]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 49
c76ce038
CW
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54}
55
2c22569b
CW
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
73aa808f
CW
64/* some bookkeeping */
65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
c20e8355 68 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
c20e8355 71 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
72}
73
74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
c20e8355 77 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
c20e8355 80 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
81}
82
21dd3734 83static int
33196ded 84i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 85{
30dbf0c0
CW
86 int ret;
87
7abb690a
DV
88#define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
1f83fee0 90 if (EXIT_COND)
30dbf0c0
CW
91 return 0;
92
0a6759c6
DV
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
1f83fee0
DV
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
0a6759c6
DV
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
30dbf0c0 105 return ret;
0a6759c6 106 }
1f83fee0 107#undef EXIT_COND
30dbf0c0 108
21dd3734 109 return 0;
30dbf0c0
CW
110}
111
54cf91dc 112int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 113{
33196ded 114 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
115 int ret;
116
33196ded 117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
23bc5982 125 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
126 return 0;
127}
30dbf0c0 128
5a125c3c
EA
129int
130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 131 struct drm_file *file)
5a125c3c 132{
73aa808f 133 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 134 struct drm_i915_gem_get_aperture *args = data;
ca1543be
TU
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
6299f992 137 size_t pinned;
5a125c3c 138
6299f992 139 pinned = 0;
73aa808f 140 mutex_lock(&dev->struct_mutex);
ca1543be
TU
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
73aa808f 147 mutex_unlock(&dev->struct_mutex);
5a125c3c 148
853ba5d2 149 args->aper_size = dev_priv->gtt.base.total;
0206e353 150 args->aper_available_size = args->aper_size - pinned;
6299f992 151
5a125c3c
EA
152 return 0;
153}
154
6a2c4232
CW
155static int
156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 157{
6a2c4232
CW
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
00731155 163
6a2c4232
CW
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
00731155 198
6a2c4232
CW
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
6a2c4232
CW
203 return 0;
204}
205
206static void
207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208{
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 212
6a2c4232
CW
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
00731155 226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 227 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
00731155 245 mark_page_accessed(page);
6a2c4232 246 page_cache_release(page);
00731155
CW
247 vaddr += PAGE_SIZE;
248 }
6a2c4232 249 obj->dirty = 0;
00731155
CW
250 }
251
6a2c4232
CW
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
6a2c4232
CW
254}
255
256static void
257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258{
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260}
261
262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266};
267
268static int
269drop_pages(struct drm_i915_gem_object *obj)
270{
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
00731155
CW
283}
284
285int
286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288{
289 drm_dma_handle_t *phys;
6a2c4232 290 int ret;
00731155
CW
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
6a2c4232
CW
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
00731155
CW
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
00731155 314 obj->phys_handle = phys;
6a2c4232
CW
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
00731155
CW
318}
319
320static int
321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324{
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 328 int ret = 0;
6a2c4232
CW
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
00731155 336
77a0d1ca 337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
00731155
CW
352 }
353
6a2c4232 354 drm_clflush_virt_range(vaddr, args->size);
00731155 355 i915_gem_chipset_flush(dev);
063e4e6b
PZ
356
357out:
de152b62 358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 359 return ret;
00731155
CW
360}
361
42dcedd4
CW
362void *i915_gem_object_alloc(struct drm_device *dev)
363{
364 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
366}
367
368void i915_gem_object_free(struct drm_i915_gem_object *obj)
369{
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 371 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
372}
373
ff72145b
DA
374static int
375i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
673a394b 379{
05394f39 380 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
381 int ret;
382 u32 handle;
673a394b 383
ff72145b 384 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
385 if (size == 0)
386 return -EINVAL;
673a394b
EA
387
388 /* Allocate the new object */
ff72145b 389 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
390 if (obj == NULL)
391 return -ENOMEM;
392
05394f39 393 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 394 /* drop reference from allocate - handle holds it now */
d861e338
DV
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
202f2fef 398
ff72145b 399 *handle_p = handle;
673a394b
EA
400 return 0;
401}
402
ff72145b
DA
403int
404i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407{
408 /* have to work out size/pitch and return them */
de45eaf7 409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
da6b51d0 412 args->size, &args->handle);
ff72145b
DA
413}
414
ff72145b
DA
415/**
416 * Creates a new mm object and returns a handle to it.
417 */
418int
419i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421{
422 struct drm_i915_gem_create *args = data;
63ed2cb2 423
ff72145b 424 return i915_gem_create(file, dev,
da6b51d0 425 args->size, &args->handle);
ff72145b
DA
426}
427
8461d226
DV
428static inline int
429__copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432{
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452}
453
8c59967c 454static inline int
4f0c7cfb
BW
455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
8c59967c
DV
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
4c914c0c
BV
480/*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487{
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514}
515
d174bd64
DV
516/* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
eb01459f 519static int
d174bd64
DV
520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523{
524 char *vaddr;
525 int ret;
526
e7e58eb5 527 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
f60d7f0c 539 return ret ? -EFAULT : 0;
d174bd64
DV
540}
541
23c18c71
DV
542static void
543shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545{
e7e58eb5 546 if (unlikely(swizzled)) {
23c18c71
DV
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562}
563
d174bd64
DV
564/* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566static int
567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570{
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
23c18c71
DV
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
d174bd64
DV
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
f60d7f0c 590 return ret ? - EFAULT : 0;
d174bd64
DV
591}
592
eb01459f 593static int
dbf7bff0
DV
594i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
eb01459f 598{
8461d226 599 char __user *user_data;
eb01459f 600 ssize_t remain;
8461d226 601 loff_t offset;
eb2c0c81 602 int shmem_page_offset, page_length, ret = 0;
8461d226 603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 604 int prefaulted = 0;
8489731c 605 int needs_clflush = 0;
67d5a50c 606 struct sg_page_iter sg_iter;
eb01459f 607
2bb4629a 608 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
609 remain = args->size;
610
8461d226 611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 612
4c914c0c 613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
614 if (ret)
615 return ret;
616
8461d226 617 offset = args->offset;
eb01459f 618
67d5a50c
ID
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
2db76d7c 621 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
622
623 if (remain <= 0)
624 break;
625
eb01459f
EA
626 /* Operation in this page
627 *
eb01459f 628 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
629 * page_length = bytes to copy for this page
630 */
c8cbbb8b 631 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 635
8461d226
DV
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
d174bd64
DV
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
dbf7bff0 644
dbf7bff0
DV
645 mutex_unlock(&dev->struct_mutex);
646
d330a953 647 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 648 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
eb01459f 656
d174bd64
DV
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
eb01459f 660
dbf7bff0 661 mutex_lock(&dev->struct_mutex);
f60d7f0c 662
f60d7f0c 663 if (ret)
8461d226 664 goto out;
8461d226 665
17793c9a 666next_page:
eb01459f 667 remain -= page_length;
8461d226 668 user_data += page_length;
eb01459f
EA
669 offset += page_length;
670 }
671
4f27b75d 672out:
f60d7f0c
CW
673 i915_gem_object_unpin_pages(obj);
674
eb01459f
EA
675 return ret;
676}
677
673a394b
EA
678/**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683int
684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 685 struct drm_file *file)
673a394b
EA
686{
687 struct drm_i915_gem_pread *args = data;
05394f39 688 struct drm_i915_gem_object *obj;
35b62a89 689 int ret = 0;
673a394b 690
51311d0a
CW
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
2bb4629a 695 to_user_ptr(args->data_ptr),
51311d0a
CW
696 args->size))
697 return -EFAULT;
698
4f27b75d 699 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 700 if (ret)
4f27b75d 701 return ret;
673a394b 702
05394f39 703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 704 if (&obj->base == NULL) {
1d7cfea1
CW
705 ret = -ENOENT;
706 goto unlock;
4f27b75d 707 }
673a394b 708
7dcd2499 709 /* Bounds check source. */
05394f39
CW
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
ce9d419d 712 ret = -EINVAL;
35b62a89 713 goto out;
ce9d419d
CW
714 }
715
1286ff73
DV
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
db53a302
CW
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
dbf7bff0 726 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 727
35b62a89 728out:
05394f39 729 drm_gem_object_unreference(&obj->base);
1d7cfea1 730unlock:
4f27b75d 731 mutex_unlock(&dev->struct_mutex);
eb01459f 732 return ret;
673a394b
EA
733}
734
0839ccb8
KP
735/* This is the fast write path which cannot handle
736 * page faults in the source data
9b7530cc 737 */
0839ccb8
KP
738
739static inline int
740fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
9b7530cc 744{
4f0c7cfb
BW
745 void __iomem *vaddr_atomic;
746 void *vaddr;
0839ccb8 747 unsigned long unwritten;
9b7530cc 748
3e4d3af5 749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 753 user_data, length);
3e4d3af5 754 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 755 return unwritten;
0839ccb8
KP
756}
757
3de09aa3
EA
758/**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
673a394b 762static int
05394f39
CW
763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
3de09aa3 765 struct drm_i915_gem_pwrite *args,
05394f39 766 struct drm_file *file)
673a394b 767{
3e31c6c0 768 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 769 ssize_t remain;
0839ccb8 770 loff_t offset, page_base;
673a394b 771 char __user *user_data;
935aaa69
DV
772 int page_offset, page_length, ret;
773
1ec9e26d 774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
673a394b 785
2bb4629a 786 user_data = to_user_ptr(args->data_ptr);
673a394b 787 remain = args->size;
673a394b 788
f343c5f6 789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 790
77a0d1ca 791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 792
673a394b
EA
793 while (remain > 0) {
794 /* Operation in this page
795 *
0839ccb8
KP
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
673a394b 799 */
c8cbbb8b
CW
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
0839ccb8
KP
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
0839ccb8 806 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
0839ccb8 809 */
5d4545ae 810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
063e4e6b 813 goto out_flush;
935aaa69 814 }
673a394b 815
0839ccb8
KP
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
673a394b 819 }
673a394b 820
063e4e6b 821out_flush:
de152b62 822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 823out_unpin:
d7f46fc4 824 i915_gem_object_ggtt_unpin(obj);
935aaa69 825out:
3de09aa3 826 return ret;
673a394b
EA
827}
828
d174bd64
DV
829/* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
3043c60c 833static int
d174bd64
DV
834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
673a394b 839{
d174bd64 840 char *vaddr;
673a394b 841 int ret;
3de09aa3 842
e7e58eb5 843 if (unlikely(page_do_bit17_swizzling))
d174bd64 844 return -EINVAL;
3de09aa3 845
d174bd64
DV
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
c2831a94
CW
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
d174bd64
DV
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
3de09aa3 856
755d2218 857 return ret ? -EFAULT : 0;
3de09aa3
EA
858}
859
d174bd64
DV
860/* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
3043c60c 862static int
d174bd64
DV
863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
673a394b 868{
d174bd64
DV
869 char *vaddr;
870 int ret;
e5281ccd 871
d174bd64 872 vaddr = kmap(page);
e7e58eb5 873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
d174bd64
DV
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
879 user_data,
880 page_length);
d174bd64
DV
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
23c18c71
DV
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
d174bd64 889 kunmap(page);
40123c1f 890
755d2218 891 return ret ? -EFAULT : 0;
40123c1f
EA
892}
893
40123c1f 894static int
e244a443
DV
895i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
40123c1f 899{
40123c1f 900 ssize_t remain;
8c59967c
DV
901 loff_t offset;
902 char __user *user_data;
eb2c0c81 903 int shmem_page_offset, page_length, ret = 0;
8c59967c 904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 905 int hit_slowpath = 0;
58642885
DV
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
67d5a50c 908 struct sg_page_iter sg_iter;
40123c1f 909
2bb4629a 910 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
911 remain = args->size;
912
8c59967c 913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 914
58642885
DV
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
2c22569b 920 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
58642885 924 }
c76ce038
CW
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 930
755d2218
CW
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
77a0d1ca 935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 936
755d2218
CW
937 i915_gem_object_pin_pages(obj);
938
673a394b 939 offset = args->offset;
05394f39 940 obj->dirty = 1;
673a394b 941
67d5a50c
ID
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
2db76d7c 944 struct page *page = sg_page_iter_page(&sg_iter);
58642885 945 int partial_cacheline_write;
e5281ccd 946
9da3da66
CW
947 if (remain <= 0)
948 break;
949
40123c1f
EA
950 /* Operation in this page
951 *
40123c1f 952 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
953 * page_length = bytes to copy for this page
954 */
c8cbbb8b 955 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 960
58642885
DV
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
8c59967c
DV
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
d174bd64
DV
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
e244a443
DV
977
978 hit_slowpath = 1;
e244a443 979 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
40123c1f 984
e244a443 985 mutex_lock(&dev->struct_mutex);
755d2218 986
755d2218 987 if (ret)
8c59967c 988 goto out;
8c59967c 989
17793c9a 990next_page:
40123c1f 991 remain -= page_length;
8c59967c 992 user_data += page_length;
40123c1f 993 offset += page_length;
673a394b
EA
994 }
995
fbd5a26d 996out:
755d2218
CW
997 i915_gem_object_unpin_pages(obj);
998
e244a443 999 if (hit_slowpath) {
8dcf015e
DV
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1007 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1008 needs_clflush_after = true;
e244a443 1009 }
8c59967c 1010 }
673a394b 1011
58642885 1012 if (needs_clflush_after)
e76e9aeb 1013 i915_gem_chipset_flush(dev);
ed75a55b
VS
1014 else
1015 obj->cache_dirty = true;
58642885 1016
de152b62 1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1018 return ret;
673a394b
EA
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1028 struct drm_file *file)
673a394b 1029{
5d77d9c5 1030 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1031 struct drm_i915_gem_pwrite *args = data;
05394f39 1032 struct drm_i915_gem_object *obj;
51311d0a
CW
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
2bb4629a 1039 to_user_ptr(args->data_ptr),
51311d0a
CW
1040 args->size))
1041 return -EFAULT;
1042
d330a953 1043 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
673a394b 1049
5d77d9c5
ID
1050 intel_runtime_pm_get(dev_priv);
1051
fbd5a26d 1052 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1053 if (ret)
5d77d9c5 1054 goto put_rpm;
1d7cfea1 1055
05394f39 1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1057 if (&obj->base == NULL) {
1d7cfea1
CW
1058 ret = -ENOENT;
1059 goto unlock;
fbd5a26d 1060 }
673a394b 1061
7dcd2499 1062 /* Bounds check destination. */
05394f39
CW
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
ce9d419d 1065 ret = -EINVAL;
35b62a89 1066 goto out;
ce9d419d
CW
1067 }
1068
1286ff73
DV
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
db53a302
CW
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
935aaa69 1079 ret = -EFAULT;
673a394b
EA
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
2c22569b
CW
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
fbd5a26d 1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1093 }
673a394b 1094
6a2c4232
CW
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
5c0480f2 1101
35b62a89 1102out:
05394f39 1103 drm_gem_object_unreference(&obj->base);
1d7cfea1 1104unlock:
fbd5a26d 1105 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1106put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
673a394b
EA
1109 return ret;
1110}
1111
b361237b 1112int
33196ded 1113i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1114 bool interruptible)
1115{
1f83fee0 1116 if (i915_reset_in_progress(error)) {
b361237b
CW
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1f83fee0
DV
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
b361237b
CW
1124 return -EIO;
1125
6689c167
MA
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
b361237b
CW
1133 }
1134
1135 return 0;
1136}
1137
094f9a54
CW
1138static void fake_irq(unsigned long data)
1139{
1140 wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1144 struct intel_engine_cs *ring)
094f9a54
CW
1145{
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147}
1148
ca5b721e
CW
1149static unsigned long local_clock_us(unsigned *cpu)
1150{
1151 unsigned long t;
1152
1153 /* Cheaply and approximately convert from nanoseconds to microseconds.
1154 * The result and subsequent calculations are also defined in the same
1155 * approximate microseconds units. The principal source of timing
1156 * error here is from the simple truncation.
1157 *
1158 * Note that local_clock() is only defined wrt to the current CPU;
1159 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 * blocking preemption for the entire busywait, we can detect the CPU
1161 * switch and use that as indicator of system load and a reason to
1162 * stop busywaiting, see busywait_stop().
1163 */
1164 *cpu = get_cpu();
1165 t = local_clock() >> 10;
1166 put_cpu();
1167
1168 return t;
1169}
1170
1171static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172{
1173 unsigned this_cpu;
1174
1175 if (time_after(local_clock_us(&this_cpu), timeout))
1176 return true;
1177
1178 return this_cpu != cpu;
1179}
1180
91b0c352 1181static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
b29c19b6 1182{
2def4ad9 1183 unsigned long timeout;
ca5b721e
CW
1184 unsigned cpu;
1185
1186 /* When waiting for high frequency requests, e.g. during synchronous
1187 * rendering split between the CPU and GPU, the finite amount of time
1188 * required to set up the irq and wait upon it limits the response
1189 * rate. By busywaiting on the request completion for a short while we
1190 * can service the high frequency waits as quick as possible. However,
1191 * if it is a slow request, we want to sleep as quickly as possible.
1192 * The tradeoff between waiting and sleeping is roughly the time it
1193 * takes to sleep on a request, on the order of a microsecond.
1194 */
2def4ad9 1195
821485dc 1196 if (req->ring->irq_refcount)
2def4ad9
CW
1197 return -EBUSY;
1198
821485dc
CW
1199 /* Only spin if we know the GPU is processing this request */
1200 if (!i915_gem_request_started(req, true))
1201 return -EAGAIN;
1202
ca5b721e 1203 timeout = local_clock_us(&cpu) + 5;
2def4ad9 1204 while (!need_resched()) {
eed29a5b 1205 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1206 return 0;
1207
91b0c352
CW
1208 if (signal_pending_state(state, current))
1209 break;
1210
ca5b721e 1211 if (busywait_stop(timeout, cpu))
2def4ad9 1212 break;
b29c19b6 1213
2def4ad9
CW
1214 cpu_relax_lowlatency();
1215 }
821485dc 1216
eed29a5b 1217 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1218 return 0;
1219
1220 return -EAGAIN;
b29c19b6
CW
1221}
1222
b361237b 1223/**
9c654818
JH
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
f69061be
DV
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
9c654818 1237 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1238 * errno with remaining time filled in timeout argument.
1239 */
9c654818 1240int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1241 unsigned reset_counter,
b29c19b6 1242 bool interruptible,
5ed0bdf2 1243 s64 *timeout,
2e1b8730 1244 struct intel_rps_client *rps)
b361237b 1245{
9c654818 1246 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1247 struct drm_device *dev = ring->dev;
3e31c6c0 1248 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1249 const bool irq_test_in_progress =
1250 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
91b0c352 1251 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
094f9a54 1252 DEFINE_WAIT(wait);
47e9766d 1253 unsigned long timeout_expire;
5ed0bdf2 1254 s64 before, now;
b361237b
CW
1255 int ret;
1256
9df7575f 1257 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1258
b4716185
CW
1259 if (list_empty(&req->list))
1260 return 0;
1261
1b5a433a 1262 if (i915_gem_request_completed(req, true))
b361237b
CW
1263 return 0;
1264
bb6d1984
CW
1265 timeout_expire = 0;
1266 if (timeout) {
1267 if (WARN_ON(*timeout < 0))
1268 return -EINVAL;
1269
1270 if (*timeout == 0)
1271 return -ETIME;
1272
1273 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274 }
b361237b 1275
2e1b8730 1276 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1277 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1278
094f9a54 1279 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1280 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1281 before = ktime_get_raw_ns();
2def4ad9
CW
1282
1283 /* Optimistic spin for the next jiffie before touching IRQs */
91b0c352 1284 ret = __i915_spin_request(req, state);
2def4ad9
CW
1285 if (ret == 0)
1286 goto out;
1287
1288 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1289 ret = -ENODEV;
1290 goto out;
1291 }
1292
094f9a54
CW
1293 for (;;) {
1294 struct timer_list timer;
b361237b 1295
91b0c352 1296 prepare_to_wait(&ring->irq_queue, &wait, state);
b361237b 1297
f69061be
DV
1298 /* We need to check whether any gpu reset happened in between
1299 * the caller grabbing the seqno and now ... */
094f9a54
CW
1300 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1301 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1302 * is truely gone. */
1303 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1304 if (ret == 0)
1305 ret = -EAGAIN;
1306 break;
1307 }
f69061be 1308
1b5a433a 1309 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1310 ret = 0;
1311 break;
1312 }
b361237b 1313
91b0c352 1314 if (signal_pending_state(state, current)) {
094f9a54
CW
1315 ret = -ERESTARTSYS;
1316 break;
1317 }
1318
47e9766d 1319 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1320 ret = -ETIME;
1321 break;
1322 }
1323
1324 timer.function = NULL;
1325 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1326 unsigned long expire;
1327
094f9a54 1328 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1329 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1330 mod_timer(&timer, expire);
1331 }
1332
5035c275 1333 io_schedule();
094f9a54 1334
094f9a54
CW
1335 if (timer.function) {
1336 del_singleshot_timer_sync(&timer);
1337 destroy_timer_on_stack(&timer);
1338 }
1339 }
168c3f21
MK
1340 if (!irq_test_in_progress)
1341 ring->irq_put(ring);
094f9a54
CW
1342
1343 finish_wait(&ring->irq_queue, &wait);
b361237b 1344
2def4ad9
CW
1345out:
1346 now = ktime_get_raw_ns();
1347 trace_i915_gem_request_wait_end(req);
1348
b361237b 1349 if (timeout) {
5ed0bdf2
TG
1350 s64 tres = *timeout - (now - before);
1351
1352 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1353
1354 /*
1355 * Apparently ktime isn't accurate enough and occasionally has a
1356 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1357 * things up to make the test happy. We allow up to 1 jiffy.
1358 *
1359 * This is a regrssion from the timespec->ktime conversion.
1360 */
1361 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1362 *timeout = 0;
b361237b
CW
1363 }
1364
094f9a54 1365 return ret;
b361237b
CW
1366}
1367
fcfa423c
JH
1368int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1369 struct drm_file *file)
1370{
1371 struct drm_i915_private *dev_private;
1372 struct drm_i915_file_private *file_priv;
1373
1374 WARN_ON(!req || !file || req->file_priv);
1375
1376 if (!req || !file)
1377 return -EINVAL;
1378
1379 if (req->file_priv)
1380 return -EINVAL;
1381
1382 dev_private = req->ring->dev->dev_private;
1383 file_priv = file->driver_priv;
1384
1385 spin_lock(&file_priv->mm.lock);
1386 req->file_priv = file_priv;
1387 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1388 spin_unlock(&file_priv->mm.lock);
1389
1390 req->pid = get_pid(task_pid(current));
1391
1392 return 0;
1393}
1394
b4716185
CW
1395static inline void
1396i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1397{
1398 struct drm_i915_file_private *file_priv = request->file_priv;
1399
1400 if (!file_priv)
1401 return;
1402
1403 spin_lock(&file_priv->mm.lock);
1404 list_del(&request->client_list);
1405 request->file_priv = NULL;
1406 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1407
1408 put_pid(request->pid);
1409 request->pid = NULL;
b4716185
CW
1410}
1411
1412static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1413{
1414 trace_i915_gem_request_retire(request);
1415
1416 /* We know the GPU must have read the request to have
1417 * sent us the seqno + interrupt, so use the position
1418 * of tail of the request to update the last known position
1419 * of the GPU head.
1420 *
1421 * Note this requires that we are always called in request
1422 * completion order.
1423 */
1424 request->ringbuf->last_retired_head = request->postfix;
1425
1426 list_del_init(&request->list);
1427 i915_gem_request_remove_from_client(request);
1428
b4716185
CW
1429 i915_gem_request_unreference(request);
1430}
1431
1432static void
1433__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1434{
1435 struct intel_engine_cs *engine = req->ring;
1436 struct drm_i915_gem_request *tmp;
1437
1438 lockdep_assert_held(&engine->dev->struct_mutex);
1439
1440 if (list_empty(&req->list))
1441 return;
1442
1443 do {
1444 tmp = list_first_entry(&engine->request_list,
1445 typeof(*tmp), list);
1446
1447 i915_gem_request_retire(tmp);
1448 } while (tmp != req);
1449
1450 WARN_ON(i915_verify_lists(engine->dev));
1451}
1452
b361237b 1453/**
a4b3a571 1454 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1455 * request and object lists appropriately for that event.
1456 */
1457int
a4b3a571 1458i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1459{
a4b3a571
DV
1460 struct drm_device *dev;
1461 struct drm_i915_private *dev_priv;
1462 bool interruptible;
b361237b
CW
1463 int ret;
1464
a4b3a571
DV
1465 BUG_ON(req == NULL);
1466
1467 dev = req->ring->dev;
1468 dev_priv = dev->dev_private;
1469 interruptible = dev_priv->mm.interruptible;
1470
b361237b 1471 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1472
33196ded 1473 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1474 if (ret)
1475 return ret;
1476
b4716185
CW
1477 ret = __i915_wait_request(req,
1478 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1479 interruptible, NULL, NULL);
b4716185
CW
1480 if (ret)
1481 return ret;
d26e3af8 1482
b4716185 1483 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1484 return 0;
1485}
1486
b361237b
CW
1487/**
1488 * Ensures that all rendering to the object has completed and the object is
1489 * safe to unbind from the GTT or access from the CPU.
1490 */
2e2f351d 1491int
b361237b
CW
1492i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1493 bool readonly)
1494{
b4716185 1495 int ret, i;
b361237b 1496
b4716185 1497 if (!obj->active)
b361237b
CW
1498 return 0;
1499
b4716185
CW
1500 if (readonly) {
1501 if (obj->last_write_req != NULL) {
1502 ret = i915_wait_request(obj->last_write_req);
1503 if (ret)
1504 return ret;
b361237b 1505
b4716185
CW
1506 i = obj->last_write_req->ring->id;
1507 if (obj->last_read_req[i] == obj->last_write_req)
1508 i915_gem_object_retire__read(obj, i);
1509 else
1510 i915_gem_object_retire__write(obj);
1511 }
1512 } else {
1513 for (i = 0; i < I915_NUM_RINGS; i++) {
1514 if (obj->last_read_req[i] == NULL)
1515 continue;
1516
1517 ret = i915_wait_request(obj->last_read_req[i]);
1518 if (ret)
1519 return ret;
1520
1521 i915_gem_object_retire__read(obj, i);
1522 }
1523 RQ_BUG_ON(obj->active);
1524 }
1525
1526 return 0;
1527}
1528
1529static void
1530i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1531 struct drm_i915_gem_request *req)
1532{
1533 int ring = req->ring->id;
1534
1535 if (obj->last_read_req[ring] == req)
1536 i915_gem_object_retire__read(obj, ring);
1537 else if (obj->last_write_req == req)
1538 i915_gem_object_retire__write(obj);
1539
1540 __i915_gem_request_retire__upto(req);
b361237b
CW
1541}
1542
3236f57a
CW
1543/* A nonblocking variant of the above wait. This is a highly dangerous routine
1544 * as the object state may change during this call.
1545 */
1546static __must_check int
1547i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1548 struct intel_rps_client *rps,
3236f57a
CW
1549 bool readonly)
1550{
1551 struct drm_device *dev = obj->base.dev;
1552 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1553 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1554 unsigned reset_counter;
b4716185 1555 int ret, i, n = 0;
3236f57a
CW
1556
1557 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1558 BUG_ON(!dev_priv->mm.interruptible);
1559
b4716185 1560 if (!obj->active)
3236f57a
CW
1561 return 0;
1562
33196ded 1563 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1564 if (ret)
1565 return ret;
1566
f69061be 1567 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1568
1569 if (readonly) {
1570 struct drm_i915_gem_request *req;
1571
1572 req = obj->last_write_req;
1573 if (req == NULL)
1574 return 0;
1575
b4716185
CW
1576 requests[n++] = i915_gem_request_reference(req);
1577 } else {
1578 for (i = 0; i < I915_NUM_RINGS; i++) {
1579 struct drm_i915_gem_request *req;
1580
1581 req = obj->last_read_req[i];
1582 if (req == NULL)
1583 continue;
1584
b4716185
CW
1585 requests[n++] = i915_gem_request_reference(req);
1586 }
1587 }
1588
3236f57a 1589 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1590 for (i = 0; ret == 0 && i < n; i++)
1591 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1592 NULL, rps);
3236f57a
CW
1593 mutex_lock(&dev->struct_mutex);
1594
b4716185
CW
1595 for (i = 0; i < n; i++) {
1596 if (ret == 0)
1597 i915_gem_object_retire_request(obj, requests[i]);
1598 i915_gem_request_unreference(requests[i]);
1599 }
1600
1601 return ret;
3236f57a
CW
1602}
1603
2e1b8730
CW
1604static struct intel_rps_client *to_rps_client(struct drm_file *file)
1605{
1606 struct drm_i915_file_private *fpriv = file->driver_priv;
1607 return &fpriv->rps;
1608}
1609
673a394b 1610/**
2ef7eeaa
EA
1611 * Called when user space prepares to use an object with the CPU, either
1612 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1613 */
1614int
1615i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1616 struct drm_file *file)
673a394b
EA
1617{
1618 struct drm_i915_gem_set_domain *args = data;
05394f39 1619 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1620 uint32_t read_domains = args->read_domains;
1621 uint32_t write_domain = args->write_domain;
673a394b
EA
1622 int ret;
1623
2ef7eeaa 1624 /* Only handle setting domains to types used by the CPU. */
21d509e3 1625 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1626 return -EINVAL;
1627
21d509e3 1628 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1629 return -EINVAL;
1630
1631 /* Having something in the write domain implies it's in the read
1632 * domain, and only that read domain. Enforce that in the request.
1633 */
1634 if (write_domain != 0 && read_domains != write_domain)
1635 return -EINVAL;
1636
76c1dec1 1637 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1638 if (ret)
76c1dec1 1639 return ret;
1d7cfea1 1640
05394f39 1641 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1642 if (&obj->base == NULL) {
1d7cfea1
CW
1643 ret = -ENOENT;
1644 goto unlock;
76c1dec1 1645 }
673a394b 1646
3236f57a
CW
1647 /* Try to flush the object off the GPU without holding the lock.
1648 * We will repeat the flush holding the lock in the normal manner
1649 * to catch cases where we are gazumped.
1650 */
6e4930f6 1651 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1652 to_rps_client(file),
6e4930f6 1653 !write_domain);
3236f57a
CW
1654 if (ret)
1655 goto unref;
1656
43566ded 1657 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1658 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1659 else
e47c68e9 1660 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1661
031b698a
DV
1662 if (write_domain != 0)
1663 intel_fb_obj_invalidate(obj,
1664 write_domain == I915_GEM_DOMAIN_GTT ?
1665 ORIGIN_GTT : ORIGIN_CPU);
1666
3236f57a 1667unref:
05394f39 1668 drm_gem_object_unreference(&obj->base);
1d7cfea1 1669unlock:
673a394b
EA
1670 mutex_unlock(&dev->struct_mutex);
1671 return ret;
1672}
1673
1674/**
1675 * Called when user space has done writes to this buffer
1676 */
1677int
1678i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1679 struct drm_file *file)
673a394b
EA
1680{
1681 struct drm_i915_gem_sw_finish *args = data;
05394f39 1682 struct drm_i915_gem_object *obj;
673a394b
EA
1683 int ret = 0;
1684
76c1dec1 1685 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1686 if (ret)
76c1dec1 1687 return ret;
1d7cfea1 1688
05394f39 1689 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1690 if (&obj->base == NULL) {
1d7cfea1
CW
1691 ret = -ENOENT;
1692 goto unlock;
673a394b
EA
1693 }
1694
673a394b 1695 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1696 if (obj->pin_display)
e62b59e4 1697 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1698
05394f39 1699 drm_gem_object_unreference(&obj->base);
1d7cfea1 1700unlock:
673a394b
EA
1701 mutex_unlock(&dev->struct_mutex);
1702 return ret;
1703}
1704
1705/**
1706 * Maps the contents of an object, returning the address it is mapped
1707 * into.
1708 *
1709 * While the mapping holds a reference on the contents of the object, it doesn't
1710 * imply a ref on the object itself.
34367381
DV
1711 *
1712 * IMPORTANT:
1713 *
1714 * DRM driver writers who look a this function as an example for how to do GEM
1715 * mmap support, please don't implement mmap support like here. The modern way
1716 * to implement DRM mmap support is with an mmap offset ioctl (like
1717 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1718 * That way debug tooling like valgrind will understand what's going on, hiding
1719 * the mmap call in a driver private ioctl will break that. The i915 driver only
1720 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1721 */
1722int
1723i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1724 struct drm_file *file)
673a394b
EA
1725{
1726 struct drm_i915_gem_mmap *args = data;
1727 struct drm_gem_object *obj;
673a394b
EA
1728 unsigned long addr;
1729
1816f923
AG
1730 if (args->flags & ~(I915_MMAP_WC))
1731 return -EINVAL;
1732
1733 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1734 return -ENODEV;
1735
05394f39 1736 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1737 if (obj == NULL)
bf79cb91 1738 return -ENOENT;
673a394b 1739
1286ff73
DV
1740 /* prime objects have no backing filp to GEM mmap
1741 * pages from.
1742 */
1743 if (!obj->filp) {
1744 drm_gem_object_unreference_unlocked(obj);
1745 return -EINVAL;
1746 }
1747
6be5ceb0 1748 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1749 PROT_READ | PROT_WRITE, MAP_SHARED,
1750 args->offset);
1816f923
AG
1751 if (args->flags & I915_MMAP_WC) {
1752 struct mm_struct *mm = current->mm;
1753 struct vm_area_struct *vma;
1754
1755 down_write(&mm->mmap_sem);
1756 vma = find_vma(mm, addr);
1757 if (vma)
1758 vma->vm_page_prot =
1759 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1760 else
1761 addr = -ENOMEM;
1762 up_write(&mm->mmap_sem);
1763 }
bc9025bd 1764 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1765 if (IS_ERR((void *)addr))
1766 return addr;
1767
1768 args->addr_ptr = (uint64_t) addr;
1769
1770 return 0;
1771}
1772
de151cf6
JB
1773/**
1774 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1775 * @vma: VMA in question
1776 * @vmf: fault info
de151cf6
JB
1777 *
1778 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1779 * from userspace. The fault handler takes care of binding the object to
1780 * the GTT (if needed), allocating and programming a fence register (again,
1781 * only if needed based on whether the old reg is still valid or the object
1782 * is tiled) and inserting a new PTE into the faulting process.
1783 *
1784 * Note that the faulting process may involve evicting existing objects
1785 * from the GTT and/or fence registers to make room. So performance may
1786 * suffer if the GTT working set is large or there are few fence registers
1787 * left.
1788 */
1789int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1790{
05394f39
CW
1791 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1792 struct drm_device *dev = obj->base.dev;
3e31c6c0 1793 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1794 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1795 pgoff_t page_offset;
1796 unsigned long pfn;
1797 int ret = 0;
0f973f27 1798 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1799
f65c9168
PZ
1800 intel_runtime_pm_get(dev_priv);
1801
de151cf6
JB
1802 /* We don't use vmf->pgoff since that has the fake offset */
1803 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1804 PAGE_SHIFT;
1805
d9bc7e9f
CW
1806 ret = i915_mutex_lock_interruptible(dev);
1807 if (ret)
1808 goto out;
a00b10c3 1809
db53a302
CW
1810 trace_i915_gem_object_fault(obj, page_offset, true, write);
1811
6e4930f6
CW
1812 /* Try to flush the object off the GPU first without holding the lock.
1813 * Upon reacquiring the lock, we will perform our sanity checks and then
1814 * repeat the flush holding the lock in the normal manner to catch cases
1815 * where we are gazumped.
1816 */
1817 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1818 if (ret)
1819 goto unlock;
1820
eb119bd6
CW
1821 /* Access to snoopable pages through the GTT is incoherent. */
1822 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1823 ret = -EFAULT;
eb119bd6
CW
1824 goto unlock;
1825 }
1826
c5ad54cf 1827 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1828 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1829 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1830 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1831
c5ad54cf
JL
1832 memset(&view, 0, sizeof(view));
1833 view.type = I915_GGTT_VIEW_PARTIAL;
1834 view.params.partial.offset = rounddown(page_offset, chunk_size);
1835 view.params.partial.size =
1836 min_t(unsigned int,
1837 chunk_size,
1838 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1839 view.params.partial.offset);
1840 }
1841
1842 /* Now pin it into the GTT if needed */
1843 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1844 if (ret)
1845 goto unlock;
4a684a41 1846
c9839303
CW
1847 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1848 if (ret)
1849 goto unpin;
74898d7e 1850
06d98131 1851 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1852 if (ret)
c9839303 1853 goto unpin;
7d1c4804 1854
b90b91d8 1855 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1856 pfn = dev_priv->gtt.mappable_base +
1857 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1858 pfn >>= PAGE_SHIFT;
de151cf6 1859
c5ad54cf
JL
1860 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1861 /* Overriding existing pages in partial view does not cause
1862 * us any trouble as TLBs are still valid because the fault
1863 * is due to userspace losing part of the mapping or never
1864 * having accessed it before (at this partials' range).
1865 */
1866 unsigned long base = vma->vm_start +
1867 (view.params.partial.offset << PAGE_SHIFT);
1868 unsigned int i;
b90b91d8 1869
c5ad54cf
JL
1870 for (i = 0; i < view.params.partial.size; i++) {
1871 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1872 if (ret)
1873 break;
1874 }
1875
1876 obj->fault_mappable = true;
c5ad54cf
JL
1877 } else {
1878 if (!obj->fault_mappable) {
1879 unsigned long size = min_t(unsigned long,
1880 vma->vm_end - vma->vm_start,
1881 obj->base.size);
1882 int i;
1883
1884 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1885 ret = vm_insert_pfn(vma,
1886 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1887 pfn + i);
1888 if (ret)
1889 break;
1890 }
1891
1892 obj->fault_mappable = true;
1893 } else
1894 ret = vm_insert_pfn(vma,
1895 (unsigned long)vmf->virtual_address,
1896 pfn + page_offset);
1897 }
c9839303 1898unpin:
c5ad54cf 1899 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1900unlock:
de151cf6 1901 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1902out:
de151cf6 1903 switch (ret) {
d9bc7e9f 1904 case -EIO:
2232f031
DV
1905 /*
1906 * We eat errors when the gpu is terminally wedged to avoid
1907 * userspace unduly crashing (gl has no provisions for mmaps to
1908 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909 * and so needs to be reported.
1910 */
1911 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1912 ret = VM_FAULT_SIGBUS;
1913 break;
1914 }
045e769a 1915 case -EAGAIN:
571c608d
DV
1916 /*
1917 * EAGAIN means the gpu is hung and we'll wait for the error
1918 * handler to reset everything when re-faulting in
1919 * i915_mutex_lock_interruptible.
d9bc7e9f 1920 */
c715089f
CW
1921 case 0:
1922 case -ERESTARTSYS:
bed636ab 1923 case -EINTR:
e79e0fe3
DR
1924 case -EBUSY:
1925 /*
1926 * EBUSY is ok: this just means that another thread
1927 * already did the job.
1928 */
f65c9168
PZ
1929 ret = VM_FAULT_NOPAGE;
1930 break;
de151cf6 1931 case -ENOMEM:
f65c9168
PZ
1932 ret = VM_FAULT_OOM;
1933 break;
a7c2e1aa 1934 case -ENOSPC:
45d67817 1935 case -EFAULT:
f65c9168
PZ
1936 ret = VM_FAULT_SIGBUS;
1937 break;
de151cf6 1938 default:
a7c2e1aa 1939 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1940 ret = VM_FAULT_SIGBUS;
1941 break;
de151cf6 1942 }
f65c9168
PZ
1943
1944 intel_runtime_pm_put(dev_priv);
1945 return ret;
de151cf6
JB
1946}
1947
901782b2
CW
1948/**
1949 * i915_gem_release_mmap - remove physical page mappings
1950 * @obj: obj in question
1951 *
af901ca1 1952 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1953 * relinquish ownership of the pages back to the system.
1954 *
1955 * It is vital that we remove the page mapping if we have mapped a tiled
1956 * object through the GTT and then lose the fence register due to
1957 * resource pressure. Similarly if the object has been moved out of the
1958 * aperture, than pages mapped into userspace must be revoked. Removing the
1959 * mapping will then trigger a page fault on the next user access, allowing
1960 * fixup by i915_gem_fault().
1961 */
d05ca301 1962void
05394f39 1963i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1964{
6299f992
CW
1965 if (!obj->fault_mappable)
1966 return;
901782b2 1967
6796cb16
DH
1968 drm_vma_node_unmap(&obj->base.vma_node,
1969 obj->base.dev->anon_inode->i_mapping);
6299f992 1970 obj->fault_mappable = false;
901782b2
CW
1971}
1972
eedd10f4
CW
1973void
1974i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1975{
1976 struct drm_i915_gem_object *obj;
1977
1978 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1979 i915_gem_release_mmap(obj);
1980}
1981
0fa87796 1982uint32_t
e28f8711 1983i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1984{
e28f8711 1985 uint32_t gtt_size;
92b88aeb
CW
1986
1987 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1988 tiling_mode == I915_TILING_NONE)
1989 return size;
92b88aeb
CW
1990
1991 /* Previous chips need a power-of-two fence region when tiling */
1992 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1993 gtt_size = 1024*1024;
92b88aeb 1994 else
e28f8711 1995 gtt_size = 512*1024;
92b88aeb 1996
e28f8711
CW
1997 while (gtt_size < size)
1998 gtt_size <<= 1;
92b88aeb 1999
e28f8711 2000 return gtt_size;
92b88aeb
CW
2001}
2002
de151cf6
JB
2003/**
2004 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2005 * @obj: object to check
2006 *
2007 * Return the required GTT alignment for an object, taking into account
5e783301 2008 * potential fence register mapping.
de151cf6 2009 */
d865110c
ID
2010uint32_t
2011i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2012 int tiling_mode, bool fenced)
de151cf6 2013{
de151cf6
JB
2014 /*
2015 * Minimum alignment is 4k (GTT page size), but might be greater
2016 * if a fence register is needed for the object.
2017 */
d865110c 2018 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 2019 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2020 return 4096;
2021
a00b10c3
CW
2022 /*
2023 * Previous chips need to be aligned to the size of the smallest
2024 * fence register that can contain the object.
2025 */
e28f8711 2026 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
2027}
2028
d8cb5086
CW
2029static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030{
2031 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2032 int ret;
2033
0de23977 2034 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
2035 return 0;
2036
da494d7c
DV
2037 dev_priv->mm.shrinker_no_lock_stealing = true;
2038
d8cb5086
CW
2039 ret = drm_gem_create_mmap_offset(&obj->base);
2040 if (ret != -ENOSPC)
da494d7c 2041 goto out;
d8cb5086
CW
2042
2043 /* Badly fragmented mmap space? The only way we can recover
2044 * space is by destroying unwanted objects. We can't randomly release
2045 * mmap_offsets as userspace expects them to be persistent for the
2046 * lifetime of the objects. The closest we can is to release the
2047 * offsets on purgeable objects by truncating it and marking it purged,
2048 * which prevents userspace from ever using that object again.
2049 */
21ab4e74
CW
2050 i915_gem_shrink(dev_priv,
2051 obj->base.size >> PAGE_SHIFT,
2052 I915_SHRINK_BOUND |
2053 I915_SHRINK_UNBOUND |
2054 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2055 ret = drm_gem_create_mmap_offset(&obj->base);
2056 if (ret != -ENOSPC)
da494d7c 2057 goto out;
d8cb5086
CW
2058
2059 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2060 ret = drm_gem_create_mmap_offset(&obj->base);
2061out:
2062 dev_priv->mm.shrinker_no_lock_stealing = false;
2063
2064 return ret;
d8cb5086
CW
2065}
2066
2067static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2068{
d8cb5086
CW
2069 drm_gem_free_mmap_offset(&obj->base);
2070}
2071
da6b51d0 2072int
ff72145b
DA
2073i915_gem_mmap_gtt(struct drm_file *file,
2074 struct drm_device *dev,
da6b51d0 2075 uint32_t handle,
ff72145b 2076 uint64_t *offset)
de151cf6 2077{
05394f39 2078 struct drm_i915_gem_object *obj;
de151cf6
JB
2079 int ret;
2080
76c1dec1 2081 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2082 if (ret)
76c1dec1 2083 return ret;
de151cf6 2084
ff72145b 2085 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2086 if (&obj->base == NULL) {
1d7cfea1
CW
2087 ret = -ENOENT;
2088 goto unlock;
2089 }
de151cf6 2090
05394f39 2091 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2092 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2093 ret = -EFAULT;
1d7cfea1 2094 goto out;
ab18282d
CW
2095 }
2096
d8cb5086
CW
2097 ret = i915_gem_object_create_mmap_offset(obj);
2098 if (ret)
2099 goto out;
de151cf6 2100
0de23977 2101 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2102
1d7cfea1 2103out:
05394f39 2104 drm_gem_object_unreference(&obj->base);
1d7cfea1 2105unlock:
de151cf6 2106 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2107 return ret;
de151cf6
JB
2108}
2109
ff72145b
DA
2110/**
2111 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2112 * @dev: DRM device
2113 * @data: GTT mapping ioctl data
2114 * @file: GEM object info
2115 *
2116 * Simply returns the fake offset to userspace so it can mmap it.
2117 * The mmap call will end up in drm_gem_mmap(), which will set things
2118 * up so we can get faults in the handler above.
2119 *
2120 * The fault handler will take care of binding the object into the GTT
2121 * (since it may have been evicted to make room for something), allocating
2122 * a fence register, and mapping the appropriate aperture address into
2123 * userspace.
2124 */
2125int
2126i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2127 struct drm_file *file)
2128{
2129 struct drm_i915_gem_mmap_gtt *args = data;
2130
da6b51d0 2131 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2132}
2133
225067ee
DV
2134/* Immediately discard the backing storage */
2135static void
2136i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2137{
4d6294bf 2138 i915_gem_object_free_mmap_offset(obj);
1286ff73 2139
4d6294bf
CW
2140 if (obj->base.filp == NULL)
2141 return;
e5281ccd 2142
225067ee
DV
2143 /* Our goal here is to return as much of the memory as
2144 * is possible back to the system as we are called from OOM.
2145 * To do this we must instruct the shmfs to drop all of its
2146 * backing pages, *now*.
2147 */
5537252b 2148 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2149 obj->madv = __I915_MADV_PURGED;
2150}
e5281ccd 2151
5537252b
CW
2152/* Try to discard unwanted pages */
2153static void
2154i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2155{
5537252b
CW
2156 struct address_space *mapping;
2157
2158 switch (obj->madv) {
2159 case I915_MADV_DONTNEED:
2160 i915_gem_object_truncate(obj);
2161 case __I915_MADV_PURGED:
2162 return;
2163 }
2164
2165 if (obj->base.filp == NULL)
2166 return;
2167
2168 mapping = file_inode(obj->base.filp)->i_mapping,
2169 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2170}
2171
5cdf5881 2172static void
05394f39 2173i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2174{
90797e6d
ID
2175 struct sg_page_iter sg_iter;
2176 int ret;
1286ff73 2177
05394f39 2178 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2179
6c085a72
CW
2180 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2181 if (ret) {
2182 /* In the event of a disaster, abandon all caches and
2183 * hope for the best.
2184 */
2185 WARN_ON(ret != -EIO);
2c22569b 2186 i915_gem_clflush_object(obj, true);
6c085a72
CW
2187 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2188 }
2189
e2273302
ID
2190 i915_gem_gtt_finish_object(obj);
2191
6dacfd2f 2192 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2193 i915_gem_object_save_bit_17_swizzle(obj);
2194
05394f39
CW
2195 if (obj->madv == I915_MADV_DONTNEED)
2196 obj->dirty = 0;
3ef94daa 2197
90797e6d 2198 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2199 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2200
05394f39 2201 if (obj->dirty)
9da3da66 2202 set_page_dirty(page);
3ef94daa 2203
05394f39 2204 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2205 mark_page_accessed(page);
3ef94daa 2206
9da3da66 2207 page_cache_release(page);
3ef94daa 2208 }
05394f39 2209 obj->dirty = 0;
673a394b 2210
9da3da66
CW
2211 sg_free_table(obj->pages);
2212 kfree(obj->pages);
37e680a1 2213}
6c085a72 2214
dd624afd 2215int
37e680a1
CW
2216i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2217{
2218 const struct drm_i915_gem_object_ops *ops = obj->ops;
2219
2f745ad3 2220 if (obj->pages == NULL)
37e680a1
CW
2221 return 0;
2222
a5570178
CW
2223 if (obj->pages_pin_count)
2224 return -EBUSY;
2225
9843877d 2226 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2227
a2165e31
CW
2228 /* ->put_pages might need to allocate memory for the bit17 swizzle
2229 * array, hence protect them from being reaped by removing them from gtt
2230 * lists early. */
35c20a60 2231 list_del(&obj->global_list);
a2165e31 2232
37e680a1 2233 ops->put_pages(obj);
05394f39 2234 obj->pages = NULL;
37e680a1 2235
5537252b 2236 i915_gem_object_invalidate(obj);
6c085a72
CW
2237
2238 return 0;
2239}
2240
37e680a1 2241static int
6c085a72 2242i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2243{
6c085a72 2244 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2245 int page_count, i;
2246 struct address_space *mapping;
9da3da66
CW
2247 struct sg_table *st;
2248 struct scatterlist *sg;
90797e6d 2249 struct sg_page_iter sg_iter;
e5281ccd 2250 struct page *page;
90797e6d 2251 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2252 int ret;
6c085a72 2253 gfp_t gfp;
e5281ccd 2254
6c085a72
CW
2255 /* Assert that the object is not currently in any GPU domain. As it
2256 * wasn't in the GTT, there shouldn't be any way it could have been in
2257 * a GPU cache
2258 */
2259 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2260 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2261
9da3da66
CW
2262 st = kmalloc(sizeof(*st), GFP_KERNEL);
2263 if (st == NULL)
2264 return -ENOMEM;
2265
05394f39 2266 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2267 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2268 kfree(st);
e5281ccd 2269 return -ENOMEM;
9da3da66 2270 }
e5281ccd 2271
9da3da66
CW
2272 /* Get the list of pages out of our struct file. They'll be pinned
2273 * at this point until we release them.
2274 *
2275 * Fail silently without starting the shrinker
2276 */
496ad9aa 2277 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2278 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2279 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2280 sg = st->sgl;
2281 st->nents = 0;
2282 for (i = 0; i < page_count; i++) {
6c085a72
CW
2283 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284 if (IS_ERR(page)) {
21ab4e74
CW
2285 i915_gem_shrink(dev_priv,
2286 page_count,
2287 I915_SHRINK_BOUND |
2288 I915_SHRINK_UNBOUND |
2289 I915_SHRINK_PURGEABLE);
6c085a72
CW
2290 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291 }
2292 if (IS_ERR(page)) {
2293 /* We've tried hard to allocate the memory by reaping
2294 * our own buffer, now let the real VM do its job and
2295 * go down in flames if truly OOM.
2296 */
6c085a72 2297 i915_gem_shrink_all(dev_priv);
f461d1be 2298 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2299 if (IS_ERR(page)) {
2300 ret = PTR_ERR(page);
6c085a72 2301 goto err_pages;
e2273302 2302 }
6c085a72 2303 }
426729dc
KRW
2304#ifdef CONFIG_SWIOTLB
2305 if (swiotlb_nr_tbl()) {
2306 st->nents++;
2307 sg_set_page(sg, page, PAGE_SIZE, 0);
2308 sg = sg_next(sg);
2309 continue;
2310 }
2311#endif
90797e6d
ID
2312 if (!i || page_to_pfn(page) != last_pfn + 1) {
2313 if (i)
2314 sg = sg_next(sg);
2315 st->nents++;
2316 sg_set_page(sg, page, PAGE_SIZE, 0);
2317 } else {
2318 sg->length += PAGE_SIZE;
2319 }
2320 last_pfn = page_to_pfn(page);
3bbbe706
DV
2321
2322 /* Check that the i965g/gm workaround works. */
2323 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2324 }
426729dc
KRW
2325#ifdef CONFIG_SWIOTLB
2326 if (!swiotlb_nr_tbl())
2327#endif
2328 sg_mark_end(sg);
74ce6b6c
CW
2329 obj->pages = st;
2330
e2273302
ID
2331 ret = i915_gem_gtt_prepare_object(obj);
2332 if (ret)
2333 goto err_pages;
2334
6dacfd2f 2335 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2336 i915_gem_object_do_bit_17_swizzle(obj);
2337
656bfa3a
DV
2338 if (obj->tiling_mode != I915_TILING_NONE &&
2339 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2340 i915_gem_object_pin_pages(obj);
2341
e5281ccd
CW
2342 return 0;
2343
2344err_pages:
90797e6d
ID
2345 sg_mark_end(sg);
2346 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2347 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2348 sg_free_table(st);
2349 kfree(st);
0820baf3
CW
2350
2351 /* shmemfs first checks if there is enough memory to allocate the page
2352 * and reports ENOSPC should there be insufficient, along with the usual
2353 * ENOMEM for a genuine allocation failure.
2354 *
2355 * We use ENOSPC in our driver to mean that we have run out of aperture
2356 * space and so want to translate the error from shmemfs back to our
2357 * usual understanding of ENOMEM.
2358 */
e2273302
ID
2359 if (ret == -ENOSPC)
2360 ret = -ENOMEM;
2361
2362 return ret;
673a394b
EA
2363}
2364
37e680a1
CW
2365/* Ensure that the associated pages are gathered from the backing storage
2366 * and pinned into our object. i915_gem_object_get_pages() may be called
2367 * multiple times before they are released by a single call to
2368 * i915_gem_object_put_pages() - once the pages are no longer referenced
2369 * either as a result of memory pressure (reaping pages under the shrinker)
2370 * or as the object is itself released.
2371 */
2372int
2373i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2374{
2375 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2376 const struct drm_i915_gem_object_ops *ops = obj->ops;
2377 int ret;
2378
2f745ad3 2379 if (obj->pages)
37e680a1
CW
2380 return 0;
2381
43e28f09 2382 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2383 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2384 return -EFAULT;
43e28f09
CW
2385 }
2386
a5570178
CW
2387 BUG_ON(obj->pages_pin_count);
2388
37e680a1
CW
2389 ret = ops->get_pages(obj);
2390 if (ret)
2391 return ret;
2392
35c20a60 2393 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2394
2395 obj->get_page.sg = obj->pages->sgl;
2396 obj->get_page.last = 0;
2397
37e680a1 2398 return 0;
673a394b
EA
2399}
2400
b4716185 2401void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2402 struct drm_i915_gem_request *req)
673a394b 2403{
b4716185 2404 struct drm_i915_gem_object *obj = vma->obj;
b2af0376
JH
2405 struct intel_engine_cs *ring;
2406
2407 ring = i915_gem_request_get_ring(req);
673a394b
EA
2408
2409 /* Add a reference if we're newly entering the active list. */
b4716185 2410 if (obj->active == 0)
05394f39 2411 drm_gem_object_reference(&obj->base);
b4716185 2412 obj->active |= intel_ring_flag(ring);
e35a41de 2413
b4716185 2414 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
b2af0376 2415 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
caea7476 2416
b4716185 2417 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2418}
2419
b4716185
CW
2420static void
2421i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2422{
b4716185
CW
2423 RQ_BUG_ON(obj->last_write_req == NULL);
2424 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2425
2426 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2427 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2428}
2429
caea7476 2430static void
b4716185 2431i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2432{
feb822cf 2433 struct i915_vma *vma;
ce44b0ea 2434
b4716185
CW
2435 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2436 RQ_BUG_ON(!(obj->active & (1 << ring)));
2437
2438 list_del_init(&obj->ring_list[ring]);
2439 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2440
2441 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2442 i915_gem_object_retire__write(obj);
2443
2444 obj->active &= ~(1 << ring);
2445 if (obj->active)
2446 return;
caea7476 2447
6c246959
CW
2448 /* Bump our place on the bound list to keep it roughly in LRU order
2449 * so that we don't steal from recently used but inactive objects
2450 * (unless we are forced to ofc!)
2451 */
2452 list_move_tail(&obj->global_list,
2453 &to_i915(obj->base.dev)->mm.bound_list);
2454
fe14d5f4
TU
2455 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2456 if (!list_empty(&vma->mm_list))
2457 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2458 }
caea7476 2459
97b2a6a1 2460 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2461 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2462}
2463
9d773091 2464static int
fca26bb4 2465i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2466{
9d773091 2467 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2468 struct intel_engine_cs *ring;
9d773091 2469 int ret, i, j;
53d227f2 2470
107f27a5 2471 /* Carefully retire all requests without writing to the rings */
9d773091 2472 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2473 ret = intel_ring_idle(ring);
2474 if (ret)
2475 return ret;
9d773091 2476 }
9d773091 2477 i915_gem_retire_requests(dev);
107f27a5
CW
2478
2479 /* Finally reset hw state */
9d773091 2480 for_each_ring(ring, dev_priv, i) {
fca26bb4 2481 intel_ring_init_seqno(ring, seqno);
498d2ac1 2482
ebc348b2
BW
2483 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2484 ring->semaphore.sync_seqno[j] = 0;
9d773091 2485 }
53d227f2 2486
9d773091 2487 return 0;
53d227f2
DV
2488}
2489
fca26bb4
MK
2490int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2491{
2492 struct drm_i915_private *dev_priv = dev->dev_private;
2493 int ret;
2494
2495 if (seqno == 0)
2496 return -EINVAL;
2497
2498 /* HWS page needs to be set less than what we
2499 * will inject to ring
2500 */
2501 ret = i915_gem_init_seqno(dev, seqno - 1);
2502 if (ret)
2503 return ret;
2504
2505 /* Carefully set the last_seqno value so that wrap
2506 * detection still works
2507 */
2508 dev_priv->next_seqno = seqno;
2509 dev_priv->last_seqno = seqno - 1;
2510 if (dev_priv->last_seqno == 0)
2511 dev_priv->last_seqno--;
2512
2513 return 0;
2514}
2515
9d773091
CW
2516int
2517i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2518{
9d773091
CW
2519 struct drm_i915_private *dev_priv = dev->dev_private;
2520
2521 /* reserve 0 for non-seqno */
2522 if (dev_priv->next_seqno == 0) {
fca26bb4 2523 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2524 if (ret)
2525 return ret;
53d227f2 2526
9d773091
CW
2527 dev_priv->next_seqno = 1;
2528 }
53d227f2 2529
f72b3435 2530 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2531 return 0;
53d227f2
DV
2532}
2533
bf7dc5b7
JH
2534/*
2535 * NB: This function is not allowed to fail. Doing so would mean the the
2536 * request is not being tracked for completion but the work itself is
2537 * going to happen on the hardware. This would be a Bad Thing(tm).
2538 */
75289874 2539void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2540 struct drm_i915_gem_object *obj,
2541 bool flush_caches)
673a394b 2542{
75289874
JH
2543 struct intel_engine_cs *ring;
2544 struct drm_i915_private *dev_priv;
48e29f55 2545 struct intel_ringbuffer *ringbuf;
6d3d8274 2546 u32 request_start;
3cce469c
CW
2547 int ret;
2548
48e29f55 2549 if (WARN_ON(request == NULL))
bf7dc5b7 2550 return;
48e29f55 2551
75289874
JH
2552 ring = request->ring;
2553 dev_priv = ring->dev->dev_private;
2554 ringbuf = request->ringbuf;
2555
29b1b415
JH
2556 /*
2557 * To ensure that this call will not fail, space for its emissions
2558 * should already have been reserved in the ring buffer. Let the ring
2559 * know that it is time to use that space up.
2560 */
2561 intel_ring_reserved_space_use(ringbuf);
2562
48e29f55 2563 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2564 /*
2565 * Emit any outstanding flushes - execbuf can fail to emit the flush
2566 * after having emitted the batchbuffer command. Hence we need to fix
2567 * things up similar to emitting the lazy request. The difference here
2568 * is that the flush _must_ happen before the next request, no matter
2569 * what.
2570 */
5b4a60c2
JH
2571 if (flush_caches) {
2572 if (i915.enable_execlists)
4866d729 2573 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2574 else
4866d729 2575 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2576 /* Not allowed to fail! */
2577 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2578 }
cc889e0f 2579
a71d8d94
CW
2580 /* Record the position of the start of the request so that
2581 * should we detect the updated seqno part-way through the
2582 * GPU processing the request, we never over-estimate the
2583 * position of the head.
2584 */
6d3d8274 2585 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2586
bf7dc5b7 2587 if (i915.enable_execlists)
c4e76638 2588 ret = ring->emit_request(request);
bf7dc5b7 2589 else {
ee044a88 2590 ret = ring->add_request(request);
53292cdb
MT
2591
2592 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2593 }
bf7dc5b7
JH
2594 /* Not allowed to fail! */
2595 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2596
7d736f4f 2597 request->head = request_start;
7d736f4f
MK
2598
2599 /* Whilst this request exists, batch_obj will be on the
2600 * active_list, and so will hold the active reference. Only when this
2601 * request is retired will the the batch_obj be moved onto the
2602 * inactive_list and lose its active reference. Hence we do not need
2603 * to explicitly hold another reference here.
2604 */
9a7e0c2a 2605 request->batch_obj = obj;
0e50e96b 2606
673a394b 2607 request->emitted_jiffies = jiffies;
821485dc 2608 request->previous_seqno = ring->last_submitted_seqno;
94f7bbe1 2609 ring->last_submitted_seqno = request->seqno;
852835f3 2610 list_add_tail(&request->list, &ring->request_list);
673a394b 2611
74328ee5 2612 trace_i915_gem_request_add(request);
db53a302 2613
87255483 2614 i915_queue_hangcheck(ring->dev);
10cd45b6 2615
87255483
DV
2616 queue_delayed_work(dev_priv->wq,
2617 &dev_priv->mm.retire_work,
2618 round_jiffies_up_relative(HZ));
2619 intel_mark_busy(dev_priv->dev);
cc889e0f 2620
29b1b415
JH
2621 /* Sanity check that the reserved size was large enough. */
2622 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2623}
2624
939fd762 2625static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2626 const struct intel_context *ctx)
be62acb4 2627{
44e2c070 2628 unsigned long elapsed;
be62acb4 2629
44e2c070
MK
2630 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2631
2632 if (ctx->hang_stats.banned)
be62acb4
MK
2633 return true;
2634
676fa572
CW
2635 if (ctx->hang_stats.ban_period_seconds &&
2636 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2637 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2638 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2639 return true;
88b4aa87
MK
2640 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2641 if (i915_stop_ring_allow_warn(dev_priv))
2642 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2643 return true;
3fac8978 2644 }
be62acb4
MK
2645 }
2646
2647 return false;
2648}
2649
939fd762 2650static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2651 struct intel_context *ctx,
b6b0fac0 2652 const bool guilty)
aa60c664 2653{
44e2c070
MK
2654 struct i915_ctx_hang_stats *hs;
2655
2656 if (WARN_ON(!ctx))
2657 return;
aa60c664 2658
44e2c070
MK
2659 hs = &ctx->hang_stats;
2660
2661 if (guilty) {
939fd762 2662 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2663 hs->batch_active++;
2664 hs->guilty_ts = get_seconds();
2665 } else {
2666 hs->batch_pending++;
aa60c664
MK
2667 }
2668}
2669
abfe262a
JH
2670void i915_gem_request_free(struct kref *req_ref)
2671{
2672 struct drm_i915_gem_request *req = container_of(req_ref,
2673 typeof(*req), ref);
2674 struct intel_context *ctx = req->ctx;
2675
fcfa423c
JH
2676 if (req->file_priv)
2677 i915_gem_request_remove_from_client(req);
2678
0794aed3
TD
2679 if (ctx) {
2680 if (i915.enable_execlists) {
8ba319da
MK
2681 if (ctx != req->ring->default_context)
2682 intel_lr_context_unpin(req);
0794aed3 2683 }
abfe262a 2684
dcb4c12a
OM
2685 i915_gem_context_unreference(ctx);
2686 }
abfe262a 2687
efab6d8d 2688 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2689}
2690
6689cb2b 2691int i915_gem_request_alloc(struct intel_engine_cs *ring,
217e46b5
JH
2692 struct intel_context *ctx,
2693 struct drm_i915_gem_request **req_out)
6689cb2b 2694{
efab6d8d 2695 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2696 struct drm_i915_gem_request *req;
6689cb2b 2697 int ret;
6689cb2b 2698
217e46b5
JH
2699 if (!req_out)
2700 return -EINVAL;
2701
bccca494 2702 *req_out = NULL;
6689cb2b 2703
eed29a5b
DV
2704 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2705 if (req == NULL)
6689cb2b
JH
2706 return -ENOMEM;
2707
eed29a5b 2708 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2709 if (ret)
2710 goto err;
6689cb2b 2711
40e895ce
JH
2712 kref_init(&req->ref);
2713 req->i915 = dev_priv;
eed29a5b 2714 req->ring = ring;
40e895ce
JH
2715 req->ctx = ctx;
2716 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2717
2718 if (i915.enable_execlists)
40e895ce 2719 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2720 else
eed29a5b 2721 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2722 if (ret) {
2723 i915_gem_context_unreference(req->ctx);
9a0c1e27 2724 goto err;
40e895ce 2725 }
6689cb2b 2726
29b1b415
JH
2727 /*
2728 * Reserve space in the ring buffer for all the commands required to
2729 * eventually emit this request. This is to guarantee that the
2730 * i915_add_request() call can't fail. Note that the reserve may need
2731 * to be redone if the request is not actually submitted straight
2732 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2733 */
ccd98fe4
JH
2734 if (i915.enable_execlists)
2735 ret = intel_logical_ring_reserve_space(req);
2736 else
2737 ret = intel_ring_reserve_space(req);
2738 if (ret) {
2739 /*
2740 * At this point, the request is fully allocated even if not
2741 * fully prepared. Thus it can be cleaned up using the proper
2742 * free code.
2743 */
2744 i915_gem_request_cancel(req);
2745 return ret;
2746 }
29b1b415 2747
bccca494 2748 *req_out = req;
6689cb2b 2749 return 0;
9a0c1e27
CW
2750
2751err:
2752 kmem_cache_free(dev_priv->requests, req);
2753 return ret;
0e50e96b
MK
2754}
2755
29b1b415
JH
2756void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2757{
2758 intel_ring_reserved_space_cancel(req->ringbuf);
2759
2760 i915_gem_request_unreference(req);
2761}
2762
8d9fc7fd 2763struct drm_i915_gem_request *
a4872ba6 2764i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2765{
4db080f9
CW
2766 struct drm_i915_gem_request *request;
2767
2768 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2769 if (i915_gem_request_completed(request, false))
4db080f9 2770 continue;
aa60c664 2771
b6b0fac0 2772 return request;
4db080f9 2773 }
b6b0fac0
MK
2774
2775 return NULL;
2776}
2777
2778static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2779 struct intel_engine_cs *ring)
b6b0fac0
MK
2780{
2781 struct drm_i915_gem_request *request;
2782 bool ring_hung;
2783
8d9fc7fd 2784 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2785
2786 if (request == NULL)
2787 return;
2788
2789 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2790
939fd762 2791 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2792
2793 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2794 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2795}
aa60c664 2796
4db080f9 2797static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2798 struct intel_engine_cs *ring)
4db080f9 2799{
608c1a52
CW
2800 struct intel_ringbuffer *buffer;
2801
dfaae392 2802 while (!list_empty(&ring->active_list)) {
05394f39 2803 struct drm_i915_gem_object *obj;
9375e446 2804
05394f39
CW
2805 obj = list_first_entry(&ring->active_list,
2806 struct drm_i915_gem_object,
b4716185 2807 ring_list[ring->id]);
9375e446 2808
b4716185 2809 i915_gem_object_retire__read(obj, ring->id);
673a394b 2810 }
1d62beea 2811
dcb4c12a
OM
2812 /*
2813 * Clear the execlists queue up before freeing the requests, as those
2814 * are the ones that keep the context and ringbuffer backing objects
2815 * pinned in place.
2816 */
dcb4c12a 2817
7de1691a
TE
2818 if (i915.enable_execlists) {
2819 spin_lock_irq(&ring->execlist_lock);
1197b4f2 2820
c5baa566
TE
2821 /* list_splice_tail_init checks for empty lists */
2822 list_splice_tail_init(&ring->execlist_queue,
2823 &ring->execlist_retired_req_list);
1197b4f2 2824
7de1691a 2825 spin_unlock_irq(&ring->execlist_lock);
c5baa566 2826 intel_execlists_retire_requests(ring);
dcb4c12a
OM
2827 }
2828
1d62beea
BW
2829 /*
2830 * We must free the requests after all the corresponding objects have
2831 * been moved off active lists. Which is the same order as the normal
2832 * retire_requests function does. This is important if object hold
2833 * implicit references on things like e.g. ppgtt address spaces through
2834 * the request.
2835 */
2836 while (!list_empty(&ring->request_list)) {
2837 struct drm_i915_gem_request *request;
2838
2839 request = list_first_entry(&ring->request_list,
2840 struct drm_i915_gem_request,
2841 list);
2842
b4716185 2843 i915_gem_request_retire(request);
1d62beea 2844 }
608c1a52
CW
2845
2846 /* Having flushed all requests from all queues, we know that all
2847 * ringbuffers must now be empty. However, since we do not reclaim
2848 * all space when retiring the request (to prevent HEADs colliding
2849 * with rapid ringbuffer wraparound) the amount of available space
2850 * upon reset is less than when we start. Do one more pass over
2851 * all the ringbuffers to reset last_retired_head.
2852 */
2853 list_for_each_entry(buffer, &ring->buffers, link) {
2854 buffer->last_retired_head = buffer->tail;
2855 intel_ring_update_space(buffer);
2856 }
673a394b
EA
2857}
2858
069efc1d 2859void i915_gem_reset(struct drm_device *dev)
673a394b 2860{
77f01230 2861 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2862 struct intel_engine_cs *ring;
1ec14ad3 2863 int i;
673a394b 2864
4db080f9
CW
2865 /*
2866 * Before we free the objects from the requests, we need to inspect
2867 * them for finding the guilty party. As the requests only borrow
2868 * their reference to the objects, the inspection must be done first.
2869 */
2870 for_each_ring(ring, dev_priv, i)
2871 i915_gem_reset_ring_status(dev_priv, ring);
2872
b4519513 2873 for_each_ring(ring, dev_priv, i)
4db080f9 2874 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2875
acce9ffa
BW
2876 i915_gem_context_reset(dev);
2877
19b2dbde 2878 i915_gem_restore_fences(dev);
b4716185
CW
2879
2880 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2881}
2882
2883/**
2884 * This function clears the request list as sequence numbers are passed.
2885 */
1cf0ba14 2886void
a4872ba6 2887i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2888{
db53a302 2889 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2890
832a3aad
CW
2891 /* Retire requests first as we use it above for the early return.
2892 * If we retire requests last, we may use a later seqno and so clear
2893 * the requests lists without clearing the active list, leading to
2894 * confusion.
e9103038 2895 */
852835f3 2896 while (!list_empty(&ring->request_list)) {
673a394b 2897 struct drm_i915_gem_request *request;
673a394b 2898
852835f3 2899 request = list_first_entry(&ring->request_list,
673a394b
EA
2900 struct drm_i915_gem_request,
2901 list);
673a394b 2902
1b5a433a 2903 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2904 break;
2905
b4716185 2906 i915_gem_request_retire(request);
b84d5f0c 2907 }
673a394b 2908
832a3aad
CW
2909 /* Move any buffers on the active list that are no longer referenced
2910 * by the ringbuffer to the flushing/inactive lists as appropriate,
2911 * before we free the context associated with the requests.
2912 */
2913 while (!list_empty(&ring->active_list)) {
2914 struct drm_i915_gem_object *obj;
2915
2916 obj = list_first_entry(&ring->active_list,
2917 struct drm_i915_gem_object,
b4716185 2918 ring_list[ring->id]);
832a3aad 2919
b4716185 2920 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2921 break;
2922
b4716185 2923 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2924 }
2925
581c26e8
JH
2926 if (unlikely(ring->trace_irq_req &&
2927 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2928 ring->irq_put(ring);
581c26e8 2929 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2930 }
23bc5982 2931
db53a302 2932 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2933}
2934
b29c19b6 2935bool
b09a1fec
CW
2936i915_gem_retire_requests(struct drm_device *dev)
2937{
3e31c6c0 2938 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2939 struct intel_engine_cs *ring;
b29c19b6 2940 bool idle = true;
1ec14ad3 2941 int i;
b09a1fec 2942
b29c19b6 2943 for_each_ring(ring, dev_priv, i) {
b4519513 2944 i915_gem_retire_requests_ring(ring);
b29c19b6 2945 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2946 if (i915.enable_execlists) {
2947 unsigned long flags;
2948
2949 spin_lock_irqsave(&ring->execlist_lock, flags);
2950 idle &= list_empty(&ring->execlist_queue);
2951 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2952
2953 intel_execlists_retire_requests(ring);
2954 }
b29c19b6
CW
2955 }
2956
2957 if (idle)
2958 mod_delayed_work(dev_priv->wq,
2959 &dev_priv->mm.idle_work,
2960 msecs_to_jiffies(100));
2961
2962 return idle;
b09a1fec
CW
2963}
2964
75ef9da2 2965static void
673a394b
EA
2966i915_gem_retire_work_handler(struct work_struct *work)
2967{
b29c19b6
CW
2968 struct drm_i915_private *dev_priv =
2969 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2970 struct drm_device *dev = dev_priv->dev;
0a58705b 2971 bool idle;
673a394b 2972
891b48cf 2973 /* Come back later if the device is busy... */
b29c19b6
CW
2974 idle = false;
2975 if (mutex_trylock(&dev->struct_mutex)) {
2976 idle = i915_gem_retire_requests(dev);
2977 mutex_unlock(&dev->struct_mutex);
673a394b 2978 }
b29c19b6 2979 if (!idle)
bcb45086
CW
2980 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2981 round_jiffies_up_relative(HZ));
b29c19b6 2982}
0a58705b 2983
b29c19b6
CW
2984static void
2985i915_gem_idle_work_handler(struct work_struct *work)
2986{
2987 struct drm_i915_private *dev_priv =
2988 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2989 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2990 struct intel_engine_cs *ring;
2991 int i;
b29c19b6 2992
423795cb
CW
2993 for_each_ring(ring, dev_priv, i)
2994 if (!list_empty(&ring->request_list))
2995 return;
35c94185 2996
30ecad77
DV
2997 /* we probably should sync with hangcheck here, using cancel_work_sync.
2998 * Also locking seems to be fubar here, ring->request_list is protected
2999 * by dev->struct_mutex. */
3000
35c94185
CW
3001 intel_mark_idle(dev);
3002
3003 if (mutex_trylock(&dev->struct_mutex)) {
3004 struct intel_engine_cs *ring;
3005 int i;
3006
3007 for_each_ring(ring, dev_priv, i)
3008 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 3009
35c94185
CW
3010 mutex_unlock(&dev->struct_mutex);
3011 }
673a394b
EA
3012}
3013
30dfebf3
DV
3014/**
3015 * Ensures that an object will eventually get non-busy by flushing any required
3016 * write domains, emitting any outstanding lazy request and retiring and
3017 * completed requests.
3018 */
3019static int
3020i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3021{
a5ac0f90 3022 int i;
b4716185
CW
3023
3024 if (!obj->active)
3025 return 0;
30dfebf3 3026
b4716185
CW
3027 for (i = 0; i < I915_NUM_RINGS; i++) {
3028 struct drm_i915_gem_request *req;
41c52415 3029
b4716185
CW
3030 req = obj->last_read_req[i];
3031 if (req == NULL)
3032 continue;
3033
3034 if (list_empty(&req->list))
3035 goto retire;
3036
b4716185
CW
3037 if (i915_gem_request_completed(req, true)) {
3038 __i915_gem_request_retire__upto(req);
3039retire:
3040 i915_gem_object_retire__read(obj, i);
3041 }
30dfebf3
DV
3042 }
3043
3044 return 0;
3045}
3046
23ba4fd0
BW
3047/**
3048 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3049 * @DRM_IOCTL_ARGS: standard ioctl arguments
3050 *
3051 * Returns 0 if successful, else an error is returned with the remaining time in
3052 * the timeout parameter.
3053 * -ETIME: object is still busy after timeout
3054 * -ERESTARTSYS: signal interrupted the wait
3055 * -ENONENT: object doesn't exist
3056 * Also possible, but rare:
3057 * -EAGAIN: GPU wedged
3058 * -ENOMEM: damn
3059 * -ENODEV: Internal IRQ fail
3060 * -E?: The add request failed
3061 *
3062 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3063 * non-zero timeout parameter the wait ioctl will wait for the given number of
3064 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3065 * without holding struct_mutex the object may become re-busied before this
3066 * function completes. A similar but shorter * race condition exists in the busy
3067 * ioctl
3068 */
3069int
3070i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3071{
3e31c6c0 3072 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3073 struct drm_i915_gem_wait *args = data;
3074 struct drm_i915_gem_object *obj;
b4716185 3075 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 3076 unsigned reset_counter;
b4716185
CW
3077 int i, n = 0;
3078 int ret;
23ba4fd0 3079
11b5d511
DV
3080 if (args->flags != 0)
3081 return -EINVAL;
3082
23ba4fd0
BW
3083 ret = i915_mutex_lock_interruptible(dev);
3084 if (ret)
3085 return ret;
3086
3087 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3088 if (&obj->base == NULL) {
3089 mutex_unlock(&dev->struct_mutex);
3090 return -ENOENT;
3091 }
3092
30dfebf3
DV
3093 /* Need to make sure the object gets inactive eventually. */
3094 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3095 if (ret)
3096 goto out;
3097
b4716185 3098 if (!obj->active)
97b2a6a1 3099 goto out;
23ba4fd0 3100
23ba4fd0 3101 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3102 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3103 */
762e4583 3104 if (args->timeout_ns == 0) {
23ba4fd0
BW
3105 ret = -ETIME;
3106 goto out;
3107 }
3108
3109 drm_gem_object_unreference(&obj->base);
f69061be 3110 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
3111
3112 for (i = 0; i < I915_NUM_RINGS; i++) {
3113 if (obj->last_read_req[i] == NULL)
3114 continue;
3115
3116 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3117 }
3118
23ba4fd0
BW
3119 mutex_unlock(&dev->struct_mutex);
3120
b4716185
CW
3121 for (i = 0; i < n; i++) {
3122 if (ret == 0)
3123 ret = __i915_wait_request(req[i], reset_counter, true,
3124 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3125 to_rps_client(file));
b4716185
CW
3126 i915_gem_request_unreference__unlocked(req[i]);
3127 }
ff865885 3128 return ret;
23ba4fd0
BW
3129
3130out:
3131 drm_gem_object_unreference(&obj->base);
3132 mutex_unlock(&dev->struct_mutex);
3133 return ret;
3134}
3135
b4716185
CW
3136static int
3137__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3138 struct intel_engine_cs *to,
91af127f
JH
3139 struct drm_i915_gem_request *from_req,
3140 struct drm_i915_gem_request **to_req)
b4716185
CW
3141{
3142 struct intel_engine_cs *from;
3143 int ret;
3144
91af127f 3145 from = i915_gem_request_get_ring(from_req);
b4716185
CW
3146 if (to == from)
3147 return 0;
3148
91af127f 3149 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3150 return 0;
3151
b4716185 3152 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3153 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3154 ret = __i915_wait_request(from_req,
a6f766f3
CW
3155 atomic_read(&i915->gpu_error.reset_counter),
3156 i915->mm.interruptible,
3157 NULL,
3158 &i915->rps.semaphores);
b4716185
CW
3159 if (ret)
3160 return ret;
3161
91af127f 3162 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3163 } else {
3164 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3165 u32 seqno = i915_gem_request_get_seqno(from_req);
3166
3167 WARN_ON(!to_req);
b4716185
CW
3168
3169 if (seqno <= from->semaphore.sync_seqno[idx])
3170 return 0;
3171
91af127f
JH
3172 if (*to_req == NULL) {
3173 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3174 if (ret)
3175 return ret;
3176 }
3177
599d924c
JH
3178 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3179 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3180 if (ret)
3181 return ret;
3182
3183 /* We use last_read_req because sync_to()
3184 * might have just caused seqno wrap under
3185 * the radar.
3186 */
3187 from->semaphore.sync_seqno[idx] =
3188 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3189 }
3190
3191 return 0;
3192}
3193
5816d648
BW
3194/**
3195 * i915_gem_object_sync - sync an object to a ring.
3196 *
3197 * @obj: object which may be in use on another ring.
3198 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3199 * @to_req: request we wish to use the object for. See below.
3200 * This will be allocated and returned if a request is
3201 * required but not passed in.
5816d648
BW
3202 *
3203 * This code is meant to abstract object synchronization with the GPU.
3204 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3205 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3206 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3207 * into a buffer at any time, but multiple readers. To ensure each has
3208 * a coherent view of memory, we must:
3209 *
3210 * - If there is an outstanding write request to the object, the new
3211 * request must wait for it to complete (either CPU or in hw, requests
3212 * on the same ring will be naturally ordered).
3213 *
3214 * - If we are a write request (pending_write_domain is set), the new
3215 * request must wait for outstanding read requests to complete.
5816d648 3216 *
91af127f
JH
3217 * For CPU synchronisation (NULL to) no request is required. For syncing with
3218 * rings to_req must be non-NULL. However, a request does not have to be
3219 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3220 * request will be allocated automatically and returned through *to_req. Note
3221 * that it is not guaranteed that commands will be emitted (because the system
3222 * might already be idle). Hence there is no need to create a request that
3223 * might never have any work submitted. Note further that if a request is
3224 * returned in *to_req, it is the responsibility of the caller to submit
3225 * that request (after potentially adding more work to it).
3226 *
5816d648
BW
3227 * Returns 0 if successful, else propagates up the lower layer error.
3228 */
2911a35b
BW
3229int
3230i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3231 struct intel_engine_cs *to,
3232 struct drm_i915_gem_request **to_req)
2911a35b 3233{
b4716185
CW
3234 const bool readonly = obj->base.pending_write_domain == 0;
3235 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3236 int ret, i, n;
41c52415 3237
b4716185 3238 if (!obj->active)
2911a35b
BW
3239 return 0;
3240
b4716185
CW
3241 if (to == NULL)
3242 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3243
b4716185
CW
3244 n = 0;
3245 if (readonly) {
3246 if (obj->last_write_req)
3247 req[n++] = obj->last_write_req;
3248 } else {
3249 for (i = 0; i < I915_NUM_RINGS; i++)
3250 if (obj->last_read_req[i])
3251 req[n++] = obj->last_read_req[i];
3252 }
3253 for (i = 0; i < n; i++) {
91af127f 3254 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3255 if (ret)
3256 return ret;
3257 }
2911a35b 3258
b4716185 3259 return 0;
2911a35b
BW
3260}
3261
b5ffc9bc
CW
3262static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3263{
3264 u32 old_write_domain, old_read_domains;
3265
b5ffc9bc
CW
3266 /* Force a pagefault for domain tracking on next user access */
3267 i915_gem_release_mmap(obj);
3268
b97c3d9c
KP
3269 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3270 return;
3271
97c809fd
CW
3272 /* Wait for any direct GTT access to complete */
3273 mb();
3274
b5ffc9bc
CW
3275 old_read_domains = obj->base.read_domains;
3276 old_write_domain = obj->base.write_domain;
3277
3278 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3279 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3280
3281 trace_i915_gem_object_change_domain(obj,
3282 old_read_domains,
3283 old_write_domain);
3284}
3285
e9f24d5f 3286static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3287{
07fe0b12 3288 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3289 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3290 int ret;
673a394b 3291
07fe0b12 3292 if (list_empty(&vma->vma_link))
673a394b
EA
3293 return 0;
3294
0ff501cb
DV
3295 if (!drm_mm_node_allocated(&vma->node)) {
3296 i915_gem_vma_destroy(vma);
0ff501cb
DV
3297 return 0;
3298 }
433544bd 3299
d7f46fc4 3300 if (vma->pin_count)
31d8d651 3301 return -EBUSY;
673a394b 3302
c4670ad0
CW
3303 BUG_ON(obj->pages == NULL);
3304
e9f24d5f
TU
3305 if (wait) {
3306 ret = i915_gem_object_wait_rendering(obj, false);
3307 if (ret)
3308 return ret;
3309 }
a8198eea 3310
fe14d5f4
TU
3311 if (i915_is_ggtt(vma->vm) &&
3312 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3313 i915_gem_object_finish_gtt(obj);
5323fd04 3314
8b1bc9b4
DV
3315 /* release the fence reg _after_ flushing */
3316 ret = i915_gem_object_put_fence(obj);
3317 if (ret)
3318 return ret;
3319 }
96b47b65 3320
07fe0b12 3321 trace_i915_vma_unbind(vma);
db53a302 3322
777dc5bb 3323 vma->vm->unbind_vma(vma);
5e562f1d 3324 vma->bound = 0;
6f65e29a 3325
64bf9303 3326 list_del_init(&vma->mm_list);
fe14d5f4
TU
3327 if (i915_is_ggtt(vma->vm)) {
3328 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3329 obj->map_and_fenceable = false;
3330 } else if (vma->ggtt_view.pages) {
3331 sg_free_table(vma->ggtt_view.pages);
3332 kfree(vma->ggtt_view.pages);
fe14d5f4 3333 }
016a65a3 3334 vma->ggtt_view.pages = NULL;
fe14d5f4 3335 }
673a394b 3336
2f633156
BW
3337 drm_mm_remove_node(&vma->node);
3338 i915_gem_vma_destroy(vma);
3339
3340 /* Since the unbound list is global, only move to that list if
b93dab6e 3341 * no more VMAs exist. */
e2273302 3342 if (list_empty(&obj->vma_list))
2f633156 3343 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3344
70903c3b
CW
3345 /* And finally now the object is completely decoupled from this vma,
3346 * we can drop its hold on the backing storage and allow it to be
3347 * reaped by the shrinker.
3348 */
3349 i915_gem_object_unpin_pages(obj);
3350
88241785 3351 return 0;
54cf91dc
CW
3352}
3353
e9f24d5f
TU
3354int i915_vma_unbind(struct i915_vma *vma)
3355{
3356 return __i915_vma_unbind(vma, true);
3357}
3358
3359int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3360{
3361 return __i915_vma_unbind(vma, false);
3362}
3363
b2da9fe5 3364int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3365{
3e31c6c0 3366 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3367 struct intel_engine_cs *ring;
1ec14ad3 3368 int ret, i;
4df2faf4 3369
4df2faf4 3370 /* Flush everything onto the inactive list. */
b4519513 3371 for_each_ring(ring, dev_priv, i) {
ecdb5fd8 3372 if (!i915.enable_execlists) {
73cfa865
JH
3373 struct drm_i915_gem_request *req;
3374
3375 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
ecdb5fd8
TD
3376 if (ret)
3377 return ret;
73cfa865 3378
ba01cc93 3379 ret = i915_switch_context(req);
73cfa865
JH
3380 if (ret) {
3381 i915_gem_request_cancel(req);
3382 return ret;
3383 }
3384
75289874 3385 i915_add_request_no_flush(req);
ecdb5fd8 3386 }
b6c7488d 3387
3e960501 3388 ret = intel_ring_idle(ring);
1ec14ad3
CW
3389 if (ret)
3390 return ret;
3391 }
4df2faf4 3392
b4716185 3393 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3394 return 0;
4df2faf4
DV
3395}
3396
4144f9b5 3397static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3398 unsigned long cache_level)
3399{
4144f9b5 3400 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3401 struct drm_mm_node *other;
3402
4144f9b5
CW
3403 /*
3404 * On some machines we have to be careful when putting differing types
3405 * of snoopable memory together to avoid the prefetcher crossing memory
3406 * domains and dying. During vm initialisation, we decide whether or not
3407 * these constraints apply and set the drm_mm.color_adjust
3408 * appropriately.
42d6ab48 3409 */
4144f9b5 3410 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3411 return true;
3412
c6cfb325 3413 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3414 return true;
3415
3416 if (list_empty(&gtt_space->node_list))
3417 return true;
3418
3419 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3420 if (other->allocated && !other->hole_follows && other->color != cache_level)
3421 return false;
3422
3423 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3424 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3425 return false;
3426
3427 return true;
3428}
3429
673a394b 3430/**
91e6711e
JL
3431 * Finds free space in the GTT aperture and binds the object or a view of it
3432 * there.
673a394b 3433 */
262de145 3434static struct i915_vma *
07fe0b12
BW
3435i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3436 struct i915_address_space *vm,
ec7adb6e 3437 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3438 unsigned alignment,
ec7adb6e 3439 uint64_t flags)
673a394b 3440{
05394f39 3441 struct drm_device *dev = obj->base.dev;
3e31c6c0 3442 struct drm_i915_private *dev_priv = dev->dev_private;
65bd342f 3443 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3444 u32 search_flag, alloc_flag;
3445 u64 start, end;
65bd342f 3446 u64 size, fence_size;
2f633156 3447 struct i915_vma *vma;
07f73f69 3448 int ret;
673a394b 3449
91e6711e
JL
3450 if (i915_is_ggtt(vm)) {
3451 u32 view_size;
3452
3453 if (WARN_ON(!ggtt_view))
3454 return ERR_PTR(-EINVAL);
ec7adb6e 3455
91e6711e
JL
3456 view_size = i915_ggtt_view_size(obj, ggtt_view);
3457
3458 fence_size = i915_gem_get_gtt_size(dev,
3459 view_size,
3460 obj->tiling_mode);
3461 fence_alignment = i915_gem_get_gtt_alignment(dev,
3462 view_size,
3463 obj->tiling_mode,
3464 true);
3465 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3466 view_size,
3467 obj->tiling_mode,
3468 false);
3469 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3470 } else {
3471 fence_size = i915_gem_get_gtt_size(dev,
3472 obj->base.size,
3473 obj->tiling_mode);
3474 fence_alignment = i915_gem_get_gtt_alignment(dev,
3475 obj->base.size,
3476 obj->tiling_mode,
3477 true);
3478 unfenced_alignment =
3479 i915_gem_get_gtt_alignment(dev,
3480 obj->base.size,
3481 obj->tiling_mode,
3482 false);
3483 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3484 }
a00b10c3 3485
101b506a
MT
3486 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3487 end = vm->total;
3488 if (flags & PIN_MAPPABLE)
3489 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3490 if (flags & PIN_ZONE_4G)
48ea1e32 3491 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3492
673a394b 3493 if (alignment == 0)
1ec9e26d 3494 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3495 unfenced_alignment;
1ec9e26d 3496 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3497 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3498 ggtt_view ? ggtt_view->type : 0,
3499 alignment);
262de145 3500 return ERR_PTR(-EINVAL);
673a394b
EA
3501 }
3502
91e6711e
JL
3503 /* If binding the object/GGTT view requires more space than the entire
3504 * aperture has, reject it early before evicting everything in a vain
3505 * attempt to find space.
654fc607 3506 */
91e6711e 3507 if (size > end) {
65bd342f 3508 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3509 ggtt_view ? ggtt_view->type : 0,
3510 size,
1ec9e26d 3511 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3512 end);
262de145 3513 return ERR_PTR(-E2BIG);
654fc607
CW
3514 }
3515
37e680a1 3516 ret = i915_gem_object_get_pages(obj);
6c085a72 3517 if (ret)
262de145 3518 return ERR_PTR(ret);
6c085a72 3519
fbdda6fb
CW
3520 i915_gem_object_pin_pages(obj);
3521
ec7adb6e
JL
3522 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3523 i915_gem_obj_lookup_or_create_vma(obj, vm);
3524
262de145 3525 if (IS_ERR(vma))
bc6bc15b 3526 goto err_unpin;
2f633156 3527
506a8e87
CW
3528 if (flags & PIN_OFFSET_FIXED) {
3529 uint64_t offset = flags & PIN_OFFSET_MASK;
3530
3531 if (offset & (alignment - 1) || offset + size > end) {
3532 ret = -EINVAL;
3533 goto err_free_vma;
3534 }
3535 vma->node.start = offset;
3536 vma->node.size = size;
3537 vma->node.color = obj->cache_level;
3538 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3539 if (ret) {
3540 ret = i915_gem_evict_for_vma(vma);
3541 if (ret == 0)
3542 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3543 }
3544 if (ret)
3545 goto err_free_vma;
101b506a 3546 } else {
506a8e87
CW
3547 if (flags & PIN_HIGH) {
3548 search_flag = DRM_MM_SEARCH_BELOW;
3549 alloc_flag = DRM_MM_CREATE_TOP;
3550 } else {
3551 search_flag = DRM_MM_SEARCH_DEFAULT;
3552 alloc_flag = DRM_MM_CREATE_DEFAULT;
3553 }
101b506a 3554
0a9ae0d7 3555search_free:
506a8e87
CW
3556 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3557 size, alignment,
3558 obj->cache_level,
3559 start, end,
3560 search_flag,
3561 alloc_flag);
3562 if (ret) {
3563 ret = i915_gem_evict_something(dev, vm, size, alignment,
3564 obj->cache_level,
3565 start, end,
3566 flags);
3567 if (ret == 0)
3568 goto search_free;
9731129c 3569
506a8e87
CW
3570 goto err_free_vma;
3571 }
673a394b 3572 }
4144f9b5 3573 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3574 ret = -EINVAL;
bc6bc15b 3575 goto err_remove_node;
673a394b
EA
3576 }
3577
fe14d5f4 3578 trace_i915_vma_bind(vma, flags);
0875546c 3579 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3580 if (ret)
e2273302 3581 goto err_remove_node;
fe14d5f4 3582
35c20a60 3583 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3584 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3585
262de145 3586 return vma;
2f633156 3587
bc6bc15b 3588err_remove_node:
6286ef9b 3589 drm_mm_remove_node(&vma->node);
bc6bc15b 3590err_free_vma:
2f633156 3591 i915_gem_vma_destroy(vma);
262de145 3592 vma = ERR_PTR(ret);
bc6bc15b 3593err_unpin:
2f633156 3594 i915_gem_object_unpin_pages(obj);
262de145 3595 return vma;
673a394b
EA
3596}
3597
000433b6 3598bool
2c22569b
CW
3599i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3600 bool force)
673a394b 3601{
673a394b
EA
3602 /* If we don't have a page list set up, then we're not pinned
3603 * to GPU, and we can ignore the cache flush because it'll happen
3604 * again at bind time.
3605 */
05394f39 3606 if (obj->pages == NULL)
000433b6 3607 return false;
673a394b 3608
769ce464
ID
3609 /*
3610 * Stolen memory is always coherent with the GPU as it is explicitly
3611 * marked as wc by the system, or the system is cache-coherent.
3612 */
6a2c4232 3613 if (obj->stolen || obj->phys_handle)
000433b6 3614 return false;
769ce464 3615
9c23f7fc
CW
3616 /* If the GPU is snooping the contents of the CPU cache,
3617 * we do not need to manually clear the CPU cache lines. However,
3618 * the caches are only snooped when the render cache is
3619 * flushed/invalidated. As we always have to emit invalidations
3620 * and flushes when moving into and out of the RENDER domain, correct
3621 * snooping behaviour occurs naturally as the result of our domain
3622 * tracking.
3623 */
0f71979a
CW
3624 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3625 obj->cache_dirty = true;
000433b6 3626 return false;
0f71979a 3627 }
9c23f7fc 3628
1c5d22f7 3629 trace_i915_gem_object_clflush(obj);
9da3da66 3630 drm_clflush_sg(obj->pages);
0f71979a 3631 obj->cache_dirty = false;
000433b6
CW
3632
3633 return true;
e47c68e9
EA
3634}
3635
3636/** Flushes the GTT write domain for the object if it's dirty. */
3637static void
05394f39 3638i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3639{
1c5d22f7
CW
3640 uint32_t old_write_domain;
3641
05394f39 3642 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3643 return;
3644
63256ec5 3645 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3646 * to it immediately go to main memory as far as we know, so there's
3647 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3648 *
3649 * However, we do have to enforce the order so that all writes through
3650 * the GTT land before any writes to the device, such as updates to
3651 * the GATT itself.
e47c68e9 3652 */
63256ec5
CW
3653 wmb();
3654
05394f39
CW
3655 old_write_domain = obj->base.write_domain;
3656 obj->base.write_domain = 0;
1c5d22f7 3657
de152b62 3658 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3659
1c5d22f7 3660 trace_i915_gem_object_change_domain(obj,
05394f39 3661 obj->base.read_domains,
1c5d22f7 3662 old_write_domain);
e47c68e9
EA
3663}
3664
3665/** Flushes the CPU write domain for the object if it's dirty. */
3666static void
e62b59e4 3667i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3668{
1c5d22f7 3669 uint32_t old_write_domain;
e47c68e9 3670
05394f39 3671 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3672 return;
3673
e62b59e4 3674 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3675 i915_gem_chipset_flush(obj->base.dev);
3676
05394f39
CW
3677 old_write_domain = obj->base.write_domain;
3678 obj->base.write_domain = 0;
1c5d22f7 3679
de152b62 3680 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3681
1c5d22f7 3682 trace_i915_gem_object_change_domain(obj,
05394f39 3683 obj->base.read_domains,
1c5d22f7 3684 old_write_domain);
e47c68e9
EA
3685}
3686
2ef7eeaa
EA
3687/**
3688 * Moves a single object to the GTT read, and possibly write domain.
3689 *
3690 * This function returns when the move is complete, including waiting on
3691 * flushes to occur.
3692 */
79e53945 3693int
2021746e 3694i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3695{
1c5d22f7 3696 uint32_t old_write_domain, old_read_domains;
43566ded 3697 struct i915_vma *vma;
e47c68e9 3698 int ret;
2ef7eeaa 3699
8d7e3de1
CW
3700 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3701 return 0;
3702
0201f1ec 3703 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3704 if (ret)
3705 return ret;
3706
43566ded
CW
3707 /* Flush and acquire obj->pages so that we are coherent through
3708 * direct access in memory with previous cached writes through
3709 * shmemfs and that our cache domain tracking remains valid.
3710 * For example, if the obj->filp was moved to swap without us
3711 * being notified and releasing the pages, we would mistakenly
3712 * continue to assume that the obj remained out of the CPU cached
3713 * domain.
3714 */
3715 ret = i915_gem_object_get_pages(obj);
3716 if (ret)
3717 return ret;
3718
e62b59e4 3719 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3720
d0a57789
CW
3721 /* Serialise direct access to this object with the barriers for
3722 * coherent writes from the GPU, by effectively invalidating the
3723 * GTT domain upon first access.
3724 */
3725 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3726 mb();
3727
05394f39
CW
3728 old_write_domain = obj->base.write_domain;
3729 old_read_domains = obj->base.read_domains;
1c5d22f7 3730
e47c68e9
EA
3731 /* It should now be out of any other write domains, and we can update
3732 * the domain values for our changes.
3733 */
05394f39
CW
3734 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3735 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3736 if (write) {
05394f39
CW
3737 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3738 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3739 obj->dirty = 1;
2ef7eeaa
EA
3740 }
3741
1c5d22f7
CW
3742 trace_i915_gem_object_change_domain(obj,
3743 old_read_domains,
3744 old_write_domain);
3745
8325a09d 3746 /* And bump the LRU for this access */
43566ded
CW
3747 vma = i915_gem_obj_to_ggtt(obj);
3748 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3749 list_move_tail(&vma->mm_list,
43566ded 3750 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3751
e47c68e9
EA
3752 return 0;
3753}
3754
ef55f92a
CW
3755/**
3756 * Changes the cache-level of an object across all VMA.
3757 *
3758 * After this function returns, the object will be in the new cache-level
3759 * across all GTT and the contents of the backing storage will be coherent,
3760 * with respect to the new cache-level. In order to keep the backing storage
3761 * coherent for all users, we only allow a single cache level to be set
3762 * globally on the object and prevent it from being changed whilst the
3763 * hardware is reading from the object. That is if the object is currently
3764 * on the scanout it will be set to uncached (or equivalent display
3765 * cache coherency) and all non-MOCS GPU access will also be uncached so
3766 * that all direct access to the scanout remains coherent.
3767 */
e4ffd173
CW
3768int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3769 enum i915_cache_level cache_level)
3770{
7bddb01f 3771 struct drm_device *dev = obj->base.dev;
df6f783a 3772 struct i915_vma *vma, *next;
ef55f92a 3773 bool bound = false;
ed75a55b 3774 int ret = 0;
e4ffd173
CW
3775
3776 if (obj->cache_level == cache_level)
ed75a55b 3777 goto out;
e4ffd173 3778
ef55f92a
CW
3779 /* Inspect the list of currently bound VMA and unbind any that would
3780 * be invalid given the new cache-level. This is principally to
3781 * catch the issue of the CS prefetch crossing page boundaries and
3782 * reading an invalid PTE on older architectures.
3783 */
df6f783a 3784 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
ef55f92a
CW
3785 if (!drm_mm_node_allocated(&vma->node))
3786 continue;
3787
3788 if (vma->pin_count) {
3789 DRM_DEBUG("can not change the cache level of pinned objects\n");
3790 return -EBUSY;
3791 }
3792
4144f9b5 3793 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3794 ret = i915_vma_unbind(vma);
3089c6f2
BW
3795 if (ret)
3796 return ret;
ef55f92a
CW
3797 } else
3798 bound = true;
42d6ab48
CW
3799 }
3800
ef55f92a
CW
3801 /* We can reuse the existing drm_mm nodes but need to change the
3802 * cache-level on the PTE. We could simply unbind them all and
3803 * rebind with the correct cache-level on next use. However since
3804 * we already have a valid slot, dma mapping, pages etc, we may as
3805 * rewrite the PTE in the belief that doing so tramples upon less
3806 * state and so involves less work.
3807 */
3808 if (bound) {
3809 /* Before we change the PTE, the GPU must not be accessing it.
3810 * If we wait upon the object, we know that all the bound
3811 * VMA are no longer active.
3812 */
2e2f351d 3813 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3814 if (ret)
3815 return ret;
3816
ef55f92a
CW
3817 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3818 /* Access to snoopable pages through the GTT is
3819 * incoherent and on some machines causes a hard
3820 * lockup. Relinquish the CPU mmaping to force
3821 * userspace to refault in the pages and we can
3822 * then double check if the GTT mapping is still
3823 * valid for that pointer access.
3824 */
3825 i915_gem_release_mmap(obj);
3826
3827 /* As we no longer need a fence for GTT access,
3828 * we can relinquish it now (and so prevent having
3829 * to steal a fence from someone else on the next
3830 * fence request). Note GPU activity would have
3831 * dropped the fence as all snoopable access is
3832 * supposed to be linear.
3833 */
e4ffd173
CW
3834 ret = i915_gem_object_put_fence(obj);
3835 if (ret)
3836 return ret;
ef55f92a
CW
3837 } else {
3838 /* We either have incoherent backing store and
3839 * so no GTT access or the architecture is fully
3840 * coherent. In such cases, existing GTT mmaps
3841 * ignore the cache bit in the PTE and we can
3842 * rewrite it without confusing the GPU or having
3843 * to force userspace to fault back in its mmaps.
3844 */
e4ffd173
CW
3845 }
3846
ef55f92a
CW
3847 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3848 if (!drm_mm_node_allocated(&vma->node))
3849 continue;
3850
3851 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3852 if (ret)
3853 return ret;
3854 }
e4ffd173
CW
3855 }
3856
2c22569b
CW
3857 list_for_each_entry(vma, &obj->vma_list, vma_link)
3858 vma->node.color = cache_level;
3859 obj->cache_level = cache_level;
3860
ed75a55b 3861out:
ef55f92a
CW
3862 /* Flush the dirty CPU caches to the backing storage so that the
3863 * object is now coherent at its new cache level (with respect
3864 * to the access domain).
3865 */
0f71979a
CW
3866 if (obj->cache_dirty &&
3867 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3868 cpu_write_needs_clflush(obj)) {
3869 if (i915_gem_clflush_object(obj, true))
3870 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3871 }
3872
e4ffd173
CW
3873 return 0;
3874}
3875
199adf40
BW
3876int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3877 struct drm_file *file)
e6994aee 3878{
199adf40 3879 struct drm_i915_gem_caching *args = data;
e6994aee 3880 struct drm_i915_gem_object *obj;
e6994aee
CW
3881
3882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3883 if (&obj->base == NULL)
3884 return -ENOENT;
e6994aee 3885
651d794f
CW
3886 switch (obj->cache_level) {
3887 case I915_CACHE_LLC:
3888 case I915_CACHE_L3_LLC:
3889 args->caching = I915_CACHING_CACHED;
3890 break;
3891
4257d3ba
CW
3892 case I915_CACHE_WT:
3893 args->caching = I915_CACHING_DISPLAY;
3894 break;
3895
651d794f
CW
3896 default:
3897 args->caching = I915_CACHING_NONE;
3898 break;
3899 }
e6994aee 3900
432be69d
CW
3901 drm_gem_object_unreference_unlocked(&obj->base);
3902 return 0;
e6994aee
CW
3903}
3904
199adf40
BW
3905int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3906 struct drm_file *file)
e6994aee 3907{
fd0fe6ac 3908 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3909 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3910 struct drm_i915_gem_object *obj;
3911 enum i915_cache_level level;
3912 int ret;
3913
199adf40
BW
3914 switch (args->caching) {
3915 case I915_CACHING_NONE:
e6994aee
CW
3916 level = I915_CACHE_NONE;
3917 break;
199adf40 3918 case I915_CACHING_CACHED:
e5756c10
ID
3919 /*
3920 * Due to a HW issue on BXT A stepping, GPU stores via a
3921 * snooped mapping may leave stale data in a corresponding CPU
3922 * cacheline, whereas normally such cachelines would get
3923 * invalidated.
3924 */
e87a005d 3925 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
e5756c10
ID
3926 return -ENODEV;
3927
e6994aee
CW
3928 level = I915_CACHE_LLC;
3929 break;
4257d3ba
CW
3930 case I915_CACHING_DISPLAY:
3931 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3932 break;
e6994aee
CW
3933 default:
3934 return -EINVAL;
3935 }
3936
fd0fe6ac
ID
3937 intel_runtime_pm_get(dev_priv);
3938
3bc2913e
BW
3939 ret = i915_mutex_lock_interruptible(dev);
3940 if (ret)
fd0fe6ac 3941 goto rpm_put;
3bc2913e 3942
e6994aee
CW
3943 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3944 if (&obj->base == NULL) {
3945 ret = -ENOENT;
3946 goto unlock;
3947 }
3948
3949 ret = i915_gem_object_set_cache_level(obj, level);
3950
3951 drm_gem_object_unreference(&obj->base);
3952unlock:
3953 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3954rpm_put:
3955 intel_runtime_pm_put(dev_priv);
3956
e6994aee
CW
3957 return ret;
3958}
3959
b9241ea3 3960/*
2da3b9b9
CW
3961 * Prepare buffer for display plane (scanout, cursors, etc).
3962 * Can be called from an uninterruptible phase (modesetting) and allows
3963 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3964 */
3965int
2da3b9b9
CW
3966i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3967 u32 alignment,
e6617330 3968 const struct i915_ggtt_view *view)
b9241ea3 3969{
2da3b9b9 3970 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3971 int ret;
3972
cc98b413
CW
3973 /* Mark the pin_display early so that we account for the
3974 * display coherency whilst setting up the cache domains.
3975 */
8a0c39b1 3976 obj->pin_display++;
cc98b413 3977
a7ef0640
EA
3978 /* The display engine is not coherent with the LLC cache on gen6. As
3979 * a result, we make sure that the pinning that is about to occur is
3980 * done with uncached PTEs. This is lowest common denominator for all
3981 * chipsets.
3982 *
3983 * However for gen6+, we could do better by using the GFDT bit instead
3984 * of uncaching, which would allow us to flush all the LLC-cached data
3985 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3986 */
651d794f
CW
3987 ret = i915_gem_object_set_cache_level(obj,
3988 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3989 if (ret)
cc98b413 3990 goto err_unpin_display;
a7ef0640 3991
2da3b9b9
CW
3992 /* As the user may map the buffer once pinned in the display plane
3993 * (e.g. libkms for the bootup splash), we have to ensure that we
3994 * always use map_and_fenceable for all scanout buffers.
3995 */
50470bb0
TU
3996 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3997 view->type == I915_GGTT_VIEW_NORMAL ?
3998 PIN_MAPPABLE : 0);
2da3b9b9 3999 if (ret)
cc98b413 4000 goto err_unpin_display;
2da3b9b9 4001
e62b59e4 4002 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4003
2da3b9b9 4004 old_write_domain = obj->base.write_domain;
05394f39 4005 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4006
4007 /* It should now be out of any other write domains, and we can update
4008 * the domain values for our changes.
4009 */
e5f1d962 4010 obj->base.write_domain = 0;
05394f39 4011 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4012
4013 trace_i915_gem_object_change_domain(obj,
4014 old_read_domains,
2da3b9b9 4015 old_write_domain);
b9241ea3
ZW
4016
4017 return 0;
cc98b413
CW
4018
4019err_unpin_display:
8a0c39b1 4020 obj->pin_display--;
cc98b413
CW
4021 return ret;
4022}
4023
4024void
e6617330
TU
4025i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4026 const struct i915_ggtt_view *view)
cc98b413 4027{
8a0c39b1
TU
4028 if (WARN_ON(obj->pin_display == 0))
4029 return;
4030
e6617330
TU
4031 i915_gem_object_ggtt_unpin_view(obj, view);
4032
8a0c39b1 4033 obj->pin_display--;
b9241ea3
ZW
4034}
4035
e47c68e9
EA
4036/**
4037 * Moves a single object to the CPU read, and possibly write domain.
4038 *
4039 * This function returns when the move is complete, including waiting on
4040 * flushes to occur.
4041 */
dabdfe02 4042int
919926ae 4043i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4044{
1c5d22f7 4045 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4046 int ret;
4047
8d7e3de1
CW
4048 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4049 return 0;
4050
0201f1ec 4051 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4052 if (ret)
4053 return ret;
4054
e47c68e9 4055 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4056
05394f39
CW
4057 old_write_domain = obj->base.write_domain;
4058 old_read_domains = obj->base.read_domains;
1c5d22f7 4059
e47c68e9 4060 /* Flush the CPU cache if it's still invalid. */
05394f39 4061 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4062 i915_gem_clflush_object(obj, false);
2ef7eeaa 4063
05394f39 4064 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4065 }
4066
4067 /* It should now be out of any other write domains, and we can update
4068 * the domain values for our changes.
4069 */
05394f39 4070 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4071
4072 /* If we're writing through the CPU, then the GPU read domains will
4073 * need to be invalidated at next use.
4074 */
4075 if (write) {
05394f39
CW
4076 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4077 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4078 }
2ef7eeaa 4079
1c5d22f7
CW
4080 trace_i915_gem_object_change_domain(obj,
4081 old_read_domains,
4082 old_write_domain);
4083
2ef7eeaa
EA
4084 return 0;
4085}
4086
673a394b
EA
4087/* Throttle our rendering by waiting until the ring has completed our requests
4088 * emitted over 20 msec ago.
4089 *
b962442e
EA
4090 * Note that if we were to use the current jiffies each time around the loop,
4091 * we wouldn't escape the function with any frames outstanding if the time to
4092 * render a frame was over 20ms.
4093 *
673a394b
EA
4094 * This should get us reasonable parallelism between CPU and GPU but also
4095 * relatively low latency when blocking on a particular request to finish.
4096 */
40a5f0de 4097static int
f787a5f5 4098i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4099{
f787a5f5
CW
4100 struct drm_i915_private *dev_priv = dev->dev_private;
4101 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4102 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4103 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4104 unsigned reset_counter;
f787a5f5 4105 int ret;
93533c29 4106
308887aa
DV
4107 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4108 if (ret)
4109 return ret;
4110
4111 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4112 if (ret)
4113 return ret;
e110e8d6 4114
1c25595f 4115 spin_lock(&file_priv->mm.lock);
f787a5f5 4116 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4117 if (time_after_eq(request->emitted_jiffies, recent_enough))
4118 break;
40a5f0de 4119
fcfa423c
JH
4120 /*
4121 * Note that the request might not have been submitted yet.
4122 * In which case emitted_jiffies will be zero.
4123 */
4124 if (!request->emitted_jiffies)
4125 continue;
4126
54fb2411 4127 target = request;
b962442e 4128 }
f69061be 4129 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4130 if (target)
4131 i915_gem_request_reference(target);
1c25595f 4132 spin_unlock(&file_priv->mm.lock);
40a5f0de 4133
54fb2411 4134 if (target == NULL)
f787a5f5 4135 return 0;
2bc43b5c 4136
9c654818 4137 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4138 if (ret == 0)
4139 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4140
41037f9f 4141 i915_gem_request_unreference__unlocked(target);
ff865885 4142
40a5f0de
EA
4143 return ret;
4144}
4145
d23db88c
CW
4146static bool
4147i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4148{
4149 struct drm_i915_gem_object *obj = vma->obj;
4150
4151 if (alignment &&
4152 vma->node.start & (alignment - 1))
4153 return true;
4154
4155 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4156 return true;
4157
4158 if (flags & PIN_OFFSET_BIAS &&
4159 vma->node.start < (flags & PIN_OFFSET_MASK))
4160 return true;
4161
506a8e87
CW
4162 if (flags & PIN_OFFSET_FIXED &&
4163 vma->node.start != (flags & PIN_OFFSET_MASK))
4164 return true;
4165
d23db88c
CW
4166 return false;
4167}
4168
d0710abb
CW
4169void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4170{
4171 struct drm_i915_gem_object *obj = vma->obj;
4172 bool mappable, fenceable;
4173 u32 fence_size, fence_alignment;
4174
4175 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4176 obj->base.size,
4177 obj->tiling_mode);
4178 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4179 obj->base.size,
4180 obj->tiling_mode,
4181 true);
4182
4183 fenceable = (vma->node.size == fence_size &&
4184 (vma->node.start & (fence_alignment - 1)) == 0);
4185
4186 mappable = (vma->node.start + fence_size <=
4187 to_i915(obj->base.dev)->gtt.mappable_end);
4188
4189 obj->map_and_fenceable = mappable && fenceable;
4190}
4191
ec7adb6e
JL
4192static int
4193i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4194 struct i915_address_space *vm,
4195 const struct i915_ggtt_view *ggtt_view,
4196 uint32_t alignment,
4197 uint64_t flags)
673a394b 4198{
6e7186af 4199 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4200 struct i915_vma *vma;
ef79e17c 4201 unsigned bound;
673a394b
EA
4202 int ret;
4203
6e7186af
BW
4204 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4205 return -ENODEV;
4206
bf3d149b 4207 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4208 return -EINVAL;
07fe0b12 4209
c826c449
CW
4210 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4211 return -EINVAL;
4212
ec7adb6e
JL
4213 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4214 return -EINVAL;
4215
4216 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4217 i915_gem_obj_to_vma(obj, vm);
4218
4219 if (IS_ERR(vma))
4220 return PTR_ERR(vma);
4221
07fe0b12 4222 if (vma) {
d7f46fc4
BW
4223 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4224 return -EBUSY;
4225
d23db88c 4226 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4227 WARN(vma->pin_count,
ec7adb6e 4228 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4229 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4230 " obj->map_and_fenceable=%d\n",
ec7adb6e 4231 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4232 upper_32_bits(vma->node.start),
4233 lower_32_bits(vma->node.start),
fe14d5f4 4234 alignment,
d23db88c 4235 !!(flags & PIN_MAPPABLE),
05394f39 4236 obj->map_and_fenceable);
07fe0b12 4237 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4238 if (ret)
4239 return ret;
8ea99c92
DV
4240
4241 vma = NULL;
ac0c6b5a
CW
4242 }
4243 }
4244
ef79e17c 4245 bound = vma ? vma->bound : 0;
8ea99c92 4246 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4247 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4248 flags);
262de145
DV
4249 if (IS_ERR(vma))
4250 return PTR_ERR(vma);
0875546c
DV
4251 } else {
4252 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4253 if (ret)
4254 return ret;
4255 }
74898d7e 4256
91e6711e
JL
4257 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4258 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4259 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4260 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4261 }
ef79e17c 4262
8ea99c92 4263 vma->pin_count++;
673a394b
EA
4264 return 0;
4265}
4266
ec7adb6e
JL
4267int
4268i915_gem_object_pin(struct drm_i915_gem_object *obj,
4269 struct i915_address_space *vm,
4270 uint32_t alignment,
4271 uint64_t flags)
4272{
4273 return i915_gem_object_do_pin(obj, vm,
4274 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4275 alignment, flags);
4276}
4277
4278int
4279i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4280 const struct i915_ggtt_view *view,
4281 uint32_t alignment,
4282 uint64_t flags)
4283{
4284 if (WARN_ONCE(!view, "no view specified"))
4285 return -EINVAL;
4286
4287 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4288 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4289}
4290
673a394b 4291void
e6617330
TU
4292i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4293 const struct i915_ggtt_view *view)
673a394b 4294{
e6617330 4295 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4296
d7f46fc4 4297 BUG_ON(!vma);
e6617330 4298 WARN_ON(vma->pin_count == 0);
9abc4648 4299 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4300
30154650 4301 --vma->pin_count;
673a394b
EA
4302}
4303
673a394b
EA
4304int
4305i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4306 struct drm_file *file)
673a394b
EA
4307{
4308 struct drm_i915_gem_busy *args = data;
05394f39 4309 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4310 int ret;
4311
76c1dec1 4312 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4313 if (ret)
76c1dec1 4314 return ret;
673a394b 4315
05394f39 4316 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4317 if (&obj->base == NULL) {
1d7cfea1
CW
4318 ret = -ENOENT;
4319 goto unlock;
673a394b 4320 }
d1b851fc 4321
0be555b6
CW
4322 /* Count all active objects as busy, even if they are currently not used
4323 * by the gpu. Users of this interface expect objects to eventually
4324 * become non-busy without any further actions, therefore emit any
4325 * necessary flushes here.
c4de0a5d 4326 */
30dfebf3 4327 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4328 if (ret)
4329 goto unref;
0be555b6 4330
b4716185
CW
4331 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4332 args->busy = obj->active << 16;
4333 if (obj->last_write_req)
4334 args->busy |= obj->last_write_req->ring->id;
673a394b 4335
b4716185 4336unref:
05394f39 4337 drm_gem_object_unreference(&obj->base);
1d7cfea1 4338unlock:
673a394b 4339 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4340 return ret;
673a394b
EA
4341}
4342
4343int
4344i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4345 struct drm_file *file_priv)
4346{
0206e353 4347 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4348}
4349
3ef94daa
CW
4350int
4351i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4352 struct drm_file *file_priv)
4353{
656bfa3a 4354 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4355 struct drm_i915_gem_madvise *args = data;
05394f39 4356 struct drm_i915_gem_object *obj;
76c1dec1 4357 int ret;
3ef94daa
CW
4358
4359 switch (args->madv) {
4360 case I915_MADV_DONTNEED:
4361 case I915_MADV_WILLNEED:
4362 break;
4363 default:
4364 return -EINVAL;
4365 }
4366
1d7cfea1
CW
4367 ret = i915_mutex_lock_interruptible(dev);
4368 if (ret)
4369 return ret;
4370
05394f39 4371 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4372 if (&obj->base == NULL) {
1d7cfea1
CW
4373 ret = -ENOENT;
4374 goto unlock;
3ef94daa 4375 }
3ef94daa 4376
d7f46fc4 4377 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4378 ret = -EINVAL;
4379 goto out;
3ef94daa
CW
4380 }
4381
656bfa3a
DV
4382 if (obj->pages &&
4383 obj->tiling_mode != I915_TILING_NONE &&
4384 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4385 if (obj->madv == I915_MADV_WILLNEED)
4386 i915_gem_object_unpin_pages(obj);
4387 if (args->madv == I915_MADV_WILLNEED)
4388 i915_gem_object_pin_pages(obj);
4389 }
4390
05394f39
CW
4391 if (obj->madv != __I915_MADV_PURGED)
4392 obj->madv = args->madv;
3ef94daa 4393
6c085a72 4394 /* if the object is no longer attached, discard its backing storage */
be6a0376 4395 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4396 i915_gem_object_truncate(obj);
4397
05394f39 4398 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4399
1d7cfea1 4400out:
05394f39 4401 drm_gem_object_unreference(&obj->base);
1d7cfea1 4402unlock:
3ef94daa 4403 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4404 return ret;
3ef94daa
CW
4405}
4406
37e680a1
CW
4407void i915_gem_object_init(struct drm_i915_gem_object *obj,
4408 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4409{
b4716185
CW
4410 int i;
4411
35c20a60 4412 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4413 for (i = 0; i < I915_NUM_RINGS; i++)
4414 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4415 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4416 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4417 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4418
37e680a1
CW
4419 obj->ops = ops;
4420
0327d6ba
CW
4421 obj->fence_reg = I915_FENCE_REG_NONE;
4422 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4423
4424 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4425}
4426
37e680a1 4427static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
93232aeb 4428 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4429 .get_pages = i915_gem_object_get_pages_gtt,
4430 .put_pages = i915_gem_object_put_pages_gtt,
4431};
4432
05394f39
CW
4433struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4434 size_t size)
ac52bc56 4435{
c397b908 4436 struct drm_i915_gem_object *obj;
5949eac4 4437 struct address_space *mapping;
1a240d4d 4438 gfp_t mask;
ac52bc56 4439
42dcedd4 4440 obj = i915_gem_object_alloc(dev);
c397b908
DV
4441 if (obj == NULL)
4442 return NULL;
673a394b 4443
c397b908 4444 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4445 i915_gem_object_free(obj);
c397b908
DV
4446 return NULL;
4447 }
673a394b 4448
bed1ea95
CW
4449 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4450 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4451 /* 965gm cannot relocate objects above 4GiB. */
4452 mask &= ~__GFP_HIGHMEM;
4453 mask |= __GFP_DMA32;
4454 }
4455
496ad9aa 4456 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4457 mapping_set_gfp_mask(mapping, mask);
5949eac4 4458
37e680a1 4459 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4460
c397b908
DV
4461 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4462 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4463
3d29b842
ED
4464 if (HAS_LLC(dev)) {
4465 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4466 * cache) for about a 10% performance improvement
4467 * compared to uncached. Graphics requests other than
4468 * display scanout are coherent with the CPU in
4469 * accessing this cache. This means in this mode we
4470 * don't need to clflush on the CPU side, and on the
4471 * GPU side we only need to flush internal caches to
4472 * get data visible to the CPU.
4473 *
4474 * However, we maintain the display planes as UC, and so
4475 * need to rebind when first used as such.
4476 */
4477 obj->cache_level = I915_CACHE_LLC;
4478 } else
4479 obj->cache_level = I915_CACHE_NONE;
4480
d861e338
DV
4481 trace_i915_gem_object_create(obj);
4482
05394f39 4483 return obj;
c397b908
DV
4484}
4485
340fbd8c
CW
4486static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4487{
4488 /* If we are the last user of the backing storage (be it shmemfs
4489 * pages or stolen etc), we know that the pages are going to be
4490 * immediately released. In this case, we can then skip copying
4491 * back the contents from the GPU.
4492 */
4493
4494 if (obj->madv != I915_MADV_WILLNEED)
4495 return false;
4496
4497 if (obj->base.filp == NULL)
4498 return true;
4499
4500 /* At first glance, this looks racy, but then again so would be
4501 * userspace racing mmap against close. However, the first external
4502 * reference to the filp can only be obtained through the
4503 * i915_gem_mmap_ioctl() which safeguards us against the user
4504 * acquiring such a reference whilst we are in the middle of
4505 * freeing the object.
4506 */
4507 return atomic_long_read(&obj->base.filp->f_count) == 1;
4508}
4509
1488fc08 4510void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4511{
1488fc08 4512 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4513 struct drm_device *dev = obj->base.dev;
3e31c6c0 4514 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4515 struct i915_vma *vma, *next;
673a394b 4516
f65c9168
PZ
4517 intel_runtime_pm_get(dev_priv);
4518
26e12f89
CW
4519 trace_i915_gem_object_destroy(obj);
4520
07fe0b12 4521 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4522 int ret;
4523
4524 vma->pin_count = 0;
4525 ret = i915_vma_unbind(vma);
07fe0b12
BW
4526 if (WARN_ON(ret == -ERESTARTSYS)) {
4527 bool was_interruptible;
1488fc08 4528
07fe0b12
BW
4529 was_interruptible = dev_priv->mm.interruptible;
4530 dev_priv->mm.interruptible = false;
1488fc08 4531
07fe0b12 4532 WARN_ON(i915_vma_unbind(vma));
1488fc08 4533
07fe0b12
BW
4534 dev_priv->mm.interruptible = was_interruptible;
4535 }
1488fc08
CW
4536 }
4537
1d64ae71
BW
4538 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4539 * before progressing. */
4540 if (obj->stolen)
4541 i915_gem_object_unpin_pages(obj);
4542
a071fa00
DV
4543 WARN_ON(obj->frontbuffer_bits);
4544
656bfa3a
DV
4545 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4546 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4547 obj->tiling_mode != I915_TILING_NONE)
4548 i915_gem_object_unpin_pages(obj);
4549
401c29f6
BW
4550 if (WARN_ON(obj->pages_pin_count))
4551 obj->pages_pin_count = 0;
340fbd8c 4552 if (discard_backing_storage(obj))
5537252b 4553 obj->madv = I915_MADV_DONTNEED;
37e680a1 4554 i915_gem_object_put_pages(obj);
d8cb5086 4555 i915_gem_object_free_mmap_offset(obj);
de151cf6 4556
9da3da66
CW
4557 BUG_ON(obj->pages);
4558
2f745ad3
CW
4559 if (obj->base.import_attach)
4560 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4561
5cc9ed4b
CW
4562 if (obj->ops->release)
4563 obj->ops->release(obj);
4564
05394f39
CW
4565 drm_gem_object_release(&obj->base);
4566 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4567
05394f39 4568 kfree(obj->bit_17);
42dcedd4 4569 i915_gem_object_free(obj);
f65c9168
PZ
4570
4571 intel_runtime_pm_put(dev_priv);
673a394b
EA
4572}
4573
ec7adb6e
JL
4574struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4575 struct i915_address_space *vm)
e656a6cb
DV
4576{
4577 struct i915_vma *vma;
ec7adb6e 4578 list_for_each_entry(vma, &obj->vma_list, vma_link) {
1b683729
TU
4579 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4580 vma->vm == vm)
e656a6cb 4581 return vma;
ec7adb6e
JL
4582 }
4583 return NULL;
4584}
4585
4586struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4587 const struct i915_ggtt_view *view)
4588{
4589 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4590 struct i915_vma *vma;
e656a6cb 4591
ec7adb6e
JL
4592 if (WARN_ONCE(!view, "no view specified"))
4593 return ERR_PTR(-EINVAL);
4594
4595 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4596 if (vma->vm == ggtt &&
4597 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4598 return vma;
e656a6cb
DV
4599 return NULL;
4600}
4601
2f633156
BW
4602void i915_gem_vma_destroy(struct i915_vma *vma)
4603{
b9d06dd9 4604 struct i915_address_space *vm = NULL;
2f633156 4605 WARN_ON(vma->node.allocated);
aaa05667
CW
4606
4607 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4608 if (!list_empty(&vma->exec_list))
4609 return;
4610
b9d06dd9 4611 vm = vma->vm;
b9d06dd9 4612
841cd773
DV
4613 if (!i915_is_ggtt(vm))
4614 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4615
8b9c2b94 4616 list_del(&vma->vma_link);
b93dab6e 4617
e20d2ab7 4618 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4619}
4620
e3efda49
CW
4621static void
4622i915_gem_stop_ringbuffers(struct drm_device *dev)
4623{
4624 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4625 struct intel_engine_cs *ring;
e3efda49
CW
4626 int i;
4627
4628 for_each_ring(ring, dev_priv, i)
a83014d3 4629 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4630}
4631
29105ccc 4632int
45c5f202 4633i915_gem_suspend(struct drm_device *dev)
29105ccc 4634{
3e31c6c0 4635 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4636 int ret = 0;
28dfe52a 4637
45c5f202 4638 mutex_lock(&dev->struct_mutex);
b2da9fe5 4639 ret = i915_gpu_idle(dev);
f7403347 4640 if (ret)
45c5f202 4641 goto err;
f7403347 4642
b2da9fe5 4643 i915_gem_retire_requests(dev);
673a394b 4644
e3efda49 4645 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4646 mutex_unlock(&dev->struct_mutex);
4647
737b1506 4648 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4649 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4650 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4651
bdcf120b
CW
4652 /* Assert that we sucessfully flushed all the work and
4653 * reset the GPU back to its idle, low power state.
4654 */
4655 WARN_ON(dev_priv->mm.busy);
4656
673a394b 4657 return 0;
45c5f202
CW
4658
4659err:
4660 mutex_unlock(&dev->struct_mutex);
4661 return ret;
673a394b
EA
4662}
4663
6909a666 4664int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4665{
6909a666 4666 struct intel_engine_cs *ring = req->ring;
c3787e2e 4667 struct drm_device *dev = ring->dev;
3e31c6c0 4668 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4669 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4670 int i, ret;
b9524a1e 4671
040d2baa 4672 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4673 return 0;
b9524a1e 4674
5fb9de1a 4675 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4676 if (ret)
4677 return ret;
b9524a1e 4678
c3787e2e
BW
4679 /*
4680 * Note: We do not worry about the concurrent register cacheline hang
4681 * here because no other code should access these registers other than
4682 * at initialization time.
4683 */
6fa1c5f1 4684 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
c3787e2e 4685 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
f92a9162 4686 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
6fa1c5f1 4687 intel_ring_emit(ring, remap_info[i]);
b9524a1e
BW
4688 }
4689
c3787e2e 4690 intel_ring_advance(ring);
b9524a1e 4691
c3787e2e 4692 return ret;
b9524a1e
BW
4693}
4694
f691e2f4
DV
4695void i915_gem_init_swizzling(struct drm_device *dev)
4696{
3e31c6c0 4697 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4698
11782b02 4699 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4700 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4701 return;
4702
4703 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4704 DISP_TILE_SURFACE_SWIZZLING);
4705
11782b02
DV
4706 if (IS_GEN5(dev))
4707 return;
4708
f691e2f4
DV
4709 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4710 if (IS_GEN6(dev))
6b26c86d 4711 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4712 else if (IS_GEN7(dev))
6b26c86d 4713 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4714 else if (IS_GEN8(dev))
4715 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4716 else
4717 BUG();
f691e2f4 4718}
e21af88d 4719
81e7f200
VS
4720static void init_unused_ring(struct drm_device *dev, u32 base)
4721{
4722 struct drm_i915_private *dev_priv = dev->dev_private;
4723
4724 I915_WRITE(RING_CTL(base), 0);
4725 I915_WRITE(RING_HEAD(base), 0);
4726 I915_WRITE(RING_TAIL(base), 0);
4727 I915_WRITE(RING_START(base), 0);
4728}
4729
4730static void init_unused_rings(struct drm_device *dev)
4731{
4732 if (IS_I830(dev)) {
4733 init_unused_ring(dev, PRB1_BASE);
4734 init_unused_ring(dev, SRB0_BASE);
4735 init_unused_ring(dev, SRB1_BASE);
4736 init_unused_ring(dev, SRB2_BASE);
4737 init_unused_ring(dev, SRB3_BASE);
4738 } else if (IS_GEN2(dev)) {
4739 init_unused_ring(dev, SRB0_BASE);
4740 init_unused_ring(dev, SRB1_BASE);
4741 } else if (IS_GEN3(dev)) {
4742 init_unused_ring(dev, PRB1_BASE);
4743 init_unused_ring(dev, PRB2_BASE);
4744 }
4745}
4746
a83014d3 4747int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4748{
4fc7c971 4749 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4750 int ret;
68f95ba9 4751
5c1143bb 4752 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4753 if (ret)
b6913e4b 4754 return ret;
68f95ba9
CW
4755
4756 if (HAS_BSD(dev)) {
5c1143bb 4757 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4758 if (ret)
4759 goto cleanup_render_ring;
d1b851fc 4760 }
68f95ba9 4761
d39398f5 4762 if (HAS_BLT(dev)) {
549f7365
CW
4763 ret = intel_init_blt_ring_buffer(dev);
4764 if (ret)
4765 goto cleanup_bsd_ring;
4766 }
4767
9a8a2213
BW
4768 if (HAS_VEBOX(dev)) {
4769 ret = intel_init_vebox_ring_buffer(dev);
4770 if (ret)
4771 goto cleanup_blt_ring;
4772 }
4773
845f74a7
ZY
4774 if (HAS_BSD2(dev)) {
4775 ret = intel_init_bsd2_ring_buffer(dev);
4776 if (ret)
4777 goto cleanup_vebox_ring;
4778 }
9a8a2213 4779
4fc7c971
BW
4780 return 0;
4781
9a8a2213
BW
4782cleanup_vebox_ring:
4783 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4784cleanup_blt_ring:
4785 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4786cleanup_bsd_ring:
4787 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4788cleanup_render_ring:
4789 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4790
4791 return ret;
4792}
4793
4794int
4795i915_gem_init_hw(struct drm_device *dev)
4796{
3e31c6c0 4797 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4798 struct intel_engine_cs *ring;
4ad2fd88 4799 int ret, i, j;
4fc7c971
BW
4800
4801 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4802 return -EIO;
4803
5e4f5189
CW
4804 /* Double layer security blanket, see i915_gem_init() */
4805 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4806
59124506 4807 if (dev_priv->ellc_size)
05e21cc4 4808 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4809
0bf21347
VS
4810 if (IS_HASWELL(dev))
4811 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4812 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4813
88a2b2a3 4814 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4815 if (IS_IVYBRIDGE(dev)) {
4816 u32 temp = I915_READ(GEN7_MSG_CTL);
4817 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4818 I915_WRITE(GEN7_MSG_CTL, temp);
4819 } else if (INTEL_INFO(dev)->gen >= 7) {
4820 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4821 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4822 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4823 }
88a2b2a3
BW
4824 }
4825
4fc7c971
BW
4826 i915_gem_init_swizzling(dev);
4827
d5abdfda
DV
4828 /*
4829 * At least 830 can leave some of the unused rings
4830 * "active" (ie. head != tail) after resume which
4831 * will prevent c3 entry. Makes sure all unused rings
4832 * are totally idle.
4833 */
4834 init_unused_rings(dev);
4835
90638cc1
JH
4836 BUG_ON(!dev_priv->ring[RCS].default_context);
4837
4ad2fd88
JH
4838 ret = i915_ppgtt_init_hw(dev);
4839 if (ret) {
4840 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4841 goto out;
4842 }
4843
4844 /* Need to do basic initialisation of all rings first: */
35a57ffb
DV
4845 for_each_ring(ring, dev_priv, i) {
4846 ret = ring->init_hw(ring);
4847 if (ret)
5e4f5189 4848 goto out;
35a57ffb 4849 }
99433931 4850
33a732f4 4851 /* We can't enable contexts until all firmware is loaded */
87bcdd2e
JB
4852 if (HAS_GUC_UCODE(dev)) {
4853 ret = intel_guc_ucode_load(dev);
4854 if (ret) {
9f9e539f
DV
4855 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4856 ret = -EIO;
4857 goto out;
87bcdd2e 4858 }
33a732f4
AD
4859 }
4860
e84fe803
NH
4861 /*
4862 * Increment the next seqno by 0x100 so we have a visible break
4863 * on re-initialisation
4864 */
4865 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4866 if (ret)
4867 goto out;
4868
4ad2fd88
JH
4869 /* Now it is safe to go back round and do everything else: */
4870 for_each_ring(ring, dev_priv, i) {
dc4be607
JH
4871 struct drm_i915_gem_request *req;
4872
90638cc1
JH
4873 WARN_ON(!ring->default_context);
4874
dc4be607
JH
4875 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4876 if (ret) {
4877 i915_gem_cleanup_ringbuffer(dev);
4878 goto out;
4879 }
4880
4ad2fd88
JH
4881 if (ring->id == RCS) {
4882 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 4883 i915_gem_l3_remap(req, j);
4ad2fd88 4884 }
c3787e2e 4885
b3dd6b96 4886 ret = i915_ppgtt_init_ring(req);
4ad2fd88
JH
4887 if (ret && ret != -EIO) {
4888 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
dc4be607 4889 i915_gem_request_cancel(req);
4ad2fd88
JH
4890 i915_gem_cleanup_ringbuffer(dev);
4891 goto out;
4892 }
82460d97 4893
b3dd6b96 4894 ret = i915_gem_context_enable(req);
90638cc1
JH
4895 if (ret && ret != -EIO) {
4896 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
dc4be607 4897 i915_gem_request_cancel(req);
90638cc1
JH
4898 i915_gem_cleanup_ringbuffer(dev);
4899 goto out;
4900 }
dc4be607 4901
75289874 4902 i915_add_request_no_flush(req);
b7c36d25 4903 }
e21af88d 4904
5e4f5189
CW
4905out:
4906 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4907 return ret;
8187a2b7
ZN
4908}
4909
1070a42b
CW
4910int i915_gem_init(struct drm_device *dev)
4911{
4912 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4913 int ret;
4914
127f1003
OM
4915 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4916 i915.enable_execlists);
4917
1070a42b 4918 mutex_lock(&dev->struct_mutex);
d62b4892 4919
a83014d3 4920 if (!i915.enable_execlists) {
f3dc74c0 4921 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
4922 dev_priv->gt.init_rings = i915_gem_init_rings;
4923 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4924 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 4925 } else {
f3dc74c0 4926 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
4927 dev_priv->gt.init_rings = intel_logical_rings_init;
4928 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4929 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4930 }
4931
5e4f5189
CW
4932 /* This is just a security blanket to placate dragons.
4933 * On some systems, we very sporadically observe that the first TLBs
4934 * used by the CS may be stale, despite us poking the TLB reset. If
4935 * we hold the forcewake during initialisation these problems
4936 * just magically go away.
4937 */
4938 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4939
6c5566a8 4940 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4941 if (ret)
4942 goto out_unlock;
6c5566a8 4943
d7e5008f 4944 i915_gem_init_global_gtt(dev);
d62b4892 4945
2fa48d8d 4946 ret = i915_gem_context_init(dev);
7bcc3777
JN
4947 if (ret)
4948 goto out_unlock;
2fa48d8d 4949
35a57ffb
DV
4950 ret = dev_priv->gt.init_rings(dev);
4951 if (ret)
7bcc3777 4952 goto out_unlock;
2fa48d8d 4953
1070a42b 4954 ret = i915_gem_init_hw(dev);
60990320
CW
4955 if (ret == -EIO) {
4956 /* Allow ring initialisation to fail by marking the GPU as
4957 * wedged. But we only want to do this where the GPU is angry,
4958 * for all other failure, such as an allocation failure, bail.
4959 */
4960 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4961 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4962 ret = 0;
1070a42b 4963 }
7bcc3777
JN
4964
4965out_unlock:
5e4f5189 4966 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4967 mutex_unlock(&dev->struct_mutex);
1070a42b 4968
60990320 4969 return ret;
1070a42b
CW
4970}
4971
8187a2b7
ZN
4972void
4973i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4974{
3e31c6c0 4975 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4976 struct intel_engine_cs *ring;
1ec14ad3 4977 int i;
8187a2b7 4978
b4519513 4979 for_each_ring(ring, dev_priv, i)
a83014d3 4980 dev_priv->gt.cleanup_ring(ring);
a647828a
NB
4981
4982 if (i915.enable_execlists)
4983 /*
4984 * Neither the BIOS, ourselves or any other kernel
4985 * expects the system to be in execlists mode on startup,
4986 * so we need to reset the GPU back to legacy mode.
4987 */
4988 intel_gpu_reset(dev);
8187a2b7
ZN
4989}
4990
64193406 4991static void
a4872ba6 4992init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4993{
4994 INIT_LIST_HEAD(&ring->active_list);
4995 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4996}
4997
673a394b
EA
4998void
4999i915_gem_load(struct drm_device *dev)
5000{
3e31c6c0 5001 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5002 int i;
5003
efab6d8d 5004 dev_priv->objects =
42dcedd4
CW
5005 kmem_cache_create("i915_gem_object",
5006 sizeof(struct drm_i915_gem_object), 0,
5007 SLAB_HWCACHE_ALIGN,
5008 NULL);
e20d2ab7
CW
5009 dev_priv->vmas =
5010 kmem_cache_create("i915_gem_vma",
5011 sizeof(struct i915_vma), 0,
5012 SLAB_HWCACHE_ALIGN,
5013 NULL);
efab6d8d
CW
5014 dev_priv->requests =
5015 kmem_cache_create("i915_gem_request",
5016 sizeof(struct drm_i915_gem_request), 0,
5017 SLAB_HWCACHE_ALIGN,
5018 NULL);
673a394b 5019
fc8c067e 5020 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 5021 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5022 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5023 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5024 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
5025 for (i = 0; i < I915_NUM_RINGS; i++)
5026 init_ring_lists(&dev_priv->ring[i]);
4b9de737 5027 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5028 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5029 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5030 i915_gem_retire_work_handler);
b29c19b6
CW
5031 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5032 i915_gem_idle_work_handler);
1f83fee0 5033 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5034
72bfa19c
CW
5035 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5036
666a4537 5037 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
42b5aeab
VS
5038 dev_priv->num_fence_regs = 32;
5039 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5040 dev_priv->num_fence_regs = 16;
5041 else
5042 dev_priv->num_fence_regs = 8;
5043
eb82289a
YZ
5044 if (intel_vgpu_active(dev))
5045 dev_priv->num_fence_regs =
5046 I915_READ(vgtif_reg(avail_rs.fence_num));
5047
e84fe803
NH
5048 /*
5049 * Set initial sequence number for requests.
5050 * Using this number allows the wraparound to happen early,
5051 * catching any obvious problems.
5052 */
5053 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5054 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5055
b5aa8a0f 5056 /* Initialize fence registers to zero */
19b2dbde
CW
5057 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5058 i915_gem_restore_fences(dev);
10ed13e4 5059
673a394b 5060 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5061 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5062
ce453d81
CW
5063 dev_priv->mm.interruptible = true;
5064
be6a0376 5065 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
5066
5067 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5068}
71acb5eb 5069
f787a5f5 5070void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5071{
f787a5f5 5072 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5073
5074 /* Clean up our request list when the client is going away, so that
5075 * later retire_requests won't dereference our soon-to-be-gone
5076 * file_priv.
5077 */
1c25595f 5078 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5079 while (!list_empty(&file_priv->mm.request_list)) {
5080 struct drm_i915_gem_request *request;
5081
5082 request = list_first_entry(&file_priv->mm.request_list,
5083 struct drm_i915_gem_request,
5084 client_list);
5085 list_del(&request->client_list);
5086 request->file_priv = NULL;
5087 }
1c25595f 5088 spin_unlock(&file_priv->mm.lock);
b29c19b6 5089
2e1b8730 5090 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5091 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5092 list_del(&file_priv->rps.link);
8d3afd7d 5093 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5094 }
b29c19b6
CW
5095}
5096
5097int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5098{
5099 struct drm_i915_file_private *file_priv;
e422b888 5100 int ret;
b29c19b6
CW
5101
5102 DRM_DEBUG_DRIVER("\n");
5103
5104 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5105 if (!file_priv)
5106 return -ENOMEM;
5107
5108 file->driver_priv = file_priv;
5109 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5110 file_priv->file = file;
2e1b8730 5111 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5112
5113 spin_lock_init(&file_priv->mm.lock);
5114 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5115
e422b888
BW
5116 ret = i915_gem_context_open(dev, file);
5117 if (ret)
5118 kfree(file_priv);
b29c19b6 5119
e422b888 5120 return ret;
b29c19b6
CW
5121}
5122
b680c37a
DV
5123/**
5124 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5125 * @old: current GEM buffer for the frontbuffer slots
5126 * @new: new GEM buffer for the frontbuffer slots
5127 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5128 *
5129 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5130 * from @old and setting them in @new. Both @old and @new can be NULL.
5131 */
a071fa00
DV
5132void i915_gem_track_fb(struct drm_i915_gem_object *old,
5133 struct drm_i915_gem_object *new,
5134 unsigned frontbuffer_bits)
5135{
5136 if (old) {
5137 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5138 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5139 old->frontbuffer_bits &= ~frontbuffer_bits;
5140 }
5141
5142 if (new) {
5143 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5144 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5145 new->frontbuffer_bits |= frontbuffer_bits;
5146 }
5147}
5148
a70a3148 5149/* All the new VM stuff */
088e0df4
MT
5150u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5151 struct i915_address_space *vm)
a70a3148
BW
5152{
5153 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5154 struct i915_vma *vma;
5155
896ab1a5 5156 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5157
a70a3148 5158 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5159 if (i915_is_ggtt(vma->vm) &&
5160 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5161 continue;
5162 if (vma->vm == vm)
a70a3148 5163 return vma->node.start;
a70a3148 5164 }
ec7adb6e 5165
f25748ea
DV
5166 WARN(1, "%s vma for this object not found.\n",
5167 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5168 return -1;
5169}
5170
088e0df4
MT
5171u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5172 const struct i915_ggtt_view *view)
a70a3148 5173{
ec7adb6e 5174 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5175 struct i915_vma *vma;
5176
5177 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5178 if (vma->vm == ggtt &&
5179 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5180 return vma->node.start;
5181
5678ad73 5182 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5183 return -1;
5184}
5185
5186bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5187 struct i915_address_space *vm)
5188{
5189 struct i915_vma *vma;
5190
5191 list_for_each_entry(vma, &o->vma_list, vma_link) {
5192 if (i915_is_ggtt(vma->vm) &&
5193 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5194 continue;
5195 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5196 return true;
5197 }
5198
5199 return false;
5200}
5201
5202bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5203 const struct i915_ggtt_view *view)
ec7adb6e
JL
5204{
5205 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5206 struct i915_vma *vma;
5207
5208 list_for_each_entry(vma, &o->vma_list, vma_link)
5209 if (vma->vm == ggtt &&
9abc4648 5210 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5211 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5212 return true;
5213
5214 return false;
5215}
5216
5217bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5218{
5a1d5eb0 5219 struct i915_vma *vma;
a70a3148 5220
5a1d5eb0
CW
5221 list_for_each_entry(vma, &o->vma_list, vma_link)
5222 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5223 return true;
5224
5225 return false;
5226}
5227
5228unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5229 struct i915_address_space *vm)
5230{
5231 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5232 struct i915_vma *vma;
5233
896ab1a5 5234 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5235
5236 BUG_ON(list_empty(&o->vma_list));
5237
ec7adb6e
JL
5238 list_for_each_entry(vma, &o->vma_list, vma_link) {
5239 if (i915_is_ggtt(vma->vm) &&
5240 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5241 continue;
a70a3148
BW
5242 if (vma->vm == vm)
5243 return vma->node.size;
ec7adb6e 5244 }
a70a3148
BW
5245 return 0;
5246}
5247
ec7adb6e 5248bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5249{
5250 struct i915_vma *vma;
a6631ae1 5251 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5252 if (vma->pin_count > 0)
5253 return true;
a6631ae1 5254
ec7adb6e 5255 return false;
5c2abbea 5256}
ea70299d 5257
033908ae
DG
5258/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5259struct page *
5260i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5261{
5262 struct page *page;
5263
5264 /* Only default objects have per-page dirty tracking */
93232aeb 5265 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
033908ae
DG
5266 return NULL;
5267
5268 page = i915_gem_object_get_page(obj, n);
5269 set_page_dirty(page);
5270 return page;
5271}
5272
ea70299d
DG
5273/* Allocate a new GEM object and fill it with the supplied data */
5274struct drm_i915_gem_object *
5275i915_gem_object_create_from_data(struct drm_device *dev,
5276 const void *data, size_t size)
5277{
5278 struct drm_i915_gem_object *obj;
5279 struct sg_table *sg;
5280 size_t bytes;
5281 int ret;
5282
5283 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5284 if (IS_ERR_OR_NULL(obj))
5285 return obj;
5286
5287 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5288 if (ret)
5289 goto fail;
5290
5291 ret = i915_gem_object_get_pages(obj);
5292 if (ret)
5293 goto fail;
5294
5295 i915_gem_object_pin_pages(obj);
5296 sg = obj->pages;
5297 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5298 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5299 i915_gem_object_unpin_pages(obj);
5300
5301 if (WARN_ON(bytes != size)) {
5302 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5303 ret = -EFAULT;
5304 goto fail;
5305 }
5306
5307 return obj;
5308
5309fail:
5310 drm_gem_object_unreference(&obj->base);
5311 return ERR_PTR(ret);
5312}