]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: clear the entire gtt when using gem
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
43 bool write);
44static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
05394f39 47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
88241785
CW
48static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
49 unsigned alignment,
50 bool map_and_fenceable);
d9e86c0e
CW
51static void i915_gem_clear_fence_reg(struct drm_device *dev,
52 struct drm_i915_fence_reg *reg);
05394f39
CW
53static int i915_gem_phys_pwrite(struct drm_device *dev,
54 struct drm_i915_gem_object *obj,
71acb5eb 55 struct drm_i915_gem_pwrite *args,
05394f39
CW
56 struct drm_file *file);
57static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 58
17250b71 59static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 60 struct shrink_control *sc);
8c59967c 61static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69}
70
71static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73{
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
76}
77
21dd3734
CW
78static int
79i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
80{
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
85
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
88
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
92
21dd3734
CW
93 if (atomic_read(&dev_priv->mm.wedged)) {
94 /* GPU is hung, bump the completion count to account for
95 * the token we just consumed so that we never hit zero and
96 * end up waiting upon a subsequent completion event that
97 * will never happen.
98 */
99 spin_lock_irqsave(&x->wait.lock, flags);
100 x->done++;
101 spin_unlock_irqrestore(&x->wait.lock, flags);
102 }
103 return 0;
30dbf0c0
CW
104}
105
54cf91dc 106int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 107{
76c1dec1
CW
108 int ret;
109
21dd3734 110 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
111 if (ret)
112 return ret;
113
114 ret = mutex_lock_interruptible(&dev->struct_mutex);
115 if (ret)
116 return ret;
117
23bc5982 118 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
119 return 0;
120}
30dbf0c0 121
7d1c4804 122static inline bool
05394f39 123i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 124{
05394f39 125 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
126}
127
79e53945
JB
128int
129i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 130 struct drm_file *file)
79e53945
JB
131{
132 struct drm_i915_gem_init *args = data;
2021746e
CW
133
134 if (args->gtt_start >= args->gtt_end ||
135 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
136 return -EINVAL;
79e53945
JB
137
138 mutex_lock(&dev->struct_mutex);
644ec02b
DV
139 i915_gem_init_global_gtt(dev, args->gtt_start,
140 args->gtt_end, args->gtt_end);
673a394b
EA
141 mutex_unlock(&dev->struct_mutex);
142
2021746e 143 return 0;
673a394b
EA
144}
145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
73aa808f 150 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 151 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
5a125c3c
EA
154
155 if (!(dev->driver->driver_features & DRIVER_GEM))
156 return -ENODEV;
157
6299f992 158 pinned = 0;
73aa808f 159 mutex_lock(&dev->struct_mutex);
6299f992
CW
160 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
161 pinned += obj->gtt_space->size;
73aa808f 162 mutex_unlock(&dev->struct_mutex);
5a125c3c 163
6299f992 164 args->aper_size = dev_priv->mm.gtt_total;
0206e353 165 args->aper_available_size = args->aper_size - pinned;
6299f992 166
5a125c3c
EA
167 return 0;
168}
169
ff72145b
DA
170static int
171i915_gem_create(struct drm_file *file,
172 struct drm_device *dev,
173 uint64_t size,
174 uint32_t *handle_p)
673a394b 175{
05394f39 176 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
177 int ret;
178 u32 handle;
673a394b 179
ff72145b 180 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
181 if (size == 0)
182 return -EINVAL;
673a394b
EA
183
184 /* Allocate the new object */
ff72145b 185 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
186 if (obj == NULL)
187 return -ENOMEM;
188
05394f39 189 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 190 if (ret) {
05394f39
CW
191 drm_gem_object_release(&obj->base);
192 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 193 kfree(obj);
673a394b 194 return ret;
1dfd9754 195 }
673a394b 196
202f2fef 197 /* drop reference from allocate - handle holds it now */
05394f39 198 drm_gem_object_unreference(&obj->base);
202f2fef
CW
199 trace_i915_gem_object_create(obj);
200
ff72145b 201 *handle_p = handle;
673a394b
EA
202 return 0;
203}
204
ff72145b
DA
205int
206i915_gem_dumb_create(struct drm_file *file,
207 struct drm_device *dev,
208 struct drm_mode_create_dumb *args)
209{
210 /* have to work out size/pitch and return them */
ed0291fd 211 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
212 args->size = args->pitch * args->height;
213 return i915_gem_create(file, dev,
214 args->size, &args->handle);
215}
216
217int i915_gem_dumb_destroy(struct drm_file *file,
218 struct drm_device *dev,
219 uint32_t handle)
220{
221 return drm_gem_handle_delete(file, handle);
222}
223
224/**
225 * Creates a new mm object and returns a handle to it.
226 */
227int
228i915_gem_create_ioctl(struct drm_device *dev, void *data,
229 struct drm_file *file)
230{
231 struct drm_i915_gem_create *args = data;
232 return i915_gem_create(file, dev,
233 args->size, &args->handle);
234}
235
05394f39 236static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 237{
05394f39 238 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
239
240 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 241 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
242}
243
eb01459f
EA
244/**
245 * This is the fast shmem pread path, which attempts to copy_from_user directly
246 * from the backing pages of the object to the user's address space. On a
247 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
248 */
249static int
05394f39
CW
250i915_gem_shmem_pread_fast(struct drm_device *dev,
251 struct drm_i915_gem_object *obj,
eb01459f 252 struct drm_i915_gem_pread *args,
05394f39 253 struct drm_file *file)
eb01459f 254{
05394f39 255 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 256 ssize_t remain;
e5281ccd 257 loff_t offset;
eb01459f
EA
258 char __user *user_data;
259 int page_offset, page_length;
eb01459f
EA
260
261 user_data = (char __user *) (uintptr_t) args->data_ptr;
262 remain = args->size;
263
eb01459f
EA
264 offset = args->offset;
265
266 while (remain > 0) {
e5281ccd
CW
267 struct page *page;
268 char *vaddr;
269 int ret;
270
eb01459f
EA
271 /* Operation in this page
272 *
eb01459f
EA
273 * page_offset = offset within page
274 * page_length = bytes to copy for this page
275 */
c8cbbb8b 276 page_offset = offset_in_page(offset);
eb01459f
EA
277 page_length = remain;
278 if ((page_offset + remain) > PAGE_SIZE)
279 page_length = PAGE_SIZE - page_offset;
280
5949eac4 281 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
282 if (IS_ERR(page))
283 return PTR_ERR(page);
284
285 vaddr = kmap_atomic(page);
286 ret = __copy_to_user_inatomic(user_data,
287 vaddr + page_offset,
288 page_length);
289 kunmap_atomic(vaddr);
290
291 mark_page_accessed(page);
292 page_cache_release(page);
293 if (ret)
4f27b75d 294 return -EFAULT;
eb01459f
EA
295
296 remain -= page_length;
297 user_data += page_length;
298 offset += page_length;
299 }
300
4f27b75d 301 return 0;
eb01459f
EA
302}
303
8461d226
DV
304static inline int
305__copy_to_user_swizzled(char __user *cpu_vaddr,
306 const char *gpu_vaddr, int gpu_offset,
307 int length)
308{
309 int ret, cpu_offset = 0;
310
311 while (length > 0) {
312 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313 int this_length = min(cacheline_end - gpu_offset, length);
314 int swizzled_gpu_offset = gpu_offset ^ 64;
315
316 ret = __copy_to_user(cpu_vaddr + cpu_offset,
317 gpu_vaddr + swizzled_gpu_offset,
318 this_length);
319 if (ret)
320 return ret + length;
321
322 cpu_offset += this_length;
323 gpu_offset += this_length;
324 length -= this_length;
325 }
326
327 return 0;
328}
329
8c59967c
DV
330static inline int
331__copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
332 const char *cpu_vaddr,
333 int length)
334{
335 int ret, cpu_offset = 0;
336
337 while (length > 0) {
338 int cacheline_end = ALIGN(gpu_offset + 1, 64);
339 int this_length = min(cacheline_end - gpu_offset, length);
340 int swizzled_gpu_offset = gpu_offset ^ 64;
341
342 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
343 cpu_vaddr + cpu_offset,
344 this_length);
345 if (ret)
346 return ret + length;
347
348 cpu_offset += this_length;
349 gpu_offset += this_length;
350 length -= this_length;
351 }
352
353 return 0;
354}
355
eb01459f
EA
356/**
357 * This is the fallback shmem pread path, which allocates temporary storage
358 * in kernel space to copy_to_user into outside of the struct_mutex, so we
359 * can copy out of the object's backing pages while holding the struct mutex
360 * and not take page faults.
361 */
362static int
05394f39
CW
363i915_gem_shmem_pread_slow(struct drm_device *dev,
364 struct drm_i915_gem_object *obj,
eb01459f 365 struct drm_i915_gem_pread *args,
05394f39 366 struct drm_file *file)
eb01459f 367{
05394f39 368 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 369 char __user *user_data;
eb01459f 370 ssize_t remain;
8461d226 371 loff_t offset;
eb2c0c81 372 int shmem_page_offset, page_length, ret = 0;
8461d226 373 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
eb01459f 374
8461d226 375 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
376 remain = args->size;
377
8461d226 378 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 379
8461d226 380 offset = args->offset;
eb01459f 381
4f27b75d 382 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
383
384 while (remain > 0) {
e5281ccd 385 struct page *page;
8461d226 386 char *vaddr;
e5281ccd 387
eb01459f
EA
388 /* Operation in this page
389 *
eb01459f 390 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
391 * page_length = bytes to copy for this page
392 */
c8cbbb8b 393 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
394 page_length = remain;
395 if ((shmem_page_offset + page_length) > PAGE_SIZE)
396 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 397
5949eac4 398 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
b65552f0
JJ
399 if (IS_ERR(page)) {
400 ret = PTR_ERR(page);
401 goto out;
402 }
e5281ccd 403
8461d226
DV
404 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
405 (page_to_phys(page) & (1 << 17)) != 0;
406
407 vaddr = kmap(page);
408 if (page_do_bit17_swizzling)
409 ret = __copy_to_user_swizzled(user_data,
410 vaddr, shmem_page_offset,
411 page_length);
412 else
413 ret = __copy_to_user(user_data,
414 vaddr + shmem_page_offset,
415 page_length);
416 kunmap(page);
eb01459f 417
e5281ccd
CW
418 mark_page_accessed(page);
419 page_cache_release(page);
420
8461d226
DV
421 if (ret) {
422 ret = -EFAULT;
423 goto out;
424 }
425
eb01459f 426 remain -= page_length;
8461d226 427 user_data += page_length;
eb01459f
EA
428 offset += page_length;
429 }
430
4f27b75d 431out:
8461d226
DV
432 mutex_lock(&dev->struct_mutex);
433 /* Fixup: Kill any reinstated backing storage pages */
434 if (obj->madv == __I915_MADV_PURGED)
435 i915_gem_object_truncate(obj);
eb01459f
EA
436
437 return ret;
438}
439
673a394b
EA
440/**
441 * Reads data from the object referenced by handle.
442 *
443 * On error, the contents of *data are undefined.
444 */
445int
446i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 447 struct drm_file *file)
673a394b
EA
448{
449 struct drm_i915_gem_pread *args = data;
05394f39 450 struct drm_i915_gem_object *obj;
35b62a89 451 int ret = 0;
673a394b 452
51311d0a
CW
453 if (args->size == 0)
454 return 0;
455
456 if (!access_ok(VERIFY_WRITE,
457 (char __user *)(uintptr_t)args->data_ptr,
458 args->size))
459 return -EFAULT;
460
461 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
462 args->size);
463 if (ret)
464 return -EFAULT;
465
4f27b75d 466 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 467 if (ret)
4f27b75d 468 return ret;
673a394b 469
05394f39 470 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 471 if (&obj->base == NULL) {
1d7cfea1
CW
472 ret = -ENOENT;
473 goto unlock;
4f27b75d 474 }
673a394b 475
7dcd2499 476 /* Bounds check source. */
05394f39
CW
477 if (args->offset > obj->base.size ||
478 args->size > obj->base.size - args->offset) {
ce9d419d 479 ret = -EINVAL;
35b62a89 480 goto out;
ce9d419d
CW
481 }
482
db53a302
CW
483 trace_i915_gem_object_pread(obj, args->offset, args->size);
484
4f27b75d
CW
485 ret = i915_gem_object_set_cpu_read_domain_range(obj,
486 args->offset,
487 args->size);
488 if (ret)
e5281ccd 489 goto out;
4f27b75d
CW
490
491 ret = -EFAULT;
492 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 493 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 494 if (ret == -EFAULT)
05394f39 495 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 496
35b62a89 497out:
05394f39 498 drm_gem_object_unreference(&obj->base);
1d7cfea1 499unlock:
4f27b75d 500 mutex_unlock(&dev->struct_mutex);
eb01459f 501 return ret;
673a394b
EA
502}
503
0839ccb8
KP
504/* This is the fast write path which cannot handle
505 * page faults in the source data
9b7530cc 506 */
0839ccb8
KP
507
508static inline int
509fast_user_write(struct io_mapping *mapping,
510 loff_t page_base, int page_offset,
511 char __user *user_data,
512 int length)
9b7530cc 513{
9b7530cc 514 char *vaddr_atomic;
0839ccb8 515 unsigned long unwritten;
9b7530cc 516
3e4d3af5 517 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
518 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
519 user_data, length);
3e4d3af5 520 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 521 return unwritten;
0839ccb8
KP
522}
523
524/* Here's the write path which can sleep for
525 * page faults
526 */
527
ab34c226 528static inline void
3de09aa3
EA
529slow_kernel_write(struct io_mapping *mapping,
530 loff_t gtt_base, int gtt_offset,
531 struct page *user_page, int user_offset,
532 int length)
0839ccb8 533{
ab34c226
CW
534 char __iomem *dst_vaddr;
535 char *src_vaddr;
0839ccb8 536
ab34c226
CW
537 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
538 src_vaddr = kmap(user_page);
539
540 memcpy_toio(dst_vaddr + gtt_offset,
541 src_vaddr + user_offset,
542 length);
543
544 kunmap(user_page);
545 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
546}
547
3de09aa3
EA
548/**
549 * This is the fast pwrite path, where we copy the data directly from the
550 * user into the GTT, uncached.
551 */
673a394b 552static int
05394f39
CW
553i915_gem_gtt_pwrite_fast(struct drm_device *dev,
554 struct drm_i915_gem_object *obj,
3de09aa3 555 struct drm_i915_gem_pwrite *args,
05394f39 556 struct drm_file *file)
673a394b 557{
0839ccb8 558 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 559 ssize_t remain;
0839ccb8 560 loff_t offset, page_base;
673a394b 561 char __user *user_data;
0839ccb8 562 int page_offset, page_length;
673a394b
EA
563
564 user_data = (char __user *) (uintptr_t) args->data_ptr;
565 remain = args->size;
673a394b 566
05394f39 567 offset = obj->gtt_offset + args->offset;
673a394b
EA
568
569 while (remain > 0) {
570 /* Operation in this page
571 *
0839ccb8
KP
572 * page_base = page offset within aperture
573 * page_offset = offset within page
574 * page_length = bytes to copy for this page
673a394b 575 */
c8cbbb8b
CW
576 page_base = offset & PAGE_MASK;
577 page_offset = offset_in_page(offset);
0839ccb8
KP
578 page_length = remain;
579 if ((page_offset + remain) > PAGE_SIZE)
580 page_length = PAGE_SIZE - page_offset;
581
0839ccb8 582 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
583 * source page isn't available. Return the error and we'll
584 * retry in the slow path.
0839ccb8 585 */
fbd5a26d
CW
586 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
587 page_offset, user_data, page_length))
fbd5a26d 588 return -EFAULT;
673a394b 589
0839ccb8
KP
590 remain -= page_length;
591 user_data += page_length;
592 offset += page_length;
673a394b 593 }
673a394b 594
fbd5a26d 595 return 0;
673a394b
EA
596}
597
3de09aa3
EA
598/**
599 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
600 * the memory and maps it using kmap_atomic for copying.
601 *
602 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
603 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
604 */
3043c60c 605static int
05394f39
CW
606i915_gem_gtt_pwrite_slow(struct drm_device *dev,
607 struct drm_i915_gem_object *obj,
3de09aa3 608 struct drm_i915_gem_pwrite *args,
05394f39 609 struct drm_file *file)
673a394b 610{
3de09aa3
EA
611 drm_i915_private_t *dev_priv = dev->dev_private;
612 ssize_t remain;
613 loff_t gtt_page_base, offset;
614 loff_t first_data_page, last_data_page, num_pages;
615 loff_t pinned_pages, i;
616 struct page **user_pages;
617 struct mm_struct *mm = current->mm;
618 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 619 int ret;
3de09aa3
EA
620 uint64_t data_ptr = args->data_ptr;
621
622 remain = args->size;
623
624 /* Pin the user pages containing the data. We can't fault while
625 * holding the struct mutex, and all of the pwrite implementations
626 * want to hold it while dereferencing the user data.
627 */
628 first_data_page = data_ptr / PAGE_SIZE;
629 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
630 num_pages = last_data_page - first_data_page + 1;
631
fbd5a26d 632 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
633 if (user_pages == NULL)
634 return -ENOMEM;
635
fbd5a26d 636 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
637 down_read(&mm->mmap_sem);
638 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
639 num_pages, 0, 0, user_pages, NULL);
640 up_read(&mm->mmap_sem);
fbd5a26d 641 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
642 if (pinned_pages < num_pages) {
643 ret = -EFAULT;
644 goto out_unpin_pages;
645 }
673a394b 646
d9e86c0e
CW
647 ret = i915_gem_object_set_to_gtt_domain(obj, true);
648 if (ret)
649 goto out_unpin_pages;
650
651 ret = i915_gem_object_put_fence(obj);
3de09aa3 652 if (ret)
fbd5a26d 653 goto out_unpin_pages;
3de09aa3 654
05394f39 655 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
656
657 while (remain > 0) {
658 /* Operation in this page
659 *
660 * gtt_page_base = page offset within aperture
661 * gtt_page_offset = offset within page in aperture
662 * data_page_index = page number in get_user_pages return
663 * data_page_offset = offset with data_page_index page.
664 * page_length = bytes to copy for this page
665 */
666 gtt_page_base = offset & PAGE_MASK;
c8cbbb8b 667 gtt_page_offset = offset_in_page(offset);
3de09aa3 668 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 669 data_page_offset = offset_in_page(data_ptr);
3de09aa3
EA
670
671 page_length = remain;
672 if ((gtt_page_offset + page_length) > PAGE_SIZE)
673 page_length = PAGE_SIZE - gtt_page_offset;
674 if ((data_page_offset + page_length) > PAGE_SIZE)
675 page_length = PAGE_SIZE - data_page_offset;
676
ab34c226
CW
677 slow_kernel_write(dev_priv->mm.gtt_mapping,
678 gtt_page_base, gtt_page_offset,
679 user_pages[data_page_index],
680 data_page_offset,
681 page_length);
3de09aa3
EA
682
683 remain -= page_length;
684 offset += page_length;
685 data_ptr += page_length;
686 }
687
3de09aa3
EA
688out_unpin_pages:
689 for (i = 0; i < pinned_pages; i++)
690 page_cache_release(user_pages[i]);
8e7d2b2c 691 drm_free_large(user_pages);
3de09aa3
EA
692
693 return ret;
694}
695
40123c1f
EA
696/**
697 * This is the fast shmem pwrite path, which attempts to directly
698 * copy_from_user into the kmapped pages backing the object.
699 */
3043c60c 700static int
05394f39
CW
701i915_gem_shmem_pwrite_fast(struct drm_device *dev,
702 struct drm_i915_gem_object *obj,
40123c1f 703 struct drm_i915_gem_pwrite *args,
05394f39 704 struct drm_file *file)
673a394b 705{
05394f39 706 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 707 ssize_t remain;
e5281ccd 708 loff_t offset;
40123c1f
EA
709 char __user *user_data;
710 int page_offset, page_length;
40123c1f
EA
711
712 user_data = (char __user *) (uintptr_t) args->data_ptr;
713 remain = args->size;
673a394b 714
40123c1f 715 offset = args->offset;
05394f39 716 obj->dirty = 1;
40123c1f
EA
717
718 while (remain > 0) {
e5281ccd
CW
719 struct page *page;
720 char *vaddr;
721 int ret;
722
40123c1f
EA
723 /* Operation in this page
724 *
40123c1f
EA
725 * page_offset = offset within page
726 * page_length = bytes to copy for this page
727 */
c8cbbb8b 728 page_offset = offset_in_page(offset);
40123c1f
EA
729 page_length = remain;
730 if ((page_offset + remain) > PAGE_SIZE)
731 page_length = PAGE_SIZE - page_offset;
732
5949eac4 733 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
734 if (IS_ERR(page))
735 return PTR_ERR(page);
736
130c2561 737 vaddr = kmap_atomic(page);
e5281ccd
CW
738 ret = __copy_from_user_inatomic(vaddr + page_offset,
739 user_data,
740 page_length);
130c2561 741 kunmap_atomic(vaddr);
e5281ccd
CW
742
743 set_page_dirty(page);
744 mark_page_accessed(page);
745 page_cache_release(page);
746
747 /* If we get a fault while copying data, then (presumably) our
748 * source page isn't available. Return the error and we'll
749 * retry in the slow path.
750 */
751 if (ret)
fbd5a26d 752 return -EFAULT;
40123c1f
EA
753
754 remain -= page_length;
755 user_data += page_length;
756 offset += page_length;
757 }
758
fbd5a26d 759 return 0;
40123c1f
EA
760}
761
762/**
763 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
764 * the memory and maps it using kmap_atomic for copying.
765 *
766 * This avoids taking mmap_sem for faulting on the user's address while the
767 * struct_mutex is held.
768 */
769static int
05394f39
CW
770i915_gem_shmem_pwrite_slow(struct drm_device *dev,
771 struct drm_i915_gem_object *obj,
40123c1f 772 struct drm_i915_gem_pwrite *args,
05394f39 773 struct drm_file *file)
40123c1f 774{
05394f39 775 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 776 ssize_t remain;
8c59967c
DV
777 loff_t offset;
778 char __user *user_data;
eb2c0c81 779 int shmem_page_offset, page_length, ret = 0;
8c59967c 780 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
40123c1f 781
8c59967c 782 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
783 remain = args->size;
784
8c59967c 785 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 786
673a394b 787 offset = args->offset;
05394f39 788 obj->dirty = 1;
673a394b 789
8c59967c
DV
790 mutex_unlock(&dev->struct_mutex);
791
40123c1f 792 while (remain > 0) {
e5281ccd 793 struct page *page;
8c59967c 794 char *vaddr;
e5281ccd 795
40123c1f
EA
796 /* Operation in this page
797 *
40123c1f 798 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
799 * page_length = bytes to copy for this page
800 */
c8cbbb8b 801 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
802
803 page_length = remain;
804 if ((shmem_page_offset + page_length) > PAGE_SIZE)
805 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 806
5949eac4 807 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
808 if (IS_ERR(page)) {
809 ret = PTR_ERR(page);
810 goto out;
811 }
812
8c59967c
DV
813 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
814 (page_to_phys(page) & (1 << 17)) != 0;
815
816 vaddr = kmap(page);
817 if (page_do_bit17_swizzling)
818 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
819 user_data,
820 page_length);
821 else
822 ret = __copy_from_user(vaddr + shmem_page_offset,
823 user_data,
824 page_length);
825 kunmap(page);
40123c1f 826
e5281ccd
CW
827 set_page_dirty(page);
828 mark_page_accessed(page);
829 page_cache_release(page);
830
8c59967c
DV
831 if (ret) {
832 ret = -EFAULT;
833 goto out;
834 }
835
40123c1f 836 remain -= page_length;
8c59967c 837 user_data += page_length;
40123c1f 838 offset += page_length;
673a394b
EA
839 }
840
fbd5a26d 841out:
8c59967c
DV
842 mutex_lock(&dev->struct_mutex);
843 /* Fixup: Kill any reinstated backing storage pages */
844 if (obj->madv == __I915_MADV_PURGED)
845 i915_gem_object_truncate(obj);
846 /* and flush dirty cachelines in case the object isn't in the cpu write
847 * domain anymore. */
848 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
849 i915_gem_clflush_object(obj);
850 intel_gtt_chipset_flush();
851 }
673a394b 852
40123c1f 853 return ret;
673a394b
EA
854}
855
856/**
857 * Writes data to the object referenced by handle.
858 *
859 * On error, the contents of the buffer that were to be modified are undefined.
860 */
861int
862i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 863 struct drm_file *file)
673a394b
EA
864{
865 struct drm_i915_gem_pwrite *args = data;
05394f39 866 struct drm_i915_gem_object *obj;
51311d0a
CW
867 int ret;
868
869 if (args->size == 0)
870 return 0;
871
872 if (!access_ok(VERIFY_READ,
873 (char __user *)(uintptr_t)args->data_ptr,
874 args->size))
875 return -EFAULT;
876
877 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
878 args->size);
879 if (ret)
880 return -EFAULT;
673a394b 881
fbd5a26d 882 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 883 if (ret)
fbd5a26d 884 return ret;
1d7cfea1 885
05394f39 886 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 887 if (&obj->base == NULL) {
1d7cfea1
CW
888 ret = -ENOENT;
889 goto unlock;
fbd5a26d 890 }
673a394b 891
7dcd2499 892 /* Bounds check destination. */
05394f39
CW
893 if (args->offset > obj->base.size ||
894 args->size > obj->base.size - args->offset) {
ce9d419d 895 ret = -EINVAL;
35b62a89 896 goto out;
ce9d419d
CW
897 }
898
db53a302
CW
899 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
900
673a394b
EA
901 /* We can only do the GTT pwrite on untiled buffers, as otherwise
902 * it would end up going through the fenced access, and we'll get
903 * different detiling behavior between reading and writing.
904 * pread/pwrite currently are reading and writing from the CPU
905 * perspective, requiring manual detiling by the client.
906 */
5c0480f2 907 if (obj->phys_obj) {
fbd5a26d 908 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
909 goto out;
910 }
911
912 if (obj->gtt_space &&
913 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 914 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
915 if (ret)
916 goto out;
917
d9e86c0e
CW
918 ret = i915_gem_object_set_to_gtt_domain(obj, true);
919 if (ret)
920 goto out_unpin;
921
922 ret = i915_gem_object_put_fence(obj);
fbd5a26d
CW
923 if (ret)
924 goto out_unpin;
925
926 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
927 if (ret == -EFAULT)
928 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
929
930out_unpin:
931 i915_gem_object_unpin(obj);
673a394b 932
5c0480f2
DV
933 if (ret != -EFAULT)
934 goto out;
935 /* Fall through to the shmfs paths because the gtt paths might
936 * fail with non-page-backed user pointers (e.g. gtt mappings
937 * when moving data between textures). */
fbd5a26d 938 }
673a394b 939
5c0480f2
DV
940 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
941 if (ret)
942 goto out;
943
944 ret = -EFAULT;
945 if (!i915_gem_object_needs_bit17_swizzle(obj))
946 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
947 if (ret == -EFAULT)
948 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
949
35b62a89 950out:
05394f39 951 drm_gem_object_unreference(&obj->base);
1d7cfea1 952unlock:
fbd5a26d 953 mutex_unlock(&dev->struct_mutex);
673a394b
EA
954 return ret;
955}
956
957/**
2ef7eeaa
EA
958 * Called when user space prepares to use an object with the CPU, either
959 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
960 */
961int
962i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 963 struct drm_file *file)
673a394b
EA
964{
965 struct drm_i915_gem_set_domain *args = data;
05394f39 966 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
967 uint32_t read_domains = args->read_domains;
968 uint32_t write_domain = args->write_domain;
673a394b
EA
969 int ret;
970
971 if (!(dev->driver->driver_features & DRIVER_GEM))
972 return -ENODEV;
973
2ef7eeaa 974 /* Only handle setting domains to types used by the CPU. */
21d509e3 975 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
976 return -EINVAL;
977
21d509e3 978 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
979 return -EINVAL;
980
981 /* Having something in the write domain implies it's in the read
982 * domain, and only that read domain. Enforce that in the request.
983 */
984 if (write_domain != 0 && read_domains != write_domain)
985 return -EINVAL;
986
76c1dec1 987 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 988 if (ret)
76c1dec1 989 return ret;
1d7cfea1 990
05394f39 991 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 992 if (&obj->base == NULL) {
1d7cfea1
CW
993 ret = -ENOENT;
994 goto unlock;
76c1dec1 995 }
673a394b 996
2ef7eeaa
EA
997 if (read_domains & I915_GEM_DOMAIN_GTT) {
998 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
999
1000 /* Silently promote "you're not bound, there was nothing to do"
1001 * to success, since the client was just asking us to
1002 * make sure everything was done.
1003 */
1004 if (ret == -EINVAL)
1005 ret = 0;
2ef7eeaa 1006 } else {
e47c68e9 1007 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1008 }
1009
05394f39 1010 drm_gem_object_unreference(&obj->base);
1d7cfea1 1011unlock:
673a394b
EA
1012 mutex_unlock(&dev->struct_mutex);
1013 return ret;
1014}
1015
1016/**
1017 * Called when user space has done writes to this buffer
1018 */
1019int
1020i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1021 struct drm_file *file)
673a394b
EA
1022{
1023 struct drm_i915_gem_sw_finish *args = data;
05394f39 1024 struct drm_i915_gem_object *obj;
673a394b
EA
1025 int ret = 0;
1026
1027 if (!(dev->driver->driver_features & DRIVER_GEM))
1028 return -ENODEV;
1029
76c1dec1 1030 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1031 if (ret)
76c1dec1 1032 return ret;
1d7cfea1 1033
05394f39 1034 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1035 if (&obj->base == NULL) {
1d7cfea1
CW
1036 ret = -ENOENT;
1037 goto unlock;
673a394b
EA
1038 }
1039
673a394b 1040 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1041 if (obj->pin_count)
e47c68e9
EA
1042 i915_gem_object_flush_cpu_write_domain(obj);
1043
05394f39 1044 drm_gem_object_unreference(&obj->base);
1d7cfea1 1045unlock:
673a394b
EA
1046 mutex_unlock(&dev->struct_mutex);
1047 return ret;
1048}
1049
1050/**
1051 * Maps the contents of an object, returning the address it is mapped
1052 * into.
1053 *
1054 * While the mapping holds a reference on the contents of the object, it doesn't
1055 * imply a ref on the object itself.
1056 */
1057int
1058i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1059 struct drm_file *file)
673a394b
EA
1060{
1061 struct drm_i915_gem_mmap *args = data;
1062 struct drm_gem_object *obj;
673a394b
EA
1063 unsigned long addr;
1064
1065 if (!(dev->driver->driver_features & DRIVER_GEM))
1066 return -ENODEV;
1067
05394f39 1068 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1069 if (obj == NULL)
bf79cb91 1070 return -ENOENT;
673a394b 1071
673a394b
EA
1072 down_write(&current->mm->mmap_sem);
1073 addr = do_mmap(obj->filp, 0, args->size,
1074 PROT_READ | PROT_WRITE, MAP_SHARED,
1075 args->offset);
1076 up_write(&current->mm->mmap_sem);
bc9025bd 1077 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1078 if (IS_ERR((void *)addr))
1079 return addr;
1080
1081 args->addr_ptr = (uint64_t) addr;
1082
1083 return 0;
1084}
1085
de151cf6
JB
1086/**
1087 * i915_gem_fault - fault a page into the GTT
1088 * vma: VMA in question
1089 * vmf: fault info
1090 *
1091 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1092 * from userspace. The fault handler takes care of binding the object to
1093 * the GTT (if needed), allocating and programming a fence register (again,
1094 * only if needed based on whether the old reg is still valid or the object
1095 * is tiled) and inserting a new PTE into the faulting process.
1096 *
1097 * Note that the faulting process may involve evicting existing objects
1098 * from the GTT and/or fence registers to make room. So performance may
1099 * suffer if the GTT working set is large or there are few fence registers
1100 * left.
1101 */
1102int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1103{
05394f39
CW
1104 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1105 struct drm_device *dev = obj->base.dev;
7d1c4804 1106 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1107 pgoff_t page_offset;
1108 unsigned long pfn;
1109 int ret = 0;
0f973f27 1110 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1111
1112 /* We don't use vmf->pgoff since that has the fake offset */
1113 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1114 PAGE_SHIFT;
1115
d9bc7e9f
CW
1116 ret = i915_mutex_lock_interruptible(dev);
1117 if (ret)
1118 goto out;
a00b10c3 1119
db53a302
CW
1120 trace_i915_gem_object_fault(obj, page_offset, true, write);
1121
d9bc7e9f 1122 /* Now bind it into the GTT if needed */
919926ae
CW
1123 if (!obj->map_and_fenceable) {
1124 ret = i915_gem_object_unbind(obj);
1125 if (ret)
1126 goto unlock;
a00b10c3 1127 }
05394f39 1128 if (!obj->gtt_space) {
75e9e915 1129 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1130 if (ret)
1131 goto unlock;
de151cf6 1132
e92d03bf
EA
1133 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1134 if (ret)
1135 goto unlock;
1136 }
4a684a41 1137
74898d7e
DV
1138 if (!obj->has_global_gtt_mapping)
1139 i915_gem_gtt_bind_object(obj, obj->cache_level);
1140
d9e86c0e
CW
1141 if (obj->tiling_mode == I915_TILING_NONE)
1142 ret = i915_gem_object_put_fence(obj);
1143 else
ce453d81 1144 ret = i915_gem_object_get_fence(obj, NULL);
d9e86c0e
CW
1145 if (ret)
1146 goto unlock;
de151cf6 1147
05394f39
CW
1148 if (i915_gem_object_is_inactive(obj))
1149 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1150
6299f992
CW
1151 obj->fault_mappable = true;
1152
05394f39 1153 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1154 page_offset;
1155
1156 /* Finally, remap it using the new GTT offset */
1157 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1158unlock:
de151cf6 1159 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1160out:
de151cf6 1161 switch (ret) {
d9bc7e9f 1162 case -EIO:
045e769a 1163 case -EAGAIN:
d9bc7e9f
CW
1164 /* Give the error handler a chance to run and move the
1165 * objects off the GPU active list. Next time we service the
1166 * fault, we should be able to transition the page into the
1167 * GTT without touching the GPU (and so avoid further
1168 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1169 * with coherency, just lost writes.
1170 */
045e769a 1171 set_need_resched();
c715089f
CW
1172 case 0:
1173 case -ERESTARTSYS:
bed636ab 1174 case -EINTR:
c715089f 1175 return VM_FAULT_NOPAGE;
de151cf6 1176 case -ENOMEM:
de151cf6 1177 return VM_FAULT_OOM;
de151cf6 1178 default:
c715089f 1179 return VM_FAULT_SIGBUS;
de151cf6
JB
1180 }
1181}
1182
901782b2
CW
1183/**
1184 * i915_gem_release_mmap - remove physical page mappings
1185 * @obj: obj in question
1186 *
af901ca1 1187 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1188 * relinquish ownership of the pages back to the system.
1189 *
1190 * It is vital that we remove the page mapping if we have mapped a tiled
1191 * object through the GTT and then lose the fence register due to
1192 * resource pressure. Similarly if the object has been moved out of the
1193 * aperture, than pages mapped into userspace must be revoked. Removing the
1194 * mapping will then trigger a page fault on the next user access, allowing
1195 * fixup by i915_gem_fault().
1196 */
d05ca301 1197void
05394f39 1198i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1199{
6299f992
CW
1200 if (!obj->fault_mappable)
1201 return;
901782b2 1202
f6e47884
CW
1203 if (obj->base.dev->dev_mapping)
1204 unmap_mapping_range(obj->base.dev->dev_mapping,
1205 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1206 obj->base.size, 1);
fb7d516a 1207
6299f992 1208 obj->fault_mappable = false;
901782b2
CW
1209}
1210
92b88aeb 1211static uint32_t
e28f8711 1212i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1213{
e28f8711 1214 uint32_t gtt_size;
92b88aeb
CW
1215
1216 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1217 tiling_mode == I915_TILING_NONE)
1218 return size;
92b88aeb
CW
1219
1220 /* Previous chips need a power-of-two fence region when tiling */
1221 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1222 gtt_size = 1024*1024;
92b88aeb 1223 else
e28f8711 1224 gtt_size = 512*1024;
92b88aeb 1225
e28f8711
CW
1226 while (gtt_size < size)
1227 gtt_size <<= 1;
92b88aeb 1228
e28f8711 1229 return gtt_size;
92b88aeb
CW
1230}
1231
de151cf6
JB
1232/**
1233 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1234 * @obj: object to check
1235 *
1236 * Return the required GTT alignment for an object, taking into account
5e783301 1237 * potential fence register mapping.
de151cf6
JB
1238 */
1239static uint32_t
e28f8711
CW
1240i915_gem_get_gtt_alignment(struct drm_device *dev,
1241 uint32_t size,
1242 int tiling_mode)
de151cf6 1243{
de151cf6
JB
1244 /*
1245 * Minimum alignment is 4k (GTT page size), but might be greater
1246 * if a fence register is needed for the object.
1247 */
a00b10c3 1248 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1249 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1250 return 4096;
1251
a00b10c3
CW
1252 /*
1253 * Previous chips need to be aligned to the size of the smallest
1254 * fence register that can contain the object.
1255 */
e28f8711 1256 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1257}
1258
5e783301
DV
1259/**
1260 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1261 * unfenced object
e28f8711
CW
1262 * @dev: the device
1263 * @size: size of the object
1264 * @tiling_mode: tiling mode of the object
5e783301
DV
1265 *
1266 * Return the required GTT alignment for an object, only taking into account
1267 * unfenced tiled surface requirements.
1268 */
467cffba 1269uint32_t
e28f8711
CW
1270i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1271 uint32_t size,
1272 int tiling_mode)
5e783301 1273{
5e783301
DV
1274 /*
1275 * Minimum alignment is 4k (GTT page size) for sane hw.
1276 */
1277 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1278 tiling_mode == I915_TILING_NONE)
5e783301
DV
1279 return 4096;
1280
e28f8711
CW
1281 /* Previous hardware however needs to be aligned to a power-of-two
1282 * tile height. The simplest method for determining this is to reuse
1283 * the power-of-tile object size.
5e783301 1284 */
e28f8711 1285 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1286}
1287
de151cf6 1288int
ff72145b
DA
1289i915_gem_mmap_gtt(struct drm_file *file,
1290 struct drm_device *dev,
1291 uint32_t handle,
1292 uint64_t *offset)
de151cf6 1293{
da761a6e 1294 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1295 struct drm_i915_gem_object *obj;
de151cf6
JB
1296 int ret;
1297
1298 if (!(dev->driver->driver_features & DRIVER_GEM))
1299 return -ENODEV;
1300
76c1dec1 1301 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1302 if (ret)
76c1dec1 1303 return ret;
de151cf6 1304
ff72145b 1305 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1306 if (&obj->base == NULL) {
1d7cfea1
CW
1307 ret = -ENOENT;
1308 goto unlock;
1309 }
de151cf6 1310
05394f39 1311 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1312 ret = -E2BIG;
ff56b0bc 1313 goto out;
da761a6e
CW
1314 }
1315
05394f39 1316 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1317 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1318 ret = -EINVAL;
1319 goto out;
ab18282d
CW
1320 }
1321
05394f39 1322 if (!obj->base.map_list.map) {
b464e9a2 1323 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1324 if (ret)
1325 goto out;
de151cf6
JB
1326 }
1327
ff72145b 1328 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1329
1d7cfea1 1330out:
05394f39 1331 drm_gem_object_unreference(&obj->base);
1d7cfea1 1332unlock:
de151cf6 1333 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1334 return ret;
de151cf6
JB
1335}
1336
ff72145b
DA
1337/**
1338 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1339 * @dev: DRM device
1340 * @data: GTT mapping ioctl data
1341 * @file: GEM object info
1342 *
1343 * Simply returns the fake offset to userspace so it can mmap it.
1344 * The mmap call will end up in drm_gem_mmap(), which will set things
1345 * up so we can get faults in the handler above.
1346 *
1347 * The fault handler will take care of binding the object into the GTT
1348 * (since it may have been evicted to make room for something), allocating
1349 * a fence register, and mapping the appropriate aperture address into
1350 * userspace.
1351 */
1352int
1353i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1354 struct drm_file *file)
1355{
1356 struct drm_i915_gem_mmap_gtt *args = data;
1357
1358 if (!(dev->driver->driver_features & DRIVER_GEM))
1359 return -ENODEV;
1360
1361 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1362}
1363
1364
e5281ccd 1365static int
05394f39 1366i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1367 gfp_t gfpmask)
1368{
e5281ccd
CW
1369 int page_count, i;
1370 struct address_space *mapping;
1371 struct inode *inode;
1372 struct page *page;
1373
1374 /* Get the list of pages out of our struct file. They'll be pinned
1375 * at this point until we release them.
1376 */
05394f39
CW
1377 page_count = obj->base.size / PAGE_SIZE;
1378 BUG_ON(obj->pages != NULL);
1379 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1380 if (obj->pages == NULL)
e5281ccd
CW
1381 return -ENOMEM;
1382
05394f39 1383 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1384 mapping = inode->i_mapping;
5949eac4
HD
1385 gfpmask |= mapping_gfp_mask(mapping);
1386
e5281ccd 1387 for (i = 0; i < page_count; i++) {
5949eac4 1388 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1389 if (IS_ERR(page))
1390 goto err_pages;
1391
05394f39 1392 obj->pages[i] = page;
e5281ccd
CW
1393 }
1394
6dacfd2f 1395 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1396 i915_gem_object_do_bit_17_swizzle(obj);
1397
1398 return 0;
1399
1400err_pages:
1401 while (i--)
05394f39 1402 page_cache_release(obj->pages[i]);
e5281ccd 1403
05394f39
CW
1404 drm_free_large(obj->pages);
1405 obj->pages = NULL;
e5281ccd
CW
1406 return PTR_ERR(page);
1407}
1408
5cdf5881 1409static void
05394f39 1410i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1411{
05394f39 1412 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1413 int i;
1414
05394f39 1415 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1416
6dacfd2f 1417 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1418 i915_gem_object_save_bit_17_swizzle(obj);
1419
05394f39
CW
1420 if (obj->madv == I915_MADV_DONTNEED)
1421 obj->dirty = 0;
3ef94daa
CW
1422
1423 for (i = 0; i < page_count; i++) {
05394f39
CW
1424 if (obj->dirty)
1425 set_page_dirty(obj->pages[i]);
3ef94daa 1426
05394f39
CW
1427 if (obj->madv == I915_MADV_WILLNEED)
1428 mark_page_accessed(obj->pages[i]);
3ef94daa 1429
05394f39 1430 page_cache_release(obj->pages[i]);
3ef94daa 1431 }
05394f39 1432 obj->dirty = 0;
673a394b 1433
05394f39
CW
1434 drm_free_large(obj->pages);
1435 obj->pages = NULL;
673a394b
EA
1436}
1437
54cf91dc 1438void
05394f39 1439i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1440 struct intel_ring_buffer *ring,
1441 u32 seqno)
673a394b 1442{
05394f39 1443 struct drm_device *dev = obj->base.dev;
69dc4987 1444 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1445
852835f3 1446 BUG_ON(ring == NULL);
05394f39 1447 obj->ring = ring;
673a394b
EA
1448
1449 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1450 if (!obj->active) {
1451 drm_gem_object_reference(&obj->base);
1452 obj->active = 1;
673a394b 1453 }
e35a41de 1454
673a394b 1455 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1456 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1457 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1458
05394f39 1459 obj->last_rendering_seqno = seqno;
caea7476
CW
1460 if (obj->fenced_gpu_access) {
1461 struct drm_i915_fence_reg *reg;
1462
1463 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1464
1465 obj->last_fenced_seqno = seqno;
1466 obj->last_fenced_ring = ring;
1467
1468 reg = &dev_priv->fence_regs[obj->fence_reg];
1469 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1470 }
1471}
1472
1473static void
1474i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1475{
1476 list_del_init(&obj->ring_list);
1477 obj->last_rendering_seqno = 0;
673a394b
EA
1478}
1479
ce44b0ea 1480static void
05394f39 1481i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1482{
05394f39 1483 struct drm_device *dev = obj->base.dev;
ce44b0ea 1484 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1485
05394f39
CW
1486 BUG_ON(!obj->active);
1487 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1488
1489 i915_gem_object_move_off_active(obj);
1490}
1491
1492static void
1493i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1494{
1495 struct drm_device *dev = obj->base.dev;
1496 struct drm_i915_private *dev_priv = dev->dev_private;
1497
1498 if (obj->pin_count != 0)
1499 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1500 else
1501 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1502
1503 BUG_ON(!list_empty(&obj->gpu_write_list));
1504 BUG_ON(!obj->active);
1505 obj->ring = NULL;
1506
1507 i915_gem_object_move_off_active(obj);
1508 obj->fenced_gpu_access = false;
caea7476
CW
1509
1510 obj->active = 0;
87ca9c8a 1511 obj->pending_gpu_write = false;
caea7476
CW
1512 drm_gem_object_unreference(&obj->base);
1513
1514 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1515}
673a394b 1516
963b4836
CW
1517/* Immediately discard the backing storage */
1518static void
05394f39 1519i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1520{
bb6baf76 1521 struct inode *inode;
963b4836 1522
ae9fed6b
CW
1523 /* Our goal here is to return as much of the memory as
1524 * is possible back to the system as we are called from OOM.
1525 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1526 * backing pages, *now*.
ae9fed6b 1527 */
05394f39 1528 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1529 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1530
a14917ee
CW
1531 if (obj->base.map_list.map)
1532 drm_gem_free_mmap_offset(&obj->base);
1533
05394f39 1534 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1535}
1536
1537static inline int
05394f39 1538i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1539{
05394f39 1540 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1541}
1542
63560396 1543static void
db53a302
CW
1544i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1545 uint32_t flush_domains)
63560396 1546{
05394f39 1547 struct drm_i915_gem_object *obj, *next;
63560396 1548
05394f39 1549 list_for_each_entry_safe(obj, next,
64193406 1550 &ring->gpu_write_list,
63560396 1551 gpu_write_list) {
05394f39
CW
1552 if (obj->base.write_domain & flush_domains) {
1553 uint32_t old_write_domain = obj->base.write_domain;
63560396 1554
05394f39
CW
1555 obj->base.write_domain = 0;
1556 list_del_init(&obj->gpu_write_list);
1ec14ad3 1557 i915_gem_object_move_to_active(obj, ring,
db53a302 1558 i915_gem_next_request_seqno(ring));
63560396 1559
63560396 1560 trace_i915_gem_object_change_domain(obj,
05394f39 1561 obj->base.read_domains,
63560396
DV
1562 old_write_domain);
1563 }
1564 }
1565}
8187a2b7 1566
53d227f2
DV
1567static u32
1568i915_gem_get_seqno(struct drm_device *dev)
1569{
1570 drm_i915_private_t *dev_priv = dev->dev_private;
1571 u32 seqno = dev_priv->next_seqno;
1572
1573 /* reserve 0 for non-seqno */
1574 if (++dev_priv->next_seqno == 0)
1575 dev_priv->next_seqno = 1;
1576
1577 return seqno;
1578}
1579
1580u32
1581i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1582{
1583 if (ring->outstanding_lazy_request == 0)
1584 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1585
1586 return ring->outstanding_lazy_request;
1587}
1588
3cce469c 1589int
db53a302 1590i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1591 struct drm_file *file,
db53a302 1592 struct drm_i915_gem_request *request)
673a394b 1593{
db53a302 1594 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1595 uint32_t seqno;
a71d8d94 1596 u32 request_ring_position;
673a394b 1597 int was_empty;
3cce469c
CW
1598 int ret;
1599
1600 BUG_ON(request == NULL);
53d227f2 1601 seqno = i915_gem_next_request_seqno(ring);
673a394b 1602
a71d8d94
CW
1603 /* Record the position of the start of the request so that
1604 * should we detect the updated seqno part-way through the
1605 * GPU processing the request, we never over-estimate the
1606 * position of the head.
1607 */
1608 request_ring_position = intel_ring_get_tail(ring);
1609
3cce469c
CW
1610 ret = ring->add_request(ring, &seqno);
1611 if (ret)
1612 return ret;
673a394b 1613
db53a302 1614 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1615
1616 request->seqno = seqno;
852835f3 1617 request->ring = ring;
a71d8d94 1618 request->tail = request_ring_position;
673a394b 1619 request->emitted_jiffies = jiffies;
852835f3
ZN
1620 was_empty = list_empty(&ring->request_list);
1621 list_add_tail(&request->list, &ring->request_list);
1622
db53a302
CW
1623 if (file) {
1624 struct drm_i915_file_private *file_priv = file->driver_priv;
1625
1c25595f 1626 spin_lock(&file_priv->mm.lock);
f787a5f5 1627 request->file_priv = file_priv;
b962442e 1628 list_add_tail(&request->client_list,
f787a5f5 1629 &file_priv->mm.request_list);
1c25595f 1630 spin_unlock(&file_priv->mm.lock);
b962442e 1631 }
673a394b 1632
5391d0cf 1633 ring->outstanding_lazy_request = 0;
db53a302 1634
f65d9421 1635 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1636 if (i915_enable_hangcheck) {
1637 mod_timer(&dev_priv->hangcheck_timer,
1638 jiffies +
1639 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1640 }
f65d9421 1641 if (was_empty)
b3b079db
CW
1642 queue_delayed_work(dev_priv->wq,
1643 &dev_priv->mm.retire_work, HZ);
f65d9421 1644 }
3cce469c 1645 return 0;
673a394b
EA
1646}
1647
f787a5f5
CW
1648static inline void
1649i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1650{
1c25595f 1651 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1652
1c25595f
CW
1653 if (!file_priv)
1654 return;
1c5d22f7 1655
1c25595f 1656 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1657 if (request->file_priv) {
1658 list_del(&request->client_list);
1659 request->file_priv = NULL;
1660 }
1c25595f 1661 spin_unlock(&file_priv->mm.lock);
673a394b 1662}
673a394b 1663
dfaae392
CW
1664static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1665 struct intel_ring_buffer *ring)
9375e446 1666{
dfaae392
CW
1667 while (!list_empty(&ring->request_list)) {
1668 struct drm_i915_gem_request *request;
673a394b 1669
dfaae392
CW
1670 request = list_first_entry(&ring->request_list,
1671 struct drm_i915_gem_request,
1672 list);
de151cf6 1673
dfaae392 1674 list_del(&request->list);
f787a5f5 1675 i915_gem_request_remove_from_client(request);
dfaae392
CW
1676 kfree(request);
1677 }
673a394b 1678
dfaae392 1679 while (!list_empty(&ring->active_list)) {
05394f39 1680 struct drm_i915_gem_object *obj;
9375e446 1681
05394f39
CW
1682 obj = list_first_entry(&ring->active_list,
1683 struct drm_i915_gem_object,
1684 ring_list);
9375e446 1685
05394f39
CW
1686 obj->base.write_domain = 0;
1687 list_del_init(&obj->gpu_write_list);
1688 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1689 }
1690}
1691
312817a3
CW
1692static void i915_gem_reset_fences(struct drm_device *dev)
1693{
1694 struct drm_i915_private *dev_priv = dev->dev_private;
1695 int i;
1696
4b9de737 1697 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1698 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1699 struct drm_i915_gem_object *obj = reg->obj;
1700
1701 if (!obj)
1702 continue;
1703
1704 if (obj->tiling_mode)
1705 i915_gem_release_mmap(obj);
1706
d9e86c0e
CW
1707 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1708 reg->obj->fenced_gpu_access = false;
1709 reg->obj->last_fenced_seqno = 0;
1710 reg->obj->last_fenced_ring = NULL;
1711 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1712 }
1713}
1714
069efc1d 1715void i915_gem_reset(struct drm_device *dev)
673a394b 1716{
77f01230 1717 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1718 struct drm_i915_gem_object *obj;
1ec14ad3 1719 int i;
673a394b 1720
1ec14ad3
CW
1721 for (i = 0; i < I915_NUM_RINGS; i++)
1722 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1723
1724 /* Remove anything from the flushing lists. The GPU cache is likely
1725 * to be lost on reset along with the data, so simply move the
1726 * lost bo to the inactive list.
1727 */
1728 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1729 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1730 struct drm_i915_gem_object,
1731 mm_list);
dfaae392 1732
05394f39
CW
1733 obj->base.write_domain = 0;
1734 list_del_init(&obj->gpu_write_list);
1735 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1736 }
1737
1738 /* Move everything out of the GPU domains to ensure we do any
1739 * necessary invalidation upon reuse.
1740 */
05394f39 1741 list_for_each_entry(obj,
77f01230 1742 &dev_priv->mm.inactive_list,
69dc4987 1743 mm_list)
77f01230 1744 {
05394f39 1745 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1746 }
069efc1d
CW
1747
1748 /* The fence registers are invalidated so clear them out */
312817a3 1749 i915_gem_reset_fences(dev);
673a394b
EA
1750}
1751
1752/**
1753 * This function clears the request list as sequence numbers are passed.
1754 */
a71d8d94 1755void
db53a302 1756i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1757{
673a394b 1758 uint32_t seqno;
1ec14ad3 1759 int i;
673a394b 1760
db53a302 1761 if (list_empty(&ring->request_list))
6c0594a3
KW
1762 return;
1763
db53a302 1764 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1765
78501eac 1766 seqno = ring->get_seqno(ring);
1ec14ad3 1767
076e2c0e 1768 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1769 if (seqno >= ring->sync_seqno[i])
1770 ring->sync_seqno[i] = 0;
1771
852835f3 1772 while (!list_empty(&ring->request_list)) {
673a394b 1773 struct drm_i915_gem_request *request;
673a394b 1774
852835f3 1775 request = list_first_entry(&ring->request_list,
673a394b
EA
1776 struct drm_i915_gem_request,
1777 list);
673a394b 1778
dfaae392 1779 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1780 break;
1781
db53a302 1782 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1783 /* We know the GPU must have read the request to have
1784 * sent us the seqno + interrupt, so use the position
1785 * of tail of the request to update the last known position
1786 * of the GPU head.
1787 */
1788 ring->last_retired_head = request->tail;
b84d5f0c
CW
1789
1790 list_del(&request->list);
f787a5f5 1791 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1792 kfree(request);
1793 }
673a394b 1794
b84d5f0c
CW
1795 /* Move any buffers on the active list that are no longer referenced
1796 * by the ringbuffer to the flushing/inactive lists as appropriate.
1797 */
1798 while (!list_empty(&ring->active_list)) {
05394f39 1799 struct drm_i915_gem_object *obj;
b84d5f0c 1800
0206e353 1801 obj = list_first_entry(&ring->active_list,
05394f39
CW
1802 struct drm_i915_gem_object,
1803 ring_list);
673a394b 1804
05394f39 1805 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1806 break;
b84d5f0c 1807
05394f39 1808 if (obj->base.write_domain != 0)
b84d5f0c
CW
1809 i915_gem_object_move_to_flushing(obj);
1810 else
1811 i915_gem_object_move_to_inactive(obj);
673a394b 1812 }
9d34e5db 1813
db53a302
CW
1814 if (unlikely(ring->trace_irq_seqno &&
1815 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1816 ring->irq_put(ring);
db53a302 1817 ring->trace_irq_seqno = 0;
9d34e5db 1818 }
23bc5982 1819
db53a302 1820 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1821}
1822
b09a1fec
CW
1823void
1824i915_gem_retire_requests(struct drm_device *dev)
1825{
1826 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1827 int i;
b09a1fec 1828
be72615b 1829 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1830 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1831
1832 /* We must be careful that during unbind() we do not
1833 * accidentally infinitely recurse into retire requests.
1834 * Currently:
1835 * retire -> free -> unbind -> wait -> retire_ring
1836 */
05394f39 1837 list_for_each_entry_safe(obj, next,
be72615b 1838 &dev_priv->mm.deferred_free_list,
69dc4987 1839 mm_list)
05394f39 1840 i915_gem_free_object_tail(obj);
be72615b
CW
1841 }
1842
1ec14ad3 1843 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1844 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1845}
1846
75ef9da2 1847static void
673a394b
EA
1848i915_gem_retire_work_handler(struct work_struct *work)
1849{
1850 drm_i915_private_t *dev_priv;
1851 struct drm_device *dev;
0a58705b
CW
1852 bool idle;
1853 int i;
673a394b
EA
1854
1855 dev_priv = container_of(work, drm_i915_private_t,
1856 mm.retire_work.work);
1857 dev = dev_priv->dev;
1858
891b48cf
CW
1859 /* Come back later if the device is busy... */
1860 if (!mutex_trylock(&dev->struct_mutex)) {
1861 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1862 return;
1863 }
1864
b09a1fec 1865 i915_gem_retire_requests(dev);
d1b851fc 1866
0a58705b
CW
1867 /* Send a periodic flush down the ring so we don't hold onto GEM
1868 * objects indefinitely.
1869 */
1870 idle = true;
1871 for (i = 0; i < I915_NUM_RINGS; i++) {
1872 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1873
1874 if (!list_empty(&ring->gpu_write_list)) {
1875 struct drm_i915_gem_request *request;
1876 int ret;
1877
db53a302
CW
1878 ret = i915_gem_flush_ring(ring,
1879 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1880 request = kzalloc(sizeof(*request), GFP_KERNEL);
1881 if (ret || request == NULL ||
db53a302 1882 i915_add_request(ring, NULL, request))
0a58705b
CW
1883 kfree(request);
1884 }
1885
1886 idle &= list_empty(&ring->request_list);
1887 }
1888
1889 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1890 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1891
673a394b
EA
1892 mutex_unlock(&dev->struct_mutex);
1893}
1894
db53a302
CW
1895/**
1896 * Waits for a sequence number to be signaled, and cleans up the
1897 * request and object lists appropriately for that event.
1898 */
5a5a0c64 1899int
db53a302 1900i915_wait_request(struct intel_ring_buffer *ring,
b93f9cf1
BW
1901 uint32_t seqno,
1902 bool do_retire)
673a394b 1903{
db53a302 1904 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1905 u32 ier;
673a394b
EA
1906 int ret = 0;
1907
1908 BUG_ON(seqno == 0);
1909
d9bc7e9f
CW
1910 if (atomic_read(&dev_priv->mm.wedged)) {
1911 struct completion *x = &dev_priv->error_completion;
1912 bool recovery_complete;
1913 unsigned long flags;
1914
1915 /* Give the error handler a chance to run. */
1916 spin_lock_irqsave(&x->wait.lock, flags);
1917 recovery_complete = x->done > 0;
1918 spin_unlock_irqrestore(&x->wait.lock, flags);
1919
1920 return recovery_complete ? -EIO : -EAGAIN;
1921 }
30dbf0c0 1922
5d97eb69 1923 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1924 struct drm_i915_gem_request *request;
1925
1926 request = kzalloc(sizeof(*request), GFP_KERNEL);
1927 if (request == NULL)
e35a41de 1928 return -ENOMEM;
3cce469c 1929
db53a302 1930 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
1931 if (ret) {
1932 kfree(request);
1933 return ret;
1934 }
1935
1936 seqno = request->seqno;
e35a41de 1937 }
ffed1d09 1938
78501eac 1939 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 1940 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d
ZW
1941 ier = I915_READ(DEIER) | I915_READ(GTIER);
1942 else
1943 ier = I915_READ(IER);
802c7eb6
JB
1944 if (!ier) {
1945 DRM_ERROR("something (likely vbetool) disabled "
1946 "interrupts, re-enabling\n");
f01c22fd
CW
1947 ring->dev->driver->irq_preinstall(ring->dev);
1948 ring->dev->driver->irq_postinstall(ring->dev);
802c7eb6
JB
1949 }
1950
db53a302 1951 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 1952
b2223497 1953 ring->waiting_seqno = seqno;
b13c2b96 1954 if (ring->irq_get(ring)) {
ce453d81 1955 if (dev_priv->mm.interruptible)
b13c2b96
CW
1956 ret = wait_event_interruptible(ring->irq_queue,
1957 i915_seqno_passed(ring->get_seqno(ring), seqno)
1958 || atomic_read(&dev_priv->mm.wedged));
1959 else
1960 wait_event(ring->irq_queue,
1961 i915_seqno_passed(ring->get_seqno(ring), seqno)
1962 || atomic_read(&dev_priv->mm.wedged));
1963
1964 ring->irq_put(ring);
e959b5db
EA
1965 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1966 seqno) ||
1967 atomic_read(&dev_priv->mm.wedged), 3000))
b5ba177d 1968 ret = -EBUSY;
b2223497 1969 ring->waiting_seqno = 0;
1c5d22f7 1970
db53a302 1971 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 1972 }
ba1234d1 1973 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1974 ret = -EAGAIN;
673a394b 1975
673a394b
EA
1976 /* Directly dispatch request retiring. While we have the work queue
1977 * to handle this, the waiter on a request often wants an associated
1978 * buffer to have made it to the inactive list, and we would need
1979 * a separate wait queue to handle that.
1980 */
b93f9cf1 1981 if (ret == 0 && do_retire)
db53a302 1982 i915_gem_retire_requests_ring(ring);
673a394b
EA
1983
1984 return ret;
1985}
1986
673a394b
EA
1987/**
1988 * Ensures that all rendering to the object has completed and the object is
1989 * safe to unbind from the GTT or access from the CPU.
1990 */
54cf91dc 1991int
ce453d81 1992i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 1993{
673a394b
EA
1994 int ret;
1995
e47c68e9
EA
1996 /* This function only exists to support waiting for existing rendering,
1997 * not for emitting required flushes.
673a394b 1998 */
05394f39 1999 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2000
2001 /* If there is rendering queued on the buffer being evicted, wait for
2002 * it.
2003 */
05394f39 2004 if (obj->active) {
b93f9cf1
BW
2005 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
2006 true);
2cf34d7b 2007 if (ret)
673a394b
EA
2008 return ret;
2009 }
2010
2011 return 0;
2012}
2013
b5ffc9bc
CW
2014static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2015{
2016 u32 old_write_domain, old_read_domains;
2017
b5ffc9bc
CW
2018 /* Act a barrier for all accesses through the GTT */
2019 mb();
2020
2021 /* Force a pagefault for domain tracking on next user access */
2022 i915_gem_release_mmap(obj);
2023
b97c3d9c
KP
2024 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2025 return;
2026
b5ffc9bc
CW
2027 old_read_domains = obj->base.read_domains;
2028 old_write_domain = obj->base.write_domain;
2029
2030 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2031 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2032
2033 trace_i915_gem_object_change_domain(obj,
2034 old_read_domains,
2035 old_write_domain);
2036}
2037
673a394b
EA
2038/**
2039 * Unbinds an object from the GTT aperture.
2040 */
0f973f27 2041int
05394f39 2042i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2043{
7bddb01f 2044 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2045 int ret = 0;
2046
05394f39 2047 if (obj->gtt_space == NULL)
673a394b
EA
2048 return 0;
2049
05394f39 2050 if (obj->pin_count != 0) {
673a394b
EA
2051 DRM_ERROR("Attempting to unbind pinned buffer\n");
2052 return -EINVAL;
2053 }
2054
a8198eea
CW
2055 ret = i915_gem_object_finish_gpu(obj);
2056 if (ret == -ERESTARTSYS)
2057 return ret;
2058 /* Continue on if we fail due to EIO, the GPU is hung so we
2059 * should be safe and we need to cleanup or else we might
2060 * cause memory corruption through use-after-free.
2061 */
2062
b5ffc9bc 2063 i915_gem_object_finish_gtt(obj);
5323fd04 2064
673a394b
EA
2065 /* Move the object to the CPU domain to ensure that
2066 * any possible CPU writes while it's not in the GTT
a8198eea 2067 * are flushed when we go to remap it.
673a394b 2068 */
a8198eea
CW
2069 if (ret == 0)
2070 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2071 if (ret == -ERESTARTSYS)
673a394b 2072 return ret;
812ed492 2073 if (ret) {
a8198eea
CW
2074 /* In the event of a disaster, abandon all caches and
2075 * hope for the best.
2076 */
812ed492 2077 i915_gem_clflush_object(obj);
05394f39 2078 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2079 }
673a394b 2080
96b47b65 2081 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2082 ret = i915_gem_object_put_fence(obj);
2083 if (ret == -ERESTARTSYS)
2084 return ret;
96b47b65 2085
db53a302
CW
2086 trace_i915_gem_object_unbind(obj);
2087
74898d7e
DV
2088 if (obj->has_global_gtt_mapping)
2089 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2090 if (obj->has_aliasing_ppgtt_mapping) {
2091 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2092 obj->has_aliasing_ppgtt_mapping = 0;
2093 }
74163907 2094 i915_gem_gtt_finish_object(obj);
7bddb01f 2095
e5281ccd 2096 i915_gem_object_put_pages_gtt(obj);
673a394b 2097
6299f992 2098 list_del_init(&obj->gtt_list);
05394f39 2099 list_del_init(&obj->mm_list);
75e9e915 2100 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2101 obj->map_and_fenceable = true;
673a394b 2102
05394f39
CW
2103 drm_mm_put_block(obj->gtt_space);
2104 obj->gtt_space = NULL;
2105 obj->gtt_offset = 0;
673a394b 2106
05394f39 2107 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2108 i915_gem_object_truncate(obj);
2109
8dc1775d 2110 return ret;
673a394b
EA
2111}
2112
88241785 2113int
db53a302 2114i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2115 uint32_t invalidate_domains,
2116 uint32_t flush_domains)
2117{
88241785
CW
2118 int ret;
2119
36d527de
CW
2120 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2121 return 0;
2122
db53a302
CW
2123 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2124
88241785
CW
2125 ret = ring->flush(ring, invalidate_domains, flush_domains);
2126 if (ret)
2127 return ret;
2128
36d527de
CW
2129 if (flush_domains & I915_GEM_GPU_DOMAINS)
2130 i915_gem_process_flushing_list(ring, flush_domains);
2131
88241785 2132 return 0;
54cf91dc
CW
2133}
2134
b93f9cf1 2135static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
a56ba56c 2136{
88241785
CW
2137 int ret;
2138
395b70be 2139 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2140 return 0;
2141
88241785 2142 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2143 ret = i915_gem_flush_ring(ring,
0ac74c6b 2144 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2145 if (ret)
2146 return ret;
2147 }
2148
b93f9cf1
BW
2149 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2150 do_retire);
a56ba56c
CW
2151}
2152
b93f9cf1 2153int i915_gpu_idle(struct drm_device *dev, bool do_retire)
4df2faf4
DV
2154{
2155 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 2156 int ret, i;
4df2faf4 2157
4df2faf4 2158 /* Flush everything onto the inactive list. */
1ec14ad3 2159 for (i = 0; i < I915_NUM_RINGS; i++) {
b93f9cf1 2160 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
1ec14ad3
CW
2161 if (ret)
2162 return ret;
2163 }
4df2faf4 2164
8a1a49f9 2165 return 0;
4df2faf4
DV
2166}
2167
c6642782
DV
2168static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2169 struct intel_ring_buffer *pipelined)
4e901fdc 2170{
05394f39 2171 struct drm_device *dev = obj->base.dev;
4e901fdc 2172 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2173 u32 size = obj->gtt_space->size;
2174 int regnum = obj->fence_reg;
4e901fdc
EA
2175 uint64_t val;
2176
05394f39 2177 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2178 0xfffff000) << 32;
05394f39
CW
2179 val |= obj->gtt_offset & 0xfffff000;
2180 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2181 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2182
05394f39 2183 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2184 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2185 val |= I965_FENCE_REG_VALID;
2186
c6642782
DV
2187 if (pipelined) {
2188 int ret = intel_ring_begin(pipelined, 6);
2189 if (ret)
2190 return ret;
2191
2192 intel_ring_emit(pipelined, MI_NOOP);
2193 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2194 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2195 intel_ring_emit(pipelined, (u32)val);
2196 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2197 intel_ring_emit(pipelined, (u32)(val >> 32));
2198 intel_ring_advance(pipelined);
2199 } else
2200 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2201
2202 return 0;
4e901fdc
EA
2203}
2204
c6642782
DV
2205static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2206 struct intel_ring_buffer *pipelined)
de151cf6 2207{
05394f39 2208 struct drm_device *dev = obj->base.dev;
de151cf6 2209 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2210 u32 size = obj->gtt_space->size;
2211 int regnum = obj->fence_reg;
de151cf6
JB
2212 uint64_t val;
2213
05394f39 2214 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2215 0xfffff000) << 32;
05394f39
CW
2216 val |= obj->gtt_offset & 0xfffff000;
2217 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2218 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2219 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2220 val |= I965_FENCE_REG_VALID;
2221
c6642782
DV
2222 if (pipelined) {
2223 int ret = intel_ring_begin(pipelined, 6);
2224 if (ret)
2225 return ret;
2226
2227 intel_ring_emit(pipelined, MI_NOOP);
2228 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2229 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2230 intel_ring_emit(pipelined, (u32)val);
2231 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2232 intel_ring_emit(pipelined, (u32)(val >> 32));
2233 intel_ring_advance(pipelined);
2234 } else
2235 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2236
2237 return 0;
de151cf6
JB
2238}
2239
c6642782
DV
2240static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2241 struct intel_ring_buffer *pipelined)
de151cf6 2242{
05394f39 2243 struct drm_device *dev = obj->base.dev;
de151cf6 2244 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2245 u32 size = obj->gtt_space->size;
c6642782 2246 u32 fence_reg, val, pitch_val;
0f973f27 2247 int tile_width;
de151cf6 2248
c6642782
DV
2249 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2250 (size & -size) != size ||
2251 (obj->gtt_offset & (size - 1)),
2252 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2253 obj->gtt_offset, obj->map_and_fenceable, size))
2254 return -EINVAL;
de151cf6 2255
c6642782 2256 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2257 tile_width = 128;
de151cf6 2258 else
0f973f27
JB
2259 tile_width = 512;
2260
2261 /* Note: pitch better be a power of two tile widths */
05394f39 2262 pitch_val = obj->stride / tile_width;
0f973f27 2263 pitch_val = ffs(pitch_val) - 1;
de151cf6 2264
05394f39
CW
2265 val = obj->gtt_offset;
2266 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2267 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2268 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2269 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2270 val |= I830_FENCE_REG_VALID;
2271
05394f39 2272 fence_reg = obj->fence_reg;
a00b10c3
CW
2273 if (fence_reg < 8)
2274 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2275 else
a00b10c3 2276 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2277
2278 if (pipelined) {
2279 int ret = intel_ring_begin(pipelined, 4);
2280 if (ret)
2281 return ret;
2282
2283 intel_ring_emit(pipelined, MI_NOOP);
2284 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2285 intel_ring_emit(pipelined, fence_reg);
2286 intel_ring_emit(pipelined, val);
2287 intel_ring_advance(pipelined);
2288 } else
2289 I915_WRITE(fence_reg, val);
2290
2291 return 0;
de151cf6
JB
2292}
2293
c6642782
DV
2294static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2295 struct intel_ring_buffer *pipelined)
de151cf6 2296{
05394f39 2297 struct drm_device *dev = obj->base.dev;
de151cf6 2298 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2299 u32 size = obj->gtt_space->size;
2300 int regnum = obj->fence_reg;
de151cf6
JB
2301 uint32_t val;
2302 uint32_t pitch_val;
2303
c6642782
DV
2304 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2305 (size & -size) != size ||
2306 (obj->gtt_offset & (size - 1)),
2307 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2308 obj->gtt_offset, size))
2309 return -EINVAL;
de151cf6 2310
05394f39 2311 pitch_val = obj->stride / 128;
e76a16de 2312 pitch_val = ffs(pitch_val) - 1;
e76a16de 2313
05394f39
CW
2314 val = obj->gtt_offset;
2315 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2316 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2317 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2318 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2319 val |= I830_FENCE_REG_VALID;
2320
c6642782
DV
2321 if (pipelined) {
2322 int ret = intel_ring_begin(pipelined, 4);
2323 if (ret)
2324 return ret;
2325
2326 intel_ring_emit(pipelined, MI_NOOP);
2327 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2328 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2329 intel_ring_emit(pipelined, val);
2330 intel_ring_advance(pipelined);
2331 } else
2332 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2333
2334 return 0;
de151cf6
JB
2335}
2336
d9e86c0e
CW
2337static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2338{
2339 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2340}
2341
2342static int
2343i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
ce453d81 2344 struct intel_ring_buffer *pipelined)
d9e86c0e
CW
2345{
2346 int ret;
2347
2348 if (obj->fenced_gpu_access) {
88241785 2349 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2350 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2351 0, obj->base.write_domain);
2352 if (ret)
2353 return ret;
2354 }
d9e86c0e
CW
2355
2356 obj->fenced_gpu_access = false;
2357 }
2358
2359 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2360 if (!ring_passed_seqno(obj->last_fenced_ring,
2361 obj->last_fenced_seqno)) {
db53a302 2362 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2363 obj->last_fenced_seqno,
2364 true);
d9e86c0e
CW
2365 if (ret)
2366 return ret;
2367 }
2368
2369 obj->last_fenced_seqno = 0;
2370 obj->last_fenced_ring = NULL;
2371 }
2372
63256ec5
CW
2373 /* Ensure that all CPU reads are completed before installing a fence
2374 * and all writes before removing the fence.
2375 */
2376 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2377 mb();
2378
d9e86c0e
CW
2379 return 0;
2380}
2381
2382int
2383i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2384{
2385 int ret;
2386
2387 if (obj->tiling_mode)
2388 i915_gem_release_mmap(obj);
2389
ce453d81 2390 ret = i915_gem_object_flush_fence(obj, NULL);
d9e86c0e
CW
2391 if (ret)
2392 return ret;
2393
2394 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2395 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1690e1eb
CW
2396
2397 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
d9e86c0e
CW
2398 i915_gem_clear_fence_reg(obj->base.dev,
2399 &dev_priv->fence_regs[obj->fence_reg]);
2400
2401 obj->fence_reg = I915_FENCE_REG_NONE;
2402 }
2403
2404 return 0;
2405}
2406
2407static struct drm_i915_fence_reg *
2408i915_find_fence_reg(struct drm_device *dev,
2409 struct intel_ring_buffer *pipelined)
ae3db24a 2410{
ae3db24a 2411 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2412 struct drm_i915_fence_reg *reg, *first, *avail;
2413 int i;
ae3db24a
DV
2414
2415 /* First try to find a free reg */
d9e86c0e 2416 avail = NULL;
ae3db24a
DV
2417 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2418 reg = &dev_priv->fence_regs[i];
2419 if (!reg->obj)
d9e86c0e 2420 return reg;
ae3db24a 2421
1690e1eb 2422 if (!reg->pin_count)
d9e86c0e 2423 avail = reg;
ae3db24a
DV
2424 }
2425
d9e86c0e
CW
2426 if (avail == NULL)
2427 return NULL;
ae3db24a
DV
2428
2429 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2430 avail = first = NULL;
2431 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2432 if (reg->pin_count)
ae3db24a
DV
2433 continue;
2434
d9e86c0e
CW
2435 if (first == NULL)
2436 first = reg;
2437
2438 if (!pipelined ||
2439 !reg->obj->last_fenced_ring ||
2440 reg->obj->last_fenced_ring == pipelined) {
2441 avail = reg;
2442 break;
2443 }
ae3db24a
DV
2444 }
2445
d9e86c0e
CW
2446 if (avail == NULL)
2447 avail = first;
ae3db24a 2448
a00b10c3 2449 return avail;
ae3db24a
DV
2450}
2451
de151cf6 2452/**
d9e86c0e 2453 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2454 * @obj: object to map through a fence reg
d9e86c0e
CW
2455 * @pipelined: ring on which to queue the change, or NULL for CPU access
2456 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2457 *
2458 * When mapping objects through the GTT, userspace wants to be able to write
2459 * to them without having to worry about swizzling if the object is tiled.
2460 *
2461 * This function walks the fence regs looking for a free one for @obj,
2462 * stealing one if it can't find any.
2463 *
2464 * It then sets up the reg based on the object's properties: address, pitch
2465 * and tiling format.
2466 */
8c4b8c3f 2467int
d9e86c0e 2468i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
ce453d81 2469 struct intel_ring_buffer *pipelined)
de151cf6 2470{
05394f39 2471 struct drm_device *dev = obj->base.dev;
79e53945 2472 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2473 struct drm_i915_fence_reg *reg;
ae3db24a 2474 int ret;
de151cf6 2475
6bda10d1
CW
2476 /* XXX disable pipelining. There are bugs. Shocking. */
2477 pipelined = NULL;
2478
d9e86c0e 2479 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2480 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2481 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2482 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2483
29c5a587
CW
2484 if (obj->tiling_changed) {
2485 ret = i915_gem_object_flush_fence(obj, pipelined);
2486 if (ret)
2487 return ret;
2488
2489 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2490 pipelined = NULL;
2491
2492 if (pipelined) {
2493 reg->setup_seqno =
2494 i915_gem_next_request_seqno(pipelined);
2495 obj->last_fenced_seqno = reg->setup_seqno;
2496 obj->last_fenced_ring = pipelined;
2497 }
2498
2499 goto update;
2500 }
d9e86c0e
CW
2501
2502 if (!pipelined) {
2503 if (reg->setup_seqno) {
2504 if (!ring_passed_seqno(obj->last_fenced_ring,
2505 reg->setup_seqno)) {
db53a302 2506 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2507 reg->setup_seqno,
2508 true);
d9e86c0e
CW
2509 if (ret)
2510 return ret;
2511 }
2512
2513 reg->setup_seqno = 0;
2514 }
2515 } else if (obj->last_fenced_ring &&
2516 obj->last_fenced_ring != pipelined) {
ce453d81 2517 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e
CW
2518 if (ret)
2519 return ret;
d9e86c0e
CW
2520 }
2521
a09ba7fa
EA
2522 return 0;
2523 }
2524
d9e86c0e
CW
2525 reg = i915_find_fence_reg(dev, pipelined);
2526 if (reg == NULL)
39965b37 2527 return -EDEADLK;
de151cf6 2528
ce453d81 2529 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e 2530 if (ret)
ae3db24a 2531 return ret;
de151cf6 2532
d9e86c0e
CW
2533 if (reg->obj) {
2534 struct drm_i915_gem_object *old = reg->obj;
2535
2536 drm_gem_object_reference(&old->base);
2537
2538 if (old->tiling_mode)
2539 i915_gem_release_mmap(old);
2540
ce453d81 2541 ret = i915_gem_object_flush_fence(old, pipelined);
d9e86c0e
CW
2542 if (ret) {
2543 drm_gem_object_unreference(&old->base);
2544 return ret;
2545 }
2546
2547 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2548 pipelined = NULL;
2549
2550 old->fence_reg = I915_FENCE_REG_NONE;
2551 old->last_fenced_ring = pipelined;
2552 old->last_fenced_seqno =
db53a302 2553 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2554
2555 drm_gem_object_unreference(&old->base);
2556 } else if (obj->last_fenced_seqno == 0)
2557 pipelined = NULL;
a09ba7fa 2558
de151cf6 2559 reg->obj = obj;
d9e86c0e
CW
2560 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2561 obj->fence_reg = reg - dev_priv->fence_regs;
2562 obj->last_fenced_ring = pipelined;
de151cf6 2563
d9e86c0e 2564 reg->setup_seqno =
db53a302 2565 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2566 obj->last_fenced_seqno = reg->setup_seqno;
2567
2568update:
2569 obj->tiling_changed = false;
e259befd 2570 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2571 case 7:
e259befd 2572 case 6:
c6642782 2573 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2574 break;
2575 case 5:
2576 case 4:
c6642782 2577 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2578 break;
2579 case 3:
c6642782 2580 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2581 break;
2582 case 2:
c6642782 2583 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2584 break;
2585 }
d9ddcb96 2586
c6642782 2587 return ret;
de151cf6
JB
2588}
2589
2590/**
2591 * i915_gem_clear_fence_reg - clear out fence register info
2592 * @obj: object to clear
2593 *
2594 * Zeroes out the fence register itself and clears out the associated
05394f39 2595 * data structures in dev_priv and obj.
de151cf6
JB
2596 */
2597static void
d9e86c0e
CW
2598i915_gem_clear_fence_reg(struct drm_device *dev,
2599 struct drm_i915_fence_reg *reg)
de151cf6 2600{
79e53945 2601 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2602 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2603
e259befd 2604 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2605 case 7:
e259befd 2606 case 6:
d9e86c0e 2607 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2608 break;
2609 case 5:
2610 case 4:
d9e86c0e 2611 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2612 break;
2613 case 3:
d9e86c0e
CW
2614 if (fence_reg >= 8)
2615 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2616 else
e259befd 2617 case 2:
d9e86c0e 2618 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2619
2620 I915_WRITE(fence_reg, 0);
e259befd 2621 break;
dc529a4f 2622 }
de151cf6 2623
007cc8ac 2624 list_del_init(&reg->lru_list);
d9e86c0e
CW
2625 reg->obj = NULL;
2626 reg->setup_seqno = 0;
1690e1eb 2627 reg->pin_count = 0;
52dc7d32
CW
2628}
2629
673a394b
EA
2630/**
2631 * Finds free space in the GTT aperture and binds the object there.
2632 */
2633static int
05394f39 2634i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2635 unsigned alignment,
75e9e915 2636 bool map_and_fenceable)
673a394b 2637{
05394f39 2638 struct drm_device *dev = obj->base.dev;
673a394b 2639 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2640 struct drm_mm_node *free_space;
a00b10c3 2641 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2642 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2643 bool mappable, fenceable;
07f73f69 2644 int ret;
673a394b 2645
05394f39 2646 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2647 DRM_ERROR("Attempting to bind a purgeable object\n");
2648 return -EINVAL;
2649 }
2650
e28f8711
CW
2651 fence_size = i915_gem_get_gtt_size(dev,
2652 obj->base.size,
2653 obj->tiling_mode);
2654 fence_alignment = i915_gem_get_gtt_alignment(dev,
2655 obj->base.size,
2656 obj->tiling_mode);
2657 unfenced_alignment =
2658 i915_gem_get_unfenced_gtt_alignment(dev,
2659 obj->base.size,
2660 obj->tiling_mode);
a00b10c3 2661
673a394b 2662 if (alignment == 0)
5e783301
DV
2663 alignment = map_and_fenceable ? fence_alignment :
2664 unfenced_alignment;
75e9e915 2665 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2666 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2667 return -EINVAL;
2668 }
2669
05394f39 2670 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2671
654fc607
CW
2672 /* If the object is bigger than the entire aperture, reject it early
2673 * before evicting everything in a vain attempt to find space.
2674 */
05394f39 2675 if (obj->base.size >
75e9e915 2676 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2677 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2678 return -E2BIG;
2679 }
2680
673a394b 2681 search_free:
75e9e915 2682 if (map_and_fenceable)
920afa77
DV
2683 free_space =
2684 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2685 size, alignment, 0,
920afa77
DV
2686 dev_priv->mm.gtt_mappable_end,
2687 0);
2688 else
2689 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2690 size, alignment, 0);
920afa77
DV
2691
2692 if (free_space != NULL) {
75e9e915 2693 if (map_and_fenceable)
05394f39 2694 obj->gtt_space =
920afa77 2695 drm_mm_get_block_range_generic(free_space,
a00b10c3 2696 size, alignment, 0,
920afa77
DV
2697 dev_priv->mm.gtt_mappable_end,
2698 0);
2699 else
05394f39 2700 obj->gtt_space =
a00b10c3 2701 drm_mm_get_block(free_space, size, alignment);
920afa77 2702 }
05394f39 2703 if (obj->gtt_space == NULL) {
673a394b
EA
2704 /* If the gtt is empty and we're still having trouble
2705 * fitting our object in, we're out of memory.
2706 */
75e9e915
DV
2707 ret = i915_gem_evict_something(dev, size, alignment,
2708 map_and_fenceable);
9731129c 2709 if (ret)
673a394b 2710 return ret;
9731129c 2711
673a394b
EA
2712 goto search_free;
2713 }
2714
e5281ccd 2715 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2716 if (ret) {
05394f39
CW
2717 drm_mm_put_block(obj->gtt_space);
2718 obj->gtt_space = NULL;
07f73f69
CW
2719
2720 if (ret == -ENOMEM) {
809b6334
CW
2721 /* first try to reclaim some memory by clearing the GTT */
2722 ret = i915_gem_evict_everything(dev, false);
07f73f69 2723 if (ret) {
07f73f69 2724 /* now try to shrink everyone else */
4bdadb97
CW
2725 if (gfpmask) {
2726 gfpmask = 0;
2727 goto search_free;
07f73f69
CW
2728 }
2729
809b6334 2730 return -ENOMEM;
07f73f69
CW
2731 }
2732
2733 goto search_free;
2734 }
2735
673a394b
EA
2736 return ret;
2737 }
2738
74163907 2739 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2740 if (ret) {
e5281ccd 2741 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2742 drm_mm_put_block(obj->gtt_space);
2743 obj->gtt_space = NULL;
07f73f69 2744
809b6334 2745 if (i915_gem_evict_everything(dev, false))
07f73f69 2746 return ret;
07f73f69
CW
2747
2748 goto search_free;
673a394b 2749 }
0ebb9829
DV
2750
2751 if (!dev_priv->mm.aliasing_ppgtt)
2752 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2753
6299f992 2754 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2755 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2756
673a394b
EA
2757 /* Assert that the object is not currently in any GPU domain. As it
2758 * wasn't in the GTT, there shouldn't be any way it could have been in
2759 * a GPU cache
2760 */
05394f39
CW
2761 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2762 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2763
6299f992 2764 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2765
75e9e915 2766 fenceable =
05394f39 2767 obj->gtt_space->size == fence_size &&
0206e353 2768 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2769
75e9e915 2770 mappable =
05394f39 2771 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2772
05394f39 2773 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2774
db53a302 2775 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2776 return 0;
2777}
2778
2779void
05394f39 2780i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2781{
673a394b
EA
2782 /* If we don't have a page list set up, then we're not pinned
2783 * to GPU, and we can ignore the cache flush because it'll happen
2784 * again at bind time.
2785 */
05394f39 2786 if (obj->pages == NULL)
673a394b
EA
2787 return;
2788
9c23f7fc
CW
2789 /* If the GPU is snooping the contents of the CPU cache,
2790 * we do not need to manually clear the CPU cache lines. However,
2791 * the caches are only snooped when the render cache is
2792 * flushed/invalidated. As we always have to emit invalidations
2793 * and flushes when moving into and out of the RENDER domain, correct
2794 * snooping behaviour occurs naturally as the result of our domain
2795 * tracking.
2796 */
2797 if (obj->cache_level != I915_CACHE_NONE)
2798 return;
2799
1c5d22f7 2800 trace_i915_gem_object_clflush(obj);
cfa16a0d 2801
05394f39 2802 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2803}
2804
e47c68e9 2805/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2806static int
3619df03 2807i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2808{
05394f39 2809 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2810 return 0;
e47c68e9
EA
2811
2812 /* Queue the GPU write cache flushing we need. */
db53a302 2813 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2814}
2815
2816/** Flushes the GTT write domain for the object if it's dirty. */
2817static void
05394f39 2818i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2819{
1c5d22f7
CW
2820 uint32_t old_write_domain;
2821
05394f39 2822 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2823 return;
2824
63256ec5 2825 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2826 * to it immediately go to main memory as far as we know, so there's
2827 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2828 *
2829 * However, we do have to enforce the order so that all writes through
2830 * the GTT land before any writes to the device, such as updates to
2831 * the GATT itself.
e47c68e9 2832 */
63256ec5
CW
2833 wmb();
2834
05394f39
CW
2835 old_write_domain = obj->base.write_domain;
2836 obj->base.write_domain = 0;
1c5d22f7
CW
2837
2838 trace_i915_gem_object_change_domain(obj,
05394f39 2839 obj->base.read_domains,
1c5d22f7 2840 old_write_domain);
e47c68e9
EA
2841}
2842
2843/** Flushes the CPU write domain for the object if it's dirty. */
2844static void
05394f39 2845i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2846{
1c5d22f7 2847 uint32_t old_write_domain;
e47c68e9 2848
05394f39 2849 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2850 return;
2851
2852 i915_gem_clflush_object(obj);
40ce6575 2853 intel_gtt_chipset_flush();
05394f39
CW
2854 old_write_domain = obj->base.write_domain;
2855 obj->base.write_domain = 0;
1c5d22f7
CW
2856
2857 trace_i915_gem_object_change_domain(obj,
05394f39 2858 obj->base.read_domains,
1c5d22f7 2859 old_write_domain);
e47c68e9
EA
2860}
2861
2ef7eeaa
EA
2862/**
2863 * Moves a single object to the GTT read, and possibly write domain.
2864 *
2865 * This function returns when the move is complete, including waiting on
2866 * flushes to occur.
2867 */
79e53945 2868int
2021746e 2869i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2870{
1c5d22f7 2871 uint32_t old_write_domain, old_read_domains;
e47c68e9 2872 int ret;
2ef7eeaa 2873
02354392 2874 /* Not valid to be called on unbound objects. */
05394f39 2875 if (obj->gtt_space == NULL)
02354392
EA
2876 return -EINVAL;
2877
8d7e3de1
CW
2878 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2879 return 0;
2880
88241785
CW
2881 ret = i915_gem_object_flush_gpu_write_domain(obj);
2882 if (ret)
2883 return ret;
2884
87ca9c8a 2885 if (obj->pending_gpu_write || write) {
ce453d81 2886 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2887 if (ret)
2888 return ret;
2889 }
2dafb1e0 2890
7213342d 2891 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2892
05394f39
CW
2893 old_write_domain = obj->base.write_domain;
2894 old_read_domains = obj->base.read_domains;
1c5d22f7 2895
e47c68e9
EA
2896 /* It should now be out of any other write domains, and we can update
2897 * the domain values for our changes.
2898 */
05394f39
CW
2899 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2900 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2901 if (write) {
05394f39
CW
2902 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2903 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2904 obj->dirty = 1;
2ef7eeaa
EA
2905 }
2906
1c5d22f7
CW
2907 trace_i915_gem_object_change_domain(obj,
2908 old_read_domains,
2909 old_write_domain);
2910
e47c68e9
EA
2911 return 0;
2912}
2913
e4ffd173
CW
2914int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2915 enum i915_cache_level cache_level)
2916{
7bddb01f
DV
2917 struct drm_device *dev = obj->base.dev;
2918 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2919 int ret;
2920
2921 if (obj->cache_level == cache_level)
2922 return 0;
2923
2924 if (obj->pin_count) {
2925 DRM_DEBUG("can not change the cache level of pinned objects\n");
2926 return -EBUSY;
2927 }
2928
2929 if (obj->gtt_space) {
2930 ret = i915_gem_object_finish_gpu(obj);
2931 if (ret)
2932 return ret;
2933
2934 i915_gem_object_finish_gtt(obj);
2935
2936 /* Before SandyBridge, you could not use tiling or fence
2937 * registers with snooped memory, so relinquish any fences
2938 * currently pointing to our region in the aperture.
2939 */
2940 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2941 ret = i915_gem_object_put_fence(obj);
2942 if (ret)
2943 return ret;
2944 }
2945
74898d7e
DV
2946 if (obj->has_global_gtt_mapping)
2947 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2948 if (obj->has_aliasing_ppgtt_mapping)
2949 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2950 obj, cache_level);
e4ffd173
CW
2951 }
2952
2953 if (cache_level == I915_CACHE_NONE) {
2954 u32 old_read_domains, old_write_domain;
2955
2956 /* If we're coming from LLC cached, then we haven't
2957 * actually been tracking whether the data is in the
2958 * CPU cache or not, since we only allow one bit set
2959 * in obj->write_domain and have been skipping the clflushes.
2960 * Just set it to the CPU cache for now.
2961 */
2962 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2963 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2964
2965 old_read_domains = obj->base.read_domains;
2966 old_write_domain = obj->base.write_domain;
2967
2968 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2969 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2970
2971 trace_i915_gem_object_change_domain(obj,
2972 old_read_domains,
2973 old_write_domain);
2974 }
2975
2976 obj->cache_level = cache_level;
2977 return 0;
2978}
2979
b9241ea3 2980/*
2da3b9b9
CW
2981 * Prepare buffer for display plane (scanout, cursors, etc).
2982 * Can be called from an uninterruptible phase (modesetting) and allows
2983 * any flushes to be pipelined (for pageflips).
2984 *
2985 * For the display plane, we want to be in the GTT but out of any write
2986 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
2987 * ability to pipeline the waits, pinning and any additional subtleties
2988 * that may differentiate the display plane from ordinary buffers.
b9241ea3
ZW
2989 */
2990int
2da3b9b9
CW
2991i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2992 u32 alignment,
919926ae 2993 struct intel_ring_buffer *pipelined)
b9241ea3 2994{
2da3b9b9 2995 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2996 int ret;
2997
88241785
CW
2998 ret = i915_gem_object_flush_gpu_write_domain(obj);
2999 if (ret)
3000 return ret;
3001
0be73284 3002 if (pipelined != obj->ring) {
ce453d81 3003 ret = i915_gem_object_wait_rendering(obj);
f0b69efc 3004 if (ret == -ERESTARTSYS)
b9241ea3
ZW
3005 return ret;
3006 }
3007
a7ef0640
EA
3008 /* The display engine is not coherent with the LLC cache on gen6. As
3009 * a result, we make sure that the pinning that is about to occur is
3010 * done with uncached PTEs. This is lowest common denominator for all
3011 * chipsets.
3012 *
3013 * However for gen6+, we could do better by using the GFDT bit instead
3014 * of uncaching, which would allow us to flush all the LLC-cached data
3015 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3016 */
3017 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3018 if (ret)
3019 return ret;
3020
2da3b9b9
CW
3021 /* As the user may map the buffer once pinned in the display plane
3022 * (e.g. libkms for the bootup splash), we have to ensure that we
3023 * always use map_and_fenceable for all scanout buffers.
3024 */
3025 ret = i915_gem_object_pin(obj, alignment, true);
3026 if (ret)
3027 return ret;
3028
b118c1e3
CW
3029 i915_gem_object_flush_cpu_write_domain(obj);
3030
2da3b9b9 3031 old_write_domain = obj->base.write_domain;
05394f39 3032 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3033
3034 /* It should now be out of any other write domains, and we can update
3035 * the domain values for our changes.
3036 */
3037 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3038 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3039
3040 trace_i915_gem_object_change_domain(obj,
3041 old_read_domains,
2da3b9b9 3042 old_write_domain);
b9241ea3
ZW
3043
3044 return 0;
3045}
3046
85345517 3047int
a8198eea 3048i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3049{
88241785
CW
3050 int ret;
3051
a8198eea 3052 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3053 return 0;
3054
88241785 3055 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3056 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3057 if (ret)
3058 return ret;
3059 }
85345517 3060
c501ae7f
CW
3061 ret = i915_gem_object_wait_rendering(obj);
3062 if (ret)
3063 return ret;
3064
a8198eea
CW
3065 /* Ensure that we invalidate the GPU's caches and TLBs. */
3066 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3067 return 0;
85345517
CW
3068}
3069
e47c68e9
EA
3070/**
3071 * Moves a single object to the CPU read, and possibly write domain.
3072 *
3073 * This function returns when the move is complete, including waiting on
3074 * flushes to occur.
3075 */
3076static int
919926ae 3077i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3078{
1c5d22f7 3079 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3080 int ret;
3081
8d7e3de1
CW
3082 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3083 return 0;
3084
88241785
CW
3085 ret = i915_gem_object_flush_gpu_write_domain(obj);
3086 if (ret)
3087 return ret;
3088
ce453d81 3089 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3090 if (ret)
e47c68e9 3091 return ret;
2ef7eeaa 3092
e47c68e9 3093 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3094
e47c68e9
EA
3095 /* If we have a partially-valid cache of the object in the CPU,
3096 * finish invalidating it and free the per-page flags.
2ef7eeaa 3097 */
e47c68e9 3098 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3099
05394f39
CW
3100 old_write_domain = obj->base.write_domain;
3101 old_read_domains = obj->base.read_domains;
1c5d22f7 3102
e47c68e9 3103 /* Flush the CPU cache if it's still invalid. */
05394f39 3104 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3105 i915_gem_clflush_object(obj);
2ef7eeaa 3106
05394f39 3107 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3108 }
3109
3110 /* It should now be out of any other write domains, and we can update
3111 * the domain values for our changes.
3112 */
05394f39 3113 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3114
3115 /* If we're writing through the CPU, then the GPU read domains will
3116 * need to be invalidated at next use.
3117 */
3118 if (write) {
05394f39
CW
3119 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3120 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3121 }
2ef7eeaa 3122
1c5d22f7
CW
3123 trace_i915_gem_object_change_domain(obj,
3124 old_read_domains,
3125 old_write_domain);
3126
2ef7eeaa
EA
3127 return 0;
3128}
3129
673a394b 3130/**
e47c68e9 3131 * Moves the object from a partially CPU read to a full one.
673a394b 3132 *
e47c68e9
EA
3133 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3134 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3135 */
e47c68e9 3136static void
05394f39 3137i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3138{
05394f39 3139 if (!obj->page_cpu_valid)
e47c68e9
EA
3140 return;
3141
3142 /* If we're partially in the CPU read domain, finish moving it in.
3143 */
05394f39 3144 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3145 int i;
3146
05394f39
CW
3147 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3148 if (obj->page_cpu_valid[i])
e47c68e9 3149 continue;
05394f39 3150 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3151 }
e47c68e9
EA
3152 }
3153
3154 /* Free the page_cpu_valid mappings which are now stale, whether
3155 * or not we've got I915_GEM_DOMAIN_CPU.
3156 */
05394f39
CW
3157 kfree(obj->page_cpu_valid);
3158 obj->page_cpu_valid = NULL;
e47c68e9
EA
3159}
3160
3161/**
3162 * Set the CPU read domain on a range of the object.
3163 *
3164 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3165 * not entirely valid. The page_cpu_valid member of the object flags which
3166 * pages have been flushed, and will be respected by
3167 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3168 * of the whole object.
3169 *
3170 * This function returns when the move is complete, including waiting on
3171 * flushes to occur.
3172 */
3173static int
05394f39 3174i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3175 uint64_t offset, uint64_t size)
3176{
1c5d22f7 3177 uint32_t old_read_domains;
e47c68e9 3178 int i, ret;
673a394b 3179
05394f39 3180 if (offset == 0 && size == obj->base.size)
e47c68e9 3181 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3182
88241785
CW
3183 ret = i915_gem_object_flush_gpu_write_domain(obj);
3184 if (ret)
3185 return ret;
3186
ce453d81 3187 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3188 if (ret)
6a47baa6 3189 return ret;
de18a29e 3190
e47c68e9
EA
3191 i915_gem_object_flush_gtt_write_domain(obj);
3192
3193 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3194 if (obj->page_cpu_valid == NULL &&
3195 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3196 return 0;
673a394b 3197
e47c68e9
EA
3198 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3199 * newly adding I915_GEM_DOMAIN_CPU
3200 */
05394f39
CW
3201 if (obj->page_cpu_valid == NULL) {
3202 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3203 GFP_KERNEL);
3204 if (obj->page_cpu_valid == NULL)
e47c68e9 3205 return -ENOMEM;
05394f39
CW
3206 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3207 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3208
3209 /* Flush the cache on any pages that are still invalid from the CPU's
3210 * perspective.
3211 */
e47c68e9
EA
3212 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3213 i++) {
05394f39 3214 if (obj->page_cpu_valid[i])
673a394b
EA
3215 continue;
3216
05394f39 3217 drm_clflush_pages(obj->pages + i, 1);
673a394b 3218
05394f39 3219 obj->page_cpu_valid[i] = 1;
673a394b
EA
3220 }
3221
e47c68e9
EA
3222 /* It should now be out of any other write domains, and we can update
3223 * the domain values for our changes.
3224 */
05394f39 3225 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3226
05394f39
CW
3227 old_read_domains = obj->base.read_domains;
3228 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3229
1c5d22f7
CW
3230 trace_i915_gem_object_change_domain(obj,
3231 old_read_domains,
05394f39 3232 obj->base.write_domain);
1c5d22f7 3233
673a394b
EA
3234 return 0;
3235}
3236
673a394b
EA
3237/* Throttle our rendering by waiting until the ring has completed our requests
3238 * emitted over 20 msec ago.
3239 *
b962442e
EA
3240 * Note that if we were to use the current jiffies each time around the loop,
3241 * we wouldn't escape the function with any frames outstanding if the time to
3242 * render a frame was over 20ms.
3243 *
673a394b
EA
3244 * This should get us reasonable parallelism between CPU and GPU but also
3245 * relatively low latency when blocking on a particular request to finish.
3246 */
40a5f0de 3247static int
f787a5f5 3248i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3249{
f787a5f5
CW
3250 struct drm_i915_private *dev_priv = dev->dev_private;
3251 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3252 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3253 struct drm_i915_gem_request *request;
3254 struct intel_ring_buffer *ring = NULL;
3255 u32 seqno = 0;
3256 int ret;
93533c29 3257
e110e8d6
CW
3258 if (atomic_read(&dev_priv->mm.wedged))
3259 return -EIO;
3260
1c25595f 3261 spin_lock(&file_priv->mm.lock);
f787a5f5 3262 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3263 if (time_after_eq(request->emitted_jiffies, recent_enough))
3264 break;
40a5f0de 3265
f787a5f5
CW
3266 ring = request->ring;
3267 seqno = request->seqno;
b962442e 3268 }
1c25595f 3269 spin_unlock(&file_priv->mm.lock);
40a5f0de 3270
f787a5f5
CW
3271 if (seqno == 0)
3272 return 0;
2bc43b5c 3273
f787a5f5 3274 ret = 0;
78501eac 3275 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3276 /* And wait for the seqno passing without holding any locks and
3277 * causing extra latency for others. This is safe as the irq
3278 * generation is designed to be run atomically and so is
3279 * lockless.
3280 */
b13c2b96
CW
3281 if (ring->irq_get(ring)) {
3282 ret = wait_event_interruptible(ring->irq_queue,
3283 i915_seqno_passed(ring->get_seqno(ring), seqno)
3284 || atomic_read(&dev_priv->mm.wedged));
3285 ring->irq_put(ring);
40a5f0de 3286
b13c2b96
CW
3287 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3288 ret = -EIO;
e959b5db
EA
3289 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3290 seqno) ||
7ea29b13
EA
3291 atomic_read(&dev_priv->mm.wedged), 3000)) {
3292 ret = -EBUSY;
b13c2b96 3293 }
40a5f0de
EA
3294 }
3295
f787a5f5
CW
3296 if (ret == 0)
3297 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3298
3299 return ret;
3300}
3301
673a394b 3302int
05394f39
CW
3303i915_gem_object_pin(struct drm_i915_gem_object *obj,
3304 uint32_t alignment,
75e9e915 3305 bool map_and_fenceable)
673a394b 3306{
05394f39 3307 struct drm_device *dev = obj->base.dev;
f13d3f73 3308 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3309 int ret;
3310
05394f39 3311 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3312 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3313
05394f39
CW
3314 if (obj->gtt_space != NULL) {
3315 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3316 (map_and_fenceable && !obj->map_and_fenceable)) {
3317 WARN(obj->pin_count,
ae7d49d8 3318 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3319 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3320 " obj->map_and_fenceable=%d\n",
05394f39 3321 obj->gtt_offset, alignment,
75e9e915 3322 map_and_fenceable,
05394f39 3323 obj->map_and_fenceable);
ac0c6b5a
CW
3324 ret = i915_gem_object_unbind(obj);
3325 if (ret)
3326 return ret;
3327 }
3328 }
3329
05394f39 3330 if (obj->gtt_space == NULL) {
a00b10c3 3331 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3332 map_and_fenceable);
9731129c 3333 if (ret)
673a394b 3334 return ret;
22c344e9 3335 }
76446cac 3336
74898d7e
DV
3337 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3338 i915_gem_gtt_bind_object(obj, obj->cache_level);
3339
05394f39 3340 if (obj->pin_count++ == 0) {
05394f39
CW
3341 if (!obj->active)
3342 list_move_tail(&obj->mm_list,
f13d3f73 3343 &dev_priv->mm.pinned_list);
673a394b 3344 }
6299f992 3345 obj->pin_mappable |= map_and_fenceable;
673a394b 3346
23bc5982 3347 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3348 return 0;
3349}
3350
3351void
05394f39 3352i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3353{
05394f39 3354 struct drm_device *dev = obj->base.dev;
673a394b 3355 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3356
23bc5982 3357 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3358 BUG_ON(obj->pin_count == 0);
3359 BUG_ON(obj->gtt_space == NULL);
673a394b 3360
05394f39
CW
3361 if (--obj->pin_count == 0) {
3362 if (!obj->active)
3363 list_move_tail(&obj->mm_list,
673a394b 3364 &dev_priv->mm.inactive_list);
6299f992 3365 obj->pin_mappable = false;
673a394b 3366 }
23bc5982 3367 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3368}
3369
3370int
3371i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3372 struct drm_file *file)
673a394b
EA
3373{
3374 struct drm_i915_gem_pin *args = data;
05394f39 3375 struct drm_i915_gem_object *obj;
673a394b
EA
3376 int ret;
3377
1d7cfea1
CW
3378 ret = i915_mutex_lock_interruptible(dev);
3379 if (ret)
3380 return ret;
673a394b 3381
05394f39 3382 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3383 if (&obj->base == NULL) {
1d7cfea1
CW
3384 ret = -ENOENT;
3385 goto unlock;
673a394b 3386 }
673a394b 3387
05394f39 3388 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3389 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3390 ret = -EINVAL;
3391 goto out;
3ef94daa
CW
3392 }
3393
05394f39 3394 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3395 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3396 args->handle);
1d7cfea1
CW
3397 ret = -EINVAL;
3398 goto out;
79e53945
JB
3399 }
3400
05394f39
CW
3401 obj->user_pin_count++;
3402 obj->pin_filp = file;
3403 if (obj->user_pin_count == 1) {
75e9e915 3404 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3405 if (ret)
3406 goto out;
673a394b
EA
3407 }
3408
3409 /* XXX - flush the CPU caches for pinned objects
3410 * as the X server doesn't manage domains yet
3411 */
e47c68e9 3412 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3413 args->offset = obj->gtt_offset;
1d7cfea1 3414out:
05394f39 3415 drm_gem_object_unreference(&obj->base);
1d7cfea1 3416unlock:
673a394b 3417 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3418 return ret;
673a394b
EA
3419}
3420
3421int
3422i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3423 struct drm_file *file)
673a394b
EA
3424{
3425 struct drm_i915_gem_pin *args = data;
05394f39 3426 struct drm_i915_gem_object *obj;
76c1dec1 3427 int ret;
673a394b 3428
1d7cfea1
CW
3429 ret = i915_mutex_lock_interruptible(dev);
3430 if (ret)
3431 return ret;
673a394b 3432
05394f39 3433 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3434 if (&obj->base == NULL) {
1d7cfea1
CW
3435 ret = -ENOENT;
3436 goto unlock;
673a394b 3437 }
76c1dec1 3438
05394f39 3439 if (obj->pin_filp != file) {
79e53945
JB
3440 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3441 args->handle);
1d7cfea1
CW
3442 ret = -EINVAL;
3443 goto out;
79e53945 3444 }
05394f39
CW
3445 obj->user_pin_count--;
3446 if (obj->user_pin_count == 0) {
3447 obj->pin_filp = NULL;
79e53945
JB
3448 i915_gem_object_unpin(obj);
3449 }
673a394b 3450
1d7cfea1 3451out:
05394f39 3452 drm_gem_object_unreference(&obj->base);
1d7cfea1 3453unlock:
673a394b 3454 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3455 return ret;
673a394b
EA
3456}
3457
3458int
3459i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3460 struct drm_file *file)
673a394b
EA
3461{
3462 struct drm_i915_gem_busy *args = data;
05394f39 3463 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3464 int ret;
3465
76c1dec1 3466 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3467 if (ret)
76c1dec1 3468 return ret;
673a394b 3469
05394f39 3470 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3471 if (&obj->base == NULL) {
1d7cfea1
CW
3472 ret = -ENOENT;
3473 goto unlock;
673a394b 3474 }
d1b851fc 3475
0be555b6
CW
3476 /* Count all active objects as busy, even if they are currently not used
3477 * by the gpu. Users of this interface expect objects to eventually
3478 * become non-busy without any further actions, therefore emit any
3479 * necessary flushes here.
c4de0a5d 3480 */
05394f39 3481 args->busy = obj->active;
0be555b6
CW
3482 if (args->busy) {
3483 /* Unconditionally flush objects, even when the gpu still uses this
3484 * object. Userspace calling this function indicates that it wants to
3485 * use this buffer rather sooner than later, so issuing the required
3486 * flush earlier is beneficial.
3487 */
1a1c6976 3488 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3489 ret = i915_gem_flush_ring(obj->ring,
88241785 3490 0, obj->base.write_domain);
1a1c6976
CW
3491 } else if (obj->ring->outstanding_lazy_request ==
3492 obj->last_rendering_seqno) {
3493 struct drm_i915_gem_request *request;
3494
7a194876
CW
3495 /* This ring is not being cleared by active usage,
3496 * so emit a request to do so.
3497 */
1a1c6976 3498 request = kzalloc(sizeof(*request), GFP_KERNEL);
457eafce 3499 if (request) {
0206e353 3500 ret = i915_add_request(obj->ring, NULL, request);
457eafce
RM
3501 if (ret)
3502 kfree(request);
3503 } else
7a194876
CW
3504 ret = -ENOMEM;
3505 }
0be555b6
CW
3506
3507 /* Update the active list for the hardware's current position.
3508 * Otherwise this only updates on a delayed timer or when irqs
3509 * are actually unmasked, and our working set ends up being
3510 * larger than required.
3511 */
db53a302 3512 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3513
05394f39 3514 args->busy = obj->active;
0be555b6 3515 }
673a394b 3516
05394f39 3517 drm_gem_object_unreference(&obj->base);
1d7cfea1 3518unlock:
673a394b 3519 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3520 return ret;
673a394b
EA
3521}
3522
3523int
3524i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3525 struct drm_file *file_priv)
3526{
0206e353 3527 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3528}
3529
3ef94daa
CW
3530int
3531i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3532 struct drm_file *file_priv)
3533{
3534 struct drm_i915_gem_madvise *args = data;
05394f39 3535 struct drm_i915_gem_object *obj;
76c1dec1 3536 int ret;
3ef94daa
CW
3537
3538 switch (args->madv) {
3539 case I915_MADV_DONTNEED:
3540 case I915_MADV_WILLNEED:
3541 break;
3542 default:
3543 return -EINVAL;
3544 }
3545
1d7cfea1
CW
3546 ret = i915_mutex_lock_interruptible(dev);
3547 if (ret)
3548 return ret;
3549
05394f39 3550 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3551 if (&obj->base == NULL) {
1d7cfea1
CW
3552 ret = -ENOENT;
3553 goto unlock;
3ef94daa 3554 }
3ef94daa 3555
05394f39 3556 if (obj->pin_count) {
1d7cfea1
CW
3557 ret = -EINVAL;
3558 goto out;
3ef94daa
CW
3559 }
3560
05394f39
CW
3561 if (obj->madv != __I915_MADV_PURGED)
3562 obj->madv = args->madv;
3ef94daa 3563
2d7ef395 3564 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3565 if (i915_gem_object_is_purgeable(obj) &&
3566 obj->gtt_space == NULL)
2d7ef395
CW
3567 i915_gem_object_truncate(obj);
3568
05394f39 3569 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3570
1d7cfea1 3571out:
05394f39 3572 drm_gem_object_unreference(&obj->base);
1d7cfea1 3573unlock:
3ef94daa 3574 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3575 return ret;
3ef94daa
CW
3576}
3577
05394f39
CW
3578struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3579 size_t size)
ac52bc56 3580{
73aa808f 3581 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3582 struct drm_i915_gem_object *obj;
5949eac4 3583 struct address_space *mapping;
ac52bc56 3584
c397b908
DV
3585 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3586 if (obj == NULL)
3587 return NULL;
673a394b 3588
c397b908
DV
3589 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3590 kfree(obj);
3591 return NULL;
3592 }
673a394b 3593
5949eac4
HD
3594 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3595 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3596
73aa808f
CW
3597 i915_gem_info_add_obj(dev_priv, size);
3598
c397b908
DV
3599 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3600 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3601
3d29b842
ED
3602 if (HAS_LLC(dev)) {
3603 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3604 * cache) for about a 10% performance improvement
3605 * compared to uncached. Graphics requests other than
3606 * display scanout are coherent with the CPU in
3607 * accessing this cache. This means in this mode we
3608 * don't need to clflush on the CPU side, and on the
3609 * GPU side we only need to flush internal caches to
3610 * get data visible to the CPU.
3611 *
3612 * However, we maintain the display planes as UC, and so
3613 * need to rebind when first used as such.
3614 */
3615 obj->cache_level = I915_CACHE_LLC;
3616 } else
3617 obj->cache_level = I915_CACHE_NONE;
3618
62b8b215 3619 obj->base.driver_private = NULL;
c397b908 3620 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3621 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3622 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3623 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3624 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3625 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3626 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3627 /* Avoid an unnecessary call to unbind on the first bind. */
3628 obj->map_and_fenceable = true;
de151cf6 3629
05394f39 3630 return obj;
c397b908
DV
3631}
3632
3633int i915_gem_init_object(struct drm_gem_object *obj)
3634{
3635 BUG();
de151cf6 3636
673a394b
EA
3637 return 0;
3638}
3639
05394f39 3640static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3641{
05394f39 3642 struct drm_device *dev = obj->base.dev;
be72615b 3643 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3644 int ret;
673a394b 3645
be72615b
CW
3646 ret = i915_gem_object_unbind(obj);
3647 if (ret == -ERESTARTSYS) {
05394f39 3648 list_move(&obj->mm_list,
be72615b
CW
3649 &dev_priv->mm.deferred_free_list);
3650 return;
3651 }
673a394b 3652
26e12f89
CW
3653 trace_i915_gem_object_destroy(obj);
3654
05394f39 3655 if (obj->base.map_list.map)
b464e9a2 3656 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3657
05394f39
CW
3658 drm_gem_object_release(&obj->base);
3659 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3660
05394f39
CW
3661 kfree(obj->page_cpu_valid);
3662 kfree(obj->bit_17);
3663 kfree(obj);
673a394b
EA
3664}
3665
05394f39 3666void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3667{
05394f39
CW
3668 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3669 struct drm_device *dev = obj->base.dev;
be72615b 3670
05394f39 3671 while (obj->pin_count > 0)
be72615b
CW
3672 i915_gem_object_unpin(obj);
3673
05394f39 3674 if (obj->phys_obj)
be72615b
CW
3675 i915_gem_detach_phys_object(dev, obj);
3676
3677 i915_gem_free_object_tail(obj);
3678}
3679
29105ccc
CW
3680int
3681i915_gem_idle(struct drm_device *dev)
3682{
3683 drm_i915_private_t *dev_priv = dev->dev_private;
3684 int ret;
28dfe52a 3685
29105ccc 3686 mutex_lock(&dev->struct_mutex);
1c5d22f7 3687
87acb0a5 3688 if (dev_priv->mm.suspended) {
29105ccc
CW
3689 mutex_unlock(&dev->struct_mutex);
3690 return 0;
28dfe52a
EA
3691 }
3692
b93f9cf1 3693 ret = i915_gpu_idle(dev, true);
6dbe2772
KP
3694 if (ret) {
3695 mutex_unlock(&dev->struct_mutex);
673a394b 3696 return ret;
6dbe2772 3697 }
673a394b 3698
29105ccc
CW
3699 /* Under UMS, be paranoid and evict. */
3700 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3701 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3702 if (ret) {
3703 mutex_unlock(&dev->struct_mutex);
3704 return ret;
3705 }
3706 }
3707
312817a3
CW
3708 i915_gem_reset_fences(dev);
3709
29105ccc
CW
3710 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3711 * We need to replace this with a semaphore, or something.
3712 * And not confound mm.suspended!
3713 */
3714 dev_priv->mm.suspended = 1;
bc0c7f14 3715 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3716
3717 i915_kernel_lost_context(dev);
6dbe2772 3718 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3719
6dbe2772
KP
3720 mutex_unlock(&dev->struct_mutex);
3721
29105ccc
CW
3722 /* Cancel the retire work handler, which should be idle now. */
3723 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3724
673a394b
EA
3725 return 0;
3726}
3727
f691e2f4
DV
3728void i915_gem_init_swizzling(struct drm_device *dev)
3729{
3730 drm_i915_private_t *dev_priv = dev->dev_private;
3731
11782b02 3732 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3733 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3734 return;
3735
3736 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3737 DISP_TILE_SURFACE_SWIZZLING);
3738
11782b02
DV
3739 if (IS_GEN5(dev))
3740 return;
3741
f691e2f4
DV
3742 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3743 if (IS_GEN6(dev))
3744 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
3745 else
3746 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
3747}
e21af88d
DV
3748
3749void i915_gem_init_ppgtt(struct drm_device *dev)
3750{
3751 drm_i915_private_t *dev_priv = dev->dev_private;
3752 uint32_t pd_offset;
3753 struct intel_ring_buffer *ring;
3754 int i;
3755
3756 if (!dev_priv->mm.aliasing_ppgtt)
3757 return;
3758
3759 pd_offset = dev_priv->mm.aliasing_ppgtt->pd_offset;
3760 pd_offset /= 64; /* in cachelines, */
3761 pd_offset <<= 16;
3762
3763 if (INTEL_INFO(dev)->gen == 6) {
3764 uint32_t ecochk = I915_READ(GAM_ECOCHK);
3765 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3766 ECOCHK_PPGTT_CACHE64B);
3767 I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3768 } else if (INTEL_INFO(dev)->gen >= 7) {
3769 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3770 /* GFX_MODE is per-ring on gen7+ */
3771 }
3772
3773 for (i = 0; i < I915_NUM_RINGS; i++) {
3774 ring = &dev_priv->ring[i];
3775
3776 if (INTEL_INFO(dev)->gen >= 7)
3777 I915_WRITE(RING_MODE_GEN7(ring),
3778 GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3779
3780 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3781 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3782 }
3783}
3784
8187a2b7 3785int
f691e2f4 3786i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3787{
3788 drm_i915_private_t *dev_priv = dev->dev_private;
3789 int ret;
68f95ba9 3790
f691e2f4
DV
3791 i915_gem_init_swizzling(dev);
3792
5c1143bb 3793 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3794 if (ret)
b6913e4b 3795 return ret;
68f95ba9
CW
3796
3797 if (HAS_BSD(dev)) {
5c1143bb 3798 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3799 if (ret)
3800 goto cleanup_render_ring;
d1b851fc 3801 }
68f95ba9 3802
549f7365
CW
3803 if (HAS_BLT(dev)) {
3804 ret = intel_init_blt_ring_buffer(dev);
3805 if (ret)
3806 goto cleanup_bsd_ring;
3807 }
3808
6f392d54
CW
3809 dev_priv->next_seqno = 1;
3810
e21af88d
DV
3811 i915_gem_init_ppgtt(dev);
3812
68f95ba9
CW
3813 return 0;
3814
549f7365 3815cleanup_bsd_ring:
1ec14ad3 3816 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3817cleanup_render_ring:
1ec14ad3 3818 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3819 return ret;
3820}
3821
3822void
3823i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3824{
3825 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3826 int i;
8187a2b7 3827
1ec14ad3
CW
3828 for (i = 0; i < I915_NUM_RINGS; i++)
3829 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3830}
3831
673a394b
EA
3832int
3833i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3834 struct drm_file *file_priv)
3835{
3836 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3837 int ret, i;
673a394b 3838
79e53945
JB
3839 if (drm_core_check_feature(dev, DRIVER_MODESET))
3840 return 0;
3841
ba1234d1 3842 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3843 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3844 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3845 }
3846
673a394b 3847 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3848 dev_priv->mm.suspended = 0;
3849
f691e2f4 3850 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3851 if (ret != 0) {
3852 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3853 return ret;
d816f6ac 3854 }
9bb2d6f9 3855
69dc4987 3856 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3857 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3858 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3859 for (i = 0; i < I915_NUM_RINGS; i++) {
3860 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3861 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3862 }
673a394b 3863 mutex_unlock(&dev->struct_mutex);
dbb19d30 3864
5f35308b
CW
3865 ret = drm_irq_install(dev);
3866 if (ret)
3867 goto cleanup_ringbuffer;
dbb19d30 3868
673a394b 3869 return 0;
5f35308b
CW
3870
3871cleanup_ringbuffer:
3872 mutex_lock(&dev->struct_mutex);
3873 i915_gem_cleanup_ringbuffer(dev);
3874 dev_priv->mm.suspended = 1;
3875 mutex_unlock(&dev->struct_mutex);
3876
3877 return ret;
673a394b
EA
3878}
3879
3880int
3881i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3882 struct drm_file *file_priv)
3883{
79e53945
JB
3884 if (drm_core_check_feature(dev, DRIVER_MODESET))
3885 return 0;
3886
dbb19d30 3887 drm_irq_uninstall(dev);
e6890f6f 3888 return i915_gem_idle(dev);
673a394b
EA
3889}
3890
3891void
3892i915_gem_lastclose(struct drm_device *dev)
3893{
3894 int ret;
673a394b 3895
e806b495
EA
3896 if (drm_core_check_feature(dev, DRIVER_MODESET))
3897 return;
3898
6dbe2772
KP
3899 ret = i915_gem_idle(dev);
3900 if (ret)
3901 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3902}
3903
64193406
CW
3904static void
3905init_ring_lists(struct intel_ring_buffer *ring)
3906{
3907 INIT_LIST_HEAD(&ring->active_list);
3908 INIT_LIST_HEAD(&ring->request_list);
3909 INIT_LIST_HEAD(&ring->gpu_write_list);
3910}
3911
673a394b
EA
3912void
3913i915_gem_load(struct drm_device *dev)
3914{
b5aa8a0f 3915 int i;
673a394b
EA
3916 drm_i915_private_t *dev_priv = dev->dev_private;
3917
69dc4987 3918 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3919 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3920 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3921 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3922 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3923 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3924 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3925 for (i = 0; i < I915_NUM_RINGS; i++)
3926 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3927 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3928 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3929 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3930 i915_gem_retire_work_handler);
30dbf0c0 3931 init_completion(&dev_priv->error_completion);
31169714 3932
94400120
DA
3933 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3934 if (IS_GEN3(dev)) {
3935 u32 tmp = I915_READ(MI_ARB_STATE);
3936 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3937 /* arb state is a masked write, so set bit + bit in mask */
3938 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3939 I915_WRITE(MI_ARB_STATE, tmp);
3940 }
3941 }
3942
72bfa19c
CW
3943 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3944
de151cf6 3945 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3946 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3947 dev_priv->fence_reg_start = 3;
de151cf6 3948
a6c45cf0 3949 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3950 dev_priv->num_fence_regs = 16;
3951 else
3952 dev_priv->num_fence_regs = 8;
3953
b5aa8a0f 3954 /* Initialize fence registers to zero */
10ed13e4
EA
3955 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3956 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
b5aa8a0f 3957 }
10ed13e4 3958
673a394b 3959 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3960 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3961
ce453d81
CW
3962 dev_priv->mm.interruptible = true;
3963
17250b71
CW
3964 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3965 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3966 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3967}
71acb5eb
DA
3968
3969/*
3970 * Create a physically contiguous memory object for this object
3971 * e.g. for cursor + overlay regs
3972 */
995b6762
CW
3973static int i915_gem_init_phys_object(struct drm_device *dev,
3974 int id, int size, int align)
71acb5eb
DA
3975{
3976 drm_i915_private_t *dev_priv = dev->dev_private;
3977 struct drm_i915_gem_phys_object *phys_obj;
3978 int ret;
3979
3980 if (dev_priv->mm.phys_objs[id - 1] || !size)
3981 return 0;
3982
9a298b2a 3983 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3984 if (!phys_obj)
3985 return -ENOMEM;
3986
3987 phys_obj->id = id;
3988
6eeefaf3 3989 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3990 if (!phys_obj->handle) {
3991 ret = -ENOMEM;
3992 goto kfree_obj;
3993 }
3994#ifdef CONFIG_X86
3995 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3996#endif
3997
3998 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3999
4000 return 0;
4001kfree_obj:
9a298b2a 4002 kfree(phys_obj);
71acb5eb
DA
4003 return ret;
4004}
4005
995b6762 4006static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4007{
4008 drm_i915_private_t *dev_priv = dev->dev_private;
4009 struct drm_i915_gem_phys_object *phys_obj;
4010
4011 if (!dev_priv->mm.phys_objs[id - 1])
4012 return;
4013
4014 phys_obj = dev_priv->mm.phys_objs[id - 1];
4015 if (phys_obj->cur_obj) {
4016 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4017 }
4018
4019#ifdef CONFIG_X86
4020 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4021#endif
4022 drm_pci_free(dev, phys_obj->handle);
4023 kfree(phys_obj);
4024 dev_priv->mm.phys_objs[id - 1] = NULL;
4025}
4026
4027void i915_gem_free_all_phys_object(struct drm_device *dev)
4028{
4029 int i;
4030
260883c8 4031 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4032 i915_gem_free_phys_object(dev, i);
4033}
4034
4035void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4036 struct drm_i915_gem_object *obj)
71acb5eb 4037{
05394f39 4038 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4039 char *vaddr;
71acb5eb 4040 int i;
71acb5eb
DA
4041 int page_count;
4042
05394f39 4043 if (!obj->phys_obj)
71acb5eb 4044 return;
05394f39 4045 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4046
05394f39 4047 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4048 for (i = 0; i < page_count; i++) {
5949eac4 4049 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4050 if (!IS_ERR(page)) {
4051 char *dst = kmap_atomic(page);
4052 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4053 kunmap_atomic(dst);
4054
4055 drm_clflush_pages(&page, 1);
4056
4057 set_page_dirty(page);
4058 mark_page_accessed(page);
4059 page_cache_release(page);
4060 }
71acb5eb 4061 }
40ce6575 4062 intel_gtt_chipset_flush();
d78b47b9 4063
05394f39
CW
4064 obj->phys_obj->cur_obj = NULL;
4065 obj->phys_obj = NULL;
71acb5eb
DA
4066}
4067
4068int
4069i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4070 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4071 int id,
4072 int align)
71acb5eb 4073{
05394f39 4074 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4075 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4076 int ret = 0;
4077 int page_count;
4078 int i;
4079
4080 if (id > I915_MAX_PHYS_OBJECT)
4081 return -EINVAL;
4082
05394f39
CW
4083 if (obj->phys_obj) {
4084 if (obj->phys_obj->id == id)
71acb5eb
DA
4085 return 0;
4086 i915_gem_detach_phys_object(dev, obj);
4087 }
4088
71acb5eb
DA
4089 /* create a new object */
4090 if (!dev_priv->mm.phys_objs[id - 1]) {
4091 ret = i915_gem_init_phys_object(dev, id,
05394f39 4092 obj->base.size, align);
71acb5eb 4093 if (ret) {
05394f39
CW
4094 DRM_ERROR("failed to init phys object %d size: %zu\n",
4095 id, obj->base.size);
e5281ccd 4096 return ret;
71acb5eb
DA
4097 }
4098 }
4099
4100 /* bind to the object */
05394f39
CW
4101 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4102 obj->phys_obj->cur_obj = obj;
71acb5eb 4103
05394f39 4104 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4105
4106 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4107 struct page *page;
4108 char *dst, *src;
4109
5949eac4 4110 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4111 if (IS_ERR(page))
4112 return PTR_ERR(page);
71acb5eb 4113
ff75b9bc 4114 src = kmap_atomic(page);
05394f39 4115 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4116 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4117 kunmap_atomic(src);
71acb5eb 4118
e5281ccd
CW
4119 mark_page_accessed(page);
4120 page_cache_release(page);
4121 }
d78b47b9 4122
71acb5eb 4123 return 0;
71acb5eb
DA
4124}
4125
4126static int
05394f39
CW
4127i915_gem_phys_pwrite(struct drm_device *dev,
4128 struct drm_i915_gem_object *obj,
71acb5eb
DA
4129 struct drm_i915_gem_pwrite *args,
4130 struct drm_file *file_priv)
4131{
05394f39 4132 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4133 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4134
b47b30cc
CW
4135 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4136 unsigned long unwritten;
4137
4138 /* The physical object once assigned is fixed for the lifetime
4139 * of the obj, so we can safely drop the lock and continue
4140 * to access vaddr.
4141 */
4142 mutex_unlock(&dev->struct_mutex);
4143 unwritten = copy_from_user(vaddr, user_data, args->size);
4144 mutex_lock(&dev->struct_mutex);
4145 if (unwritten)
4146 return -EFAULT;
4147 }
71acb5eb 4148
40ce6575 4149 intel_gtt_chipset_flush();
71acb5eb
DA
4150 return 0;
4151}
b962442e 4152
f787a5f5 4153void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4154{
f787a5f5 4155 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4156
4157 /* Clean up our request list when the client is going away, so that
4158 * later retire_requests won't dereference our soon-to-be-gone
4159 * file_priv.
4160 */
1c25595f 4161 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4162 while (!list_empty(&file_priv->mm.request_list)) {
4163 struct drm_i915_gem_request *request;
4164
4165 request = list_first_entry(&file_priv->mm.request_list,
4166 struct drm_i915_gem_request,
4167 client_list);
4168 list_del(&request->client_list);
4169 request->file_priv = NULL;
4170 }
1c25595f 4171 spin_unlock(&file_priv->mm.lock);
b962442e 4172}
31169714 4173
1637ef41
CW
4174static int
4175i915_gpu_is_active(struct drm_device *dev)
4176{
4177 drm_i915_private_t *dev_priv = dev->dev_private;
4178 int lists_empty;
4179
1637ef41 4180 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4181 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4182
4183 return !lists_empty;
4184}
4185
31169714 4186static int
1495f230 4187i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4188{
17250b71
CW
4189 struct drm_i915_private *dev_priv =
4190 container_of(shrinker,
4191 struct drm_i915_private,
4192 mm.inactive_shrinker);
4193 struct drm_device *dev = dev_priv->dev;
4194 struct drm_i915_gem_object *obj, *next;
1495f230 4195 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4196 int cnt;
4197
4198 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4199 return 0;
31169714
CW
4200
4201 /* "fast-path" to count number of available objects */
4202 if (nr_to_scan == 0) {
17250b71
CW
4203 cnt = 0;
4204 list_for_each_entry(obj,
4205 &dev_priv->mm.inactive_list,
4206 mm_list)
4207 cnt++;
4208 mutex_unlock(&dev->struct_mutex);
4209 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4210 }
4211
1637ef41 4212rescan:
31169714 4213 /* first scan for clean buffers */
17250b71 4214 i915_gem_retire_requests(dev);
31169714 4215
17250b71
CW
4216 list_for_each_entry_safe(obj, next,
4217 &dev_priv->mm.inactive_list,
4218 mm_list) {
4219 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4220 if (i915_gem_object_unbind(obj) == 0 &&
4221 --nr_to_scan == 0)
17250b71 4222 break;
31169714 4223 }
31169714
CW
4224 }
4225
4226 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4227 cnt = 0;
4228 list_for_each_entry_safe(obj, next,
4229 &dev_priv->mm.inactive_list,
4230 mm_list) {
2021746e
CW
4231 if (nr_to_scan &&
4232 i915_gem_object_unbind(obj) == 0)
17250b71 4233 nr_to_scan--;
2021746e 4234 else
17250b71
CW
4235 cnt++;
4236 }
4237
4238 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4239 /*
4240 * We are desperate for pages, so as a last resort, wait
4241 * for the GPU to finish and discard whatever we can.
4242 * This has a dramatic impact to reduce the number of
4243 * OOM-killer events whilst running the GPU aggressively.
4244 */
b93f9cf1 4245 if (i915_gpu_idle(dev, true) == 0)
1637ef41
CW
4246 goto rescan;
4247 }
17250b71
CW
4248 mutex_unlock(&dev->struct_mutex);
4249 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4250}