 *
1793 * The fault handler will take care of binding the object into the GTT
1794 * (since it may have been evicted to make room for something), allocating
1795 * a fence register, and mapping the appropriate aperture address into
1796 * userspace.
1797 */
1798int
1799i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1800 struct drm_file *file)
1801{
1802 struct drm_i915_gem_mmap_gtt *args = data;
1803
ff72145b
DA
1804 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1805}
1806
5537252b
CW
1807static inline int
1808i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1809{
1810 return obj->madv == I915_MADV_DONTNEED;
1811}
1812
225067ee
DV
1813/* Immediately discard the backing storage */
1814static void
1815i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1816{
4d6294bf 1817 i915_gem_object_free_mmap_offset(obj);
1286ff73 1818
4d6294bf
CW
1819 if (obj->base.filp == NULL)
1820 return;
e5281ccd 1821
225067ee
DV
1822 /* Our goal here is to return as much of the memory as
1823 * is possible back to the system as we are called from OOM.
1824 * To do this we must instruct the shmfs to drop all of its
1825 * backing pages, *now*.
1826 */
5537252b 1827 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1828 obj->madv = __I915_MADV_PURGED;
1829}
e5281ccd 1830
5537252b
CW
1831/* Try to discard unwanted pages */
1832static void
1833i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1834{
5537252b
CW
1835 struct address_space *mapping;
1836
1837 switch (obj->madv) {
1838 case I915_MADV_DONTNEED:
1839 i915_gem_object_truncate(obj);
1840 case __I915_MADV_PURGED:
1841 return;
1842 }
1843
1844 if (obj->base.filp == NULL)
1845 return;
1846
1847 mapping = file_inode(obj->base.filp)->i_mapping,
1848 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1849}
1850
5cdf5881 1851static void
05394f39 1852i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1853{
90797e6d
ID
1854 struct sg_page_iter sg_iter;
1855 int ret;
1286ff73 1856
05394f39 1857 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1858
6c085a72
CW
1859 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1860 if (ret) {
1861 /* In the event of a disaster, abandon all caches and
1862 * hope for the best.
1863 */
1864 WARN_ON(ret != -EIO);
2c22569b 1865 i915_gem_clflush_object(obj, true);
6c085a72
CW
1866 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1867 }
1868
6dacfd2f 1869 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1870 i915_gem_object_save_bit_17_swizzle(obj);
1871
05394f39
CW
1872 if (obj->madv == I915_MADV_DONTNEED)
1873 obj->dirty = 0;
3ef94daa 1874
90797e6d 1875 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1876 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1877
05394f39 1878 if (obj->dirty)
9da3da66 1879 set_page_dirty(page);
3ef94daa 1880
05394f39 1881 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1882 mark_page_accessed(page);
3ef94daa 1883
9da3da66 1884 page_cache_release(page);
3ef94daa 1885 }
05394f39 1886 obj->dirty = 0;
673a394b 1887
9da3da66
CW
1888 sg_free_table(obj->pages);
1889 kfree(obj->pages);
37e680a1 1890}
6c085a72 1891
dd624afd 1892int
37e680a1
CW
1893i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1894{
1895 const struct drm_i915_gem_object_ops *ops = obj->ops;
1896
2f745ad3 1897 if (obj->pages == NULL)
37e680a1
CW
1898 return 0;
1899
a5570178
CW
1900 if (obj->pages_pin_count)
1901 return -EBUSY;
1902
9843877d 1903 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1904
a2165e31
CW
1905 /* ->put_pages might need to allocate memory for the bit17 swizzle
1906 * array, hence protect them from being reaped by removing them from gtt
1907 * lists early. */
35c20a60 1908 list_del(&obj->global_list);
a2165e31 1909
37e680a1 1910 ops->put_pages(obj);
05394f39 1911 obj->pages = NULL;
37e680a1 1912
5537252b 1913 i915_gem_object_invalidate(obj);
6c085a72
CW
1914
1915 return 0;
1916}
1917
d9973b43 1918static unsigned long
93927ca5
DV
1919__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1920 bool purgeable_only)
6c085a72 1921{
c8725f3d
CW
1922 struct list_head still_in_list;
1923 struct drm_i915_gem_object *obj;
d9973b43 1924 unsigned long count = 0;
6c085a72 1925
57094f82 1926 /*
c8725f3d 1927 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
1928 * (due to retiring requests) we have to strictly process only
1929 * one element of the list at the time, and recheck the list
1930 * on every iteration.
c8725f3d
CW
1931 *
1932 * In particular, we must hold a reference whilst removing the
1933 * object as we may end up waiting for and/or retiring the objects.
1934 * This might release the final reference (held by the active list)
1935 * and result in the object being freed from under us. This is
1936 * similar to the precautions the eviction code must take whilst
1937 * removing objects.
1938 *
1939 * Also note that although these lists do not hold a reference to
1940 * the object we can safely grab one here: The final object
1941 * unreferencing and the bound_list are both protected by the
1942 * dev->struct_mutex and so we won't ever be able to observe an
1943 * object on the bound_list with a reference count equals 0.
57094f82 1944 */
c8725f3d
CW
1945 INIT_LIST_HEAD(&still_in_list);
1946 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1947 obj = list_first_entry(&dev_priv->mm.unbound_list,
1948 typeof(*obj), global_list);
1949 list_move_tail(&obj->global_list, &still_in_list);
1950
1951 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1952 continue;
1953
1954 drm_gem_object_reference(&obj->base);
1955
1956 if (i915_gem_object_put_pages(obj) == 0)
1957 count += obj->base.size >> PAGE_SHIFT;
1958
1959 drm_gem_object_unreference(&obj->base);
1960 }
1961 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1962
1963 INIT_LIST_HEAD(&still_in_list);
57094f82 1964 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1965 struct i915_vma *vma, *v;
80dcfdbd 1966
57094f82
CW
1967 obj = list_first_entry(&dev_priv->mm.bound_list,
1968 typeof(*obj), global_list);
c8725f3d 1969 list_move_tail(&obj->global_list, &still_in_list);
57094f82 1970
80dcfdbd
BW
1971 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1972 continue;
1973
57094f82
CW
1974 drm_gem_object_reference(&obj->base);
1975
07fe0b12
BW
1976 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1977 if (i915_vma_unbind(vma))
1978 break;
80dcfdbd 1979
57094f82 1980 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1981 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1982
1983 drm_gem_object_unreference(&obj->base);
6c085a72 1984 }
c8725f3d 1985 list_splice(&still_in_list, &dev_priv->mm.bound_list);
6c085a72
CW
1986
1987 return count;
1988}
1989
d9973b43 1990static unsigned long
93927ca5
DV
1991i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1992{
1993 return __i915_gem_shrink(dev_priv, target, true);
1994}
1995
d9973b43 1996static unsigned long
6c085a72
CW
1997i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1998{
6c085a72 1999 i915_gem_evict_everything(dev_priv->dev);
c8725f3d 2000 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
225067ee
DV
2001}
2002
37e680a1 2003static int
6c085a72 2004i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2005{
6c085a72 2006 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2007 int page_count, i;
2008 struct address_space *mapping;
9da3da66
CW
2009 struct sg_table *st;
2010 struct scatterlist *sg;
90797e6d 2011 struct sg_page_iter sg_iter;
e5281ccd 2012 struct page *page;
90797e6d 2013 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2014 gfp_t gfp;
e5281ccd 2015
6c085a72
CW
2016 /* Assert that the object is not currently in any GPU domain. As it
2017 * wasn't in the GTT, there shouldn't be any way it could have been in
2018 * a GPU cache
2019 */
2020 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2021 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2022
9da3da66
CW
2023 st = kmalloc(sizeof(*st), GFP_KERNEL);
2024 if (st == NULL)
2025 return -ENOMEM;
2026
05394f39 2027 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2028 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2029 kfree(st);
e5281ccd 2030 return -ENOMEM;
9da3da66 2031 }
e5281ccd 2032
9da3da66
CW
2033 /* Get the list of pages out of our struct file. They'll be pinned
2034 * at this point until we release them.
2035 *
2036 * Fail silently without starting the shrinker
2037 */
496ad9aa 2038 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2039 gfp = mapping_gfp_mask(mapping);
caf49191 2040 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2041 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2042 sg = st->sgl;
2043 st->nents = 0;
2044 for (i = 0; i < page_count; i++) {
6c085a72
CW
2045 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2046 if (IS_ERR(page)) {
2047 i915_gem_purge(dev_priv, page_count);
2048 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2049 }
2050 if (IS_ERR(page)) {
2051 /* We've tried hard to allocate the memory by reaping
2052 * our own buffer, now let the real VM do its job and
2053 * go down in flames if truly OOM.
2054 */
caf49191 2055 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
2056 gfp |= __GFP_IO | __GFP_WAIT;
2057
2058 i915_gem_shrink_all(dev_priv);
2059 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2060 if (IS_ERR(page))
2061 goto err_pages;
2062
caf49191 2063 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
2064 gfp &= ~(__GFP_IO | __GFP_WAIT);
2065 }
426729dc
KRW
2066#ifdef CONFIG_SWIOTLB
2067 if (swiotlb_nr_tbl()) {
2068 st->nents++;
2069 sg_set_page(sg, page, PAGE_SIZE, 0);
2070 sg = sg_next(sg);
2071 continue;
2072 }
2073#endif
90797e6d
ID
2074 if (!i || page_to_pfn(page) != last_pfn + 1) {
2075 if (i)
2076 sg = sg_next(sg);
2077 st->nents++;
2078 sg_set_page(sg, page, PAGE_SIZE, 0);
2079 } else {
2080 sg->length += PAGE_SIZE;
2081 }
2082 last_pfn = page_to_pfn(page);
3bbbe706
DV
2083
2084 /* Check that the i965g/gm workaround works. */
2085 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2086 }
426729dc
KRW
2087#ifdef CONFIG_SWIOTLB
2088 if (!swiotlb_nr_tbl())
2089#endif
2090 sg_mark_end(sg);
74ce6b6c
CW
2091 obj->pages = st;
2092
6dacfd2f 2093 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2094 i915_gem_object_do_bit_17_swizzle(obj);
2095
2096 return 0;
2097
2098err_pages:
90797e6d
ID
2099 sg_mark_end(sg);
2100 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2101 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2102 sg_free_table(st);
2103 kfree(st);
0820baf3
CW
2104
2105 /* shmemfs first checks if there is enough memory to allocate the page
2106 * and reports ENOSPC should there be insufficient, along with the usual
2107 * ENOMEM for a genuine allocation failure.
2108 *
2109 * We use ENOSPC in our driver to mean that we have run out of aperture
2110 * space and so want to translate the error from shmemfs back to our
2111 * usual understanding of ENOMEM.
2112 */
2113 if (PTR_ERR(page) == -ENOSPC)
2114 return -ENOMEM;
2115 else
2116 return PTR_ERR(page);
673a394b
EA
2117}
2118
37e680a1
CW
2119/* Ensure that the associated pages are gathered from the backing storage
2120 * and pinned into our object. i915_gem_object_get_pages() may be called
2121 * multiple times before they are released by a single call to
2122 * i915_gem_object_put_pages() - once the pages are no longer referenced
2123 * either as a result of memory pressure (reaping pages under the shrinker)
2124 * or as the object is itself released.
2125 */
2126int
2127i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2128{
2129 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2130 const struct drm_i915_gem_object_ops *ops = obj->ops;
2131 int ret;
2132
2f745ad3 2133 if (obj->pages)
37e680a1
CW
2134 return 0;
2135
43e28f09 2136 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2137 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2138 return -EFAULT;
43e28f09
CW
2139 }
2140
a5570178
CW
2141 BUG_ON(obj->pages_pin_count);
2142
37e680a1
CW
2143 ret = ops->get_pages(obj);
2144 if (ret)
2145 return ret;
2146
35c20a60 2147 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2148 return 0;
673a394b
EA
2149}
2150
e2d05a8b 2151static void
05394f39 2152i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2153 struct intel_engine_cs *ring)
673a394b 2154{
05394f39 2155 struct drm_device *dev = obj->base.dev;
69dc4987 2156 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 2157 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2158
852835f3 2159 BUG_ON(ring == NULL);
02978ff5
CW
2160 if (obj->ring != ring && obj->last_write_seqno) {
2161 /* Keep the seqno relative to the current ring */
2162 obj->last_write_seqno = seqno;
2163 }
05394f39 2164 obj->ring = ring;
673a394b
EA
2165
2166 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2167 if (!obj->active) {
2168 drm_gem_object_reference(&obj->base);
2169 obj->active = 1;
673a394b 2170 }
e35a41de 2171
05394f39 2172 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2173
0201f1ec 2174 obj->last_read_seqno = seqno;
caea7476 2175
7dd49065 2176 if (obj->fenced_gpu_access) {
caea7476 2177 obj->last_fenced_seqno = seqno;
caea7476 2178
7dd49065
CW
2179 /* Bump MRU to take account of the delayed flush */
2180 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2181 struct drm_i915_fence_reg *reg;
2182
2183 reg = &dev_priv->fence_regs[obj->fence_reg];
2184 list_move_tail(&reg->lru_list,
2185 &dev_priv->mm.fence_list);
2186 }
caea7476
CW
2187 }
2188}
2189
e2d05a8b 2190void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2191 struct intel_engine_cs *ring)
e2d05a8b
BW
2192{
2193 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2194 return i915_gem_object_move_to_active(vma->obj, ring);
2195}
2196
caea7476 2197static void
caea7476 2198i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2199{
ca191b13 2200 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2201 struct i915_address_space *vm;
2202 struct i915_vma *vma;
ce44b0ea 2203
65ce3027 2204 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2205 BUG_ON(!obj->active);
caea7476 2206
feb822cf
BW
2207 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2208 vma = i915_gem_obj_to_vma(obj, vm);
2209 if (vma && !list_empty(&vma->mm_list))
2210 list_move_tail(&vma->mm_list, &vm->inactive_list);
2211 }
caea7476 2212
65ce3027 2213 list_del_init(&obj->ring_list);
caea7476
CW
2214 obj->ring = NULL;
2215
65ce3027
CW
2216 obj->last_read_seqno = 0;
2217 obj->last_write_seqno = 0;
2218 obj->base.write_domain = 0;
2219
2220 obj->last_fenced_seqno = 0;
caea7476 2221 obj->fenced_gpu_access = false;
caea7476
CW
2222
2223 obj->active = 0;
2224 drm_gem_object_unreference(&obj->base);
2225
2226 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2227}
673a394b 2228
c8725f3d
CW
2229static void
2230i915_gem_object_retire(struct drm_i915_gem_object *obj)
2231{
a4872ba6 2232 struct intel_engine_cs *ring = obj->ring;
c8725f3d
CW
2233
2234 if (ring == NULL)
2235 return;
2236
2237 if (i915_seqno_passed(ring->get_seqno(ring, true),
2238 obj->last_read_seqno))
2239 i915_gem_object_move_to_inactive(obj);
2240}
2241
9d773091 2242static int
fca26bb4 2243i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2244{
9d773091 2245 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2246 struct intel_engine_cs *ring;
9d773091 2247 int ret, i, j;
53d227f2 2248
107f27a5 2249 /* Carefully retire all requests without writing to the rings */
9d773091 2250 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2251 ret = intel_ring_idle(ring);
2252 if (ret)
2253 return ret;
9d773091 2254 }
9d773091 2255 i915_gem_retire_requests(dev);
107f27a5
CW
2256
2257 /* Finally reset hw state */
9d773091 2258 for_each_ring(ring, dev_priv, i) {
fca26bb4 2259 intel_ring_init_seqno(ring, seqno);
498d2ac1 2260
ebc348b2
BW
2261 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2262 ring->semaphore.sync_seqno[j] = 0;
9d773091 2263 }
53d227f2 2264
9d773091 2265 return 0;
53d227f2
DV
2266}
2267
fca26bb4
MK
2268int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2269{
2270 struct drm_i915_private *dev_priv = dev->dev_private;
2271 int ret;
2272
2273 if (seqno == 0)
2274 return -EINVAL;
2275
2276 /* HWS page needs to be set less than what we
2277 * will inject to ring
2278 */
2279 ret = i915_gem_init_seqno(dev, seqno - 1);
2280 if (ret)
2281 return ret;
2282
2283 /* Carefully set the last_seqno value so that wrap
2284 * detection still works
2285 */
2286 dev_priv->next_seqno = seqno;
2287 dev_priv->last_seqno = seqno - 1;
2288 if (dev_priv->last_seqno == 0)
2289 dev_priv->last_seqno--;
2290
2291 return 0;
2292}
2293
9d773091
CW
2294int
2295i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2296{
9d773091
CW
2297 struct drm_i915_private *dev_priv = dev->dev_private;
2298
2299 /* reserve 0 for non-seqno */
2300 if (dev_priv->next_seqno == 0) {
fca26bb4 2301 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2302 if (ret)
2303 return ret;
53d227f2 2304
9d773091
CW
2305 dev_priv->next_seqno = 1;
2306 }
53d227f2 2307
f72b3435 2308 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2309 return 0;
53d227f2
DV
2310}
2311
a4872ba6 2312int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2313 struct drm_file *file,
7d736f4f 2314 struct drm_i915_gem_object *obj,
0025c077 2315 u32 *out_seqno)
673a394b 2316{
3e31c6c0 2317 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2318 struct drm_i915_gem_request *request;
7d736f4f 2319 u32 request_ring_position, request_start;
3cce469c
CW
2320 int ret;
2321
7d736f4f 2322 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2323 /*
2324 * Emit any outstanding flushes - execbuf can fail to emit the flush
2325 * after having emitted the batchbuffer command. Hence we need to fix
2326 * things up similar to emitting the lazy request. The difference here
2327 * is that the flush _must_ happen before the next request, no matter
2328 * what.
2329 */
a7b9761d
CW
2330 ret = intel_ring_flush_all_caches(ring);
2331 if (ret)
2332 return ret;
cc889e0f 2333
3c0e234c
CW
2334 request = ring->preallocated_lazy_request;
2335 if (WARN_ON(request == NULL))
acb868d3 2336 return -ENOMEM;
cc889e0f 2337
a71d8d94
CW
2338 /* Record the position of the start of the request so that
2339 * should we detect the updated seqno part-way through the
2340 * GPU processing the request, we never over-estimate the
2341 * position of the head.
2342 */
2343 request_ring_position = intel_ring_get_tail(ring);
2344
9d773091 2345 ret = ring->add_request(ring);
3c0e234c 2346 if (ret)
3bb73aba 2347 return ret;
673a394b 2348
9d773091 2349 request->seqno = intel_ring_get_seqno(ring);
852835f3 2350 request->ring = ring;
7d736f4f 2351 request->head = request_start;
a71d8d94 2352 request->tail = request_ring_position;
7d736f4f
MK
2353
2354 /* Whilst this request exists, batch_obj will be on the
2355 * active_list, and so will hold the active reference. Only when this
2356 * request is retired will the the batch_obj be moved onto the
2357 * inactive_list and lose its active reference. Hence we do not need
2358 * to explicitly hold another reference here.
2359 */
9a7e0c2a 2360 request->batch_obj = obj;
0e50e96b 2361
9a7e0c2a
CW
2362 /* Hold a reference to the current context so that we can inspect
2363 * it later in case a hangcheck error event fires.
2364 */
2365 request->ctx = ring->last_context;
0e50e96b
MK
2366 if (request->ctx)
2367 i915_gem_context_reference(request->ctx);
2368
673a394b 2369 request->emitted_jiffies = jiffies;
852835f3 2370 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2371 request->file_priv = NULL;
852835f3 2372
db53a302
CW
2373 if (file) {
2374 struct drm_i915_file_private *file_priv = file->driver_priv;
2375
1c25595f 2376 spin_lock(&file_priv->mm.lock);
f787a5f5 2377 request->file_priv = file_priv;
b962442e 2378 list_add_tail(&request->client_list,
f787a5f5 2379 &file_priv->mm.request_list);
1c25595f 2380 spin_unlock(&file_priv->mm.lock);
b962442e 2381 }
673a394b 2382
9d773091 2383 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2384 ring->outstanding_lazy_seqno = 0;
3c0e234c 2385 ring->preallocated_lazy_request = NULL;
db53a302 2386
db1b76ca 2387 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2388 i915_queue_hangcheck(ring->dev);
2389
f62a0076
CW
2390 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2391 queue_delayed_work(dev_priv->wq,
2392 &dev_priv->mm.retire_work,
2393 round_jiffies_up_relative(HZ));
2394 intel_mark_busy(dev_priv->dev);
f65d9421 2395 }
cc889e0f 2396
acb868d3 2397 if (out_seqno)
9d773091 2398 *out_seqno = request->seqno;
3cce469c 2399 return 0;
673a394b
EA
2400}
2401
f787a5f5
CW
2402static inline void
2403i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2404{
1c25595f 2405 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2406
1c25595f
CW
2407 if (!file_priv)
2408 return;
1c5d22f7 2409
1c25595f 2410 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2411 list_del(&request->client_list);
2412 request->file_priv = NULL;
1c25595f 2413 spin_unlock(&file_priv->mm.lock);
673a394b 2414}
673a394b 2415
939fd762 2416static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2417 const struct intel_context *ctx)
be62acb4 2418{
44e2c070 2419 unsigned long elapsed;
be62acb4 2420
44e2c070
MK
2421 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2422
2423 if (ctx->hang_stats.banned)
be62acb4
MK
2424 return true;
2425
2426 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2427 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2428 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2429 return true;
88b4aa87
MK
2430 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2431 if (i915_stop_ring_allow_warn(dev_priv))
2432 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2433 return true;
3fac8978 2434 }
be62acb4
MK
2435 }
2436
2437 return false;
2438}
2439
939fd762 2440static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2441 struct intel_context *ctx,
b6b0fac0 2442 const bool guilty)
aa60c664 2443{
44e2c070
MK
2444 struct i915_ctx_hang_stats *hs;
2445
2446 if (WARN_ON(!ctx))
2447 return;
aa60c664 2448
44e2c070
MK
2449 hs = &ctx->hang_stats;
2450
2451 if (guilty) {
939fd762 2452 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2453 hs->batch_active++;
2454 hs->guilty_ts = get_seconds();
2455 } else {
2456 hs->batch_pending++;
aa60c664
MK
2457 }
2458}
2459
0e50e96b
MK
2460static void i915_gem_free_request(struct drm_i915_gem_request *request)
2461{
2462 list_del(&request->list);
2463 i915_gem_request_remove_from_client(request);
2464
2465 if (request->ctx)
2466 i915_gem_context_unreference(request->ctx);
2467
2468 kfree(request);
2469}
2470
8d9fc7fd 2471struct drm_i915_gem_request *
a4872ba6 2472i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2473{
4db080f9 2474 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2475 u32 completed_seqno;
2476
2477 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2478
2479 list_for_each_entry(request, &ring->request_list, list) {
2480 if (i915_seqno_passed(completed_seqno, request->seqno))
2481 continue;
aa60c664 2482
b6b0fac0 2483 return request;
4db080f9 2484 }
b6b0fac0
MK
2485
2486 return NULL;
2487}
2488
2489static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2490 struct intel_engine_cs *ring)
b6b0fac0
MK
2491{
2492 struct drm_i915_gem_request *request;
2493 bool ring_hung;
2494
8d9fc7fd 2495 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2496
2497 if (request == NULL)
2498 return;
2499
2500 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2501
939fd762 2502 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2503
2504 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2505 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2506}
aa60c664 2507
4db080f9 2508static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2509 struct intel_engine_cs *ring)
4db080f9 2510{
dfaae392 2511 while (!list_empty(&ring->active_list)) {
05394f39 2512 struct drm_i915_gem_object *obj;
9375e446 2513
05394f39
CW
2514 obj = list_first_entry(&ring->active_list,
2515 struct drm_i915_gem_object,
2516 ring_list);
9375e446 2517
05394f39 2518 i915_gem_object_move_to_inactive(obj);
673a394b 2519 }
1d62beea
BW
2520
2521 /*
2522 * We must free the requests after all the corresponding objects have
2523 * been moved off active lists. Which is the same order as the normal
2524 * retire_requests function does. This is important if object hold
2525 * implicit references on things like e.g. ppgtt address spaces through
2526 * the request.
2527 */
2528 while (!list_empty(&ring->request_list)) {
2529 struct drm_i915_gem_request *request;
2530
2531 request = list_first_entry(&ring->request_list,
2532 struct drm_i915_gem_request,
2533 list);
2534
2535 i915_gem_free_request(request);
2536 }
e3efda49
CW
2537
2538 /* These may not have been flush before the reset, do so now */
2539 kfree(ring->preallocated_lazy_request);
2540 ring->preallocated_lazy_request = NULL;
2541 ring->outstanding_lazy_seqno = 0;
673a394b
EA
2542}
2543
19b2dbde 2544void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2545{
2546 struct drm_i915_private *dev_priv = dev->dev_private;
2547 int i;
2548
4b9de737 2549 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2550 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2551
94a335db
DV
2552 /*
2553 * Commit delayed tiling changes if we have an object still
2554 * attached to the fence, otherwise just clear the fence.
2555 */
2556 if (reg->obj) {
2557 i915_gem_object_update_fence(reg->obj, reg,
2558 reg->obj->tiling_mode);
2559 } else {
2560 i915_gem_write_fence(dev, i, NULL);
2561 }
312817a3
CW
2562 }
2563}
2564
069efc1d 2565void i915_gem_reset(struct drm_device *dev)
673a394b 2566{
77f01230 2567 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2568 struct intel_engine_cs *ring;
1ec14ad3 2569 int i;
673a394b 2570
4db080f9
CW
2571 /*
2572 * Before we free the objects from the requests, we need to inspect
2573 * them for finding the guilty party. As the requests only borrow
2574 * their reference to the objects, the inspection must be done first.
2575 */
2576 for_each_ring(ring, dev_priv, i)
2577 i915_gem_reset_ring_status(dev_priv, ring);
2578
b4519513 2579 for_each_ring(ring, dev_priv, i)
4db080f9 2580 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2581
acce9ffa
BW
2582 i915_gem_context_reset(dev);
2583
19b2dbde 2584 i915_gem_restore_fences(dev);
673a394b
EA
2585}
2586
2587/**
2588 * This function clears the request list as sequence numbers are passed.
2589 */
1cf0ba14 2590void
a4872ba6 2591i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2592{
673a394b
EA
2593 uint32_t seqno;
2594
db53a302 2595 if (list_empty(&ring->request_list))
6c0594a3
KW
2596 return;
2597
db53a302 2598 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2599
b2eadbc8 2600 seqno = ring->get_seqno(ring, true);
1ec14ad3 2601
e9103038
CW
2602 /* Move any buffers on the active list that are no longer referenced
2603 * by the ringbuffer to the flushing/inactive lists as appropriate,
2604 * before we free the context associated with the requests.
2605 */
2606 while (!list_empty(&ring->active_list)) {
2607 struct drm_i915_gem_object *obj;
2608
2609 obj = list_first_entry(&ring->active_list,
2610 struct drm_i915_gem_object,
2611 ring_list);
2612
2613 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2614 break;
2615
2616 i915_gem_object_move_to_inactive(obj);
2617 }
2618
2619
852835f3 2620 while (!list_empty(&ring->request_list)) {
673a394b 2621 struct drm_i915_gem_request *request;
673a394b 2622
852835f3 2623 request = list_first_entry(&ring->request_list,
673a394b
EA
2624 struct drm_i915_gem_request,
2625 list);
673a394b 2626
dfaae392 2627 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2628 break;
2629
db53a302 2630 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2631 /* We know the GPU must have read the request to have
2632 * sent us the seqno + interrupt, so use the position
2633 * of tail of the request to update the last known position
2634 * of the GPU head.
2635 */
ee1b1e5e 2636 ring->buffer->last_retired_head = request->tail;
b84d5f0c 2637
0e50e96b 2638 i915_gem_free_request(request);
b84d5f0c 2639 }
673a394b 2640
db53a302
CW
2641 if (unlikely(ring->trace_irq_seqno &&
2642 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2643 ring->irq_put(ring);
db53a302 2644 ring->trace_irq_seqno = 0;
9d34e5db 2645 }
23bc5982 2646
db53a302 2647 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2648}
2649
b29c19b6 2650bool
b09a1fec
CW
2651i915_gem_retire_requests(struct drm_device *dev)
2652{
3e31c6c0 2653 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2654 struct intel_engine_cs *ring;
b29c19b6 2655 bool idle = true;
1ec14ad3 2656 int i;
b09a1fec 2657
b29c19b6 2658 for_each_ring(ring, dev_priv, i) {
b4519513 2659 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2660 idle &= list_empty(&ring->request_list);
2661 }
2662
2663 if (idle)
2664 mod_delayed_work(dev_priv->wq,
2665 &dev_priv->mm.idle_work,
2666 msecs_to_jiffies(100));
2667
2668 return idle;
b09a1fec
CW
2669}
2670
75ef9da2 2671static void
673a394b
EA
2672i915_gem_retire_work_handler(struct work_struct *work)
2673{
b29c19b6
CW
2674 struct drm_i915_private *dev_priv =
2675 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2676 struct drm_device *dev = dev_priv->dev;
0a58705b 2677 bool idle;
673a394b 2678
891b48cf 2679 /* Come back later if the device is busy... */
b29c19b6
CW
2680 idle = false;
2681 if (mutex_trylock(&dev->struct_mutex)) {
2682 idle = i915_gem_retire_requests(dev);
2683 mutex_unlock(&dev->struct_mutex);
673a394b 2684 }
b29c19b6 2685 if (!idle)
bcb45086
CW
2686 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2687 round_jiffies_up_relative(HZ));
b29c19b6 2688}
0a58705b 2689
b29c19b6
CW
2690static void
2691i915_gem_idle_work_handler(struct work_struct *work)
2692{
2693 struct drm_i915_private *dev_priv =
2694 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2695
2696 intel_mark_idle(dev_priv->dev);
673a394b
EA
2697}
2698
30dfebf3
DV
2699/**
2700 * Ensures that an object will eventually get non-busy by flushing any required
2701 * write domains, emitting any outstanding lazy request and retiring and
2702 * completed requests.
2703 */
2704static int
2705i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2706{
2707 int ret;
2708
2709 if (obj->active) {
0201f1ec 2710 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2711 if (ret)
2712 return ret;
2713
30dfebf3
DV
2714 i915_gem_retire_requests_ring(obj->ring);
2715 }
2716
2717 return 0;
2718}
2719
23ba4fd0
BW
2720/**
2721 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2722 * @DRM_IOCTL_ARGS: standard ioctl arguments
2723 *
2724 * Returns 0 if successful, else an error is returned with the remaining time in
2725 * the timeout parameter.
2726 * -ETIME: object is still busy after timeout
2727 * -ERESTARTSYS: signal interrupted the wait
2728 * -ENONENT: object doesn't exist
2729 * Also possible, but rare:
2730 * -EAGAIN: GPU wedged
2731 * -ENOMEM: damn
2732 * -ENODEV: Internal IRQ fail
2733 * -E?: The add request failed
2734 *
2735 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2736 * non-zero timeout parameter the wait ioctl will wait for the given number of
2737 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2738 * without holding struct_mutex the object may become re-busied before this
2739 * function completes. A similar but shorter * race condition exists in the busy
2740 * ioctl
2741 */
2742int
2743i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2744{
3e31c6c0 2745 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2746 struct drm_i915_gem_wait *args = data;
2747 struct drm_i915_gem_object *obj;
a4872ba6 2748 struct intel_engine_cs *ring = NULL;
eac1f14f 2749 struct timespec timeout_stack, *timeout = NULL;
f69061be 2750 unsigned reset_counter;
23ba4fd0
BW
2751 u32 seqno = 0;
2752 int ret = 0;
2753
eac1f14f
BW
2754 if (args->timeout_ns >= 0) {
2755 timeout_stack = ns_to_timespec(args->timeout_ns);
2756 timeout = &timeout_stack;
2757 }
23ba4fd0
BW
2758
2759 ret = i915_mutex_lock_interruptible(dev);
2760 if (ret)
2761 return ret;
2762
2763 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2764 if (&obj->base == NULL) {
2765 mutex_unlock(&dev->struct_mutex);
2766 return -ENOENT;
2767 }
2768
30dfebf3
DV
2769 /* Need to make sure the object gets inactive eventually. */
2770 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2771 if (ret)
2772 goto out;
2773
2774 if (obj->active) {
0201f1ec 2775 seqno = obj->last_read_seqno;
23ba4fd0
BW
2776 ring = obj->ring;
2777 }
2778
2779 if (seqno == 0)
2780 goto out;
2781
23ba4fd0
BW
2782 /* Do this after OLR check to make sure we make forward progress polling
2783 * on this IOCTL with a 0 timeout (like busy ioctl)
2784 */
2785 if (!args->timeout_ns) {
2786 ret = -ETIME;
2787 goto out;
2788 }
2789
2790 drm_gem_object_unreference(&obj->base);
f69061be 2791 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2792 mutex_unlock(&dev->struct_mutex);
2793
b29c19b6 2794 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2795 if (timeout)
eac1f14f 2796 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2797 return ret;
2798
2799out:
2800 drm_gem_object_unreference(&obj->base);
2801 mutex_unlock(&dev->struct_mutex);
2802 return ret;
2803}
2804
5816d648
BW
2805/**
2806 * i915_gem_object_sync - sync an object to a ring.
2807 *
2808 * @obj: object which may be in use on another ring.
2809 * @to: ring we wish to use the object on. May be NULL.
2810 *
2811 * This code is meant to abstract object synchronization with the GPU.
2812 * Calling with NULL implies synchronizing the object with the CPU
2813 * rather than a particular GPU ring.
2814 *
2815 * Returns 0 if successful, else propagates up the lower layer error.
2816 */
2911a35b
BW
2817int
2818i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2819 struct intel_engine_cs *to)
2911a35b 2820{
a4872ba6 2821 struct intel_engine_cs *from = obj->ring;
2911a35b
BW
2822 u32 seqno;
2823 int ret, idx;
2824
2825 if (from == NULL || to == from)
2826 return 0;
2827
5816d648 2828 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2829 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2830
2831 idx = intel_ring_sync_index(from, to);
2832
0201f1ec 2833 seqno = obj->last_read_seqno;
ebc348b2 2834 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2835 return 0;
2836
b4aca010
BW
2837 ret = i915_gem_check_olr(obj->ring, seqno);
2838 if (ret)
2839 return ret;
2911a35b 2840
b52b89da 2841 trace_i915_gem_ring_sync_to(from, to, seqno);
ebc348b2 2842 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2843 if (!ret)
7b01e260
MK
2844 /* We use last_read_seqno because sync_to()
2845 * might have just caused seqno wrap under
2846 * the radar.
2847 */
ebc348b2 2848 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2849
e3a5a225 2850 return ret;
2911a35b
BW
2851}
2852
b5ffc9bc
CW
2853static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2854{
2855 u32 old_write_domain, old_read_domains;
2856
b5ffc9bc
CW
2857 /* Force a pagefault for domain tracking on next user access */
2858 i915_gem_release_mmap(obj);
2859
b97c3d9c
KP
2860 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2861 return;
2862
97c809fd
CW
2863 /* Wait for any direct GTT access to complete */
2864 mb();
2865
b5ffc9bc
CW
2866 old_read_domains = obj->base.read_domains;
2867 old_write_domain = obj->base.write_domain;
2868
2869 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2870 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2871
2872 trace_i915_gem_object_change_domain(obj,
2873 old_read_domains,
2874 old_write_domain);
2875}
2876
07fe0b12 2877int i915_vma_unbind(struct i915_vma *vma)
673a394b 2878{
07fe0b12 2879 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 2880 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 2881 int ret;
673a394b 2882
07fe0b12 2883 if (list_empty(&vma->vma_link))
673a394b
EA
2884 return 0;
2885
0ff501cb
DV
2886 if (!drm_mm_node_allocated(&vma->node)) {
2887 i915_gem_vma_destroy(vma);
0ff501cb
DV
2888 return 0;
2889 }
433544bd 2890
d7f46fc4 2891 if (vma->pin_count)
31d8d651 2892 return -EBUSY;
673a394b 2893
c4670ad0
CW
2894 BUG_ON(obj->pages == NULL);
2895
a8198eea 2896 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2897 if (ret)
a8198eea
CW
2898 return ret;
2899 /* Continue on if we fail due to EIO, the GPU is hung so we
2900 * should be safe and we need to cleanup or else we might
2901 * cause memory corruption through use-after-free.
2902 */
2903
8b1bc9b4
DV
2904 if (i915_is_ggtt(vma->vm)) {
2905 i915_gem_object_finish_gtt(obj);
5323fd04 2906
8b1bc9b4
DV
2907 /* release the fence reg _after_ flushing */
2908 ret = i915_gem_object_put_fence(obj);
2909 if (ret)
2910 return ret;
2911 }
96b47b65 2912
07fe0b12 2913 trace_i915_vma_unbind(vma);
db53a302 2914
6f65e29a
BW
2915 vma->unbind_vma(vma);
2916
74163907 2917 i915_gem_gtt_finish_object(obj);
7bddb01f 2918
64bf9303 2919 list_del_init(&vma->mm_list);
75e9e915 2920 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2921 if (i915_is_ggtt(vma->vm))
2922 obj->map_and_fenceable = true;
673a394b 2923
2f633156
BW
2924 drm_mm_remove_node(&vma->node);
2925 i915_gem_vma_destroy(vma);
2926
2927 /* Since the unbound list is global, only move to that list if
b93dab6e 2928 * no more VMAs exist. */
2f633156
BW
2929 if (list_empty(&obj->vma_list))
2930 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2931
70903c3b
CW
2932 /* And finally now the object is completely decoupled from this vma,
2933 * we can drop its hold on the backing storage and allow it to be
2934 * reaped by the shrinker.
2935 */
2936 i915_gem_object_unpin_pages(obj);
2937
88241785 2938 return 0;
54cf91dc
CW
2939}
2940
b2da9fe5 2941int i915_gpu_idle(struct drm_device *dev)
4df2faf4 2942{
3e31c6c0 2943 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2944 struct intel_engine_cs *ring;
1ec14ad3 2945 int ret, i;
4df2faf4 2946
4df2faf4 2947 /* Flush everything onto the inactive list. */
b4519513 2948 for_each_ring(ring, dev_priv, i) {
691e6415 2949 ret = i915_switch_context(ring, ring->default_context);
b6c7488d
BW
2950 if (ret)
2951 return ret;
2952
3e960501 2953 ret = intel_ring_idle(ring);
1ec14ad3
CW
2954 if (ret)
2955 return ret;
2956 }
4df2faf4 2957
8a1a49f9 2958 return 0;
4df2faf4
DV
2959}
2960
9ce079e4
CW
2961static void i965_write_fence_reg(struct drm_device *dev, int reg,
2962 struct drm_i915_gem_object *obj)
de151cf6 2963{
3e31c6c0 2964 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
2965 int fence_reg;
2966 int fence_pitch_shift;
de151cf6 2967
56c844e5
ID
2968 if (INTEL_INFO(dev)->gen >= 6) {
2969 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2970 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2971 } else {
2972 fence_reg = FENCE_REG_965_0;
2973 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2974 }
2975
d18b9619
CW
2976 fence_reg += reg * 8;
2977
2978 /* To w/a incoherency with non-atomic 64-bit register updates,
2979 * we split the 64-bit update into two 32-bit writes. In order
2980 * for a partial fence not to be evaluated between writes, we
2981 * precede the update with write to turn off the fence register,
2982 * and only enable the fence as the last step.
2983 *
2984 * For extra levels of paranoia, we make sure each step lands
2985 * before applying the next step.
2986 */
2987 I915_WRITE(fence_reg, 0);
2988 POSTING_READ(fence_reg);
2989
9ce079e4 2990 if (obj) {
f343c5f6 2991 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2992 uint64_t val;
de151cf6 2993
f343c5f6 2994 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2995 0xfffff000) << 32;
f343c5f6 2996 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2997 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2998 if (obj->tiling_mode == I915_TILING_Y)
2999 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3000 val |= I965_FENCE_REG_VALID;
c6642782 3001
d18b9619
CW
3002 I915_WRITE(fence_reg + 4, val >> 32);
3003 POSTING_READ(fence_reg + 4);
3004
3005 I915_WRITE(fence_reg + 0, val);
3006 POSTING_READ(fence_reg);
3007 } else {
3008 I915_WRITE(fence_reg + 4, 0);
3009 POSTING_READ(fence_reg + 4);
3010 }
de151cf6
JB
3011}
3012
9ce079e4
CW
3013static void i915_write_fence_reg(struct drm_device *dev, int reg,
3014 struct drm_i915_gem_object *obj)
de151cf6 3015{
3e31c6c0 3016 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3017 u32 val;
de151cf6 3018
9ce079e4 3019 if (obj) {
f343c5f6 3020 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3021 int pitch_val;
3022 int tile_width;
c6642782 3023
f343c5f6 3024 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3025 (size & -size) != size ||
f343c5f6
BW
3026 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3027 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3028 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3029
9ce079e4
CW
3030 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3031 tile_width = 128;
3032 else
3033 tile_width = 512;
3034
3035 /* Note: pitch better be a power of two tile widths */
3036 pitch_val = obj->stride / tile_width;
3037 pitch_val = ffs(pitch_val) - 1;
3038
f343c5f6 3039 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3040 if (obj->tiling_mode == I915_TILING_Y)
3041 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3042 val |= I915_FENCE_SIZE_BITS(size);
3043 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3044 val |= I830_FENCE_REG_VALID;
3045 } else
3046 val = 0;
3047
3048 if (reg < 8)
3049 reg = FENCE_REG_830_0 + reg * 4;
3050 else
3051 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3052
3053 I915_WRITE(reg, val);
3054 POSTING_READ(reg);
de151cf6
JB
3055}
3056
9ce079e4
CW
3057static void i830_write_fence_reg(struct drm_device *dev, int reg,
3058 struct drm_i915_gem_object *obj)
de151cf6 3059{
3e31c6c0 3060 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3061 uint32_t val;
de151cf6 3062
9ce079e4 3063 if (obj) {
f343c5f6 3064 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3065 uint32_t pitch_val;
de151cf6 3066
f343c5f6 3067 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3068 (size & -size) != size ||
f343c5f6
BW
3069 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3070 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3071 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3072
9ce079e4
CW
3073 pitch_val = obj->stride / 128;
3074 pitch_val = ffs(pitch_val) - 1;
de151cf6 3075
f343c5f6 3076 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3077 if (obj->tiling_mode == I915_TILING_Y)
3078 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3079 val |= I830_FENCE_SIZE_BITS(size);
3080 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3081 val |= I830_FENCE_REG_VALID;
3082 } else
3083 val = 0;
c6642782 3084
9ce079e4
CW
3085 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3086 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3087}
3088
d0a57789
CW
3089inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3090{
3091 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3092}
3093
9ce079e4
CW
3094static void i915_gem_write_fence(struct drm_device *dev, int reg,
3095 struct drm_i915_gem_object *obj)
3096{
d0a57789
CW
3097 struct drm_i915_private *dev_priv = dev->dev_private;
3098
3099 /* Ensure that all CPU reads are completed before installing a fence
3100 * and all writes before removing the fence.
3101 */
3102 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3103 mb();
3104
94a335db
DV
3105 WARN(obj && (!obj->stride || !obj->tiling_mode),
3106 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3107 obj->stride, obj->tiling_mode);
3108
9ce079e4 3109 switch (INTEL_INFO(dev)->gen) {
5ab31333 3110 case 8:
9ce079e4 3111 case 7:
56c844e5 3112 case 6:
9ce079e4
CW
3113 case 5:
3114 case 4: i965_write_fence_reg(dev, reg, obj); break;
3115 case 3: i915_write_fence_reg(dev, reg, obj); break;
3116 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3117 default: BUG();
9ce079e4 3118 }
d0a57789
CW
3119
3120 /* And similarly be paranoid that no direct access to this region
3121 * is reordered to before the fence is installed.
3122 */
3123 if (i915_gem_object_needs_mb(obj))
3124 mb();
de151cf6
JB
3125}
3126
61050808
CW
3127static inline int fence_number(struct drm_i915_private *dev_priv,
3128 struct drm_i915_fence_reg *fence)
3129{
3130 return fence - dev_priv->fence_regs;
3131}
3132
3133static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3134 struct drm_i915_fence_reg *fence,
3135 bool enable)
3136{
2dc8aae0 3137 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3138 int reg = fence_number(dev_priv, fence);
3139
3140 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3141
3142 if (enable) {
46a0b638 3143 obj->fence_reg = reg;
61050808
CW
3144 fence->obj = obj;
3145 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3146 } else {
3147 obj->fence_reg = I915_FENCE_REG_NONE;
3148 fence->obj = NULL;
3149 list_del_init(&fence->lru_list);
3150 }
94a335db 3151 obj->fence_dirty = false;
61050808
CW
3152}
3153
d9e86c0e 3154static int
d0a57789 3155i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3156{
1c293ea3 3157 if (obj->last_fenced_seqno) {
86d5bc37 3158 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3159 if (ret)
3160 return ret;
d9e86c0e
CW
3161
3162 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3163 }
3164
86d5bc37 3165 obj->fenced_gpu_access = false;
d9e86c0e
CW
3166 return 0;
3167}
3168
3169int
3170i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3171{
61050808 3172 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3173 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3174 int ret;
3175
d0a57789 3176 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3177 if (ret)
3178 return ret;
3179
61050808
CW
3180 if (obj->fence_reg == I915_FENCE_REG_NONE)
3181 return 0;
d9e86c0e 3182
f9c513e9
CW
3183 fence = &dev_priv->fence_regs[obj->fence_reg];
3184
aff10b30
DV
3185 if (WARN_ON(fence->pin_count))
3186 return -EBUSY;
3187
61050808 3188 i915_gem_object_fence_lost(obj);
f9c513e9 3189 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3190
3191 return 0;
3192}
3193
3194static struct drm_i915_fence_reg *
a360bb1a 3195i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3196{
ae3db24a 3197 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3198 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3199 int i;
ae3db24a
DV
3200
3201 /* First try to find a free reg */
d9e86c0e 3202 avail = NULL;
ae3db24a
DV
3203 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3204 reg = &dev_priv->fence_regs[i];
3205 if (!reg->obj)
d9e86c0e 3206 return reg;
ae3db24a 3207
1690e1eb 3208 if (!reg->pin_count)
d9e86c0e 3209 avail = reg;
ae3db24a
DV
3210 }
3211
d9e86c0e 3212 if (avail == NULL)
5dce5b93 3213 goto deadlock;
ae3db24a
DV
3214
3215 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3216 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3217 if (reg->pin_count)
ae3db24a
DV
3218 continue;
3219
8fe301ad 3220 return reg;
ae3db24a
DV
3221 }
3222
5dce5b93
CW
3223deadlock:
3224 /* Wait for completion of pending flips which consume fences */
3225 if (intel_has_pending_fb_unpin(dev))
3226 return ERR_PTR(-EAGAIN);
3227
3228 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3229}
3230
de151cf6 3231/**
9a5a53b3 3232 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3233 * @obj: object to map through a fence reg
3234 *
3235 * When mapping objects through the GTT, userspace wants to be able to write
3236 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3237 * This function walks the fence regs looking for a free one for @obj,
3238 * stealing one if it can't find any.
3239 *
3240 * It then sets up the reg based on the object's properties: address, pitch
3241 * and tiling format.
9a5a53b3
CW
3242 *
3243 * For an untiled surface, this removes any existing fence.
de151cf6 3244 */
8c4b8c3f 3245int
06d98131 3246i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3247{
05394f39 3248 struct drm_device *dev = obj->base.dev;
79e53945 3249 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3250 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3251 struct drm_i915_fence_reg *reg;
ae3db24a 3252 int ret;
de151cf6 3253
14415745
CW
3254 /* Have we updated the tiling parameters upon the object and so
3255 * will need to serialise the write to the associated fence register?
3256 */
5d82e3e6 3257 if (obj->fence_dirty) {
d0a57789 3258 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3259 if (ret)
3260 return ret;
3261 }
9a5a53b3 3262
d9e86c0e 3263 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3264 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3265 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3266 if (!obj->fence_dirty) {
14415745
CW
3267 list_move_tail(&reg->lru_list,
3268 &dev_priv->mm.fence_list);
3269 return 0;
3270 }
3271 } else if (enable) {
3272 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3273 if (IS_ERR(reg))
3274 return PTR_ERR(reg);
d9e86c0e 3275
14415745
CW
3276 if (reg->obj) {
3277 struct drm_i915_gem_object *old = reg->obj;
3278
d0a57789 3279 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3280 if (ret)
3281 return ret;
3282
14415745 3283 i915_gem_object_fence_lost(old);
29c5a587 3284 }
14415745 3285 } else
a09ba7fa 3286 return 0;
a09ba7fa 3287
14415745 3288 i915_gem_object_update_fence(obj, reg, enable);
14415745 3289
9ce079e4 3290 return 0;
de151cf6
JB
3291}
3292
42d6ab48
CW
3293static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3294 struct drm_mm_node *gtt_space,
3295 unsigned long cache_level)
3296{
3297 struct drm_mm_node *other;
3298
3299 /* On non-LLC machines we have to be careful when putting differing
3300 * types of snoopable memory together to avoid the prefetcher
4239ca77 3301 * crossing memory domains and dying.
42d6ab48
CW
3302 */
3303 if (HAS_LLC(dev))
3304 return true;
3305
c6cfb325 3306 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3307 return true;
3308
3309 if (list_empty(&gtt_space->node_list))
3310 return true;
3311
3312 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3313 if (other->allocated && !other->hole_follows && other->color != cache_level)
3314 return false;
3315
3316 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3317 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3318 return false;
3319
3320 return true;
3321}
3322
3323static void i915_gem_verify_gtt(struct drm_device *dev)
3324{
3325#if WATCH_GTT
3326 struct drm_i915_private *dev_priv = dev->dev_private;
3327 struct drm_i915_gem_object *obj;
3328 int err = 0;
3329
35c20a60 3330 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3331 if (obj->gtt_space == NULL) {
3332 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3333 err++;
3334 continue;
3335 }
3336
3337 if (obj->cache_level != obj->gtt_space->color) {
3338 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3339 i915_gem_obj_ggtt_offset(obj),
3340 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3341 obj->cache_level,
3342 obj->gtt_space->color);
3343 err++;
3344 continue;
3345 }
3346
3347 if (!i915_gem_valid_gtt_space(dev,
3348 obj->gtt_space,
3349 obj->cache_level)) {
3350 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3351 i915_gem_obj_ggtt_offset(obj),
3352 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3353 obj->cache_level);
3354 err++;
3355 continue;
3356 }
3357 }
3358
3359 WARN_ON(err);
3360#endif
3361}
3362
673a394b
EA
3363/**
3364 * Finds free space in the GTT aperture and binds the object there.
3365 */
262de145 3366static struct i915_vma *
07fe0b12
BW
3367i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3368 struct i915_address_space *vm,
3369 unsigned alignment,
d23db88c 3370 uint64_t flags)
673a394b 3371{
05394f39 3372 struct drm_device *dev = obj->base.dev;
3e31c6c0 3373 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3374 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3375 unsigned long start =
3376 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3377 unsigned long end =
1ec9e26d 3378 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3379 struct i915_vma *vma;
07f73f69 3380 int ret;
673a394b 3381
e28f8711
CW
3382 fence_size = i915_gem_get_gtt_size(dev,
3383 obj->base.size,
3384 obj->tiling_mode);
3385 fence_alignment = i915_gem_get_gtt_alignment(dev,
3386 obj->base.size,
d865110c 3387 obj->tiling_mode, true);
e28f8711 3388 unfenced_alignment =
d865110c 3389 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3390 obj->base.size,
3391 obj->tiling_mode, false);
a00b10c3 3392
673a394b 3393 if (alignment == 0)
1ec9e26d 3394 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3395 unfenced_alignment;
1ec9e26d 3396 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3397 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3398 return ERR_PTR(-EINVAL);
673a394b
EA
3399 }
3400
1ec9e26d 3401 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3402
654fc607
CW
3403 /* If the object is bigger than the entire aperture, reject it early
3404 * before evicting everything in a vain attempt to find space.
3405 */
d23db88c
CW
3406 if (obj->base.size > end) {
3407 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3408 obj->base.size,
1ec9e26d 3409 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3410 end);
262de145 3411 return ERR_PTR(-E2BIG);
654fc607
CW
3412 }
3413
37e680a1 3414 ret = i915_gem_object_get_pages(obj);
6c085a72 3415 if (ret)
262de145 3416 return ERR_PTR(ret);
6c085a72 3417
fbdda6fb
CW
3418 i915_gem_object_pin_pages(obj);
3419
accfef2e 3420 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3421 if (IS_ERR(vma))
bc6bc15b 3422 goto err_unpin;
2f633156 3423
0a9ae0d7 3424search_free:
07fe0b12 3425 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3426 size, alignment,
d23db88c
CW
3427 obj->cache_level,
3428 start, end,
62347f9e
LK
3429 DRM_MM_SEARCH_DEFAULT,
3430 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3431 if (ret) {
f6cd1f15 3432 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3433 obj->cache_level,
3434 start, end,
3435 flags);
dc9dd7a2
CW
3436 if (ret == 0)
3437 goto search_free;
9731129c 3438
bc6bc15b 3439 goto err_free_vma;
673a394b 3440 }
2f633156 3441 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3442 obj->cache_level))) {
2f633156 3443 ret = -EINVAL;
bc6bc15b 3444 goto err_remove_node;
673a394b
EA
3445 }
3446
74163907 3447 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3448 if (ret)
bc6bc15b 3449 goto err_remove_node;
673a394b 3450
35c20a60 3451 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3452 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3453
4bd561b3
BW
3454 if (i915_is_ggtt(vm)) {
3455 bool mappable, fenceable;
a00b10c3 3456
49987099
DV
3457 fenceable = (vma->node.size == fence_size &&
3458 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3459
49987099
DV
3460 mappable = (vma->node.start + obj->base.size <=
3461 dev_priv->gtt.mappable_end);
a00b10c3 3462
5cacaac7 3463 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3464 }
75e9e915 3465
1ec9e26d 3466 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3467
1ec9e26d 3468 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3469 vma->bind_vma(vma, obj->cache_level,
3470 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3471
42d6ab48 3472 i915_gem_verify_gtt(dev);
262de145 3473 return vma;
2f633156 3474
bc6bc15b 3475err_remove_node:
6286ef9b 3476 drm_mm_remove_node(&vma->node);
bc6bc15b 3477err_free_vma:
2f633156 3478 i915_gem_vma_destroy(vma);
262de145 3479 vma = ERR_PTR(ret);
bc6bc15b 3480err_unpin:
2f633156 3481 i915_gem_object_unpin_pages(obj);
262de145 3482 return vma;
673a394b
EA
3483}
3484
000433b6 3485bool
2c22569b
CW
3486i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3487 bool force)
673a394b 3488{
673a394b
EA
3489 /* If we don't have a page list set up, then we're not pinned
3490 * to GPU, and we can ignore the cache flush because it'll happen
3491 * again at bind time.
3492 */
05394f39 3493 if (obj->pages == NULL)
000433b6 3494 return false;
673a394b 3495
769ce464
ID
3496 /*
3497 * Stolen memory is always coherent with the GPU as it is explicitly
3498 * marked as wc by the system, or the system is cache-coherent.
3499 */
3500 if (obj->stolen)
000433b6 3501 return false;
769ce464 3502
9c23f7fc
CW
3503 /* If the GPU is snooping the contents of the CPU cache,
3504 * we do not need to manually clear the CPU cache lines. However,
3505 * the caches are only snooped when the render cache is
3506 * flushed/invalidated. As we always have to emit invalidations
3507 * and flushes when moving into and out of the RENDER domain, correct
3508 * snooping behaviour occurs naturally as the result of our domain
3509 * tracking.
3510 */
2c22569b 3511 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3512 return false;
9c23f7fc 3513
1c5d22f7 3514 trace_i915_gem_object_clflush(obj);
9da3da66 3515 drm_clflush_sg(obj->pages);
000433b6
CW
3516
3517 return true;
e47c68e9
EA
3518}
3519
3520/** Flushes the GTT write domain for the object if it's dirty. */
3521static void
05394f39 3522i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3523{
1c5d22f7
CW
3524 uint32_t old_write_domain;
3525
05394f39 3526 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3527 return;
3528
63256ec5 3529 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3530 * to it immediately go to main memory as far as we know, so there's
3531 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3532 *
3533 * However, we do have to enforce the order so that all writes through
3534 * the GTT land before any writes to the device, such as updates to
3535 * the GATT itself.
e47c68e9 3536 */
63256ec5
CW
3537 wmb();
3538
05394f39
CW
3539 old_write_domain = obj->base.write_domain;
3540 obj->base.write_domain = 0;
1c5d22f7
CW
3541
3542 trace_i915_gem_object_change_domain(obj,
05394f39 3543 obj->base.read_domains,
1c5d22f7 3544 old_write_domain);
e47c68e9
EA
3545}
3546
3547/** Flushes the CPU write domain for the object if it's dirty. */
3548static void
2c22569b
CW
3549i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3550 bool force)
e47c68e9 3551{
1c5d22f7 3552 uint32_t old_write_domain;
e47c68e9 3553
05394f39 3554 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3555 return;
3556
000433b6
CW
3557 if (i915_gem_clflush_object(obj, force))
3558 i915_gem_chipset_flush(obj->base.dev);
3559
05394f39
CW
3560 old_write_domain = obj->base.write_domain;
3561 obj->base.write_domain = 0;
1c5d22f7
CW
3562
3563 trace_i915_gem_object_change_domain(obj,
05394f39 3564 obj->base.read_domains,
1c5d22f7 3565 old_write_domain);
e47c68e9
EA
3566}
3567
2ef7eeaa
EA
3568/**
3569 * Moves a single object to the GTT read, and possibly write domain.
3570 *
3571 * This function returns when the move is complete, including waiting on
3572 * flushes to occur.
3573 */
79e53945 3574int
2021746e 3575i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3576{
3e31c6c0 3577 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3578 uint32_t old_write_domain, old_read_domains;
e47c68e9 3579 int ret;
2ef7eeaa 3580
02354392 3581 /* Not valid to be called on unbound objects. */
9843877d 3582 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3583 return -EINVAL;
3584
8d7e3de1
CW
3585 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3586 return 0;
3587
0201f1ec 3588 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3589 if (ret)
3590 return ret;
3591
c8725f3d 3592 i915_gem_object_retire(obj);
2c22569b 3593 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3594
d0a57789
CW
3595 /* Serialise direct access to this object with the barriers for
3596 * coherent writes from the GPU, by effectively invalidating the
3597 * GTT domain upon first access.
3598 */
3599 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3600 mb();
3601
05394f39
CW
3602 old_write_domain = obj->base.write_domain;
3603 old_read_domains = obj->base.read_domains;
1c5d22f7 3604
e47c68e9
EA
3605 /* It should now be out of any other write domains, and we can update
3606 * the domain values for our changes.
3607 */
05394f39
CW
3608 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3609 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3610 if (write) {
05394f39
CW
3611 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3612 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3613 obj->dirty = 1;
2ef7eeaa
EA
3614 }
3615
1c5d22f7
CW
3616 trace_i915_gem_object_change_domain(obj,
3617 old_read_domains,
3618 old_write_domain);
3619
8325a09d 3620 /* And bump the LRU for this access */
ca191b13 3621 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3622 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3623 if (vma)
3624 list_move_tail(&vma->mm_list,
3625 &dev_priv->gtt.base.inactive_list);
3626
3627 }
8325a09d 3628
e47c68e9
EA
3629 return 0;
3630}
3631
e4ffd173
CW
3632int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3633 enum i915_cache_level cache_level)
3634{
7bddb01f 3635 struct drm_device *dev = obj->base.dev;
df6f783a 3636 struct i915_vma *vma, *next;
e4ffd173
CW
3637 int ret;
3638
3639 if (obj->cache_level == cache_level)
3640 return 0;
3641
d7f46fc4 3642 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3643 DRM_DEBUG("can not change the cache level of pinned objects\n");
3644 return -EBUSY;
3645 }
3646
df6f783a 3647 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3089c6f2 3648 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3649 ret = i915_vma_unbind(vma);
3089c6f2
BW
3650 if (ret)
3651 return ret;
3089c6f2 3652 }
42d6ab48
CW
3653 }
3654
3089c6f2 3655 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3656 ret = i915_gem_object_finish_gpu(obj);
3657 if (ret)
3658 return ret;
3659
3660 i915_gem_object_finish_gtt(obj);
3661
3662 /* Before SandyBridge, you could not use tiling or fence
3663 * registers with snooped memory, so relinquish any fences
3664 * currently pointing to our region in the aperture.
3665 */
42d6ab48 3666 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3667 ret = i915_gem_object_put_fence(obj);
3668 if (ret)
3669 return ret;
3670 }
3671
6f65e29a 3672 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3673 if (drm_mm_node_allocated(&vma->node))
3674 vma->bind_vma(vma, cache_level,
3675 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
e4ffd173
CW
3676 }
3677
2c22569b
CW
3678 list_for_each_entry(vma, &obj->vma_list, vma_link)
3679 vma->node.color = cache_level;
3680 obj->cache_level = cache_level;
3681
3682 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3683 u32 old_read_domains, old_write_domain;
3684
3685 /* If we're coming from LLC cached, then we haven't
3686 * actually been tracking whether the data is in the
3687 * CPU cache or not, since we only allow one bit set
3688 * in obj->write_domain and have been skipping the clflushes.
3689 * Just set it to the CPU cache for now.
3690 */
c8725f3d 3691 i915_gem_object_retire(obj);
e4ffd173 3692 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3693
3694 old_read_domains = obj->base.read_domains;
3695 old_write_domain = obj->base.write_domain;
3696
3697 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3698 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3699
3700 trace_i915_gem_object_change_domain(obj,
3701 old_read_domains,
3702 old_write_domain);
3703 }
3704
42d6ab48 3705 i915_gem_verify_gtt(dev);
e4ffd173
CW
3706 return 0;
3707}
3708
199adf40
BW
3709int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3710 struct drm_file *file)
e6994aee 3711{
199adf40 3712 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3713 struct drm_i915_gem_object *obj;
3714 int ret;
3715
3716 ret = i915_mutex_lock_interruptible(dev);
3717 if (ret)
3718 return ret;
3719
3720 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3721 if (&obj->base == NULL) {
3722 ret = -ENOENT;
3723 goto unlock;
3724 }
3725
651d794f
CW
3726 switch (obj->cache_level) {
3727 case I915_CACHE_LLC:
3728 case I915_CACHE_L3_LLC:
3729 args->caching = I915_CACHING_CACHED;
3730 break;
3731
4257d3ba
CW
3732 case I915_CACHE_WT:
3733 args->caching = I915_CACHING_DISPLAY;
3734 break;
3735
651d794f
CW
3736 default:
3737 args->caching = I915_CACHING_NONE;
3738 break;
3739 }
e6994aee
CW
3740
3741 drm_gem_object_unreference(&obj->base);
3742unlock:
3743 mutex_unlock(&dev->struct_mutex);
3744 return ret;
3745}
3746
199adf40
BW
3747int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3748 struct drm_file *file)
e6994aee 3749{
199adf40 3750 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3751 struct drm_i915_gem_object *obj;
3752 enum i915_cache_level level;
3753 int ret;
3754
199adf40
BW
3755 switch (args->caching) {
3756 case I915_CACHING_NONE:
e6994aee
CW
3757 level = I915_CACHE_NONE;
3758 break;
199adf40 3759 case I915_CACHING_CACHED:
e6994aee
CW
3760 level = I915_CACHE_LLC;
3761 break;
4257d3ba
CW
3762 case I915_CACHING_DISPLAY:
3763 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3764 break;
e6994aee
CW
3765 default:
3766 return -EINVAL;
3767 }
3768
3bc2913e
BW
3769 ret = i915_mutex_lock_interruptible(dev);
3770 if (ret)
3771 return ret;
3772
e6994aee
CW
3773 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3774 if (&obj->base == NULL) {
3775 ret = -ENOENT;
3776 goto unlock;
3777 }
3778
3779 ret = i915_gem_object_set_cache_level(obj, level);
3780
3781 drm_gem_object_unreference(&obj->base);
3782unlock:
3783 mutex_unlock(&dev->struct_mutex);
3784 return ret;
3785}
3786
cc98b413
CW
3787static bool is_pin_display(struct drm_i915_gem_object *obj)
3788{
19656430
OM
3789 struct i915_vma *vma;
3790
3791 if (list_empty(&obj->vma_list))
3792 return false;
3793
3794 vma = i915_gem_obj_to_ggtt(obj);
3795 if (!vma)
3796 return false;
3797
cc98b413
CW
3798 /* There are 3 sources that pin objects:
3799 * 1. The display engine (scanouts, sprites, cursors);
3800 * 2. Reservations for execbuffer;
3801 * 3. The user.
3802 *
3803 * We can ignore reservations as we hold the struct_mutex and
3804 * are only called outside of the reservation path. The user
3805 * can only increment pin_count once, and so if after
3806 * subtracting the potential reference by the user, any pin_count
3807 * remains, it must be due to another use by the display engine.
3808 */
19656430 3809 return vma->pin_count - !!obj->user_pin_count;
cc98b413
CW
3810}
3811
b9241ea3 3812/*
2da3b9b9
CW
3813 * Prepare buffer for display plane (scanout, cursors, etc).
3814 * Can be called from an uninterruptible phase (modesetting) and allows
3815 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3816 */
3817int
2da3b9b9
CW
3818i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3819 u32 alignment,
a4872ba6 3820 struct intel_engine_cs *pipelined)
b9241ea3 3821{
2da3b9b9 3822 u32 old_read_domains, old_write_domain;
19656430 3823 bool was_pin_display;
b9241ea3
ZW
3824 int ret;
3825
0be73284 3826 if (pipelined != obj->ring) {
2911a35b
BW
3827 ret = i915_gem_object_sync(obj, pipelined);
3828 if (ret)
b9241ea3
ZW
3829 return ret;
3830 }
3831
cc98b413
CW
3832 /* Mark the pin_display early so that we account for the
3833 * display coherency whilst setting up the cache domains.
3834 */
19656430 3835 was_pin_display = obj->pin_display;
cc98b413
CW
3836 obj->pin_display = true;
3837
a7ef0640
EA
3838 /* The display engine is not coherent with the LLC cache on gen6. As
3839 * a result, we make sure that the pinning that is about to occur is
3840 * done with uncached PTEs. This is lowest common denominator for all
3841 * chipsets.
3842 *
3843 * However for gen6+, we could do better by using the GFDT bit instead
3844 * of uncaching, which would allow us to flush all the LLC-cached data
3845 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3846 */
651d794f
CW
3847 ret = i915_gem_object_set_cache_level(obj,
3848 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3849 if (ret)
cc98b413 3850 goto err_unpin_display;
a7ef0640 3851
2da3b9b9
CW
3852 /* As the user may map the buffer once pinned in the display plane
3853 * (e.g. libkms for the bootup splash), we have to ensure that we
3854 * always use map_and_fenceable for all scanout buffers.
3855 */
1ec9e26d 3856 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3857 if (ret)
cc98b413 3858 goto err_unpin_display;
2da3b9b9 3859
2c22569b 3860 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3861
2da3b9b9 3862 old_write_domain = obj->base.write_domain;
05394f39 3863 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3864
3865 /* It should now be out of any other write domains, and we can update
3866 * the domain values for our changes.
3867 */
e5f1d962 3868 obj->base.write_domain = 0;
05394f39 3869 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3870
3871 trace_i915_gem_object_change_domain(obj,
3872 old_read_domains,
2da3b9b9 3873 old_write_domain);
b9241ea3
ZW
3874
3875 return 0;
cc98b413
CW
3876
3877err_unpin_display:
19656430
OM
3878 WARN_ON(was_pin_display != is_pin_display(obj));
3879 obj->pin_display = was_pin_display;
cc98b413
CW
3880 return ret;
3881}
3882
3883void
3884i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3885{
d7f46fc4 3886 i915_gem_object_ggtt_unpin(obj);
cc98b413 3887 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3888}
3889
85345517 3890int
a8198eea 3891i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3892{
88241785
CW
3893 int ret;
3894
a8198eea 3895 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3896 return 0;
3897
0201f1ec 3898 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3899 if (ret)
3900 return ret;
3901
a8198eea
CW
3902 /* Ensure that we invalidate the GPU's caches and TLBs. */
3903 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3904 return 0;
85345517
CW
3905}
3906
e47c68e9
EA
3907/**
3908 * Moves a single object to the CPU read, and possibly write domain.
3909 *
3910 * This function returns when the move is complete, including waiting on
3911 * flushes to occur.
3912 */
dabdfe02 3913int
919926ae 3914i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3915{
1c5d22f7 3916 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3917 int ret;
3918
8d7e3de1
CW
3919 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3920 return 0;
3921
0201f1ec 3922 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3923 if (ret)
3924 return ret;
3925
c8725f3d 3926 i915_gem_object_retire(obj);
e47c68e9 3927 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3928
05394f39
CW
3929 old_write_domain = obj->base.write_domain;
3930 old_read_domains = obj->base.read_domains;
1c5d22f7 3931
e47c68e9 3932 /* Flush the CPU cache if it's still invalid. */
05394f39 3933 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3934 i915_gem_clflush_object(obj, false);
2ef7eeaa 3935
05394f39 3936 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3937 }
3938
3939 /* It should now be out of any other write domains, and we can update
3940 * the domain values for our changes.
3941 */
05394f39 3942 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3943
3944 /* If we're writing through the CPU, then the GPU read domains will
3945 * need to be invalidated at next use.
3946 */
3947 if (write) {
05394f39
CW
3948 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3949 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3950 }
2ef7eeaa 3951
1c5d22f7
CW
3952 trace_i915_gem_object_change_domain(obj,
3953 old_read_domains,
3954 old_write_domain);
3955
2ef7eeaa
EA
3956 return 0;
3957}
3958
673a394b
EA
3959/* Throttle our rendering by waiting until the ring has completed our requests
3960 * emitted over 20 msec ago.
3961 *
b962442e
EA
3962 * Note that if we were to use the current jiffies each time around the loop,
3963 * we wouldn't escape the function with any frames outstanding if the time to
3964 * render a frame was over 20ms.
3965 *
673a394b
EA
3966 * This should get us reasonable parallelism between CPU and GPU but also
3967 * relatively low latency when blocking on a particular request to finish.
3968 */
40a5f0de 3969static int
f787a5f5 3970i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3971{
f787a5f5
CW
3972 struct drm_i915_private *dev_priv = dev->dev_private;
3973 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3974 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5 3975 struct drm_i915_gem_request *request;
a4872ba6 3976 struct intel_engine_cs *ring = NULL;
f69061be 3977 unsigned reset_counter;
f787a5f5
CW
3978 u32 seqno = 0;
3979 int ret;
93533c29 3980
308887aa
DV
3981 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3982 if (ret)
3983 return ret;
3984
3985 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3986 if (ret)
3987 return ret;
e110e8d6 3988
1c25595f 3989 spin_lock(&file_priv->mm.lock);
f787a5f5 3990 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3991 if (time_after_eq(request->emitted_jiffies, recent_enough))
3992 break;
40a5f0de 3993
f787a5f5
CW
3994 ring = request->ring;
3995 seqno = request->seqno;
b962442e 3996 }
f69061be 3997 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3998 spin_unlock(&file_priv->mm.lock);
40a5f0de 3999
f787a5f5
CW
4000 if (seqno == 0)
4001 return 0;
2bc43b5c 4002
b29c19b6 4003 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
4004 if (ret == 0)
4005 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
4006
4007 return ret;
4008}
4009
d23db88c
CW
4010static bool
4011i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4012{
4013 struct drm_i915_gem_object *obj = vma->obj;
4014
4015 if (alignment &&
4016 vma->node.start & (alignment - 1))
4017 return true;
4018
4019 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4020 return true;
4021
4022 if (flags & PIN_OFFSET_BIAS &&
4023 vma->node.start < (flags & PIN_OFFSET_MASK))
4024 return true;
4025
4026 return false;
4027}
4028
673a394b 4029int
05394f39 4030i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 4031 struct i915_address_space *vm,
05394f39 4032 uint32_t alignment,
d23db88c 4033 uint64_t flags)
673a394b 4034{
6e7186af 4035 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4036 struct i915_vma *vma;
673a394b
EA
4037 int ret;
4038
6e7186af
BW
4039 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4040 return -ENODEV;
4041
bf3d149b 4042 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4043 return -EINVAL;
07fe0b12
BW
4044
4045 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 4046 if (vma) {
d7f46fc4
BW
4047 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4048 return -EBUSY;
4049
d23db88c 4050 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4051 WARN(vma->pin_count,
ae7d49d8 4052 "bo is already pinned with incorrect alignment:"
f343c5f6 4053 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4054 " obj->map_and_fenceable=%d\n",
07fe0b12 4055 i915_gem_obj_offset(obj, vm), alignment,
d23db88c 4056 !!(flags & PIN_MAPPABLE),
05394f39 4057 obj->map_and_fenceable);
07fe0b12 4058 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4059 if (ret)
4060 return ret;
8ea99c92
DV
4061
4062 vma = NULL;
ac0c6b5a
CW
4063 }
4064 }
4065
8ea99c92 4066 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
4067 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4068 if (IS_ERR(vma))
4069 return PTR_ERR(vma);
22c344e9 4070 }
76446cac 4071
8ea99c92
DV
4072 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4073 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 4074
8ea99c92 4075 vma->pin_count++;
1ec9e26d
DV
4076 if (flags & PIN_MAPPABLE)
4077 obj->pin_mappable |= true;
673a394b
EA
4078
4079 return 0;
4080}
4081
4082void
d7f46fc4 4083i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4084{
d7f46fc4 4085 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4086
d7f46fc4
BW
4087 BUG_ON(!vma);
4088 BUG_ON(vma->pin_count == 0);
4089 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4090
4091 if (--vma->pin_count == 0)
6299f992 4092 obj->pin_mappable = false;
673a394b
EA
4093}
4094
d8ffa60b
DV
4095bool
4096i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4097{
4098 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4099 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4100 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4101
4102 WARN_ON(!ggtt_vma ||
4103 dev_priv->fence_regs[obj->fence_reg].pin_count >
4104 ggtt_vma->pin_count);
4105 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4106 return true;
4107 } else
4108 return false;
4109}
4110
4111void
4112i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4113{
4114 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4115 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4116 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4117 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4118 }
4119}
4120
673a394b
EA
4121int
4122i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 4123 struct drm_file *file)
673a394b
EA
4124{
4125 struct drm_i915_gem_pin *args = data;
05394f39 4126 struct drm_i915_gem_object *obj;
673a394b
EA
4127 int ret;
4128
02f6bccc
DV
4129 if (INTEL_INFO(dev)->gen >= 6)
4130 return -ENODEV;
4131
1d7cfea1
CW
4132 ret = i915_mutex_lock_interruptible(dev);
4133 if (ret)
4134 return ret;
673a394b 4135
05394f39 4136 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4137 if (&obj->base == NULL) {
1d7cfea1
CW
4138 ret = -ENOENT;
4139 goto unlock;
673a394b 4140 }
673a394b 4141
05394f39 4142 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 4143 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 4144 ret = -EFAULT;
1d7cfea1 4145 goto out;
3ef94daa
CW
4146 }
4147
05394f39 4148 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 4149 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 4150 args->handle);
1d7cfea1
CW
4151 ret = -EINVAL;
4152 goto out;
79e53945
JB
4153 }
4154
aa5f8021
DV
4155 if (obj->user_pin_count == ULONG_MAX) {
4156 ret = -EBUSY;
4157 goto out;
4158 }
4159
93be8788 4160 if (obj->user_pin_count == 0) {
1ec9e26d 4161 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
4162 if (ret)
4163 goto out;
673a394b
EA
4164 }
4165
93be8788
CW
4166 obj->user_pin_count++;
4167 obj->pin_filp = file;
4168
f343c5f6 4169 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 4170out:
05394f39 4171 drm_gem_object_unreference(&obj->base);
1d7cfea1 4172unlock:
673a394b 4173 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4174 return ret;
673a394b
EA
4175}
4176
4177int
4178i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4179 struct drm_file *file)
673a394b
EA
4180{
4181 struct drm_i915_gem_pin *args = data;
05394f39 4182 struct drm_i915_gem_object *obj;
76c1dec1 4183 int ret;
673a394b 4184
1d7cfea1
CW
4185 ret = i915_mutex_lock_interruptible(dev);
4186 if (ret)
4187 return ret;
673a394b 4188
05394f39 4189 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4190 if (&obj->base == NULL) {
1d7cfea1
CW
4191 ret = -ENOENT;
4192 goto unlock;
673a394b 4193 }
76c1dec1 4194
05394f39 4195 if (obj->pin_filp != file) {
bd9b6a4e 4196 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 4197 args->handle);
1d7cfea1
CW
4198 ret = -EINVAL;
4199 goto out;
79e53945 4200 }
05394f39
CW
4201 obj->user_pin_count--;
4202 if (obj->user_pin_count == 0) {
4203 obj->pin_filp = NULL;
d7f46fc4 4204 i915_gem_object_ggtt_unpin(obj);
79e53945 4205 }
673a394b 4206
1d7cfea1 4207out:
05394f39 4208 drm_gem_object_unreference(&obj->base);
1d7cfea1 4209unlock:
673a394b 4210 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4211 return ret;
673a394b
EA
4212}
4213
4214int
4215i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4216 struct drm_file *file)
673a394b
EA
4217{
4218 struct drm_i915_gem_busy *args = data;
05394f39 4219 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4220 int ret;
4221
76c1dec1 4222 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4223 if (ret)
76c1dec1 4224 return ret;
673a394b 4225
05394f39 4226 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4227 if (&obj->base == NULL) {
1d7cfea1
CW
4228 ret = -ENOENT;
4229 goto unlock;
673a394b 4230 }
d1b851fc 4231
0be555b6
CW
4232 /* Count all active objects as busy, even if they are currently not used
4233 * by the gpu. Users of this interface expect objects to eventually
4234 * become non-busy without any further actions, therefore emit any
4235 * necessary flushes here.
c4de0a5d 4236 */
30dfebf3 4237 ret = i915_gem_object_flush_active(obj);
0be555b6 4238
30dfebf3 4239 args->busy = obj->active;
e9808edd
CW
4240 if (obj->ring) {
4241 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4242 args->busy |= intel_ring_flag(obj->ring) << 16;
4243 }
673a394b 4244
05394f39 4245 drm_gem_object_unreference(&obj->base);
1d7cfea1 4246unlock:
673a394b 4247 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4248 return ret;
673a394b
EA
4249}
4250
4251int
4252i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4253 struct drm_file *file_priv)
4254{
0206e353 4255 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4256}
4257
3ef94daa
CW
4258int
4259i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4260 struct drm_file *file_priv)
4261{
4262 struct drm_i915_gem_madvise *args = data;
05394f39 4263 struct drm_i915_gem_object *obj;
76c1dec1 4264 int ret;
3ef94daa
CW
4265
4266 switch (args->madv) {
4267 case I915_MADV_DONTNEED:
4268 case I915_MADV_WILLNEED:
4269 break;
4270 default:
4271 return -EINVAL;
4272 }
4273
1d7cfea1
CW
4274 ret = i915_mutex_lock_interruptible(dev);
4275 if (ret)
4276 return ret;
4277
05394f39 4278 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4279 if (&obj->base == NULL) {
1d7cfea1
CW
4280 ret = -ENOENT;
4281 goto unlock;
3ef94daa 4282 }
3ef94daa 4283
d7f46fc4 4284 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4285 ret = -EINVAL;
4286 goto out;
3ef94daa
CW
4287 }
4288
05394f39
CW
4289 if (obj->madv != __I915_MADV_PURGED)
4290 obj->madv = args->madv;
3ef94daa 4291
6c085a72
CW
4292 /* if the object is no longer attached, discard its backing storage */
4293 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4294 i915_gem_object_truncate(obj);
4295
05394f39 4296 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4297
1d7cfea1 4298out:
05394f39 4299 drm_gem_object_unreference(&obj->base);
1d7cfea1 4300unlock:
3ef94daa 4301 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4302 return ret;
3ef94daa
CW
4303}
4304
37e680a1
CW
4305void i915_gem_object_init(struct drm_i915_gem_object *obj,
4306 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4307{
35c20a60 4308 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4309 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4310 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4311 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4312
37e680a1
CW
4313 obj->ops = ops;
4314
0327d6ba
CW
4315 obj->fence_reg = I915_FENCE_REG_NONE;
4316 obj->madv = I915_MADV_WILLNEED;
4317 /* Avoid an unnecessary call to unbind on the first bind. */
4318 obj->map_and_fenceable = true;
4319
4320 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4321}
4322
37e680a1
CW
4323static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4324 .get_pages = i915_gem_object_get_pages_gtt,
4325 .put_pages = i915_gem_object_put_pages_gtt,
4326};
4327
05394f39
CW
4328struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4329 size_t size)
ac52bc56 4330{
c397b908 4331 struct drm_i915_gem_object *obj;
5949eac4 4332 struct address_space *mapping;
1a240d4d 4333 gfp_t mask;
ac52bc56 4334
42dcedd4 4335 obj = i915_gem_object_alloc(dev);
c397b908
DV
4336 if (obj == NULL)
4337 return NULL;
673a394b 4338
c397b908 4339 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4340 i915_gem_object_free(obj);
c397b908
DV
4341 return NULL;
4342 }
673a394b 4343
bed1ea95
CW
4344 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4345 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4346 /* 965gm cannot relocate objects above 4GiB. */
4347 mask &= ~__GFP_HIGHMEM;
4348 mask |= __GFP_DMA32;
4349 }
4350
496ad9aa 4351 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4352 mapping_set_gfp_mask(mapping, mask);
5949eac4 4353
37e680a1 4354 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4355
c397b908
DV
4356 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4357 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4358
3d29b842
ED
4359 if (HAS_LLC(dev)) {
4360 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4361 * cache) for about a 10% performance improvement
4362 * compared to uncached. Graphics requests other than
4363 * display scanout are coherent with the CPU in
4364 * accessing this cache. This means in this mode we
4365 * don't need to clflush on the CPU side, and on the
4366 * GPU side we only need to flush internal caches to
4367 * get data visible to the CPU.
4368 *
4369 * However, we maintain the display planes as UC, and so
4370 * need to rebind when first used as such.
4371 */
4372 obj->cache_level = I915_CACHE_LLC;
4373 } else
4374 obj->cache_level = I915_CACHE_NONE;
4375
d861e338
DV
4376 trace_i915_gem_object_create(obj);
4377
05394f39 4378 return obj;
c397b908
DV
4379}
4380
340fbd8c
CW
4381static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4382{
4383 /* If we are the last user of the backing storage (be it shmemfs
4384 * pages or stolen etc), we know that the pages are going to be
4385 * immediately released. In this case, we can then skip copying
4386 * back the contents from the GPU.
4387 */
4388
4389 if (obj->madv != I915_MADV_WILLNEED)
4390 return false;
4391
4392 if (obj->base.filp == NULL)
4393 return true;
4394
4395 /* At first glance, this looks racy, but then again so would be
4396 * userspace racing mmap against close. However, the first external
4397 * reference to the filp can only be obtained through the
4398 * i915_gem_mmap_ioctl() which safeguards us against the user
4399 * acquiring such a reference whilst we are in the middle of
4400 * freeing the object.
4401 */
4402 return atomic_long_read(&obj->base.filp->f_count) == 1;
4403}
4404
1488fc08 4405void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4406{
1488fc08 4407 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4408 struct drm_device *dev = obj->base.dev;
3e31c6c0 4409 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4410 struct i915_vma *vma, *next;
673a394b 4411
f65c9168
PZ
4412 intel_runtime_pm_get(dev_priv);
4413
26e12f89
CW
4414 trace_i915_gem_object_destroy(obj);
4415
07fe0b12 4416 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4417 int ret;
4418
4419 vma->pin_count = 0;
4420 ret = i915_vma_unbind(vma);
07fe0b12
BW
4421 if (WARN_ON(ret == -ERESTARTSYS)) {
4422 bool was_interruptible;
1488fc08 4423
07fe0b12
BW
4424 was_interruptible = dev_priv->mm.interruptible;
4425 dev_priv->mm.interruptible = false;
1488fc08 4426
07fe0b12 4427 WARN_ON(i915_vma_unbind(vma));
1488fc08 4428
07fe0b12
BW
4429 dev_priv->mm.interruptible = was_interruptible;
4430 }
1488fc08
CW
4431 }
4432
00731155
CW
4433 i915_gem_object_detach_phys(obj);
4434
1d64ae71
BW
4435 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4436 * before progressing. */
4437 if (obj->stolen)
4438 i915_gem_object_unpin_pages(obj);
4439
401c29f6
BW
4440 if (WARN_ON(obj->pages_pin_count))
4441 obj->pages_pin_count = 0;
340fbd8c 4442 if (discard_backing_storage(obj))
5537252b 4443 obj->madv = I915_MADV_DONTNEED;
37e680a1 4444 i915_gem_object_put_pages(obj);
d8cb5086 4445 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4446 i915_gem_object_release_stolen(obj);
de151cf6 4447
9da3da66
CW
4448 BUG_ON(obj->pages);
4449
2f745ad3
CW
4450 if (obj->base.import_attach)
4451 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4452
5cc9ed4b
CW
4453 if (obj->ops->release)
4454 obj->ops->release(obj);
4455
05394f39
CW
4456 drm_gem_object_release(&obj->base);
4457 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4458
05394f39 4459 kfree(obj->bit_17);
42dcedd4 4460 i915_gem_object_free(obj);
f65c9168
PZ
4461
4462 intel_runtime_pm_put(dev_priv);
673a394b
EA
4463}
4464
e656a6cb 4465struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4466 struct i915_address_space *vm)
e656a6cb
DV
4467{
4468 struct i915_vma *vma;
4469 list_for_each_entry(vma, &obj->vma_list, vma_link)
4470 if (vma->vm == vm)
4471 return vma;
4472
4473 return NULL;
4474}
4475
2f633156
BW
4476void i915_gem_vma_destroy(struct i915_vma *vma)
4477{
4478 WARN_ON(vma->node.allocated);
aaa05667
CW
4479
4480 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4481 if (!list_empty(&vma->exec_list))
4482 return;
4483
8b9c2b94 4484 list_del(&vma->vma_link);
b93dab6e 4485
2f633156
BW
4486 kfree(vma);
4487}
4488
e3efda49
CW
4489static void
4490i915_gem_stop_ringbuffers(struct drm_device *dev)
4491{
4492 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4493 struct intel_engine_cs *ring;
e3efda49
CW
4494 int i;
4495
4496 for_each_ring(ring, dev_priv, i)
4497 intel_stop_ring_buffer(ring);
4498}
4499
29105ccc 4500int
45c5f202 4501i915_gem_suspend(struct drm_device *dev)
29105ccc 4502{
3e31c6c0 4503 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4504 int ret = 0;
28dfe52a 4505
45c5f202 4506 mutex_lock(&dev->struct_mutex);
f7403347 4507 if (dev_priv->ums.mm_suspended)
45c5f202 4508 goto err;
28dfe52a 4509
b2da9fe5 4510 ret = i915_gpu_idle(dev);
f7403347 4511 if (ret)
45c5f202 4512 goto err;
f7403347 4513
b2da9fe5 4514 i915_gem_retire_requests(dev);
673a394b 4515
29105ccc 4516 /* Under UMS, be paranoid and evict. */
a39d7efc 4517 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4518 i915_gem_evict_everything(dev);
29105ccc 4519
29105ccc 4520 i915_kernel_lost_context(dev);
e3efda49 4521 i915_gem_stop_ringbuffers(dev);
29105ccc 4522
45c5f202
CW
4523 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4524 * We need to replace this with a semaphore, or something.
4525 * And not confound ums.mm_suspended!
4526 */
4527 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4528 DRIVER_MODESET);
4529 mutex_unlock(&dev->struct_mutex);
4530
4531 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4532 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4533 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4534
673a394b 4535 return 0;
45c5f202
CW
4536
4537err:
4538 mutex_unlock(&dev->struct_mutex);
4539 return ret;
673a394b
EA
4540}
4541
a4872ba6 4542int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4543{
c3787e2e 4544 struct drm_device *dev = ring->dev;
3e31c6c0 4545 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4546 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4547 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4548 int i, ret;
b9524a1e 4549
040d2baa 4550 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4551 return 0;
b9524a1e 4552
c3787e2e
BW
4553 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4554 if (ret)
4555 return ret;
b9524a1e 4556
c3787e2e
BW
4557 /*
4558 * Note: We do not worry about the concurrent register cacheline hang
4559 * here because no other code should access these registers other than
4560 * at initialization time.
4561 */
b9524a1e 4562 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4563 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4564 intel_ring_emit(ring, reg_base + i);
4565 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4566 }
4567
c3787e2e 4568 intel_ring_advance(ring);
b9524a1e 4569
c3787e2e 4570 return ret;
b9524a1e
BW
4571}
4572
f691e2f4
DV
4573void i915_gem_init_swizzling(struct drm_device *dev)
4574{
3e31c6c0 4575 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4576
11782b02 4577 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4578 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4579 return;
4580
4581 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4582 DISP_TILE_SURFACE_SWIZZLING);
4583
11782b02
DV
4584 if (IS_GEN5(dev))
4585 return;
4586
f691e2f4
DV
4587 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4588 if (IS_GEN6(dev))
6b26c86d 4589 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4590 else if (IS_GEN7(dev))
6b26c86d 4591 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4592 else if (IS_GEN8(dev))
4593 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4594 else
4595 BUG();
f691e2f4 4596}
e21af88d 4597
67b1b571
CW
4598static bool
4599intel_enable_blt(struct drm_device *dev)
4600{
4601 if (!HAS_BLT(dev))
4602 return false;
4603
4604 /* The blitter was dysfunctional on early prototypes */
4605 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4606 DRM_INFO("BLT not supported on this pre-production hardware;"
4607 " graphics performance will be degraded.\n");
4608 return false;
4609 }
4610
4611 return true;
4612}
4613
4fc7c971 4614static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4615{
4fc7c971 4616 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4617 int ret;
68f95ba9 4618
5c1143bb 4619 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4620 if (ret)
b6913e4b 4621 return ret;
68f95ba9
CW
4622
4623 if (HAS_BSD(dev)) {
5c1143bb 4624 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4625 if (ret)
4626 goto cleanup_render_ring;
d1b851fc 4627 }
68f95ba9 4628
67b1b571 4629 if (intel_enable_blt(dev)) {
549f7365
CW
4630 ret = intel_init_blt_ring_buffer(dev);
4631 if (ret)
4632 goto cleanup_bsd_ring;
4633 }
4634
9a8a2213
BW
4635 if (HAS_VEBOX(dev)) {
4636 ret = intel_init_vebox_ring_buffer(dev);
4637 if (ret)
4638 goto cleanup_blt_ring;
4639 }
4640
845f74a7
ZY
4641 if (HAS_BSD2(dev)) {
4642 ret = intel_init_bsd2_ring_buffer(dev);
4643 if (ret)
4644 goto cleanup_vebox_ring;
4645 }
9a8a2213 4646
99433931 4647 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4648 if (ret)
845f74a7 4649 goto cleanup_bsd2_ring;
4fc7c971
BW
4650
4651 return 0;
4652
845f74a7
ZY
4653cleanup_bsd2_ring:
4654 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4655cleanup_vebox_ring:
4656 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4657cleanup_blt_ring:
4658 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4659cleanup_bsd_ring:
4660 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4661cleanup_render_ring:
4662 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4663
4664 return ret;
4665}
4666
4667int
4668i915_gem_init_hw(struct drm_device *dev)
4669{
3e31c6c0 4670 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4671 int ret, i;
4fc7c971
BW
4672
4673 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4674 return -EIO;
4675
59124506 4676 if (dev_priv->ellc_size)
05e21cc4 4677 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4678
0bf21347
VS
4679 if (IS_HASWELL(dev))
4680 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4681 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4682
88a2b2a3 4683 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4684 if (IS_IVYBRIDGE(dev)) {
4685 u32 temp = I915_READ(GEN7_MSG_CTL);
4686 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4687 I915_WRITE(GEN7_MSG_CTL, temp);
4688 } else if (INTEL_INFO(dev)->gen >= 7) {
4689 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4690 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4691 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4692 }
88a2b2a3
BW
4693 }
4694
4fc7c971
BW
4695 i915_gem_init_swizzling(dev);
4696
4697 ret = i915_gem_init_rings(dev);
99433931
MK
4698 if (ret)
4699 return ret;
4700
c3787e2e
BW
4701 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4702 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4703
254f965c 4704 /*
2fa48d8d
BW
4705 * XXX: Contexts should only be initialized once. Doing a switch to the
4706 * default context switch however is something we'd like to do after
4707 * reset or thaw (the latter may not actually be necessary for HW, but
4708 * goes with our code better). Context switching requires rings (for
4709 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4710 */
2fa48d8d 4711 ret = i915_gem_context_enable(dev_priv);
60990320 4712 if (ret && ret != -EIO) {
2fa48d8d 4713 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4714 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4715 }
e21af88d 4716
2fa48d8d 4717 return ret;
8187a2b7
ZN
4718}
4719
1070a42b
CW
4720int i915_gem_init(struct drm_device *dev)
4721{
4722 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4723 int ret;
4724
1070a42b 4725 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4726
4727 if (IS_VALLEYVIEW(dev)) {
4728 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4729 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4730 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4731 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4732 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4733 }
4734
5cc9ed4b 4735 i915_gem_init_userptr(dev);
d7e5008f 4736 i915_gem_init_global_gtt(dev);
d62b4892 4737
2fa48d8d 4738 ret = i915_gem_context_init(dev);
e3848694
MK
4739 if (ret) {
4740 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4741 return ret;
e3848694 4742 }
2fa48d8d 4743
1070a42b 4744 ret = i915_gem_init_hw(dev);
60990320
CW
4745 if (ret == -EIO) {
4746 /* Allow ring initialisation to fail by marking the GPU as
4747 * wedged. But we only want to do this where the GPU is angry,
4748 * for all other failure, such as an allocation failure, bail.
4749 */
4750 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4751 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4752 ret = 0;
1070a42b 4753 }
60990320 4754 mutex_unlock(&dev->struct_mutex);
1070a42b 4755
53ca26ca
DV
4756 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4757 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4758 dev_priv->dri1.allow_batchbuffer = 1;
60990320 4759 return ret;
1070a42b
CW
4760}
4761
8187a2b7
ZN
4762void
4763i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4764{
3e31c6c0 4765 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4766 struct intel_engine_cs *ring;
1ec14ad3 4767 int i;
8187a2b7 4768
b4519513
CW
4769 for_each_ring(ring, dev_priv, i)
4770 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4771}
4772
673a394b
EA
4773int
4774i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4775 struct drm_file *file_priv)
4776{
db1b76ca 4777 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4778 int ret;
673a394b 4779
79e53945
JB
4780 if (drm_core_check_feature(dev, DRIVER_MODESET))
4781 return 0;
4782
1f83fee0 4783 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4784 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4785 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4786 }
4787
673a394b 4788 mutex_lock(&dev->struct_mutex);
db1b76ca 4789 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4790
f691e2f4 4791 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4792 if (ret != 0) {
4793 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4794 return ret;
d816f6ac 4795 }
9bb2d6f9 4796
5cef07e1 4797 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
dbb19d30 4798
bb0f1b5c 4799 ret = drm_irq_install(dev, dev->pdev->irq);
5f35308b
CW
4800 if (ret)
4801 goto cleanup_ringbuffer;
e090c53b 4802 mutex_unlock(&dev->struct_mutex);
dbb19d30 4803
673a394b 4804 return 0;
5f35308b
CW
4805
4806cleanup_ringbuffer:
5f35308b 4807 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4808 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4809 mutex_unlock(&dev->struct_mutex);
4810
4811 return ret;
673a394b
EA
4812}
4813
4814int
4815i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4816 struct drm_file *file_priv)
4817{
79e53945
JB
4818 if (drm_core_check_feature(dev, DRIVER_MODESET))
4819 return 0;
4820
e090c53b 4821 mutex_lock(&dev->struct_mutex);
dbb19d30 4822 drm_irq_uninstall(dev);
e090c53b 4823 mutex_unlock(&dev->struct_mutex);
db1b76ca 4824
45c5f202 4825 return i915_gem_suspend(dev);
673a394b
EA
4826}
4827
4828void
4829i915_gem_lastclose(struct drm_device *dev)
4830{
4831 int ret;
673a394b 4832
e806b495
EA
4833 if (drm_core_check_feature(dev, DRIVER_MODESET))
4834 return;
4835
45c5f202 4836 ret = i915_gem_suspend(dev);
6dbe2772
KP
4837 if (ret)
4838 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4839}
4840
64193406 4841static void
a4872ba6 4842init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4843{
4844 INIT_LIST_HEAD(&ring->active_list);
4845 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4846}
4847
7e0d96bc
BW
4848void i915_init_vm(struct drm_i915_private *dev_priv,
4849 struct i915_address_space *vm)
fc8c067e 4850{
7e0d96bc
BW
4851 if (!i915_is_ggtt(vm))
4852 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4853 vm->dev = dev_priv->dev;
4854 INIT_LIST_HEAD(&vm->active_list);
4855 INIT_LIST_HEAD(&vm->inactive_list);
4856 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4857 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4858}
4859
673a394b
EA
4860void
4861i915_gem_load(struct drm_device *dev)
4862{
3e31c6c0 4863 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4864 int i;
4865
4866 dev_priv->slab =
4867 kmem_cache_create("i915_gem_object",
4868 sizeof(struct drm_i915_gem_object), 0,
4869 SLAB_HWCACHE_ALIGN,
4870 NULL);
673a394b 4871
fc8c067e
BW
4872 INIT_LIST_HEAD(&dev_priv->vm_list);
4873 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4874
a33afea5 4875 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4876 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4877 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4878 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4879 for (i = 0; i < I915_NUM_RINGS; i++)
4880 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4881 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4882 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4883 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4884 i915_gem_retire_work_handler);
b29c19b6
CW
4885 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4886 i915_gem_idle_work_handler);
1f83fee0 4887 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4888
94400120 4889 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4890 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4891 I915_WRITE(MI_ARB_STATE,
4892 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4893 }
4894
72bfa19c
CW
4895 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4896
de151cf6 4897 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4898 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4899 dev_priv->fence_reg_start = 3;
de151cf6 4900
42b5aeab
VS
4901 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4902 dev_priv->num_fence_regs = 32;
4903 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4904 dev_priv->num_fence_regs = 16;
4905 else
4906 dev_priv->num_fence_regs = 8;
4907
b5aa8a0f 4908 /* Initialize fence registers to zero */
19b2dbde
CW
4909 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4910 i915_gem_restore_fences(dev);
10ed13e4 4911
673a394b 4912 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4913 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4914
ce453d81
CW
4915 dev_priv->mm.interruptible = true;
4916
ceabbba5
CW
4917 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4918 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4919 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4920 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
4921
4922 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4923 register_oom_notifier(&dev_priv->mm.oom_notifier);
673a394b 4924}
71acb5eb 4925
f787a5f5 4926void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4927{
f787a5f5 4928 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4929
b29c19b6
CW
4930 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4931
b962442e
EA
4932 /* Clean up our request list when the client is going away, so that
4933 * later retire_requests won't dereference our soon-to-be-gone
4934 * file_priv.
4935 */
1c25595f 4936 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4937 while (!list_empty(&file_priv->mm.request_list)) {
4938 struct drm_i915_gem_request *request;
4939
4940 request = list_first_entry(&file_priv->mm.request_list,
4941 struct drm_i915_gem_request,
4942 client_list);
4943 list_del(&request->client_list);
4944 request->file_priv = NULL;
4945 }
1c25595f 4946 spin_unlock(&file_priv->mm.lock);
b962442e 4947}
31169714 4948
b29c19b6
CW
4949static void
4950i915_gem_file_idle_work_handler(struct work_struct *work)
4951{
4952 struct drm_i915_file_private *file_priv =
4953 container_of(work, typeof(*file_priv), mm.idle_work.work);
4954
4955 atomic_set(&file_priv->rps_wait_boost, false);
4956}
4957
4958int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4959{
4960 struct drm_i915_file_private *file_priv;
e422b888 4961 int ret;
b29c19b6
CW
4962
4963 DRM_DEBUG_DRIVER("\n");
4964
4965 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4966 if (!file_priv)
4967 return -ENOMEM;
4968
4969 file->driver_priv = file_priv;
4970 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 4971 file_priv->file = file;
b29c19b6
CW
4972
4973 spin_lock_init(&file_priv->mm.lock);
4974 INIT_LIST_HEAD(&file_priv->mm.request_list);
4975 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4976 i915_gem_file_idle_work_handler);
4977
e422b888
BW
4978 ret = i915_gem_context_open(dev, file);
4979 if (ret)
4980 kfree(file_priv);
b29c19b6 4981
e422b888 4982 return ret;
b29c19b6
CW
4983}
4984
5774506f
CW
4985static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4986{
4987 if (!mutex_is_locked(mutex))
4988 return false;
4989
4990#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4991 return mutex->owner == task;
4992#else
4993 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4994 return false;
4995#endif
4996}
4997
b453c4db
CW
4998static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
4999{
5000 if (!mutex_trylock(&dev->struct_mutex)) {
5001 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5002 return false;
5003
5004 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5005 return false;
5006
5007 *unlock = false;
5008 } else
5009 *unlock = true;
5010
5011 return true;
5012}
5013
ceabbba5
CW
5014static int num_vma_bound(struct drm_i915_gem_object *obj)
5015{
5016 struct i915_vma *vma;
5017 int count = 0;
5018
5019 list_for_each_entry(vma, &obj->vma_list, vma_link)
5020 if (drm_mm_node_allocated(&vma->node))
5021 count++;
5022
5023 return count;
5024}
5025
7dc19d5a 5026static unsigned long
ceabbba5 5027i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5028{
17250b71 5029 struct drm_i915_private *dev_priv =
ceabbba5 5030 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5031 struct drm_device *dev = dev_priv->dev;
6c085a72 5032 struct drm_i915_gem_object *obj;
7dc19d5a 5033 unsigned long count;
b453c4db 5034 bool unlock;
17250b71 5035
b453c4db
CW
5036 if (!i915_gem_shrinker_lock(dev, &unlock))
5037 return 0;
31169714 5038
7dc19d5a 5039 count = 0;
35c20a60 5040 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5041 if (obj->pages_pin_count == 0)
7dc19d5a 5042 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5043
5044 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5045 if (!i915_gem_obj_is_pinned(obj) &&
5046 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5047 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5048 }
17250b71 5049
5774506f
CW
5050 if (unlock)
5051 mutex_unlock(&dev->struct_mutex);
d9973b43 5052
7dc19d5a 5053 return count;
31169714 5054}
a70a3148
BW
5055
5056/* All the new VM stuff */
5057unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5058 struct i915_address_space *vm)
5059{
5060 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5061 struct i915_vma *vma;
5062
6f425321
BW
5063 if (!dev_priv->mm.aliasing_ppgtt ||
5064 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5065 vm = &dev_priv->gtt.base;
5066
5067 BUG_ON(list_empty(&o->vma_list));
5068 list_for_each_entry(vma, &o->vma_list, vma_link) {
5069 if (vma->vm == vm)
5070 return vma->node.start;
5071
5072 }
5073 return -1;
5074}
5075
5076bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5077 struct i915_address_space *vm)
5078{
5079 struct i915_vma *vma;
5080
5081 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5082 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5083 return true;
5084
5085 return false;
5086}
5087
5088bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5089{
5a1d5eb0 5090 struct i915_vma *vma;
a70a3148 5091
5a1d5eb0
CW
5092 list_for_each_entry(vma, &o->vma_list, vma_link)
5093 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5094 return true;
5095
5096 return false;
5097}
5098
5099unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5100 struct i915_address_space *vm)
5101{
5102 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5103 struct i915_vma *vma;
5104
6f425321
BW
5105 if (!dev_priv->mm.aliasing_ppgtt ||
5106 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5107 vm = &dev_priv->gtt.base;
5108
5109 BUG_ON(list_empty(&o->vma_list));
5110
5111 list_for_each_entry(vma, &o->vma_list, vma_link)
5112 if (vma->vm == vm)
5113 return vma->node.size;
5114
5115 return 0;
5116}
5117
7dc19d5a 5118static unsigned long
ceabbba5 5119i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5120{
5121 struct drm_i915_private *dev_priv =
ceabbba5 5122 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5123 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5124 unsigned long freed;
b453c4db 5125 bool unlock;
7dc19d5a 5126
b453c4db
CW
5127 if (!i915_gem_shrinker_lock(dev, &unlock))
5128 return SHRINK_STOP;
7dc19d5a 5129
d9973b43
CW
5130 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5131 if (freed < sc->nr_to_scan)
5132 freed += __i915_gem_shrink(dev_priv,
5133 sc->nr_to_scan - freed,
5134 false);
7dc19d5a
DC
5135 if (unlock)
5136 mutex_unlock(&dev->struct_mutex);
d9973b43 5137
7dc19d5a
DC
5138 return freed;
5139}
5c2abbea 5140
2cfcd32a
CW
5141static int
5142i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5143{
5144 struct drm_i915_private *dev_priv =
5145 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5146 struct drm_device *dev = dev_priv->dev;
5147 struct drm_i915_gem_object *obj;
5148 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5149 unsigned long pinned, bound, unbound, freed;
5150 bool was_interruptible;
5151 bool unlock;
5152
5153 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout)
5154 schedule_timeout_killable(1);
5155 if (timeout == 0) {
5156 pr_err("Unable to purge GPU memory due lock contention.\n");
5157 return NOTIFY_DONE;
5158 }
5159
5160 was_interruptible = dev_priv->mm.interruptible;
5161 dev_priv->mm.interruptible = false;
5162
5163 freed = i915_gem_shrink_all(dev_priv);
5164
5165 dev_priv->mm.interruptible = was_interruptible;
5166
5167 /* Because we may be allocating inside our own driver, we cannot
5168 * assert that there are no objects with pinned pages that are not
5169 * being pointed to by hardware.
5170 */
5171 unbound = bound = pinned = 0;
5172 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5173 if (!obj->base.filp) /* not backed by a freeable object */
5174 continue;
5175
5176 if (obj->pages_pin_count)
5177 pinned += obj->base.size;
5178 else
5179 unbound += obj->base.size;
5180 }
5181 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5182 if (!obj->base.filp)
5183 continue;
5184
5185 if (obj->pages_pin_count)
5186 pinned += obj->base.size;
5187 else
5188 bound += obj->base.size;
5189 }
5190
5191 if (unlock)
5192 mutex_unlock(&dev->struct_mutex);
5193
5194 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5195 freed, pinned);
5196 if (unbound || bound)
5197 pr_err("%lu and %lu bytes still available in the "
5198 "bound and unbound GPU page lists.\n",
5199 bound, unbound);
5200
5201 *(unsigned long *)ptr += freed;
5202 return NOTIFY_DONE;
5203}
5204
5c2abbea
BW
5205struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5206{
5207 struct i915_vma *vma;
5208
19656430
OM
5209 /* This WARN has probably outlived its usefulness (callers already
5210 * WARN if they don't find the GGTT vma they expect). When removing,
5211 * remember to remove the pre-check in is_pin_display() as well */
5c2abbea
BW
5212 if (WARN_ON(list_empty(&obj->vma_list)))
5213 return NULL;
5214
5215 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5216 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5217 return NULL;
5218
5219 return vma;
5220}