]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Make stolen use pin pages
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
86a1ee26
CW
43 bool map_and_fenceable,
44 bool nonblocking);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
21dd3734 89static int
33196ded 90i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 91{
30dbf0c0
CW
92 int ret;
93
1f83fee0
DV
94#define EXIT_COND (!i915_reset_in_progress(error))
95 if (EXIT_COND)
30dbf0c0
CW
96 return 0;
97
1f83fee0
DV
98 /* GPU is already declared terminally dead, give up. */
99 if (i915_terminally_wedged(error))
100 return -EIO;
101
0a6759c6
DV
102 /*
103 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
104 * userspace. If it takes that long something really bad is going on and
105 * we should simply try to bail out and fail as gracefully as possible.
106 */
1f83fee0
DV
107 ret = wait_event_interruptible_timeout(error->reset_queue,
108 EXIT_COND,
109 10*HZ);
0a6759c6
DV
110 if (ret == 0) {
111 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
112 return -EIO;
113 } else if (ret < 0) {
30dbf0c0 114 return ret;
0a6759c6 115 }
1f83fee0 116#undef EXIT_COND
30dbf0c0 117
21dd3734 118 return 0;
30dbf0c0
CW
119}
120
54cf91dc 121int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 122{
33196ded 123 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
124 int ret;
125
33196ded 126 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
127 if (ret)
128 return ret;
129
130 ret = mutex_lock_interruptible(&dev->struct_mutex);
131 if (ret)
132 return ret;
133
23bc5982 134 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
135 return 0;
136}
30dbf0c0 137
7d1c4804 138static inline bool
05394f39 139i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 140{
6c085a72 141 return obj->gtt_space && !obj->active;
7d1c4804
CW
142}
143
79e53945
JB
144int
145i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 146 struct drm_file *file)
79e53945 147{
93d18799 148 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 149 struct drm_i915_gem_init *args = data;
2021746e 150
7bb6fb8d
DV
151 if (drm_core_check_feature(dev, DRIVER_MODESET))
152 return -ENODEV;
153
2021746e
CW
154 if (args->gtt_start >= args->gtt_end ||
155 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
156 return -EINVAL;
79e53945 157
f534bc0b
DV
158 /* GEM with user mode setting was never supported on ilk and later. */
159 if (INTEL_INFO(dev)->gen >= 5)
160 return -ENODEV;
161
79e53945 162 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
163 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
164 args->gtt_end);
93d18799 165 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
166 mutex_unlock(&dev->struct_mutex);
167
2021746e 168 return 0;
673a394b
EA
169}
170
5a125c3c
EA
171int
172i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 173 struct drm_file *file)
5a125c3c 174{
73aa808f 175 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 176 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
177 struct drm_i915_gem_object *obj;
178 size_t pinned;
5a125c3c 179
6299f992 180 pinned = 0;
73aa808f 181 mutex_lock(&dev->struct_mutex);
6c085a72 182 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
183 if (obj->pin_count)
184 pinned += obj->gtt_space->size;
73aa808f 185 mutex_unlock(&dev->struct_mutex);
5a125c3c 186
5d4545ae 187 args->aper_size = dev_priv->gtt.total;
0206e353 188 args->aper_available_size = args->aper_size - pinned;
6299f992 189
5a125c3c
EA
190 return 0;
191}
192
42dcedd4
CW
193void *i915_gem_object_alloc(struct drm_device *dev)
194{
195 struct drm_i915_private *dev_priv = dev->dev_private;
196 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
197}
198
199void i915_gem_object_free(struct drm_i915_gem_object *obj)
200{
201 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
202 kmem_cache_free(dev_priv->slab, obj);
203}
204
ff72145b
DA
205static int
206i915_gem_create(struct drm_file *file,
207 struct drm_device *dev,
208 uint64_t size,
209 uint32_t *handle_p)
673a394b 210{
05394f39 211 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
212 int ret;
213 u32 handle;
673a394b 214
ff72145b 215 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
216 if (size == 0)
217 return -EINVAL;
673a394b
EA
218
219 /* Allocate the new object */
ff72145b 220 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
221 if (obj == NULL)
222 return -ENOMEM;
223
05394f39 224 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 225 if (ret) {
05394f39
CW
226 drm_gem_object_release(&obj->base);
227 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
42dcedd4 228 i915_gem_object_free(obj);
673a394b 229 return ret;
1dfd9754 230 }
673a394b 231
202f2fef 232 /* drop reference from allocate - handle holds it now */
05394f39 233 drm_gem_object_unreference(&obj->base);
202f2fef
CW
234 trace_i915_gem_object_create(obj);
235
ff72145b 236 *handle_p = handle;
673a394b
EA
237 return 0;
238}
239
ff72145b
DA
240int
241i915_gem_dumb_create(struct drm_file *file,
242 struct drm_device *dev,
243 struct drm_mode_create_dumb *args)
244{
245 /* have to work out size/pitch and return them */
ed0291fd 246 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
247 args->size = args->pitch * args->height;
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
250}
251
252int i915_gem_dumb_destroy(struct drm_file *file,
253 struct drm_device *dev,
254 uint32_t handle)
255{
256 return drm_gem_handle_delete(file, handle);
257}
258
259/**
260 * Creates a new mm object and returns a handle to it.
261 */
262int
263i915_gem_create_ioctl(struct drm_device *dev, void *data,
264 struct drm_file *file)
265{
266 struct drm_i915_gem_create *args = data;
63ed2cb2 267
ff72145b
DA
268 return i915_gem_create(file, dev,
269 args->size, &args->handle);
270}
271
8461d226
DV
272static inline int
273__copy_to_user_swizzled(char __user *cpu_vaddr,
274 const char *gpu_vaddr, int gpu_offset,
275 int length)
276{
277 int ret, cpu_offset = 0;
278
279 while (length > 0) {
280 int cacheline_end = ALIGN(gpu_offset + 1, 64);
281 int this_length = min(cacheline_end - gpu_offset, length);
282 int swizzled_gpu_offset = gpu_offset ^ 64;
283
284 ret = __copy_to_user(cpu_vaddr + cpu_offset,
285 gpu_vaddr + swizzled_gpu_offset,
286 this_length);
287 if (ret)
288 return ret + length;
289
290 cpu_offset += this_length;
291 gpu_offset += this_length;
292 length -= this_length;
293 }
294
295 return 0;
296}
297
8c59967c 298static inline int
4f0c7cfb
BW
299__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
300 const char __user *cpu_vaddr,
8c59967c
DV
301 int length)
302{
303 int ret, cpu_offset = 0;
304
305 while (length > 0) {
306 int cacheline_end = ALIGN(gpu_offset + 1, 64);
307 int this_length = min(cacheline_end - gpu_offset, length);
308 int swizzled_gpu_offset = gpu_offset ^ 64;
309
310 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
311 cpu_vaddr + cpu_offset,
312 this_length);
313 if (ret)
314 return ret + length;
315
316 cpu_offset += this_length;
317 gpu_offset += this_length;
318 length -= this_length;
319 }
320
321 return 0;
322}
323
d174bd64
DV
324/* Per-page copy function for the shmem pread fastpath.
325 * Flushes invalid cachelines before reading the target if
326 * needs_clflush is set. */
eb01459f 327static int
d174bd64
DV
328shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
329 char __user *user_data,
330 bool page_do_bit17_swizzling, bool needs_clflush)
331{
332 char *vaddr;
333 int ret;
334
e7e58eb5 335 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
336 return -EINVAL;
337
338 vaddr = kmap_atomic(page);
339 if (needs_clflush)
340 drm_clflush_virt_range(vaddr + shmem_page_offset,
341 page_length);
342 ret = __copy_to_user_inatomic(user_data,
343 vaddr + shmem_page_offset,
344 page_length);
345 kunmap_atomic(vaddr);
346
f60d7f0c 347 return ret ? -EFAULT : 0;
d174bd64
DV
348}
349
23c18c71
DV
350static void
351shmem_clflush_swizzled_range(char *addr, unsigned long length,
352 bool swizzled)
353{
e7e58eb5 354 if (unlikely(swizzled)) {
23c18c71
DV
355 unsigned long start = (unsigned long) addr;
356 unsigned long end = (unsigned long) addr + length;
357
358 /* For swizzling simply ensure that we always flush both
359 * channels. Lame, but simple and it works. Swizzled
360 * pwrite/pread is far from a hotpath - current userspace
361 * doesn't use it at all. */
362 start = round_down(start, 128);
363 end = round_up(end, 128);
364
365 drm_clflush_virt_range((void *)start, end - start);
366 } else {
367 drm_clflush_virt_range(addr, length);
368 }
369
370}
371
d174bd64
DV
372/* Only difference to the fast-path function is that this can handle bit17
373 * and uses non-atomic copy and kmap functions. */
374static int
375shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
376 char __user *user_data,
377 bool page_do_bit17_swizzling, bool needs_clflush)
378{
379 char *vaddr;
380 int ret;
381
382 vaddr = kmap(page);
383 if (needs_clflush)
23c18c71
DV
384 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
385 page_length,
386 page_do_bit17_swizzling);
d174bd64
DV
387
388 if (page_do_bit17_swizzling)
389 ret = __copy_to_user_swizzled(user_data,
390 vaddr, shmem_page_offset,
391 page_length);
392 else
393 ret = __copy_to_user(user_data,
394 vaddr + shmem_page_offset,
395 page_length);
396 kunmap(page);
397
f60d7f0c 398 return ret ? - EFAULT : 0;
d174bd64
DV
399}
400
eb01459f 401static int
dbf7bff0
DV
402i915_gem_shmem_pread(struct drm_device *dev,
403 struct drm_i915_gem_object *obj,
404 struct drm_i915_gem_pread *args,
405 struct drm_file *file)
eb01459f 406{
8461d226 407 char __user *user_data;
eb01459f 408 ssize_t remain;
8461d226 409 loff_t offset;
eb2c0c81 410 int shmem_page_offset, page_length, ret = 0;
8461d226 411 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 412 int prefaulted = 0;
8489731c 413 int needs_clflush = 0;
67d5a50c 414 struct sg_page_iter sg_iter;
eb01459f 415
2bb4629a 416 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
417 remain = args->size;
418
8461d226 419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 420
8489731c
DV
421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 /* If we're not in the cpu read domain, set ourself into the gtt
423 * read domain and manually flush cachelines (if required). This
424 * optimizes for the case when the gpu will dirty the data
425 * anyway again before the next pread happens. */
426 if (obj->cache_level == I915_CACHE_NONE)
427 needs_clflush = 1;
6c085a72
CW
428 if (obj->gtt_space) {
429 ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 if (ret)
431 return ret;
432 }
8489731c 433 }
eb01459f 434
f60d7f0c
CW
435 ret = i915_gem_object_get_pages(obj);
436 if (ret)
437 return ret;
438
439 i915_gem_object_pin_pages(obj);
440
8461d226 441 offset = args->offset;
eb01459f 442
67d5a50c
ID
443 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
444 offset >> PAGE_SHIFT) {
2db76d7c 445 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
446
447 if (remain <= 0)
448 break;
449
eb01459f
EA
450 /* Operation in this page
451 *
eb01459f 452 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
453 * page_length = bytes to copy for this page
454 */
c8cbbb8b 455 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
456 page_length = remain;
457 if ((shmem_page_offset + page_length) > PAGE_SIZE)
458 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 459
8461d226
DV
460 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
461 (page_to_phys(page) & (1 << 17)) != 0;
462
d174bd64
DV
463 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
464 user_data, page_do_bit17_swizzling,
465 needs_clflush);
466 if (ret == 0)
467 goto next_page;
dbf7bff0 468
dbf7bff0
DV
469 mutex_unlock(&dev->struct_mutex);
470
96d79b52 471 if (!prefaulted) {
f56f821f 472 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
473 /* Userspace is tricking us, but we've already clobbered
474 * its pages with the prefault and promised to write the
475 * data up to the first fault. Hence ignore any errors
476 * and just continue. */
477 (void)ret;
478 prefaulted = 1;
479 }
eb01459f 480
d174bd64
DV
481 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
482 user_data, page_do_bit17_swizzling,
483 needs_clflush);
eb01459f 484
dbf7bff0 485 mutex_lock(&dev->struct_mutex);
f60d7f0c 486
dbf7bff0 487next_page:
e5281ccd 488 mark_page_accessed(page);
e5281ccd 489
f60d7f0c 490 if (ret)
8461d226 491 goto out;
8461d226 492
eb01459f 493 remain -= page_length;
8461d226 494 user_data += page_length;
eb01459f
EA
495 offset += page_length;
496 }
497
4f27b75d 498out:
f60d7f0c
CW
499 i915_gem_object_unpin_pages(obj);
500
eb01459f
EA
501 return ret;
502}
503
673a394b
EA
504/**
505 * Reads data from the object referenced by handle.
506 *
507 * On error, the contents of *data are undefined.
508 */
509int
510i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 511 struct drm_file *file)
673a394b
EA
512{
513 struct drm_i915_gem_pread *args = data;
05394f39 514 struct drm_i915_gem_object *obj;
35b62a89 515 int ret = 0;
673a394b 516
51311d0a
CW
517 if (args->size == 0)
518 return 0;
519
520 if (!access_ok(VERIFY_WRITE,
2bb4629a 521 to_user_ptr(args->data_ptr),
51311d0a
CW
522 args->size))
523 return -EFAULT;
524
4f27b75d 525 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 526 if (ret)
4f27b75d 527 return ret;
673a394b 528
05394f39 529 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 530 if (&obj->base == NULL) {
1d7cfea1
CW
531 ret = -ENOENT;
532 goto unlock;
4f27b75d 533 }
673a394b 534
7dcd2499 535 /* Bounds check source. */
05394f39
CW
536 if (args->offset > obj->base.size ||
537 args->size > obj->base.size - args->offset) {
ce9d419d 538 ret = -EINVAL;
35b62a89 539 goto out;
ce9d419d
CW
540 }
541
1286ff73
DV
542 /* prime objects have no backing filp to GEM pread/pwrite
543 * pages from.
544 */
545 if (!obj->base.filp) {
546 ret = -EINVAL;
547 goto out;
548 }
549
db53a302
CW
550 trace_i915_gem_object_pread(obj, args->offset, args->size);
551
dbf7bff0 552 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 553
35b62a89 554out:
05394f39 555 drm_gem_object_unreference(&obj->base);
1d7cfea1 556unlock:
4f27b75d 557 mutex_unlock(&dev->struct_mutex);
eb01459f 558 return ret;
673a394b
EA
559}
560
0839ccb8
KP
561/* This is the fast write path which cannot handle
562 * page faults in the source data
9b7530cc 563 */
0839ccb8
KP
564
565static inline int
566fast_user_write(struct io_mapping *mapping,
567 loff_t page_base, int page_offset,
568 char __user *user_data,
569 int length)
9b7530cc 570{
4f0c7cfb
BW
571 void __iomem *vaddr_atomic;
572 void *vaddr;
0839ccb8 573 unsigned long unwritten;
9b7530cc 574
3e4d3af5 575 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
576 /* We can use the cpu mem copy function because this is X86. */
577 vaddr = (void __force*)vaddr_atomic + page_offset;
578 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 579 user_data, length);
3e4d3af5 580 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 581 return unwritten;
0839ccb8
KP
582}
583
3de09aa3
EA
584/**
585 * This is the fast pwrite path, where we copy the data directly from the
586 * user into the GTT, uncached.
587 */
673a394b 588static int
05394f39
CW
589i915_gem_gtt_pwrite_fast(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
3de09aa3 591 struct drm_i915_gem_pwrite *args,
05394f39 592 struct drm_file *file)
673a394b 593{
0839ccb8 594 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 595 ssize_t remain;
0839ccb8 596 loff_t offset, page_base;
673a394b 597 char __user *user_data;
935aaa69
DV
598 int page_offset, page_length, ret;
599
86a1ee26 600 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
601 if (ret)
602 goto out;
603
604 ret = i915_gem_object_set_to_gtt_domain(obj, true);
605 if (ret)
606 goto out_unpin;
607
608 ret = i915_gem_object_put_fence(obj);
609 if (ret)
610 goto out_unpin;
673a394b 611
2bb4629a 612 user_data = to_user_ptr(args->data_ptr);
673a394b 613 remain = args->size;
673a394b 614
05394f39 615 offset = obj->gtt_offset + args->offset;
673a394b
EA
616
617 while (remain > 0) {
618 /* Operation in this page
619 *
0839ccb8
KP
620 * page_base = page offset within aperture
621 * page_offset = offset within page
622 * page_length = bytes to copy for this page
673a394b 623 */
c8cbbb8b
CW
624 page_base = offset & PAGE_MASK;
625 page_offset = offset_in_page(offset);
0839ccb8
KP
626 page_length = remain;
627 if ((page_offset + remain) > PAGE_SIZE)
628 page_length = PAGE_SIZE - page_offset;
629
0839ccb8 630 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
631 * source page isn't available. Return the error and we'll
632 * retry in the slow path.
0839ccb8 633 */
5d4545ae 634 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
635 page_offset, user_data, page_length)) {
636 ret = -EFAULT;
637 goto out_unpin;
638 }
673a394b 639
0839ccb8
KP
640 remain -= page_length;
641 user_data += page_length;
642 offset += page_length;
673a394b 643 }
673a394b 644
935aaa69
DV
645out_unpin:
646 i915_gem_object_unpin(obj);
647out:
3de09aa3 648 return ret;
673a394b
EA
649}
650
d174bd64
DV
651/* Per-page copy function for the shmem pwrite fastpath.
652 * Flushes invalid cachelines before writing to the target if
653 * needs_clflush_before is set and flushes out any written cachelines after
654 * writing if needs_clflush is set. */
3043c60c 655static int
d174bd64
DV
656shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
657 char __user *user_data,
658 bool page_do_bit17_swizzling,
659 bool needs_clflush_before,
660 bool needs_clflush_after)
673a394b 661{
d174bd64 662 char *vaddr;
673a394b 663 int ret;
3de09aa3 664
e7e58eb5 665 if (unlikely(page_do_bit17_swizzling))
d174bd64 666 return -EINVAL;
3de09aa3 667
d174bd64
DV
668 vaddr = kmap_atomic(page);
669 if (needs_clflush_before)
670 drm_clflush_virt_range(vaddr + shmem_page_offset,
671 page_length);
672 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
673 user_data,
674 page_length);
675 if (needs_clflush_after)
676 drm_clflush_virt_range(vaddr + shmem_page_offset,
677 page_length);
678 kunmap_atomic(vaddr);
3de09aa3 679
755d2218 680 return ret ? -EFAULT : 0;
3de09aa3
EA
681}
682
d174bd64
DV
683/* Only difference to the fast-path function is that this can handle bit17
684 * and uses non-atomic copy and kmap functions. */
3043c60c 685static int
d174bd64
DV
686shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
687 char __user *user_data,
688 bool page_do_bit17_swizzling,
689 bool needs_clflush_before,
690 bool needs_clflush_after)
673a394b 691{
d174bd64
DV
692 char *vaddr;
693 int ret;
e5281ccd 694
d174bd64 695 vaddr = kmap(page);
e7e58eb5 696 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
697 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
698 page_length,
699 page_do_bit17_swizzling);
d174bd64
DV
700 if (page_do_bit17_swizzling)
701 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
702 user_data,
703 page_length);
d174bd64
DV
704 else
705 ret = __copy_from_user(vaddr + shmem_page_offset,
706 user_data,
707 page_length);
708 if (needs_clflush_after)
23c18c71
DV
709 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
710 page_length,
711 page_do_bit17_swizzling);
d174bd64 712 kunmap(page);
40123c1f 713
755d2218 714 return ret ? -EFAULT : 0;
40123c1f
EA
715}
716
40123c1f 717static int
e244a443
DV
718i915_gem_shmem_pwrite(struct drm_device *dev,
719 struct drm_i915_gem_object *obj,
720 struct drm_i915_gem_pwrite *args,
721 struct drm_file *file)
40123c1f 722{
40123c1f 723 ssize_t remain;
8c59967c
DV
724 loff_t offset;
725 char __user *user_data;
eb2c0c81 726 int shmem_page_offset, page_length, ret = 0;
8c59967c 727 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 728 int hit_slowpath = 0;
58642885
DV
729 int needs_clflush_after = 0;
730 int needs_clflush_before = 0;
67d5a50c 731 struct sg_page_iter sg_iter;
40123c1f 732
2bb4629a 733 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
734 remain = args->size;
735
8c59967c 736 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 737
58642885
DV
738 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
739 /* If we're not in the cpu write domain, set ourself into the gtt
740 * write domain and manually flush cachelines (if required). This
741 * optimizes for the case when the gpu will use the data
742 * right away and we therefore have to clflush anyway. */
743 if (obj->cache_level == I915_CACHE_NONE)
744 needs_clflush_after = 1;
6c085a72
CW
745 if (obj->gtt_space) {
746 ret = i915_gem_object_set_to_gtt_domain(obj, true);
747 if (ret)
748 return ret;
749 }
58642885
DV
750 }
751 /* Same trick applies for invalidate partially written cachelines before
752 * writing. */
753 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
754 && obj->cache_level == I915_CACHE_NONE)
755 needs_clflush_before = 1;
756
755d2218
CW
757 ret = i915_gem_object_get_pages(obj);
758 if (ret)
759 return ret;
760
761 i915_gem_object_pin_pages(obj);
762
673a394b 763 offset = args->offset;
05394f39 764 obj->dirty = 1;
673a394b 765
67d5a50c
ID
766 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
767 offset >> PAGE_SHIFT) {
2db76d7c 768 struct page *page = sg_page_iter_page(&sg_iter);
58642885 769 int partial_cacheline_write;
e5281ccd 770
9da3da66
CW
771 if (remain <= 0)
772 break;
773
40123c1f
EA
774 /* Operation in this page
775 *
40123c1f 776 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
777 * page_length = bytes to copy for this page
778 */
c8cbbb8b 779 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
780
781 page_length = remain;
782 if ((shmem_page_offset + page_length) > PAGE_SIZE)
783 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 784
58642885
DV
785 /* If we don't overwrite a cacheline completely we need to be
786 * careful to have up-to-date data by first clflushing. Don't
787 * overcomplicate things and flush the entire patch. */
788 partial_cacheline_write = needs_clflush_before &&
789 ((shmem_page_offset | page_length)
790 & (boot_cpu_data.x86_clflush_size - 1));
791
8c59967c
DV
792 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
793 (page_to_phys(page) & (1 << 17)) != 0;
794
d174bd64
DV
795 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
796 user_data, page_do_bit17_swizzling,
797 partial_cacheline_write,
798 needs_clflush_after);
799 if (ret == 0)
800 goto next_page;
e244a443
DV
801
802 hit_slowpath = 1;
e244a443 803 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
804 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
805 user_data, page_do_bit17_swizzling,
806 partial_cacheline_write,
807 needs_clflush_after);
40123c1f 808
e244a443 809 mutex_lock(&dev->struct_mutex);
755d2218 810
e244a443 811next_page:
e5281ccd
CW
812 set_page_dirty(page);
813 mark_page_accessed(page);
e5281ccd 814
755d2218 815 if (ret)
8c59967c 816 goto out;
8c59967c 817
40123c1f 818 remain -= page_length;
8c59967c 819 user_data += page_length;
40123c1f 820 offset += page_length;
673a394b
EA
821 }
822
fbd5a26d 823out:
755d2218
CW
824 i915_gem_object_unpin_pages(obj);
825
e244a443 826 if (hit_slowpath) {
8dcf015e
DV
827 /*
828 * Fixup: Flush cpu caches in case we didn't flush the dirty
829 * cachelines in-line while writing and the object moved
830 * out of the cpu write domain while we've dropped the lock.
831 */
832 if (!needs_clflush_after &&
833 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
e244a443 834 i915_gem_clflush_object(obj);
e76e9aeb 835 i915_gem_chipset_flush(dev);
e244a443 836 }
8c59967c 837 }
673a394b 838
58642885 839 if (needs_clflush_after)
e76e9aeb 840 i915_gem_chipset_flush(dev);
58642885 841
40123c1f 842 return ret;
673a394b
EA
843}
844
845/**
846 * Writes data to the object referenced by handle.
847 *
848 * On error, the contents of the buffer that were to be modified are undefined.
849 */
850int
851i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 852 struct drm_file *file)
673a394b
EA
853{
854 struct drm_i915_gem_pwrite *args = data;
05394f39 855 struct drm_i915_gem_object *obj;
51311d0a
CW
856 int ret;
857
858 if (args->size == 0)
859 return 0;
860
861 if (!access_ok(VERIFY_READ,
2bb4629a 862 to_user_ptr(args->data_ptr),
51311d0a
CW
863 args->size))
864 return -EFAULT;
865
2bb4629a 866 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
f56f821f 867 args->size);
51311d0a
CW
868 if (ret)
869 return -EFAULT;
673a394b 870
fbd5a26d 871 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 872 if (ret)
fbd5a26d 873 return ret;
1d7cfea1 874
05394f39 875 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 876 if (&obj->base == NULL) {
1d7cfea1
CW
877 ret = -ENOENT;
878 goto unlock;
fbd5a26d 879 }
673a394b 880
7dcd2499 881 /* Bounds check destination. */
05394f39
CW
882 if (args->offset > obj->base.size ||
883 args->size > obj->base.size - args->offset) {
ce9d419d 884 ret = -EINVAL;
35b62a89 885 goto out;
ce9d419d
CW
886 }
887
1286ff73
DV
888 /* prime objects have no backing filp to GEM pread/pwrite
889 * pages from.
890 */
891 if (!obj->base.filp) {
892 ret = -EINVAL;
893 goto out;
894 }
895
db53a302
CW
896 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
897
935aaa69 898 ret = -EFAULT;
673a394b
EA
899 /* We can only do the GTT pwrite on untiled buffers, as otherwise
900 * it would end up going through the fenced access, and we'll get
901 * different detiling behavior between reading and writing.
902 * pread/pwrite currently are reading and writing from the CPU
903 * perspective, requiring manual detiling by the client.
904 */
5c0480f2 905 if (obj->phys_obj) {
fbd5a26d 906 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
907 goto out;
908 }
909
86a1ee26 910 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 911 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 912 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 913 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
914 /* Note that the gtt paths might fail with non-page-backed user
915 * pointers (e.g. gtt mappings when moving data between
916 * textures). Fallback to the shmem path in that case. */
fbd5a26d 917 }
673a394b 918
86a1ee26 919 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 920 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 921
35b62a89 922out:
05394f39 923 drm_gem_object_unreference(&obj->base);
1d7cfea1 924unlock:
fbd5a26d 925 mutex_unlock(&dev->struct_mutex);
673a394b
EA
926 return ret;
927}
928
b361237b 929int
33196ded 930i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
931 bool interruptible)
932{
1f83fee0 933 if (i915_reset_in_progress(error)) {
b361237b
CW
934 /* Non-interruptible callers can't handle -EAGAIN, hence return
935 * -EIO unconditionally for these. */
936 if (!interruptible)
937 return -EIO;
938
1f83fee0
DV
939 /* Recovery complete, but the reset failed ... */
940 if (i915_terminally_wedged(error))
b361237b
CW
941 return -EIO;
942
943 return -EAGAIN;
944 }
945
946 return 0;
947}
948
949/*
950 * Compare seqno against outstanding lazy request. Emit a request if they are
951 * equal.
952 */
953static int
954i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
955{
956 int ret;
957
958 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
959
960 ret = 0;
961 if (seqno == ring->outstanding_lazy_request)
962 ret = i915_add_request(ring, NULL, NULL);
963
964 return ret;
965}
966
967/**
968 * __wait_seqno - wait until execution of seqno has finished
969 * @ring: the ring expected to report seqno
970 * @seqno: duh!
f69061be 971 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
972 * @interruptible: do an interruptible wait (normally yes)
973 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
974 *
f69061be
DV
975 * Note: It is of utmost importance that the passed in seqno and reset_counter
976 * values have been read by the caller in an smp safe manner. Where read-side
977 * locks are involved, it is sufficient to read the reset_counter before
978 * unlocking the lock that protects the seqno. For lockless tricks, the
979 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
980 * inserted.
981 *
b361237b
CW
982 * Returns 0 if the seqno was found within the alloted time. Else returns the
983 * errno with remaining time filled in timeout argument.
984 */
985static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 986 unsigned reset_counter,
b361237b
CW
987 bool interruptible, struct timespec *timeout)
988{
989 drm_i915_private_t *dev_priv = ring->dev->dev_private;
990 struct timespec before, now, wait_time={1,0};
991 unsigned long timeout_jiffies;
992 long end;
993 bool wait_forever = true;
994 int ret;
995
996 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
997 return 0;
998
999 trace_i915_gem_request_wait_begin(ring, seqno);
1000
1001 if (timeout != NULL) {
1002 wait_time = *timeout;
1003 wait_forever = false;
1004 }
1005
1006 timeout_jiffies = timespec_to_jiffies(&wait_time);
1007
1008 if (WARN_ON(!ring->irq_get(ring)))
1009 return -ENODEV;
1010
1011 /* Record current time in case interrupted by signal, or wedged * */
1012 getrawmonotonic(&before);
1013
1014#define EXIT_COND \
1015 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
f69061be
DV
1016 i915_reset_in_progress(&dev_priv->gpu_error) || \
1017 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
b361237b
CW
1018 do {
1019 if (interruptible)
1020 end = wait_event_interruptible_timeout(ring->irq_queue,
1021 EXIT_COND,
1022 timeout_jiffies);
1023 else
1024 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1025 timeout_jiffies);
1026
f69061be
DV
1027 /* We need to check whether any gpu reset happened in between
1028 * the caller grabbing the seqno and now ... */
1029 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1030 end = -EAGAIN;
1031
1032 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1033 * gone. */
33196ded 1034 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1035 if (ret)
1036 end = ret;
1037 } while (end == 0 && wait_forever);
1038
1039 getrawmonotonic(&now);
1040
1041 ring->irq_put(ring);
1042 trace_i915_gem_request_wait_end(ring, seqno);
1043#undef EXIT_COND
1044
1045 if (timeout) {
1046 struct timespec sleep_time = timespec_sub(now, before);
1047 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1048 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1049 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1050 }
1051
1052 switch (end) {
1053 case -EIO:
1054 case -EAGAIN: /* Wedged */
1055 case -ERESTARTSYS: /* Signal */
1056 return (int)end;
1057 case 0: /* Timeout */
b361237b
CW
1058 return -ETIME;
1059 default: /* Completed */
1060 WARN_ON(end < 0); /* We're not aware of other errors */
1061 return 0;
1062 }
1063}
1064
1065/**
1066 * Waits for a sequence number to be signaled, and cleans up the
1067 * request and object lists appropriately for that event.
1068 */
1069int
1070i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1071{
1072 struct drm_device *dev = ring->dev;
1073 struct drm_i915_private *dev_priv = dev->dev_private;
1074 bool interruptible = dev_priv->mm.interruptible;
1075 int ret;
1076
1077 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1078 BUG_ON(seqno == 0);
1079
33196ded 1080 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1081 if (ret)
1082 return ret;
1083
1084 ret = i915_gem_check_olr(ring, seqno);
1085 if (ret)
1086 return ret;
1087
f69061be
DV
1088 return __wait_seqno(ring, seqno,
1089 atomic_read(&dev_priv->gpu_error.reset_counter),
1090 interruptible, NULL);
b361237b
CW
1091}
1092
1093/**
1094 * Ensures that all rendering to the object has completed and the object is
1095 * safe to unbind from the GTT or access from the CPU.
1096 */
1097static __must_check int
1098i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1099 bool readonly)
1100{
1101 struct intel_ring_buffer *ring = obj->ring;
1102 u32 seqno;
1103 int ret;
1104
1105 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1106 if (seqno == 0)
1107 return 0;
1108
1109 ret = i915_wait_seqno(ring, seqno);
1110 if (ret)
1111 return ret;
1112
1113 i915_gem_retire_requests_ring(ring);
1114
1115 /* Manually manage the write flush as we may have not yet
1116 * retired the buffer.
1117 */
1118 if (obj->last_write_seqno &&
1119 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1120 obj->last_write_seqno = 0;
1121 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1122 }
1123
1124 return 0;
1125}
1126
3236f57a
CW
1127/* A nonblocking variant of the above wait. This is a highly dangerous routine
1128 * as the object state may change during this call.
1129 */
1130static __must_check int
1131i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1132 bool readonly)
1133{
1134 struct drm_device *dev = obj->base.dev;
1135 struct drm_i915_private *dev_priv = dev->dev_private;
1136 struct intel_ring_buffer *ring = obj->ring;
f69061be 1137 unsigned reset_counter;
3236f57a
CW
1138 u32 seqno;
1139 int ret;
1140
1141 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1142 BUG_ON(!dev_priv->mm.interruptible);
1143
1144 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1145 if (seqno == 0)
1146 return 0;
1147
33196ded 1148 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1149 if (ret)
1150 return ret;
1151
1152 ret = i915_gem_check_olr(ring, seqno);
1153 if (ret)
1154 return ret;
1155
f69061be 1156 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1157 mutex_unlock(&dev->struct_mutex);
f69061be 1158 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3236f57a
CW
1159 mutex_lock(&dev->struct_mutex);
1160
1161 i915_gem_retire_requests_ring(ring);
1162
1163 /* Manually manage the write flush as we may have not yet
1164 * retired the buffer.
1165 */
1166 if (obj->last_write_seqno &&
1167 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1168 obj->last_write_seqno = 0;
1169 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1170 }
1171
1172 return ret;
1173}
1174
673a394b 1175/**
2ef7eeaa
EA
1176 * Called when user space prepares to use an object with the CPU, either
1177 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1178 */
1179int
1180i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1181 struct drm_file *file)
673a394b
EA
1182{
1183 struct drm_i915_gem_set_domain *args = data;
05394f39 1184 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1185 uint32_t read_domains = args->read_domains;
1186 uint32_t write_domain = args->write_domain;
673a394b
EA
1187 int ret;
1188
2ef7eeaa 1189 /* Only handle setting domains to types used by the CPU. */
21d509e3 1190 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1191 return -EINVAL;
1192
21d509e3 1193 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1194 return -EINVAL;
1195
1196 /* Having something in the write domain implies it's in the read
1197 * domain, and only that read domain. Enforce that in the request.
1198 */
1199 if (write_domain != 0 && read_domains != write_domain)
1200 return -EINVAL;
1201
76c1dec1 1202 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1203 if (ret)
76c1dec1 1204 return ret;
1d7cfea1 1205
05394f39 1206 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1207 if (&obj->base == NULL) {
1d7cfea1
CW
1208 ret = -ENOENT;
1209 goto unlock;
76c1dec1 1210 }
673a394b 1211
3236f57a
CW
1212 /* Try to flush the object off the GPU without holding the lock.
1213 * We will repeat the flush holding the lock in the normal manner
1214 * to catch cases where we are gazumped.
1215 */
1216 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1217 if (ret)
1218 goto unref;
1219
2ef7eeaa
EA
1220 if (read_domains & I915_GEM_DOMAIN_GTT) {
1221 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1222
1223 /* Silently promote "you're not bound, there was nothing to do"
1224 * to success, since the client was just asking us to
1225 * make sure everything was done.
1226 */
1227 if (ret == -EINVAL)
1228 ret = 0;
2ef7eeaa 1229 } else {
e47c68e9 1230 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1231 }
1232
3236f57a 1233unref:
05394f39 1234 drm_gem_object_unreference(&obj->base);
1d7cfea1 1235unlock:
673a394b
EA
1236 mutex_unlock(&dev->struct_mutex);
1237 return ret;
1238}
1239
1240/**
1241 * Called when user space has done writes to this buffer
1242 */
1243int
1244i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1245 struct drm_file *file)
673a394b
EA
1246{
1247 struct drm_i915_gem_sw_finish *args = data;
05394f39 1248 struct drm_i915_gem_object *obj;
673a394b
EA
1249 int ret = 0;
1250
76c1dec1 1251 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1252 if (ret)
76c1dec1 1253 return ret;
1d7cfea1 1254
05394f39 1255 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1256 if (&obj->base == NULL) {
1d7cfea1
CW
1257 ret = -ENOENT;
1258 goto unlock;
673a394b
EA
1259 }
1260
673a394b 1261 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1262 if (obj->pin_count)
e47c68e9
EA
1263 i915_gem_object_flush_cpu_write_domain(obj);
1264
05394f39 1265 drm_gem_object_unreference(&obj->base);
1d7cfea1 1266unlock:
673a394b
EA
1267 mutex_unlock(&dev->struct_mutex);
1268 return ret;
1269}
1270
1271/**
1272 * Maps the contents of an object, returning the address it is mapped
1273 * into.
1274 *
1275 * While the mapping holds a reference on the contents of the object, it doesn't
1276 * imply a ref on the object itself.
1277 */
1278int
1279i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1280 struct drm_file *file)
673a394b
EA
1281{
1282 struct drm_i915_gem_mmap *args = data;
1283 struct drm_gem_object *obj;
673a394b
EA
1284 unsigned long addr;
1285
05394f39 1286 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1287 if (obj == NULL)
bf79cb91 1288 return -ENOENT;
673a394b 1289
1286ff73
DV
1290 /* prime objects have no backing filp to GEM mmap
1291 * pages from.
1292 */
1293 if (!obj->filp) {
1294 drm_gem_object_unreference_unlocked(obj);
1295 return -EINVAL;
1296 }
1297
6be5ceb0 1298 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1299 PROT_READ | PROT_WRITE, MAP_SHARED,
1300 args->offset);
bc9025bd 1301 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1302 if (IS_ERR((void *)addr))
1303 return addr;
1304
1305 args->addr_ptr = (uint64_t) addr;
1306
1307 return 0;
1308}
1309
de151cf6
JB
1310/**
1311 * i915_gem_fault - fault a page into the GTT
1312 * vma: VMA in question
1313 * vmf: fault info
1314 *
1315 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1316 * from userspace. The fault handler takes care of binding the object to
1317 * the GTT (if needed), allocating and programming a fence register (again,
1318 * only if needed based on whether the old reg is still valid or the object
1319 * is tiled) and inserting a new PTE into the faulting process.
1320 *
1321 * Note that the faulting process may involve evicting existing objects
1322 * from the GTT and/or fence registers to make room. So performance may
1323 * suffer if the GTT working set is large or there are few fence registers
1324 * left.
1325 */
1326int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1327{
05394f39
CW
1328 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1329 struct drm_device *dev = obj->base.dev;
7d1c4804 1330 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1331 pgoff_t page_offset;
1332 unsigned long pfn;
1333 int ret = 0;
0f973f27 1334 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1335
1336 /* We don't use vmf->pgoff since that has the fake offset */
1337 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1338 PAGE_SHIFT;
1339
d9bc7e9f
CW
1340 ret = i915_mutex_lock_interruptible(dev);
1341 if (ret)
1342 goto out;
a00b10c3 1343
db53a302
CW
1344 trace_i915_gem_object_fault(obj, page_offset, true, write);
1345
eb119bd6
CW
1346 /* Access to snoopable pages through the GTT is incoherent. */
1347 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1348 ret = -EINVAL;
1349 goto unlock;
1350 }
1351
d9bc7e9f 1352 /* Now bind it into the GTT if needed */
c9839303
CW
1353 ret = i915_gem_object_pin(obj, 0, true, false);
1354 if (ret)
1355 goto unlock;
4a684a41 1356
c9839303
CW
1357 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1358 if (ret)
1359 goto unpin;
74898d7e 1360
06d98131 1361 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1362 if (ret)
c9839303 1363 goto unpin;
7d1c4804 1364
6299f992
CW
1365 obj->fault_mappable = true;
1366
5d4545ae 1367 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1368 page_offset;
1369
1370 /* Finally, remap it using the new GTT offset */
1371 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1372unpin:
1373 i915_gem_object_unpin(obj);
c715089f 1374unlock:
de151cf6 1375 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1376out:
de151cf6 1377 switch (ret) {
d9bc7e9f 1378 case -EIO:
a9340cca
DV
1379 /* If this -EIO is due to a gpu hang, give the reset code a
1380 * chance to clean up the mess. Otherwise return the proper
1381 * SIGBUS. */
1f83fee0 1382 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1383 return VM_FAULT_SIGBUS;
045e769a 1384 case -EAGAIN:
d9bc7e9f
CW
1385 /* Give the error handler a chance to run and move the
1386 * objects off the GPU active list. Next time we service the
1387 * fault, we should be able to transition the page into the
1388 * GTT without touching the GPU (and so avoid further
1389 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1390 * with coherency, just lost writes.
1391 */
045e769a 1392 set_need_resched();
c715089f
CW
1393 case 0:
1394 case -ERESTARTSYS:
bed636ab 1395 case -EINTR:
e79e0fe3
DR
1396 case -EBUSY:
1397 /*
1398 * EBUSY is ok: this just means that another thread
1399 * already did the job.
1400 */
c715089f 1401 return VM_FAULT_NOPAGE;
de151cf6 1402 case -ENOMEM:
de151cf6 1403 return VM_FAULT_OOM;
a7c2e1aa
DV
1404 case -ENOSPC:
1405 return VM_FAULT_SIGBUS;
de151cf6 1406 default:
a7c2e1aa 1407 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1408 return VM_FAULT_SIGBUS;
de151cf6
JB
1409 }
1410}
1411
901782b2
CW
1412/**
1413 * i915_gem_release_mmap - remove physical page mappings
1414 * @obj: obj in question
1415 *
af901ca1 1416 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1417 * relinquish ownership of the pages back to the system.
1418 *
1419 * It is vital that we remove the page mapping if we have mapped a tiled
1420 * object through the GTT and then lose the fence register due to
1421 * resource pressure. Similarly if the object has been moved out of the
1422 * aperture, than pages mapped into userspace must be revoked. Removing the
1423 * mapping will then trigger a page fault on the next user access, allowing
1424 * fixup by i915_gem_fault().
1425 */
d05ca301 1426void
05394f39 1427i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1428{
6299f992
CW
1429 if (!obj->fault_mappable)
1430 return;
901782b2 1431
f6e47884
CW
1432 if (obj->base.dev->dev_mapping)
1433 unmap_mapping_range(obj->base.dev->dev_mapping,
1434 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1435 obj->base.size, 1);
fb7d516a 1436
6299f992 1437 obj->fault_mappable = false;
901782b2
CW
1438}
1439
0fa87796 1440uint32_t
e28f8711 1441i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1442{
e28f8711 1443 uint32_t gtt_size;
92b88aeb
CW
1444
1445 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1446 tiling_mode == I915_TILING_NONE)
1447 return size;
92b88aeb
CW
1448
1449 /* Previous chips need a power-of-two fence region when tiling */
1450 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1451 gtt_size = 1024*1024;
92b88aeb 1452 else
e28f8711 1453 gtt_size = 512*1024;
92b88aeb 1454
e28f8711
CW
1455 while (gtt_size < size)
1456 gtt_size <<= 1;
92b88aeb 1457
e28f8711 1458 return gtt_size;
92b88aeb
CW
1459}
1460
de151cf6
JB
1461/**
1462 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1463 * @obj: object to check
1464 *
1465 * Return the required GTT alignment for an object, taking into account
5e783301 1466 * potential fence register mapping.
de151cf6 1467 */
d865110c
ID
1468uint32_t
1469i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1470 int tiling_mode, bool fenced)
de151cf6 1471{
de151cf6
JB
1472 /*
1473 * Minimum alignment is 4k (GTT page size), but might be greater
1474 * if a fence register is needed for the object.
1475 */
d865110c 1476 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1477 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1478 return 4096;
1479
a00b10c3
CW
1480 /*
1481 * Previous chips need to be aligned to the size of the smallest
1482 * fence register that can contain the object.
1483 */
e28f8711 1484 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1485}
1486
d8cb5086
CW
1487static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1488{
1489 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1490 int ret;
1491
1492 if (obj->base.map_list.map)
1493 return 0;
1494
da494d7c
DV
1495 dev_priv->mm.shrinker_no_lock_stealing = true;
1496
d8cb5086
CW
1497 ret = drm_gem_create_mmap_offset(&obj->base);
1498 if (ret != -ENOSPC)
da494d7c 1499 goto out;
d8cb5086
CW
1500
1501 /* Badly fragmented mmap space? The only way we can recover
1502 * space is by destroying unwanted objects. We can't randomly release
1503 * mmap_offsets as userspace expects them to be persistent for the
1504 * lifetime of the objects. The closest we can is to release the
1505 * offsets on purgeable objects by truncating it and marking it purged,
1506 * which prevents userspace from ever using that object again.
1507 */
1508 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1509 ret = drm_gem_create_mmap_offset(&obj->base);
1510 if (ret != -ENOSPC)
da494d7c 1511 goto out;
d8cb5086
CW
1512
1513 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1514 ret = drm_gem_create_mmap_offset(&obj->base);
1515out:
1516 dev_priv->mm.shrinker_no_lock_stealing = false;
1517
1518 return ret;
d8cb5086
CW
1519}
1520
1521static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1522{
1523 if (!obj->base.map_list.map)
1524 return;
1525
1526 drm_gem_free_mmap_offset(&obj->base);
1527}
1528
de151cf6 1529int
ff72145b
DA
1530i915_gem_mmap_gtt(struct drm_file *file,
1531 struct drm_device *dev,
1532 uint32_t handle,
1533 uint64_t *offset)
de151cf6 1534{
da761a6e 1535 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1536 struct drm_i915_gem_object *obj;
de151cf6
JB
1537 int ret;
1538
76c1dec1 1539 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1540 if (ret)
76c1dec1 1541 return ret;
de151cf6 1542
ff72145b 1543 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1544 if (&obj->base == NULL) {
1d7cfea1
CW
1545 ret = -ENOENT;
1546 goto unlock;
1547 }
de151cf6 1548
5d4545ae 1549 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1550 ret = -E2BIG;
ff56b0bc 1551 goto out;
da761a6e
CW
1552 }
1553
05394f39 1554 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1555 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1556 ret = -EINVAL;
1557 goto out;
ab18282d
CW
1558 }
1559
d8cb5086
CW
1560 ret = i915_gem_object_create_mmap_offset(obj);
1561 if (ret)
1562 goto out;
de151cf6 1563
ff72145b 1564 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1565
1d7cfea1 1566out:
05394f39 1567 drm_gem_object_unreference(&obj->base);
1d7cfea1 1568unlock:
de151cf6 1569 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1570 return ret;
de151cf6
JB
1571}
1572
ff72145b
DA
1573/**
1574 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1575 * @dev: DRM device
1576 * @data: GTT mapping ioctl data
1577 * @file: GEM object info
1578 *
1579 * Simply returns the fake offset to userspace so it can mmap it.
1580 * The mmap call will end up in drm_gem_mmap(), which will set things
1581 * up so we can get faults in the handler above.
1582 *
1583 * The fault handler will take care of binding the object into the GTT
1584 * (since it may have been evicted to make room for something), allocating
1585 * a fence register, and mapping the appropriate aperture address into
1586 * userspace.
1587 */
1588int
1589i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1590 struct drm_file *file)
1591{
1592 struct drm_i915_gem_mmap_gtt *args = data;
1593
ff72145b
DA
1594 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1595}
1596
225067ee
DV
1597/* Immediately discard the backing storage */
1598static void
1599i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1600{
e5281ccd 1601 struct inode *inode;
e5281ccd 1602
4d6294bf 1603 i915_gem_object_free_mmap_offset(obj);
1286ff73 1604
4d6294bf
CW
1605 if (obj->base.filp == NULL)
1606 return;
e5281ccd 1607
225067ee
DV
1608 /* Our goal here is to return as much of the memory as
1609 * is possible back to the system as we are called from OOM.
1610 * To do this we must instruct the shmfs to drop all of its
1611 * backing pages, *now*.
1612 */
496ad9aa 1613 inode = file_inode(obj->base.filp);
225067ee 1614 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1615
225067ee
DV
1616 obj->madv = __I915_MADV_PURGED;
1617}
e5281ccd 1618
225067ee
DV
1619static inline int
1620i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1621{
1622 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1623}
1624
5cdf5881 1625static void
05394f39 1626i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1627{
90797e6d
ID
1628 struct sg_page_iter sg_iter;
1629 int ret;
1286ff73 1630
05394f39 1631 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1632
6c085a72
CW
1633 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1634 if (ret) {
1635 /* In the event of a disaster, abandon all caches and
1636 * hope for the best.
1637 */
1638 WARN_ON(ret != -EIO);
1639 i915_gem_clflush_object(obj);
1640 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1641 }
1642
6dacfd2f 1643 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1644 i915_gem_object_save_bit_17_swizzle(obj);
1645
05394f39
CW
1646 if (obj->madv == I915_MADV_DONTNEED)
1647 obj->dirty = 0;
3ef94daa 1648
90797e6d 1649 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1650 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1651
05394f39 1652 if (obj->dirty)
9da3da66 1653 set_page_dirty(page);
3ef94daa 1654
05394f39 1655 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1656 mark_page_accessed(page);
3ef94daa 1657
9da3da66 1658 page_cache_release(page);
3ef94daa 1659 }
05394f39 1660 obj->dirty = 0;
673a394b 1661
9da3da66
CW
1662 sg_free_table(obj->pages);
1663 kfree(obj->pages);
37e680a1 1664}
6c085a72 1665
dd624afd 1666int
37e680a1
CW
1667i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1668{
1669 const struct drm_i915_gem_object_ops *ops = obj->ops;
1670
2f745ad3 1671 if (obj->pages == NULL)
37e680a1
CW
1672 return 0;
1673
1674 BUG_ON(obj->gtt_space);
6c085a72 1675
a5570178
CW
1676 if (obj->pages_pin_count)
1677 return -EBUSY;
1678
a2165e31
CW
1679 /* ->put_pages might need to allocate memory for the bit17 swizzle
1680 * array, hence protect them from being reaped by removing them from gtt
1681 * lists early. */
1682 list_del(&obj->gtt_list);
1683
37e680a1 1684 ops->put_pages(obj);
05394f39 1685 obj->pages = NULL;
37e680a1 1686
6c085a72
CW
1687 if (i915_gem_object_is_purgeable(obj))
1688 i915_gem_object_truncate(obj);
1689
1690 return 0;
1691}
1692
1693static long
93927ca5
DV
1694__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1695 bool purgeable_only)
6c085a72
CW
1696{
1697 struct drm_i915_gem_object *obj, *next;
1698 long count = 0;
1699
1700 list_for_each_entry_safe(obj, next,
1701 &dev_priv->mm.unbound_list,
1702 gtt_list) {
93927ca5 1703 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1704 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1705 count += obj->base.size >> PAGE_SHIFT;
1706 if (count >= target)
1707 return count;
1708 }
1709 }
1710
1711 list_for_each_entry_safe(obj, next,
1712 &dev_priv->mm.inactive_list,
1713 mm_list) {
93927ca5 1714 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
6c085a72 1715 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1716 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1717 count += obj->base.size >> PAGE_SHIFT;
1718 if (count >= target)
1719 return count;
1720 }
1721 }
1722
1723 return count;
1724}
1725
93927ca5
DV
1726static long
1727i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1728{
1729 return __i915_gem_shrink(dev_priv, target, true);
1730}
1731
6c085a72
CW
1732static void
1733i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1734{
1735 struct drm_i915_gem_object *obj, *next;
1736
1737 i915_gem_evict_everything(dev_priv->dev);
1738
1739 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
37e680a1 1740 i915_gem_object_put_pages(obj);
225067ee
DV
1741}
1742
37e680a1 1743static int
6c085a72 1744i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1745{
6c085a72 1746 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1747 int page_count, i;
1748 struct address_space *mapping;
9da3da66
CW
1749 struct sg_table *st;
1750 struct scatterlist *sg;
90797e6d 1751 struct sg_page_iter sg_iter;
e5281ccd 1752 struct page *page;
90797e6d 1753 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1754 gfp_t gfp;
e5281ccd 1755
6c085a72
CW
1756 /* Assert that the object is not currently in any GPU domain. As it
1757 * wasn't in the GTT, there shouldn't be any way it could have been in
1758 * a GPU cache
1759 */
1760 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1761 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1762
9da3da66
CW
1763 st = kmalloc(sizeof(*st), GFP_KERNEL);
1764 if (st == NULL)
1765 return -ENOMEM;
1766
05394f39 1767 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1768 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1769 sg_free_table(st);
1770 kfree(st);
e5281ccd 1771 return -ENOMEM;
9da3da66 1772 }
e5281ccd 1773
9da3da66
CW
1774 /* Get the list of pages out of our struct file. They'll be pinned
1775 * at this point until we release them.
1776 *
1777 * Fail silently without starting the shrinker
1778 */
496ad9aa 1779 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1780 gfp = mapping_gfp_mask(mapping);
caf49191 1781 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1782 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1783 sg = st->sgl;
1784 st->nents = 0;
1785 for (i = 0; i < page_count; i++) {
6c085a72
CW
1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 if (IS_ERR(page)) {
1788 i915_gem_purge(dev_priv, page_count);
1789 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1790 }
1791 if (IS_ERR(page)) {
1792 /* We've tried hard to allocate the memory by reaping
1793 * our own buffer, now let the real VM do its job and
1794 * go down in flames if truly OOM.
1795 */
caf49191 1796 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1797 gfp |= __GFP_IO | __GFP_WAIT;
1798
1799 i915_gem_shrink_all(dev_priv);
1800 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1801 if (IS_ERR(page))
1802 goto err_pages;
1803
caf49191 1804 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1805 gfp &= ~(__GFP_IO | __GFP_WAIT);
1806 }
e5281ccd 1807
90797e6d
ID
1808 if (!i || page_to_pfn(page) != last_pfn + 1) {
1809 if (i)
1810 sg = sg_next(sg);
1811 st->nents++;
1812 sg_set_page(sg, page, PAGE_SIZE, 0);
1813 } else {
1814 sg->length += PAGE_SIZE;
1815 }
1816 last_pfn = page_to_pfn(page);
e5281ccd
CW
1817 }
1818
90797e6d 1819 sg_mark_end(sg);
74ce6b6c
CW
1820 obj->pages = st;
1821
6dacfd2f 1822 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1823 i915_gem_object_do_bit_17_swizzle(obj);
1824
1825 return 0;
1826
1827err_pages:
90797e6d
ID
1828 sg_mark_end(sg);
1829 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1830 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1831 sg_free_table(st);
1832 kfree(st);
e5281ccd 1833 return PTR_ERR(page);
673a394b
EA
1834}
1835
37e680a1
CW
1836/* Ensure that the associated pages are gathered from the backing storage
1837 * and pinned into our object. i915_gem_object_get_pages() may be called
1838 * multiple times before they are released by a single call to
1839 * i915_gem_object_put_pages() - once the pages are no longer referenced
1840 * either as a result of memory pressure (reaping pages under the shrinker)
1841 * or as the object is itself released.
1842 */
1843int
1844i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1845{
1846 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1847 const struct drm_i915_gem_object_ops *ops = obj->ops;
1848 int ret;
1849
2f745ad3 1850 if (obj->pages)
37e680a1
CW
1851 return 0;
1852
43e28f09
CW
1853 if (obj->madv != I915_MADV_WILLNEED) {
1854 DRM_ERROR("Attempting to obtain a purgeable object\n");
1855 return -EINVAL;
1856 }
1857
a5570178
CW
1858 BUG_ON(obj->pages_pin_count);
1859
37e680a1
CW
1860 ret = ops->get_pages(obj);
1861 if (ret)
1862 return ret;
1863
1864 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1865 return 0;
673a394b
EA
1866}
1867
54cf91dc 1868void
05394f39 1869i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1870 struct intel_ring_buffer *ring)
673a394b 1871{
05394f39 1872 struct drm_device *dev = obj->base.dev;
69dc4987 1873 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1874 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1875
852835f3 1876 BUG_ON(ring == NULL);
05394f39 1877 obj->ring = ring;
673a394b
EA
1878
1879 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1880 if (!obj->active) {
1881 drm_gem_object_reference(&obj->base);
1882 obj->active = 1;
673a394b 1883 }
e35a41de 1884
673a394b 1885 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1886 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1887 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1888
0201f1ec 1889 obj->last_read_seqno = seqno;
caea7476 1890
7dd49065 1891 if (obj->fenced_gpu_access) {
caea7476 1892 obj->last_fenced_seqno = seqno;
caea7476 1893
7dd49065
CW
1894 /* Bump MRU to take account of the delayed flush */
1895 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1896 struct drm_i915_fence_reg *reg;
1897
1898 reg = &dev_priv->fence_regs[obj->fence_reg];
1899 list_move_tail(&reg->lru_list,
1900 &dev_priv->mm.fence_list);
1901 }
caea7476
CW
1902 }
1903}
1904
1905static void
caea7476 1906i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1907{
05394f39 1908 struct drm_device *dev = obj->base.dev;
caea7476 1909 struct drm_i915_private *dev_priv = dev->dev_private;
ce44b0ea 1910
65ce3027 1911 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1912 BUG_ON(!obj->active);
caea7476 1913
1b50247a 1914 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476 1915
65ce3027 1916 list_del_init(&obj->ring_list);
caea7476
CW
1917 obj->ring = NULL;
1918
65ce3027
CW
1919 obj->last_read_seqno = 0;
1920 obj->last_write_seqno = 0;
1921 obj->base.write_domain = 0;
1922
1923 obj->last_fenced_seqno = 0;
caea7476 1924 obj->fenced_gpu_access = false;
caea7476
CW
1925
1926 obj->active = 0;
1927 drm_gem_object_unreference(&obj->base);
1928
1929 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1930}
673a394b 1931
9d773091 1932static int
fca26bb4 1933i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1934{
9d773091
CW
1935 struct drm_i915_private *dev_priv = dev->dev_private;
1936 struct intel_ring_buffer *ring;
1937 int ret, i, j;
53d227f2 1938
107f27a5 1939 /* Carefully retire all requests without writing to the rings */
9d773091 1940 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1941 ret = intel_ring_idle(ring);
1942 if (ret)
1943 return ret;
9d773091 1944 }
9d773091 1945 i915_gem_retire_requests(dev);
107f27a5
CW
1946
1947 /* Finally reset hw state */
9d773091 1948 for_each_ring(ring, dev_priv, i) {
fca26bb4 1949 intel_ring_init_seqno(ring, seqno);
498d2ac1 1950
9d773091
CW
1951 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1952 ring->sync_seqno[j] = 0;
1953 }
53d227f2 1954
9d773091 1955 return 0;
53d227f2
DV
1956}
1957
fca26bb4
MK
1958int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1959{
1960 struct drm_i915_private *dev_priv = dev->dev_private;
1961 int ret;
1962
1963 if (seqno == 0)
1964 return -EINVAL;
1965
1966 /* HWS page needs to be set less than what we
1967 * will inject to ring
1968 */
1969 ret = i915_gem_init_seqno(dev, seqno - 1);
1970 if (ret)
1971 return ret;
1972
1973 /* Carefully set the last_seqno value so that wrap
1974 * detection still works
1975 */
1976 dev_priv->next_seqno = seqno;
1977 dev_priv->last_seqno = seqno - 1;
1978 if (dev_priv->last_seqno == 0)
1979 dev_priv->last_seqno--;
1980
1981 return 0;
1982}
1983
9d773091
CW
1984int
1985i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 1986{
9d773091
CW
1987 struct drm_i915_private *dev_priv = dev->dev_private;
1988
1989 /* reserve 0 for non-seqno */
1990 if (dev_priv->next_seqno == 0) {
fca26bb4 1991 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
1992 if (ret)
1993 return ret;
53d227f2 1994
9d773091
CW
1995 dev_priv->next_seqno = 1;
1996 }
53d227f2 1997
f72b3435 1998 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 1999 return 0;
53d227f2
DV
2000}
2001
3cce469c 2002int
db53a302 2003i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 2004 struct drm_file *file,
acb868d3 2005 u32 *out_seqno)
673a394b 2006{
db53a302 2007 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2008 struct drm_i915_gem_request *request;
a71d8d94 2009 u32 request_ring_position;
673a394b 2010 int was_empty;
3cce469c
CW
2011 int ret;
2012
cc889e0f
DV
2013 /*
2014 * Emit any outstanding flushes - execbuf can fail to emit the flush
2015 * after having emitted the batchbuffer command. Hence we need to fix
2016 * things up similar to emitting the lazy request. The difference here
2017 * is that the flush _must_ happen before the next request, no matter
2018 * what.
2019 */
a7b9761d
CW
2020 ret = intel_ring_flush_all_caches(ring);
2021 if (ret)
2022 return ret;
cc889e0f 2023
acb868d3
CW
2024 request = kmalloc(sizeof(*request), GFP_KERNEL);
2025 if (request == NULL)
2026 return -ENOMEM;
cc889e0f 2027
673a394b 2028
a71d8d94
CW
2029 /* Record the position of the start of the request so that
2030 * should we detect the updated seqno part-way through the
2031 * GPU processing the request, we never over-estimate the
2032 * position of the head.
2033 */
2034 request_ring_position = intel_ring_get_tail(ring);
2035
9d773091 2036 ret = ring->add_request(ring);
3bb73aba
CW
2037 if (ret) {
2038 kfree(request);
2039 return ret;
2040 }
673a394b 2041
9d773091 2042 request->seqno = intel_ring_get_seqno(ring);
852835f3 2043 request->ring = ring;
a71d8d94 2044 request->tail = request_ring_position;
0e50e96b
MK
2045 request->ctx = ring->last_context;
2046
2047 if (request->ctx)
2048 i915_gem_context_reference(request->ctx);
2049
673a394b 2050 request->emitted_jiffies = jiffies;
852835f3
ZN
2051 was_empty = list_empty(&ring->request_list);
2052 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2053 request->file_priv = NULL;
852835f3 2054
db53a302
CW
2055 if (file) {
2056 struct drm_i915_file_private *file_priv = file->driver_priv;
2057
1c25595f 2058 spin_lock(&file_priv->mm.lock);
f787a5f5 2059 request->file_priv = file_priv;
b962442e 2060 list_add_tail(&request->client_list,
f787a5f5 2061 &file_priv->mm.request_list);
1c25595f 2062 spin_unlock(&file_priv->mm.lock);
b962442e 2063 }
673a394b 2064
9d773091 2065 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2066 ring->outstanding_lazy_request = 0;
db53a302 2067
f65d9421 2068 if (!dev_priv->mm.suspended) {
3e0dc6b0 2069 if (i915_enable_hangcheck) {
99584db3 2070 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
cecc21fe 2071 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3e0dc6b0 2072 }
f047e395 2073 if (was_empty) {
b3b079db 2074 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2075 &dev_priv->mm.retire_work,
2076 round_jiffies_up_relative(HZ));
f047e395
CW
2077 intel_mark_busy(dev_priv->dev);
2078 }
f65d9421 2079 }
cc889e0f 2080
acb868d3 2081 if (out_seqno)
9d773091 2082 *out_seqno = request->seqno;
3cce469c 2083 return 0;
673a394b
EA
2084}
2085
f787a5f5
CW
2086static inline void
2087i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2088{
1c25595f 2089 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2090
1c25595f
CW
2091 if (!file_priv)
2092 return;
1c5d22f7 2093
1c25595f 2094 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2095 if (request->file_priv) {
2096 list_del(&request->client_list);
2097 request->file_priv = NULL;
2098 }
1c25595f 2099 spin_unlock(&file_priv->mm.lock);
673a394b 2100}
673a394b 2101
0e50e96b
MK
2102static void i915_gem_free_request(struct drm_i915_gem_request *request)
2103{
2104 list_del(&request->list);
2105 i915_gem_request_remove_from_client(request);
2106
2107 if (request->ctx)
2108 i915_gem_context_unreference(request->ctx);
2109
2110 kfree(request);
2111}
2112
dfaae392
CW
2113static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2114 struct intel_ring_buffer *ring)
9375e446 2115{
dfaae392
CW
2116 while (!list_empty(&ring->request_list)) {
2117 struct drm_i915_gem_request *request;
673a394b 2118
dfaae392
CW
2119 request = list_first_entry(&ring->request_list,
2120 struct drm_i915_gem_request,
2121 list);
de151cf6 2122
0e50e96b 2123 i915_gem_free_request(request);
dfaae392 2124 }
673a394b 2125
dfaae392 2126 while (!list_empty(&ring->active_list)) {
05394f39 2127 struct drm_i915_gem_object *obj;
9375e446 2128
05394f39
CW
2129 obj = list_first_entry(&ring->active_list,
2130 struct drm_i915_gem_object,
2131 ring_list);
9375e446 2132
05394f39 2133 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2134 }
2135}
2136
312817a3
CW
2137static void i915_gem_reset_fences(struct drm_device *dev)
2138{
2139 struct drm_i915_private *dev_priv = dev->dev_private;
2140 int i;
2141
4b9de737 2142 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2143 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2144
ada726c7
CW
2145 if (reg->obj)
2146 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2147
f9c513e9
CW
2148 i915_gem_write_fence(dev, i, NULL);
2149
ada726c7
CW
2150 reg->pin_count = 0;
2151 reg->obj = NULL;
2152 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2153 }
ada726c7
CW
2154
2155 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2156}
2157
069efc1d 2158void i915_gem_reset(struct drm_device *dev)
673a394b 2159{
77f01230 2160 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2161 struct drm_i915_gem_object *obj;
b4519513 2162 struct intel_ring_buffer *ring;
1ec14ad3 2163 int i;
673a394b 2164
b4519513
CW
2165 for_each_ring(ring, dev_priv, i)
2166 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2167
dfaae392
CW
2168 /* Move everything out of the GPU domains to ensure we do any
2169 * necessary invalidation upon reuse.
2170 */
05394f39 2171 list_for_each_entry(obj,
77f01230 2172 &dev_priv->mm.inactive_list,
69dc4987 2173 mm_list)
77f01230 2174 {
05394f39 2175 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2176 }
069efc1d
CW
2177
2178 /* The fence registers are invalidated so clear them out */
312817a3 2179 i915_gem_reset_fences(dev);
673a394b
EA
2180}
2181
2182/**
2183 * This function clears the request list as sequence numbers are passed.
2184 */
a71d8d94 2185void
db53a302 2186i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2187{
673a394b
EA
2188 uint32_t seqno;
2189
db53a302 2190 if (list_empty(&ring->request_list))
6c0594a3
KW
2191 return;
2192
db53a302 2193 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2194
b2eadbc8 2195 seqno = ring->get_seqno(ring, true);
1ec14ad3 2196
852835f3 2197 while (!list_empty(&ring->request_list)) {
673a394b 2198 struct drm_i915_gem_request *request;
673a394b 2199
852835f3 2200 request = list_first_entry(&ring->request_list,
673a394b
EA
2201 struct drm_i915_gem_request,
2202 list);
673a394b 2203
dfaae392 2204 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2205 break;
2206
db53a302 2207 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2208 /* We know the GPU must have read the request to have
2209 * sent us the seqno + interrupt, so use the position
2210 * of tail of the request to update the last known position
2211 * of the GPU head.
2212 */
2213 ring->last_retired_head = request->tail;
b84d5f0c 2214
0e50e96b 2215 i915_gem_free_request(request);
b84d5f0c 2216 }
673a394b 2217
b84d5f0c
CW
2218 /* Move any buffers on the active list that are no longer referenced
2219 * by the ringbuffer to the flushing/inactive lists as appropriate.
2220 */
2221 while (!list_empty(&ring->active_list)) {
05394f39 2222 struct drm_i915_gem_object *obj;
b84d5f0c 2223
0206e353 2224 obj = list_first_entry(&ring->active_list,
05394f39
CW
2225 struct drm_i915_gem_object,
2226 ring_list);
673a394b 2227
0201f1ec 2228 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2229 break;
b84d5f0c 2230
65ce3027 2231 i915_gem_object_move_to_inactive(obj);
673a394b 2232 }
9d34e5db 2233
db53a302
CW
2234 if (unlikely(ring->trace_irq_seqno &&
2235 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2236 ring->irq_put(ring);
db53a302 2237 ring->trace_irq_seqno = 0;
9d34e5db 2238 }
23bc5982 2239
db53a302 2240 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2241}
2242
b09a1fec
CW
2243void
2244i915_gem_retire_requests(struct drm_device *dev)
2245{
2246 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2247 struct intel_ring_buffer *ring;
1ec14ad3 2248 int i;
b09a1fec 2249
b4519513
CW
2250 for_each_ring(ring, dev_priv, i)
2251 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2252}
2253
75ef9da2 2254static void
673a394b
EA
2255i915_gem_retire_work_handler(struct work_struct *work)
2256{
2257 drm_i915_private_t *dev_priv;
2258 struct drm_device *dev;
b4519513 2259 struct intel_ring_buffer *ring;
0a58705b
CW
2260 bool idle;
2261 int i;
673a394b
EA
2262
2263 dev_priv = container_of(work, drm_i915_private_t,
2264 mm.retire_work.work);
2265 dev = dev_priv->dev;
2266
891b48cf
CW
2267 /* Come back later if the device is busy... */
2268 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2269 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2270 round_jiffies_up_relative(HZ));
891b48cf
CW
2271 return;
2272 }
673a394b 2273
b09a1fec 2274 i915_gem_retire_requests(dev);
673a394b 2275
0a58705b
CW
2276 /* Send a periodic flush down the ring so we don't hold onto GEM
2277 * objects indefinitely.
673a394b 2278 */
0a58705b 2279 idle = true;
b4519513 2280 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
2281 if (ring->gpu_caches_dirty)
2282 i915_add_request(ring, NULL, NULL);
0a58705b
CW
2283
2284 idle &= list_empty(&ring->request_list);
673a394b
EA
2285 }
2286
0a58705b 2287 if (!dev_priv->mm.suspended && !idle)
bcb45086
CW
2288 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2289 round_jiffies_up_relative(HZ));
f047e395
CW
2290 if (idle)
2291 intel_mark_idle(dev);
0a58705b 2292
673a394b 2293 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2294}
2295
30dfebf3
DV
2296/**
2297 * Ensures that an object will eventually get non-busy by flushing any required
2298 * write domains, emitting any outstanding lazy request and retiring and
2299 * completed requests.
2300 */
2301static int
2302i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2303{
2304 int ret;
2305
2306 if (obj->active) {
0201f1ec 2307 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2308 if (ret)
2309 return ret;
2310
30dfebf3
DV
2311 i915_gem_retire_requests_ring(obj->ring);
2312 }
2313
2314 return 0;
2315}
2316
23ba4fd0
BW
2317/**
2318 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2319 * @DRM_IOCTL_ARGS: standard ioctl arguments
2320 *
2321 * Returns 0 if successful, else an error is returned with the remaining time in
2322 * the timeout parameter.
2323 * -ETIME: object is still busy after timeout
2324 * -ERESTARTSYS: signal interrupted the wait
2325 * -ENONENT: object doesn't exist
2326 * Also possible, but rare:
2327 * -EAGAIN: GPU wedged
2328 * -ENOMEM: damn
2329 * -ENODEV: Internal IRQ fail
2330 * -E?: The add request failed
2331 *
2332 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2333 * non-zero timeout parameter the wait ioctl will wait for the given number of
2334 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2335 * without holding struct_mutex the object may become re-busied before this
2336 * function completes. A similar but shorter * race condition exists in the busy
2337 * ioctl
2338 */
2339int
2340i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2341{
f69061be 2342 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2343 struct drm_i915_gem_wait *args = data;
2344 struct drm_i915_gem_object *obj;
2345 struct intel_ring_buffer *ring = NULL;
eac1f14f 2346 struct timespec timeout_stack, *timeout = NULL;
f69061be 2347 unsigned reset_counter;
23ba4fd0
BW
2348 u32 seqno = 0;
2349 int ret = 0;
2350
eac1f14f
BW
2351 if (args->timeout_ns >= 0) {
2352 timeout_stack = ns_to_timespec(args->timeout_ns);
2353 timeout = &timeout_stack;
2354 }
23ba4fd0
BW
2355
2356 ret = i915_mutex_lock_interruptible(dev);
2357 if (ret)
2358 return ret;
2359
2360 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2361 if (&obj->base == NULL) {
2362 mutex_unlock(&dev->struct_mutex);
2363 return -ENOENT;
2364 }
2365
30dfebf3
DV
2366 /* Need to make sure the object gets inactive eventually. */
2367 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2368 if (ret)
2369 goto out;
2370
2371 if (obj->active) {
0201f1ec 2372 seqno = obj->last_read_seqno;
23ba4fd0
BW
2373 ring = obj->ring;
2374 }
2375
2376 if (seqno == 0)
2377 goto out;
2378
23ba4fd0
BW
2379 /* Do this after OLR check to make sure we make forward progress polling
2380 * on this IOCTL with a 0 timeout (like busy ioctl)
2381 */
2382 if (!args->timeout_ns) {
2383 ret = -ETIME;
2384 goto out;
2385 }
2386
2387 drm_gem_object_unreference(&obj->base);
f69061be 2388 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2389 mutex_unlock(&dev->struct_mutex);
2390
f69061be 2391 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
4f42f4ef 2392 if (timeout)
eac1f14f 2393 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2394 return ret;
2395
2396out:
2397 drm_gem_object_unreference(&obj->base);
2398 mutex_unlock(&dev->struct_mutex);
2399 return ret;
2400}
2401
5816d648
BW
2402/**
2403 * i915_gem_object_sync - sync an object to a ring.
2404 *
2405 * @obj: object which may be in use on another ring.
2406 * @to: ring we wish to use the object on. May be NULL.
2407 *
2408 * This code is meant to abstract object synchronization with the GPU.
2409 * Calling with NULL implies synchronizing the object with the CPU
2410 * rather than a particular GPU ring.
2411 *
2412 * Returns 0 if successful, else propagates up the lower layer error.
2413 */
2911a35b
BW
2414int
2415i915_gem_object_sync(struct drm_i915_gem_object *obj,
2416 struct intel_ring_buffer *to)
2417{
2418 struct intel_ring_buffer *from = obj->ring;
2419 u32 seqno;
2420 int ret, idx;
2421
2422 if (from == NULL || to == from)
2423 return 0;
2424
5816d648 2425 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2426 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2427
2428 idx = intel_ring_sync_index(from, to);
2429
0201f1ec 2430 seqno = obj->last_read_seqno;
2911a35b
BW
2431 if (seqno <= from->sync_seqno[idx])
2432 return 0;
2433
b4aca010
BW
2434 ret = i915_gem_check_olr(obj->ring, seqno);
2435 if (ret)
2436 return ret;
2911a35b 2437
1500f7ea 2438 ret = to->sync_to(to, from, seqno);
e3a5a225 2439 if (!ret)
7b01e260
MK
2440 /* We use last_read_seqno because sync_to()
2441 * might have just caused seqno wrap under
2442 * the radar.
2443 */
2444 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2445
e3a5a225 2446 return ret;
2911a35b
BW
2447}
2448
b5ffc9bc
CW
2449static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2450{
2451 u32 old_write_domain, old_read_domains;
2452
b5ffc9bc
CW
2453 /* Force a pagefault for domain tracking on next user access */
2454 i915_gem_release_mmap(obj);
2455
b97c3d9c
KP
2456 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2457 return;
2458
97c809fd
CW
2459 /* Wait for any direct GTT access to complete */
2460 mb();
2461
b5ffc9bc
CW
2462 old_read_domains = obj->base.read_domains;
2463 old_write_domain = obj->base.write_domain;
2464
2465 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2466 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2467
2468 trace_i915_gem_object_change_domain(obj,
2469 old_read_domains,
2470 old_write_domain);
2471}
2472
673a394b
EA
2473/**
2474 * Unbinds an object from the GTT aperture.
2475 */
0f973f27 2476int
05394f39 2477i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2478{
7bddb01f 2479 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2480 int ret;
673a394b 2481
05394f39 2482 if (obj->gtt_space == NULL)
673a394b
EA
2483 return 0;
2484
31d8d651
CW
2485 if (obj->pin_count)
2486 return -EBUSY;
673a394b 2487
c4670ad0
CW
2488 BUG_ON(obj->pages == NULL);
2489
a8198eea 2490 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2491 if (ret)
a8198eea
CW
2492 return ret;
2493 /* Continue on if we fail due to EIO, the GPU is hung so we
2494 * should be safe and we need to cleanup or else we might
2495 * cause memory corruption through use-after-free.
2496 */
2497
b5ffc9bc 2498 i915_gem_object_finish_gtt(obj);
5323fd04 2499
96b47b65 2500 /* release the fence reg _after_ flushing */
d9e86c0e 2501 ret = i915_gem_object_put_fence(obj);
1488fc08 2502 if (ret)
d9e86c0e 2503 return ret;
96b47b65 2504
db53a302
CW
2505 trace_i915_gem_object_unbind(obj);
2506
74898d7e
DV
2507 if (obj->has_global_gtt_mapping)
2508 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2509 if (obj->has_aliasing_ppgtt_mapping) {
2510 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2511 obj->has_aliasing_ppgtt_mapping = 0;
2512 }
74163907 2513 i915_gem_gtt_finish_object(obj);
7bddb01f 2514
6c085a72
CW
2515 list_del(&obj->mm_list);
2516 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2517 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2518 obj->map_and_fenceable = true;
673a394b 2519
05394f39
CW
2520 drm_mm_put_block(obj->gtt_space);
2521 obj->gtt_space = NULL;
2522 obj->gtt_offset = 0;
673a394b 2523
88241785 2524 return 0;
54cf91dc
CW
2525}
2526
b2da9fe5 2527int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2528{
2529 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2530 struct intel_ring_buffer *ring;
1ec14ad3 2531 int ret, i;
4df2faf4 2532
4df2faf4 2533 /* Flush everything onto the inactive list. */
b4519513 2534 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2535 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2536 if (ret)
2537 return ret;
2538
3e960501 2539 ret = intel_ring_idle(ring);
1ec14ad3
CW
2540 if (ret)
2541 return ret;
2542 }
4df2faf4 2543
8a1a49f9 2544 return 0;
4df2faf4
DV
2545}
2546
9ce079e4
CW
2547static void i965_write_fence_reg(struct drm_device *dev, int reg,
2548 struct drm_i915_gem_object *obj)
de151cf6 2549{
de151cf6 2550 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2551 int fence_reg;
2552 int fence_pitch_shift;
de151cf6
JB
2553 uint64_t val;
2554
56c844e5
ID
2555 if (INTEL_INFO(dev)->gen >= 6) {
2556 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2557 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2558 } else {
2559 fence_reg = FENCE_REG_965_0;
2560 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2561 }
2562
9ce079e4
CW
2563 if (obj) {
2564 u32 size = obj->gtt_space->size;
de151cf6 2565
9ce079e4
CW
2566 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2567 0xfffff000) << 32;
2568 val |= obj->gtt_offset & 0xfffff000;
56c844e5 2569 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2570 if (obj->tiling_mode == I915_TILING_Y)
2571 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2572 val |= I965_FENCE_REG_VALID;
2573 } else
2574 val = 0;
c6642782 2575
56c844e5
ID
2576 fence_reg += reg * 8;
2577 I915_WRITE64(fence_reg, val);
2578 POSTING_READ(fence_reg);
de151cf6
JB
2579}
2580
9ce079e4
CW
2581static void i915_write_fence_reg(struct drm_device *dev, int reg,
2582 struct drm_i915_gem_object *obj)
de151cf6 2583{
de151cf6 2584 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2585 u32 val;
de151cf6 2586
9ce079e4
CW
2587 if (obj) {
2588 u32 size = obj->gtt_space->size;
2589 int pitch_val;
2590 int tile_width;
c6642782 2591
9ce079e4
CW
2592 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2593 (size & -size) != size ||
2594 (obj->gtt_offset & (size - 1)),
2595 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2596 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2597
9ce079e4
CW
2598 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2599 tile_width = 128;
2600 else
2601 tile_width = 512;
2602
2603 /* Note: pitch better be a power of two tile widths */
2604 pitch_val = obj->stride / tile_width;
2605 pitch_val = ffs(pitch_val) - 1;
2606
2607 val = obj->gtt_offset;
2608 if (obj->tiling_mode == I915_TILING_Y)
2609 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2610 val |= I915_FENCE_SIZE_BITS(size);
2611 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2612 val |= I830_FENCE_REG_VALID;
2613 } else
2614 val = 0;
2615
2616 if (reg < 8)
2617 reg = FENCE_REG_830_0 + reg * 4;
2618 else
2619 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2620
2621 I915_WRITE(reg, val);
2622 POSTING_READ(reg);
de151cf6
JB
2623}
2624
9ce079e4
CW
2625static void i830_write_fence_reg(struct drm_device *dev, int reg,
2626 struct drm_i915_gem_object *obj)
de151cf6 2627{
de151cf6 2628 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2629 uint32_t val;
de151cf6 2630
9ce079e4
CW
2631 if (obj) {
2632 u32 size = obj->gtt_space->size;
2633 uint32_t pitch_val;
de151cf6 2634
9ce079e4
CW
2635 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2636 (size & -size) != size ||
2637 (obj->gtt_offset & (size - 1)),
2638 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2639 obj->gtt_offset, size);
e76a16de 2640
9ce079e4
CW
2641 pitch_val = obj->stride / 128;
2642 pitch_val = ffs(pitch_val) - 1;
de151cf6 2643
9ce079e4
CW
2644 val = obj->gtt_offset;
2645 if (obj->tiling_mode == I915_TILING_Y)
2646 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2647 val |= I830_FENCE_SIZE_BITS(size);
2648 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2649 val |= I830_FENCE_REG_VALID;
2650 } else
2651 val = 0;
c6642782 2652
9ce079e4
CW
2653 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2654 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2655}
2656
d0a57789
CW
2657inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2658{
2659 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2660}
2661
9ce079e4
CW
2662static void i915_gem_write_fence(struct drm_device *dev, int reg,
2663 struct drm_i915_gem_object *obj)
2664{
d0a57789
CW
2665 struct drm_i915_private *dev_priv = dev->dev_private;
2666
2667 /* Ensure that all CPU reads are completed before installing a fence
2668 * and all writes before removing the fence.
2669 */
2670 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2671 mb();
2672
9ce079e4
CW
2673 switch (INTEL_INFO(dev)->gen) {
2674 case 7:
56c844e5 2675 case 6:
9ce079e4
CW
2676 case 5:
2677 case 4: i965_write_fence_reg(dev, reg, obj); break;
2678 case 3: i915_write_fence_reg(dev, reg, obj); break;
2679 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2680 default: BUG();
9ce079e4 2681 }
d0a57789
CW
2682
2683 /* And similarly be paranoid that no direct access to this region
2684 * is reordered to before the fence is installed.
2685 */
2686 if (i915_gem_object_needs_mb(obj))
2687 mb();
de151cf6
JB
2688}
2689
61050808
CW
2690static inline int fence_number(struct drm_i915_private *dev_priv,
2691 struct drm_i915_fence_reg *fence)
2692{
2693 return fence - dev_priv->fence_regs;
2694}
2695
2dc8aae0
CW
2696struct write_fence {
2697 struct drm_device *dev;
2698 struct drm_i915_gem_object *obj;
2699 int fence;
2700};
2701
25ff1195
CW
2702static void i915_gem_write_fence__ipi(void *data)
2703{
2dc8aae0
CW
2704 struct write_fence *args = data;
2705
2706 /* Required for SNB+ with LLC */
25ff1195 2707 wbinvd();
2dc8aae0
CW
2708
2709 /* Required for VLV */
2710 i915_gem_write_fence(args->dev, args->fence, args->obj);
25ff1195
CW
2711}
2712
61050808
CW
2713static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2714 struct drm_i915_fence_reg *fence,
2715 bool enable)
2716{
2dc8aae0
CW
2717 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2718 struct write_fence args = {
2719 .dev = obj->base.dev,
2720 .fence = fence_number(dev_priv, fence),
2721 .obj = enable ? obj : NULL,
2722 };
25ff1195
CW
2723
2724 /* In order to fully serialize access to the fenced region and
2725 * the update to the fence register we need to take extreme
2726 * measures on SNB+. In theory, the write to the fence register
2727 * flushes all memory transactions before, and coupled with the
2728 * mb() placed around the register write we serialise all memory
2729 * operations with respect to the changes in the tiler. Yet, on
2730 * SNB+ we need to take a step further and emit an explicit wbinvd()
2731 * on each processor in order to manually flush all memory
2732 * transactions before updating the fence register.
2dc8aae0
CW
2733 *
2734 * However, Valleyview complicates matter. There the wbinvd is
2735 * insufficient and unlike SNB/IVB requires the serialising
2736 * register write. (Note that that register write by itself is
2737 * conversely not sufficient for SNB+.) To compromise, we do both.
25ff1195 2738 */
2dc8aae0
CW
2739 if (INTEL_INFO(args.dev)->gen >= 6)
2740 on_each_cpu(i915_gem_write_fence__ipi, &args, 1);
2741 else
2742 i915_gem_write_fence(args.dev, args.fence, args.obj);
61050808
CW
2743
2744 if (enable) {
2dc8aae0 2745 obj->fence_reg = args.fence;
61050808
CW
2746 fence->obj = obj;
2747 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2748 } else {
2749 obj->fence_reg = I915_FENCE_REG_NONE;
2750 fence->obj = NULL;
2751 list_del_init(&fence->lru_list);
2752 }
2753}
2754
d9e86c0e 2755static int
d0a57789 2756i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2757{
1c293ea3 2758 if (obj->last_fenced_seqno) {
86d5bc37 2759 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2760 if (ret)
2761 return ret;
d9e86c0e
CW
2762
2763 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2764 }
2765
86d5bc37 2766 obj->fenced_gpu_access = false;
d9e86c0e
CW
2767 return 0;
2768}
2769
2770int
2771i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2772{
61050808 2773 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 2774 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
2775 int ret;
2776
d0a57789 2777 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
2778 if (ret)
2779 return ret;
2780
61050808
CW
2781 if (obj->fence_reg == I915_FENCE_REG_NONE)
2782 return 0;
d9e86c0e 2783
f9c513e9
CW
2784 fence = &dev_priv->fence_regs[obj->fence_reg];
2785
61050808 2786 i915_gem_object_fence_lost(obj);
f9c513e9 2787 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
2788
2789 return 0;
2790}
2791
2792static struct drm_i915_fence_reg *
a360bb1a 2793i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2794{
ae3db24a 2795 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2796 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2797 int i;
ae3db24a
DV
2798
2799 /* First try to find a free reg */
d9e86c0e 2800 avail = NULL;
ae3db24a
DV
2801 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2802 reg = &dev_priv->fence_regs[i];
2803 if (!reg->obj)
d9e86c0e 2804 return reg;
ae3db24a 2805
1690e1eb 2806 if (!reg->pin_count)
d9e86c0e 2807 avail = reg;
ae3db24a
DV
2808 }
2809
d9e86c0e
CW
2810 if (avail == NULL)
2811 return NULL;
ae3db24a
DV
2812
2813 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2814 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2815 if (reg->pin_count)
ae3db24a
DV
2816 continue;
2817
8fe301ad 2818 return reg;
ae3db24a
DV
2819 }
2820
8fe301ad 2821 return NULL;
ae3db24a
DV
2822}
2823
de151cf6 2824/**
9a5a53b3 2825 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2826 * @obj: object to map through a fence reg
2827 *
2828 * When mapping objects through the GTT, userspace wants to be able to write
2829 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2830 * This function walks the fence regs looking for a free one for @obj,
2831 * stealing one if it can't find any.
2832 *
2833 * It then sets up the reg based on the object's properties: address, pitch
2834 * and tiling format.
9a5a53b3
CW
2835 *
2836 * For an untiled surface, this removes any existing fence.
de151cf6 2837 */
8c4b8c3f 2838int
06d98131 2839i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2840{
05394f39 2841 struct drm_device *dev = obj->base.dev;
79e53945 2842 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2843 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2844 struct drm_i915_fence_reg *reg;
ae3db24a 2845 int ret;
de151cf6 2846
14415745
CW
2847 /* Have we updated the tiling parameters upon the object and so
2848 * will need to serialise the write to the associated fence register?
2849 */
5d82e3e6 2850 if (obj->fence_dirty) {
d0a57789 2851 ret = i915_gem_object_wait_fence(obj);
14415745
CW
2852 if (ret)
2853 return ret;
2854 }
9a5a53b3 2855
d9e86c0e 2856 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2857 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2858 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2859 if (!obj->fence_dirty) {
14415745
CW
2860 list_move_tail(&reg->lru_list,
2861 &dev_priv->mm.fence_list);
2862 return 0;
2863 }
2864 } else if (enable) {
2865 reg = i915_find_fence_reg(dev);
2866 if (reg == NULL)
2867 return -EDEADLK;
d9e86c0e 2868
14415745
CW
2869 if (reg->obj) {
2870 struct drm_i915_gem_object *old = reg->obj;
2871
d0a57789 2872 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
2873 if (ret)
2874 return ret;
2875
14415745 2876 i915_gem_object_fence_lost(old);
29c5a587 2877 }
14415745 2878 } else
a09ba7fa 2879 return 0;
a09ba7fa 2880
14415745 2881 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2882 obj->fence_dirty = false;
14415745 2883
9ce079e4 2884 return 0;
de151cf6
JB
2885}
2886
42d6ab48
CW
2887static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2888 struct drm_mm_node *gtt_space,
2889 unsigned long cache_level)
2890{
2891 struct drm_mm_node *other;
2892
2893 /* On non-LLC machines we have to be careful when putting differing
2894 * types of snoopable memory together to avoid the prefetcher
4239ca77 2895 * crossing memory domains and dying.
42d6ab48
CW
2896 */
2897 if (HAS_LLC(dev))
2898 return true;
2899
2900 if (gtt_space == NULL)
2901 return true;
2902
2903 if (list_empty(&gtt_space->node_list))
2904 return true;
2905
2906 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2907 if (other->allocated && !other->hole_follows && other->color != cache_level)
2908 return false;
2909
2910 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2911 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2912 return false;
2913
2914 return true;
2915}
2916
2917static void i915_gem_verify_gtt(struct drm_device *dev)
2918{
2919#if WATCH_GTT
2920 struct drm_i915_private *dev_priv = dev->dev_private;
2921 struct drm_i915_gem_object *obj;
2922 int err = 0;
2923
2924 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2925 if (obj->gtt_space == NULL) {
2926 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2927 err++;
2928 continue;
2929 }
2930
2931 if (obj->cache_level != obj->gtt_space->color) {
2932 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2933 obj->gtt_space->start,
2934 obj->gtt_space->start + obj->gtt_space->size,
2935 obj->cache_level,
2936 obj->gtt_space->color);
2937 err++;
2938 continue;
2939 }
2940
2941 if (!i915_gem_valid_gtt_space(dev,
2942 obj->gtt_space,
2943 obj->cache_level)) {
2944 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2945 obj->gtt_space->start,
2946 obj->gtt_space->start + obj->gtt_space->size,
2947 obj->cache_level);
2948 err++;
2949 continue;
2950 }
2951 }
2952
2953 WARN_ON(err);
2954#endif
2955}
2956
673a394b
EA
2957/**
2958 * Finds free space in the GTT aperture and binds the object there.
2959 */
2960static int
05394f39 2961i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2962 unsigned alignment,
86a1ee26
CW
2963 bool map_and_fenceable,
2964 bool nonblocking)
673a394b 2965{
05394f39 2966 struct drm_device *dev = obj->base.dev;
673a394b 2967 drm_i915_private_t *dev_priv = dev->dev_private;
dc9dd7a2 2968 struct drm_mm_node *node;
5e783301 2969 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2970 bool mappable, fenceable;
0a9ae0d7
BW
2971 size_t gtt_max = map_and_fenceable ?
2972 dev_priv->gtt.mappable_end : dev_priv->gtt.total;
07f73f69 2973 int ret;
673a394b 2974
e28f8711
CW
2975 fence_size = i915_gem_get_gtt_size(dev,
2976 obj->base.size,
2977 obj->tiling_mode);
2978 fence_alignment = i915_gem_get_gtt_alignment(dev,
2979 obj->base.size,
d865110c 2980 obj->tiling_mode, true);
e28f8711 2981 unfenced_alignment =
d865110c 2982 i915_gem_get_gtt_alignment(dev,
e28f8711 2983 obj->base.size,
d865110c 2984 obj->tiling_mode, false);
a00b10c3 2985
673a394b 2986 if (alignment == 0)
5e783301
DV
2987 alignment = map_and_fenceable ? fence_alignment :
2988 unfenced_alignment;
75e9e915 2989 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2990 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2991 return -EINVAL;
2992 }
2993
05394f39 2994 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2995
654fc607
CW
2996 /* If the object is bigger than the entire aperture, reject it early
2997 * before evicting everything in a vain attempt to find space.
2998 */
0a9ae0d7 2999 if (obj->base.size > gtt_max) {
a36689cb
CW
3000 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%ld\n",
3001 obj->base.size,
3002 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3003 gtt_max);
654fc607
CW
3004 return -E2BIG;
3005 }
3006
37e680a1 3007 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3008 if (ret)
3009 return ret;
3010
fbdda6fb
CW
3011 i915_gem_object_pin_pages(obj);
3012
dc9dd7a2
CW
3013 node = kzalloc(sizeof(*node), GFP_KERNEL);
3014 if (node == NULL) {
3015 i915_gem_object_unpin_pages(obj);
3016 return -ENOMEM;
3017 }
3018
0a9ae0d7
BW
3019search_free:
3020 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3021 size, alignment,
3022 obj->cache_level, 0, gtt_max);
dc9dd7a2 3023 if (ret) {
75e9e915 3024 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 3025 obj->cache_level,
86a1ee26
CW
3026 map_and_fenceable,
3027 nonblocking);
dc9dd7a2
CW
3028 if (ret == 0)
3029 goto search_free;
9731129c 3030
dc9dd7a2
CW
3031 i915_gem_object_unpin_pages(obj);
3032 kfree(node);
3033 return ret;
673a394b 3034 }
dc9dd7a2 3035 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
fbdda6fb 3036 i915_gem_object_unpin_pages(obj);
dc9dd7a2 3037 drm_mm_put_block(node);
42d6ab48 3038 return -EINVAL;
673a394b
EA
3039 }
3040
74163907 3041 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 3042 if (ret) {
fbdda6fb 3043 i915_gem_object_unpin_pages(obj);
dc9dd7a2 3044 drm_mm_put_block(node);
6c085a72 3045 return ret;
673a394b 3046 }
673a394b 3047
6c085a72 3048 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 3049 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 3050
dc9dd7a2
CW
3051 obj->gtt_space = node;
3052 obj->gtt_offset = node->start;
1c5d22f7 3053
75e9e915 3054 fenceable =
dc9dd7a2
CW
3055 node->size == fence_size &&
3056 (node->start & (fence_alignment - 1)) == 0;
a00b10c3 3057
75e9e915 3058 mappable =
5d4545ae 3059 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
a00b10c3 3060
05394f39 3061 obj->map_and_fenceable = mappable && fenceable;
75e9e915 3062
fbdda6fb 3063 i915_gem_object_unpin_pages(obj);
db53a302 3064 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 3065 i915_gem_verify_gtt(dev);
673a394b
EA
3066 return 0;
3067}
3068
3069void
05394f39 3070i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3071{
673a394b
EA
3072 /* If we don't have a page list set up, then we're not pinned
3073 * to GPU, and we can ignore the cache flush because it'll happen
3074 * again at bind time.
3075 */
05394f39 3076 if (obj->pages == NULL)
673a394b
EA
3077 return;
3078
769ce464
ID
3079 /*
3080 * Stolen memory is always coherent with the GPU as it is explicitly
3081 * marked as wc by the system, or the system is cache-coherent.
3082 */
3083 if (obj->stolen)
3084 return;
3085
9c23f7fc
CW
3086 /* If the GPU is snooping the contents of the CPU cache,
3087 * we do not need to manually clear the CPU cache lines. However,
3088 * the caches are only snooped when the render cache is
3089 * flushed/invalidated. As we always have to emit invalidations
3090 * and flushes when moving into and out of the RENDER domain, correct
3091 * snooping behaviour occurs naturally as the result of our domain
3092 * tracking.
3093 */
3094 if (obj->cache_level != I915_CACHE_NONE)
3095 return;
3096
1c5d22f7 3097 trace_i915_gem_object_clflush(obj);
cfa16a0d 3098
9da3da66 3099 drm_clflush_sg(obj->pages);
e47c68e9
EA
3100}
3101
3102/** Flushes the GTT write domain for the object if it's dirty. */
3103static void
05394f39 3104i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3105{
1c5d22f7
CW
3106 uint32_t old_write_domain;
3107
05394f39 3108 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3109 return;
3110
63256ec5 3111 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3112 * to it immediately go to main memory as far as we know, so there's
3113 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3114 *
3115 * However, we do have to enforce the order so that all writes through
3116 * the GTT land before any writes to the device, such as updates to
3117 * the GATT itself.
e47c68e9 3118 */
63256ec5
CW
3119 wmb();
3120
05394f39
CW
3121 old_write_domain = obj->base.write_domain;
3122 obj->base.write_domain = 0;
1c5d22f7
CW
3123
3124 trace_i915_gem_object_change_domain(obj,
05394f39 3125 obj->base.read_domains,
1c5d22f7 3126 old_write_domain);
e47c68e9
EA
3127}
3128
3129/** Flushes the CPU write domain for the object if it's dirty. */
3130static void
05394f39 3131i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3132{
1c5d22f7 3133 uint32_t old_write_domain;
e47c68e9 3134
05394f39 3135 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3136 return;
3137
3138 i915_gem_clflush_object(obj);
e76e9aeb 3139 i915_gem_chipset_flush(obj->base.dev);
05394f39
CW
3140 old_write_domain = obj->base.write_domain;
3141 obj->base.write_domain = 0;
1c5d22f7
CW
3142
3143 trace_i915_gem_object_change_domain(obj,
05394f39 3144 obj->base.read_domains,
1c5d22f7 3145 old_write_domain);
e47c68e9
EA
3146}
3147
2ef7eeaa
EA
3148/**
3149 * Moves a single object to the GTT read, and possibly write domain.
3150 *
3151 * This function returns when the move is complete, including waiting on
3152 * flushes to occur.
3153 */
79e53945 3154int
2021746e 3155i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3156{
8325a09d 3157 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3158 uint32_t old_write_domain, old_read_domains;
e47c68e9 3159 int ret;
2ef7eeaa 3160
02354392 3161 /* Not valid to be called on unbound objects. */
05394f39 3162 if (obj->gtt_space == NULL)
02354392
EA
3163 return -EINVAL;
3164
8d7e3de1
CW
3165 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3166 return 0;
3167
0201f1ec 3168 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3169 if (ret)
3170 return ret;
3171
7213342d 3172 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3173
d0a57789
CW
3174 /* Serialise direct access to this object with the barriers for
3175 * coherent writes from the GPU, by effectively invalidating the
3176 * GTT domain upon first access.
3177 */
3178 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3179 mb();
3180
05394f39
CW
3181 old_write_domain = obj->base.write_domain;
3182 old_read_domains = obj->base.read_domains;
1c5d22f7 3183
e47c68e9
EA
3184 /* It should now be out of any other write domains, and we can update
3185 * the domain values for our changes.
3186 */
05394f39
CW
3187 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3188 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3189 if (write) {
05394f39
CW
3190 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3191 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3192 obj->dirty = 1;
2ef7eeaa
EA
3193 }
3194
1c5d22f7
CW
3195 trace_i915_gem_object_change_domain(obj,
3196 old_read_domains,
3197 old_write_domain);
3198
8325a09d
CW
3199 /* And bump the LRU for this access */
3200 if (i915_gem_object_is_inactive(obj))
3201 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3202
e47c68e9
EA
3203 return 0;
3204}
3205
e4ffd173
CW
3206int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3207 enum i915_cache_level cache_level)
3208{
7bddb01f
DV
3209 struct drm_device *dev = obj->base.dev;
3210 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3211 int ret;
3212
3213 if (obj->cache_level == cache_level)
3214 return 0;
3215
3216 if (obj->pin_count) {
3217 DRM_DEBUG("can not change the cache level of pinned objects\n");
3218 return -EBUSY;
3219 }
3220
42d6ab48
CW
3221 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3222 ret = i915_gem_object_unbind(obj);
3223 if (ret)
3224 return ret;
3225 }
3226
e4ffd173
CW
3227 if (obj->gtt_space) {
3228 ret = i915_gem_object_finish_gpu(obj);
3229 if (ret)
3230 return ret;
3231
3232 i915_gem_object_finish_gtt(obj);
3233
3234 /* Before SandyBridge, you could not use tiling or fence
3235 * registers with snooped memory, so relinquish any fences
3236 * currently pointing to our region in the aperture.
3237 */
42d6ab48 3238 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3239 ret = i915_gem_object_put_fence(obj);
3240 if (ret)
3241 return ret;
3242 }
3243
74898d7e
DV
3244 if (obj->has_global_gtt_mapping)
3245 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3246 if (obj->has_aliasing_ppgtt_mapping)
3247 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3248 obj, cache_level);
42d6ab48
CW
3249
3250 obj->gtt_space->color = cache_level;
e4ffd173
CW
3251 }
3252
3253 if (cache_level == I915_CACHE_NONE) {
3254 u32 old_read_domains, old_write_domain;
3255
3256 /* If we're coming from LLC cached, then we haven't
3257 * actually been tracking whether the data is in the
3258 * CPU cache or not, since we only allow one bit set
3259 * in obj->write_domain and have been skipping the clflushes.
3260 * Just set it to the CPU cache for now.
3261 */
3262 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3263 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3264
3265 old_read_domains = obj->base.read_domains;
3266 old_write_domain = obj->base.write_domain;
3267
3268 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3269 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3270
3271 trace_i915_gem_object_change_domain(obj,
3272 old_read_domains,
3273 old_write_domain);
3274 }
3275
3276 obj->cache_level = cache_level;
42d6ab48 3277 i915_gem_verify_gtt(dev);
e4ffd173
CW
3278 return 0;
3279}
3280
199adf40
BW
3281int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3282 struct drm_file *file)
e6994aee 3283{
199adf40 3284 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3285 struct drm_i915_gem_object *obj;
3286 int ret;
3287
3288 ret = i915_mutex_lock_interruptible(dev);
3289 if (ret)
3290 return ret;
3291
3292 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3293 if (&obj->base == NULL) {
3294 ret = -ENOENT;
3295 goto unlock;
3296 }
3297
199adf40 3298 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3299
3300 drm_gem_object_unreference(&obj->base);
3301unlock:
3302 mutex_unlock(&dev->struct_mutex);
3303 return ret;
3304}
3305
199adf40
BW
3306int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3307 struct drm_file *file)
e6994aee 3308{
199adf40 3309 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3310 struct drm_i915_gem_object *obj;
3311 enum i915_cache_level level;
3312 int ret;
3313
199adf40
BW
3314 switch (args->caching) {
3315 case I915_CACHING_NONE:
e6994aee
CW
3316 level = I915_CACHE_NONE;
3317 break;
199adf40 3318 case I915_CACHING_CACHED:
e6994aee
CW
3319 level = I915_CACHE_LLC;
3320 break;
3321 default:
3322 return -EINVAL;
3323 }
3324
3bc2913e
BW
3325 ret = i915_mutex_lock_interruptible(dev);
3326 if (ret)
3327 return ret;
3328
e6994aee
CW
3329 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3330 if (&obj->base == NULL) {
3331 ret = -ENOENT;
3332 goto unlock;
3333 }
3334
3335 ret = i915_gem_object_set_cache_level(obj, level);
3336
3337 drm_gem_object_unreference(&obj->base);
3338unlock:
3339 mutex_unlock(&dev->struct_mutex);
3340 return ret;
3341}
3342
b9241ea3 3343/*
2da3b9b9
CW
3344 * Prepare buffer for display plane (scanout, cursors, etc).
3345 * Can be called from an uninterruptible phase (modesetting) and allows
3346 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3347 */
3348int
2da3b9b9
CW
3349i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3350 u32 alignment,
919926ae 3351 struct intel_ring_buffer *pipelined)
b9241ea3 3352{
2da3b9b9 3353 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3354 int ret;
3355
0be73284 3356 if (pipelined != obj->ring) {
2911a35b
BW
3357 ret = i915_gem_object_sync(obj, pipelined);
3358 if (ret)
b9241ea3
ZW
3359 return ret;
3360 }
3361
a7ef0640
EA
3362 /* The display engine is not coherent with the LLC cache on gen6. As
3363 * a result, we make sure that the pinning that is about to occur is
3364 * done with uncached PTEs. This is lowest common denominator for all
3365 * chipsets.
3366 *
3367 * However for gen6+, we could do better by using the GFDT bit instead
3368 * of uncaching, which would allow us to flush all the LLC-cached data
3369 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3370 */
3371 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3372 if (ret)
3373 return ret;
3374
2da3b9b9
CW
3375 /* As the user may map the buffer once pinned in the display plane
3376 * (e.g. libkms for the bootup splash), we have to ensure that we
3377 * always use map_and_fenceable for all scanout buffers.
3378 */
86a1ee26 3379 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3380 if (ret)
3381 return ret;
3382
b118c1e3
CW
3383 i915_gem_object_flush_cpu_write_domain(obj);
3384
2da3b9b9 3385 old_write_domain = obj->base.write_domain;
05394f39 3386 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3387
3388 /* It should now be out of any other write domains, and we can update
3389 * the domain values for our changes.
3390 */
e5f1d962 3391 obj->base.write_domain = 0;
05394f39 3392 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3393
3394 trace_i915_gem_object_change_domain(obj,
3395 old_read_domains,
2da3b9b9 3396 old_write_domain);
b9241ea3
ZW
3397
3398 return 0;
3399}
3400
85345517 3401int
a8198eea 3402i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3403{
88241785
CW
3404 int ret;
3405
a8198eea 3406 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3407 return 0;
3408
0201f1ec 3409 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3410 if (ret)
3411 return ret;
3412
a8198eea
CW
3413 /* Ensure that we invalidate the GPU's caches and TLBs. */
3414 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3415 return 0;
85345517
CW
3416}
3417
e47c68e9
EA
3418/**
3419 * Moves a single object to the CPU read, and possibly write domain.
3420 *
3421 * This function returns when the move is complete, including waiting on
3422 * flushes to occur.
3423 */
dabdfe02 3424int
919926ae 3425i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3426{
1c5d22f7 3427 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3428 int ret;
3429
8d7e3de1
CW
3430 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3431 return 0;
3432
0201f1ec 3433 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3434 if (ret)
3435 return ret;
3436
e47c68e9 3437 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3438
05394f39
CW
3439 old_write_domain = obj->base.write_domain;
3440 old_read_domains = obj->base.read_domains;
1c5d22f7 3441
e47c68e9 3442 /* Flush the CPU cache if it's still invalid. */
05394f39 3443 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3444 i915_gem_clflush_object(obj);
2ef7eeaa 3445
05394f39 3446 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3447 }
3448
3449 /* It should now be out of any other write domains, and we can update
3450 * the domain values for our changes.
3451 */
05394f39 3452 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3453
3454 /* If we're writing through the CPU, then the GPU read domains will
3455 * need to be invalidated at next use.
3456 */
3457 if (write) {
05394f39
CW
3458 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3459 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3460 }
2ef7eeaa 3461
1c5d22f7
CW
3462 trace_i915_gem_object_change_domain(obj,
3463 old_read_domains,
3464 old_write_domain);
3465
2ef7eeaa
EA
3466 return 0;
3467}
3468
673a394b
EA
3469/* Throttle our rendering by waiting until the ring has completed our requests
3470 * emitted over 20 msec ago.
3471 *
b962442e
EA
3472 * Note that if we were to use the current jiffies each time around the loop,
3473 * we wouldn't escape the function with any frames outstanding if the time to
3474 * render a frame was over 20ms.
3475 *
673a394b
EA
3476 * This should get us reasonable parallelism between CPU and GPU but also
3477 * relatively low latency when blocking on a particular request to finish.
3478 */
40a5f0de 3479static int
f787a5f5 3480i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3481{
f787a5f5
CW
3482 struct drm_i915_private *dev_priv = dev->dev_private;
3483 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3484 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3485 struct drm_i915_gem_request *request;
3486 struct intel_ring_buffer *ring = NULL;
f69061be 3487 unsigned reset_counter;
f787a5f5
CW
3488 u32 seqno = 0;
3489 int ret;
93533c29 3490
308887aa
DV
3491 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3492 if (ret)
3493 return ret;
3494
3495 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3496 if (ret)
3497 return ret;
e110e8d6 3498
1c25595f 3499 spin_lock(&file_priv->mm.lock);
f787a5f5 3500 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3501 if (time_after_eq(request->emitted_jiffies, recent_enough))
3502 break;
40a5f0de 3503
f787a5f5
CW
3504 ring = request->ring;
3505 seqno = request->seqno;
b962442e 3506 }
f69061be 3507 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3508 spin_unlock(&file_priv->mm.lock);
40a5f0de 3509
f787a5f5
CW
3510 if (seqno == 0)
3511 return 0;
2bc43b5c 3512
f69061be 3513 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
f787a5f5
CW
3514 if (ret == 0)
3515 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3516
3517 return ret;
3518}
3519
673a394b 3520int
05394f39
CW
3521i915_gem_object_pin(struct drm_i915_gem_object *obj,
3522 uint32_t alignment,
86a1ee26
CW
3523 bool map_and_fenceable,
3524 bool nonblocking)
673a394b 3525{
673a394b
EA
3526 int ret;
3527
7e81a42e
CW
3528 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3529 return -EBUSY;
ac0c6b5a 3530
05394f39
CW
3531 if (obj->gtt_space != NULL) {
3532 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3533 (map_and_fenceable && !obj->map_and_fenceable)) {
3534 WARN(obj->pin_count,
ae7d49d8 3535 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3536 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3537 " obj->map_and_fenceable=%d\n",
05394f39 3538 obj->gtt_offset, alignment,
75e9e915 3539 map_and_fenceable,
05394f39 3540 obj->map_and_fenceable);
ac0c6b5a
CW
3541 ret = i915_gem_object_unbind(obj);
3542 if (ret)
3543 return ret;
3544 }
3545 }
3546
05394f39 3547 if (obj->gtt_space == NULL) {
8742267a
CW
3548 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3549
a00b10c3 3550 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3551 map_and_fenceable,
3552 nonblocking);
9731129c 3553 if (ret)
673a394b 3554 return ret;
8742267a
CW
3555
3556 if (!dev_priv->mm.aliasing_ppgtt)
3557 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3558 }
76446cac 3559
74898d7e
DV
3560 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3561 i915_gem_gtt_bind_object(obj, obj->cache_level);
3562
1b50247a 3563 obj->pin_count++;
6299f992 3564 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3565
3566 return 0;
3567}
3568
3569void
05394f39 3570i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3571{
05394f39
CW
3572 BUG_ON(obj->pin_count == 0);
3573 BUG_ON(obj->gtt_space == NULL);
673a394b 3574
1b50247a 3575 if (--obj->pin_count == 0)
6299f992 3576 obj->pin_mappable = false;
673a394b
EA
3577}
3578
3579int
3580i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3581 struct drm_file *file)
673a394b
EA
3582{
3583 struct drm_i915_gem_pin *args = data;
05394f39 3584 struct drm_i915_gem_object *obj;
673a394b
EA
3585 int ret;
3586
1d7cfea1
CW
3587 ret = i915_mutex_lock_interruptible(dev);
3588 if (ret)
3589 return ret;
673a394b 3590
05394f39 3591 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3592 if (&obj->base == NULL) {
1d7cfea1
CW
3593 ret = -ENOENT;
3594 goto unlock;
673a394b 3595 }
673a394b 3596
05394f39 3597 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3598 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3599 ret = -EINVAL;
3600 goto out;
3ef94daa
CW
3601 }
3602
05394f39 3603 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3604 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3605 args->handle);
1d7cfea1
CW
3606 ret = -EINVAL;
3607 goto out;
79e53945
JB
3608 }
3609
93be8788 3610 if (obj->user_pin_count == 0) {
86a1ee26 3611 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3612 if (ret)
3613 goto out;
673a394b
EA
3614 }
3615
93be8788
CW
3616 obj->user_pin_count++;
3617 obj->pin_filp = file;
3618
673a394b
EA
3619 /* XXX - flush the CPU caches for pinned objects
3620 * as the X server doesn't manage domains yet
3621 */
e47c68e9 3622 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3623 args->offset = obj->gtt_offset;
1d7cfea1 3624out:
05394f39 3625 drm_gem_object_unreference(&obj->base);
1d7cfea1 3626unlock:
673a394b 3627 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3628 return ret;
673a394b
EA
3629}
3630
3631int
3632i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3633 struct drm_file *file)
673a394b
EA
3634{
3635 struct drm_i915_gem_pin *args = data;
05394f39 3636 struct drm_i915_gem_object *obj;
76c1dec1 3637 int ret;
673a394b 3638
1d7cfea1
CW
3639 ret = i915_mutex_lock_interruptible(dev);
3640 if (ret)
3641 return ret;
673a394b 3642
05394f39 3643 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3644 if (&obj->base == NULL) {
1d7cfea1
CW
3645 ret = -ENOENT;
3646 goto unlock;
673a394b 3647 }
76c1dec1 3648
05394f39 3649 if (obj->pin_filp != file) {
79e53945
JB
3650 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3651 args->handle);
1d7cfea1
CW
3652 ret = -EINVAL;
3653 goto out;
79e53945 3654 }
05394f39
CW
3655 obj->user_pin_count--;
3656 if (obj->user_pin_count == 0) {
3657 obj->pin_filp = NULL;
79e53945
JB
3658 i915_gem_object_unpin(obj);
3659 }
673a394b 3660
1d7cfea1 3661out:
05394f39 3662 drm_gem_object_unreference(&obj->base);
1d7cfea1 3663unlock:
673a394b 3664 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3665 return ret;
673a394b
EA
3666}
3667
3668int
3669i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3670 struct drm_file *file)
673a394b
EA
3671{
3672 struct drm_i915_gem_busy *args = data;
05394f39 3673 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3674 int ret;
3675
76c1dec1 3676 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3677 if (ret)
76c1dec1 3678 return ret;
673a394b 3679
05394f39 3680 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3681 if (&obj->base == NULL) {
1d7cfea1
CW
3682 ret = -ENOENT;
3683 goto unlock;
673a394b 3684 }
d1b851fc 3685
0be555b6
CW
3686 /* Count all active objects as busy, even if they are currently not used
3687 * by the gpu. Users of this interface expect objects to eventually
3688 * become non-busy without any further actions, therefore emit any
3689 * necessary flushes here.
c4de0a5d 3690 */
30dfebf3 3691 ret = i915_gem_object_flush_active(obj);
0be555b6 3692
30dfebf3 3693 args->busy = obj->active;
e9808edd
CW
3694 if (obj->ring) {
3695 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3696 args->busy |= intel_ring_flag(obj->ring) << 16;
3697 }
673a394b 3698
05394f39 3699 drm_gem_object_unreference(&obj->base);
1d7cfea1 3700unlock:
673a394b 3701 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3702 return ret;
673a394b
EA
3703}
3704
3705int
3706i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3707 struct drm_file *file_priv)
3708{
0206e353 3709 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3710}
3711
3ef94daa
CW
3712int
3713i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3714 struct drm_file *file_priv)
3715{
3716 struct drm_i915_gem_madvise *args = data;
05394f39 3717 struct drm_i915_gem_object *obj;
76c1dec1 3718 int ret;
3ef94daa
CW
3719
3720 switch (args->madv) {
3721 case I915_MADV_DONTNEED:
3722 case I915_MADV_WILLNEED:
3723 break;
3724 default:
3725 return -EINVAL;
3726 }
3727
1d7cfea1
CW
3728 ret = i915_mutex_lock_interruptible(dev);
3729 if (ret)
3730 return ret;
3731
05394f39 3732 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3733 if (&obj->base == NULL) {
1d7cfea1
CW
3734 ret = -ENOENT;
3735 goto unlock;
3ef94daa 3736 }
3ef94daa 3737
05394f39 3738 if (obj->pin_count) {
1d7cfea1
CW
3739 ret = -EINVAL;
3740 goto out;
3ef94daa
CW
3741 }
3742
05394f39
CW
3743 if (obj->madv != __I915_MADV_PURGED)
3744 obj->madv = args->madv;
3ef94daa 3745
6c085a72
CW
3746 /* if the object is no longer attached, discard its backing storage */
3747 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3748 i915_gem_object_truncate(obj);
3749
05394f39 3750 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3751
1d7cfea1 3752out:
05394f39 3753 drm_gem_object_unreference(&obj->base);
1d7cfea1 3754unlock:
3ef94daa 3755 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3756 return ret;
3ef94daa
CW
3757}
3758
37e680a1
CW
3759void i915_gem_object_init(struct drm_i915_gem_object *obj,
3760 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3761{
0327d6ba
CW
3762 INIT_LIST_HEAD(&obj->mm_list);
3763 INIT_LIST_HEAD(&obj->gtt_list);
3764 INIT_LIST_HEAD(&obj->ring_list);
3765 INIT_LIST_HEAD(&obj->exec_list);
3766
37e680a1
CW
3767 obj->ops = ops;
3768
0327d6ba
CW
3769 obj->fence_reg = I915_FENCE_REG_NONE;
3770 obj->madv = I915_MADV_WILLNEED;
3771 /* Avoid an unnecessary call to unbind on the first bind. */
3772 obj->map_and_fenceable = true;
3773
3774 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3775}
3776
37e680a1
CW
3777static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3778 .get_pages = i915_gem_object_get_pages_gtt,
3779 .put_pages = i915_gem_object_put_pages_gtt,
3780};
3781
05394f39
CW
3782struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3783 size_t size)
ac52bc56 3784{
c397b908 3785 struct drm_i915_gem_object *obj;
5949eac4 3786 struct address_space *mapping;
1a240d4d 3787 gfp_t mask;
ac52bc56 3788
42dcedd4 3789 obj = i915_gem_object_alloc(dev);
c397b908
DV
3790 if (obj == NULL)
3791 return NULL;
673a394b 3792
c397b908 3793 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 3794 i915_gem_object_free(obj);
c397b908
DV
3795 return NULL;
3796 }
673a394b 3797
bed1ea95
CW
3798 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3799 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3800 /* 965gm cannot relocate objects above 4GiB. */
3801 mask &= ~__GFP_HIGHMEM;
3802 mask |= __GFP_DMA32;
3803 }
3804
496ad9aa 3805 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 3806 mapping_set_gfp_mask(mapping, mask);
5949eac4 3807
37e680a1 3808 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3809
c397b908
DV
3810 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3811 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3812
3d29b842
ED
3813 if (HAS_LLC(dev)) {
3814 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3815 * cache) for about a 10% performance improvement
3816 * compared to uncached. Graphics requests other than
3817 * display scanout are coherent with the CPU in
3818 * accessing this cache. This means in this mode we
3819 * don't need to clflush on the CPU side, and on the
3820 * GPU side we only need to flush internal caches to
3821 * get data visible to the CPU.
3822 *
3823 * However, we maintain the display planes as UC, and so
3824 * need to rebind when first used as such.
3825 */
3826 obj->cache_level = I915_CACHE_LLC;
3827 } else
3828 obj->cache_level = I915_CACHE_NONE;
3829
05394f39 3830 return obj;
c397b908
DV
3831}
3832
3833int i915_gem_init_object(struct drm_gem_object *obj)
3834{
3835 BUG();
de151cf6 3836
673a394b
EA
3837 return 0;
3838}
3839
1488fc08 3840void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3841{
1488fc08 3842 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3843 struct drm_device *dev = obj->base.dev;
be72615b 3844 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3845
26e12f89
CW
3846 trace_i915_gem_object_destroy(obj);
3847
1488fc08
CW
3848 if (obj->phys_obj)
3849 i915_gem_detach_phys_object(dev, obj);
3850
3851 obj->pin_count = 0;
3852 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3853 bool was_interruptible;
3854
3855 was_interruptible = dev_priv->mm.interruptible;
3856 dev_priv->mm.interruptible = false;
3857
3858 WARN_ON(i915_gem_object_unbind(obj));
3859
3860 dev_priv->mm.interruptible = was_interruptible;
3861 }
3862
a5570178 3863 obj->pages_pin_count = 0;
37e680a1 3864 i915_gem_object_put_pages(obj);
d8cb5086 3865 i915_gem_object_free_mmap_offset(obj);
0104fdbb 3866 i915_gem_object_release_stolen(obj);
de151cf6 3867
9da3da66
CW
3868 BUG_ON(obj->pages);
3869
2f745ad3
CW
3870 if (obj->base.import_attach)
3871 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 3872
05394f39
CW
3873 drm_gem_object_release(&obj->base);
3874 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3875
05394f39 3876 kfree(obj->bit_17);
42dcedd4 3877 i915_gem_object_free(obj);
673a394b
EA
3878}
3879
29105ccc
CW
3880int
3881i915_gem_idle(struct drm_device *dev)
3882{
3883 drm_i915_private_t *dev_priv = dev->dev_private;
3884 int ret;
28dfe52a 3885
29105ccc 3886 mutex_lock(&dev->struct_mutex);
1c5d22f7 3887
87acb0a5 3888 if (dev_priv->mm.suspended) {
29105ccc
CW
3889 mutex_unlock(&dev->struct_mutex);
3890 return 0;
28dfe52a
EA
3891 }
3892
b2da9fe5 3893 ret = i915_gpu_idle(dev);
6dbe2772
KP
3894 if (ret) {
3895 mutex_unlock(&dev->struct_mutex);
673a394b 3896 return ret;
6dbe2772 3897 }
b2da9fe5 3898 i915_gem_retire_requests(dev);
673a394b 3899
29105ccc 3900 /* Under UMS, be paranoid and evict. */
a39d7efc 3901 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3902 i915_gem_evict_everything(dev);
29105ccc 3903
312817a3
CW
3904 i915_gem_reset_fences(dev);
3905
29105ccc
CW
3906 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3907 * We need to replace this with a semaphore, or something.
3908 * And not confound mm.suspended!
3909 */
3910 dev_priv->mm.suspended = 1;
99584db3 3911 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc
CW
3912
3913 i915_kernel_lost_context(dev);
6dbe2772 3914 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3915
6dbe2772
KP
3916 mutex_unlock(&dev->struct_mutex);
3917
29105ccc
CW
3918 /* Cancel the retire work handler, which should be idle now. */
3919 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3920
673a394b
EA
3921 return 0;
3922}
3923
b9524a1e
BW
3924void i915_gem_l3_remap(struct drm_device *dev)
3925{
3926 drm_i915_private_t *dev_priv = dev->dev_private;
3927 u32 misccpctl;
3928 int i;
3929
eb32e458 3930 if (!HAS_L3_GPU_CACHE(dev))
b9524a1e
BW
3931 return;
3932
a4da4fa4 3933 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
3934 return;
3935
3936 misccpctl = I915_READ(GEN7_MISCCPCTL);
3937 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3938 POSTING_READ(GEN7_MISCCPCTL);
3939
3940 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3941 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 3942 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
3943 DRM_DEBUG("0x%x was already programmed to %x\n",
3944 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 3945 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 3946 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 3947 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
3948 }
3949
3950 /* Make sure all the writes land before disabling dop clock gating */
3951 POSTING_READ(GEN7_L3LOG_BASE);
3952
3953 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3954}
3955
f691e2f4
DV
3956void i915_gem_init_swizzling(struct drm_device *dev)
3957{
3958 drm_i915_private_t *dev_priv = dev->dev_private;
3959
11782b02 3960 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3961 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3962 return;
3963
3964 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3965 DISP_TILE_SURFACE_SWIZZLING);
3966
11782b02
DV
3967 if (IS_GEN5(dev))
3968 return;
3969
f691e2f4
DV
3970 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3971 if (IS_GEN6(dev))
6b26c86d 3972 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 3973 else if (IS_GEN7(dev))
6b26c86d 3974 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
3975 else
3976 BUG();
f691e2f4 3977}
e21af88d 3978
67b1b571
CW
3979static bool
3980intel_enable_blt(struct drm_device *dev)
3981{
3982 if (!HAS_BLT(dev))
3983 return false;
3984
3985 /* The blitter was dysfunctional on early prototypes */
3986 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3987 DRM_INFO("BLT not supported on this pre-production hardware;"
3988 " graphics performance will be degraded.\n");
3989 return false;
3990 }
3991
3992 return true;
3993}
3994
4fc7c971 3995static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 3996{
4fc7c971 3997 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 3998 int ret;
68f95ba9 3999
5c1143bb 4000 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4001 if (ret)
b6913e4b 4002 return ret;
68f95ba9
CW
4003
4004 if (HAS_BSD(dev)) {
5c1143bb 4005 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4006 if (ret)
4007 goto cleanup_render_ring;
d1b851fc 4008 }
68f95ba9 4009
67b1b571 4010 if (intel_enable_blt(dev)) {
549f7365
CW
4011 ret = intel_init_blt_ring_buffer(dev);
4012 if (ret)
4013 goto cleanup_bsd_ring;
4014 }
4015
9a8a2213
BW
4016 if (HAS_VEBOX(dev)) {
4017 ret = intel_init_vebox_ring_buffer(dev);
4018 if (ret)
4019 goto cleanup_blt_ring;
4020 }
4021
4022
99433931 4023 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4024 if (ret)
9a8a2213 4025 goto cleanup_vebox_ring;
4fc7c971
BW
4026
4027 return 0;
4028
9a8a2213
BW
4029cleanup_vebox_ring:
4030 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4031cleanup_blt_ring:
4032 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4033cleanup_bsd_ring:
4034 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4035cleanup_render_ring:
4036 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4037
4038 return ret;
4039}
4040
4041int
4042i915_gem_init_hw(struct drm_device *dev)
4043{
4044 drm_i915_private_t *dev_priv = dev->dev_private;
4045 int ret;
4046
4047 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4048 return -EIO;
4049
4050 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4051 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4052
88a2b2a3
BW
4053 if (HAS_PCH_NOP(dev)) {
4054 u32 temp = I915_READ(GEN7_MSG_CTL);
4055 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4056 I915_WRITE(GEN7_MSG_CTL, temp);
4057 }
4058
4fc7c971
BW
4059 i915_gem_l3_remap(dev);
4060
4061 i915_gem_init_swizzling(dev);
4062
4063 ret = i915_gem_init_rings(dev);
99433931
MK
4064 if (ret)
4065 return ret;
4066
254f965c
BW
4067 /*
4068 * XXX: There was some w/a described somewhere suggesting loading
4069 * contexts before PPGTT.
4070 */
4071 i915_gem_context_init(dev);
b7c36d25
BW
4072 if (dev_priv->mm.aliasing_ppgtt) {
4073 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4074 if (ret) {
4075 i915_gem_cleanup_aliasing_ppgtt(dev);
4076 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4077 }
4078 }
e21af88d 4079
68f95ba9 4080 return 0;
8187a2b7
ZN
4081}
4082
1070a42b
CW
4083int i915_gem_init(struct drm_device *dev)
4084{
4085 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4086 int ret;
4087
1070a42b 4088 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4089
4090 if (IS_VALLEYVIEW(dev)) {
4091 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4092 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4093 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4094 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4095 }
4096
d7e5008f 4097 i915_gem_init_global_gtt(dev);
d62b4892 4098
1070a42b
CW
4099 ret = i915_gem_init_hw(dev);
4100 mutex_unlock(&dev->struct_mutex);
4101 if (ret) {
4102 i915_gem_cleanup_aliasing_ppgtt(dev);
4103 return ret;
4104 }
4105
53ca26ca
DV
4106 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4107 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4108 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4109 return 0;
4110}
4111
8187a2b7
ZN
4112void
4113i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4114{
4115 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4116 struct intel_ring_buffer *ring;
1ec14ad3 4117 int i;
8187a2b7 4118
b4519513
CW
4119 for_each_ring(ring, dev_priv, i)
4120 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4121}
4122
673a394b
EA
4123int
4124i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4125 struct drm_file *file_priv)
4126{
4127 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4128 int ret;
673a394b 4129
79e53945
JB
4130 if (drm_core_check_feature(dev, DRIVER_MODESET))
4131 return 0;
4132
1f83fee0 4133 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4134 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4135 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4136 }
4137
673a394b 4138 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4139 dev_priv->mm.suspended = 0;
4140
f691e2f4 4141 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4142 if (ret != 0) {
4143 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4144 return ret;
d816f6ac 4145 }
9bb2d6f9 4146
69dc4987 4147 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4148 mutex_unlock(&dev->struct_mutex);
dbb19d30 4149
5f35308b
CW
4150 ret = drm_irq_install(dev);
4151 if (ret)
4152 goto cleanup_ringbuffer;
dbb19d30 4153
673a394b 4154 return 0;
5f35308b
CW
4155
4156cleanup_ringbuffer:
4157 mutex_lock(&dev->struct_mutex);
4158 i915_gem_cleanup_ringbuffer(dev);
4159 dev_priv->mm.suspended = 1;
4160 mutex_unlock(&dev->struct_mutex);
4161
4162 return ret;
673a394b
EA
4163}
4164
4165int
4166i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4167 struct drm_file *file_priv)
4168{
79e53945
JB
4169 if (drm_core_check_feature(dev, DRIVER_MODESET))
4170 return 0;
4171
dbb19d30 4172 drm_irq_uninstall(dev);
e6890f6f 4173 return i915_gem_idle(dev);
673a394b
EA
4174}
4175
4176void
4177i915_gem_lastclose(struct drm_device *dev)
4178{
4179 int ret;
673a394b 4180
e806b495
EA
4181 if (drm_core_check_feature(dev, DRIVER_MODESET))
4182 return;
4183
6dbe2772
KP
4184 ret = i915_gem_idle(dev);
4185 if (ret)
4186 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4187}
4188
64193406
CW
4189static void
4190init_ring_lists(struct intel_ring_buffer *ring)
4191{
4192 INIT_LIST_HEAD(&ring->active_list);
4193 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4194}
4195
673a394b
EA
4196void
4197i915_gem_load(struct drm_device *dev)
4198{
4199 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4200 int i;
4201
4202 dev_priv->slab =
4203 kmem_cache_create("i915_gem_object",
4204 sizeof(struct drm_i915_gem_object), 0,
4205 SLAB_HWCACHE_ALIGN,
4206 NULL);
673a394b 4207
69dc4987 4208 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4209 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4210 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4211 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4212 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4213 for (i = 0; i < I915_NUM_RINGS; i++)
4214 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4215 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4216 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4217 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4218 i915_gem_retire_work_handler);
1f83fee0 4219 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4220
94400120
DA
4221 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4222 if (IS_GEN3(dev)) {
50743298
DV
4223 I915_WRITE(MI_ARB_STATE,
4224 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4225 }
4226
72bfa19c
CW
4227 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4228
de151cf6 4229 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4230 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4231 dev_priv->fence_reg_start = 3;
de151cf6 4232
42b5aeab
VS
4233 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4234 dev_priv->num_fence_regs = 32;
4235 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4236 dev_priv->num_fence_regs = 16;
4237 else
4238 dev_priv->num_fence_regs = 8;
4239
b5aa8a0f 4240 /* Initialize fence registers to zero */
ada726c7 4241 i915_gem_reset_fences(dev);
10ed13e4 4242
673a394b 4243 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4244 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4245
ce453d81
CW
4246 dev_priv->mm.interruptible = true;
4247
17250b71
CW
4248 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4249 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4250 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4251}
71acb5eb
DA
4252
4253/*
4254 * Create a physically contiguous memory object for this object
4255 * e.g. for cursor + overlay regs
4256 */
995b6762
CW
4257static int i915_gem_init_phys_object(struct drm_device *dev,
4258 int id, int size, int align)
71acb5eb
DA
4259{
4260 drm_i915_private_t *dev_priv = dev->dev_private;
4261 struct drm_i915_gem_phys_object *phys_obj;
4262 int ret;
4263
4264 if (dev_priv->mm.phys_objs[id - 1] || !size)
4265 return 0;
4266
9a298b2a 4267 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4268 if (!phys_obj)
4269 return -ENOMEM;
4270
4271 phys_obj->id = id;
4272
6eeefaf3 4273 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4274 if (!phys_obj->handle) {
4275 ret = -ENOMEM;
4276 goto kfree_obj;
4277 }
4278#ifdef CONFIG_X86
4279 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4280#endif
4281
4282 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4283
4284 return 0;
4285kfree_obj:
9a298b2a 4286 kfree(phys_obj);
71acb5eb
DA
4287 return ret;
4288}
4289
995b6762 4290static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4291{
4292 drm_i915_private_t *dev_priv = dev->dev_private;
4293 struct drm_i915_gem_phys_object *phys_obj;
4294
4295 if (!dev_priv->mm.phys_objs[id - 1])
4296 return;
4297
4298 phys_obj = dev_priv->mm.phys_objs[id - 1];
4299 if (phys_obj->cur_obj) {
4300 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4301 }
4302
4303#ifdef CONFIG_X86
4304 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4305#endif
4306 drm_pci_free(dev, phys_obj->handle);
4307 kfree(phys_obj);
4308 dev_priv->mm.phys_objs[id - 1] = NULL;
4309}
4310
4311void i915_gem_free_all_phys_object(struct drm_device *dev)
4312{
4313 int i;
4314
260883c8 4315 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4316 i915_gem_free_phys_object(dev, i);
4317}
4318
4319void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4320 struct drm_i915_gem_object *obj)
71acb5eb 4321{
496ad9aa 4322 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4323 char *vaddr;
71acb5eb 4324 int i;
71acb5eb
DA
4325 int page_count;
4326
05394f39 4327 if (!obj->phys_obj)
71acb5eb 4328 return;
05394f39 4329 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4330
05394f39 4331 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4332 for (i = 0; i < page_count; i++) {
5949eac4 4333 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4334 if (!IS_ERR(page)) {
4335 char *dst = kmap_atomic(page);
4336 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4337 kunmap_atomic(dst);
4338
4339 drm_clflush_pages(&page, 1);
4340
4341 set_page_dirty(page);
4342 mark_page_accessed(page);
4343 page_cache_release(page);
4344 }
71acb5eb 4345 }
e76e9aeb 4346 i915_gem_chipset_flush(dev);
d78b47b9 4347
05394f39
CW
4348 obj->phys_obj->cur_obj = NULL;
4349 obj->phys_obj = NULL;
71acb5eb
DA
4350}
4351
4352int
4353i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4354 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4355 int id,
4356 int align)
71acb5eb 4357{
496ad9aa 4358 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4359 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4360 int ret = 0;
4361 int page_count;
4362 int i;
4363
4364 if (id > I915_MAX_PHYS_OBJECT)
4365 return -EINVAL;
4366
05394f39
CW
4367 if (obj->phys_obj) {
4368 if (obj->phys_obj->id == id)
71acb5eb
DA
4369 return 0;
4370 i915_gem_detach_phys_object(dev, obj);
4371 }
4372
71acb5eb
DA
4373 /* create a new object */
4374 if (!dev_priv->mm.phys_objs[id - 1]) {
4375 ret = i915_gem_init_phys_object(dev, id,
05394f39 4376 obj->base.size, align);
71acb5eb 4377 if (ret) {
05394f39
CW
4378 DRM_ERROR("failed to init phys object %d size: %zu\n",
4379 id, obj->base.size);
e5281ccd 4380 return ret;
71acb5eb
DA
4381 }
4382 }
4383
4384 /* bind to the object */
05394f39
CW
4385 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4386 obj->phys_obj->cur_obj = obj;
71acb5eb 4387
05394f39 4388 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4389
4390 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4391 struct page *page;
4392 char *dst, *src;
4393
5949eac4 4394 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4395 if (IS_ERR(page))
4396 return PTR_ERR(page);
71acb5eb 4397
ff75b9bc 4398 src = kmap_atomic(page);
05394f39 4399 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4400 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4401 kunmap_atomic(src);
71acb5eb 4402
e5281ccd
CW
4403 mark_page_accessed(page);
4404 page_cache_release(page);
4405 }
d78b47b9 4406
71acb5eb 4407 return 0;
71acb5eb
DA
4408}
4409
4410static int
05394f39
CW
4411i915_gem_phys_pwrite(struct drm_device *dev,
4412 struct drm_i915_gem_object *obj,
71acb5eb
DA
4413 struct drm_i915_gem_pwrite *args,
4414 struct drm_file *file_priv)
4415{
05394f39 4416 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4417 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4418
b47b30cc
CW
4419 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4420 unsigned long unwritten;
4421
4422 /* The physical object once assigned is fixed for the lifetime
4423 * of the obj, so we can safely drop the lock and continue
4424 * to access vaddr.
4425 */
4426 mutex_unlock(&dev->struct_mutex);
4427 unwritten = copy_from_user(vaddr, user_data, args->size);
4428 mutex_lock(&dev->struct_mutex);
4429 if (unwritten)
4430 return -EFAULT;
4431 }
71acb5eb 4432
e76e9aeb 4433 i915_gem_chipset_flush(dev);
71acb5eb
DA
4434 return 0;
4435}
b962442e 4436
f787a5f5 4437void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4438{
f787a5f5 4439 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4440
4441 /* Clean up our request list when the client is going away, so that
4442 * later retire_requests won't dereference our soon-to-be-gone
4443 * file_priv.
4444 */
1c25595f 4445 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4446 while (!list_empty(&file_priv->mm.request_list)) {
4447 struct drm_i915_gem_request *request;
4448
4449 request = list_first_entry(&file_priv->mm.request_list,
4450 struct drm_i915_gem_request,
4451 client_list);
4452 list_del(&request->client_list);
4453 request->file_priv = NULL;
4454 }
1c25595f 4455 spin_unlock(&file_priv->mm.lock);
b962442e 4456}
31169714 4457
5774506f
CW
4458static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4459{
4460 if (!mutex_is_locked(mutex))
4461 return false;
4462
4463#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4464 return mutex->owner == task;
4465#else
4466 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4467 return false;
4468#endif
4469}
4470
31169714 4471static int
1495f230 4472i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4473{
17250b71
CW
4474 struct drm_i915_private *dev_priv =
4475 container_of(shrinker,
4476 struct drm_i915_private,
4477 mm.inactive_shrinker);
4478 struct drm_device *dev = dev_priv->dev;
6c085a72 4479 struct drm_i915_gem_object *obj;
1495f230 4480 int nr_to_scan = sc->nr_to_scan;
5774506f 4481 bool unlock = true;
17250b71
CW
4482 int cnt;
4483
5774506f
CW
4484 if (!mutex_trylock(&dev->struct_mutex)) {
4485 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4486 return 0;
4487
677feac2
DV
4488 if (dev_priv->mm.shrinker_no_lock_stealing)
4489 return 0;
4490
5774506f
CW
4491 unlock = false;
4492 }
31169714 4493
6c085a72
CW
4494 if (nr_to_scan) {
4495 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
93927ca5
DV
4496 if (nr_to_scan > 0)
4497 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4498 false);
6c085a72
CW
4499 if (nr_to_scan > 0)
4500 i915_gem_shrink_all(dev_priv);
31169714
CW
4501 }
4502
17250b71 4503 cnt = 0;
6c085a72 4504 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
a5570178
CW
4505 if (obj->pages_pin_count == 0)
4506 cnt += obj->base.size >> PAGE_SHIFT;
93927ca5 4507 list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
a5570178 4508 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4509 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4510
5774506f
CW
4511 if (unlock)
4512 mutex_unlock(&dev->struct_mutex);
6c085a72 4513 return cnt;
31169714 4514}