]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Make pin count per VMA
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46static __must_check int
07fe0b12
BW
47i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39 55 struct drm_file *file);
673a394b 56
61050808
CW
57static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
7dc19d5a
DC
63static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
d9973b43
CW
67static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 69static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 70
c76ce038
CW
71static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73{
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75}
76
2c22569b
CW
77static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78{
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83}
84
61050808
CW
85static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86{
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
5d82e3e6 93 obj->fence_dirty = false;
61050808
CW
94 obj->fence_reg = I915_FENCE_REG_NONE;
95}
96
73aa808f
CW
97/* some bookkeeping */
98static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100{
c20e8355 101 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
c20e8355 104 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105}
106
107static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109{
c20e8355 110 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
c20e8355 113 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
114}
115
21dd3734 116static int
33196ded 117i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 118{
30dbf0c0
CW
119 int ret;
120
7abb690a
DV
121#define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
1f83fee0 123 if (EXIT_COND)
30dbf0c0
CW
124 return 0;
125
0a6759c6
DV
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
1f83fee0
DV
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
0a6759c6
DV
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
30dbf0c0 138 return ret;
0a6759c6 139 }
1f83fee0 140#undef EXIT_COND
30dbf0c0 141
21dd3734 142 return 0;
30dbf0c0
CW
143}
144
54cf91dc 145int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 146{
33196ded 147 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
148 int ret;
149
33196ded 150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
23bc5982 158 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
159 return 0;
160}
30dbf0c0 161
7d1c4804 162static inline bool
05394f39 163i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 164{
9843877d 165 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
166}
167
79e53945
JB
168int
169i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 170 struct drm_file *file)
79e53945 171{
93d18799 172 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 173 struct drm_i915_gem_init *args = data;
2021746e 174
7bb6fb8d
DV
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
2021746e
CW
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
79e53945 181
f534bc0b
DV
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
79e53945 186 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
93d18799 189 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
190 mutex_unlock(&dev->struct_mutex);
191
2021746e 192 return 0;
673a394b
EA
193}
194
5a125c3c
EA
195int
196i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 197 struct drm_file *file)
5a125c3c 198{
73aa808f 199 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 200 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
5a125c3c 203
6299f992 204 pinned = 0;
73aa808f 205 mutex_lock(&dev->struct_mutex);
35c20a60 206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 207 if (i915_gem_obj_is_pinned(obj))
f343c5f6 208 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 209 mutex_unlock(&dev->struct_mutex);
5a125c3c 210
853ba5d2 211 args->aper_size = dev_priv->gtt.base.total;
0206e353 212 args->aper_available_size = args->aper_size - pinned;
6299f992 213
5a125c3c
EA
214 return 0;
215}
216
42dcedd4
CW
217void *i915_gem_object_alloc(struct drm_device *dev)
218{
219 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
221}
222
223void i915_gem_object_free(struct drm_i915_gem_object *obj)
224{
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227}
228
ff72145b
DA
229static int
230i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
673a394b 234{
05394f39 235 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
236 int ret;
237 u32 handle;
673a394b 238
ff72145b 239 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
240 if (size == 0)
241 return -EINVAL;
673a394b
EA
242
243 /* Allocate the new object */
ff72145b 244 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
245 if (obj == NULL)
246 return -ENOMEM;
247
05394f39 248 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 249 /* drop reference from allocate - handle holds it now */
d861e338
DV
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
202f2fef 253
ff72145b 254 *handle_p = handle;
673a394b
EA
255 return 0;
256}
257
ff72145b
DA
258int
259i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262{
263 /* have to work out size/pitch and return them */
de45eaf7 264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268}
269
ff72145b
DA
270/**
271 * Creates a new mm object and returns a handle to it.
272 */
273int
274i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276{
277 struct drm_i915_gem_create *args = data;
63ed2cb2 278
ff72145b
DA
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281}
282
8461d226
DV
283static inline int
284__copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287{
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307}
308
8c59967c 309static inline int
4f0c7cfb
BW
310__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
8c59967c
DV
312 int length)
313{
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333}
334
d174bd64
DV
335/* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
eb01459f 338static int
d174bd64
DV
339shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342{
343 char *vaddr;
344 int ret;
345
e7e58eb5 346 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
f60d7f0c 358 return ret ? -EFAULT : 0;
d174bd64
DV
359}
360
23c18c71
DV
361static void
362shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364{
e7e58eb5 365 if (unlikely(swizzled)) {
23c18c71
DV
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381}
382
d174bd64
DV
383/* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385static int
386shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389{
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
23c18c71
DV
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
d174bd64
DV
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
f60d7f0c 409 return ret ? - EFAULT : 0;
d174bd64
DV
410}
411
eb01459f 412static int
dbf7bff0
DV
413i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
eb01459f 417{
8461d226 418 char __user *user_data;
eb01459f 419 ssize_t remain;
8461d226 420 loff_t offset;
eb2c0c81 421 int shmem_page_offset, page_length, ret = 0;
8461d226 422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 423 int prefaulted = 0;
8489731c 424 int needs_clflush = 0;
67d5a50c 425 struct sg_page_iter sg_iter;
eb01459f 426
2bb4629a 427 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
428 remain = args->size;
429
8461d226 430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 431
8489731c
DV
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
c76ce038 437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
23f54483
BW
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
8489731c 441 }
eb01459f 442
f60d7f0c
CW
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
8461d226 449 offset = args->offset;
eb01459f 450
67d5a50c
ID
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
2db76d7c 453 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
454
455 if (remain <= 0)
456 break;
457
eb01459f
EA
458 /* Operation in this page
459 *
eb01459f 460 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
461 * page_length = bytes to copy for this page
462 */
c8cbbb8b 463 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 467
8461d226
DV
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
d174bd64
DV
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
dbf7bff0 476
dbf7bff0
DV
477 mutex_unlock(&dev->struct_mutex);
478
0b74b508 479 if (likely(!i915_prefault_disable) && !prefaulted) {
f56f821f 480 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
eb01459f 488
d174bd64
DV
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
eb01459f 492
dbf7bff0 493 mutex_lock(&dev->struct_mutex);
f60d7f0c 494
dbf7bff0 495next_page:
e5281ccd 496 mark_page_accessed(page);
e5281ccd 497
f60d7f0c 498 if (ret)
8461d226 499 goto out;
8461d226 500
eb01459f 501 remain -= page_length;
8461d226 502 user_data += page_length;
eb01459f
EA
503 offset += page_length;
504 }
505
4f27b75d 506out:
f60d7f0c
CW
507 i915_gem_object_unpin_pages(obj);
508
eb01459f
EA
509 return ret;
510}
511
673a394b
EA
512/**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517int
518i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 519 struct drm_file *file)
673a394b
EA
520{
521 struct drm_i915_gem_pread *args = data;
05394f39 522 struct drm_i915_gem_object *obj;
35b62a89 523 int ret = 0;
673a394b 524
51311d0a
CW
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
2bb4629a 529 to_user_ptr(args->data_ptr),
51311d0a
CW
530 args->size))
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
1286ff73
DV
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
db53a302
CW
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
dbf7bff0 560 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 561
35b62a89 562out:
05394f39 563 drm_gem_object_unreference(&obj->base);
1d7cfea1 564unlock:
4f27b75d 565 mutex_unlock(&dev->struct_mutex);
eb01459f 566 return ret;
673a394b
EA
567}
568
0839ccb8
KP
569/* This is the fast write path which cannot handle
570 * page faults in the source data
9b7530cc 571 */
0839ccb8
KP
572
573static inline int
574fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
9b7530cc 578{
4f0c7cfb
BW
579 void __iomem *vaddr_atomic;
580 void *vaddr;
0839ccb8 581 unsigned long unwritten;
9b7530cc 582
3e4d3af5 583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 587 user_data, length);
3e4d3af5 588 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 589 return unwritten;
0839ccb8
KP
590}
591
3de09aa3
EA
592/**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
673a394b 596static int
05394f39
CW
597i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
3de09aa3 599 struct drm_i915_gem_pwrite *args,
05394f39 600 struct drm_file *file)
673a394b 601{
0839ccb8 602 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 603 ssize_t remain;
0839ccb8 604 loff_t offset, page_base;
673a394b 605 char __user *user_data;
935aaa69
DV
606 int page_offset, page_length, ret;
607
c37e2204 608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
935aaa69
DV
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
673a394b 619
2bb4629a 620 user_data = to_user_ptr(args->data_ptr);
673a394b 621 remain = args->size;
673a394b 622
f343c5f6 623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
0839ccb8
KP
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
673a394b 631 */
c8cbbb8b
CW
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
0839ccb8
KP
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
0839ccb8 638 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
0839ccb8 641 */
5d4545ae 642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
673a394b 647
0839ccb8
KP
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
673a394b 651 }
673a394b 652
935aaa69 653out_unpin:
d7f46fc4 654 i915_gem_object_ggtt_unpin(obj);
935aaa69 655out:
3de09aa3 656 return ret;
673a394b
EA
657}
658
d174bd64
DV
659/* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
3043c60c 663static int
d174bd64
DV
664shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
673a394b 669{
d174bd64 670 char *vaddr;
673a394b 671 int ret;
3de09aa3 672
e7e58eb5 673 if (unlikely(page_do_bit17_swizzling))
d174bd64 674 return -EINVAL;
3de09aa3 675
d174bd64
DV
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
3de09aa3 687
755d2218 688 return ret ? -EFAULT : 0;
3de09aa3
EA
689}
690
d174bd64
DV
691/* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
3043c60c 693static int
d174bd64
DV
694shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
673a394b 699{
d174bd64
DV
700 char *vaddr;
701 int ret;
e5281ccd 702
d174bd64 703 vaddr = kmap(page);
e7e58eb5 704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
d174bd64
DV
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
710 user_data,
711 page_length);
d174bd64
DV
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
23c18c71
DV
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
d174bd64 720 kunmap(page);
40123c1f 721
755d2218 722 return ret ? -EFAULT : 0;
40123c1f
EA
723}
724
40123c1f 725static int
e244a443
DV
726i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
40123c1f 730{
40123c1f 731 ssize_t remain;
8c59967c
DV
732 loff_t offset;
733 char __user *user_data;
eb2c0c81 734 int shmem_page_offset, page_length, ret = 0;
8c59967c 735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 736 int hit_slowpath = 0;
58642885
DV
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
67d5a50c 739 struct sg_page_iter sg_iter;
40123c1f 740
2bb4629a 741 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
742 remain = args->size;
743
8c59967c 744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 745
58642885
DV
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
2c22569b 751 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
58642885 755 }
c76ce038
CW
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 761
755d2218
CW
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
673a394b 768 offset = args->offset;
05394f39 769 obj->dirty = 1;
673a394b 770
67d5a50c
ID
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
2db76d7c 773 struct page *page = sg_page_iter_page(&sg_iter);
58642885 774 int partial_cacheline_write;
e5281ccd 775
9da3da66
CW
776 if (remain <= 0)
777 break;
778
40123c1f
EA
779 /* Operation in this page
780 *
40123c1f 781 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
782 * page_length = bytes to copy for this page
783 */
c8cbbb8b 784 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 789
58642885
DV
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
8c59967c
DV
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
d174bd64
DV
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
e244a443
DV
806
807 hit_slowpath = 1;
e244a443 808 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
40123c1f 813
e244a443 814 mutex_lock(&dev->struct_mutex);
755d2218 815
e244a443 816next_page:
e5281ccd
CW
817 set_page_dirty(page);
818 mark_page_accessed(page);
e5281ccd 819
755d2218 820 if (ret)
8c59967c 821 goto out;
8c59967c 822
40123c1f 823 remain -= page_length;
8c59967c 824 user_data += page_length;
40123c1f 825 offset += page_length;
673a394b
EA
826 }
827
fbd5a26d 828out:
755d2218
CW
829 i915_gem_object_unpin_pages(obj);
830
e244a443 831 if (hit_slowpath) {
8dcf015e
DV
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
e244a443 841 }
8c59967c 842 }
673a394b 843
58642885 844 if (needs_clflush_after)
e76e9aeb 845 i915_gem_chipset_flush(dev);
58642885 846
40123c1f 847 return ret;
673a394b
EA
848}
849
850/**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855int
856i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 857 struct drm_file *file)
673a394b
EA
858{
859 struct drm_i915_gem_pwrite *args = data;
05394f39 860 struct drm_i915_gem_object *obj;
51311d0a
CW
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
2bb4629a 867 to_user_ptr(args->data_ptr),
51311d0a
CW
868 args->size))
869 return -EFAULT;
870
0b74b508
XZ
871 if (likely(!i915_prefault_disable)) {
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
673a394b 877
fbd5a26d 878 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 879 if (ret)
fbd5a26d 880 return ret;
1d7cfea1 881
05394f39 882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 883 if (&obj->base == NULL) {
1d7cfea1
CW
884 ret = -ENOENT;
885 goto unlock;
fbd5a26d 886 }
673a394b 887
7dcd2499 888 /* Bounds check destination. */
05394f39
CW
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
ce9d419d 891 ret = -EINVAL;
35b62a89 892 goto out;
ce9d419d
CW
893 }
894
1286ff73
DV
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
db53a302
CW
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
935aaa69 905 ret = -EFAULT;
673a394b
EA
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
5c0480f2 912 if (obj->phys_obj) {
fbd5a26d 913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
914 goto out;
915 }
916
2c22569b
CW
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
fbd5a26d 920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
fbd5a26d 924 }
673a394b 925
86a1ee26 926 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 928
35b62a89 929out:
05394f39 930 drm_gem_object_unreference(&obj->base);
1d7cfea1 931unlock:
fbd5a26d 932 mutex_unlock(&dev->struct_mutex);
673a394b
EA
933 return ret;
934}
935
b361237b 936int
33196ded 937i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
938 bool interruptible)
939{
1f83fee0 940 if (i915_reset_in_progress(error)) {
b361237b
CW
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
1f83fee0
DV
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
b361237b
CW
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954}
955
956/*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960static int
961i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962{
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
1823521d 968 if (seqno == ring->outstanding_lazy_seqno)
0025c077 969 ret = i915_add_request(ring, NULL);
b361237b
CW
970
971 return ret;
972}
973
094f9a54
CW
974static void fake_irq(unsigned long data)
975{
976 wake_up_process((struct task_struct *)data);
977}
978
979static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
981{
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983}
984
b29c19b6
CW
985static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986{
987 if (file_priv == NULL)
988 return true;
989
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
991}
992
b361237b
CW
993/**
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
f69061be 997 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000 *
f69061be
DV
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1007 *
b361237b
CW
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1010 */
1011static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 1012 unsigned reset_counter,
b29c19b6
CW
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
b361237b
CW
1016{
1017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
094f9a54
CW
1018 struct timespec before, now;
1019 DEFINE_WAIT(wait);
1020 long timeout_jiffies;
b361237b
CW
1021 int ret;
1022
c67a470b
PZ
1023 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1024
b361237b
CW
1025 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1026 return 0;
1027
094f9a54 1028 timeout_jiffies = timeout ? timespec_to_jiffies_timeout(timeout) : 1;
b361237b 1029
b29c19b6
CW
1030 if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1031 gen6_rps_boost(dev_priv);
1032 if (file_priv)
1033 mod_delayed_work(dev_priv->wq,
1034 &file_priv->mm.idle_work,
1035 msecs_to_jiffies(100));
1036 }
1037
094f9a54
CW
1038 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)) &&
1039 WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1040 return -ENODEV;
1041
094f9a54
CW
1042 /* Record current time in case interrupted by signal, or wedged */
1043 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1044 getrawmonotonic(&before);
094f9a54
CW
1045 for (;;) {
1046 struct timer_list timer;
1047 unsigned long expire;
b361237b 1048
094f9a54
CW
1049 prepare_to_wait(&ring->irq_queue, &wait,
1050 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1051
f69061be
DV
1052 /* We need to check whether any gpu reset happened in between
1053 * the caller grabbing the seqno and now ... */
094f9a54
CW
1054 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 * is truely gone. */
1057 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 if (ret == 0)
1059 ret = -EAGAIN;
1060 break;
1061 }
f69061be 1062
094f9a54
CW
1063 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 ret = 0;
1065 break;
1066 }
b361237b 1067
094f9a54
CW
1068 if (interruptible && signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1071 }
1072
1073 if (timeout_jiffies <= 0) {
1074 ret = -ETIME;
1075 break;
1076 }
1077
1078 timer.function = NULL;
1079 if (timeout || missed_irq(dev_priv, ring)) {
1080 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1081 expire = jiffies + (missed_irq(dev_priv, ring) ? 1: timeout_jiffies);
1082 mod_timer(&timer, expire);
1083 }
1084
5035c275 1085 io_schedule();
094f9a54
CW
1086
1087 if (timeout)
1088 timeout_jiffies = expire - jiffies;
1089
1090 if (timer.function) {
1091 del_singleshot_timer_sync(&timer);
1092 destroy_timer_on_stack(&timer);
1093 }
1094 }
b361237b 1095 getrawmonotonic(&now);
094f9a54 1096 trace_i915_gem_request_wait_end(ring, seqno);
b361237b
CW
1097
1098 ring->irq_put(ring);
094f9a54
CW
1099
1100 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1101
1102 if (timeout) {
1103 struct timespec sleep_time = timespec_sub(now, before);
1104 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1105 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1107 }
1108
094f9a54 1109 return ret;
b361237b
CW
1110}
1111
1112/**
1113 * Waits for a sequence number to be signaled, and cleans up the
1114 * request and object lists appropriately for that event.
1115 */
1116int
1117i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118{
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 bool interruptible = dev_priv->mm.interruptible;
1122 int ret;
1123
1124 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 BUG_ON(seqno == 0);
1126
33196ded 1127 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1128 if (ret)
1129 return ret;
1130
1131 ret = i915_gem_check_olr(ring, seqno);
1132 if (ret)
1133 return ret;
1134
f69061be
DV
1135 return __wait_seqno(ring, seqno,
1136 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1137 interruptible, NULL, NULL);
b361237b
CW
1138}
1139
d26e3af8
CW
1140static int
1141i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 struct intel_ring_buffer *ring)
1143{
1144 i915_gem_retire_requests_ring(ring);
1145
1146 /* Manually manage the write flush as we may have not yet
1147 * retired the buffer.
1148 *
1149 * Note that the last_write_seqno is always the earlier of
1150 * the two (read/write) seqno, so if we haved successfully waited,
1151 * we know we have passed the last write.
1152 */
1153 obj->last_write_seqno = 0;
1154 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156 return 0;
1157}
1158
b361237b
CW
1159/**
1160 * Ensures that all rendering to the object has completed and the object is
1161 * safe to unbind from the GTT or access from the CPU.
1162 */
1163static __must_check int
1164i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 bool readonly)
1166{
1167 struct intel_ring_buffer *ring = obj->ring;
1168 u32 seqno;
1169 int ret;
1170
1171 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 if (seqno == 0)
1173 return 0;
1174
1175 ret = i915_wait_seqno(ring, seqno);
1176 if (ret)
1177 return ret;
1178
d26e3af8 1179 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1180}
1181
3236f57a
CW
1182/* A nonblocking variant of the above wait. This is a highly dangerous routine
1183 * as the object state may change during this call.
1184 */
1185static __must_check int
1186i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
b29c19b6 1187 struct drm_file *file,
3236f57a
CW
1188 bool readonly)
1189{
1190 struct drm_device *dev = obj->base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_ring_buffer *ring = obj->ring;
f69061be 1193 unsigned reset_counter;
3236f57a
CW
1194 u32 seqno;
1195 int ret;
1196
1197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 BUG_ON(!dev_priv->mm.interruptible);
1199
1200 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 if (seqno == 0)
1202 return 0;
1203
33196ded 1204 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1205 if (ret)
1206 return ret;
1207
1208 ret = i915_gem_check_olr(ring, seqno);
1209 if (ret)
1210 return ret;
1211
f69061be 1212 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1213 mutex_unlock(&dev->struct_mutex);
b29c19b6 1214 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
3236f57a 1215 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1216 if (ret)
1217 return ret;
3236f57a 1218
d26e3af8 1219 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1220}
1221
673a394b 1222/**
2ef7eeaa
EA
1223 * Called when user space prepares to use an object with the CPU, either
1224 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1225 */
1226int
1227i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1228 struct drm_file *file)
673a394b
EA
1229{
1230 struct drm_i915_gem_set_domain *args = data;
05394f39 1231 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1232 uint32_t read_domains = args->read_domains;
1233 uint32_t write_domain = args->write_domain;
673a394b
EA
1234 int ret;
1235
2ef7eeaa 1236 /* Only handle setting domains to types used by the CPU. */
21d509e3 1237 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1238 return -EINVAL;
1239
21d509e3 1240 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1241 return -EINVAL;
1242
1243 /* Having something in the write domain implies it's in the read
1244 * domain, and only that read domain. Enforce that in the request.
1245 */
1246 if (write_domain != 0 && read_domains != write_domain)
1247 return -EINVAL;
1248
76c1dec1 1249 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1250 if (ret)
76c1dec1 1251 return ret;
1d7cfea1 1252
05394f39 1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1254 if (&obj->base == NULL) {
1d7cfea1
CW
1255 ret = -ENOENT;
1256 goto unlock;
76c1dec1 1257 }
673a394b 1258
3236f57a
CW
1259 /* Try to flush the object off the GPU without holding the lock.
1260 * We will repeat the flush holding the lock in the normal manner
1261 * to catch cases where we are gazumped.
1262 */
b29c19b6 1263 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
3236f57a
CW
1264 if (ret)
1265 goto unref;
1266
2ef7eeaa
EA
1267 if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1269
1270 /* Silently promote "you're not bound, there was nothing to do"
1271 * to success, since the client was just asking us to
1272 * make sure everything was done.
1273 */
1274 if (ret == -EINVAL)
1275 ret = 0;
2ef7eeaa 1276 } else {
e47c68e9 1277 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1278 }
1279
3236f57a 1280unref:
05394f39 1281 drm_gem_object_unreference(&obj->base);
1d7cfea1 1282unlock:
673a394b
EA
1283 mutex_unlock(&dev->struct_mutex);
1284 return ret;
1285}
1286
1287/**
1288 * Called when user space has done writes to this buffer
1289 */
1290int
1291i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1292 struct drm_file *file)
673a394b
EA
1293{
1294 struct drm_i915_gem_sw_finish *args = data;
05394f39 1295 struct drm_i915_gem_object *obj;
673a394b
EA
1296 int ret = 0;
1297
76c1dec1 1298 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1299 if (ret)
76c1dec1 1300 return ret;
1d7cfea1 1301
05394f39 1302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1303 if (&obj->base == NULL) {
1d7cfea1
CW
1304 ret = -ENOENT;
1305 goto unlock;
673a394b
EA
1306 }
1307
673a394b 1308 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1309 if (obj->pin_display)
1310 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1311
05394f39 1312 drm_gem_object_unreference(&obj->base);
1d7cfea1 1313unlock:
673a394b
EA
1314 mutex_unlock(&dev->struct_mutex);
1315 return ret;
1316}
1317
1318/**
1319 * Maps the contents of an object, returning the address it is mapped
1320 * into.
1321 *
1322 * While the mapping holds a reference on the contents of the object, it doesn't
1323 * imply a ref on the object itself.
1324 */
1325int
1326i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1327 struct drm_file *file)
673a394b
EA
1328{
1329 struct drm_i915_gem_mmap *args = data;
1330 struct drm_gem_object *obj;
673a394b
EA
1331 unsigned long addr;
1332
05394f39 1333 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1334 if (obj == NULL)
bf79cb91 1335 return -ENOENT;
673a394b 1336
1286ff73
DV
1337 /* prime objects have no backing filp to GEM mmap
1338 * pages from.
1339 */
1340 if (!obj->filp) {
1341 drm_gem_object_unreference_unlocked(obj);
1342 return -EINVAL;
1343 }
1344
6be5ceb0 1345 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1346 PROT_READ | PROT_WRITE, MAP_SHARED,
1347 args->offset);
bc9025bd 1348 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1349 if (IS_ERR((void *)addr))
1350 return addr;
1351
1352 args->addr_ptr = (uint64_t) addr;
1353
1354 return 0;
1355}
1356
de151cf6
JB
1357/**
1358 * i915_gem_fault - fault a page into the GTT
1359 * vma: VMA in question
1360 * vmf: fault info
1361 *
1362 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363 * from userspace. The fault handler takes care of binding the object to
1364 * the GTT (if needed), allocating and programming a fence register (again,
1365 * only if needed based on whether the old reg is still valid or the object
1366 * is tiled) and inserting a new PTE into the faulting process.
1367 *
1368 * Note that the faulting process may involve evicting existing objects
1369 * from the GTT and/or fence registers to make room. So performance may
1370 * suffer if the GTT working set is large or there are few fence registers
1371 * left.
1372 */
1373int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374{
05394f39
CW
1375 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 struct drm_device *dev = obj->base.dev;
7d1c4804 1377 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1378 pgoff_t page_offset;
1379 unsigned long pfn;
1380 int ret = 0;
0f973f27 1381 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1382
1383 /* We don't use vmf->pgoff since that has the fake offset */
1384 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1385 PAGE_SHIFT;
1386
d9bc7e9f
CW
1387 ret = i915_mutex_lock_interruptible(dev);
1388 if (ret)
1389 goto out;
a00b10c3 1390
db53a302
CW
1391 trace_i915_gem_object_fault(obj, page_offset, true, write);
1392
eb119bd6
CW
1393 /* Access to snoopable pages through the GTT is incoherent. */
1394 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1395 ret = -EINVAL;
1396 goto unlock;
1397 }
1398
d9bc7e9f 1399 /* Now bind it into the GTT if needed */
c37e2204 1400 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
c9839303
CW
1401 if (ret)
1402 goto unlock;
4a684a41 1403
c9839303
CW
1404 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1405 if (ret)
1406 goto unpin;
74898d7e 1407
06d98131 1408 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1409 if (ret)
c9839303 1410 goto unpin;
7d1c4804 1411
6299f992
CW
1412 obj->fault_mappable = true;
1413
f343c5f6
BW
1414 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1415 pfn >>= PAGE_SHIFT;
1416 pfn += page_offset;
de151cf6
JB
1417
1418 /* Finally, remap it using the new GTT offset */
1419 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303 1420unpin:
d7f46fc4 1421 i915_gem_object_ggtt_unpin(obj);
c715089f 1422unlock:
de151cf6 1423 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1424out:
de151cf6 1425 switch (ret) {
d9bc7e9f 1426 case -EIO:
a9340cca
DV
1427 /* If this -EIO is due to a gpu hang, give the reset code a
1428 * chance to clean up the mess. Otherwise return the proper
1429 * SIGBUS. */
1f83fee0 1430 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1431 return VM_FAULT_SIGBUS;
045e769a 1432 case -EAGAIN:
571c608d
DV
1433 /*
1434 * EAGAIN means the gpu is hung and we'll wait for the error
1435 * handler to reset everything when re-faulting in
1436 * i915_mutex_lock_interruptible.
d9bc7e9f 1437 */
c715089f
CW
1438 case 0:
1439 case -ERESTARTSYS:
bed636ab 1440 case -EINTR:
e79e0fe3
DR
1441 case -EBUSY:
1442 /*
1443 * EBUSY is ok: this just means that another thread
1444 * already did the job.
1445 */
c715089f 1446 return VM_FAULT_NOPAGE;
de151cf6 1447 case -ENOMEM:
de151cf6 1448 return VM_FAULT_OOM;
a7c2e1aa
DV
1449 case -ENOSPC:
1450 return VM_FAULT_SIGBUS;
de151cf6 1451 default:
a7c2e1aa 1452 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1453 return VM_FAULT_SIGBUS;
de151cf6
JB
1454 }
1455}
1456
901782b2
CW
1457/**
1458 * i915_gem_release_mmap - remove physical page mappings
1459 * @obj: obj in question
1460 *
af901ca1 1461 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1462 * relinquish ownership of the pages back to the system.
1463 *
1464 * It is vital that we remove the page mapping if we have mapped a tiled
1465 * object through the GTT and then lose the fence register due to
1466 * resource pressure. Similarly if the object has been moved out of the
1467 * aperture, than pages mapped into userspace must be revoked. Removing the
1468 * mapping will then trigger a page fault on the next user access, allowing
1469 * fixup by i915_gem_fault().
1470 */
d05ca301 1471void
05394f39 1472i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1473{
6299f992
CW
1474 if (!obj->fault_mappable)
1475 return;
901782b2 1476
51335df9 1477 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
6299f992 1478 obj->fault_mappable = false;
901782b2
CW
1479}
1480
0fa87796 1481uint32_t
e28f8711 1482i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1483{
e28f8711 1484 uint32_t gtt_size;
92b88aeb
CW
1485
1486 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1487 tiling_mode == I915_TILING_NONE)
1488 return size;
92b88aeb
CW
1489
1490 /* Previous chips need a power-of-two fence region when tiling */
1491 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1492 gtt_size = 1024*1024;
92b88aeb 1493 else
e28f8711 1494 gtt_size = 512*1024;
92b88aeb 1495
e28f8711
CW
1496 while (gtt_size < size)
1497 gtt_size <<= 1;
92b88aeb 1498
e28f8711 1499 return gtt_size;
92b88aeb
CW
1500}
1501
de151cf6
JB
1502/**
1503 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1504 * @obj: object to check
1505 *
1506 * Return the required GTT alignment for an object, taking into account
5e783301 1507 * potential fence register mapping.
de151cf6 1508 */
d865110c
ID
1509uint32_t
1510i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1511 int tiling_mode, bool fenced)
de151cf6 1512{
de151cf6
JB
1513 /*
1514 * Minimum alignment is 4k (GTT page size), but might be greater
1515 * if a fence register is needed for the object.
1516 */
d865110c 1517 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1518 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1519 return 4096;
1520
a00b10c3
CW
1521 /*
1522 * Previous chips need to be aligned to the size of the smallest
1523 * fence register that can contain the object.
1524 */
e28f8711 1525 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1526}
1527
d8cb5086
CW
1528static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1529{
1530 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1531 int ret;
1532
0de23977 1533 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1534 return 0;
1535
da494d7c
DV
1536 dev_priv->mm.shrinker_no_lock_stealing = true;
1537
d8cb5086
CW
1538 ret = drm_gem_create_mmap_offset(&obj->base);
1539 if (ret != -ENOSPC)
da494d7c 1540 goto out;
d8cb5086
CW
1541
1542 /* Badly fragmented mmap space? The only way we can recover
1543 * space is by destroying unwanted objects. We can't randomly release
1544 * mmap_offsets as userspace expects them to be persistent for the
1545 * lifetime of the objects. The closest we can is to release the
1546 * offsets on purgeable objects by truncating it and marking it purged,
1547 * which prevents userspace from ever using that object again.
1548 */
1549 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1550 ret = drm_gem_create_mmap_offset(&obj->base);
1551 if (ret != -ENOSPC)
da494d7c 1552 goto out;
d8cb5086
CW
1553
1554 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1555 ret = drm_gem_create_mmap_offset(&obj->base);
1556out:
1557 dev_priv->mm.shrinker_no_lock_stealing = false;
1558
1559 return ret;
d8cb5086
CW
1560}
1561
1562static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1563{
d8cb5086
CW
1564 drm_gem_free_mmap_offset(&obj->base);
1565}
1566
de151cf6 1567int
ff72145b
DA
1568i915_gem_mmap_gtt(struct drm_file *file,
1569 struct drm_device *dev,
1570 uint32_t handle,
1571 uint64_t *offset)
de151cf6 1572{
da761a6e 1573 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1574 struct drm_i915_gem_object *obj;
de151cf6
JB
1575 int ret;
1576
76c1dec1 1577 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1578 if (ret)
76c1dec1 1579 return ret;
de151cf6 1580
ff72145b 1581 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1582 if (&obj->base == NULL) {
1d7cfea1
CW
1583 ret = -ENOENT;
1584 goto unlock;
1585 }
de151cf6 1586
5d4545ae 1587 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1588 ret = -E2BIG;
ff56b0bc 1589 goto out;
da761a6e
CW
1590 }
1591
05394f39 1592 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1593 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1594 ret = -EINVAL;
1595 goto out;
ab18282d
CW
1596 }
1597
d8cb5086
CW
1598 ret = i915_gem_object_create_mmap_offset(obj);
1599 if (ret)
1600 goto out;
de151cf6 1601
0de23977 1602 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1603
1d7cfea1 1604out:
05394f39 1605 drm_gem_object_unreference(&obj->base);
1d7cfea1 1606unlock:
de151cf6 1607 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1608 return ret;
de151cf6
JB
1609}
1610
ff72145b
DA
1611/**
1612 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1613 * @dev: DRM device
1614 * @data: GTT mapping ioctl data
1615 * @file: GEM object info
1616 *
1617 * Simply returns the fake offset to userspace so it can mmap it.
1618 * The mmap call will end up in drm_gem_mmap(), which will set things
1619 * up so we can get faults in the handler above.
1620 *
1621 * The fault handler will take care of binding the object into the GTT
1622 * (since it may have been evicted to make room for something), allocating
1623 * a fence register, and mapping the appropriate aperture address into
1624 * userspace.
1625 */
1626int
1627i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1628 struct drm_file *file)
1629{
1630 struct drm_i915_gem_mmap_gtt *args = data;
1631
ff72145b
DA
1632 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1633}
1634
225067ee
DV
1635/* Immediately discard the backing storage */
1636static void
1637i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1638{
e5281ccd 1639 struct inode *inode;
e5281ccd 1640
4d6294bf 1641 i915_gem_object_free_mmap_offset(obj);
1286ff73 1642
4d6294bf
CW
1643 if (obj->base.filp == NULL)
1644 return;
e5281ccd 1645
225067ee
DV
1646 /* Our goal here is to return as much of the memory as
1647 * is possible back to the system as we are called from OOM.
1648 * To do this we must instruct the shmfs to drop all of its
1649 * backing pages, *now*.
1650 */
496ad9aa 1651 inode = file_inode(obj->base.filp);
225067ee 1652 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1653
225067ee
DV
1654 obj->madv = __I915_MADV_PURGED;
1655}
e5281ccd 1656
225067ee
DV
1657static inline int
1658i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1659{
1660 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1661}
1662
5cdf5881 1663static void
05394f39 1664i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1665{
90797e6d
ID
1666 struct sg_page_iter sg_iter;
1667 int ret;
1286ff73 1668
05394f39 1669 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1670
6c085a72
CW
1671 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1672 if (ret) {
1673 /* In the event of a disaster, abandon all caches and
1674 * hope for the best.
1675 */
1676 WARN_ON(ret != -EIO);
2c22569b 1677 i915_gem_clflush_object(obj, true);
6c085a72
CW
1678 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1679 }
1680
6dacfd2f 1681 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1682 i915_gem_object_save_bit_17_swizzle(obj);
1683
05394f39
CW
1684 if (obj->madv == I915_MADV_DONTNEED)
1685 obj->dirty = 0;
3ef94daa 1686
90797e6d 1687 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1688 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1689
05394f39 1690 if (obj->dirty)
9da3da66 1691 set_page_dirty(page);
3ef94daa 1692
05394f39 1693 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1694 mark_page_accessed(page);
3ef94daa 1695
9da3da66 1696 page_cache_release(page);
3ef94daa 1697 }
05394f39 1698 obj->dirty = 0;
673a394b 1699
9da3da66
CW
1700 sg_free_table(obj->pages);
1701 kfree(obj->pages);
37e680a1 1702}
6c085a72 1703
dd624afd 1704int
37e680a1
CW
1705i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1706{
1707 const struct drm_i915_gem_object_ops *ops = obj->ops;
1708
2f745ad3 1709 if (obj->pages == NULL)
37e680a1
CW
1710 return 0;
1711
a5570178
CW
1712 if (obj->pages_pin_count)
1713 return -EBUSY;
1714
9843877d 1715 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1716
a2165e31
CW
1717 /* ->put_pages might need to allocate memory for the bit17 swizzle
1718 * array, hence protect them from being reaped by removing them from gtt
1719 * lists early. */
35c20a60 1720 list_del(&obj->global_list);
a2165e31 1721
37e680a1 1722 ops->put_pages(obj);
05394f39 1723 obj->pages = NULL;
37e680a1 1724
6c085a72
CW
1725 if (i915_gem_object_is_purgeable(obj))
1726 i915_gem_object_truncate(obj);
1727
1728 return 0;
1729}
1730
d9973b43 1731static unsigned long
93927ca5
DV
1732__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1733 bool purgeable_only)
6c085a72 1734{
57094f82 1735 struct list_head still_bound_list;
6c085a72 1736 struct drm_i915_gem_object *obj, *next;
d9973b43 1737 unsigned long count = 0;
6c085a72
CW
1738
1739 list_for_each_entry_safe(obj, next,
1740 &dev_priv->mm.unbound_list,
35c20a60 1741 global_list) {
93927ca5 1742 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1743 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1744 count += obj->base.size >> PAGE_SHIFT;
1745 if (count >= target)
1746 return count;
1747 }
1748 }
1749
57094f82
CW
1750 /*
1751 * As we may completely rewrite the bound list whilst unbinding
1752 * (due to retiring requests) we have to strictly process only
1753 * one element of the list at the time, and recheck the list
1754 * on every iteration.
1755 */
1756 INIT_LIST_HEAD(&still_bound_list);
1757 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1758 struct i915_vma *vma, *v;
80dcfdbd 1759
57094f82
CW
1760 obj = list_first_entry(&dev_priv->mm.bound_list,
1761 typeof(*obj), global_list);
1762 list_move_tail(&obj->global_list, &still_bound_list);
1763
80dcfdbd
BW
1764 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1765 continue;
1766
57094f82
CW
1767 /*
1768 * Hold a reference whilst we unbind this object, as we may
1769 * end up waiting for and retiring requests. This might
1770 * release the final reference (held by the active list)
1771 * and result in the object being freed from under us.
1772 * in this object being freed.
1773 *
1774 * Note 1: Shrinking the bound list is special since only active
1775 * (and hence bound objects) can contain such limbo objects, so
1776 * we don't need special tricks for shrinking the unbound list.
1777 * The only other place where we have to be careful with active
1778 * objects suddenly disappearing due to retiring requests is the
1779 * eviction code.
1780 *
1781 * Note 2: Even though the bound list doesn't hold a reference
1782 * to the object we can safely grab one here: The final object
1783 * unreferencing and the bound_list are both protected by the
1784 * dev->struct_mutex and so we won't ever be able to observe an
1785 * object on the bound_list with a reference count equals 0.
1786 */
1787 drm_gem_object_reference(&obj->base);
1788
07fe0b12
BW
1789 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1790 if (i915_vma_unbind(vma))
1791 break;
80dcfdbd 1792
57094f82 1793 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1794 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1795
1796 drm_gem_object_unreference(&obj->base);
6c085a72 1797 }
57094f82 1798 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
6c085a72
CW
1799
1800 return count;
1801}
1802
d9973b43 1803static unsigned long
93927ca5
DV
1804i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1805{
1806 return __i915_gem_shrink(dev_priv, target, true);
1807}
1808
d9973b43 1809static unsigned long
6c085a72
CW
1810i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1811{
1812 struct drm_i915_gem_object *obj, *next;
7dc19d5a 1813 long freed = 0;
6c085a72
CW
1814
1815 i915_gem_evict_everything(dev_priv->dev);
1816
35c20a60 1817 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
7dc19d5a 1818 global_list) {
d9973b43 1819 if (i915_gem_object_put_pages(obj) == 0)
7dc19d5a 1820 freed += obj->base.size >> PAGE_SHIFT;
7dc19d5a
DC
1821 }
1822 return freed;
225067ee
DV
1823}
1824
37e680a1 1825static int
6c085a72 1826i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1827{
6c085a72 1828 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1829 int page_count, i;
1830 struct address_space *mapping;
9da3da66
CW
1831 struct sg_table *st;
1832 struct scatterlist *sg;
90797e6d 1833 struct sg_page_iter sg_iter;
e5281ccd 1834 struct page *page;
90797e6d 1835 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1836 gfp_t gfp;
e5281ccd 1837
6c085a72
CW
1838 /* Assert that the object is not currently in any GPU domain. As it
1839 * wasn't in the GTT, there shouldn't be any way it could have been in
1840 * a GPU cache
1841 */
1842 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1843 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1844
9da3da66
CW
1845 st = kmalloc(sizeof(*st), GFP_KERNEL);
1846 if (st == NULL)
1847 return -ENOMEM;
1848
05394f39 1849 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1850 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1851 kfree(st);
e5281ccd 1852 return -ENOMEM;
9da3da66 1853 }
e5281ccd 1854
9da3da66
CW
1855 /* Get the list of pages out of our struct file. They'll be pinned
1856 * at this point until we release them.
1857 *
1858 * Fail silently without starting the shrinker
1859 */
496ad9aa 1860 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1861 gfp = mapping_gfp_mask(mapping);
caf49191 1862 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1863 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1864 sg = st->sgl;
1865 st->nents = 0;
1866 for (i = 0; i < page_count; i++) {
6c085a72
CW
1867 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1868 if (IS_ERR(page)) {
1869 i915_gem_purge(dev_priv, page_count);
1870 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1871 }
1872 if (IS_ERR(page)) {
1873 /* We've tried hard to allocate the memory by reaping
1874 * our own buffer, now let the real VM do its job and
1875 * go down in flames if truly OOM.
1876 */
caf49191 1877 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1878 gfp |= __GFP_IO | __GFP_WAIT;
1879
1880 i915_gem_shrink_all(dev_priv);
1881 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1882 if (IS_ERR(page))
1883 goto err_pages;
1884
caf49191 1885 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1886 gfp &= ~(__GFP_IO | __GFP_WAIT);
1887 }
426729dc
KRW
1888#ifdef CONFIG_SWIOTLB
1889 if (swiotlb_nr_tbl()) {
1890 st->nents++;
1891 sg_set_page(sg, page, PAGE_SIZE, 0);
1892 sg = sg_next(sg);
1893 continue;
1894 }
1895#endif
90797e6d
ID
1896 if (!i || page_to_pfn(page) != last_pfn + 1) {
1897 if (i)
1898 sg = sg_next(sg);
1899 st->nents++;
1900 sg_set_page(sg, page, PAGE_SIZE, 0);
1901 } else {
1902 sg->length += PAGE_SIZE;
1903 }
1904 last_pfn = page_to_pfn(page);
3bbbe706
DV
1905
1906 /* Check that the i965g/gm workaround works. */
1907 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 1908 }
426729dc
KRW
1909#ifdef CONFIG_SWIOTLB
1910 if (!swiotlb_nr_tbl())
1911#endif
1912 sg_mark_end(sg);
74ce6b6c
CW
1913 obj->pages = st;
1914
6dacfd2f 1915 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1916 i915_gem_object_do_bit_17_swizzle(obj);
1917
1918 return 0;
1919
1920err_pages:
90797e6d
ID
1921 sg_mark_end(sg);
1922 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1923 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1924 sg_free_table(st);
1925 kfree(st);
e5281ccd 1926 return PTR_ERR(page);
673a394b
EA
1927}
1928
37e680a1
CW
1929/* Ensure that the associated pages are gathered from the backing storage
1930 * and pinned into our object. i915_gem_object_get_pages() may be called
1931 * multiple times before they are released by a single call to
1932 * i915_gem_object_put_pages() - once the pages are no longer referenced
1933 * either as a result of memory pressure (reaping pages under the shrinker)
1934 * or as the object is itself released.
1935 */
1936int
1937i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1938{
1939 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1940 const struct drm_i915_gem_object_ops *ops = obj->ops;
1941 int ret;
1942
2f745ad3 1943 if (obj->pages)
37e680a1
CW
1944 return 0;
1945
43e28f09
CW
1946 if (obj->madv != I915_MADV_WILLNEED) {
1947 DRM_ERROR("Attempting to obtain a purgeable object\n");
1948 return -EINVAL;
1949 }
1950
a5570178
CW
1951 BUG_ON(obj->pages_pin_count);
1952
37e680a1
CW
1953 ret = ops->get_pages(obj);
1954 if (ret)
1955 return ret;
1956
35c20a60 1957 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1958 return 0;
673a394b
EA
1959}
1960
e2d05a8b 1961static void
05394f39 1962i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1963 struct intel_ring_buffer *ring)
673a394b 1964{
05394f39 1965 struct drm_device *dev = obj->base.dev;
69dc4987 1966 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1967 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1968
852835f3 1969 BUG_ON(ring == NULL);
02978ff5
CW
1970 if (obj->ring != ring && obj->last_write_seqno) {
1971 /* Keep the seqno relative to the current ring */
1972 obj->last_write_seqno = seqno;
1973 }
05394f39 1974 obj->ring = ring;
673a394b
EA
1975
1976 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1977 if (!obj->active) {
1978 drm_gem_object_reference(&obj->base);
1979 obj->active = 1;
673a394b 1980 }
e35a41de 1981
05394f39 1982 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1983
0201f1ec 1984 obj->last_read_seqno = seqno;
caea7476 1985
7dd49065 1986 if (obj->fenced_gpu_access) {
caea7476 1987 obj->last_fenced_seqno = seqno;
caea7476 1988
7dd49065
CW
1989 /* Bump MRU to take account of the delayed flush */
1990 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1991 struct drm_i915_fence_reg *reg;
1992
1993 reg = &dev_priv->fence_regs[obj->fence_reg];
1994 list_move_tail(&reg->lru_list,
1995 &dev_priv->mm.fence_list);
1996 }
caea7476
CW
1997 }
1998}
1999
e2d05a8b
BW
2000void i915_vma_move_to_active(struct i915_vma *vma,
2001 struct intel_ring_buffer *ring)
2002{
2003 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2004 return i915_gem_object_move_to_active(vma->obj, ring);
2005}
2006
caea7476 2007static void
caea7476 2008i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2009{
ca191b13 2010 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2011 struct i915_address_space *vm;
2012 struct i915_vma *vma;
ce44b0ea 2013
65ce3027 2014 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2015 BUG_ON(!obj->active);
caea7476 2016
feb822cf
BW
2017 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2018 vma = i915_gem_obj_to_vma(obj, vm);
2019 if (vma && !list_empty(&vma->mm_list))
2020 list_move_tail(&vma->mm_list, &vm->inactive_list);
2021 }
caea7476 2022
65ce3027 2023 list_del_init(&obj->ring_list);
caea7476
CW
2024 obj->ring = NULL;
2025
65ce3027
CW
2026 obj->last_read_seqno = 0;
2027 obj->last_write_seqno = 0;
2028 obj->base.write_domain = 0;
2029
2030 obj->last_fenced_seqno = 0;
caea7476 2031 obj->fenced_gpu_access = false;
caea7476
CW
2032
2033 obj->active = 0;
2034 drm_gem_object_unreference(&obj->base);
2035
2036 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2037}
673a394b 2038
9d773091 2039static int
fca26bb4 2040i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2041{
9d773091
CW
2042 struct drm_i915_private *dev_priv = dev->dev_private;
2043 struct intel_ring_buffer *ring;
2044 int ret, i, j;
53d227f2 2045
107f27a5 2046 /* Carefully retire all requests without writing to the rings */
9d773091 2047 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2048 ret = intel_ring_idle(ring);
2049 if (ret)
2050 return ret;
9d773091 2051 }
9d773091 2052 i915_gem_retire_requests(dev);
107f27a5
CW
2053
2054 /* Finally reset hw state */
9d773091 2055 for_each_ring(ring, dev_priv, i) {
fca26bb4 2056 intel_ring_init_seqno(ring, seqno);
498d2ac1 2057
9d773091
CW
2058 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2059 ring->sync_seqno[j] = 0;
2060 }
53d227f2 2061
9d773091 2062 return 0;
53d227f2
DV
2063}
2064
fca26bb4
MK
2065int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2066{
2067 struct drm_i915_private *dev_priv = dev->dev_private;
2068 int ret;
2069
2070 if (seqno == 0)
2071 return -EINVAL;
2072
2073 /* HWS page needs to be set less than what we
2074 * will inject to ring
2075 */
2076 ret = i915_gem_init_seqno(dev, seqno - 1);
2077 if (ret)
2078 return ret;
2079
2080 /* Carefully set the last_seqno value so that wrap
2081 * detection still works
2082 */
2083 dev_priv->next_seqno = seqno;
2084 dev_priv->last_seqno = seqno - 1;
2085 if (dev_priv->last_seqno == 0)
2086 dev_priv->last_seqno--;
2087
2088 return 0;
2089}
2090
9d773091
CW
2091int
2092i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2093{
9d773091
CW
2094 struct drm_i915_private *dev_priv = dev->dev_private;
2095
2096 /* reserve 0 for non-seqno */
2097 if (dev_priv->next_seqno == 0) {
fca26bb4 2098 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2099 if (ret)
2100 return ret;
53d227f2 2101
9d773091
CW
2102 dev_priv->next_seqno = 1;
2103 }
53d227f2 2104
f72b3435 2105 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2106 return 0;
53d227f2
DV
2107}
2108
0025c077
MK
2109int __i915_add_request(struct intel_ring_buffer *ring,
2110 struct drm_file *file,
7d736f4f 2111 struct drm_i915_gem_object *obj,
0025c077 2112 u32 *out_seqno)
673a394b 2113{
db53a302 2114 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2115 struct drm_i915_gem_request *request;
7d736f4f 2116 u32 request_ring_position, request_start;
673a394b 2117 int was_empty;
3cce469c
CW
2118 int ret;
2119
7d736f4f 2120 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2121 /*
2122 * Emit any outstanding flushes - execbuf can fail to emit the flush
2123 * after having emitted the batchbuffer command. Hence we need to fix
2124 * things up similar to emitting the lazy request. The difference here
2125 * is that the flush _must_ happen before the next request, no matter
2126 * what.
2127 */
a7b9761d
CW
2128 ret = intel_ring_flush_all_caches(ring);
2129 if (ret)
2130 return ret;
cc889e0f 2131
3c0e234c
CW
2132 request = ring->preallocated_lazy_request;
2133 if (WARN_ON(request == NULL))
acb868d3 2134 return -ENOMEM;
cc889e0f 2135
a71d8d94
CW
2136 /* Record the position of the start of the request so that
2137 * should we detect the updated seqno part-way through the
2138 * GPU processing the request, we never over-estimate the
2139 * position of the head.
2140 */
2141 request_ring_position = intel_ring_get_tail(ring);
2142
9d773091 2143 ret = ring->add_request(ring);
3c0e234c 2144 if (ret)
3bb73aba 2145 return ret;
673a394b 2146
9d773091 2147 request->seqno = intel_ring_get_seqno(ring);
852835f3 2148 request->ring = ring;
7d736f4f 2149 request->head = request_start;
a71d8d94 2150 request->tail = request_ring_position;
7d736f4f
MK
2151
2152 /* Whilst this request exists, batch_obj will be on the
2153 * active_list, and so will hold the active reference. Only when this
2154 * request is retired will the the batch_obj be moved onto the
2155 * inactive_list and lose its active reference. Hence we do not need
2156 * to explicitly hold another reference here.
2157 */
9a7e0c2a 2158 request->batch_obj = obj;
0e50e96b 2159
9a7e0c2a
CW
2160 /* Hold a reference to the current context so that we can inspect
2161 * it later in case a hangcheck error event fires.
2162 */
2163 request->ctx = ring->last_context;
0e50e96b
MK
2164 if (request->ctx)
2165 i915_gem_context_reference(request->ctx);
2166
673a394b 2167 request->emitted_jiffies = jiffies;
852835f3
ZN
2168 was_empty = list_empty(&ring->request_list);
2169 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2170 request->file_priv = NULL;
852835f3 2171
db53a302
CW
2172 if (file) {
2173 struct drm_i915_file_private *file_priv = file->driver_priv;
2174
1c25595f 2175 spin_lock(&file_priv->mm.lock);
f787a5f5 2176 request->file_priv = file_priv;
b962442e 2177 list_add_tail(&request->client_list,
f787a5f5 2178 &file_priv->mm.request_list);
1c25595f 2179 spin_unlock(&file_priv->mm.lock);
b962442e 2180 }
673a394b 2181
9d773091 2182 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2183 ring->outstanding_lazy_seqno = 0;
3c0e234c 2184 ring->preallocated_lazy_request = NULL;
db53a302 2185
db1b76ca 2186 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2187 i915_queue_hangcheck(ring->dev);
2188
f047e395 2189 if (was_empty) {
b29c19b6 2190 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
b3b079db 2191 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2192 &dev_priv->mm.retire_work,
2193 round_jiffies_up_relative(HZ));
f047e395
CW
2194 intel_mark_busy(dev_priv->dev);
2195 }
f65d9421 2196 }
cc889e0f 2197
acb868d3 2198 if (out_seqno)
9d773091 2199 *out_seqno = request->seqno;
3cce469c 2200 return 0;
673a394b
EA
2201}
2202
f787a5f5
CW
2203static inline void
2204i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2205{
1c25595f 2206 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2207
1c25595f
CW
2208 if (!file_priv)
2209 return;
1c5d22f7 2210
1c25595f 2211 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2212 list_del(&request->client_list);
2213 request->file_priv = NULL;
1c25595f 2214 spin_unlock(&file_priv->mm.lock);
673a394b 2215}
673a394b 2216
d1ccbb5d
BW
2217static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2218 struct i915_address_space *vm)
aa60c664 2219{
d1ccbb5d
BW
2220 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2221 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
aa60c664
MK
2222 return true;
2223
2224 return false;
2225}
2226
2227static bool i915_head_inside_request(const u32 acthd_unmasked,
2228 const u32 request_start,
2229 const u32 request_end)
2230{
2231 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2232
2233 if (request_start < request_end) {
2234 if (acthd >= request_start && acthd < request_end)
2235 return true;
2236 } else if (request_start > request_end) {
2237 if (acthd >= request_start || acthd < request_end)
2238 return true;
2239 }
2240
2241 return false;
2242}
2243
d1ccbb5d
BW
2244static struct i915_address_space *
2245request_to_vm(struct drm_i915_gem_request *request)
2246{
2247 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2248 struct i915_address_space *vm;
2249
2250 vm = &dev_priv->gtt.base;
2251
2252 return vm;
2253}
2254
aa60c664
MK
2255static bool i915_request_guilty(struct drm_i915_gem_request *request,
2256 const u32 acthd, bool *inside)
2257{
2258 /* There is a possibility that unmasked head address
2259 * pointing inside the ring, matches the batch_obj address range.
2260 * However this is extremely unlikely.
2261 */
aa60c664 2262 if (request->batch_obj) {
d1ccbb5d
BW
2263 if (i915_head_inside_object(acthd, request->batch_obj,
2264 request_to_vm(request))) {
aa60c664
MK
2265 *inside = true;
2266 return true;
2267 }
2268 }
2269
2270 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2271 *inside = false;
2272 return true;
2273 }
2274
2275 return false;
2276}
2277
be62acb4
MK
2278static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2279{
2280 const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2281
2282 if (hs->banned)
2283 return true;
2284
2285 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2286 DRM_ERROR("context hanging too fast, declaring banned!\n");
2287 return true;
2288 }
2289
2290 return false;
2291}
2292
aa60c664
MK
2293static void i915_set_reset_status(struct intel_ring_buffer *ring,
2294 struct drm_i915_gem_request *request,
2295 u32 acthd)
2296{
2297 struct i915_ctx_hang_stats *hs = NULL;
2298 bool inside, guilty;
d1ccbb5d 2299 unsigned long offset = 0;
aa60c664
MK
2300
2301 /* Innocent until proven guilty */
2302 guilty = false;
2303
d1ccbb5d
BW
2304 if (request->batch_obj)
2305 offset = i915_gem_obj_offset(request->batch_obj,
2306 request_to_vm(request));
2307
f2f4d82f 2308 if (ring->hangcheck.action != HANGCHECK_WAIT &&
aa60c664 2309 i915_request_guilty(request, acthd, &inside)) {
f343c5f6 2310 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
aa60c664
MK
2311 ring->name,
2312 inside ? "inside" : "flushing",
d1ccbb5d 2313 offset,
aa60c664
MK
2314 request->ctx ? request->ctx->id : 0,
2315 acthd);
2316
2317 guilty = true;
2318 }
2319
2320 /* If contexts are disabled or this is the default context, use
2321 * file_priv->reset_state
2322 */
2323 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2324 hs = &request->ctx->hang_stats;
2325 else if (request->file_priv)
2326 hs = &request->file_priv->hang_stats;
2327
2328 if (hs) {
be62acb4
MK
2329 if (guilty) {
2330 hs->banned = i915_context_is_banned(hs);
aa60c664 2331 hs->batch_active++;
be62acb4
MK
2332 hs->guilty_ts = get_seconds();
2333 } else {
aa60c664 2334 hs->batch_pending++;
be62acb4 2335 }
aa60c664
MK
2336 }
2337}
2338
0e50e96b
MK
2339static void i915_gem_free_request(struct drm_i915_gem_request *request)
2340{
2341 list_del(&request->list);
2342 i915_gem_request_remove_from_client(request);
2343
2344 if (request->ctx)
2345 i915_gem_context_unreference(request->ctx);
2346
2347 kfree(request);
2348}
2349
dfaae392
CW
2350static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2351 struct intel_ring_buffer *ring)
9375e446 2352{
aa60c664
MK
2353 u32 completed_seqno;
2354 u32 acthd;
2355
2356 acthd = intel_ring_get_active_head(ring);
2357 completed_seqno = ring->get_seqno(ring, false);
2358
dfaae392
CW
2359 while (!list_empty(&ring->request_list)) {
2360 struct drm_i915_gem_request *request;
673a394b 2361
dfaae392
CW
2362 request = list_first_entry(&ring->request_list,
2363 struct drm_i915_gem_request,
2364 list);
de151cf6 2365
aa60c664
MK
2366 if (request->seqno > completed_seqno)
2367 i915_set_reset_status(ring, request, acthd);
2368
0e50e96b 2369 i915_gem_free_request(request);
dfaae392 2370 }
673a394b 2371
dfaae392 2372 while (!list_empty(&ring->active_list)) {
05394f39 2373 struct drm_i915_gem_object *obj;
9375e446 2374
05394f39
CW
2375 obj = list_first_entry(&ring->active_list,
2376 struct drm_i915_gem_object,
2377 ring_list);
9375e446 2378
05394f39 2379 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2380 }
2381}
2382
19b2dbde 2383void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2384{
2385 struct drm_i915_private *dev_priv = dev->dev_private;
2386 int i;
2387
4b9de737 2388 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2389 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2390
94a335db
DV
2391 /*
2392 * Commit delayed tiling changes if we have an object still
2393 * attached to the fence, otherwise just clear the fence.
2394 */
2395 if (reg->obj) {
2396 i915_gem_object_update_fence(reg->obj, reg,
2397 reg->obj->tiling_mode);
2398 } else {
2399 i915_gem_write_fence(dev, i, NULL);
2400 }
312817a3
CW
2401 }
2402}
2403
069efc1d 2404void i915_gem_reset(struct drm_device *dev)
673a394b 2405{
77f01230 2406 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2407 struct intel_ring_buffer *ring;
1ec14ad3 2408 int i;
673a394b 2409
b4519513
CW
2410 for_each_ring(ring, dev_priv, i)
2411 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2412
3d57e5bd
BW
2413 i915_gem_cleanup_ringbuffer(dev);
2414
19b2dbde 2415 i915_gem_restore_fences(dev);
673a394b
EA
2416}
2417
2418/**
2419 * This function clears the request list as sequence numbers are passed.
2420 */
a71d8d94 2421void
db53a302 2422i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2423{
673a394b
EA
2424 uint32_t seqno;
2425
db53a302 2426 if (list_empty(&ring->request_list))
6c0594a3
KW
2427 return;
2428
db53a302 2429 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2430
b2eadbc8 2431 seqno = ring->get_seqno(ring, true);
1ec14ad3 2432
852835f3 2433 while (!list_empty(&ring->request_list)) {
673a394b 2434 struct drm_i915_gem_request *request;
673a394b 2435
852835f3 2436 request = list_first_entry(&ring->request_list,
673a394b
EA
2437 struct drm_i915_gem_request,
2438 list);
673a394b 2439
dfaae392 2440 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2441 break;
2442
db53a302 2443 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2444 /* We know the GPU must have read the request to have
2445 * sent us the seqno + interrupt, so use the position
2446 * of tail of the request to update the last known position
2447 * of the GPU head.
2448 */
2449 ring->last_retired_head = request->tail;
b84d5f0c 2450
0e50e96b 2451 i915_gem_free_request(request);
b84d5f0c 2452 }
673a394b 2453
b84d5f0c
CW
2454 /* Move any buffers on the active list that are no longer referenced
2455 * by the ringbuffer to the flushing/inactive lists as appropriate.
2456 */
2457 while (!list_empty(&ring->active_list)) {
05394f39 2458 struct drm_i915_gem_object *obj;
b84d5f0c 2459
0206e353 2460 obj = list_first_entry(&ring->active_list,
05394f39
CW
2461 struct drm_i915_gem_object,
2462 ring_list);
673a394b 2463
0201f1ec 2464 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2465 break;
b84d5f0c 2466
65ce3027 2467 i915_gem_object_move_to_inactive(obj);
673a394b 2468 }
9d34e5db 2469
db53a302
CW
2470 if (unlikely(ring->trace_irq_seqno &&
2471 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2472 ring->irq_put(ring);
db53a302 2473 ring->trace_irq_seqno = 0;
9d34e5db 2474 }
23bc5982 2475
db53a302 2476 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2477}
2478
b29c19b6 2479bool
b09a1fec
CW
2480i915_gem_retire_requests(struct drm_device *dev)
2481{
2482 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2483 struct intel_ring_buffer *ring;
b29c19b6 2484 bool idle = true;
1ec14ad3 2485 int i;
b09a1fec 2486
b29c19b6 2487 for_each_ring(ring, dev_priv, i) {
b4519513 2488 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2489 idle &= list_empty(&ring->request_list);
2490 }
2491
2492 if (idle)
2493 mod_delayed_work(dev_priv->wq,
2494 &dev_priv->mm.idle_work,
2495 msecs_to_jiffies(100));
2496
2497 return idle;
b09a1fec
CW
2498}
2499
75ef9da2 2500static void
673a394b
EA
2501i915_gem_retire_work_handler(struct work_struct *work)
2502{
b29c19b6
CW
2503 struct drm_i915_private *dev_priv =
2504 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2505 struct drm_device *dev = dev_priv->dev;
0a58705b 2506 bool idle;
673a394b 2507
891b48cf 2508 /* Come back later if the device is busy... */
b29c19b6
CW
2509 idle = false;
2510 if (mutex_trylock(&dev->struct_mutex)) {
2511 idle = i915_gem_retire_requests(dev);
2512 mutex_unlock(&dev->struct_mutex);
673a394b 2513 }
b29c19b6 2514 if (!idle)
bcb45086
CW
2515 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2516 round_jiffies_up_relative(HZ));
b29c19b6 2517}
0a58705b 2518
b29c19b6
CW
2519static void
2520i915_gem_idle_work_handler(struct work_struct *work)
2521{
2522 struct drm_i915_private *dev_priv =
2523 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2524
2525 intel_mark_idle(dev_priv->dev);
673a394b
EA
2526}
2527
30dfebf3
DV
2528/**
2529 * Ensures that an object will eventually get non-busy by flushing any required
2530 * write domains, emitting any outstanding lazy request and retiring and
2531 * completed requests.
2532 */
2533static int
2534i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2535{
2536 int ret;
2537
2538 if (obj->active) {
0201f1ec 2539 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2540 if (ret)
2541 return ret;
2542
30dfebf3
DV
2543 i915_gem_retire_requests_ring(obj->ring);
2544 }
2545
2546 return 0;
2547}
2548
23ba4fd0
BW
2549/**
2550 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2551 * @DRM_IOCTL_ARGS: standard ioctl arguments
2552 *
2553 * Returns 0 if successful, else an error is returned with the remaining time in
2554 * the timeout parameter.
2555 * -ETIME: object is still busy after timeout
2556 * -ERESTARTSYS: signal interrupted the wait
2557 * -ENONENT: object doesn't exist
2558 * Also possible, but rare:
2559 * -EAGAIN: GPU wedged
2560 * -ENOMEM: damn
2561 * -ENODEV: Internal IRQ fail
2562 * -E?: The add request failed
2563 *
2564 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2565 * non-zero timeout parameter the wait ioctl will wait for the given number of
2566 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2567 * without holding struct_mutex the object may become re-busied before this
2568 * function completes. A similar but shorter * race condition exists in the busy
2569 * ioctl
2570 */
2571int
2572i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2573{
f69061be 2574 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2575 struct drm_i915_gem_wait *args = data;
2576 struct drm_i915_gem_object *obj;
2577 struct intel_ring_buffer *ring = NULL;
eac1f14f 2578 struct timespec timeout_stack, *timeout = NULL;
f69061be 2579 unsigned reset_counter;
23ba4fd0
BW
2580 u32 seqno = 0;
2581 int ret = 0;
2582
eac1f14f
BW
2583 if (args->timeout_ns >= 0) {
2584 timeout_stack = ns_to_timespec(args->timeout_ns);
2585 timeout = &timeout_stack;
2586 }
23ba4fd0
BW
2587
2588 ret = i915_mutex_lock_interruptible(dev);
2589 if (ret)
2590 return ret;
2591
2592 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2593 if (&obj->base == NULL) {
2594 mutex_unlock(&dev->struct_mutex);
2595 return -ENOENT;
2596 }
2597
30dfebf3
DV
2598 /* Need to make sure the object gets inactive eventually. */
2599 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2600 if (ret)
2601 goto out;
2602
2603 if (obj->active) {
0201f1ec 2604 seqno = obj->last_read_seqno;
23ba4fd0
BW
2605 ring = obj->ring;
2606 }
2607
2608 if (seqno == 0)
2609 goto out;
2610
23ba4fd0
BW
2611 /* Do this after OLR check to make sure we make forward progress polling
2612 * on this IOCTL with a 0 timeout (like busy ioctl)
2613 */
2614 if (!args->timeout_ns) {
2615 ret = -ETIME;
2616 goto out;
2617 }
2618
2619 drm_gem_object_unreference(&obj->base);
f69061be 2620 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2621 mutex_unlock(&dev->struct_mutex);
2622
b29c19b6 2623 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2624 if (timeout)
eac1f14f 2625 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2626 return ret;
2627
2628out:
2629 drm_gem_object_unreference(&obj->base);
2630 mutex_unlock(&dev->struct_mutex);
2631 return ret;
2632}
2633
5816d648
BW
2634/**
2635 * i915_gem_object_sync - sync an object to a ring.
2636 *
2637 * @obj: object which may be in use on another ring.
2638 * @to: ring we wish to use the object on. May be NULL.
2639 *
2640 * This code is meant to abstract object synchronization with the GPU.
2641 * Calling with NULL implies synchronizing the object with the CPU
2642 * rather than a particular GPU ring.
2643 *
2644 * Returns 0 if successful, else propagates up the lower layer error.
2645 */
2911a35b
BW
2646int
2647i915_gem_object_sync(struct drm_i915_gem_object *obj,
2648 struct intel_ring_buffer *to)
2649{
2650 struct intel_ring_buffer *from = obj->ring;
2651 u32 seqno;
2652 int ret, idx;
2653
2654 if (from == NULL || to == from)
2655 return 0;
2656
5816d648 2657 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2658 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2659
2660 idx = intel_ring_sync_index(from, to);
2661
0201f1ec 2662 seqno = obj->last_read_seqno;
2911a35b
BW
2663 if (seqno <= from->sync_seqno[idx])
2664 return 0;
2665
b4aca010
BW
2666 ret = i915_gem_check_olr(obj->ring, seqno);
2667 if (ret)
2668 return ret;
2911a35b 2669
b52b89da 2670 trace_i915_gem_ring_sync_to(from, to, seqno);
1500f7ea 2671 ret = to->sync_to(to, from, seqno);
e3a5a225 2672 if (!ret)
7b01e260
MK
2673 /* We use last_read_seqno because sync_to()
2674 * might have just caused seqno wrap under
2675 * the radar.
2676 */
2677 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2678
e3a5a225 2679 return ret;
2911a35b
BW
2680}
2681
b5ffc9bc
CW
2682static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2683{
2684 u32 old_write_domain, old_read_domains;
2685
b5ffc9bc
CW
2686 /* Force a pagefault for domain tracking on next user access */
2687 i915_gem_release_mmap(obj);
2688
b97c3d9c
KP
2689 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2690 return;
2691
97c809fd
CW
2692 /* Wait for any direct GTT access to complete */
2693 mb();
2694
b5ffc9bc
CW
2695 old_read_domains = obj->base.read_domains;
2696 old_write_domain = obj->base.write_domain;
2697
2698 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2699 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2700
2701 trace_i915_gem_object_change_domain(obj,
2702 old_read_domains,
2703 old_write_domain);
2704}
2705
07fe0b12 2706int i915_vma_unbind(struct i915_vma *vma)
673a394b 2707{
07fe0b12 2708 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2709 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2710 int ret;
673a394b 2711
b93dab6e
DV
2712 /* For now we only ever use 1 vma per object */
2713 WARN_ON(!list_is_singular(&obj->vma_list));
2714
07fe0b12 2715 if (list_empty(&vma->vma_link))
673a394b
EA
2716 return 0;
2717
0ff501cb
DV
2718 if (!drm_mm_node_allocated(&vma->node)) {
2719 i915_gem_vma_destroy(vma);
2720
2721 return 0;
2722 }
433544bd 2723
d7f46fc4 2724 if (vma->pin_count)
31d8d651 2725 return -EBUSY;
673a394b 2726
c4670ad0
CW
2727 BUG_ON(obj->pages == NULL);
2728
a8198eea 2729 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2730 if (ret)
a8198eea
CW
2731 return ret;
2732 /* Continue on if we fail due to EIO, the GPU is hung so we
2733 * should be safe and we need to cleanup or else we might
2734 * cause memory corruption through use-after-free.
2735 */
2736
b5ffc9bc 2737 i915_gem_object_finish_gtt(obj);
5323fd04 2738
96b47b65 2739 /* release the fence reg _after_ flushing */
d9e86c0e 2740 ret = i915_gem_object_put_fence(obj);
1488fc08 2741 if (ret)
d9e86c0e 2742 return ret;
96b47b65 2743
07fe0b12 2744 trace_i915_vma_unbind(vma);
db53a302 2745
74898d7e
DV
2746 if (obj->has_global_gtt_mapping)
2747 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2748 if (obj->has_aliasing_ppgtt_mapping) {
2749 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2750 obj->has_aliasing_ppgtt_mapping = 0;
2751 }
74163907 2752 i915_gem_gtt_finish_object(obj);
7bddb01f 2753
ca191b13 2754 list_del(&vma->mm_list);
75e9e915 2755 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2756 if (i915_is_ggtt(vma->vm))
2757 obj->map_and_fenceable = true;
673a394b 2758
2f633156
BW
2759 drm_mm_remove_node(&vma->node);
2760 i915_gem_vma_destroy(vma);
2761
2762 /* Since the unbound list is global, only move to that list if
b93dab6e 2763 * no more VMAs exist. */
2f633156
BW
2764 if (list_empty(&obj->vma_list))
2765 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2766
70903c3b
CW
2767 /* And finally now the object is completely decoupled from this vma,
2768 * we can drop its hold on the backing storage and allow it to be
2769 * reaped by the shrinker.
2770 */
2771 i915_gem_object_unpin_pages(obj);
2772
88241785 2773 return 0;
54cf91dc
CW
2774}
2775
07fe0b12
BW
2776/**
2777 * Unbinds an object from the global GTT aperture.
2778 */
2779int
2780i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2781{
2782 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2783 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2784
58e73e15 2785 if (!i915_gem_obj_ggtt_bound(obj))
07fe0b12
BW
2786 return 0;
2787
d7f46fc4 2788 if (i915_gem_obj_to_ggtt(obj)->pin_count)
07fe0b12
BW
2789 return -EBUSY;
2790
2791 BUG_ON(obj->pages == NULL);
2792
2793 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2794}
2795
b2da9fe5 2796int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2797{
2798 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2799 struct intel_ring_buffer *ring;
1ec14ad3 2800 int ret, i;
4df2faf4 2801
4df2faf4 2802 /* Flush everything onto the inactive list. */
b4519513 2803 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2804 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2805 if (ret)
2806 return ret;
2807
3e960501 2808 ret = intel_ring_idle(ring);
1ec14ad3
CW
2809 if (ret)
2810 return ret;
2811 }
4df2faf4 2812
8a1a49f9 2813 return 0;
4df2faf4
DV
2814}
2815
9ce079e4
CW
2816static void i965_write_fence_reg(struct drm_device *dev, int reg,
2817 struct drm_i915_gem_object *obj)
de151cf6 2818{
de151cf6 2819 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2820 int fence_reg;
2821 int fence_pitch_shift;
de151cf6 2822
56c844e5
ID
2823 if (INTEL_INFO(dev)->gen >= 6) {
2824 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2825 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2826 } else {
2827 fence_reg = FENCE_REG_965_0;
2828 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2829 }
2830
d18b9619
CW
2831 fence_reg += reg * 8;
2832
2833 /* To w/a incoherency with non-atomic 64-bit register updates,
2834 * we split the 64-bit update into two 32-bit writes. In order
2835 * for a partial fence not to be evaluated between writes, we
2836 * precede the update with write to turn off the fence register,
2837 * and only enable the fence as the last step.
2838 *
2839 * For extra levels of paranoia, we make sure each step lands
2840 * before applying the next step.
2841 */
2842 I915_WRITE(fence_reg, 0);
2843 POSTING_READ(fence_reg);
2844
9ce079e4 2845 if (obj) {
f343c5f6 2846 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2847 uint64_t val;
de151cf6 2848
f343c5f6 2849 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2850 0xfffff000) << 32;
f343c5f6 2851 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2852 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2853 if (obj->tiling_mode == I915_TILING_Y)
2854 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2855 val |= I965_FENCE_REG_VALID;
c6642782 2856
d18b9619
CW
2857 I915_WRITE(fence_reg + 4, val >> 32);
2858 POSTING_READ(fence_reg + 4);
2859
2860 I915_WRITE(fence_reg + 0, val);
2861 POSTING_READ(fence_reg);
2862 } else {
2863 I915_WRITE(fence_reg + 4, 0);
2864 POSTING_READ(fence_reg + 4);
2865 }
de151cf6
JB
2866}
2867
9ce079e4
CW
2868static void i915_write_fence_reg(struct drm_device *dev, int reg,
2869 struct drm_i915_gem_object *obj)
de151cf6 2870{
de151cf6 2871 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2872 u32 val;
de151cf6 2873
9ce079e4 2874 if (obj) {
f343c5f6 2875 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2876 int pitch_val;
2877 int tile_width;
c6642782 2878
f343c5f6 2879 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2880 (size & -size) != size ||
f343c5f6
BW
2881 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2882 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2883 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2884
9ce079e4
CW
2885 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2886 tile_width = 128;
2887 else
2888 tile_width = 512;
2889
2890 /* Note: pitch better be a power of two tile widths */
2891 pitch_val = obj->stride / tile_width;
2892 pitch_val = ffs(pitch_val) - 1;
2893
f343c5f6 2894 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2895 if (obj->tiling_mode == I915_TILING_Y)
2896 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2897 val |= I915_FENCE_SIZE_BITS(size);
2898 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2899 val |= I830_FENCE_REG_VALID;
2900 } else
2901 val = 0;
2902
2903 if (reg < 8)
2904 reg = FENCE_REG_830_0 + reg * 4;
2905 else
2906 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2907
2908 I915_WRITE(reg, val);
2909 POSTING_READ(reg);
de151cf6
JB
2910}
2911
9ce079e4
CW
2912static void i830_write_fence_reg(struct drm_device *dev, int reg,
2913 struct drm_i915_gem_object *obj)
de151cf6 2914{
de151cf6 2915 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2916 uint32_t val;
de151cf6 2917
9ce079e4 2918 if (obj) {
f343c5f6 2919 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2920 uint32_t pitch_val;
de151cf6 2921
f343c5f6 2922 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2923 (size & -size) != size ||
f343c5f6
BW
2924 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2925 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2926 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2927
9ce079e4
CW
2928 pitch_val = obj->stride / 128;
2929 pitch_val = ffs(pitch_val) - 1;
de151cf6 2930
f343c5f6 2931 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2932 if (obj->tiling_mode == I915_TILING_Y)
2933 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2934 val |= I830_FENCE_SIZE_BITS(size);
2935 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2936 val |= I830_FENCE_REG_VALID;
2937 } else
2938 val = 0;
c6642782 2939
9ce079e4
CW
2940 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2941 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2942}
2943
d0a57789
CW
2944inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2945{
2946 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2947}
2948
9ce079e4
CW
2949static void i915_gem_write_fence(struct drm_device *dev, int reg,
2950 struct drm_i915_gem_object *obj)
2951{
d0a57789
CW
2952 struct drm_i915_private *dev_priv = dev->dev_private;
2953
2954 /* Ensure that all CPU reads are completed before installing a fence
2955 * and all writes before removing the fence.
2956 */
2957 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2958 mb();
2959
94a335db
DV
2960 WARN(obj && (!obj->stride || !obj->tiling_mode),
2961 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2962 obj->stride, obj->tiling_mode);
2963
9ce079e4 2964 switch (INTEL_INFO(dev)->gen) {
5ab31333 2965 case 8:
9ce079e4 2966 case 7:
56c844e5 2967 case 6:
9ce079e4
CW
2968 case 5:
2969 case 4: i965_write_fence_reg(dev, reg, obj); break;
2970 case 3: i915_write_fence_reg(dev, reg, obj); break;
2971 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2972 default: BUG();
9ce079e4 2973 }
d0a57789
CW
2974
2975 /* And similarly be paranoid that no direct access to this region
2976 * is reordered to before the fence is installed.
2977 */
2978 if (i915_gem_object_needs_mb(obj))
2979 mb();
de151cf6
JB
2980}
2981
61050808
CW
2982static inline int fence_number(struct drm_i915_private *dev_priv,
2983 struct drm_i915_fence_reg *fence)
2984{
2985 return fence - dev_priv->fence_regs;
2986}
2987
2988static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2989 struct drm_i915_fence_reg *fence,
2990 bool enable)
2991{
2dc8aae0 2992 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2993 int reg = fence_number(dev_priv, fence);
2994
2995 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2996
2997 if (enable) {
46a0b638 2998 obj->fence_reg = reg;
61050808
CW
2999 fence->obj = obj;
3000 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3001 } else {
3002 obj->fence_reg = I915_FENCE_REG_NONE;
3003 fence->obj = NULL;
3004 list_del_init(&fence->lru_list);
3005 }
94a335db 3006 obj->fence_dirty = false;
61050808
CW
3007}
3008
d9e86c0e 3009static int
d0a57789 3010i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3011{
1c293ea3 3012 if (obj->last_fenced_seqno) {
86d5bc37 3013 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3014 if (ret)
3015 return ret;
d9e86c0e
CW
3016
3017 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3018 }
3019
86d5bc37 3020 obj->fenced_gpu_access = false;
d9e86c0e
CW
3021 return 0;
3022}
3023
3024int
3025i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3026{
61050808 3027 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3028 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3029 int ret;
3030
d0a57789 3031 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3032 if (ret)
3033 return ret;
3034
61050808
CW
3035 if (obj->fence_reg == I915_FENCE_REG_NONE)
3036 return 0;
d9e86c0e 3037
f9c513e9
CW
3038 fence = &dev_priv->fence_regs[obj->fence_reg];
3039
61050808 3040 i915_gem_object_fence_lost(obj);
f9c513e9 3041 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3042
3043 return 0;
3044}
3045
3046static struct drm_i915_fence_reg *
a360bb1a 3047i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3048{
ae3db24a 3049 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3050 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3051 int i;
ae3db24a
DV
3052
3053 /* First try to find a free reg */
d9e86c0e 3054 avail = NULL;
ae3db24a
DV
3055 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3056 reg = &dev_priv->fence_regs[i];
3057 if (!reg->obj)
d9e86c0e 3058 return reg;
ae3db24a 3059
1690e1eb 3060 if (!reg->pin_count)
d9e86c0e 3061 avail = reg;
ae3db24a
DV
3062 }
3063
d9e86c0e
CW
3064 if (avail == NULL)
3065 return NULL;
ae3db24a
DV
3066
3067 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3068 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3069 if (reg->pin_count)
ae3db24a
DV
3070 continue;
3071
8fe301ad 3072 return reg;
ae3db24a
DV
3073 }
3074
8fe301ad 3075 return NULL;
ae3db24a
DV
3076}
3077
de151cf6 3078/**
9a5a53b3 3079 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3080 * @obj: object to map through a fence reg
3081 *
3082 * When mapping objects through the GTT, userspace wants to be able to write
3083 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3084 * This function walks the fence regs looking for a free one for @obj,
3085 * stealing one if it can't find any.
3086 *
3087 * It then sets up the reg based on the object's properties: address, pitch
3088 * and tiling format.
9a5a53b3
CW
3089 *
3090 * For an untiled surface, this removes any existing fence.
de151cf6 3091 */
8c4b8c3f 3092int
06d98131 3093i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3094{
05394f39 3095 struct drm_device *dev = obj->base.dev;
79e53945 3096 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3097 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3098 struct drm_i915_fence_reg *reg;
ae3db24a 3099 int ret;
de151cf6 3100
14415745
CW
3101 /* Have we updated the tiling parameters upon the object and so
3102 * will need to serialise the write to the associated fence register?
3103 */
5d82e3e6 3104 if (obj->fence_dirty) {
d0a57789 3105 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3106 if (ret)
3107 return ret;
3108 }
9a5a53b3 3109
d9e86c0e 3110 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3111 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3112 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3113 if (!obj->fence_dirty) {
14415745
CW
3114 list_move_tail(&reg->lru_list,
3115 &dev_priv->mm.fence_list);
3116 return 0;
3117 }
3118 } else if (enable) {
3119 reg = i915_find_fence_reg(dev);
3120 if (reg == NULL)
3121 return -EDEADLK;
d9e86c0e 3122
14415745
CW
3123 if (reg->obj) {
3124 struct drm_i915_gem_object *old = reg->obj;
3125
d0a57789 3126 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3127 if (ret)
3128 return ret;
3129
14415745 3130 i915_gem_object_fence_lost(old);
29c5a587 3131 }
14415745 3132 } else
a09ba7fa 3133 return 0;
a09ba7fa 3134
14415745 3135 i915_gem_object_update_fence(obj, reg, enable);
14415745 3136
9ce079e4 3137 return 0;
de151cf6
JB
3138}
3139
42d6ab48
CW
3140static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3141 struct drm_mm_node *gtt_space,
3142 unsigned long cache_level)
3143{
3144 struct drm_mm_node *other;
3145
3146 /* On non-LLC machines we have to be careful when putting differing
3147 * types of snoopable memory together to avoid the prefetcher
4239ca77 3148 * crossing memory domains and dying.
42d6ab48
CW
3149 */
3150 if (HAS_LLC(dev))
3151 return true;
3152
c6cfb325 3153 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3154 return true;
3155
3156 if (list_empty(&gtt_space->node_list))
3157 return true;
3158
3159 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3160 if (other->allocated && !other->hole_follows && other->color != cache_level)
3161 return false;
3162
3163 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3164 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3165 return false;
3166
3167 return true;
3168}
3169
3170static void i915_gem_verify_gtt(struct drm_device *dev)
3171{
3172#if WATCH_GTT
3173 struct drm_i915_private *dev_priv = dev->dev_private;
3174 struct drm_i915_gem_object *obj;
3175 int err = 0;
3176
35c20a60 3177 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3178 if (obj->gtt_space == NULL) {
3179 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3180 err++;
3181 continue;
3182 }
3183
3184 if (obj->cache_level != obj->gtt_space->color) {
3185 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3186 i915_gem_obj_ggtt_offset(obj),
3187 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3188 obj->cache_level,
3189 obj->gtt_space->color);
3190 err++;
3191 continue;
3192 }
3193
3194 if (!i915_gem_valid_gtt_space(dev,
3195 obj->gtt_space,
3196 obj->cache_level)) {
3197 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3198 i915_gem_obj_ggtt_offset(obj),
3199 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3200 obj->cache_level);
3201 err++;
3202 continue;
3203 }
3204 }
3205
3206 WARN_ON(err);
3207#endif
3208}
3209
673a394b
EA
3210/**
3211 * Finds free space in the GTT aperture and binds the object there.
3212 */
3213static int
07fe0b12
BW
3214i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3215 struct i915_address_space *vm,
3216 unsigned alignment,
3217 bool map_and_fenceable,
3218 bool nonblocking)
673a394b 3219{
05394f39 3220 struct drm_device *dev = obj->base.dev;
673a394b 3221 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3222 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12
BW
3223 size_t gtt_max =
3224 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3225 struct i915_vma *vma;
07f73f69 3226 int ret;
673a394b 3227
e28f8711
CW
3228 fence_size = i915_gem_get_gtt_size(dev,
3229 obj->base.size,
3230 obj->tiling_mode);
3231 fence_alignment = i915_gem_get_gtt_alignment(dev,
3232 obj->base.size,
d865110c 3233 obj->tiling_mode, true);
e28f8711 3234 unfenced_alignment =
d865110c 3235 i915_gem_get_gtt_alignment(dev,
e28f8711 3236 obj->base.size,
d865110c 3237 obj->tiling_mode, false);
a00b10c3 3238
673a394b 3239 if (alignment == 0)
5e783301
DV
3240 alignment = map_and_fenceable ? fence_alignment :
3241 unfenced_alignment;
75e9e915 3242 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3243 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3244 return -EINVAL;
3245 }
3246
05394f39 3247 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3248
654fc607
CW
3249 /* If the object is bigger than the entire aperture, reject it early
3250 * before evicting everything in a vain attempt to find space.
3251 */
0a9ae0d7 3252 if (obj->base.size > gtt_max) {
3765f304 3253 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3254 obj->base.size,
3255 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3256 gtt_max);
654fc607
CW
3257 return -E2BIG;
3258 }
3259
37e680a1 3260 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3261 if (ret)
3262 return ret;
3263
fbdda6fb
CW
3264 i915_gem_object_pin_pages(obj);
3265
07fe0b12 3266 BUG_ON(!i915_is_ggtt(vm));
07fe0b12 3267
accfef2e 3268 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
db473b36 3269 if (IS_ERR(vma)) {
bc6bc15b
DV
3270 ret = PTR_ERR(vma);
3271 goto err_unpin;
2f633156
BW
3272 }
3273
accfef2e
BW
3274 /* For now we only ever use 1 vma per object */
3275 WARN_ON(!list_is_singular(&obj->vma_list));
3276
0a9ae0d7 3277search_free:
07fe0b12 3278 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3279 size, alignment,
31e5d7c6
DH
3280 obj->cache_level, 0, gtt_max,
3281 DRM_MM_SEARCH_DEFAULT);
dc9dd7a2 3282 if (ret) {
f6cd1f15 3283 ret = i915_gem_evict_something(dev, vm, size, alignment,
42d6ab48 3284 obj->cache_level,
86a1ee26
CW
3285 map_and_fenceable,
3286 nonblocking);
dc9dd7a2
CW
3287 if (ret == 0)
3288 goto search_free;
9731129c 3289
bc6bc15b 3290 goto err_free_vma;
673a394b 3291 }
2f633156 3292 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3293 obj->cache_level))) {
2f633156 3294 ret = -EINVAL;
bc6bc15b 3295 goto err_remove_node;
673a394b
EA
3296 }
3297
74163907 3298 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3299 if (ret)
bc6bc15b 3300 goto err_remove_node;
673a394b 3301
35c20a60 3302 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3303 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3304
4bd561b3
BW
3305 if (i915_is_ggtt(vm)) {
3306 bool mappable, fenceable;
a00b10c3 3307
49987099
DV
3308 fenceable = (vma->node.size == fence_size &&
3309 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3310
49987099
DV
3311 mappable = (vma->node.start + obj->base.size <=
3312 dev_priv->gtt.mappable_end);
a00b10c3 3313
5cacaac7 3314 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3315 }
75e9e915 3316
7ace7ef2 3317 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
75e9e915 3318
07fe0b12 3319 trace_i915_vma_bind(vma, map_and_fenceable);
42d6ab48 3320 i915_gem_verify_gtt(dev);
673a394b 3321 return 0;
2f633156 3322
bc6bc15b 3323err_remove_node:
6286ef9b 3324 drm_mm_remove_node(&vma->node);
bc6bc15b 3325err_free_vma:
2f633156 3326 i915_gem_vma_destroy(vma);
bc6bc15b 3327err_unpin:
2f633156 3328 i915_gem_object_unpin_pages(obj);
2f633156 3329 return ret;
673a394b
EA
3330}
3331
000433b6 3332bool
2c22569b
CW
3333i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3334 bool force)
673a394b 3335{
673a394b
EA
3336 /* If we don't have a page list set up, then we're not pinned
3337 * to GPU, and we can ignore the cache flush because it'll happen
3338 * again at bind time.
3339 */
05394f39 3340 if (obj->pages == NULL)
000433b6 3341 return false;
673a394b 3342
769ce464
ID
3343 /*
3344 * Stolen memory is always coherent with the GPU as it is explicitly
3345 * marked as wc by the system, or the system is cache-coherent.
3346 */
3347 if (obj->stolen)
000433b6 3348 return false;
769ce464 3349
9c23f7fc
CW
3350 /* If the GPU is snooping the contents of the CPU cache,
3351 * we do not need to manually clear the CPU cache lines. However,
3352 * the caches are only snooped when the render cache is
3353 * flushed/invalidated. As we always have to emit invalidations
3354 * and flushes when moving into and out of the RENDER domain, correct
3355 * snooping behaviour occurs naturally as the result of our domain
3356 * tracking.
3357 */
2c22569b 3358 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3359 return false;
9c23f7fc 3360
1c5d22f7 3361 trace_i915_gem_object_clflush(obj);
9da3da66 3362 drm_clflush_sg(obj->pages);
000433b6
CW
3363
3364 return true;
e47c68e9
EA
3365}
3366
3367/** Flushes the GTT write domain for the object if it's dirty. */
3368static void
05394f39 3369i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3370{
1c5d22f7
CW
3371 uint32_t old_write_domain;
3372
05394f39 3373 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3374 return;
3375
63256ec5 3376 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3377 * to it immediately go to main memory as far as we know, so there's
3378 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3379 *
3380 * However, we do have to enforce the order so that all writes through
3381 * the GTT land before any writes to the device, such as updates to
3382 * the GATT itself.
e47c68e9 3383 */
63256ec5
CW
3384 wmb();
3385
05394f39
CW
3386 old_write_domain = obj->base.write_domain;
3387 obj->base.write_domain = 0;
1c5d22f7
CW
3388
3389 trace_i915_gem_object_change_domain(obj,
05394f39 3390 obj->base.read_domains,
1c5d22f7 3391 old_write_domain);
e47c68e9
EA
3392}
3393
3394/** Flushes the CPU write domain for the object if it's dirty. */
3395static void
2c22569b
CW
3396i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3397 bool force)
e47c68e9 3398{
1c5d22f7 3399 uint32_t old_write_domain;
e47c68e9 3400
05394f39 3401 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3402 return;
3403
000433b6
CW
3404 if (i915_gem_clflush_object(obj, force))
3405 i915_gem_chipset_flush(obj->base.dev);
3406
05394f39
CW
3407 old_write_domain = obj->base.write_domain;
3408 obj->base.write_domain = 0;
1c5d22f7
CW
3409
3410 trace_i915_gem_object_change_domain(obj,
05394f39 3411 obj->base.read_domains,
1c5d22f7 3412 old_write_domain);
e47c68e9
EA
3413}
3414
2ef7eeaa
EA
3415/**
3416 * Moves a single object to the GTT read, and possibly write domain.
3417 *
3418 * This function returns when the move is complete, including waiting on
3419 * flushes to occur.
3420 */
79e53945 3421int
2021746e 3422i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3423{
8325a09d 3424 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3425 uint32_t old_write_domain, old_read_domains;
e47c68e9 3426 int ret;
2ef7eeaa 3427
02354392 3428 /* Not valid to be called on unbound objects. */
9843877d 3429 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3430 return -EINVAL;
3431
8d7e3de1
CW
3432 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3433 return 0;
3434
0201f1ec 3435 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3436 if (ret)
3437 return ret;
3438
2c22569b 3439 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3440
d0a57789
CW
3441 /* Serialise direct access to this object with the barriers for
3442 * coherent writes from the GPU, by effectively invalidating the
3443 * GTT domain upon first access.
3444 */
3445 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3446 mb();
3447
05394f39
CW
3448 old_write_domain = obj->base.write_domain;
3449 old_read_domains = obj->base.read_domains;
1c5d22f7 3450
e47c68e9
EA
3451 /* It should now be out of any other write domains, and we can update
3452 * the domain values for our changes.
3453 */
05394f39
CW
3454 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3455 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3456 if (write) {
05394f39
CW
3457 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3458 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3459 obj->dirty = 1;
2ef7eeaa
EA
3460 }
3461
1c5d22f7
CW
3462 trace_i915_gem_object_change_domain(obj,
3463 old_read_domains,
3464 old_write_domain);
3465
8325a09d 3466 /* And bump the LRU for this access */
ca191b13 3467 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3468 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3469 if (vma)
3470 list_move_tail(&vma->mm_list,
3471 &dev_priv->gtt.base.inactive_list);
3472
3473 }
8325a09d 3474
e47c68e9
EA
3475 return 0;
3476}
3477
e4ffd173
CW
3478int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3479 enum i915_cache_level cache_level)
3480{
7bddb01f
DV
3481 struct drm_device *dev = obj->base.dev;
3482 drm_i915_private_t *dev_priv = dev->dev_private;
3089c6f2 3483 struct i915_vma *vma;
e4ffd173
CW
3484 int ret;
3485
3486 if (obj->cache_level == cache_level)
3487 return 0;
3488
d7f46fc4 3489 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3490 DRM_DEBUG("can not change the cache level of pinned objects\n");
3491 return -EBUSY;
3492 }
3493
3089c6f2
BW
3494 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3495 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3496 ret = i915_vma_unbind(vma);
3089c6f2
BW
3497 if (ret)
3498 return ret;
3499
3500 break;
3501 }
42d6ab48
CW
3502 }
3503
3089c6f2 3504 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3505 ret = i915_gem_object_finish_gpu(obj);
3506 if (ret)
3507 return ret;
3508
3509 i915_gem_object_finish_gtt(obj);
3510
3511 /* Before SandyBridge, you could not use tiling or fence
3512 * registers with snooped memory, so relinquish any fences
3513 * currently pointing to our region in the aperture.
3514 */
42d6ab48 3515 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3516 ret = i915_gem_object_put_fence(obj);
3517 if (ret)
3518 return ret;
3519 }
3520
74898d7e
DV
3521 if (obj->has_global_gtt_mapping)
3522 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3523 if (obj->has_aliasing_ppgtt_mapping)
3524 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3525 obj, cache_level);
e4ffd173
CW
3526 }
3527
2c22569b
CW
3528 list_for_each_entry(vma, &obj->vma_list, vma_link)
3529 vma->node.color = cache_level;
3530 obj->cache_level = cache_level;
3531
3532 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3533 u32 old_read_domains, old_write_domain;
3534
3535 /* If we're coming from LLC cached, then we haven't
3536 * actually been tracking whether the data is in the
3537 * CPU cache or not, since we only allow one bit set
3538 * in obj->write_domain and have been skipping the clflushes.
3539 * Just set it to the CPU cache for now.
3540 */
3541 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3542
3543 old_read_domains = obj->base.read_domains;
3544 old_write_domain = obj->base.write_domain;
3545
3546 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3547 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3548
3549 trace_i915_gem_object_change_domain(obj,
3550 old_read_domains,
3551 old_write_domain);
3552 }
3553
42d6ab48 3554 i915_gem_verify_gtt(dev);
e4ffd173
CW
3555 return 0;
3556}
3557
199adf40
BW
3558int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3559 struct drm_file *file)
e6994aee 3560{
199adf40 3561 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3562 struct drm_i915_gem_object *obj;
3563 int ret;
3564
3565 ret = i915_mutex_lock_interruptible(dev);
3566 if (ret)
3567 return ret;
3568
3569 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3570 if (&obj->base == NULL) {
3571 ret = -ENOENT;
3572 goto unlock;
3573 }
3574
651d794f
CW
3575 switch (obj->cache_level) {
3576 case I915_CACHE_LLC:
3577 case I915_CACHE_L3_LLC:
3578 args->caching = I915_CACHING_CACHED;
3579 break;
3580
4257d3ba
CW
3581 case I915_CACHE_WT:
3582 args->caching = I915_CACHING_DISPLAY;
3583 break;
3584
651d794f
CW
3585 default:
3586 args->caching = I915_CACHING_NONE;
3587 break;
3588 }
e6994aee
CW
3589
3590 drm_gem_object_unreference(&obj->base);
3591unlock:
3592 mutex_unlock(&dev->struct_mutex);
3593 return ret;
3594}
3595
199adf40
BW
3596int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3597 struct drm_file *file)
e6994aee 3598{
199adf40 3599 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3600 struct drm_i915_gem_object *obj;
3601 enum i915_cache_level level;
3602 int ret;
3603
199adf40
BW
3604 switch (args->caching) {
3605 case I915_CACHING_NONE:
e6994aee
CW
3606 level = I915_CACHE_NONE;
3607 break;
199adf40 3608 case I915_CACHING_CACHED:
e6994aee
CW
3609 level = I915_CACHE_LLC;
3610 break;
4257d3ba
CW
3611 case I915_CACHING_DISPLAY:
3612 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3613 break;
e6994aee
CW
3614 default:
3615 return -EINVAL;
3616 }
3617
3bc2913e
BW
3618 ret = i915_mutex_lock_interruptible(dev);
3619 if (ret)
3620 return ret;
3621
e6994aee
CW
3622 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3623 if (&obj->base == NULL) {
3624 ret = -ENOENT;
3625 goto unlock;
3626 }
3627
3628 ret = i915_gem_object_set_cache_level(obj, level);
3629
3630 drm_gem_object_unreference(&obj->base);
3631unlock:
3632 mutex_unlock(&dev->struct_mutex);
3633 return ret;
3634}
3635
cc98b413
CW
3636static bool is_pin_display(struct drm_i915_gem_object *obj)
3637{
3638 /* There are 3 sources that pin objects:
3639 * 1. The display engine (scanouts, sprites, cursors);
3640 * 2. Reservations for execbuffer;
3641 * 3. The user.
3642 *
3643 * We can ignore reservations as we hold the struct_mutex and
3644 * are only called outside of the reservation path. The user
3645 * can only increment pin_count once, and so if after
3646 * subtracting the potential reference by the user, any pin_count
3647 * remains, it must be due to another use by the display engine.
3648 */
d7f46fc4 3649 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
cc98b413
CW
3650}
3651
b9241ea3 3652/*
2da3b9b9
CW
3653 * Prepare buffer for display plane (scanout, cursors, etc).
3654 * Can be called from an uninterruptible phase (modesetting) and allows
3655 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3656 */
3657int
2da3b9b9
CW
3658i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3659 u32 alignment,
919926ae 3660 struct intel_ring_buffer *pipelined)
b9241ea3 3661{
2da3b9b9 3662 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3663 int ret;
3664
0be73284 3665 if (pipelined != obj->ring) {
2911a35b
BW
3666 ret = i915_gem_object_sync(obj, pipelined);
3667 if (ret)
b9241ea3
ZW
3668 return ret;
3669 }
3670
cc98b413
CW
3671 /* Mark the pin_display early so that we account for the
3672 * display coherency whilst setting up the cache domains.
3673 */
3674 obj->pin_display = true;
3675
a7ef0640
EA
3676 /* The display engine is not coherent with the LLC cache on gen6. As
3677 * a result, we make sure that the pinning that is about to occur is
3678 * done with uncached PTEs. This is lowest common denominator for all
3679 * chipsets.
3680 *
3681 * However for gen6+, we could do better by using the GFDT bit instead
3682 * of uncaching, which would allow us to flush all the LLC-cached data
3683 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3684 */
651d794f
CW
3685 ret = i915_gem_object_set_cache_level(obj,
3686 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3687 if (ret)
cc98b413 3688 goto err_unpin_display;
a7ef0640 3689
2da3b9b9
CW
3690 /* As the user may map the buffer once pinned in the display plane
3691 * (e.g. libkms for the bootup splash), we have to ensure that we
3692 * always use map_and_fenceable for all scanout buffers.
3693 */
c37e2204 3694 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2da3b9b9 3695 if (ret)
cc98b413 3696 goto err_unpin_display;
2da3b9b9 3697
2c22569b 3698 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3699
2da3b9b9 3700 old_write_domain = obj->base.write_domain;
05394f39 3701 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3702
3703 /* It should now be out of any other write domains, and we can update
3704 * the domain values for our changes.
3705 */
e5f1d962 3706 obj->base.write_domain = 0;
05394f39 3707 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3708
3709 trace_i915_gem_object_change_domain(obj,
3710 old_read_domains,
2da3b9b9 3711 old_write_domain);
b9241ea3
ZW
3712
3713 return 0;
cc98b413
CW
3714
3715err_unpin_display:
3716 obj->pin_display = is_pin_display(obj);
3717 return ret;
3718}
3719
3720void
3721i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3722{
d7f46fc4 3723 i915_gem_object_ggtt_unpin(obj);
cc98b413 3724 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3725}
3726
85345517 3727int
a8198eea 3728i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3729{
88241785
CW
3730 int ret;
3731
a8198eea 3732 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3733 return 0;
3734
0201f1ec 3735 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3736 if (ret)
3737 return ret;
3738
a8198eea
CW
3739 /* Ensure that we invalidate the GPU's caches and TLBs. */
3740 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3741 return 0;
85345517
CW
3742}
3743
e47c68e9
EA
3744/**
3745 * Moves a single object to the CPU read, and possibly write domain.
3746 *
3747 * This function returns when the move is complete, including waiting on
3748 * flushes to occur.
3749 */
dabdfe02 3750int
919926ae 3751i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3752{
1c5d22f7 3753 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3754 int ret;
3755
8d7e3de1
CW
3756 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3757 return 0;
3758
0201f1ec 3759 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3760 if (ret)
3761 return ret;
3762
e47c68e9 3763 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3764
05394f39
CW
3765 old_write_domain = obj->base.write_domain;
3766 old_read_domains = obj->base.read_domains;
1c5d22f7 3767
e47c68e9 3768 /* Flush the CPU cache if it's still invalid. */
05394f39 3769 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3770 i915_gem_clflush_object(obj, false);
2ef7eeaa 3771
05394f39 3772 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3773 }
3774
3775 /* It should now be out of any other write domains, and we can update
3776 * the domain values for our changes.
3777 */
05394f39 3778 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3779
3780 /* If we're writing through the CPU, then the GPU read domains will
3781 * need to be invalidated at next use.
3782 */
3783 if (write) {
05394f39
CW
3784 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3785 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3786 }
2ef7eeaa 3787
1c5d22f7
CW
3788 trace_i915_gem_object_change_domain(obj,
3789 old_read_domains,
3790 old_write_domain);
3791
2ef7eeaa
EA
3792 return 0;
3793}
3794
673a394b
EA
3795/* Throttle our rendering by waiting until the ring has completed our requests
3796 * emitted over 20 msec ago.
3797 *
b962442e
EA
3798 * Note that if we were to use the current jiffies each time around the loop,
3799 * we wouldn't escape the function with any frames outstanding if the time to
3800 * render a frame was over 20ms.
3801 *
673a394b
EA
3802 * This should get us reasonable parallelism between CPU and GPU but also
3803 * relatively low latency when blocking on a particular request to finish.
3804 */
40a5f0de 3805static int
f787a5f5 3806i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3807{
f787a5f5
CW
3808 struct drm_i915_private *dev_priv = dev->dev_private;
3809 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3810 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3811 struct drm_i915_gem_request *request;
3812 struct intel_ring_buffer *ring = NULL;
f69061be 3813 unsigned reset_counter;
f787a5f5
CW
3814 u32 seqno = 0;
3815 int ret;
93533c29 3816
308887aa
DV
3817 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3818 if (ret)
3819 return ret;
3820
3821 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3822 if (ret)
3823 return ret;
e110e8d6 3824
1c25595f 3825 spin_lock(&file_priv->mm.lock);
f787a5f5 3826 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3827 if (time_after_eq(request->emitted_jiffies, recent_enough))
3828 break;
40a5f0de 3829
f787a5f5
CW
3830 ring = request->ring;
3831 seqno = request->seqno;
b962442e 3832 }
f69061be 3833 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3834 spin_unlock(&file_priv->mm.lock);
40a5f0de 3835
f787a5f5
CW
3836 if (seqno == 0)
3837 return 0;
2bc43b5c 3838
b29c19b6 3839 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
3840 if (ret == 0)
3841 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3842
3843 return ret;
3844}
3845
673a394b 3846int
05394f39 3847i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3848 struct i915_address_space *vm,
05394f39 3849 uint32_t alignment,
86a1ee26
CW
3850 bool map_and_fenceable,
3851 bool nonblocking)
673a394b 3852{
07fe0b12 3853 struct i915_vma *vma;
673a394b
EA
3854 int ret;
3855
07fe0b12
BW
3856 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3857
3858 vma = i915_gem_obj_to_vma(obj, vm);
3859
3860 if (vma) {
d7f46fc4
BW
3861 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3862 return -EBUSY;
3863
07fe0b12
BW
3864 if ((alignment &&
3865 vma->node.start & (alignment - 1)) ||
05394f39 3866 (map_and_fenceable && !obj->map_and_fenceable)) {
d7f46fc4 3867 WARN(vma->pin_count,
ae7d49d8 3868 "bo is already pinned with incorrect alignment:"
f343c5f6 3869 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3870 " obj->map_and_fenceable=%d\n",
07fe0b12 3871 i915_gem_obj_offset(obj, vm), alignment,
75e9e915 3872 map_and_fenceable,
05394f39 3873 obj->map_and_fenceable);
07fe0b12 3874 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3875 if (ret)
3876 return ret;
3877 }
3878 }
3879
07fe0b12 3880 if (!i915_gem_obj_bound(obj, vm)) {
8742267a
CW
3881 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3882
07fe0b12
BW
3883 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3884 map_and_fenceable,
3885 nonblocking);
9731129c 3886 if (ret)
673a394b 3887 return ret;
8742267a
CW
3888
3889 if (!dev_priv->mm.aliasing_ppgtt)
3890 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3891 }
76446cac 3892
74898d7e
DV
3893 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3894 i915_gem_gtt_bind_object(obj, obj->cache_level);
3895
d7f46fc4 3896 i915_gem_obj_to_vma(obj, vm)->pin_count++;
6299f992 3897 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3898
3899 return 0;
3900}
3901
3902void
d7f46fc4 3903i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 3904{
d7f46fc4 3905 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 3906
d7f46fc4
BW
3907 BUG_ON(!vma);
3908 BUG_ON(vma->pin_count == 0);
3909 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3910
3911 if (--vma->pin_count == 0)
6299f992 3912 obj->pin_mappable = false;
673a394b
EA
3913}
3914
3915int
3916i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3917 struct drm_file *file)
673a394b
EA
3918{
3919 struct drm_i915_gem_pin *args = data;
05394f39 3920 struct drm_i915_gem_object *obj;
673a394b
EA
3921 int ret;
3922
1d7cfea1
CW
3923 ret = i915_mutex_lock_interruptible(dev);
3924 if (ret)
3925 return ret;
673a394b 3926
05394f39 3927 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3928 if (&obj->base == NULL) {
1d7cfea1
CW
3929 ret = -ENOENT;
3930 goto unlock;
673a394b 3931 }
673a394b 3932
05394f39 3933 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3934 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3935 ret = -EINVAL;
3936 goto out;
3ef94daa
CW
3937 }
3938
05394f39 3939 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3940 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3941 args->handle);
1d7cfea1
CW
3942 ret = -EINVAL;
3943 goto out;
79e53945
JB
3944 }
3945
aa5f8021
DV
3946 if (obj->user_pin_count == ULONG_MAX) {
3947 ret = -EBUSY;
3948 goto out;
3949 }
3950
93be8788 3951 if (obj->user_pin_count == 0) {
c37e2204 3952 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3953 if (ret)
3954 goto out;
673a394b
EA
3955 }
3956
93be8788
CW
3957 obj->user_pin_count++;
3958 obj->pin_filp = file;
3959
f343c5f6 3960 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3961out:
05394f39 3962 drm_gem_object_unreference(&obj->base);
1d7cfea1 3963unlock:
673a394b 3964 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3965 return ret;
673a394b
EA
3966}
3967
3968int
3969i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3970 struct drm_file *file)
673a394b
EA
3971{
3972 struct drm_i915_gem_pin *args = data;
05394f39 3973 struct drm_i915_gem_object *obj;
76c1dec1 3974 int ret;
673a394b 3975
1d7cfea1
CW
3976 ret = i915_mutex_lock_interruptible(dev);
3977 if (ret)
3978 return ret;
673a394b 3979
05394f39 3980 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3981 if (&obj->base == NULL) {
1d7cfea1
CW
3982 ret = -ENOENT;
3983 goto unlock;
673a394b 3984 }
76c1dec1 3985
05394f39 3986 if (obj->pin_filp != file) {
79e53945
JB
3987 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3988 args->handle);
1d7cfea1
CW
3989 ret = -EINVAL;
3990 goto out;
79e53945 3991 }
05394f39
CW
3992 obj->user_pin_count--;
3993 if (obj->user_pin_count == 0) {
3994 obj->pin_filp = NULL;
d7f46fc4 3995 i915_gem_object_ggtt_unpin(obj);
79e53945 3996 }
673a394b 3997
1d7cfea1 3998out:
05394f39 3999 drm_gem_object_unreference(&obj->base);
1d7cfea1 4000unlock:
673a394b 4001 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4002 return ret;
673a394b
EA
4003}
4004
4005int
4006i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4007 struct drm_file *file)
673a394b
EA
4008{
4009 struct drm_i915_gem_busy *args = data;
05394f39 4010 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4011 int ret;
4012
76c1dec1 4013 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4014 if (ret)
76c1dec1 4015 return ret;
673a394b 4016
05394f39 4017 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4018 if (&obj->base == NULL) {
1d7cfea1
CW
4019 ret = -ENOENT;
4020 goto unlock;
673a394b 4021 }
d1b851fc 4022
0be555b6
CW
4023 /* Count all active objects as busy, even if they are currently not used
4024 * by the gpu. Users of this interface expect objects to eventually
4025 * become non-busy without any further actions, therefore emit any
4026 * necessary flushes here.
c4de0a5d 4027 */
30dfebf3 4028 ret = i915_gem_object_flush_active(obj);
0be555b6 4029
30dfebf3 4030 args->busy = obj->active;
e9808edd
CW
4031 if (obj->ring) {
4032 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4033 args->busy |= intel_ring_flag(obj->ring) << 16;
4034 }
673a394b 4035
05394f39 4036 drm_gem_object_unreference(&obj->base);
1d7cfea1 4037unlock:
673a394b 4038 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4039 return ret;
673a394b
EA
4040}
4041
4042int
4043i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4044 struct drm_file *file_priv)
4045{
0206e353 4046 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4047}
4048
3ef94daa
CW
4049int
4050i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4051 struct drm_file *file_priv)
4052{
4053 struct drm_i915_gem_madvise *args = data;
05394f39 4054 struct drm_i915_gem_object *obj;
76c1dec1 4055 int ret;
3ef94daa
CW
4056
4057 switch (args->madv) {
4058 case I915_MADV_DONTNEED:
4059 case I915_MADV_WILLNEED:
4060 break;
4061 default:
4062 return -EINVAL;
4063 }
4064
1d7cfea1
CW
4065 ret = i915_mutex_lock_interruptible(dev);
4066 if (ret)
4067 return ret;
4068
05394f39 4069 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4070 if (&obj->base == NULL) {
1d7cfea1
CW
4071 ret = -ENOENT;
4072 goto unlock;
3ef94daa 4073 }
3ef94daa 4074
d7f46fc4 4075 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4076 ret = -EINVAL;
4077 goto out;
3ef94daa
CW
4078 }
4079
05394f39
CW
4080 if (obj->madv != __I915_MADV_PURGED)
4081 obj->madv = args->madv;
3ef94daa 4082
6c085a72
CW
4083 /* if the object is no longer attached, discard its backing storage */
4084 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4085 i915_gem_object_truncate(obj);
4086
05394f39 4087 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4088
1d7cfea1 4089out:
05394f39 4090 drm_gem_object_unreference(&obj->base);
1d7cfea1 4091unlock:
3ef94daa 4092 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4093 return ret;
3ef94daa
CW
4094}
4095
37e680a1
CW
4096void i915_gem_object_init(struct drm_i915_gem_object *obj,
4097 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4098{
35c20a60 4099 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4100 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4101 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4102 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4103
37e680a1
CW
4104 obj->ops = ops;
4105
0327d6ba
CW
4106 obj->fence_reg = I915_FENCE_REG_NONE;
4107 obj->madv = I915_MADV_WILLNEED;
4108 /* Avoid an unnecessary call to unbind on the first bind. */
4109 obj->map_and_fenceable = true;
4110
4111 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4112}
4113
37e680a1
CW
4114static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4115 .get_pages = i915_gem_object_get_pages_gtt,
4116 .put_pages = i915_gem_object_put_pages_gtt,
4117};
4118
05394f39
CW
4119struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4120 size_t size)
ac52bc56 4121{
c397b908 4122 struct drm_i915_gem_object *obj;
5949eac4 4123 struct address_space *mapping;
1a240d4d 4124 gfp_t mask;
ac52bc56 4125
42dcedd4 4126 obj = i915_gem_object_alloc(dev);
c397b908
DV
4127 if (obj == NULL)
4128 return NULL;
673a394b 4129
c397b908 4130 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4131 i915_gem_object_free(obj);
c397b908
DV
4132 return NULL;
4133 }
673a394b 4134
bed1ea95
CW
4135 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4136 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4137 /* 965gm cannot relocate objects above 4GiB. */
4138 mask &= ~__GFP_HIGHMEM;
4139 mask |= __GFP_DMA32;
4140 }
4141
496ad9aa 4142 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4143 mapping_set_gfp_mask(mapping, mask);
5949eac4 4144
37e680a1 4145 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4146
c397b908
DV
4147 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4148 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4149
3d29b842
ED
4150 if (HAS_LLC(dev)) {
4151 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4152 * cache) for about a 10% performance improvement
4153 * compared to uncached. Graphics requests other than
4154 * display scanout are coherent with the CPU in
4155 * accessing this cache. This means in this mode we
4156 * don't need to clflush on the CPU side, and on the
4157 * GPU side we only need to flush internal caches to
4158 * get data visible to the CPU.
4159 *
4160 * However, we maintain the display planes as UC, and so
4161 * need to rebind when first used as such.
4162 */
4163 obj->cache_level = I915_CACHE_LLC;
4164 } else
4165 obj->cache_level = I915_CACHE_NONE;
4166
d861e338
DV
4167 trace_i915_gem_object_create(obj);
4168
05394f39 4169 return obj;
c397b908
DV
4170}
4171
1488fc08 4172void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4173{
1488fc08 4174 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4175 struct drm_device *dev = obj->base.dev;
be72615b 4176 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4177 struct i915_vma *vma, *next;
673a394b 4178
26e12f89
CW
4179 trace_i915_gem_object_destroy(obj);
4180
1488fc08
CW
4181 if (obj->phys_obj)
4182 i915_gem_detach_phys_object(dev, obj);
4183
07fe0b12
BW
4184 /* NB: 0 or 1 elements */
4185 WARN_ON(!list_empty(&obj->vma_list) &&
4186 !list_is_singular(&obj->vma_list));
4187 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4188 int ret;
4189
4190 vma->pin_count = 0;
4191 ret = i915_vma_unbind(vma);
07fe0b12
BW
4192 if (WARN_ON(ret == -ERESTARTSYS)) {
4193 bool was_interruptible;
1488fc08 4194
07fe0b12
BW
4195 was_interruptible = dev_priv->mm.interruptible;
4196 dev_priv->mm.interruptible = false;
1488fc08 4197
07fe0b12 4198 WARN_ON(i915_vma_unbind(vma));
1488fc08 4199
07fe0b12
BW
4200 dev_priv->mm.interruptible = was_interruptible;
4201 }
1488fc08
CW
4202 }
4203
1d64ae71
BW
4204 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4205 * before progressing. */
4206 if (obj->stolen)
4207 i915_gem_object_unpin_pages(obj);
4208
401c29f6
BW
4209 if (WARN_ON(obj->pages_pin_count))
4210 obj->pages_pin_count = 0;
37e680a1 4211 i915_gem_object_put_pages(obj);
d8cb5086 4212 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4213 i915_gem_object_release_stolen(obj);
de151cf6 4214
9da3da66
CW
4215 BUG_ON(obj->pages);
4216
2f745ad3
CW
4217 if (obj->base.import_attach)
4218 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4219
05394f39
CW
4220 drm_gem_object_release(&obj->base);
4221 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4222
05394f39 4223 kfree(obj->bit_17);
42dcedd4 4224 i915_gem_object_free(obj);
673a394b
EA
4225}
4226
e656a6cb 4227struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4228 struct i915_address_space *vm)
e656a6cb
DV
4229{
4230 struct i915_vma *vma;
4231 list_for_each_entry(vma, &obj->vma_list, vma_link)
4232 if (vma->vm == vm)
4233 return vma;
4234
4235 return NULL;
4236}
4237
4238static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4239 struct i915_address_space *vm)
2f633156
BW
4240{
4241 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4242 if (vma == NULL)
4243 return ERR_PTR(-ENOMEM);
4244
4245 INIT_LIST_HEAD(&vma->vma_link);
ca191b13 4246 INIT_LIST_HEAD(&vma->mm_list);
82a55ad1 4247 INIT_LIST_HEAD(&vma->exec_list);
2f633156
BW
4248 vma->vm = vm;
4249 vma->obj = obj;
4250
8b9c2b94
BW
4251 /* Keep GGTT vmas first to make debug easier */
4252 if (i915_is_ggtt(vm))
4253 list_add(&vma->vma_link, &obj->vma_list);
4254 else
4255 list_add_tail(&vma->vma_link, &obj->vma_list);
4256
2f633156
BW
4257 return vma;
4258}
4259
e656a6cb
DV
4260struct i915_vma *
4261i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4262 struct i915_address_space *vm)
4263{
4264 struct i915_vma *vma;
4265
4266 vma = i915_gem_obj_to_vma(obj, vm);
4267 if (!vma)
4268 vma = __i915_gem_vma_create(obj, vm);
4269
4270 return vma;
4271}
4272
2f633156
BW
4273void i915_gem_vma_destroy(struct i915_vma *vma)
4274{
4275 WARN_ON(vma->node.allocated);
aaa05667
CW
4276
4277 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4278 if (!list_empty(&vma->exec_list))
4279 return;
4280
8b9c2b94 4281 list_del(&vma->vma_link);
b93dab6e 4282
2f633156
BW
4283 kfree(vma);
4284}
4285
29105ccc 4286int
45c5f202 4287i915_gem_suspend(struct drm_device *dev)
29105ccc
CW
4288{
4289 drm_i915_private_t *dev_priv = dev->dev_private;
45c5f202 4290 int ret = 0;
28dfe52a 4291
45c5f202 4292 mutex_lock(&dev->struct_mutex);
f7403347 4293 if (dev_priv->ums.mm_suspended)
45c5f202 4294 goto err;
28dfe52a 4295
b2da9fe5 4296 ret = i915_gpu_idle(dev);
f7403347 4297 if (ret)
45c5f202 4298 goto err;
f7403347 4299
b2da9fe5 4300 i915_gem_retire_requests(dev);
673a394b 4301
29105ccc 4302 /* Under UMS, be paranoid and evict. */
a39d7efc 4303 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4304 i915_gem_evict_everything(dev);
29105ccc 4305
29105ccc 4306 i915_kernel_lost_context(dev);
6dbe2772 4307 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4308
45c5f202
CW
4309 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4310 * We need to replace this with a semaphore, or something.
4311 * And not confound ums.mm_suspended!
4312 */
4313 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4314 DRIVER_MODESET);
4315 mutex_unlock(&dev->struct_mutex);
4316
4317 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4318 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4319 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4320
673a394b 4321 return 0;
45c5f202
CW
4322
4323err:
4324 mutex_unlock(&dev->struct_mutex);
4325 return ret;
673a394b
EA
4326}
4327
c3787e2e 4328int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
b9524a1e 4329{
c3787e2e 4330 struct drm_device *dev = ring->dev;
b9524a1e 4331 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6
BW
4332 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4333 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4334 int i, ret;
b9524a1e 4335
040d2baa 4336 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4337 return 0;
b9524a1e 4338
c3787e2e
BW
4339 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4340 if (ret)
4341 return ret;
b9524a1e 4342
c3787e2e
BW
4343 /*
4344 * Note: We do not worry about the concurrent register cacheline hang
4345 * here because no other code should access these registers other than
4346 * at initialization time.
4347 */
b9524a1e 4348 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4349 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4350 intel_ring_emit(ring, reg_base + i);
4351 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4352 }
4353
c3787e2e 4354 intel_ring_advance(ring);
b9524a1e 4355
c3787e2e 4356 return ret;
b9524a1e
BW
4357}
4358
f691e2f4
DV
4359void i915_gem_init_swizzling(struct drm_device *dev)
4360{
4361 drm_i915_private_t *dev_priv = dev->dev_private;
4362
11782b02 4363 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4364 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4365 return;
4366
4367 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4368 DISP_TILE_SURFACE_SWIZZLING);
4369
11782b02
DV
4370 if (IS_GEN5(dev))
4371 return;
4372
f691e2f4
DV
4373 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4374 if (IS_GEN6(dev))
6b26c86d 4375 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4376 else if (IS_GEN7(dev))
6b26c86d 4377 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4378 else if (IS_GEN8(dev))
4379 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4380 else
4381 BUG();
f691e2f4 4382}
e21af88d 4383
67b1b571
CW
4384static bool
4385intel_enable_blt(struct drm_device *dev)
4386{
4387 if (!HAS_BLT(dev))
4388 return false;
4389
4390 /* The blitter was dysfunctional on early prototypes */
4391 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4392 DRM_INFO("BLT not supported on this pre-production hardware;"
4393 " graphics performance will be degraded.\n");
4394 return false;
4395 }
4396
4397 return true;
4398}
4399
4fc7c971 4400static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4401{
4fc7c971 4402 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4403 int ret;
68f95ba9 4404
5c1143bb 4405 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4406 if (ret)
b6913e4b 4407 return ret;
68f95ba9
CW
4408
4409 if (HAS_BSD(dev)) {
5c1143bb 4410 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4411 if (ret)
4412 goto cleanup_render_ring;
d1b851fc 4413 }
68f95ba9 4414
67b1b571 4415 if (intel_enable_blt(dev)) {
549f7365
CW
4416 ret = intel_init_blt_ring_buffer(dev);
4417 if (ret)
4418 goto cleanup_bsd_ring;
4419 }
4420
9a8a2213
BW
4421 if (HAS_VEBOX(dev)) {
4422 ret = intel_init_vebox_ring_buffer(dev);
4423 if (ret)
4424 goto cleanup_blt_ring;
4425 }
4426
4427
99433931 4428 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4429 if (ret)
9a8a2213 4430 goto cleanup_vebox_ring;
4fc7c971
BW
4431
4432 return 0;
4433
9a8a2213
BW
4434cleanup_vebox_ring:
4435 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4436cleanup_blt_ring:
4437 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4438cleanup_bsd_ring:
4439 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4440cleanup_render_ring:
4441 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4442
4443 return ret;
4444}
4445
4446int
4447i915_gem_init_hw(struct drm_device *dev)
4448{
4449 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6 4450 int ret, i;
4fc7c971
BW
4451
4452 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4453 return -EIO;
4454
59124506 4455 if (dev_priv->ellc_size)
05e21cc4 4456 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4457
9435373e
RV
4458 if (IS_HSW_GT3(dev))
4459 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_ENABLED);
4460 else
4461 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_DISABLED);
4462
88a2b2a3
BW
4463 if (HAS_PCH_NOP(dev)) {
4464 u32 temp = I915_READ(GEN7_MSG_CTL);
4465 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4466 I915_WRITE(GEN7_MSG_CTL, temp);
4467 }
4468
4fc7c971
BW
4469 i915_gem_init_swizzling(dev);
4470
4471 ret = i915_gem_init_rings(dev);
99433931
MK
4472 if (ret)
4473 return ret;
4474
c3787e2e
BW
4475 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4476 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4477
254f965c
BW
4478 /*
4479 * XXX: There was some w/a described somewhere suggesting loading
4480 * contexts before PPGTT.
4481 */
8245be31
BW
4482 ret = i915_gem_context_init(dev);
4483 if (ret) {
4484 i915_gem_cleanup_ringbuffer(dev);
4485 DRM_ERROR("Context initialization failed %d\n", ret);
4486 return ret;
4487 }
4488
b7c36d25
BW
4489 if (dev_priv->mm.aliasing_ppgtt) {
4490 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4491 if (ret) {
4492 i915_gem_cleanup_aliasing_ppgtt(dev);
4493 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4494 }
4495 }
e21af88d 4496
68f95ba9 4497 return 0;
8187a2b7
ZN
4498}
4499
1070a42b
CW
4500int i915_gem_init(struct drm_device *dev)
4501{
4502 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4503 int ret;
4504
1070a42b 4505 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4506
4507 if (IS_VALLEYVIEW(dev)) {
4508 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4509 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4510 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4511 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4512 }
4513
d7e5008f 4514 i915_gem_init_global_gtt(dev);
d62b4892 4515
1070a42b
CW
4516 ret = i915_gem_init_hw(dev);
4517 mutex_unlock(&dev->struct_mutex);
4518 if (ret) {
4519 i915_gem_cleanup_aliasing_ppgtt(dev);
c39538a8 4520 drm_mm_takedown(&dev_priv->gtt.base.mm);
1070a42b
CW
4521 return ret;
4522 }
4523
53ca26ca
DV
4524 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4525 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4526 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4527 return 0;
4528}
4529
8187a2b7
ZN
4530void
4531i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4532{
4533 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4534 struct intel_ring_buffer *ring;
1ec14ad3 4535 int i;
8187a2b7 4536
b4519513
CW
4537 for_each_ring(ring, dev_priv, i)
4538 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4539}
4540
673a394b
EA
4541int
4542i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4543 struct drm_file *file_priv)
4544{
db1b76ca 4545 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4546 int ret;
673a394b 4547
79e53945
JB
4548 if (drm_core_check_feature(dev, DRIVER_MODESET))
4549 return 0;
4550
1f83fee0 4551 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4552 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4553 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4554 }
4555
673a394b 4556 mutex_lock(&dev->struct_mutex);
db1b76ca 4557 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4558
f691e2f4 4559 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4560 if (ret != 0) {
4561 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4562 return ret;
d816f6ac 4563 }
9bb2d6f9 4564
5cef07e1 4565 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4566 mutex_unlock(&dev->struct_mutex);
dbb19d30 4567
5f35308b
CW
4568 ret = drm_irq_install(dev);
4569 if (ret)
4570 goto cleanup_ringbuffer;
dbb19d30 4571
673a394b 4572 return 0;
5f35308b
CW
4573
4574cleanup_ringbuffer:
4575 mutex_lock(&dev->struct_mutex);
4576 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4577 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4578 mutex_unlock(&dev->struct_mutex);
4579
4580 return ret;
673a394b
EA
4581}
4582
4583int
4584i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4585 struct drm_file *file_priv)
4586{
79e53945
JB
4587 if (drm_core_check_feature(dev, DRIVER_MODESET))
4588 return 0;
4589
dbb19d30 4590 drm_irq_uninstall(dev);
db1b76ca 4591
45c5f202 4592 return i915_gem_suspend(dev);
673a394b
EA
4593}
4594
4595void
4596i915_gem_lastclose(struct drm_device *dev)
4597{
4598 int ret;
673a394b 4599
e806b495
EA
4600 if (drm_core_check_feature(dev, DRIVER_MODESET))
4601 return;
4602
45c5f202 4603 ret = i915_gem_suspend(dev);
6dbe2772
KP
4604 if (ret)
4605 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4606}
4607
64193406
CW
4608static void
4609init_ring_lists(struct intel_ring_buffer *ring)
4610{
4611 INIT_LIST_HEAD(&ring->active_list);
4612 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4613}
4614
fc8c067e
BW
4615static void i915_init_vm(struct drm_i915_private *dev_priv,
4616 struct i915_address_space *vm)
4617{
4618 vm->dev = dev_priv->dev;
4619 INIT_LIST_HEAD(&vm->active_list);
4620 INIT_LIST_HEAD(&vm->inactive_list);
4621 INIT_LIST_HEAD(&vm->global_link);
4622 list_add(&vm->global_link, &dev_priv->vm_list);
4623}
4624
673a394b
EA
4625void
4626i915_gem_load(struct drm_device *dev)
4627{
4628 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4629 int i;
4630
4631 dev_priv->slab =
4632 kmem_cache_create("i915_gem_object",
4633 sizeof(struct drm_i915_gem_object), 0,
4634 SLAB_HWCACHE_ALIGN,
4635 NULL);
673a394b 4636
fc8c067e
BW
4637 INIT_LIST_HEAD(&dev_priv->vm_list);
4638 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4639
a33afea5 4640 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4641 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4642 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4643 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4644 for (i = 0; i < I915_NUM_RINGS; i++)
4645 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4646 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4647 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4648 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4649 i915_gem_retire_work_handler);
b29c19b6
CW
4650 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4651 i915_gem_idle_work_handler);
1f83fee0 4652 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4653
94400120
DA
4654 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4655 if (IS_GEN3(dev)) {
50743298
DV
4656 I915_WRITE(MI_ARB_STATE,
4657 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4658 }
4659
72bfa19c
CW
4660 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4661
de151cf6 4662 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4663 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4664 dev_priv->fence_reg_start = 3;
de151cf6 4665
42b5aeab
VS
4666 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4667 dev_priv->num_fence_regs = 32;
4668 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4669 dev_priv->num_fence_regs = 16;
4670 else
4671 dev_priv->num_fence_regs = 8;
4672
b5aa8a0f 4673 /* Initialize fence registers to zero */
19b2dbde
CW
4674 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4675 i915_gem_restore_fences(dev);
10ed13e4 4676
673a394b 4677 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4678 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4679
ce453d81
CW
4680 dev_priv->mm.interruptible = true;
4681
7dc19d5a
DC
4682 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4683 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
17250b71
CW
4684 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4685 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4686}
71acb5eb
DA
4687
4688/*
4689 * Create a physically contiguous memory object for this object
4690 * e.g. for cursor + overlay regs
4691 */
995b6762
CW
4692static int i915_gem_init_phys_object(struct drm_device *dev,
4693 int id, int size, int align)
71acb5eb
DA
4694{
4695 drm_i915_private_t *dev_priv = dev->dev_private;
4696 struct drm_i915_gem_phys_object *phys_obj;
4697 int ret;
4698
4699 if (dev_priv->mm.phys_objs[id - 1] || !size)
4700 return 0;
4701
b14c5679 4702 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
71acb5eb
DA
4703 if (!phys_obj)
4704 return -ENOMEM;
4705
4706 phys_obj->id = id;
4707
6eeefaf3 4708 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4709 if (!phys_obj->handle) {
4710 ret = -ENOMEM;
4711 goto kfree_obj;
4712 }
4713#ifdef CONFIG_X86
4714 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4715#endif
4716
4717 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4718
4719 return 0;
4720kfree_obj:
9a298b2a 4721 kfree(phys_obj);
71acb5eb
DA
4722 return ret;
4723}
4724
995b6762 4725static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4726{
4727 drm_i915_private_t *dev_priv = dev->dev_private;
4728 struct drm_i915_gem_phys_object *phys_obj;
4729
4730 if (!dev_priv->mm.phys_objs[id - 1])
4731 return;
4732
4733 phys_obj = dev_priv->mm.phys_objs[id - 1];
4734 if (phys_obj->cur_obj) {
4735 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4736 }
4737
4738#ifdef CONFIG_X86
4739 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4740#endif
4741 drm_pci_free(dev, phys_obj->handle);
4742 kfree(phys_obj);
4743 dev_priv->mm.phys_objs[id - 1] = NULL;
4744}
4745
4746void i915_gem_free_all_phys_object(struct drm_device *dev)
4747{
4748 int i;
4749
260883c8 4750 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4751 i915_gem_free_phys_object(dev, i);
4752}
4753
4754void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4755 struct drm_i915_gem_object *obj)
71acb5eb 4756{
496ad9aa 4757 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4758 char *vaddr;
71acb5eb 4759 int i;
71acb5eb
DA
4760 int page_count;
4761
05394f39 4762 if (!obj->phys_obj)
71acb5eb 4763 return;
05394f39 4764 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4765
05394f39 4766 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4767 for (i = 0; i < page_count; i++) {
5949eac4 4768 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4769 if (!IS_ERR(page)) {
4770 char *dst = kmap_atomic(page);
4771 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4772 kunmap_atomic(dst);
4773
4774 drm_clflush_pages(&page, 1);
4775
4776 set_page_dirty(page);
4777 mark_page_accessed(page);
4778 page_cache_release(page);
4779 }
71acb5eb 4780 }
e76e9aeb 4781 i915_gem_chipset_flush(dev);
d78b47b9 4782
05394f39
CW
4783 obj->phys_obj->cur_obj = NULL;
4784 obj->phys_obj = NULL;
71acb5eb
DA
4785}
4786
4787int
4788i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4789 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4790 int id,
4791 int align)
71acb5eb 4792{
496ad9aa 4793 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4794 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4795 int ret = 0;
4796 int page_count;
4797 int i;
4798
4799 if (id > I915_MAX_PHYS_OBJECT)
4800 return -EINVAL;
4801
05394f39
CW
4802 if (obj->phys_obj) {
4803 if (obj->phys_obj->id == id)
71acb5eb
DA
4804 return 0;
4805 i915_gem_detach_phys_object(dev, obj);
4806 }
4807
71acb5eb
DA
4808 /* create a new object */
4809 if (!dev_priv->mm.phys_objs[id - 1]) {
4810 ret = i915_gem_init_phys_object(dev, id,
05394f39 4811 obj->base.size, align);
71acb5eb 4812 if (ret) {
05394f39
CW
4813 DRM_ERROR("failed to init phys object %d size: %zu\n",
4814 id, obj->base.size);
e5281ccd 4815 return ret;
71acb5eb
DA
4816 }
4817 }
4818
4819 /* bind to the object */
05394f39
CW
4820 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4821 obj->phys_obj->cur_obj = obj;
71acb5eb 4822
05394f39 4823 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4824
4825 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4826 struct page *page;
4827 char *dst, *src;
4828
5949eac4 4829 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4830 if (IS_ERR(page))
4831 return PTR_ERR(page);
71acb5eb 4832
ff75b9bc 4833 src = kmap_atomic(page);
05394f39 4834 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4835 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4836 kunmap_atomic(src);
71acb5eb 4837
e5281ccd
CW
4838 mark_page_accessed(page);
4839 page_cache_release(page);
4840 }
d78b47b9 4841
71acb5eb 4842 return 0;
71acb5eb
DA
4843}
4844
4845static int
05394f39
CW
4846i915_gem_phys_pwrite(struct drm_device *dev,
4847 struct drm_i915_gem_object *obj,
71acb5eb
DA
4848 struct drm_i915_gem_pwrite *args,
4849 struct drm_file *file_priv)
4850{
05394f39 4851 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4852 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4853
b47b30cc
CW
4854 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4855 unsigned long unwritten;
4856
4857 /* The physical object once assigned is fixed for the lifetime
4858 * of the obj, so we can safely drop the lock and continue
4859 * to access vaddr.
4860 */
4861 mutex_unlock(&dev->struct_mutex);
4862 unwritten = copy_from_user(vaddr, user_data, args->size);
4863 mutex_lock(&dev->struct_mutex);
4864 if (unwritten)
4865 return -EFAULT;
4866 }
71acb5eb 4867
e76e9aeb 4868 i915_gem_chipset_flush(dev);
71acb5eb
DA
4869 return 0;
4870}
b962442e 4871
f787a5f5 4872void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4873{
f787a5f5 4874 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4875
b29c19b6
CW
4876 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4877
b962442e
EA
4878 /* Clean up our request list when the client is going away, so that
4879 * later retire_requests won't dereference our soon-to-be-gone
4880 * file_priv.
4881 */
1c25595f 4882 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4883 while (!list_empty(&file_priv->mm.request_list)) {
4884 struct drm_i915_gem_request *request;
4885
4886 request = list_first_entry(&file_priv->mm.request_list,
4887 struct drm_i915_gem_request,
4888 client_list);
4889 list_del(&request->client_list);
4890 request->file_priv = NULL;
4891 }
1c25595f 4892 spin_unlock(&file_priv->mm.lock);
b962442e 4893}
31169714 4894
b29c19b6
CW
4895static void
4896i915_gem_file_idle_work_handler(struct work_struct *work)
4897{
4898 struct drm_i915_file_private *file_priv =
4899 container_of(work, typeof(*file_priv), mm.idle_work.work);
4900
4901 atomic_set(&file_priv->rps_wait_boost, false);
4902}
4903
4904int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4905{
4906 struct drm_i915_file_private *file_priv;
4907
4908 DRM_DEBUG_DRIVER("\n");
4909
4910 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4911 if (!file_priv)
4912 return -ENOMEM;
4913
4914 file->driver_priv = file_priv;
4915 file_priv->dev_priv = dev->dev_private;
4916
4917 spin_lock_init(&file_priv->mm.lock);
4918 INIT_LIST_HEAD(&file_priv->mm.request_list);
4919 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4920 i915_gem_file_idle_work_handler);
4921
4922 idr_init(&file_priv->context_idr);
4923
4924 return 0;
4925}
4926
5774506f
CW
4927static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4928{
4929 if (!mutex_is_locked(mutex))
4930 return false;
4931
4932#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4933 return mutex->owner == task;
4934#else
4935 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4936 return false;
4937#endif
4938}
4939
7dc19d5a
DC
4940static unsigned long
4941i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4942{
17250b71
CW
4943 struct drm_i915_private *dev_priv =
4944 container_of(shrinker,
4945 struct drm_i915_private,
4946 mm.inactive_shrinker);
4947 struct drm_device *dev = dev_priv->dev;
6c085a72 4948 struct drm_i915_gem_object *obj;
5774506f 4949 bool unlock = true;
7dc19d5a 4950 unsigned long count;
17250b71 4951
5774506f
CW
4952 if (!mutex_trylock(&dev->struct_mutex)) {
4953 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4954 return 0;
5774506f 4955
677feac2 4956 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4957 return 0;
677feac2 4958
5774506f
CW
4959 unlock = false;
4960 }
31169714 4961
7dc19d5a 4962 count = 0;
35c20a60 4963 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 4964 if (obj->pages_pin_count == 0)
7dc19d5a 4965 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4966
4967 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4968 if (obj->active)
4969 continue;
4970
d7f46fc4 4971 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
7dc19d5a 4972 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 4973 }
17250b71 4974
5774506f
CW
4975 if (unlock)
4976 mutex_unlock(&dev->struct_mutex);
d9973b43 4977
7dc19d5a 4978 return count;
31169714 4979}
a70a3148
BW
4980
4981/* All the new VM stuff */
4982unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4983 struct i915_address_space *vm)
4984{
4985 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4986 struct i915_vma *vma;
4987
6f425321
BW
4988 if (!dev_priv->mm.aliasing_ppgtt ||
4989 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4990 vm = &dev_priv->gtt.base;
4991
4992 BUG_ON(list_empty(&o->vma_list));
4993 list_for_each_entry(vma, &o->vma_list, vma_link) {
4994 if (vma->vm == vm)
4995 return vma->node.start;
4996
4997 }
4998 return -1;
4999}
5000
5001bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5002 struct i915_address_space *vm)
5003{
5004 struct i915_vma *vma;
5005
5006 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5007 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5008 return true;
5009
5010 return false;
5011}
5012
5013bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5014{
5a1d5eb0 5015 struct i915_vma *vma;
a70a3148 5016
5a1d5eb0
CW
5017 list_for_each_entry(vma, &o->vma_list, vma_link)
5018 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5019 return true;
5020
5021 return false;
5022}
5023
5024unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5025 struct i915_address_space *vm)
5026{
5027 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5028 struct i915_vma *vma;
5029
6f425321
BW
5030 if (!dev_priv->mm.aliasing_ppgtt ||
5031 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5032 vm = &dev_priv->gtt.base;
5033
5034 BUG_ON(list_empty(&o->vma_list));
5035
5036 list_for_each_entry(vma, &o->vma_list, vma_link)
5037 if (vma->vm == vm)
5038 return vma->node.size;
5039
5040 return 0;
5041}
5042
7dc19d5a
DC
5043static unsigned long
5044i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5045{
5046 struct drm_i915_private *dev_priv =
5047 container_of(shrinker,
5048 struct drm_i915_private,
5049 mm.inactive_shrinker);
5050 struct drm_device *dev = dev_priv->dev;
7dc19d5a
DC
5051 unsigned long freed;
5052 bool unlock = true;
5053
5054 if (!mutex_trylock(&dev->struct_mutex)) {
5055 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 5056 return SHRINK_STOP;
7dc19d5a
DC
5057
5058 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 5059 return SHRINK_STOP;
7dc19d5a
DC
5060
5061 unlock = false;
5062 }
5063
d9973b43
CW
5064 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5065 if (freed < sc->nr_to_scan)
5066 freed += __i915_gem_shrink(dev_priv,
5067 sc->nr_to_scan - freed,
5068 false);
5069 if (freed < sc->nr_to_scan)
7dc19d5a
DC
5070 freed += i915_gem_shrink_all(dev_priv);
5071
5072 if (unlock)
5073 mutex_unlock(&dev->struct_mutex);
d9973b43 5074
7dc19d5a
DC
5075 return freed;
5076}
5c2abbea
BW
5077
5078struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5079{
5080 struct i915_vma *vma;
5081
5082 if (WARN_ON(list_empty(&obj->vma_list)))
5083 return NULL;
5084
5085 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5086 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5087 return NULL;
5088
5089 return vma;
5090}