]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: non-interruptible sleeps can't handle -EAGAIN
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
88241785 40static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
43static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
44 unsigned alignment,
45 bool map_and_fenceable);
05394f39
CW
46static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
71acb5eb 48 struct drm_i915_gem_pwrite *args,
05394f39 49 struct drm_file *file);
673a394b 50
61050808
CW
51static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
17250b71 57static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 58 struct shrink_control *sc);
8c59967c 59static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 60
61050808
CW
61static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
62{
63 if (obj->tiling_mode)
64 i915_gem_release_mmap(obj);
65
66 /* As we do not have an associated fence register, we will force
67 * a tiling change if we ever need to acquire one.
68 */
5d82e3e6 69 obj->fence_dirty = false;
61050808
CW
70 obj->fence_reg = I915_FENCE_REG_NONE;
71}
72
73aa808f
CW
73/* some bookkeeping */
74static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
77 dev_priv->mm.object_count++;
78 dev_priv->mm.object_memory += size;
79}
80
81static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
82 size_t size)
83{
84 dev_priv->mm.object_count--;
85 dev_priv->mm.object_memory -= size;
86}
87
21dd3734
CW
88static int
89i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
90{
91 struct drm_i915_private *dev_priv = dev->dev_private;
92 struct completion *x = &dev_priv->error_completion;
93 unsigned long flags;
94 int ret;
95
96 if (!atomic_read(&dev_priv->mm.wedged))
97 return 0;
98
99 ret = wait_for_completion_interruptible(x);
100 if (ret)
101 return ret;
102
21dd3734
CW
103 if (atomic_read(&dev_priv->mm.wedged)) {
104 /* GPU is hung, bump the completion count to account for
105 * the token we just consumed so that we never hit zero and
106 * end up waiting upon a subsequent completion event that
107 * will never happen.
108 */
109 spin_lock_irqsave(&x->wait.lock, flags);
110 x->done++;
111 spin_unlock_irqrestore(&x->wait.lock, flags);
112 }
113 return 0;
30dbf0c0
CW
114}
115
54cf91dc 116int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 117{
76c1dec1
CW
118 int ret;
119
21dd3734 120 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
121 if (ret)
122 return ret;
123
124 ret = mutex_lock_interruptible(&dev->struct_mutex);
125 if (ret)
126 return ret;
127
23bc5982 128 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
129 return 0;
130}
30dbf0c0 131
7d1c4804 132static inline bool
05394f39 133i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 134{
1b50247a 135 return !obj->active;
7d1c4804
CW
136}
137
79e53945
JB
138int
139i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 140 struct drm_file *file)
79e53945
JB
141{
142 struct drm_i915_gem_init *args = data;
2021746e 143
7bb6fb8d
DV
144 if (drm_core_check_feature(dev, DRIVER_MODESET))
145 return -ENODEV;
146
2021746e
CW
147 if (args->gtt_start >= args->gtt_end ||
148 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
149 return -EINVAL;
79e53945 150
f534bc0b
DV
151 /* GEM with user mode setting was never supported on ilk and later. */
152 if (INTEL_INFO(dev)->gen >= 5)
153 return -ENODEV;
154
79e53945 155 mutex_lock(&dev->struct_mutex);
644ec02b
DV
156 i915_gem_init_global_gtt(dev, args->gtt_start,
157 args->gtt_end, args->gtt_end);
673a394b
EA
158 mutex_unlock(&dev->struct_mutex);
159
2021746e 160 return 0;
673a394b
EA
161}
162
5a125c3c
EA
163int
164i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 165 struct drm_file *file)
5a125c3c 166{
73aa808f 167 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 168 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
169 struct drm_i915_gem_object *obj;
170 size_t pinned;
5a125c3c 171
6299f992 172 pinned = 0;
73aa808f 173 mutex_lock(&dev->struct_mutex);
1b50247a
CW
174 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
175 if (obj->pin_count)
176 pinned += obj->gtt_space->size;
73aa808f 177 mutex_unlock(&dev->struct_mutex);
5a125c3c 178
6299f992 179 args->aper_size = dev_priv->mm.gtt_total;
0206e353 180 args->aper_available_size = args->aper_size - pinned;
6299f992 181
5a125c3c
EA
182 return 0;
183}
184
ff72145b
DA
185static int
186i915_gem_create(struct drm_file *file,
187 struct drm_device *dev,
188 uint64_t size,
189 uint32_t *handle_p)
673a394b 190{
05394f39 191 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
192 int ret;
193 u32 handle;
673a394b 194
ff72145b 195 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
196 if (size == 0)
197 return -EINVAL;
673a394b
EA
198
199 /* Allocate the new object */
ff72145b 200 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
201 if (obj == NULL)
202 return -ENOMEM;
203
05394f39 204 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 205 if (ret) {
05394f39
CW
206 drm_gem_object_release(&obj->base);
207 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 208 kfree(obj);
673a394b 209 return ret;
1dfd9754 210 }
673a394b 211
202f2fef 212 /* drop reference from allocate - handle holds it now */
05394f39 213 drm_gem_object_unreference(&obj->base);
202f2fef
CW
214 trace_i915_gem_object_create(obj);
215
ff72145b 216 *handle_p = handle;
673a394b
EA
217 return 0;
218}
219
ff72145b
DA
220int
221i915_gem_dumb_create(struct drm_file *file,
222 struct drm_device *dev,
223 struct drm_mode_create_dumb *args)
224{
225 /* have to work out size/pitch and return them */
ed0291fd 226 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
227 args->size = args->pitch * args->height;
228 return i915_gem_create(file, dev,
229 args->size, &args->handle);
230}
231
232int i915_gem_dumb_destroy(struct drm_file *file,
233 struct drm_device *dev,
234 uint32_t handle)
235{
236 return drm_gem_handle_delete(file, handle);
237}
238
239/**
240 * Creates a new mm object and returns a handle to it.
241 */
242int
243i915_gem_create_ioctl(struct drm_device *dev, void *data,
244 struct drm_file *file)
245{
246 struct drm_i915_gem_create *args = data;
63ed2cb2 247
ff72145b
DA
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
250}
251
05394f39 252static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 253{
05394f39 254 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
255
256 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 257 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
258}
259
8461d226
DV
260static inline int
261__copy_to_user_swizzled(char __user *cpu_vaddr,
262 const char *gpu_vaddr, int gpu_offset,
263 int length)
264{
265 int ret, cpu_offset = 0;
266
267 while (length > 0) {
268 int cacheline_end = ALIGN(gpu_offset + 1, 64);
269 int this_length = min(cacheline_end - gpu_offset, length);
270 int swizzled_gpu_offset = gpu_offset ^ 64;
271
272 ret = __copy_to_user(cpu_vaddr + cpu_offset,
273 gpu_vaddr + swizzled_gpu_offset,
274 this_length);
275 if (ret)
276 return ret + length;
277
278 cpu_offset += this_length;
279 gpu_offset += this_length;
280 length -= this_length;
281 }
282
283 return 0;
284}
285
8c59967c 286static inline int
4f0c7cfb
BW
287__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
288 const char __user *cpu_vaddr,
8c59967c
DV
289 int length)
290{
291 int ret, cpu_offset = 0;
292
293 while (length > 0) {
294 int cacheline_end = ALIGN(gpu_offset + 1, 64);
295 int this_length = min(cacheline_end - gpu_offset, length);
296 int swizzled_gpu_offset = gpu_offset ^ 64;
297
298 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
299 cpu_vaddr + cpu_offset,
300 this_length);
301 if (ret)
302 return ret + length;
303
304 cpu_offset += this_length;
305 gpu_offset += this_length;
306 length -= this_length;
307 }
308
309 return 0;
310}
311
d174bd64
DV
312/* Per-page copy function for the shmem pread fastpath.
313 * Flushes invalid cachelines before reading the target if
314 * needs_clflush is set. */
eb01459f 315static int
d174bd64
DV
316shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
317 char __user *user_data,
318 bool page_do_bit17_swizzling, bool needs_clflush)
319{
320 char *vaddr;
321 int ret;
322
e7e58eb5 323 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
324 return -EINVAL;
325
326 vaddr = kmap_atomic(page);
327 if (needs_clflush)
328 drm_clflush_virt_range(vaddr + shmem_page_offset,
329 page_length);
330 ret = __copy_to_user_inatomic(user_data,
331 vaddr + shmem_page_offset,
332 page_length);
333 kunmap_atomic(vaddr);
334
335 return ret;
336}
337
23c18c71
DV
338static void
339shmem_clflush_swizzled_range(char *addr, unsigned long length,
340 bool swizzled)
341{
e7e58eb5 342 if (unlikely(swizzled)) {
23c18c71
DV
343 unsigned long start = (unsigned long) addr;
344 unsigned long end = (unsigned long) addr + length;
345
346 /* For swizzling simply ensure that we always flush both
347 * channels. Lame, but simple and it works. Swizzled
348 * pwrite/pread is far from a hotpath - current userspace
349 * doesn't use it at all. */
350 start = round_down(start, 128);
351 end = round_up(end, 128);
352
353 drm_clflush_virt_range((void *)start, end - start);
354 } else {
355 drm_clflush_virt_range(addr, length);
356 }
357
358}
359
d174bd64
DV
360/* Only difference to the fast-path function is that this can handle bit17
361 * and uses non-atomic copy and kmap functions. */
362static int
363shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
364 char __user *user_data,
365 bool page_do_bit17_swizzling, bool needs_clflush)
366{
367 char *vaddr;
368 int ret;
369
370 vaddr = kmap(page);
371 if (needs_clflush)
23c18c71
DV
372 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
373 page_length,
374 page_do_bit17_swizzling);
d174bd64
DV
375
376 if (page_do_bit17_swizzling)
377 ret = __copy_to_user_swizzled(user_data,
378 vaddr, shmem_page_offset,
379 page_length);
380 else
381 ret = __copy_to_user(user_data,
382 vaddr + shmem_page_offset,
383 page_length);
384 kunmap(page);
385
386 return ret;
387}
388
eb01459f 389static int
dbf7bff0
DV
390i915_gem_shmem_pread(struct drm_device *dev,
391 struct drm_i915_gem_object *obj,
392 struct drm_i915_gem_pread *args,
393 struct drm_file *file)
eb01459f 394{
05394f39 395 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 396 char __user *user_data;
eb01459f 397 ssize_t remain;
8461d226 398 loff_t offset;
eb2c0c81 399 int shmem_page_offset, page_length, ret = 0;
8461d226 400 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 401 int hit_slowpath = 0;
96d79b52 402 int prefaulted = 0;
8489731c 403 int needs_clflush = 0;
692a576b 404 int release_page;
eb01459f 405
8461d226 406 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
407 remain = args->size;
408
8461d226 409 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 410
8489731c
DV
411 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
412 /* If we're not in the cpu read domain, set ourself into the gtt
413 * read domain and manually flush cachelines (if required). This
414 * optimizes for the case when the gpu will dirty the data
415 * anyway again before the next pread happens. */
416 if (obj->cache_level == I915_CACHE_NONE)
417 needs_clflush = 1;
418 ret = i915_gem_object_set_to_gtt_domain(obj, false);
419 if (ret)
420 return ret;
421 }
eb01459f 422
8461d226 423 offset = args->offset;
eb01459f
EA
424
425 while (remain > 0) {
e5281ccd
CW
426 struct page *page;
427
eb01459f
EA
428 /* Operation in this page
429 *
eb01459f 430 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
431 * page_length = bytes to copy for this page
432 */
c8cbbb8b 433 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
434 page_length = remain;
435 if ((shmem_page_offset + page_length) > PAGE_SIZE)
436 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 437
692a576b
DV
438 if (obj->pages) {
439 page = obj->pages[offset >> PAGE_SHIFT];
440 release_page = 0;
441 } else {
442 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
443 if (IS_ERR(page)) {
444 ret = PTR_ERR(page);
445 goto out;
446 }
447 release_page = 1;
b65552f0 448 }
e5281ccd 449
8461d226
DV
450 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
451 (page_to_phys(page) & (1 << 17)) != 0;
452
d174bd64
DV
453 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
454 user_data, page_do_bit17_swizzling,
455 needs_clflush);
456 if (ret == 0)
457 goto next_page;
dbf7bff0
DV
458
459 hit_slowpath = 1;
692a576b 460 page_cache_get(page);
dbf7bff0
DV
461 mutex_unlock(&dev->struct_mutex);
462
96d79b52 463 if (!prefaulted) {
f56f821f 464 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
465 /* Userspace is tricking us, but we've already clobbered
466 * its pages with the prefault and promised to write the
467 * data up to the first fault. Hence ignore any errors
468 * and just continue. */
469 (void)ret;
470 prefaulted = 1;
471 }
eb01459f 472
d174bd64
DV
473 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
474 user_data, page_do_bit17_swizzling,
475 needs_clflush);
eb01459f 476
dbf7bff0 477 mutex_lock(&dev->struct_mutex);
e5281ccd 478 page_cache_release(page);
dbf7bff0 479next_page:
e5281ccd 480 mark_page_accessed(page);
692a576b
DV
481 if (release_page)
482 page_cache_release(page);
e5281ccd 483
8461d226
DV
484 if (ret) {
485 ret = -EFAULT;
486 goto out;
487 }
488
eb01459f 489 remain -= page_length;
8461d226 490 user_data += page_length;
eb01459f
EA
491 offset += page_length;
492 }
493
4f27b75d 494out:
dbf7bff0
DV
495 if (hit_slowpath) {
496 /* Fixup: Kill any reinstated backing storage pages */
497 if (obj->madv == __I915_MADV_PURGED)
498 i915_gem_object_truncate(obj);
499 }
eb01459f
EA
500
501 return ret;
502}
503
673a394b
EA
504/**
505 * Reads data from the object referenced by handle.
506 *
507 * On error, the contents of *data are undefined.
508 */
509int
510i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 511 struct drm_file *file)
673a394b
EA
512{
513 struct drm_i915_gem_pread *args = data;
05394f39 514 struct drm_i915_gem_object *obj;
35b62a89 515 int ret = 0;
673a394b 516
51311d0a
CW
517 if (args->size == 0)
518 return 0;
519
520 if (!access_ok(VERIFY_WRITE,
521 (char __user *)(uintptr_t)args->data_ptr,
522 args->size))
523 return -EFAULT;
524
4f27b75d 525 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 526 if (ret)
4f27b75d 527 return ret;
673a394b 528
05394f39 529 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 530 if (&obj->base == NULL) {
1d7cfea1
CW
531 ret = -ENOENT;
532 goto unlock;
4f27b75d 533 }
673a394b 534
7dcd2499 535 /* Bounds check source. */
05394f39
CW
536 if (args->offset > obj->base.size ||
537 args->size > obj->base.size - args->offset) {
ce9d419d 538 ret = -EINVAL;
35b62a89 539 goto out;
ce9d419d
CW
540 }
541
1286ff73
DV
542 /* prime objects have no backing filp to GEM pread/pwrite
543 * pages from.
544 */
545 if (!obj->base.filp) {
546 ret = -EINVAL;
547 goto out;
548 }
549
db53a302
CW
550 trace_i915_gem_object_pread(obj, args->offset, args->size);
551
dbf7bff0 552 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 553
35b62a89 554out:
05394f39 555 drm_gem_object_unreference(&obj->base);
1d7cfea1 556unlock:
4f27b75d 557 mutex_unlock(&dev->struct_mutex);
eb01459f 558 return ret;
673a394b
EA
559}
560
0839ccb8
KP
561/* This is the fast write path which cannot handle
562 * page faults in the source data
9b7530cc 563 */
0839ccb8
KP
564
565static inline int
566fast_user_write(struct io_mapping *mapping,
567 loff_t page_base, int page_offset,
568 char __user *user_data,
569 int length)
9b7530cc 570{
4f0c7cfb
BW
571 void __iomem *vaddr_atomic;
572 void *vaddr;
0839ccb8 573 unsigned long unwritten;
9b7530cc 574
3e4d3af5 575 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
576 /* We can use the cpu mem copy function because this is X86. */
577 vaddr = (void __force*)vaddr_atomic + page_offset;
578 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 579 user_data, length);
3e4d3af5 580 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 581 return unwritten;
0839ccb8
KP
582}
583
3de09aa3
EA
584/**
585 * This is the fast pwrite path, where we copy the data directly from the
586 * user into the GTT, uncached.
587 */
673a394b 588static int
05394f39
CW
589i915_gem_gtt_pwrite_fast(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
3de09aa3 591 struct drm_i915_gem_pwrite *args,
05394f39 592 struct drm_file *file)
673a394b 593{
0839ccb8 594 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 595 ssize_t remain;
0839ccb8 596 loff_t offset, page_base;
673a394b 597 char __user *user_data;
935aaa69
DV
598 int page_offset, page_length, ret;
599
600 ret = i915_gem_object_pin(obj, 0, true);
601 if (ret)
602 goto out;
603
604 ret = i915_gem_object_set_to_gtt_domain(obj, true);
605 if (ret)
606 goto out_unpin;
607
608 ret = i915_gem_object_put_fence(obj);
609 if (ret)
610 goto out_unpin;
673a394b
EA
611
612 user_data = (char __user *) (uintptr_t) args->data_ptr;
613 remain = args->size;
673a394b 614
05394f39 615 offset = obj->gtt_offset + args->offset;
673a394b
EA
616
617 while (remain > 0) {
618 /* Operation in this page
619 *
0839ccb8
KP
620 * page_base = page offset within aperture
621 * page_offset = offset within page
622 * page_length = bytes to copy for this page
673a394b 623 */
c8cbbb8b
CW
624 page_base = offset & PAGE_MASK;
625 page_offset = offset_in_page(offset);
0839ccb8
KP
626 page_length = remain;
627 if ((page_offset + remain) > PAGE_SIZE)
628 page_length = PAGE_SIZE - page_offset;
629
0839ccb8 630 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
631 * source page isn't available. Return the error and we'll
632 * retry in the slow path.
0839ccb8 633 */
fbd5a26d 634 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
635 page_offset, user_data, page_length)) {
636 ret = -EFAULT;
637 goto out_unpin;
638 }
673a394b 639
0839ccb8
KP
640 remain -= page_length;
641 user_data += page_length;
642 offset += page_length;
673a394b 643 }
673a394b 644
935aaa69
DV
645out_unpin:
646 i915_gem_object_unpin(obj);
647out:
3de09aa3 648 return ret;
673a394b
EA
649}
650
d174bd64
DV
651/* Per-page copy function for the shmem pwrite fastpath.
652 * Flushes invalid cachelines before writing to the target if
653 * needs_clflush_before is set and flushes out any written cachelines after
654 * writing if needs_clflush is set. */
3043c60c 655static int
d174bd64
DV
656shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
657 char __user *user_data,
658 bool page_do_bit17_swizzling,
659 bool needs_clflush_before,
660 bool needs_clflush_after)
673a394b 661{
d174bd64 662 char *vaddr;
673a394b 663 int ret;
3de09aa3 664
e7e58eb5 665 if (unlikely(page_do_bit17_swizzling))
d174bd64 666 return -EINVAL;
3de09aa3 667
d174bd64
DV
668 vaddr = kmap_atomic(page);
669 if (needs_clflush_before)
670 drm_clflush_virt_range(vaddr + shmem_page_offset,
671 page_length);
672 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
673 user_data,
674 page_length);
675 if (needs_clflush_after)
676 drm_clflush_virt_range(vaddr + shmem_page_offset,
677 page_length);
678 kunmap_atomic(vaddr);
3de09aa3
EA
679
680 return ret;
681}
682
d174bd64
DV
683/* Only difference to the fast-path function is that this can handle bit17
684 * and uses non-atomic copy and kmap functions. */
3043c60c 685static int
d174bd64
DV
686shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
687 char __user *user_data,
688 bool page_do_bit17_swizzling,
689 bool needs_clflush_before,
690 bool needs_clflush_after)
673a394b 691{
d174bd64
DV
692 char *vaddr;
693 int ret;
e5281ccd 694
d174bd64 695 vaddr = kmap(page);
e7e58eb5 696 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
697 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
698 page_length,
699 page_do_bit17_swizzling);
d174bd64
DV
700 if (page_do_bit17_swizzling)
701 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
702 user_data,
703 page_length);
d174bd64
DV
704 else
705 ret = __copy_from_user(vaddr + shmem_page_offset,
706 user_data,
707 page_length);
708 if (needs_clflush_after)
23c18c71
DV
709 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
710 page_length,
711 page_do_bit17_swizzling);
d174bd64 712 kunmap(page);
40123c1f 713
d174bd64 714 return ret;
40123c1f
EA
715}
716
40123c1f 717static int
e244a443
DV
718i915_gem_shmem_pwrite(struct drm_device *dev,
719 struct drm_i915_gem_object *obj,
720 struct drm_i915_gem_pwrite *args,
721 struct drm_file *file)
40123c1f 722{
05394f39 723 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 724 ssize_t remain;
8c59967c
DV
725 loff_t offset;
726 char __user *user_data;
eb2c0c81 727 int shmem_page_offset, page_length, ret = 0;
8c59967c 728 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 729 int hit_slowpath = 0;
58642885
DV
730 int needs_clflush_after = 0;
731 int needs_clflush_before = 0;
692a576b 732 int release_page;
40123c1f 733
8c59967c 734 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
735 remain = args->size;
736
8c59967c 737 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 738
58642885
DV
739 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
740 /* If we're not in the cpu write domain, set ourself into the gtt
741 * write domain and manually flush cachelines (if required). This
742 * optimizes for the case when the gpu will use the data
743 * right away and we therefore have to clflush anyway. */
744 if (obj->cache_level == I915_CACHE_NONE)
745 needs_clflush_after = 1;
746 ret = i915_gem_object_set_to_gtt_domain(obj, true);
747 if (ret)
748 return ret;
749 }
750 /* Same trick applies for invalidate partially written cachelines before
751 * writing. */
752 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
753 && obj->cache_level == I915_CACHE_NONE)
754 needs_clflush_before = 1;
755
673a394b 756 offset = args->offset;
05394f39 757 obj->dirty = 1;
673a394b 758
40123c1f 759 while (remain > 0) {
e5281ccd 760 struct page *page;
58642885 761 int partial_cacheline_write;
e5281ccd 762
40123c1f
EA
763 /* Operation in this page
764 *
40123c1f 765 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
766 * page_length = bytes to copy for this page
767 */
c8cbbb8b 768 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
769
770 page_length = remain;
771 if ((shmem_page_offset + page_length) > PAGE_SIZE)
772 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 773
58642885
DV
774 /* If we don't overwrite a cacheline completely we need to be
775 * careful to have up-to-date data by first clflushing. Don't
776 * overcomplicate things and flush the entire patch. */
777 partial_cacheline_write = needs_clflush_before &&
778 ((shmem_page_offset | page_length)
779 & (boot_cpu_data.x86_clflush_size - 1));
780
692a576b
DV
781 if (obj->pages) {
782 page = obj->pages[offset >> PAGE_SHIFT];
783 release_page = 0;
784 } else {
785 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
786 if (IS_ERR(page)) {
787 ret = PTR_ERR(page);
788 goto out;
789 }
790 release_page = 1;
e5281ccd
CW
791 }
792
8c59967c
DV
793 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
794 (page_to_phys(page) & (1 << 17)) != 0;
795
d174bd64
DV
796 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
797 user_data, page_do_bit17_swizzling,
798 partial_cacheline_write,
799 needs_clflush_after);
800 if (ret == 0)
801 goto next_page;
e244a443
DV
802
803 hit_slowpath = 1;
692a576b 804 page_cache_get(page);
e244a443
DV
805 mutex_unlock(&dev->struct_mutex);
806
d174bd64
DV
807 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
808 user_data, page_do_bit17_swizzling,
809 partial_cacheline_write,
810 needs_clflush_after);
40123c1f 811
e244a443 812 mutex_lock(&dev->struct_mutex);
692a576b 813 page_cache_release(page);
e244a443 814next_page:
e5281ccd
CW
815 set_page_dirty(page);
816 mark_page_accessed(page);
692a576b
DV
817 if (release_page)
818 page_cache_release(page);
e5281ccd 819
8c59967c
DV
820 if (ret) {
821 ret = -EFAULT;
822 goto out;
823 }
824
40123c1f 825 remain -= page_length;
8c59967c 826 user_data += page_length;
40123c1f 827 offset += page_length;
673a394b
EA
828 }
829
fbd5a26d 830out:
e244a443
DV
831 if (hit_slowpath) {
832 /* Fixup: Kill any reinstated backing storage pages */
833 if (obj->madv == __I915_MADV_PURGED)
834 i915_gem_object_truncate(obj);
835 /* and flush dirty cachelines in case the object isn't in the cpu write
836 * domain anymore. */
837 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
838 i915_gem_clflush_object(obj);
839 intel_gtt_chipset_flush();
840 }
8c59967c 841 }
673a394b 842
58642885
DV
843 if (needs_clflush_after)
844 intel_gtt_chipset_flush();
845
40123c1f 846 return ret;
673a394b
EA
847}
848
849/**
850 * Writes data to the object referenced by handle.
851 *
852 * On error, the contents of the buffer that were to be modified are undefined.
853 */
854int
855i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 856 struct drm_file *file)
673a394b
EA
857{
858 struct drm_i915_gem_pwrite *args = data;
05394f39 859 struct drm_i915_gem_object *obj;
51311d0a
CW
860 int ret;
861
862 if (args->size == 0)
863 return 0;
864
865 if (!access_ok(VERIFY_READ,
866 (char __user *)(uintptr_t)args->data_ptr,
867 args->size))
868 return -EFAULT;
869
f56f821f
DV
870 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
871 args->size);
51311d0a
CW
872 if (ret)
873 return -EFAULT;
673a394b 874
fbd5a26d 875 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 876 if (ret)
fbd5a26d 877 return ret;
1d7cfea1 878
05394f39 879 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 880 if (&obj->base == NULL) {
1d7cfea1
CW
881 ret = -ENOENT;
882 goto unlock;
fbd5a26d 883 }
673a394b 884
7dcd2499 885 /* Bounds check destination. */
05394f39
CW
886 if (args->offset > obj->base.size ||
887 args->size > obj->base.size - args->offset) {
ce9d419d 888 ret = -EINVAL;
35b62a89 889 goto out;
ce9d419d
CW
890 }
891
1286ff73
DV
892 /* prime objects have no backing filp to GEM pread/pwrite
893 * pages from.
894 */
895 if (!obj->base.filp) {
896 ret = -EINVAL;
897 goto out;
898 }
899
db53a302
CW
900 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
901
935aaa69 902 ret = -EFAULT;
673a394b
EA
903 /* We can only do the GTT pwrite on untiled buffers, as otherwise
904 * it would end up going through the fenced access, and we'll get
905 * different detiling behavior between reading and writing.
906 * pread/pwrite currently are reading and writing from the CPU
907 * perspective, requiring manual detiling by the client.
908 */
5c0480f2 909 if (obj->phys_obj) {
fbd5a26d 910 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
911 goto out;
912 }
913
914 if (obj->gtt_space &&
3ae53783 915 obj->cache_level == I915_CACHE_NONE &&
c07496fa 916 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 917 obj->map_and_fenceable &&
5c0480f2 918 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 919 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
920 /* Note that the gtt paths might fail with non-page-backed user
921 * pointers (e.g. gtt mappings when moving data between
922 * textures). Fallback to the shmem path in that case. */
fbd5a26d 923 }
673a394b 924
5c0480f2 925 if (ret == -EFAULT)
935aaa69 926 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 927
35b62a89 928out:
05394f39 929 drm_gem_object_unreference(&obj->base);
1d7cfea1 930unlock:
fbd5a26d 931 mutex_unlock(&dev->struct_mutex);
673a394b
EA
932 return ret;
933}
934
935/**
2ef7eeaa
EA
936 * Called when user space prepares to use an object with the CPU, either
937 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
938 */
939int
940i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 941 struct drm_file *file)
673a394b
EA
942{
943 struct drm_i915_gem_set_domain *args = data;
05394f39 944 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
945 uint32_t read_domains = args->read_domains;
946 uint32_t write_domain = args->write_domain;
673a394b
EA
947 int ret;
948
2ef7eeaa 949 /* Only handle setting domains to types used by the CPU. */
21d509e3 950 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
951 return -EINVAL;
952
21d509e3 953 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
954 return -EINVAL;
955
956 /* Having something in the write domain implies it's in the read
957 * domain, and only that read domain. Enforce that in the request.
958 */
959 if (write_domain != 0 && read_domains != write_domain)
960 return -EINVAL;
961
76c1dec1 962 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 963 if (ret)
76c1dec1 964 return ret;
1d7cfea1 965
05394f39 966 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 967 if (&obj->base == NULL) {
1d7cfea1
CW
968 ret = -ENOENT;
969 goto unlock;
76c1dec1 970 }
673a394b 971
2ef7eeaa
EA
972 if (read_domains & I915_GEM_DOMAIN_GTT) {
973 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
974
975 /* Silently promote "you're not bound, there was nothing to do"
976 * to success, since the client was just asking us to
977 * make sure everything was done.
978 */
979 if (ret == -EINVAL)
980 ret = 0;
2ef7eeaa 981 } else {
e47c68e9 982 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
983 }
984
05394f39 985 drm_gem_object_unreference(&obj->base);
1d7cfea1 986unlock:
673a394b
EA
987 mutex_unlock(&dev->struct_mutex);
988 return ret;
989}
990
991/**
992 * Called when user space has done writes to this buffer
993 */
994int
995i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 996 struct drm_file *file)
673a394b
EA
997{
998 struct drm_i915_gem_sw_finish *args = data;
05394f39 999 struct drm_i915_gem_object *obj;
673a394b
EA
1000 int ret = 0;
1001
76c1dec1 1002 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1003 if (ret)
76c1dec1 1004 return ret;
1d7cfea1 1005
05394f39 1006 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1007 if (&obj->base == NULL) {
1d7cfea1
CW
1008 ret = -ENOENT;
1009 goto unlock;
673a394b
EA
1010 }
1011
673a394b 1012 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1013 if (obj->pin_count)
e47c68e9
EA
1014 i915_gem_object_flush_cpu_write_domain(obj);
1015
05394f39 1016 drm_gem_object_unreference(&obj->base);
1d7cfea1 1017unlock:
673a394b
EA
1018 mutex_unlock(&dev->struct_mutex);
1019 return ret;
1020}
1021
1022/**
1023 * Maps the contents of an object, returning the address it is mapped
1024 * into.
1025 *
1026 * While the mapping holds a reference on the contents of the object, it doesn't
1027 * imply a ref on the object itself.
1028 */
1029int
1030i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1031 struct drm_file *file)
673a394b
EA
1032{
1033 struct drm_i915_gem_mmap *args = data;
1034 struct drm_gem_object *obj;
673a394b
EA
1035 unsigned long addr;
1036
05394f39 1037 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1038 if (obj == NULL)
bf79cb91 1039 return -ENOENT;
673a394b 1040
1286ff73
DV
1041 /* prime objects have no backing filp to GEM mmap
1042 * pages from.
1043 */
1044 if (!obj->filp) {
1045 drm_gem_object_unreference_unlocked(obj);
1046 return -EINVAL;
1047 }
1048
6be5ceb0 1049 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1050 PROT_READ | PROT_WRITE, MAP_SHARED,
1051 args->offset);
bc9025bd 1052 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1053 if (IS_ERR((void *)addr))
1054 return addr;
1055
1056 args->addr_ptr = (uint64_t) addr;
1057
1058 return 0;
1059}
1060
de151cf6
JB
1061/**
1062 * i915_gem_fault - fault a page into the GTT
1063 * vma: VMA in question
1064 * vmf: fault info
1065 *
1066 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1067 * from userspace. The fault handler takes care of binding the object to
1068 * the GTT (if needed), allocating and programming a fence register (again,
1069 * only if needed based on whether the old reg is still valid or the object
1070 * is tiled) and inserting a new PTE into the faulting process.
1071 *
1072 * Note that the faulting process may involve evicting existing objects
1073 * from the GTT and/or fence registers to make room. So performance may
1074 * suffer if the GTT working set is large or there are few fence registers
1075 * left.
1076 */
1077int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1078{
05394f39
CW
1079 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1080 struct drm_device *dev = obj->base.dev;
7d1c4804 1081 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1082 pgoff_t page_offset;
1083 unsigned long pfn;
1084 int ret = 0;
0f973f27 1085 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1086
1087 /* We don't use vmf->pgoff since that has the fake offset */
1088 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1089 PAGE_SHIFT;
1090
d9bc7e9f
CW
1091 ret = i915_mutex_lock_interruptible(dev);
1092 if (ret)
1093 goto out;
a00b10c3 1094
db53a302
CW
1095 trace_i915_gem_object_fault(obj, page_offset, true, write);
1096
d9bc7e9f 1097 /* Now bind it into the GTT if needed */
919926ae
CW
1098 if (!obj->map_and_fenceable) {
1099 ret = i915_gem_object_unbind(obj);
1100 if (ret)
1101 goto unlock;
a00b10c3 1102 }
05394f39 1103 if (!obj->gtt_space) {
75e9e915 1104 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1105 if (ret)
1106 goto unlock;
de151cf6 1107
e92d03bf
EA
1108 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1109 if (ret)
1110 goto unlock;
1111 }
4a684a41 1112
74898d7e
DV
1113 if (!obj->has_global_gtt_mapping)
1114 i915_gem_gtt_bind_object(obj, obj->cache_level);
1115
06d98131 1116 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1117 if (ret)
1118 goto unlock;
de151cf6 1119
05394f39
CW
1120 if (i915_gem_object_is_inactive(obj))
1121 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1122
6299f992
CW
1123 obj->fault_mappable = true;
1124
dd2757f8 1125 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1126 page_offset;
1127
1128 /* Finally, remap it using the new GTT offset */
1129 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1130unlock:
de151cf6 1131 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1132out:
de151cf6 1133 switch (ret) {
d9bc7e9f 1134 case -EIO:
045e769a 1135 case -EAGAIN:
d9bc7e9f
CW
1136 /* Give the error handler a chance to run and move the
1137 * objects off the GPU active list. Next time we service the
1138 * fault, we should be able to transition the page into the
1139 * GTT without touching the GPU (and so avoid further
1140 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1141 * with coherency, just lost writes.
1142 */
045e769a 1143 set_need_resched();
c715089f
CW
1144 case 0:
1145 case -ERESTARTSYS:
bed636ab 1146 case -EINTR:
c715089f 1147 return VM_FAULT_NOPAGE;
de151cf6 1148 case -ENOMEM:
de151cf6 1149 return VM_FAULT_OOM;
de151cf6 1150 default:
c715089f 1151 return VM_FAULT_SIGBUS;
de151cf6
JB
1152 }
1153}
1154
901782b2
CW
1155/**
1156 * i915_gem_release_mmap - remove physical page mappings
1157 * @obj: obj in question
1158 *
af901ca1 1159 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1160 * relinquish ownership of the pages back to the system.
1161 *
1162 * It is vital that we remove the page mapping if we have mapped a tiled
1163 * object through the GTT and then lose the fence register due to
1164 * resource pressure. Similarly if the object has been moved out of the
1165 * aperture, than pages mapped into userspace must be revoked. Removing the
1166 * mapping will then trigger a page fault on the next user access, allowing
1167 * fixup by i915_gem_fault().
1168 */
d05ca301 1169void
05394f39 1170i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1171{
6299f992
CW
1172 if (!obj->fault_mappable)
1173 return;
901782b2 1174
f6e47884
CW
1175 if (obj->base.dev->dev_mapping)
1176 unmap_mapping_range(obj->base.dev->dev_mapping,
1177 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1178 obj->base.size, 1);
fb7d516a 1179
6299f992 1180 obj->fault_mappable = false;
901782b2
CW
1181}
1182
92b88aeb 1183static uint32_t
e28f8711 1184i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1185{
e28f8711 1186 uint32_t gtt_size;
92b88aeb
CW
1187
1188 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1189 tiling_mode == I915_TILING_NONE)
1190 return size;
92b88aeb
CW
1191
1192 /* Previous chips need a power-of-two fence region when tiling */
1193 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1194 gtt_size = 1024*1024;
92b88aeb 1195 else
e28f8711 1196 gtt_size = 512*1024;
92b88aeb 1197
e28f8711
CW
1198 while (gtt_size < size)
1199 gtt_size <<= 1;
92b88aeb 1200
e28f8711 1201 return gtt_size;
92b88aeb
CW
1202}
1203
de151cf6
JB
1204/**
1205 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1206 * @obj: object to check
1207 *
1208 * Return the required GTT alignment for an object, taking into account
5e783301 1209 * potential fence register mapping.
de151cf6
JB
1210 */
1211static uint32_t
e28f8711
CW
1212i915_gem_get_gtt_alignment(struct drm_device *dev,
1213 uint32_t size,
1214 int tiling_mode)
de151cf6 1215{
de151cf6
JB
1216 /*
1217 * Minimum alignment is 4k (GTT page size), but might be greater
1218 * if a fence register is needed for the object.
1219 */
a00b10c3 1220 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1221 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1222 return 4096;
1223
a00b10c3
CW
1224 /*
1225 * Previous chips need to be aligned to the size of the smallest
1226 * fence register that can contain the object.
1227 */
e28f8711 1228 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1229}
1230
5e783301
DV
1231/**
1232 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1233 * unfenced object
e28f8711
CW
1234 * @dev: the device
1235 * @size: size of the object
1236 * @tiling_mode: tiling mode of the object
5e783301
DV
1237 *
1238 * Return the required GTT alignment for an object, only taking into account
1239 * unfenced tiled surface requirements.
1240 */
467cffba 1241uint32_t
e28f8711
CW
1242i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1243 uint32_t size,
1244 int tiling_mode)
5e783301 1245{
5e783301
DV
1246 /*
1247 * Minimum alignment is 4k (GTT page size) for sane hw.
1248 */
1249 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1250 tiling_mode == I915_TILING_NONE)
5e783301
DV
1251 return 4096;
1252
e28f8711
CW
1253 /* Previous hardware however needs to be aligned to a power-of-two
1254 * tile height. The simplest method for determining this is to reuse
1255 * the power-of-tile object size.
5e783301 1256 */
e28f8711 1257 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1258}
1259
de151cf6 1260int
ff72145b
DA
1261i915_gem_mmap_gtt(struct drm_file *file,
1262 struct drm_device *dev,
1263 uint32_t handle,
1264 uint64_t *offset)
de151cf6 1265{
da761a6e 1266 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1267 struct drm_i915_gem_object *obj;
de151cf6
JB
1268 int ret;
1269
76c1dec1 1270 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1271 if (ret)
76c1dec1 1272 return ret;
de151cf6 1273
ff72145b 1274 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1275 if (&obj->base == NULL) {
1d7cfea1
CW
1276 ret = -ENOENT;
1277 goto unlock;
1278 }
de151cf6 1279
05394f39 1280 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1281 ret = -E2BIG;
ff56b0bc 1282 goto out;
da761a6e
CW
1283 }
1284
05394f39 1285 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1286 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1287 ret = -EINVAL;
1288 goto out;
ab18282d
CW
1289 }
1290
05394f39 1291 if (!obj->base.map_list.map) {
b464e9a2 1292 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1293 if (ret)
1294 goto out;
de151cf6
JB
1295 }
1296
ff72145b 1297 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1298
1d7cfea1 1299out:
05394f39 1300 drm_gem_object_unreference(&obj->base);
1d7cfea1 1301unlock:
de151cf6 1302 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1303 return ret;
de151cf6
JB
1304}
1305
ff72145b
DA
1306/**
1307 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1308 * @dev: DRM device
1309 * @data: GTT mapping ioctl data
1310 * @file: GEM object info
1311 *
1312 * Simply returns the fake offset to userspace so it can mmap it.
1313 * The mmap call will end up in drm_gem_mmap(), which will set things
1314 * up so we can get faults in the handler above.
1315 *
1316 * The fault handler will take care of binding the object into the GTT
1317 * (since it may have been evicted to make room for something), allocating
1318 * a fence register, and mapping the appropriate aperture address into
1319 * userspace.
1320 */
1321int
1322i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1323 struct drm_file *file)
1324{
1325 struct drm_i915_gem_mmap_gtt *args = data;
1326
ff72145b
DA
1327 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1328}
1329
1286ff73 1330int
05394f39 1331i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1332 gfp_t gfpmask)
1333{
e5281ccd
CW
1334 int page_count, i;
1335 struct address_space *mapping;
1336 struct inode *inode;
1337 struct page *page;
1338
1286ff73
DV
1339 if (obj->pages || obj->sg_table)
1340 return 0;
1341
e5281ccd
CW
1342 /* Get the list of pages out of our struct file. They'll be pinned
1343 * at this point until we release them.
1344 */
05394f39
CW
1345 page_count = obj->base.size / PAGE_SIZE;
1346 BUG_ON(obj->pages != NULL);
1347 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1348 if (obj->pages == NULL)
e5281ccd
CW
1349 return -ENOMEM;
1350
05394f39 1351 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1352 mapping = inode->i_mapping;
5949eac4
HD
1353 gfpmask |= mapping_gfp_mask(mapping);
1354
e5281ccd 1355 for (i = 0; i < page_count; i++) {
5949eac4 1356 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1357 if (IS_ERR(page))
1358 goto err_pages;
1359
05394f39 1360 obj->pages[i] = page;
e5281ccd
CW
1361 }
1362
6dacfd2f 1363 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1364 i915_gem_object_do_bit_17_swizzle(obj);
1365
1366 return 0;
1367
1368err_pages:
1369 while (i--)
05394f39 1370 page_cache_release(obj->pages[i]);
e5281ccd 1371
05394f39
CW
1372 drm_free_large(obj->pages);
1373 obj->pages = NULL;
e5281ccd
CW
1374 return PTR_ERR(page);
1375}
1376
5cdf5881 1377static void
05394f39 1378i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1379{
05394f39 1380 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1381 int i;
1382
1286ff73
DV
1383 if (!obj->pages)
1384 return;
1385
05394f39 1386 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1387
6dacfd2f 1388 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1389 i915_gem_object_save_bit_17_swizzle(obj);
1390
05394f39
CW
1391 if (obj->madv == I915_MADV_DONTNEED)
1392 obj->dirty = 0;
3ef94daa
CW
1393
1394 for (i = 0; i < page_count; i++) {
05394f39
CW
1395 if (obj->dirty)
1396 set_page_dirty(obj->pages[i]);
3ef94daa 1397
05394f39
CW
1398 if (obj->madv == I915_MADV_WILLNEED)
1399 mark_page_accessed(obj->pages[i]);
3ef94daa 1400
05394f39 1401 page_cache_release(obj->pages[i]);
3ef94daa 1402 }
05394f39 1403 obj->dirty = 0;
673a394b 1404
05394f39
CW
1405 drm_free_large(obj->pages);
1406 obj->pages = NULL;
673a394b
EA
1407}
1408
54cf91dc 1409void
05394f39 1410i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1411 struct intel_ring_buffer *ring,
1412 u32 seqno)
673a394b 1413{
05394f39 1414 struct drm_device *dev = obj->base.dev;
69dc4987 1415 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1416
852835f3 1417 BUG_ON(ring == NULL);
05394f39 1418 obj->ring = ring;
673a394b
EA
1419
1420 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1421 if (!obj->active) {
1422 drm_gem_object_reference(&obj->base);
1423 obj->active = 1;
673a394b 1424 }
e35a41de 1425
673a394b 1426 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1427 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1428 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1429
05394f39 1430 obj->last_rendering_seqno = seqno;
caea7476 1431
7dd49065 1432 if (obj->fenced_gpu_access) {
caea7476 1433 obj->last_fenced_seqno = seqno;
caea7476 1434
7dd49065
CW
1435 /* Bump MRU to take account of the delayed flush */
1436 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1437 struct drm_i915_fence_reg *reg;
1438
1439 reg = &dev_priv->fence_regs[obj->fence_reg];
1440 list_move_tail(&reg->lru_list,
1441 &dev_priv->mm.fence_list);
1442 }
caea7476
CW
1443 }
1444}
1445
1446static void
1447i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1448{
1449 list_del_init(&obj->ring_list);
1450 obj->last_rendering_seqno = 0;
15a13bbd 1451 obj->last_fenced_seqno = 0;
673a394b
EA
1452}
1453
ce44b0ea 1454static void
05394f39 1455i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1456{
05394f39 1457 struct drm_device *dev = obj->base.dev;
ce44b0ea 1458 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1459
05394f39
CW
1460 BUG_ON(!obj->active);
1461 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1462
1463 i915_gem_object_move_off_active(obj);
1464}
1465
1466static void
1467i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1468{
1469 struct drm_device *dev = obj->base.dev;
1470 struct drm_i915_private *dev_priv = dev->dev_private;
1471
1b50247a 1472 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476
CW
1473
1474 BUG_ON(!list_empty(&obj->gpu_write_list));
1475 BUG_ON(!obj->active);
1476 obj->ring = NULL;
1477
1478 i915_gem_object_move_off_active(obj);
1479 obj->fenced_gpu_access = false;
caea7476
CW
1480
1481 obj->active = 0;
87ca9c8a 1482 obj->pending_gpu_write = false;
caea7476
CW
1483 drm_gem_object_unreference(&obj->base);
1484
1485 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1486}
673a394b 1487
963b4836
CW
1488/* Immediately discard the backing storage */
1489static void
05394f39 1490i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1491{
bb6baf76 1492 struct inode *inode;
963b4836 1493
ae9fed6b
CW
1494 /* Our goal here is to return as much of the memory as
1495 * is possible back to the system as we are called from OOM.
1496 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1497 * backing pages, *now*.
ae9fed6b 1498 */
05394f39 1499 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1500 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1501
a14917ee
CW
1502 if (obj->base.map_list.map)
1503 drm_gem_free_mmap_offset(&obj->base);
1504
05394f39 1505 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1506}
1507
1508static inline int
05394f39 1509i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1510{
05394f39 1511 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1512}
1513
63560396 1514static void
db53a302
CW
1515i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1516 uint32_t flush_domains)
63560396 1517{
05394f39 1518 struct drm_i915_gem_object *obj, *next;
63560396 1519
05394f39 1520 list_for_each_entry_safe(obj, next,
64193406 1521 &ring->gpu_write_list,
63560396 1522 gpu_write_list) {
05394f39
CW
1523 if (obj->base.write_domain & flush_domains) {
1524 uint32_t old_write_domain = obj->base.write_domain;
63560396 1525
05394f39
CW
1526 obj->base.write_domain = 0;
1527 list_del_init(&obj->gpu_write_list);
1ec14ad3 1528 i915_gem_object_move_to_active(obj, ring,
db53a302 1529 i915_gem_next_request_seqno(ring));
63560396 1530
63560396 1531 trace_i915_gem_object_change_domain(obj,
05394f39 1532 obj->base.read_domains,
63560396
DV
1533 old_write_domain);
1534 }
1535 }
1536}
8187a2b7 1537
53d227f2
DV
1538static u32
1539i915_gem_get_seqno(struct drm_device *dev)
1540{
1541 drm_i915_private_t *dev_priv = dev->dev_private;
1542 u32 seqno = dev_priv->next_seqno;
1543
1544 /* reserve 0 for non-seqno */
1545 if (++dev_priv->next_seqno == 0)
1546 dev_priv->next_seqno = 1;
1547
1548 return seqno;
1549}
1550
1551u32
1552i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1553{
1554 if (ring->outstanding_lazy_request == 0)
1555 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1556
1557 return ring->outstanding_lazy_request;
1558}
1559
3cce469c 1560int
db53a302 1561i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1562 struct drm_file *file,
db53a302 1563 struct drm_i915_gem_request *request)
673a394b 1564{
db53a302 1565 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1566 uint32_t seqno;
a71d8d94 1567 u32 request_ring_position;
673a394b 1568 int was_empty;
3cce469c
CW
1569 int ret;
1570
cc889e0f
DV
1571 /*
1572 * Emit any outstanding flushes - execbuf can fail to emit the flush
1573 * after having emitted the batchbuffer command. Hence we need to fix
1574 * things up similar to emitting the lazy request. The difference here
1575 * is that the flush _must_ happen before the next request, no matter
1576 * what.
1577 */
1578 if (ring->gpu_caches_dirty) {
1579 ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
1580 if (ret)
1581 return ret;
1582
1583 ring->gpu_caches_dirty = false;
1584 }
1585
3cce469c 1586 BUG_ON(request == NULL);
53d227f2 1587 seqno = i915_gem_next_request_seqno(ring);
673a394b 1588
a71d8d94
CW
1589 /* Record the position of the start of the request so that
1590 * should we detect the updated seqno part-way through the
1591 * GPU processing the request, we never over-estimate the
1592 * position of the head.
1593 */
1594 request_ring_position = intel_ring_get_tail(ring);
1595
3cce469c
CW
1596 ret = ring->add_request(ring, &seqno);
1597 if (ret)
1598 return ret;
673a394b 1599
db53a302 1600 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1601
1602 request->seqno = seqno;
852835f3 1603 request->ring = ring;
a71d8d94 1604 request->tail = request_ring_position;
673a394b 1605 request->emitted_jiffies = jiffies;
852835f3
ZN
1606 was_empty = list_empty(&ring->request_list);
1607 list_add_tail(&request->list, &ring->request_list);
1608
db53a302
CW
1609 if (file) {
1610 struct drm_i915_file_private *file_priv = file->driver_priv;
1611
1c25595f 1612 spin_lock(&file_priv->mm.lock);
f787a5f5 1613 request->file_priv = file_priv;
b962442e 1614 list_add_tail(&request->client_list,
f787a5f5 1615 &file_priv->mm.request_list);
1c25595f 1616 spin_unlock(&file_priv->mm.lock);
b962442e 1617 }
673a394b 1618
5391d0cf 1619 ring->outstanding_lazy_request = 0;
db53a302 1620
f65d9421 1621 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1622 if (i915_enable_hangcheck) {
1623 mod_timer(&dev_priv->hangcheck_timer,
1624 jiffies +
1625 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1626 }
f65d9421 1627 if (was_empty)
b3b079db
CW
1628 queue_delayed_work(dev_priv->wq,
1629 &dev_priv->mm.retire_work, HZ);
f65d9421 1630 }
cc889e0f
DV
1631
1632 WARN_ON(!list_empty(&ring->gpu_write_list));
1633
3cce469c 1634 return 0;
673a394b
EA
1635}
1636
f787a5f5
CW
1637static inline void
1638i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1639{
1c25595f 1640 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1641
1c25595f
CW
1642 if (!file_priv)
1643 return;
1c5d22f7 1644
1c25595f 1645 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1646 if (request->file_priv) {
1647 list_del(&request->client_list);
1648 request->file_priv = NULL;
1649 }
1c25595f 1650 spin_unlock(&file_priv->mm.lock);
673a394b 1651}
673a394b 1652
dfaae392
CW
1653static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1654 struct intel_ring_buffer *ring)
9375e446 1655{
dfaae392
CW
1656 while (!list_empty(&ring->request_list)) {
1657 struct drm_i915_gem_request *request;
673a394b 1658
dfaae392
CW
1659 request = list_first_entry(&ring->request_list,
1660 struct drm_i915_gem_request,
1661 list);
de151cf6 1662
dfaae392 1663 list_del(&request->list);
f787a5f5 1664 i915_gem_request_remove_from_client(request);
dfaae392
CW
1665 kfree(request);
1666 }
673a394b 1667
dfaae392 1668 while (!list_empty(&ring->active_list)) {
05394f39 1669 struct drm_i915_gem_object *obj;
9375e446 1670
05394f39
CW
1671 obj = list_first_entry(&ring->active_list,
1672 struct drm_i915_gem_object,
1673 ring_list);
9375e446 1674
05394f39
CW
1675 obj->base.write_domain = 0;
1676 list_del_init(&obj->gpu_write_list);
1677 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1678 }
1679}
1680
312817a3
CW
1681static void i915_gem_reset_fences(struct drm_device *dev)
1682{
1683 struct drm_i915_private *dev_priv = dev->dev_private;
1684 int i;
1685
4b9de737 1686 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1687 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 1688
ada726c7 1689 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 1690
ada726c7
CW
1691 if (reg->obj)
1692 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 1693
ada726c7
CW
1694 reg->pin_count = 0;
1695 reg->obj = NULL;
1696 INIT_LIST_HEAD(&reg->lru_list);
312817a3 1697 }
ada726c7
CW
1698
1699 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
1700}
1701
069efc1d 1702void i915_gem_reset(struct drm_device *dev)
673a394b 1703{
77f01230 1704 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1705 struct drm_i915_gem_object *obj;
b4519513 1706 struct intel_ring_buffer *ring;
1ec14ad3 1707 int i;
673a394b 1708
b4519513
CW
1709 for_each_ring(ring, dev_priv, i)
1710 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392
CW
1711
1712 /* Remove anything from the flushing lists. The GPU cache is likely
1713 * to be lost on reset along with the data, so simply move the
1714 * lost bo to the inactive list.
1715 */
1716 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1717 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1718 struct drm_i915_gem_object,
1719 mm_list);
dfaae392 1720
05394f39
CW
1721 obj->base.write_domain = 0;
1722 list_del_init(&obj->gpu_write_list);
1723 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1724 }
1725
1726 /* Move everything out of the GPU domains to ensure we do any
1727 * necessary invalidation upon reuse.
1728 */
05394f39 1729 list_for_each_entry(obj,
77f01230 1730 &dev_priv->mm.inactive_list,
69dc4987 1731 mm_list)
77f01230 1732 {
05394f39 1733 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1734 }
069efc1d
CW
1735
1736 /* The fence registers are invalidated so clear them out */
312817a3 1737 i915_gem_reset_fences(dev);
673a394b
EA
1738}
1739
1740/**
1741 * This function clears the request list as sequence numbers are passed.
1742 */
a71d8d94 1743void
db53a302 1744i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1745{
673a394b 1746 uint32_t seqno;
1ec14ad3 1747 int i;
673a394b 1748
db53a302 1749 if (list_empty(&ring->request_list))
6c0594a3
KW
1750 return;
1751
db53a302 1752 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1753
78501eac 1754 seqno = ring->get_seqno(ring);
1ec14ad3 1755
076e2c0e 1756 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1757 if (seqno >= ring->sync_seqno[i])
1758 ring->sync_seqno[i] = 0;
1759
852835f3 1760 while (!list_empty(&ring->request_list)) {
673a394b 1761 struct drm_i915_gem_request *request;
673a394b 1762
852835f3 1763 request = list_first_entry(&ring->request_list,
673a394b
EA
1764 struct drm_i915_gem_request,
1765 list);
673a394b 1766
dfaae392 1767 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1768 break;
1769
db53a302 1770 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1771 /* We know the GPU must have read the request to have
1772 * sent us the seqno + interrupt, so use the position
1773 * of tail of the request to update the last known position
1774 * of the GPU head.
1775 */
1776 ring->last_retired_head = request->tail;
b84d5f0c
CW
1777
1778 list_del(&request->list);
f787a5f5 1779 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1780 kfree(request);
1781 }
673a394b 1782
b84d5f0c
CW
1783 /* Move any buffers on the active list that are no longer referenced
1784 * by the ringbuffer to the flushing/inactive lists as appropriate.
1785 */
1786 while (!list_empty(&ring->active_list)) {
05394f39 1787 struct drm_i915_gem_object *obj;
b84d5f0c 1788
0206e353 1789 obj = list_first_entry(&ring->active_list,
05394f39
CW
1790 struct drm_i915_gem_object,
1791 ring_list);
673a394b 1792
05394f39 1793 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1794 break;
b84d5f0c 1795
05394f39 1796 if (obj->base.write_domain != 0)
b84d5f0c
CW
1797 i915_gem_object_move_to_flushing(obj);
1798 else
1799 i915_gem_object_move_to_inactive(obj);
673a394b 1800 }
9d34e5db 1801
db53a302
CW
1802 if (unlikely(ring->trace_irq_seqno &&
1803 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1804 ring->irq_put(ring);
db53a302 1805 ring->trace_irq_seqno = 0;
9d34e5db 1806 }
23bc5982 1807
db53a302 1808 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1809}
1810
b09a1fec
CW
1811void
1812i915_gem_retire_requests(struct drm_device *dev)
1813{
1814 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 1815 struct intel_ring_buffer *ring;
1ec14ad3 1816 int i;
b09a1fec 1817
b4519513
CW
1818 for_each_ring(ring, dev_priv, i)
1819 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
1820}
1821
75ef9da2 1822static void
673a394b
EA
1823i915_gem_retire_work_handler(struct work_struct *work)
1824{
1825 drm_i915_private_t *dev_priv;
1826 struct drm_device *dev;
b4519513 1827 struct intel_ring_buffer *ring;
0a58705b
CW
1828 bool idle;
1829 int i;
673a394b
EA
1830
1831 dev_priv = container_of(work, drm_i915_private_t,
1832 mm.retire_work.work);
1833 dev = dev_priv->dev;
1834
891b48cf
CW
1835 /* Come back later if the device is busy... */
1836 if (!mutex_trylock(&dev->struct_mutex)) {
1837 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1838 return;
1839 }
1840
b09a1fec 1841 i915_gem_retire_requests(dev);
d1b851fc 1842
0a58705b
CW
1843 /* Send a periodic flush down the ring so we don't hold onto GEM
1844 * objects indefinitely.
1845 */
1846 idle = true;
b4519513 1847 for_each_ring(ring, dev_priv, i) {
cc889e0f 1848 if (ring->gpu_caches_dirty) {
0a58705b 1849 struct drm_i915_gem_request *request;
0a58705b 1850
0a58705b 1851 request = kzalloc(sizeof(*request), GFP_KERNEL);
cc889e0f 1852 if (request == NULL ||
db53a302 1853 i915_add_request(ring, NULL, request))
0a58705b
CW
1854 kfree(request);
1855 }
1856
1857 idle &= list_empty(&ring->request_list);
1858 }
1859
1860 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1861 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1862
673a394b
EA
1863 mutex_unlock(&dev->struct_mutex);
1864}
1865
d6b2c790
DV
1866int
1867i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1868 bool interruptible)
b4aca010 1869{
b4aca010
BW
1870 if (atomic_read(&dev_priv->mm.wedged)) {
1871 struct completion *x = &dev_priv->error_completion;
1872 bool recovery_complete;
1873 unsigned long flags;
1874
1875 /* Give the error handler a chance to run. */
1876 spin_lock_irqsave(&x->wait.lock, flags);
1877 recovery_complete = x->done > 0;
1878 spin_unlock_irqrestore(&x->wait.lock, flags);
1879
d6b2c790
DV
1880 /* Non-interruptible callers can't handle -EAGAIN, hence return
1881 * -EIO unconditionally for these. */
1882 if (!interruptible)
1883 return -EIO;
1884
1885 /* Recovery complete, but still wedged means reset failure. */
1886 if (recovery_complete)
1887 return -EIO;
1888
1889 return -EAGAIN;
b4aca010
BW
1890 }
1891
1892 return 0;
1893}
1894
1895/*
1896 * Compare seqno against outstanding lazy request. Emit a request if they are
1897 * equal.
1898 */
1899static int
1900i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1901{
1902 int ret = 0;
1903
1904 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1905
1906 if (seqno == ring->outstanding_lazy_request) {
1907 struct drm_i915_gem_request *request;
1908
1909 request = kzalloc(sizeof(*request), GFP_KERNEL);
1910 if (request == NULL)
1911 return -ENOMEM;
1912
1913 ret = i915_add_request(ring, NULL, request);
1914 if (ret) {
1915 kfree(request);
1916 return ret;
1917 }
1918
1919 BUG_ON(seqno != request->seqno);
1920 }
1921
1922 return ret;
1923}
1924
5c81fe85
BW
1925/**
1926 * __wait_seqno - wait until execution of seqno has finished
1927 * @ring: the ring expected to report seqno
1928 * @seqno: duh!
1929 * @interruptible: do an interruptible wait (normally yes)
1930 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1931 *
1932 * Returns 0 if the seqno was found within the alloted time. Else returns the
1933 * errno with remaining time filled in timeout argument.
1934 */
604dd3ec 1935static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
5c81fe85 1936 bool interruptible, struct timespec *timeout)
604dd3ec
BW
1937{
1938 drm_i915_private_t *dev_priv = ring->dev->dev_private;
5c81fe85
BW
1939 struct timespec before, now, wait_time={1,0};
1940 unsigned long timeout_jiffies;
1941 long end;
1942 bool wait_forever = true;
d6b2c790 1943 int ret;
604dd3ec
BW
1944
1945 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1946 return 0;
1947
1948 trace_i915_gem_request_wait_begin(ring, seqno);
5c81fe85
BW
1949
1950 if (timeout != NULL) {
1951 wait_time = *timeout;
1952 wait_forever = false;
1953 }
1954
1955 timeout_jiffies = timespec_to_jiffies(&wait_time);
1956
604dd3ec
BW
1957 if (WARN_ON(!ring->irq_get(ring)))
1958 return -ENODEV;
1959
5c81fe85
BW
1960 /* Record current time in case interrupted by signal, or wedged * */
1961 getrawmonotonic(&before);
1962
604dd3ec
BW
1963#define EXIT_COND \
1964 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1965 atomic_read(&dev_priv->mm.wedged))
5c81fe85
BW
1966 do {
1967 if (interruptible)
1968 end = wait_event_interruptible_timeout(ring->irq_queue,
1969 EXIT_COND,
1970 timeout_jiffies);
1971 else
1972 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1973 timeout_jiffies);
604dd3ec 1974
d6b2c790
DV
1975 ret = i915_gem_check_wedge(dev_priv, interruptible);
1976 if (ret)
1977 end = ret;
5c81fe85
BW
1978 } while (end == 0 && wait_forever);
1979
1980 getrawmonotonic(&now);
604dd3ec
BW
1981
1982 ring->irq_put(ring);
1983 trace_i915_gem_request_wait_end(ring, seqno);
1984#undef EXIT_COND
1985
5c81fe85
BW
1986 if (timeout) {
1987 struct timespec sleep_time = timespec_sub(now, before);
1988 *timeout = timespec_sub(*timeout, sleep_time);
1989 }
1990
1991 switch (end) {
1992 case -EAGAIN: /* Wedged */
1993 case -ERESTARTSYS: /* Signal */
1994 return (int)end;
1995 case 0: /* Timeout */
1996 if (timeout)
1997 set_normalized_timespec(timeout, 0, 0);
1998 return -ETIME;
1999 default: /* Completed */
2000 WARN_ON(end < 0); /* We're not aware of other errors */
2001 return 0;
2002 }
604dd3ec
BW
2003}
2004
db53a302
CW
2005/**
2006 * Waits for a sequence number to be signaled, and cleans up the
2007 * request and object lists appropriately for that event.
2008 */
5a5a0c64 2009int
199b2bc2 2010i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
673a394b 2011{
db53a302 2012 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
2013 int ret = 0;
2014
2015 BUG_ON(seqno == 0);
2016
d6b2c790 2017 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
b4aca010
BW
2018 if (ret)
2019 return ret;
3cce469c 2020
b4aca010
BW
2021 ret = i915_gem_check_olr(ring, seqno);
2022 if (ret)
2023 return ret;
ffed1d09 2024
5c81fe85 2025 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
673a394b 2026
673a394b
EA
2027 return ret;
2028}
2029
673a394b
EA
2030/**
2031 * Ensures that all rendering to the object has completed and the object is
2032 * safe to unbind from the GTT or access from the CPU.
2033 */
54cf91dc 2034int
ce453d81 2035i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 2036{
673a394b
EA
2037 int ret;
2038
e47c68e9
EA
2039 /* This function only exists to support waiting for existing rendering,
2040 * not for emitting required flushes.
673a394b 2041 */
05394f39 2042 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2043
2044 /* If there is rendering queued on the buffer being evicted, wait for
2045 * it.
2046 */
05394f39 2047 if (obj->active) {
199b2bc2 2048 ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
2cf34d7b 2049 if (ret)
673a394b 2050 return ret;
b2da9fe5 2051 i915_gem_retire_requests_ring(obj->ring);
673a394b
EA
2052 }
2053
2054 return 0;
2055}
2056
30dfebf3
DV
2057/**
2058 * Ensures that an object will eventually get non-busy by flushing any required
2059 * write domains, emitting any outstanding lazy request and retiring and
2060 * completed requests.
2061 */
2062static int
2063i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2064{
2065 int ret;
2066
2067 if (obj->active) {
2068 ret = i915_gem_object_flush_gpu_write_domain(obj);
2069 if (ret)
2070 return ret;
2071
2072 ret = i915_gem_check_olr(obj->ring,
2073 obj->last_rendering_seqno);
2074 if (ret)
2075 return ret;
2076 i915_gem_retire_requests_ring(obj->ring);
2077 }
2078
2079 return 0;
2080}
2081
23ba4fd0
BW
2082/**
2083 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2084 * @DRM_IOCTL_ARGS: standard ioctl arguments
2085 *
2086 * Returns 0 if successful, else an error is returned with the remaining time in
2087 * the timeout parameter.
2088 * -ETIME: object is still busy after timeout
2089 * -ERESTARTSYS: signal interrupted the wait
2090 * -ENONENT: object doesn't exist
2091 * Also possible, but rare:
2092 * -EAGAIN: GPU wedged
2093 * -ENOMEM: damn
2094 * -ENODEV: Internal IRQ fail
2095 * -E?: The add request failed
2096 *
2097 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2098 * non-zero timeout parameter the wait ioctl will wait for the given number of
2099 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2100 * without holding struct_mutex the object may become re-busied before this
2101 * function completes. A similar but shorter * race condition exists in the busy
2102 * ioctl
2103 */
2104int
2105i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2106{
2107 struct drm_i915_gem_wait *args = data;
2108 struct drm_i915_gem_object *obj;
2109 struct intel_ring_buffer *ring = NULL;
eac1f14f 2110 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2111 u32 seqno = 0;
2112 int ret = 0;
2113
eac1f14f
BW
2114 if (args->timeout_ns >= 0) {
2115 timeout_stack = ns_to_timespec(args->timeout_ns);
2116 timeout = &timeout_stack;
2117 }
23ba4fd0
BW
2118
2119 ret = i915_mutex_lock_interruptible(dev);
2120 if (ret)
2121 return ret;
2122
2123 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2124 if (&obj->base == NULL) {
2125 mutex_unlock(&dev->struct_mutex);
2126 return -ENOENT;
2127 }
2128
30dfebf3
DV
2129 /* Need to make sure the object gets inactive eventually. */
2130 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2131 if (ret)
2132 goto out;
2133
2134 if (obj->active) {
2135 seqno = obj->last_rendering_seqno;
2136 ring = obj->ring;
2137 }
2138
2139 if (seqno == 0)
2140 goto out;
2141
23ba4fd0
BW
2142 /* Do this after OLR check to make sure we make forward progress polling
2143 * on this IOCTL with a 0 timeout (like busy ioctl)
2144 */
2145 if (!args->timeout_ns) {
2146 ret = -ETIME;
2147 goto out;
2148 }
2149
2150 drm_gem_object_unreference(&obj->base);
2151 mutex_unlock(&dev->struct_mutex);
2152
eac1f14f
BW
2153 ret = __wait_seqno(ring, seqno, true, timeout);
2154 if (timeout) {
2155 WARN_ON(!timespec_valid(timeout));
2156 args->timeout_ns = timespec_to_ns(timeout);
2157 }
23ba4fd0
BW
2158 return ret;
2159
2160out:
2161 drm_gem_object_unreference(&obj->base);
2162 mutex_unlock(&dev->struct_mutex);
2163 return ret;
2164}
2165
5816d648
BW
2166/**
2167 * i915_gem_object_sync - sync an object to a ring.
2168 *
2169 * @obj: object which may be in use on another ring.
2170 * @to: ring we wish to use the object on. May be NULL.
2171 *
2172 * This code is meant to abstract object synchronization with the GPU.
2173 * Calling with NULL implies synchronizing the object with the CPU
2174 * rather than a particular GPU ring.
2175 *
2176 * Returns 0 if successful, else propagates up the lower layer error.
2177 */
2911a35b
BW
2178int
2179i915_gem_object_sync(struct drm_i915_gem_object *obj,
2180 struct intel_ring_buffer *to)
2181{
2182 struct intel_ring_buffer *from = obj->ring;
2183 u32 seqno;
2184 int ret, idx;
2185
2186 if (from == NULL || to == from)
2187 return 0;
2188
5816d648 2189 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2911a35b
BW
2190 return i915_gem_object_wait_rendering(obj);
2191
2192 idx = intel_ring_sync_index(from, to);
2193
2194 seqno = obj->last_rendering_seqno;
2195 if (seqno <= from->sync_seqno[idx])
2196 return 0;
2197
b4aca010
BW
2198 ret = i915_gem_check_olr(obj->ring, seqno);
2199 if (ret)
2200 return ret;
2911a35b 2201
1500f7ea 2202 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2203 if (!ret)
2204 from->sync_seqno[idx] = seqno;
2911a35b 2205
e3a5a225 2206 return ret;
2911a35b
BW
2207}
2208
b5ffc9bc
CW
2209static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2210{
2211 u32 old_write_domain, old_read_domains;
2212
b5ffc9bc
CW
2213 /* Act a barrier for all accesses through the GTT */
2214 mb();
2215
2216 /* Force a pagefault for domain tracking on next user access */
2217 i915_gem_release_mmap(obj);
2218
b97c3d9c
KP
2219 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2220 return;
2221
b5ffc9bc
CW
2222 old_read_domains = obj->base.read_domains;
2223 old_write_domain = obj->base.write_domain;
2224
2225 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2226 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2227
2228 trace_i915_gem_object_change_domain(obj,
2229 old_read_domains,
2230 old_write_domain);
2231}
2232
673a394b
EA
2233/**
2234 * Unbinds an object from the GTT aperture.
2235 */
0f973f27 2236int
05394f39 2237i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2238{
7bddb01f 2239 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2240 int ret = 0;
2241
05394f39 2242 if (obj->gtt_space == NULL)
673a394b
EA
2243 return 0;
2244
31d8d651
CW
2245 if (obj->pin_count)
2246 return -EBUSY;
673a394b 2247
a8198eea 2248 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2249 if (ret)
a8198eea
CW
2250 return ret;
2251 /* Continue on if we fail due to EIO, the GPU is hung so we
2252 * should be safe and we need to cleanup or else we might
2253 * cause memory corruption through use-after-free.
2254 */
2255
b5ffc9bc 2256 i915_gem_object_finish_gtt(obj);
5323fd04 2257
673a394b
EA
2258 /* Move the object to the CPU domain to ensure that
2259 * any possible CPU writes while it's not in the GTT
a8198eea 2260 * are flushed when we go to remap it.
673a394b 2261 */
a8198eea
CW
2262 if (ret == 0)
2263 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2264 if (ret == -ERESTARTSYS)
673a394b 2265 return ret;
812ed492 2266 if (ret) {
a8198eea
CW
2267 /* In the event of a disaster, abandon all caches and
2268 * hope for the best.
2269 */
812ed492 2270 i915_gem_clflush_object(obj);
05394f39 2271 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2272 }
673a394b 2273
96b47b65 2274 /* release the fence reg _after_ flushing */
d9e86c0e 2275 ret = i915_gem_object_put_fence(obj);
1488fc08 2276 if (ret)
d9e86c0e 2277 return ret;
96b47b65 2278
db53a302
CW
2279 trace_i915_gem_object_unbind(obj);
2280
74898d7e
DV
2281 if (obj->has_global_gtt_mapping)
2282 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2283 if (obj->has_aliasing_ppgtt_mapping) {
2284 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2285 obj->has_aliasing_ppgtt_mapping = 0;
2286 }
74163907 2287 i915_gem_gtt_finish_object(obj);
7bddb01f 2288
e5281ccd 2289 i915_gem_object_put_pages_gtt(obj);
673a394b 2290
6299f992 2291 list_del_init(&obj->gtt_list);
05394f39 2292 list_del_init(&obj->mm_list);
75e9e915 2293 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2294 obj->map_and_fenceable = true;
673a394b 2295
05394f39
CW
2296 drm_mm_put_block(obj->gtt_space);
2297 obj->gtt_space = NULL;
2298 obj->gtt_offset = 0;
673a394b 2299
05394f39 2300 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2301 i915_gem_object_truncate(obj);
2302
8dc1775d 2303 return ret;
673a394b
EA
2304}
2305
88241785 2306int
db53a302 2307i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2308 uint32_t invalidate_domains,
2309 uint32_t flush_domains)
2310{
88241785
CW
2311 int ret;
2312
36d527de
CW
2313 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2314 return 0;
2315
db53a302
CW
2316 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2317
88241785
CW
2318 ret = ring->flush(ring, invalidate_domains, flush_domains);
2319 if (ret)
2320 return ret;
2321
36d527de
CW
2322 if (flush_domains & I915_GEM_GPU_DOMAINS)
2323 i915_gem_process_flushing_list(ring, flush_domains);
2324
88241785 2325 return 0;
54cf91dc
CW
2326}
2327
b2da9fe5 2328static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2329{
88241785
CW
2330 int ret;
2331
395b70be 2332 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2333 return 0;
2334
88241785 2335 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2336 ret = i915_gem_flush_ring(ring,
0ac74c6b 2337 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2338 if (ret)
2339 return ret;
2340 }
2341
199b2bc2 2342 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2343}
2344
b2da9fe5 2345int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2346{
2347 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2348 struct intel_ring_buffer *ring;
1ec14ad3 2349 int ret, i;
4df2faf4 2350
4df2faf4 2351 /* Flush everything onto the inactive list. */
b4519513
CW
2352 for_each_ring(ring, dev_priv, i) {
2353 ret = i915_ring_idle(ring);
1ec14ad3
CW
2354 if (ret)
2355 return ret;
b4519513
CW
2356
2357 /* Is the device fubar? */
2358 if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2359 return -EBUSY;
f2ef6eb1
BW
2360
2361 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2362 if (ret)
2363 return ret;
1ec14ad3 2364 }
4df2faf4 2365
8a1a49f9 2366 return 0;
4df2faf4
DV
2367}
2368
9ce079e4
CW
2369static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2370 struct drm_i915_gem_object *obj)
4e901fdc 2371{
4e901fdc 2372 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2373 uint64_t val;
2374
9ce079e4
CW
2375 if (obj) {
2376 u32 size = obj->gtt_space->size;
4e901fdc 2377
9ce079e4
CW
2378 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2379 0xfffff000) << 32;
2380 val |= obj->gtt_offset & 0xfffff000;
2381 val |= (uint64_t)((obj->stride / 128) - 1) <<
2382 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2383
9ce079e4
CW
2384 if (obj->tiling_mode == I915_TILING_Y)
2385 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2386 val |= I965_FENCE_REG_VALID;
2387 } else
2388 val = 0;
c6642782 2389
9ce079e4
CW
2390 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2391 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2392}
2393
9ce079e4
CW
2394static void i965_write_fence_reg(struct drm_device *dev, int reg,
2395 struct drm_i915_gem_object *obj)
de151cf6 2396{
de151cf6 2397 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2398 uint64_t val;
2399
9ce079e4
CW
2400 if (obj) {
2401 u32 size = obj->gtt_space->size;
de151cf6 2402
9ce079e4
CW
2403 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2404 0xfffff000) << 32;
2405 val |= obj->gtt_offset & 0xfffff000;
2406 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2407 if (obj->tiling_mode == I915_TILING_Y)
2408 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2409 val |= I965_FENCE_REG_VALID;
2410 } else
2411 val = 0;
c6642782 2412
9ce079e4
CW
2413 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2414 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2415}
2416
9ce079e4
CW
2417static void i915_write_fence_reg(struct drm_device *dev, int reg,
2418 struct drm_i915_gem_object *obj)
de151cf6 2419{
de151cf6 2420 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2421 u32 val;
de151cf6 2422
9ce079e4
CW
2423 if (obj) {
2424 u32 size = obj->gtt_space->size;
2425 int pitch_val;
2426 int tile_width;
c6642782 2427
9ce079e4
CW
2428 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2429 (size & -size) != size ||
2430 (obj->gtt_offset & (size - 1)),
2431 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2432 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2433
9ce079e4
CW
2434 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2435 tile_width = 128;
2436 else
2437 tile_width = 512;
2438
2439 /* Note: pitch better be a power of two tile widths */
2440 pitch_val = obj->stride / tile_width;
2441 pitch_val = ffs(pitch_val) - 1;
2442
2443 val = obj->gtt_offset;
2444 if (obj->tiling_mode == I915_TILING_Y)
2445 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2446 val |= I915_FENCE_SIZE_BITS(size);
2447 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2448 val |= I830_FENCE_REG_VALID;
2449 } else
2450 val = 0;
2451
2452 if (reg < 8)
2453 reg = FENCE_REG_830_0 + reg * 4;
2454 else
2455 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2456
2457 I915_WRITE(reg, val);
2458 POSTING_READ(reg);
de151cf6
JB
2459}
2460
9ce079e4
CW
2461static void i830_write_fence_reg(struct drm_device *dev, int reg,
2462 struct drm_i915_gem_object *obj)
de151cf6 2463{
de151cf6 2464 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2465 uint32_t val;
de151cf6 2466
9ce079e4
CW
2467 if (obj) {
2468 u32 size = obj->gtt_space->size;
2469 uint32_t pitch_val;
de151cf6 2470
9ce079e4
CW
2471 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2472 (size & -size) != size ||
2473 (obj->gtt_offset & (size - 1)),
2474 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2475 obj->gtt_offset, size);
e76a16de 2476
9ce079e4
CW
2477 pitch_val = obj->stride / 128;
2478 pitch_val = ffs(pitch_val) - 1;
de151cf6 2479
9ce079e4
CW
2480 val = obj->gtt_offset;
2481 if (obj->tiling_mode == I915_TILING_Y)
2482 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2483 val |= I830_FENCE_SIZE_BITS(size);
2484 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2485 val |= I830_FENCE_REG_VALID;
2486 } else
2487 val = 0;
c6642782 2488
9ce079e4
CW
2489 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2490 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2491}
2492
2493static void i915_gem_write_fence(struct drm_device *dev, int reg,
2494 struct drm_i915_gem_object *obj)
2495{
2496 switch (INTEL_INFO(dev)->gen) {
2497 case 7:
2498 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2499 case 5:
2500 case 4: i965_write_fence_reg(dev, reg, obj); break;
2501 case 3: i915_write_fence_reg(dev, reg, obj); break;
2502 case 2: i830_write_fence_reg(dev, reg, obj); break;
2503 default: break;
2504 }
de151cf6
JB
2505}
2506
61050808
CW
2507static inline int fence_number(struct drm_i915_private *dev_priv,
2508 struct drm_i915_fence_reg *fence)
2509{
2510 return fence - dev_priv->fence_regs;
2511}
2512
2513static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2514 struct drm_i915_fence_reg *fence,
2515 bool enable)
2516{
2517 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2518 int reg = fence_number(dev_priv, fence);
2519
2520 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2521
2522 if (enable) {
2523 obj->fence_reg = reg;
2524 fence->obj = obj;
2525 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2526 } else {
2527 obj->fence_reg = I915_FENCE_REG_NONE;
2528 fence->obj = NULL;
2529 list_del_init(&fence->lru_list);
2530 }
2531}
2532
d9e86c0e 2533static int
a360bb1a 2534i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e
CW
2535{
2536 int ret;
2537
2538 if (obj->fenced_gpu_access) {
88241785 2539 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
1c293ea3 2540 ret = i915_gem_flush_ring(obj->ring,
88241785
CW
2541 0, obj->base.write_domain);
2542 if (ret)
2543 return ret;
2544 }
d9e86c0e
CW
2545
2546 obj->fenced_gpu_access = false;
2547 }
2548
1c293ea3 2549 if (obj->last_fenced_seqno) {
199b2bc2 2550 ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2551 if (ret)
2552 return ret;
d9e86c0e
CW
2553
2554 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2555 }
2556
63256ec5
CW
2557 /* Ensure that all CPU reads are completed before installing a fence
2558 * and all writes before removing the fence.
2559 */
2560 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2561 mb();
2562
d9e86c0e
CW
2563 return 0;
2564}
2565
2566int
2567i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2568{
61050808 2569 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2570 int ret;
2571
a360bb1a 2572 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2573 if (ret)
2574 return ret;
2575
61050808
CW
2576 if (obj->fence_reg == I915_FENCE_REG_NONE)
2577 return 0;
d9e86c0e 2578
61050808
CW
2579 i915_gem_object_update_fence(obj,
2580 &dev_priv->fence_regs[obj->fence_reg],
2581 false);
2582 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2583
2584 return 0;
2585}
2586
2587static struct drm_i915_fence_reg *
a360bb1a 2588i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2589{
ae3db24a 2590 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2591 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2592 int i;
ae3db24a
DV
2593
2594 /* First try to find a free reg */
d9e86c0e 2595 avail = NULL;
ae3db24a
DV
2596 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2597 reg = &dev_priv->fence_regs[i];
2598 if (!reg->obj)
d9e86c0e 2599 return reg;
ae3db24a 2600
1690e1eb 2601 if (!reg->pin_count)
d9e86c0e 2602 avail = reg;
ae3db24a
DV
2603 }
2604
d9e86c0e
CW
2605 if (avail == NULL)
2606 return NULL;
ae3db24a
DV
2607
2608 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2609 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2610 if (reg->pin_count)
ae3db24a
DV
2611 continue;
2612
8fe301ad 2613 return reg;
ae3db24a
DV
2614 }
2615
8fe301ad 2616 return NULL;
ae3db24a
DV
2617}
2618
de151cf6 2619/**
9a5a53b3 2620 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2621 * @obj: object to map through a fence reg
2622 *
2623 * When mapping objects through the GTT, userspace wants to be able to write
2624 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2625 * This function walks the fence regs looking for a free one for @obj,
2626 * stealing one if it can't find any.
2627 *
2628 * It then sets up the reg based on the object's properties: address, pitch
2629 * and tiling format.
9a5a53b3
CW
2630 *
2631 * For an untiled surface, this removes any existing fence.
de151cf6 2632 */
8c4b8c3f 2633int
06d98131 2634i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2635{
05394f39 2636 struct drm_device *dev = obj->base.dev;
79e53945 2637 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2638 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2639 struct drm_i915_fence_reg *reg;
ae3db24a 2640 int ret;
de151cf6 2641
14415745
CW
2642 /* Have we updated the tiling parameters upon the object and so
2643 * will need to serialise the write to the associated fence register?
2644 */
5d82e3e6 2645 if (obj->fence_dirty) {
14415745
CW
2646 ret = i915_gem_object_flush_fence(obj);
2647 if (ret)
2648 return ret;
2649 }
9a5a53b3 2650
d9e86c0e 2651 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2652 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2653 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2654 if (!obj->fence_dirty) {
14415745
CW
2655 list_move_tail(&reg->lru_list,
2656 &dev_priv->mm.fence_list);
2657 return 0;
2658 }
2659 } else if (enable) {
2660 reg = i915_find_fence_reg(dev);
2661 if (reg == NULL)
2662 return -EDEADLK;
d9e86c0e 2663
14415745
CW
2664 if (reg->obj) {
2665 struct drm_i915_gem_object *old = reg->obj;
2666
2667 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2668 if (ret)
2669 return ret;
2670
14415745 2671 i915_gem_object_fence_lost(old);
29c5a587 2672 }
14415745 2673 } else
a09ba7fa 2674 return 0;
a09ba7fa 2675
14415745 2676 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2677 obj->fence_dirty = false;
14415745 2678
9ce079e4 2679 return 0;
de151cf6
JB
2680}
2681
673a394b
EA
2682/**
2683 * Finds free space in the GTT aperture and binds the object there.
2684 */
2685static int
05394f39 2686i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2687 unsigned alignment,
75e9e915 2688 bool map_and_fenceable)
673a394b 2689{
05394f39 2690 struct drm_device *dev = obj->base.dev;
673a394b 2691 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2692 struct drm_mm_node *free_space;
a00b10c3 2693 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2694 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2695 bool mappable, fenceable;
07f73f69 2696 int ret;
673a394b 2697
05394f39 2698 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2699 DRM_ERROR("Attempting to bind a purgeable object\n");
2700 return -EINVAL;
2701 }
2702
e28f8711
CW
2703 fence_size = i915_gem_get_gtt_size(dev,
2704 obj->base.size,
2705 obj->tiling_mode);
2706 fence_alignment = i915_gem_get_gtt_alignment(dev,
2707 obj->base.size,
2708 obj->tiling_mode);
2709 unfenced_alignment =
2710 i915_gem_get_unfenced_gtt_alignment(dev,
2711 obj->base.size,
2712 obj->tiling_mode);
a00b10c3 2713
673a394b 2714 if (alignment == 0)
5e783301
DV
2715 alignment = map_and_fenceable ? fence_alignment :
2716 unfenced_alignment;
75e9e915 2717 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2718 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2719 return -EINVAL;
2720 }
2721
05394f39 2722 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2723
654fc607
CW
2724 /* If the object is bigger than the entire aperture, reject it early
2725 * before evicting everything in a vain attempt to find space.
2726 */
05394f39 2727 if (obj->base.size >
75e9e915 2728 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2729 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2730 return -E2BIG;
2731 }
2732
673a394b 2733 search_free:
75e9e915 2734 if (map_and_fenceable)
920afa77
DV
2735 free_space =
2736 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2737 size, alignment, 0,
920afa77
DV
2738 dev_priv->mm.gtt_mappable_end,
2739 0);
2740 else
2741 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2742 size, alignment, 0);
920afa77
DV
2743
2744 if (free_space != NULL) {
75e9e915 2745 if (map_and_fenceable)
05394f39 2746 obj->gtt_space =
920afa77 2747 drm_mm_get_block_range_generic(free_space,
a00b10c3 2748 size, alignment, 0,
920afa77
DV
2749 dev_priv->mm.gtt_mappable_end,
2750 0);
2751 else
05394f39 2752 obj->gtt_space =
a00b10c3 2753 drm_mm_get_block(free_space, size, alignment);
920afa77 2754 }
05394f39 2755 if (obj->gtt_space == NULL) {
673a394b
EA
2756 /* If the gtt is empty and we're still having trouble
2757 * fitting our object in, we're out of memory.
2758 */
75e9e915
DV
2759 ret = i915_gem_evict_something(dev, size, alignment,
2760 map_and_fenceable);
9731129c 2761 if (ret)
673a394b 2762 return ret;
9731129c 2763
673a394b
EA
2764 goto search_free;
2765 }
2766
e5281ccd 2767 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2768 if (ret) {
05394f39
CW
2769 drm_mm_put_block(obj->gtt_space);
2770 obj->gtt_space = NULL;
07f73f69
CW
2771
2772 if (ret == -ENOMEM) {
809b6334
CW
2773 /* first try to reclaim some memory by clearing the GTT */
2774 ret = i915_gem_evict_everything(dev, false);
07f73f69 2775 if (ret) {
07f73f69 2776 /* now try to shrink everyone else */
4bdadb97
CW
2777 if (gfpmask) {
2778 gfpmask = 0;
2779 goto search_free;
07f73f69
CW
2780 }
2781
809b6334 2782 return -ENOMEM;
07f73f69
CW
2783 }
2784
2785 goto search_free;
2786 }
2787
673a394b
EA
2788 return ret;
2789 }
2790
74163907 2791 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2792 if (ret) {
e5281ccd 2793 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2794 drm_mm_put_block(obj->gtt_space);
2795 obj->gtt_space = NULL;
07f73f69 2796
809b6334 2797 if (i915_gem_evict_everything(dev, false))
07f73f69 2798 return ret;
07f73f69
CW
2799
2800 goto search_free;
673a394b 2801 }
673a394b 2802
0ebb9829
DV
2803 if (!dev_priv->mm.aliasing_ppgtt)
2804 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2805
6299f992 2806 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2807 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2808
673a394b
EA
2809 /* Assert that the object is not currently in any GPU domain. As it
2810 * wasn't in the GTT, there shouldn't be any way it could have been in
2811 * a GPU cache
2812 */
05394f39
CW
2813 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2814 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2815
6299f992 2816 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2817
75e9e915 2818 fenceable =
05394f39 2819 obj->gtt_space->size == fence_size &&
0206e353 2820 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2821
75e9e915 2822 mappable =
05394f39 2823 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2824
05394f39 2825 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2826
db53a302 2827 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2828 return 0;
2829}
2830
2831void
05394f39 2832i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2833{
673a394b
EA
2834 /* If we don't have a page list set up, then we're not pinned
2835 * to GPU, and we can ignore the cache flush because it'll happen
2836 * again at bind time.
2837 */
05394f39 2838 if (obj->pages == NULL)
673a394b
EA
2839 return;
2840
9c23f7fc
CW
2841 /* If the GPU is snooping the contents of the CPU cache,
2842 * we do not need to manually clear the CPU cache lines. However,
2843 * the caches are only snooped when the render cache is
2844 * flushed/invalidated. As we always have to emit invalidations
2845 * and flushes when moving into and out of the RENDER domain, correct
2846 * snooping behaviour occurs naturally as the result of our domain
2847 * tracking.
2848 */
2849 if (obj->cache_level != I915_CACHE_NONE)
2850 return;
2851
1c5d22f7 2852 trace_i915_gem_object_clflush(obj);
cfa16a0d 2853
05394f39 2854 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2855}
2856
e47c68e9 2857/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2858static int
3619df03 2859i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2860{
05394f39 2861 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2862 return 0;
e47c68e9
EA
2863
2864 /* Queue the GPU write cache flushing we need. */
db53a302 2865 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2866}
2867
2868/** Flushes the GTT write domain for the object if it's dirty. */
2869static void
05394f39 2870i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2871{
1c5d22f7
CW
2872 uint32_t old_write_domain;
2873
05394f39 2874 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2875 return;
2876
63256ec5 2877 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2878 * to it immediately go to main memory as far as we know, so there's
2879 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2880 *
2881 * However, we do have to enforce the order so that all writes through
2882 * the GTT land before any writes to the device, such as updates to
2883 * the GATT itself.
e47c68e9 2884 */
63256ec5
CW
2885 wmb();
2886
05394f39
CW
2887 old_write_domain = obj->base.write_domain;
2888 obj->base.write_domain = 0;
1c5d22f7
CW
2889
2890 trace_i915_gem_object_change_domain(obj,
05394f39 2891 obj->base.read_domains,
1c5d22f7 2892 old_write_domain);
e47c68e9
EA
2893}
2894
2895/** Flushes the CPU write domain for the object if it's dirty. */
2896static void
05394f39 2897i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2898{
1c5d22f7 2899 uint32_t old_write_domain;
e47c68e9 2900
05394f39 2901 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2902 return;
2903
2904 i915_gem_clflush_object(obj);
40ce6575 2905 intel_gtt_chipset_flush();
05394f39
CW
2906 old_write_domain = obj->base.write_domain;
2907 obj->base.write_domain = 0;
1c5d22f7
CW
2908
2909 trace_i915_gem_object_change_domain(obj,
05394f39 2910 obj->base.read_domains,
1c5d22f7 2911 old_write_domain);
e47c68e9
EA
2912}
2913
2ef7eeaa
EA
2914/**
2915 * Moves a single object to the GTT read, and possibly write domain.
2916 *
2917 * This function returns when the move is complete, including waiting on
2918 * flushes to occur.
2919 */
79e53945 2920int
2021746e 2921i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2922{
8325a09d 2923 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 2924 uint32_t old_write_domain, old_read_domains;
e47c68e9 2925 int ret;
2ef7eeaa 2926
02354392 2927 /* Not valid to be called on unbound objects. */
05394f39 2928 if (obj->gtt_space == NULL)
02354392
EA
2929 return -EINVAL;
2930
8d7e3de1
CW
2931 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2932 return 0;
2933
88241785
CW
2934 ret = i915_gem_object_flush_gpu_write_domain(obj);
2935 if (ret)
2936 return ret;
2937
87ca9c8a 2938 if (obj->pending_gpu_write || write) {
ce453d81 2939 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2940 if (ret)
2941 return ret;
2942 }
2dafb1e0 2943
7213342d 2944 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2945
05394f39
CW
2946 old_write_domain = obj->base.write_domain;
2947 old_read_domains = obj->base.read_domains;
1c5d22f7 2948
e47c68e9
EA
2949 /* It should now be out of any other write domains, and we can update
2950 * the domain values for our changes.
2951 */
05394f39
CW
2952 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2953 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2954 if (write) {
05394f39
CW
2955 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2956 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2957 obj->dirty = 1;
2ef7eeaa
EA
2958 }
2959
1c5d22f7
CW
2960 trace_i915_gem_object_change_domain(obj,
2961 old_read_domains,
2962 old_write_domain);
2963
8325a09d
CW
2964 /* And bump the LRU for this access */
2965 if (i915_gem_object_is_inactive(obj))
2966 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2967
e47c68e9
EA
2968 return 0;
2969}
2970
e4ffd173
CW
2971int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2972 enum i915_cache_level cache_level)
2973{
7bddb01f
DV
2974 struct drm_device *dev = obj->base.dev;
2975 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2976 int ret;
2977
2978 if (obj->cache_level == cache_level)
2979 return 0;
2980
2981 if (obj->pin_count) {
2982 DRM_DEBUG("can not change the cache level of pinned objects\n");
2983 return -EBUSY;
2984 }
2985
2986 if (obj->gtt_space) {
2987 ret = i915_gem_object_finish_gpu(obj);
2988 if (ret)
2989 return ret;
2990
2991 i915_gem_object_finish_gtt(obj);
2992
2993 /* Before SandyBridge, you could not use tiling or fence
2994 * registers with snooped memory, so relinquish any fences
2995 * currently pointing to our region in the aperture.
2996 */
2997 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2998 ret = i915_gem_object_put_fence(obj);
2999 if (ret)
3000 return ret;
3001 }
3002
74898d7e
DV
3003 if (obj->has_global_gtt_mapping)
3004 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3005 if (obj->has_aliasing_ppgtt_mapping)
3006 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3007 obj, cache_level);
e4ffd173
CW
3008 }
3009
3010 if (cache_level == I915_CACHE_NONE) {
3011 u32 old_read_domains, old_write_domain;
3012
3013 /* If we're coming from LLC cached, then we haven't
3014 * actually been tracking whether the data is in the
3015 * CPU cache or not, since we only allow one bit set
3016 * in obj->write_domain and have been skipping the clflushes.
3017 * Just set it to the CPU cache for now.
3018 */
3019 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3020 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3021
3022 old_read_domains = obj->base.read_domains;
3023 old_write_domain = obj->base.write_domain;
3024
3025 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3026 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3027
3028 trace_i915_gem_object_change_domain(obj,
3029 old_read_domains,
3030 old_write_domain);
3031 }
3032
3033 obj->cache_level = cache_level;
3034 return 0;
3035}
3036
b9241ea3 3037/*
2da3b9b9
CW
3038 * Prepare buffer for display plane (scanout, cursors, etc).
3039 * Can be called from an uninterruptible phase (modesetting) and allows
3040 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3041 */
3042int
2da3b9b9
CW
3043i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3044 u32 alignment,
919926ae 3045 struct intel_ring_buffer *pipelined)
b9241ea3 3046{
2da3b9b9 3047 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3048 int ret;
3049
88241785
CW
3050 ret = i915_gem_object_flush_gpu_write_domain(obj);
3051 if (ret)
3052 return ret;
3053
0be73284 3054 if (pipelined != obj->ring) {
2911a35b
BW
3055 ret = i915_gem_object_sync(obj, pipelined);
3056 if (ret)
b9241ea3
ZW
3057 return ret;
3058 }
3059
a7ef0640
EA
3060 /* The display engine is not coherent with the LLC cache on gen6. As
3061 * a result, we make sure that the pinning that is about to occur is
3062 * done with uncached PTEs. This is lowest common denominator for all
3063 * chipsets.
3064 *
3065 * However for gen6+, we could do better by using the GFDT bit instead
3066 * of uncaching, which would allow us to flush all the LLC-cached data
3067 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3068 */
3069 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3070 if (ret)
3071 return ret;
3072
2da3b9b9
CW
3073 /* As the user may map the buffer once pinned in the display plane
3074 * (e.g. libkms for the bootup splash), we have to ensure that we
3075 * always use map_and_fenceable for all scanout buffers.
3076 */
3077 ret = i915_gem_object_pin(obj, alignment, true);
3078 if (ret)
3079 return ret;
3080
b118c1e3
CW
3081 i915_gem_object_flush_cpu_write_domain(obj);
3082
2da3b9b9 3083 old_write_domain = obj->base.write_domain;
05394f39 3084 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3085
3086 /* It should now be out of any other write domains, and we can update
3087 * the domain values for our changes.
3088 */
3089 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3090 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3091
3092 trace_i915_gem_object_change_domain(obj,
3093 old_read_domains,
2da3b9b9 3094 old_write_domain);
b9241ea3
ZW
3095
3096 return 0;
3097}
3098
85345517 3099int
a8198eea 3100i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3101{
88241785
CW
3102 int ret;
3103
a8198eea 3104 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3105 return 0;
3106
88241785 3107 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3108 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3109 if (ret)
3110 return ret;
3111 }
85345517 3112
c501ae7f
CW
3113 ret = i915_gem_object_wait_rendering(obj);
3114 if (ret)
3115 return ret;
3116
a8198eea
CW
3117 /* Ensure that we invalidate the GPU's caches and TLBs. */
3118 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3119 return 0;
85345517
CW
3120}
3121
e47c68e9
EA
3122/**
3123 * Moves a single object to the CPU read, and possibly write domain.
3124 *
3125 * This function returns when the move is complete, including waiting on
3126 * flushes to occur.
3127 */
dabdfe02 3128int
919926ae 3129i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3130{
1c5d22f7 3131 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3132 int ret;
3133
8d7e3de1
CW
3134 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3135 return 0;
3136
88241785
CW
3137 ret = i915_gem_object_flush_gpu_write_domain(obj);
3138 if (ret)
3139 return ret;
3140
f8413190
CW
3141 if (write || obj->pending_gpu_write) {
3142 ret = i915_gem_object_wait_rendering(obj);
3143 if (ret)
3144 return ret;
3145 }
2ef7eeaa 3146
e47c68e9 3147 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3148
05394f39
CW
3149 old_write_domain = obj->base.write_domain;
3150 old_read_domains = obj->base.read_domains;
1c5d22f7 3151
e47c68e9 3152 /* Flush the CPU cache if it's still invalid. */
05394f39 3153 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3154 i915_gem_clflush_object(obj);
2ef7eeaa 3155
05394f39 3156 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3157 }
3158
3159 /* It should now be out of any other write domains, and we can update
3160 * the domain values for our changes.
3161 */
05394f39 3162 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3163
3164 /* If we're writing through the CPU, then the GPU read domains will
3165 * need to be invalidated at next use.
3166 */
3167 if (write) {
05394f39
CW
3168 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3169 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3170 }
2ef7eeaa 3171
1c5d22f7
CW
3172 trace_i915_gem_object_change_domain(obj,
3173 old_read_domains,
3174 old_write_domain);
3175
2ef7eeaa
EA
3176 return 0;
3177}
3178
673a394b
EA
3179/* Throttle our rendering by waiting until the ring has completed our requests
3180 * emitted over 20 msec ago.
3181 *
b962442e
EA
3182 * Note that if we were to use the current jiffies each time around the loop,
3183 * we wouldn't escape the function with any frames outstanding if the time to
3184 * render a frame was over 20ms.
3185 *
673a394b
EA
3186 * This should get us reasonable parallelism between CPU and GPU but also
3187 * relatively low latency when blocking on a particular request to finish.
3188 */
40a5f0de 3189static int
f787a5f5 3190i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3191{
f787a5f5
CW
3192 struct drm_i915_private *dev_priv = dev->dev_private;
3193 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3194 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3195 struct drm_i915_gem_request *request;
3196 struct intel_ring_buffer *ring = NULL;
3197 u32 seqno = 0;
3198 int ret;
93533c29 3199
e110e8d6
CW
3200 if (atomic_read(&dev_priv->mm.wedged))
3201 return -EIO;
3202
1c25595f 3203 spin_lock(&file_priv->mm.lock);
f787a5f5 3204 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3205 if (time_after_eq(request->emitted_jiffies, recent_enough))
3206 break;
40a5f0de 3207
f787a5f5
CW
3208 ring = request->ring;
3209 seqno = request->seqno;
b962442e 3210 }
1c25595f 3211 spin_unlock(&file_priv->mm.lock);
40a5f0de 3212
f787a5f5
CW
3213 if (seqno == 0)
3214 return 0;
2bc43b5c 3215
5c81fe85 3216 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3217 if (ret == 0)
3218 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3219
3220 return ret;
3221}
3222
673a394b 3223int
05394f39
CW
3224i915_gem_object_pin(struct drm_i915_gem_object *obj,
3225 uint32_t alignment,
75e9e915 3226 bool map_and_fenceable)
673a394b 3227{
673a394b
EA
3228 int ret;
3229
05394f39 3230 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
ac0c6b5a 3231
05394f39
CW
3232 if (obj->gtt_space != NULL) {
3233 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3234 (map_and_fenceable && !obj->map_and_fenceable)) {
3235 WARN(obj->pin_count,
ae7d49d8 3236 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3237 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3238 " obj->map_and_fenceable=%d\n",
05394f39 3239 obj->gtt_offset, alignment,
75e9e915 3240 map_and_fenceable,
05394f39 3241 obj->map_and_fenceable);
ac0c6b5a
CW
3242 ret = i915_gem_object_unbind(obj);
3243 if (ret)
3244 return ret;
3245 }
3246 }
3247
05394f39 3248 if (obj->gtt_space == NULL) {
a00b10c3 3249 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3250 map_and_fenceable);
9731129c 3251 if (ret)
673a394b 3252 return ret;
22c344e9 3253 }
76446cac 3254
74898d7e
DV
3255 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3256 i915_gem_gtt_bind_object(obj, obj->cache_level);
3257
1b50247a 3258 obj->pin_count++;
6299f992 3259 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3260
3261 return 0;
3262}
3263
3264void
05394f39 3265i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3266{
05394f39
CW
3267 BUG_ON(obj->pin_count == 0);
3268 BUG_ON(obj->gtt_space == NULL);
673a394b 3269
1b50247a 3270 if (--obj->pin_count == 0)
6299f992 3271 obj->pin_mappable = false;
673a394b
EA
3272}
3273
3274int
3275i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3276 struct drm_file *file)
673a394b
EA
3277{
3278 struct drm_i915_gem_pin *args = data;
05394f39 3279 struct drm_i915_gem_object *obj;
673a394b
EA
3280 int ret;
3281
1d7cfea1
CW
3282 ret = i915_mutex_lock_interruptible(dev);
3283 if (ret)
3284 return ret;
673a394b 3285
05394f39 3286 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3287 if (&obj->base == NULL) {
1d7cfea1
CW
3288 ret = -ENOENT;
3289 goto unlock;
673a394b 3290 }
673a394b 3291
05394f39 3292 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3293 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3294 ret = -EINVAL;
3295 goto out;
3ef94daa
CW
3296 }
3297
05394f39 3298 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3299 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3300 args->handle);
1d7cfea1
CW
3301 ret = -EINVAL;
3302 goto out;
79e53945
JB
3303 }
3304
05394f39
CW
3305 obj->user_pin_count++;
3306 obj->pin_filp = file;
3307 if (obj->user_pin_count == 1) {
75e9e915 3308 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3309 if (ret)
3310 goto out;
673a394b
EA
3311 }
3312
3313 /* XXX - flush the CPU caches for pinned objects
3314 * as the X server doesn't manage domains yet
3315 */
e47c68e9 3316 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3317 args->offset = obj->gtt_offset;
1d7cfea1 3318out:
05394f39 3319 drm_gem_object_unreference(&obj->base);
1d7cfea1 3320unlock:
673a394b 3321 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3322 return ret;
673a394b
EA
3323}
3324
3325int
3326i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3327 struct drm_file *file)
673a394b
EA
3328{
3329 struct drm_i915_gem_pin *args = data;
05394f39 3330 struct drm_i915_gem_object *obj;
76c1dec1 3331 int ret;
673a394b 3332
1d7cfea1
CW
3333 ret = i915_mutex_lock_interruptible(dev);
3334 if (ret)
3335 return ret;
673a394b 3336
05394f39 3337 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3338 if (&obj->base == NULL) {
1d7cfea1
CW
3339 ret = -ENOENT;
3340 goto unlock;
673a394b 3341 }
76c1dec1 3342
05394f39 3343 if (obj->pin_filp != file) {
79e53945
JB
3344 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3345 args->handle);
1d7cfea1
CW
3346 ret = -EINVAL;
3347 goto out;
79e53945 3348 }
05394f39
CW
3349 obj->user_pin_count--;
3350 if (obj->user_pin_count == 0) {
3351 obj->pin_filp = NULL;
79e53945
JB
3352 i915_gem_object_unpin(obj);
3353 }
673a394b 3354
1d7cfea1 3355out:
05394f39 3356 drm_gem_object_unreference(&obj->base);
1d7cfea1 3357unlock:
673a394b 3358 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3359 return ret;
673a394b
EA
3360}
3361
3362int
3363i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3364 struct drm_file *file)
673a394b
EA
3365{
3366 struct drm_i915_gem_busy *args = data;
05394f39 3367 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3368 int ret;
3369
76c1dec1 3370 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3371 if (ret)
76c1dec1 3372 return ret;
673a394b 3373
05394f39 3374 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3375 if (&obj->base == NULL) {
1d7cfea1
CW
3376 ret = -ENOENT;
3377 goto unlock;
673a394b 3378 }
d1b851fc 3379
0be555b6
CW
3380 /* Count all active objects as busy, even if they are currently not used
3381 * by the gpu. Users of this interface expect objects to eventually
3382 * become non-busy without any further actions, therefore emit any
3383 * necessary flushes here.
c4de0a5d 3384 */
30dfebf3 3385 ret = i915_gem_object_flush_active(obj);
0be555b6 3386
30dfebf3 3387 args->busy = obj->active;
673a394b 3388
05394f39 3389 drm_gem_object_unreference(&obj->base);
1d7cfea1 3390unlock:
673a394b 3391 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3392 return ret;
673a394b
EA
3393}
3394
3395int
3396i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3397 struct drm_file *file_priv)
3398{
0206e353 3399 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3400}
3401
3ef94daa
CW
3402int
3403i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3404 struct drm_file *file_priv)
3405{
3406 struct drm_i915_gem_madvise *args = data;
05394f39 3407 struct drm_i915_gem_object *obj;
76c1dec1 3408 int ret;
3ef94daa
CW
3409
3410 switch (args->madv) {
3411 case I915_MADV_DONTNEED:
3412 case I915_MADV_WILLNEED:
3413 break;
3414 default:
3415 return -EINVAL;
3416 }
3417
1d7cfea1
CW
3418 ret = i915_mutex_lock_interruptible(dev);
3419 if (ret)
3420 return ret;
3421
05394f39 3422 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3423 if (&obj->base == NULL) {
1d7cfea1
CW
3424 ret = -ENOENT;
3425 goto unlock;
3ef94daa 3426 }
3ef94daa 3427
05394f39 3428 if (obj->pin_count) {
1d7cfea1
CW
3429 ret = -EINVAL;
3430 goto out;
3ef94daa
CW
3431 }
3432
05394f39
CW
3433 if (obj->madv != __I915_MADV_PURGED)
3434 obj->madv = args->madv;
3ef94daa 3435
2d7ef395 3436 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3437 if (i915_gem_object_is_purgeable(obj) &&
3438 obj->gtt_space == NULL)
2d7ef395
CW
3439 i915_gem_object_truncate(obj);
3440
05394f39 3441 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3442
1d7cfea1 3443out:
05394f39 3444 drm_gem_object_unreference(&obj->base);
1d7cfea1 3445unlock:
3ef94daa 3446 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3447 return ret;
3ef94daa
CW
3448}
3449
05394f39
CW
3450struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3451 size_t size)
ac52bc56 3452{
73aa808f 3453 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3454 struct drm_i915_gem_object *obj;
5949eac4 3455 struct address_space *mapping;
bed1ea95 3456 u32 mask;
ac52bc56 3457
c397b908
DV
3458 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3459 if (obj == NULL)
3460 return NULL;
673a394b 3461
c397b908
DV
3462 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3463 kfree(obj);
3464 return NULL;
3465 }
673a394b 3466
bed1ea95
CW
3467 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3468 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3469 /* 965gm cannot relocate objects above 4GiB. */
3470 mask &= ~__GFP_HIGHMEM;
3471 mask |= __GFP_DMA32;
3472 }
3473
5949eac4 3474 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3475 mapping_set_gfp_mask(mapping, mask);
5949eac4 3476
73aa808f
CW
3477 i915_gem_info_add_obj(dev_priv, size);
3478
c397b908
DV
3479 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3480 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3481
3d29b842
ED
3482 if (HAS_LLC(dev)) {
3483 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3484 * cache) for about a 10% performance improvement
3485 * compared to uncached. Graphics requests other than
3486 * display scanout are coherent with the CPU in
3487 * accessing this cache. This means in this mode we
3488 * don't need to clflush on the CPU side, and on the
3489 * GPU side we only need to flush internal caches to
3490 * get data visible to the CPU.
3491 *
3492 * However, we maintain the display planes as UC, and so
3493 * need to rebind when first used as such.
3494 */
3495 obj->cache_level = I915_CACHE_LLC;
3496 } else
3497 obj->cache_level = I915_CACHE_NONE;
3498
62b8b215 3499 obj->base.driver_private = NULL;
c397b908 3500 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3501 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3502 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3503 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3504 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3505 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3506 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3507 /* Avoid an unnecessary call to unbind on the first bind. */
3508 obj->map_and_fenceable = true;
de151cf6 3509
05394f39 3510 return obj;
c397b908
DV
3511}
3512
3513int i915_gem_init_object(struct drm_gem_object *obj)
3514{
3515 BUG();
de151cf6 3516
673a394b
EA
3517 return 0;
3518}
3519
1488fc08 3520void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3521{
1488fc08 3522 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3523 struct drm_device *dev = obj->base.dev;
be72615b 3524 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3525
26e12f89
CW
3526 trace_i915_gem_object_destroy(obj);
3527
1286ff73
DV
3528 if (gem_obj->import_attach)
3529 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3530
1488fc08
CW
3531 if (obj->phys_obj)
3532 i915_gem_detach_phys_object(dev, obj);
3533
3534 obj->pin_count = 0;
3535 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3536 bool was_interruptible;
3537
3538 was_interruptible = dev_priv->mm.interruptible;
3539 dev_priv->mm.interruptible = false;
3540
3541 WARN_ON(i915_gem_object_unbind(obj));
3542
3543 dev_priv->mm.interruptible = was_interruptible;
3544 }
3545
05394f39 3546 if (obj->base.map_list.map)
b464e9a2 3547 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3548
05394f39
CW
3549 drm_gem_object_release(&obj->base);
3550 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3551
05394f39
CW
3552 kfree(obj->bit_17);
3553 kfree(obj);
673a394b
EA
3554}
3555
29105ccc
CW
3556int
3557i915_gem_idle(struct drm_device *dev)
3558{
3559 drm_i915_private_t *dev_priv = dev->dev_private;
3560 int ret;
28dfe52a 3561
29105ccc 3562 mutex_lock(&dev->struct_mutex);
1c5d22f7 3563
87acb0a5 3564 if (dev_priv->mm.suspended) {
29105ccc
CW
3565 mutex_unlock(&dev->struct_mutex);
3566 return 0;
28dfe52a
EA
3567 }
3568
b2da9fe5 3569 ret = i915_gpu_idle(dev);
6dbe2772
KP
3570 if (ret) {
3571 mutex_unlock(&dev->struct_mutex);
673a394b 3572 return ret;
6dbe2772 3573 }
b2da9fe5 3574 i915_gem_retire_requests(dev);
673a394b 3575
29105ccc 3576 /* Under UMS, be paranoid and evict. */
a39d7efc
CW
3577 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3578 i915_gem_evict_everything(dev, false);
29105ccc 3579
312817a3
CW
3580 i915_gem_reset_fences(dev);
3581
29105ccc
CW
3582 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3583 * We need to replace this with a semaphore, or something.
3584 * And not confound mm.suspended!
3585 */
3586 dev_priv->mm.suspended = 1;
bc0c7f14 3587 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3588
3589 i915_kernel_lost_context(dev);
6dbe2772 3590 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3591
6dbe2772
KP
3592 mutex_unlock(&dev->struct_mutex);
3593
29105ccc
CW
3594 /* Cancel the retire work handler, which should be idle now. */
3595 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3596
673a394b
EA
3597 return 0;
3598}
3599
b9524a1e
BW
3600void i915_gem_l3_remap(struct drm_device *dev)
3601{
3602 drm_i915_private_t *dev_priv = dev->dev_private;
3603 u32 misccpctl;
3604 int i;
3605
3606 if (!IS_IVYBRIDGE(dev))
3607 return;
3608
3609 if (!dev_priv->mm.l3_remap_info)
3610 return;
3611
3612 misccpctl = I915_READ(GEN7_MISCCPCTL);
3613 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3614 POSTING_READ(GEN7_MISCCPCTL);
3615
3616 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3617 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3618 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3619 DRM_DEBUG("0x%x was already programmed to %x\n",
3620 GEN7_L3LOG_BASE + i, remap);
3621 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3622 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3623 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3624 }
3625
3626 /* Make sure all the writes land before disabling dop clock gating */
3627 POSTING_READ(GEN7_L3LOG_BASE);
3628
3629 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3630}
3631
f691e2f4
DV
3632void i915_gem_init_swizzling(struct drm_device *dev)
3633{
3634 drm_i915_private_t *dev_priv = dev->dev_private;
3635
11782b02 3636 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3637 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3638 return;
3639
3640 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3641 DISP_TILE_SURFACE_SWIZZLING);
3642
11782b02
DV
3643 if (IS_GEN5(dev))
3644 return;
3645
f691e2f4
DV
3646 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3647 if (IS_GEN6(dev))
6b26c86d 3648 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3649 else
6b26c86d 3650 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3651}
e21af88d
DV
3652
3653void i915_gem_init_ppgtt(struct drm_device *dev)
3654{
3655 drm_i915_private_t *dev_priv = dev->dev_private;
3656 uint32_t pd_offset;
3657 struct intel_ring_buffer *ring;
55a254ac
DV
3658 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3659 uint32_t __iomem *pd_addr;
3660 uint32_t pd_entry;
e21af88d
DV
3661 int i;
3662
3663 if (!dev_priv->mm.aliasing_ppgtt)
3664 return;
3665
55a254ac
DV
3666
3667 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3668 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3669 dma_addr_t pt_addr;
3670
3671 if (dev_priv->mm.gtt->needs_dmar)
3672 pt_addr = ppgtt->pt_dma_addr[i];
3673 else
3674 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3675
3676 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3677 pd_entry |= GEN6_PDE_VALID;
3678
3679 writel(pd_entry, pd_addr + i);
3680 }
3681 readl(pd_addr);
3682
3683 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3684 pd_offset /= 64; /* in cachelines, */
3685 pd_offset <<= 16;
3686
3687 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3688 uint32_t ecochk, gab_ctl, ecobits;
3689
3690 ecobits = I915_READ(GAC_ECO_BITS);
3691 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3692
3693 gab_ctl = I915_READ(GAB_CTL);
3694 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3695
3696 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3697 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3698 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3699 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3700 } else if (INTEL_INFO(dev)->gen >= 7) {
3701 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3702 /* GFX_MODE is per-ring on gen7+ */
3703 }
3704
b4519513 3705 for_each_ring(ring, dev_priv, i) {
e21af88d
DV
3706 if (INTEL_INFO(dev)->gen >= 7)
3707 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3708 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3709
3710 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3711 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3712 }
3713}
3714
8187a2b7 3715int
f691e2f4 3716i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3717{
3718 drm_i915_private_t *dev_priv = dev->dev_private;
3719 int ret;
68f95ba9 3720
8ecd1a66
DV
3721 if (!intel_enable_gtt())
3722 return -EIO;
3723
b9524a1e
BW
3724 i915_gem_l3_remap(dev);
3725
f691e2f4
DV
3726 i915_gem_init_swizzling(dev);
3727
5c1143bb 3728 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3729 if (ret)
b6913e4b 3730 return ret;
68f95ba9
CW
3731
3732 if (HAS_BSD(dev)) {
5c1143bb 3733 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3734 if (ret)
3735 goto cleanup_render_ring;
d1b851fc 3736 }
68f95ba9 3737
549f7365
CW
3738 if (HAS_BLT(dev)) {
3739 ret = intel_init_blt_ring_buffer(dev);
3740 if (ret)
3741 goto cleanup_bsd_ring;
3742 }
3743
6f392d54
CW
3744 dev_priv->next_seqno = 1;
3745
254f965c
BW
3746 /*
3747 * XXX: There was some w/a described somewhere suggesting loading
3748 * contexts before PPGTT.
3749 */
3750 i915_gem_context_init(dev);
e21af88d
DV
3751 i915_gem_init_ppgtt(dev);
3752
68f95ba9
CW
3753 return 0;
3754
549f7365 3755cleanup_bsd_ring:
1ec14ad3 3756 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3757cleanup_render_ring:
1ec14ad3 3758 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3759 return ret;
3760}
3761
1070a42b
CW
3762static bool
3763intel_enable_ppgtt(struct drm_device *dev)
3764{
3765 if (i915_enable_ppgtt >= 0)
3766 return i915_enable_ppgtt;
3767
3768#ifdef CONFIG_INTEL_IOMMU
3769 /* Disable ppgtt on SNB if VT-d is on. */
3770 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3771 return false;
3772#endif
3773
3774 return true;
3775}
3776
3777int i915_gem_init(struct drm_device *dev)
3778{
3779 struct drm_i915_private *dev_priv = dev->dev_private;
3780 unsigned long gtt_size, mappable_size;
3781 int ret;
3782
3783 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3784 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3785
3786 mutex_lock(&dev->struct_mutex);
3787 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3788 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3789 * aperture accordingly when using aliasing ppgtt. */
3790 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3791
3792 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3793
3794 ret = i915_gem_init_aliasing_ppgtt(dev);
3795 if (ret) {
3796 mutex_unlock(&dev->struct_mutex);
3797 return ret;
3798 }
3799 } else {
3800 /* Let GEM Manage all of the aperture.
3801 *
3802 * However, leave one page at the end still bound to the scratch
3803 * page. There are a number of places where the hardware
3804 * apparently prefetches past the end of the object, and we've
3805 * seen multiple hangs with the GPU head pointer stuck in a
3806 * batchbuffer bound at the last page of the aperture. One page
3807 * should be enough to keep any prefetching inside of the
3808 * aperture.
3809 */
3810 i915_gem_init_global_gtt(dev, 0, mappable_size,
3811 gtt_size);
3812 }
3813
3814 ret = i915_gem_init_hw(dev);
3815 mutex_unlock(&dev->struct_mutex);
3816 if (ret) {
3817 i915_gem_cleanup_aliasing_ppgtt(dev);
3818 return ret;
3819 }
3820
53ca26ca
DV
3821 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3822 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3823 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
3824 return 0;
3825}
3826
8187a2b7
ZN
3827void
3828i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3829{
3830 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3831 struct intel_ring_buffer *ring;
1ec14ad3 3832 int i;
8187a2b7 3833
b4519513
CW
3834 for_each_ring(ring, dev_priv, i)
3835 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
3836}
3837
673a394b
EA
3838int
3839i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3840 struct drm_file *file_priv)
3841{
3842 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3843 int ret;
673a394b 3844
79e53945
JB
3845 if (drm_core_check_feature(dev, DRIVER_MODESET))
3846 return 0;
3847
ba1234d1 3848 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3849 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3850 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3851 }
3852
673a394b 3853 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3854 dev_priv->mm.suspended = 0;
3855
f691e2f4 3856 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3857 if (ret != 0) {
3858 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3859 return ret;
d816f6ac 3860 }
9bb2d6f9 3861
69dc4987 3862 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3863 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3864 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
673a394b 3865 mutex_unlock(&dev->struct_mutex);
dbb19d30 3866
5f35308b
CW
3867 ret = drm_irq_install(dev);
3868 if (ret)
3869 goto cleanup_ringbuffer;
dbb19d30 3870
673a394b 3871 return 0;
5f35308b
CW
3872
3873cleanup_ringbuffer:
3874 mutex_lock(&dev->struct_mutex);
3875 i915_gem_cleanup_ringbuffer(dev);
3876 dev_priv->mm.suspended = 1;
3877 mutex_unlock(&dev->struct_mutex);
3878
3879 return ret;
673a394b
EA
3880}
3881
3882int
3883i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3884 struct drm_file *file_priv)
3885{
79e53945
JB
3886 if (drm_core_check_feature(dev, DRIVER_MODESET))
3887 return 0;
3888
dbb19d30 3889 drm_irq_uninstall(dev);
e6890f6f 3890 return i915_gem_idle(dev);
673a394b
EA
3891}
3892
3893void
3894i915_gem_lastclose(struct drm_device *dev)
3895{
3896 int ret;
673a394b 3897
e806b495
EA
3898 if (drm_core_check_feature(dev, DRIVER_MODESET))
3899 return;
3900
6dbe2772
KP
3901 ret = i915_gem_idle(dev);
3902 if (ret)
3903 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3904}
3905
64193406
CW
3906static void
3907init_ring_lists(struct intel_ring_buffer *ring)
3908{
3909 INIT_LIST_HEAD(&ring->active_list);
3910 INIT_LIST_HEAD(&ring->request_list);
3911 INIT_LIST_HEAD(&ring->gpu_write_list);
3912}
3913
673a394b
EA
3914void
3915i915_gem_load(struct drm_device *dev)
3916{
b5aa8a0f 3917 int i;
673a394b
EA
3918 drm_i915_private_t *dev_priv = dev->dev_private;
3919
69dc4987 3920 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3921 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3922 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 3923 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
93a37f20 3924 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3925 for (i = 0; i < I915_NUM_RINGS; i++)
3926 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3927 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3928 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3929 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3930 i915_gem_retire_work_handler);
30dbf0c0 3931 init_completion(&dev_priv->error_completion);
31169714 3932
94400120
DA
3933 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3934 if (IS_GEN3(dev)) {
50743298
DV
3935 I915_WRITE(MI_ARB_STATE,
3936 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
3937 }
3938
72bfa19c
CW
3939 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3940
de151cf6 3941 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3942 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3943 dev_priv->fence_reg_start = 3;
de151cf6 3944
a6c45cf0 3945 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3946 dev_priv->num_fence_regs = 16;
3947 else
3948 dev_priv->num_fence_regs = 8;
3949
b5aa8a0f 3950 /* Initialize fence registers to zero */
ada726c7 3951 i915_gem_reset_fences(dev);
10ed13e4 3952
673a394b 3953 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3954 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3955
ce453d81
CW
3956 dev_priv->mm.interruptible = true;
3957
17250b71
CW
3958 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3959 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3960 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3961}
71acb5eb
DA
3962
3963/*
3964 * Create a physically contiguous memory object for this object
3965 * e.g. for cursor + overlay regs
3966 */
995b6762
CW
3967static int i915_gem_init_phys_object(struct drm_device *dev,
3968 int id, int size, int align)
71acb5eb
DA
3969{
3970 drm_i915_private_t *dev_priv = dev->dev_private;
3971 struct drm_i915_gem_phys_object *phys_obj;
3972 int ret;
3973
3974 if (dev_priv->mm.phys_objs[id - 1] || !size)
3975 return 0;
3976
9a298b2a 3977 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3978 if (!phys_obj)
3979 return -ENOMEM;
3980
3981 phys_obj->id = id;
3982
6eeefaf3 3983 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3984 if (!phys_obj->handle) {
3985 ret = -ENOMEM;
3986 goto kfree_obj;
3987 }
3988#ifdef CONFIG_X86
3989 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3990#endif
3991
3992 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3993
3994 return 0;
3995kfree_obj:
9a298b2a 3996 kfree(phys_obj);
71acb5eb
DA
3997 return ret;
3998}
3999
995b6762 4000static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4001{
4002 drm_i915_private_t *dev_priv = dev->dev_private;
4003 struct drm_i915_gem_phys_object *phys_obj;
4004
4005 if (!dev_priv->mm.phys_objs[id - 1])
4006 return;
4007
4008 phys_obj = dev_priv->mm.phys_objs[id - 1];
4009 if (phys_obj->cur_obj) {
4010 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4011 }
4012
4013#ifdef CONFIG_X86
4014 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4015#endif
4016 drm_pci_free(dev, phys_obj->handle);
4017 kfree(phys_obj);
4018 dev_priv->mm.phys_objs[id - 1] = NULL;
4019}
4020
4021void i915_gem_free_all_phys_object(struct drm_device *dev)
4022{
4023 int i;
4024
260883c8 4025 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4026 i915_gem_free_phys_object(dev, i);
4027}
4028
4029void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4030 struct drm_i915_gem_object *obj)
71acb5eb 4031{
05394f39 4032 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4033 char *vaddr;
71acb5eb 4034 int i;
71acb5eb
DA
4035 int page_count;
4036
05394f39 4037 if (!obj->phys_obj)
71acb5eb 4038 return;
05394f39 4039 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4040
05394f39 4041 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4042 for (i = 0; i < page_count; i++) {
5949eac4 4043 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4044 if (!IS_ERR(page)) {
4045 char *dst = kmap_atomic(page);
4046 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4047 kunmap_atomic(dst);
4048
4049 drm_clflush_pages(&page, 1);
4050
4051 set_page_dirty(page);
4052 mark_page_accessed(page);
4053 page_cache_release(page);
4054 }
71acb5eb 4055 }
40ce6575 4056 intel_gtt_chipset_flush();
d78b47b9 4057
05394f39
CW
4058 obj->phys_obj->cur_obj = NULL;
4059 obj->phys_obj = NULL;
71acb5eb
DA
4060}
4061
4062int
4063i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4064 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4065 int id,
4066 int align)
71acb5eb 4067{
05394f39 4068 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4069 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4070 int ret = 0;
4071 int page_count;
4072 int i;
4073
4074 if (id > I915_MAX_PHYS_OBJECT)
4075 return -EINVAL;
4076
05394f39
CW
4077 if (obj->phys_obj) {
4078 if (obj->phys_obj->id == id)
71acb5eb
DA
4079 return 0;
4080 i915_gem_detach_phys_object(dev, obj);
4081 }
4082
71acb5eb
DA
4083 /* create a new object */
4084 if (!dev_priv->mm.phys_objs[id - 1]) {
4085 ret = i915_gem_init_phys_object(dev, id,
05394f39 4086 obj->base.size, align);
71acb5eb 4087 if (ret) {
05394f39
CW
4088 DRM_ERROR("failed to init phys object %d size: %zu\n",
4089 id, obj->base.size);
e5281ccd 4090 return ret;
71acb5eb
DA
4091 }
4092 }
4093
4094 /* bind to the object */
05394f39
CW
4095 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4096 obj->phys_obj->cur_obj = obj;
71acb5eb 4097
05394f39 4098 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4099
4100 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4101 struct page *page;
4102 char *dst, *src;
4103
5949eac4 4104 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4105 if (IS_ERR(page))
4106 return PTR_ERR(page);
71acb5eb 4107
ff75b9bc 4108 src = kmap_atomic(page);
05394f39 4109 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4110 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4111 kunmap_atomic(src);
71acb5eb 4112
e5281ccd
CW
4113 mark_page_accessed(page);
4114 page_cache_release(page);
4115 }
d78b47b9 4116
71acb5eb 4117 return 0;
71acb5eb
DA
4118}
4119
4120static int
05394f39
CW
4121i915_gem_phys_pwrite(struct drm_device *dev,
4122 struct drm_i915_gem_object *obj,
71acb5eb
DA
4123 struct drm_i915_gem_pwrite *args,
4124 struct drm_file *file_priv)
4125{
05394f39 4126 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4127 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4128
b47b30cc
CW
4129 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4130 unsigned long unwritten;
4131
4132 /* The physical object once assigned is fixed for the lifetime
4133 * of the obj, so we can safely drop the lock and continue
4134 * to access vaddr.
4135 */
4136 mutex_unlock(&dev->struct_mutex);
4137 unwritten = copy_from_user(vaddr, user_data, args->size);
4138 mutex_lock(&dev->struct_mutex);
4139 if (unwritten)
4140 return -EFAULT;
4141 }
71acb5eb 4142
40ce6575 4143 intel_gtt_chipset_flush();
71acb5eb
DA
4144 return 0;
4145}
b962442e 4146
f787a5f5 4147void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4148{
f787a5f5 4149 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4150
4151 /* Clean up our request list when the client is going away, so that
4152 * later retire_requests won't dereference our soon-to-be-gone
4153 * file_priv.
4154 */
1c25595f 4155 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4156 while (!list_empty(&file_priv->mm.request_list)) {
4157 struct drm_i915_gem_request *request;
4158
4159 request = list_first_entry(&file_priv->mm.request_list,
4160 struct drm_i915_gem_request,
4161 client_list);
4162 list_del(&request->client_list);
4163 request->file_priv = NULL;
4164 }
1c25595f 4165 spin_unlock(&file_priv->mm.lock);
b962442e 4166}
31169714 4167
1637ef41
CW
4168static int
4169i915_gpu_is_active(struct drm_device *dev)
4170{
4171 drm_i915_private_t *dev_priv = dev->dev_private;
4172 int lists_empty;
4173
1637ef41 4174 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4175 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4176
4177 return !lists_empty;
4178}
4179
31169714 4180static int
1495f230 4181i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4182{
17250b71
CW
4183 struct drm_i915_private *dev_priv =
4184 container_of(shrinker,
4185 struct drm_i915_private,
4186 mm.inactive_shrinker);
4187 struct drm_device *dev = dev_priv->dev;
4188 struct drm_i915_gem_object *obj, *next;
1495f230 4189 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4190 int cnt;
4191
4192 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4193 return 0;
31169714
CW
4194
4195 /* "fast-path" to count number of available objects */
4196 if (nr_to_scan == 0) {
17250b71
CW
4197 cnt = 0;
4198 list_for_each_entry(obj,
4199 &dev_priv->mm.inactive_list,
4200 mm_list)
4201 cnt++;
4202 mutex_unlock(&dev->struct_mutex);
4203 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4204 }
4205
1637ef41 4206rescan:
31169714 4207 /* first scan for clean buffers */
17250b71 4208 i915_gem_retire_requests(dev);
31169714 4209
17250b71
CW
4210 list_for_each_entry_safe(obj, next,
4211 &dev_priv->mm.inactive_list,
4212 mm_list) {
4213 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4214 if (i915_gem_object_unbind(obj) == 0 &&
4215 --nr_to_scan == 0)
17250b71 4216 break;
31169714 4217 }
31169714
CW
4218 }
4219
4220 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4221 cnt = 0;
4222 list_for_each_entry_safe(obj, next,
4223 &dev_priv->mm.inactive_list,
4224 mm_list) {
2021746e
CW
4225 if (nr_to_scan &&
4226 i915_gem_object_unbind(obj) == 0)
17250b71 4227 nr_to_scan--;
2021746e 4228 else
17250b71
CW
4229 cnt++;
4230 }
4231
4232 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4233 /*
4234 * We are desperate for pages, so as a last resort, wait
4235 * for the GPU to finish and discard whatever we can.
4236 * This has a dramatic impact to reduce the number of
4237 * OOM-killer events whilst running the GPU aggressively.
4238 */
b2da9fe5 4239 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4240 goto rescan;
4241 }
17250b71
CW
4242 mutex_unlock(&dev->struct_mutex);
4243 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4244}