]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Assert that the transcoder is indeed off before modifying it
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
8c59967c 58static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 59
61050808
CW
60static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
61{
62 if (obj->tiling_mode)
63 i915_gem_release_mmap(obj);
64
65 /* As we do not have an associated fence register, we will force
66 * a tiling change if we ever need to acquire one.
67 */
5d82e3e6 68 obj->fence_dirty = false;
61050808
CW
69 obj->fence_reg = I915_FENCE_REG_NONE;
70}
71
73aa808f
CW
72/* some bookkeeping */
73static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75{
76 dev_priv->mm.object_count++;
77 dev_priv->mm.object_memory += size;
78}
79
80static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
81 size_t size)
82{
83 dev_priv->mm.object_count--;
84 dev_priv->mm.object_memory -= size;
85}
86
21dd3734
CW
87static int
88i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
89{
90 struct drm_i915_private *dev_priv = dev->dev_private;
91 struct completion *x = &dev_priv->error_completion;
92 unsigned long flags;
93 int ret;
94
95 if (!atomic_read(&dev_priv->mm.wedged))
96 return 0;
97
98 ret = wait_for_completion_interruptible(x);
99 if (ret)
100 return ret;
101
21dd3734
CW
102 if (atomic_read(&dev_priv->mm.wedged)) {
103 /* GPU is hung, bump the completion count to account for
104 * the token we just consumed so that we never hit zero and
105 * end up waiting upon a subsequent completion event that
106 * will never happen.
107 */
108 spin_lock_irqsave(&x->wait.lock, flags);
109 x->done++;
110 spin_unlock_irqrestore(&x->wait.lock, flags);
111 }
112 return 0;
30dbf0c0
CW
113}
114
54cf91dc 115int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 116{
76c1dec1
CW
117 int ret;
118
21dd3734 119 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
120 if (ret)
121 return ret;
122
123 ret = mutex_lock_interruptible(&dev->struct_mutex);
124 if (ret)
125 return ret;
126
23bc5982 127 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
128 return 0;
129}
30dbf0c0 130
7d1c4804 131static inline bool
05394f39 132i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 133{
1b50247a 134 return !obj->active;
7d1c4804
CW
135}
136
79e53945
JB
137int
138i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 139 struct drm_file *file)
79e53945
JB
140{
141 struct drm_i915_gem_init *args = data;
2021746e 142
7bb6fb8d
DV
143 if (drm_core_check_feature(dev, DRIVER_MODESET))
144 return -ENODEV;
145
2021746e
CW
146 if (args->gtt_start >= args->gtt_end ||
147 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
148 return -EINVAL;
79e53945 149
f534bc0b
DV
150 /* GEM with user mode setting was never supported on ilk and later. */
151 if (INTEL_INFO(dev)->gen >= 5)
152 return -ENODEV;
153
79e53945 154 mutex_lock(&dev->struct_mutex);
644ec02b
DV
155 i915_gem_init_global_gtt(dev, args->gtt_start,
156 args->gtt_end, args->gtt_end);
673a394b
EA
157 mutex_unlock(&dev->struct_mutex);
158
2021746e 159 return 0;
673a394b
EA
160}
161
5a125c3c
EA
162int
163i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 164 struct drm_file *file)
5a125c3c 165{
73aa808f 166 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 167 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
168 struct drm_i915_gem_object *obj;
169 size_t pinned;
5a125c3c 170
6299f992 171 pinned = 0;
73aa808f 172 mutex_lock(&dev->struct_mutex);
1b50247a
CW
173 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
174 if (obj->pin_count)
175 pinned += obj->gtt_space->size;
73aa808f 176 mutex_unlock(&dev->struct_mutex);
5a125c3c 177
6299f992 178 args->aper_size = dev_priv->mm.gtt_total;
0206e353 179 args->aper_available_size = args->aper_size - pinned;
6299f992 180
5a125c3c
EA
181 return 0;
182}
183
ff72145b
DA
184static int
185i915_gem_create(struct drm_file *file,
186 struct drm_device *dev,
187 uint64_t size,
188 uint32_t *handle_p)
673a394b 189{
05394f39 190 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
191 int ret;
192 u32 handle;
673a394b 193
ff72145b 194 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
195 if (size == 0)
196 return -EINVAL;
673a394b
EA
197
198 /* Allocate the new object */
ff72145b 199 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
200 if (obj == NULL)
201 return -ENOMEM;
202
05394f39 203 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 204 if (ret) {
05394f39
CW
205 drm_gem_object_release(&obj->base);
206 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 207 kfree(obj);
673a394b 208 return ret;
1dfd9754 209 }
673a394b 210
202f2fef 211 /* drop reference from allocate - handle holds it now */
05394f39 212 drm_gem_object_unreference(&obj->base);
202f2fef
CW
213 trace_i915_gem_object_create(obj);
214
ff72145b 215 *handle_p = handle;
673a394b
EA
216 return 0;
217}
218
ff72145b
DA
219int
220i915_gem_dumb_create(struct drm_file *file,
221 struct drm_device *dev,
222 struct drm_mode_create_dumb *args)
223{
224 /* have to work out size/pitch and return them */
ed0291fd 225 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
226 args->size = args->pitch * args->height;
227 return i915_gem_create(file, dev,
228 args->size, &args->handle);
229}
230
231int i915_gem_dumb_destroy(struct drm_file *file,
232 struct drm_device *dev,
233 uint32_t handle)
234{
235 return drm_gem_handle_delete(file, handle);
236}
237
238/**
239 * Creates a new mm object and returns a handle to it.
240 */
241int
242i915_gem_create_ioctl(struct drm_device *dev, void *data,
243 struct drm_file *file)
244{
245 struct drm_i915_gem_create *args = data;
63ed2cb2 246
ff72145b
DA
247 return i915_gem_create(file, dev,
248 args->size, &args->handle);
249}
250
05394f39 251static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 252{
05394f39 253 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
254
255 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 256 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
257}
258
8461d226
DV
259static inline int
260__copy_to_user_swizzled(char __user *cpu_vaddr,
261 const char *gpu_vaddr, int gpu_offset,
262 int length)
263{
264 int ret, cpu_offset = 0;
265
266 while (length > 0) {
267 int cacheline_end = ALIGN(gpu_offset + 1, 64);
268 int this_length = min(cacheline_end - gpu_offset, length);
269 int swizzled_gpu_offset = gpu_offset ^ 64;
270
271 ret = __copy_to_user(cpu_vaddr + cpu_offset,
272 gpu_vaddr + swizzled_gpu_offset,
273 this_length);
274 if (ret)
275 return ret + length;
276
277 cpu_offset += this_length;
278 gpu_offset += this_length;
279 length -= this_length;
280 }
281
282 return 0;
283}
284
8c59967c 285static inline int
4f0c7cfb
BW
286__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
287 const char __user *cpu_vaddr,
8c59967c
DV
288 int length)
289{
290 int ret, cpu_offset = 0;
291
292 while (length > 0) {
293 int cacheline_end = ALIGN(gpu_offset + 1, 64);
294 int this_length = min(cacheline_end - gpu_offset, length);
295 int swizzled_gpu_offset = gpu_offset ^ 64;
296
297 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
298 cpu_vaddr + cpu_offset,
299 this_length);
300 if (ret)
301 return ret + length;
302
303 cpu_offset += this_length;
304 gpu_offset += this_length;
305 length -= this_length;
306 }
307
308 return 0;
309}
310
d174bd64
DV
311/* Per-page copy function for the shmem pread fastpath.
312 * Flushes invalid cachelines before reading the target if
313 * needs_clflush is set. */
eb01459f 314static int
d174bd64
DV
315shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
316 char __user *user_data,
317 bool page_do_bit17_swizzling, bool needs_clflush)
318{
319 char *vaddr;
320 int ret;
321
e7e58eb5 322 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
323 return -EINVAL;
324
325 vaddr = kmap_atomic(page);
326 if (needs_clflush)
327 drm_clflush_virt_range(vaddr + shmem_page_offset,
328 page_length);
329 ret = __copy_to_user_inatomic(user_data,
330 vaddr + shmem_page_offset,
331 page_length);
332 kunmap_atomic(vaddr);
333
334 return ret;
335}
336
23c18c71
DV
337static void
338shmem_clflush_swizzled_range(char *addr, unsigned long length,
339 bool swizzled)
340{
e7e58eb5 341 if (unlikely(swizzled)) {
23c18c71
DV
342 unsigned long start = (unsigned long) addr;
343 unsigned long end = (unsigned long) addr + length;
344
345 /* For swizzling simply ensure that we always flush both
346 * channels. Lame, but simple and it works. Swizzled
347 * pwrite/pread is far from a hotpath - current userspace
348 * doesn't use it at all. */
349 start = round_down(start, 128);
350 end = round_up(end, 128);
351
352 drm_clflush_virt_range((void *)start, end - start);
353 } else {
354 drm_clflush_virt_range(addr, length);
355 }
356
357}
358
d174bd64
DV
359/* Only difference to the fast-path function is that this can handle bit17
360 * and uses non-atomic copy and kmap functions. */
361static int
362shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
363 char __user *user_data,
364 bool page_do_bit17_swizzling, bool needs_clflush)
365{
366 char *vaddr;
367 int ret;
368
369 vaddr = kmap(page);
370 if (needs_clflush)
23c18c71
DV
371 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
372 page_length,
373 page_do_bit17_swizzling);
d174bd64
DV
374
375 if (page_do_bit17_swizzling)
376 ret = __copy_to_user_swizzled(user_data,
377 vaddr, shmem_page_offset,
378 page_length);
379 else
380 ret = __copy_to_user(user_data,
381 vaddr + shmem_page_offset,
382 page_length);
383 kunmap(page);
384
385 return ret;
386}
387
eb01459f 388static int
dbf7bff0
DV
389i915_gem_shmem_pread(struct drm_device *dev,
390 struct drm_i915_gem_object *obj,
391 struct drm_i915_gem_pread *args,
392 struct drm_file *file)
eb01459f 393{
05394f39 394 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 395 char __user *user_data;
eb01459f 396 ssize_t remain;
8461d226 397 loff_t offset;
eb2c0c81 398 int shmem_page_offset, page_length, ret = 0;
8461d226 399 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 400 int hit_slowpath = 0;
96d79b52 401 int prefaulted = 0;
8489731c 402 int needs_clflush = 0;
692a576b 403 int release_page;
eb01459f 404
8461d226 405 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
406 remain = args->size;
407
8461d226 408 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 409
8489731c
DV
410 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
411 /* If we're not in the cpu read domain, set ourself into the gtt
412 * read domain and manually flush cachelines (if required). This
413 * optimizes for the case when the gpu will dirty the data
414 * anyway again before the next pread happens. */
415 if (obj->cache_level == I915_CACHE_NONE)
416 needs_clflush = 1;
417 ret = i915_gem_object_set_to_gtt_domain(obj, false);
418 if (ret)
419 return ret;
420 }
eb01459f 421
8461d226 422 offset = args->offset;
eb01459f
EA
423
424 while (remain > 0) {
e5281ccd
CW
425 struct page *page;
426
eb01459f
EA
427 /* Operation in this page
428 *
eb01459f 429 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
430 * page_length = bytes to copy for this page
431 */
c8cbbb8b 432 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
433 page_length = remain;
434 if ((shmem_page_offset + page_length) > PAGE_SIZE)
435 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 436
692a576b
DV
437 if (obj->pages) {
438 page = obj->pages[offset >> PAGE_SHIFT];
439 release_page = 0;
440 } else {
441 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
442 if (IS_ERR(page)) {
443 ret = PTR_ERR(page);
444 goto out;
445 }
446 release_page = 1;
b65552f0 447 }
e5281ccd 448
8461d226
DV
449 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
450 (page_to_phys(page) & (1 << 17)) != 0;
451
d174bd64
DV
452 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
453 user_data, page_do_bit17_swizzling,
454 needs_clflush);
455 if (ret == 0)
456 goto next_page;
dbf7bff0
DV
457
458 hit_slowpath = 1;
692a576b 459 page_cache_get(page);
dbf7bff0
DV
460 mutex_unlock(&dev->struct_mutex);
461
96d79b52 462 if (!prefaulted) {
f56f821f 463 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
464 /* Userspace is tricking us, but we've already clobbered
465 * its pages with the prefault and promised to write the
466 * data up to the first fault. Hence ignore any errors
467 * and just continue. */
468 (void)ret;
469 prefaulted = 1;
470 }
eb01459f 471
d174bd64
DV
472 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
473 user_data, page_do_bit17_swizzling,
474 needs_clflush);
eb01459f 475
dbf7bff0 476 mutex_lock(&dev->struct_mutex);
e5281ccd 477 page_cache_release(page);
dbf7bff0 478next_page:
e5281ccd 479 mark_page_accessed(page);
692a576b
DV
480 if (release_page)
481 page_cache_release(page);
e5281ccd 482
8461d226
DV
483 if (ret) {
484 ret = -EFAULT;
485 goto out;
486 }
487
eb01459f 488 remain -= page_length;
8461d226 489 user_data += page_length;
eb01459f
EA
490 offset += page_length;
491 }
492
4f27b75d 493out:
dbf7bff0
DV
494 if (hit_slowpath) {
495 /* Fixup: Kill any reinstated backing storage pages */
496 if (obj->madv == __I915_MADV_PURGED)
497 i915_gem_object_truncate(obj);
498 }
eb01459f
EA
499
500 return ret;
501}
502
673a394b
EA
503/**
504 * Reads data from the object referenced by handle.
505 *
506 * On error, the contents of *data are undefined.
507 */
508int
509i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 510 struct drm_file *file)
673a394b
EA
511{
512 struct drm_i915_gem_pread *args = data;
05394f39 513 struct drm_i915_gem_object *obj;
35b62a89 514 int ret = 0;
673a394b 515
51311d0a
CW
516 if (args->size == 0)
517 return 0;
518
519 if (!access_ok(VERIFY_WRITE,
520 (char __user *)(uintptr_t)args->data_ptr,
521 args->size))
522 return -EFAULT;
523
4f27b75d 524 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 525 if (ret)
4f27b75d 526 return ret;
673a394b 527
05394f39 528 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 529 if (&obj->base == NULL) {
1d7cfea1
CW
530 ret = -ENOENT;
531 goto unlock;
4f27b75d 532 }
673a394b 533
7dcd2499 534 /* Bounds check source. */
05394f39
CW
535 if (args->offset > obj->base.size ||
536 args->size > obj->base.size - args->offset) {
ce9d419d 537 ret = -EINVAL;
35b62a89 538 goto out;
ce9d419d
CW
539 }
540
db53a302
CW
541 trace_i915_gem_object_pread(obj, args->offset, args->size);
542
dbf7bff0 543 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 544
35b62a89 545out:
05394f39 546 drm_gem_object_unreference(&obj->base);
1d7cfea1 547unlock:
4f27b75d 548 mutex_unlock(&dev->struct_mutex);
eb01459f 549 return ret;
673a394b
EA
550}
551
0839ccb8
KP
552/* This is the fast write path which cannot handle
553 * page faults in the source data
9b7530cc 554 */
0839ccb8
KP
555
556static inline int
557fast_user_write(struct io_mapping *mapping,
558 loff_t page_base, int page_offset,
559 char __user *user_data,
560 int length)
9b7530cc 561{
4f0c7cfb
BW
562 void __iomem *vaddr_atomic;
563 void *vaddr;
0839ccb8 564 unsigned long unwritten;
9b7530cc 565
3e4d3af5 566 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
567 /* We can use the cpu mem copy function because this is X86. */
568 vaddr = (void __force*)vaddr_atomic + page_offset;
569 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 570 user_data, length);
3e4d3af5 571 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 572 return unwritten;
0839ccb8
KP
573}
574
3de09aa3
EA
575/**
576 * This is the fast pwrite path, where we copy the data directly from the
577 * user into the GTT, uncached.
578 */
673a394b 579static int
05394f39
CW
580i915_gem_gtt_pwrite_fast(struct drm_device *dev,
581 struct drm_i915_gem_object *obj,
3de09aa3 582 struct drm_i915_gem_pwrite *args,
05394f39 583 struct drm_file *file)
673a394b 584{
0839ccb8 585 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 586 ssize_t remain;
0839ccb8 587 loff_t offset, page_base;
673a394b 588 char __user *user_data;
935aaa69
DV
589 int page_offset, page_length, ret;
590
591 ret = i915_gem_object_pin(obj, 0, true);
592 if (ret)
593 goto out;
594
595 ret = i915_gem_object_set_to_gtt_domain(obj, true);
596 if (ret)
597 goto out_unpin;
598
599 ret = i915_gem_object_put_fence(obj);
600 if (ret)
601 goto out_unpin;
673a394b
EA
602
603 user_data = (char __user *) (uintptr_t) args->data_ptr;
604 remain = args->size;
673a394b 605
05394f39 606 offset = obj->gtt_offset + args->offset;
673a394b
EA
607
608 while (remain > 0) {
609 /* Operation in this page
610 *
0839ccb8
KP
611 * page_base = page offset within aperture
612 * page_offset = offset within page
613 * page_length = bytes to copy for this page
673a394b 614 */
c8cbbb8b
CW
615 page_base = offset & PAGE_MASK;
616 page_offset = offset_in_page(offset);
0839ccb8
KP
617 page_length = remain;
618 if ((page_offset + remain) > PAGE_SIZE)
619 page_length = PAGE_SIZE - page_offset;
620
0839ccb8 621 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
622 * source page isn't available. Return the error and we'll
623 * retry in the slow path.
0839ccb8 624 */
fbd5a26d 625 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
626 page_offset, user_data, page_length)) {
627 ret = -EFAULT;
628 goto out_unpin;
629 }
673a394b 630
0839ccb8
KP
631 remain -= page_length;
632 user_data += page_length;
633 offset += page_length;
673a394b 634 }
673a394b 635
935aaa69
DV
636out_unpin:
637 i915_gem_object_unpin(obj);
638out:
3de09aa3 639 return ret;
673a394b
EA
640}
641
d174bd64
DV
642/* Per-page copy function for the shmem pwrite fastpath.
643 * Flushes invalid cachelines before writing to the target if
644 * needs_clflush_before is set and flushes out any written cachelines after
645 * writing if needs_clflush is set. */
3043c60c 646static int
d174bd64
DV
647shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
648 char __user *user_data,
649 bool page_do_bit17_swizzling,
650 bool needs_clflush_before,
651 bool needs_clflush_after)
673a394b 652{
d174bd64 653 char *vaddr;
673a394b 654 int ret;
3de09aa3 655
e7e58eb5 656 if (unlikely(page_do_bit17_swizzling))
d174bd64 657 return -EINVAL;
3de09aa3 658
d174bd64
DV
659 vaddr = kmap_atomic(page);
660 if (needs_clflush_before)
661 drm_clflush_virt_range(vaddr + shmem_page_offset,
662 page_length);
663 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
664 user_data,
665 page_length);
666 if (needs_clflush_after)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 kunmap_atomic(vaddr);
3de09aa3
EA
670
671 return ret;
672}
673
d174bd64
DV
674/* Only difference to the fast-path function is that this can handle bit17
675 * and uses non-atomic copy and kmap functions. */
3043c60c 676static int
d174bd64
DV
677shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
678 char __user *user_data,
679 bool page_do_bit17_swizzling,
680 bool needs_clflush_before,
681 bool needs_clflush_after)
673a394b 682{
d174bd64
DV
683 char *vaddr;
684 int ret;
e5281ccd 685
d174bd64 686 vaddr = kmap(page);
e7e58eb5 687 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
688 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
689 page_length,
690 page_do_bit17_swizzling);
d174bd64
DV
691 if (page_do_bit17_swizzling)
692 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
693 user_data,
694 page_length);
d174bd64
DV
695 else
696 ret = __copy_from_user(vaddr + shmem_page_offset,
697 user_data,
698 page_length);
699 if (needs_clflush_after)
23c18c71
DV
700 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
701 page_length,
702 page_do_bit17_swizzling);
d174bd64 703 kunmap(page);
40123c1f 704
d174bd64 705 return ret;
40123c1f
EA
706}
707
40123c1f 708static int
e244a443
DV
709i915_gem_shmem_pwrite(struct drm_device *dev,
710 struct drm_i915_gem_object *obj,
711 struct drm_i915_gem_pwrite *args,
712 struct drm_file *file)
40123c1f 713{
05394f39 714 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 715 ssize_t remain;
8c59967c
DV
716 loff_t offset;
717 char __user *user_data;
eb2c0c81 718 int shmem_page_offset, page_length, ret = 0;
8c59967c 719 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 720 int hit_slowpath = 0;
58642885
DV
721 int needs_clflush_after = 0;
722 int needs_clflush_before = 0;
692a576b 723 int release_page;
40123c1f 724
8c59967c 725 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
726 remain = args->size;
727
8c59967c 728 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 729
58642885
DV
730 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
731 /* If we're not in the cpu write domain, set ourself into the gtt
732 * write domain and manually flush cachelines (if required). This
733 * optimizes for the case when the gpu will use the data
734 * right away and we therefore have to clflush anyway. */
735 if (obj->cache_level == I915_CACHE_NONE)
736 needs_clflush_after = 1;
737 ret = i915_gem_object_set_to_gtt_domain(obj, true);
738 if (ret)
739 return ret;
740 }
741 /* Same trick applies for invalidate partially written cachelines before
742 * writing. */
743 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
744 && obj->cache_level == I915_CACHE_NONE)
745 needs_clflush_before = 1;
746
673a394b 747 offset = args->offset;
05394f39 748 obj->dirty = 1;
673a394b 749
40123c1f 750 while (remain > 0) {
e5281ccd 751 struct page *page;
58642885 752 int partial_cacheline_write;
e5281ccd 753
40123c1f
EA
754 /* Operation in this page
755 *
40123c1f 756 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
757 * page_length = bytes to copy for this page
758 */
c8cbbb8b 759 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
760
761 page_length = remain;
762 if ((shmem_page_offset + page_length) > PAGE_SIZE)
763 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 764
58642885
DV
765 /* If we don't overwrite a cacheline completely we need to be
766 * careful to have up-to-date data by first clflushing. Don't
767 * overcomplicate things and flush the entire patch. */
768 partial_cacheline_write = needs_clflush_before &&
769 ((shmem_page_offset | page_length)
770 & (boot_cpu_data.x86_clflush_size - 1));
771
692a576b
DV
772 if (obj->pages) {
773 page = obj->pages[offset >> PAGE_SHIFT];
774 release_page = 0;
775 } else {
776 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
777 if (IS_ERR(page)) {
778 ret = PTR_ERR(page);
779 goto out;
780 }
781 release_page = 1;
e5281ccd
CW
782 }
783
8c59967c
DV
784 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
785 (page_to_phys(page) & (1 << 17)) != 0;
786
d174bd64
DV
787 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
788 user_data, page_do_bit17_swizzling,
789 partial_cacheline_write,
790 needs_clflush_after);
791 if (ret == 0)
792 goto next_page;
e244a443
DV
793
794 hit_slowpath = 1;
692a576b 795 page_cache_get(page);
e244a443
DV
796 mutex_unlock(&dev->struct_mutex);
797
d174bd64
DV
798 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
799 user_data, page_do_bit17_swizzling,
800 partial_cacheline_write,
801 needs_clflush_after);
40123c1f 802
e244a443 803 mutex_lock(&dev->struct_mutex);
692a576b 804 page_cache_release(page);
e244a443 805next_page:
e5281ccd
CW
806 set_page_dirty(page);
807 mark_page_accessed(page);
692a576b
DV
808 if (release_page)
809 page_cache_release(page);
e5281ccd 810
8c59967c
DV
811 if (ret) {
812 ret = -EFAULT;
813 goto out;
814 }
815
40123c1f 816 remain -= page_length;
8c59967c 817 user_data += page_length;
40123c1f 818 offset += page_length;
673a394b
EA
819 }
820
fbd5a26d 821out:
e244a443
DV
822 if (hit_slowpath) {
823 /* Fixup: Kill any reinstated backing storage pages */
824 if (obj->madv == __I915_MADV_PURGED)
825 i915_gem_object_truncate(obj);
826 /* and flush dirty cachelines in case the object isn't in the cpu write
827 * domain anymore. */
828 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
829 i915_gem_clflush_object(obj);
830 intel_gtt_chipset_flush();
831 }
8c59967c 832 }
673a394b 833
58642885
DV
834 if (needs_clflush_after)
835 intel_gtt_chipset_flush();
836
40123c1f 837 return ret;
673a394b
EA
838}
839
840/**
841 * Writes data to the object referenced by handle.
842 *
843 * On error, the contents of the buffer that were to be modified are undefined.
844 */
845int
846i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 847 struct drm_file *file)
673a394b
EA
848{
849 struct drm_i915_gem_pwrite *args = data;
05394f39 850 struct drm_i915_gem_object *obj;
51311d0a
CW
851 int ret;
852
853 if (args->size == 0)
854 return 0;
855
856 if (!access_ok(VERIFY_READ,
857 (char __user *)(uintptr_t)args->data_ptr,
858 args->size))
859 return -EFAULT;
860
f56f821f
DV
861 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
862 args->size);
51311d0a
CW
863 if (ret)
864 return -EFAULT;
673a394b 865
fbd5a26d 866 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 867 if (ret)
fbd5a26d 868 return ret;
1d7cfea1 869
05394f39 870 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 871 if (&obj->base == NULL) {
1d7cfea1
CW
872 ret = -ENOENT;
873 goto unlock;
fbd5a26d 874 }
673a394b 875
7dcd2499 876 /* Bounds check destination. */
05394f39
CW
877 if (args->offset > obj->base.size ||
878 args->size > obj->base.size - args->offset) {
ce9d419d 879 ret = -EINVAL;
35b62a89 880 goto out;
ce9d419d
CW
881 }
882
db53a302
CW
883 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
884
935aaa69 885 ret = -EFAULT;
673a394b
EA
886 /* We can only do the GTT pwrite on untiled buffers, as otherwise
887 * it would end up going through the fenced access, and we'll get
888 * different detiling behavior between reading and writing.
889 * pread/pwrite currently are reading and writing from the CPU
890 * perspective, requiring manual detiling by the client.
891 */
5c0480f2 892 if (obj->phys_obj) {
fbd5a26d 893 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
894 goto out;
895 }
896
897 if (obj->gtt_space &&
3ae53783 898 obj->cache_level == I915_CACHE_NONE &&
c07496fa 899 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 900 obj->map_and_fenceable &&
5c0480f2 901 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 902 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
903 /* Note that the gtt paths might fail with non-page-backed user
904 * pointers (e.g. gtt mappings when moving data between
905 * textures). Fallback to the shmem path in that case. */
fbd5a26d 906 }
673a394b 907
5c0480f2 908 if (ret == -EFAULT)
935aaa69 909 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 910
35b62a89 911out:
05394f39 912 drm_gem_object_unreference(&obj->base);
1d7cfea1 913unlock:
fbd5a26d 914 mutex_unlock(&dev->struct_mutex);
673a394b
EA
915 return ret;
916}
917
918/**
2ef7eeaa
EA
919 * Called when user space prepares to use an object with the CPU, either
920 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
921 */
922int
923i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 924 struct drm_file *file)
673a394b
EA
925{
926 struct drm_i915_gem_set_domain *args = data;
05394f39 927 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
928 uint32_t read_domains = args->read_domains;
929 uint32_t write_domain = args->write_domain;
673a394b
EA
930 int ret;
931
2ef7eeaa 932 /* Only handle setting domains to types used by the CPU. */
21d509e3 933 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
934 return -EINVAL;
935
21d509e3 936 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
937 return -EINVAL;
938
939 /* Having something in the write domain implies it's in the read
940 * domain, and only that read domain. Enforce that in the request.
941 */
942 if (write_domain != 0 && read_domains != write_domain)
943 return -EINVAL;
944
76c1dec1 945 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 946 if (ret)
76c1dec1 947 return ret;
1d7cfea1 948
05394f39 949 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 950 if (&obj->base == NULL) {
1d7cfea1
CW
951 ret = -ENOENT;
952 goto unlock;
76c1dec1 953 }
673a394b 954
2ef7eeaa
EA
955 if (read_domains & I915_GEM_DOMAIN_GTT) {
956 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
957
958 /* Silently promote "you're not bound, there was nothing to do"
959 * to success, since the client was just asking us to
960 * make sure everything was done.
961 */
962 if (ret == -EINVAL)
963 ret = 0;
2ef7eeaa 964 } else {
e47c68e9 965 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
966 }
967
05394f39 968 drm_gem_object_unreference(&obj->base);
1d7cfea1 969unlock:
673a394b
EA
970 mutex_unlock(&dev->struct_mutex);
971 return ret;
972}
973
974/**
975 * Called when user space has done writes to this buffer
976 */
977int
978i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 979 struct drm_file *file)
673a394b
EA
980{
981 struct drm_i915_gem_sw_finish *args = data;
05394f39 982 struct drm_i915_gem_object *obj;
673a394b
EA
983 int ret = 0;
984
76c1dec1 985 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 986 if (ret)
76c1dec1 987 return ret;
1d7cfea1 988
05394f39 989 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 990 if (&obj->base == NULL) {
1d7cfea1
CW
991 ret = -ENOENT;
992 goto unlock;
673a394b
EA
993 }
994
673a394b 995 /* Pinned buffers may be scanout, so flush the cache */
05394f39 996 if (obj->pin_count)
e47c68e9
EA
997 i915_gem_object_flush_cpu_write_domain(obj);
998
05394f39 999 drm_gem_object_unreference(&obj->base);
1d7cfea1 1000unlock:
673a394b
EA
1001 mutex_unlock(&dev->struct_mutex);
1002 return ret;
1003}
1004
1005/**
1006 * Maps the contents of an object, returning the address it is mapped
1007 * into.
1008 *
1009 * While the mapping holds a reference on the contents of the object, it doesn't
1010 * imply a ref on the object itself.
1011 */
1012int
1013i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1014 struct drm_file *file)
673a394b
EA
1015{
1016 struct drm_i915_gem_mmap *args = data;
1017 struct drm_gem_object *obj;
673a394b
EA
1018 unsigned long addr;
1019
05394f39 1020 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1021 if (obj == NULL)
bf79cb91 1022 return -ENOENT;
673a394b 1023
6be5ceb0 1024 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1025 PROT_READ | PROT_WRITE, MAP_SHARED,
1026 args->offset);
bc9025bd 1027 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1028 if (IS_ERR((void *)addr))
1029 return addr;
1030
1031 args->addr_ptr = (uint64_t) addr;
1032
1033 return 0;
1034}
1035
de151cf6
JB
1036/**
1037 * i915_gem_fault - fault a page into the GTT
1038 * vma: VMA in question
1039 * vmf: fault info
1040 *
1041 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1042 * from userspace. The fault handler takes care of binding the object to
1043 * the GTT (if needed), allocating and programming a fence register (again,
1044 * only if needed based on whether the old reg is still valid or the object
1045 * is tiled) and inserting a new PTE into the faulting process.
1046 *
1047 * Note that the faulting process may involve evicting existing objects
1048 * from the GTT and/or fence registers to make room. So performance may
1049 * suffer if the GTT working set is large or there are few fence registers
1050 * left.
1051 */
1052int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1053{
05394f39
CW
1054 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1055 struct drm_device *dev = obj->base.dev;
7d1c4804 1056 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1057 pgoff_t page_offset;
1058 unsigned long pfn;
1059 int ret = 0;
0f973f27 1060 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1061
1062 /* We don't use vmf->pgoff since that has the fake offset */
1063 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1064 PAGE_SHIFT;
1065
d9bc7e9f
CW
1066 ret = i915_mutex_lock_interruptible(dev);
1067 if (ret)
1068 goto out;
a00b10c3 1069
db53a302
CW
1070 trace_i915_gem_object_fault(obj, page_offset, true, write);
1071
d9bc7e9f 1072 /* Now bind it into the GTT if needed */
919926ae
CW
1073 if (!obj->map_and_fenceable) {
1074 ret = i915_gem_object_unbind(obj);
1075 if (ret)
1076 goto unlock;
a00b10c3 1077 }
05394f39 1078 if (!obj->gtt_space) {
75e9e915 1079 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1080 if (ret)
1081 goto unlock;
de151cf6 1082
e92d03bf
EA
1083 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1084 if (ret)
1085 goto unlock;
1086 }
4a684a41 1087
74898d7e
DV
1088 if (!obj->has_global_gtt_mapping)
1089 i915_gem_gtt_bind_object(obj, obj->cache_level);
1090
06d98131 1091 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1092 if (ret)
1093 goto unlock;
de151cf6 1094
05394f39
CW
1095 if (i915_gem_object_is_inactive(obj))
1096 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1097
6299f992
CW
1098 obj->fault_mappable = true;
1099
05394f39 1100 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1101 page_offset;
1102
1103 /* Finally, remap it using the new GTT offset */
1104 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1105unlock:
de151cf6 1106 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1107out:
de151cf6 1108 switch (ret) {
d9bc7e9f 1109 case -EIO:
045e769a 1110 case -EAGAIN:
d9bc7e9f
CW
1111 /* Give the error handler a chance to run and move the
1112 * objects off the GPU active list. Next time we service the
1113 * fault, we should be able to transition the page into the
1114 * GTT without touching the GPU (and so avoid further
1115 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1116 * with coherency, just lost writes.
1117 */
045e769a 1118 set_need_resched();
c715089f
CW
1119 case 0:
1120 case -ERESTARTSYS:
bed636ab 1121 case -EINTR:
c715089f 1122 return VM_FAULT_NOPAGE;
de151cf6 1123 case -ENOMEM:
de151cf6 1124 return VM_FAULT_OOM;
de151cf6 1125 default:
c715089f 1126 return VM_FAULT_SIGBUS;
de151cf6
JB
1127 }
1128}
1129
901782b2
CW
1130/**
1131 * i915_gem_release_mmap - remove physical page mappings
1132 * @obj: obj in question
1133 *
af901ca1 1134 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1135 * relinquish ownership of the pages back to the system.
1136 *
1137 * It is vital that we remove the page mapping if we have mapped a tiled
1138 * object through the GTT and then lose the fence register due to
1139 * resource pressure. Similarly if the object has been moved out of the
1140 * aperture, than pages mapped into userspace must be revoked. Removing the
1141 * mapping will then trigger a page fault on the next user access, allowing
1142 * fixup by i915_gem_fault().
1143 */
d05ca301 1144void
05394f39 1145i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1146{
6299f992
CW
1147 if (!obj->fault_mappable)
1148 return;
901782b2 1149
f6e47884
CW
1150 if (obj->base.dev->dev_mapping)
1151 unmap_mapping_range(obj->base.dev->dev_mapping,
1152 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1153 obj->base.size, 1);
fb7d516a 1154
6299f992 1155 obj->fault_mappable = false;
901782b2
CW
1156}
1157
92b88aeb 1158static uint32_t
e28f8711 1159i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1160{
e28f8711 1161 uint32_t gtt_size;
92b88aeb
CW
1162
1163 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1164 tiling_mode == I915_TILING_NONE)
1165 return size;
92b88aeb
CW
1166
1167 /* Previous chips need a power-of-two fence region when tiling */
1168 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1169 gtt_size = 1024*1024;
92b88aeb 1170 else
e28f8711 1171 gtt_size = 512*1024;
92b88aeb 1172
e28f8711
CW
1173 while (gtt_size < size)
1174 gtt_size <<= 1;
92b88aeb 1175
e28f8711 1176 return gtt_size;
92b88aeb
CW
1177}
1178
de151cf6
JB
1179/**
1180 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1181 * @obj: object to check
1182 *
1183 * Return the required GTT alignment for an object, taking into account
5e783301 1184 * potential fence register mapping.
de151cf6
JB
1185 */
1186static uint32_t
e28f8711
CW
1187i915_gem_get_gtt_alignment(struct drm_device *dev,
1188 uint32_t size,
1189 int tiling_mode)
de151cf6 1190{
de151cf6
JB
1191 /*
1192 * Minimum alignment is 4k (GTT page size), but might be greater
1193 * if a fence register is needed for the object.
1194 */
a00b10c3 1195 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1196 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1197 return 4096;
1198
a00b10c3
CW
1199 /*
1200 * Previous chips need to be aligned to the size of the smallest
1201 * fence register that can contain the object.
1202 */
e28f8711 1203 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1204}
1205
5e783301
DV
1206/**
1207 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1208 * unfenced object
e28f8711
CW
1209 * @dev: the device
1210 * @size: size of the object
1211 * @tiling_mode: tiling mode of the object
5e783301
DV
1212 *
1213 * Return the required GTT alignment for an object, only taking into account
1214 * unfenced tiled surface requirements.
1215 */
467cffba 1216uint32_t
e28f8711
CW
1217i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1218 uint32_t size,
1219 int tiling_mode)
5e783301 1220{
5e783301
DV
1221 /*
1222 * Minimum alignment is 4k (GTT page size) for sane hw.
1223 */
1224 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1225 tiling_mode == I915_TILING_NONE)
5e783301
DV
1226 return 4096;
1227
e28f8711
CW
1228 /* Previous hardware however needs to be aligned to a power-of-two
1229 * tile height. The simplest method for determining this is to reuse
1230 * the power-of-tile object size.
5e783301 1231 */
e28f8711 1232 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1233}
1234
de151cf6 1235int
ff72145b
DA
1236i915_gem_mmap_gtt(struct drm_file *file,
1237 struct drm_device *dev,
1238 uint32_t handle,
1239 uint64_t *offset)
de151cf6 1240{
da761a6e 1241 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1242 struct drm_i915_gem_object *obj;
de151cf6
JB
1243 int ret;
1244
76c1dec1 1245 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1246 if (ret)
76c1dec1 1247 return ret;
de151cf6 1248
ff72145b 1249 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1250 if (&obj->base == NULL) {
1d7cfea1
CW
1251 ret = -ENOENT;
1252 goto unlock;
1253 }
de151cf6 1254
05394f39 1255 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1256 ret = -E2BIG;
ff56b0bc 1257 goto out;
da761a6e
CW
1258 }
1259
05394f39 1260 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1261 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1262 ret = -EINVAL;
1263 goto out;
ab18282d
CW
1264 }
1265
05394f39 1266 if (!obj->base.map_list.map) {
b464e9a2 1267 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1268 if (ret)
1269 goto out;
de151cf6
JB
1270 }
1271
ff72145b 1272 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1273
1d7cfea1 1274out:
05394f39 1275 drm_gem_object_unreference(&obj->base);
1d7cfea1 1276unlock:
de151cf6 1277 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1278 return ret;
de151cf6
JB
1279}
1280
ff72145b
DA
1281/**
1282 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1283 * @dev: DRM device
1284 * @data: GTT mapping ioctl data
1285 * @file: GEM object info
1286 *
1287 * Simply returns the fake offset to userspace so it can mmap it.
1288 * The mmap call will end up in drm_gem_mmap(), which will set things
1289 * up so we can get faults in the handler above.
1290 *
1291 * The fault handler will take care of binding the object into the GTT
1292 * (since it may have been evicted to make room for something), allocating
1293 * a fence register, and mapping the appropriate aperture address into
1294 * userspace.
1295 */
1296int
1297i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1298 struct drm_file *file)
1299{
1300 struct drm_i915_gem_mmap_gtt *args = data;
1301
ff72145b
DA
1302 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1303}
1304
1305
e5281ccd 1306static int
05394f39 1307i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1308 gfp_t gfpmask)
1309{
e5281ccd
CW
1310 int page_count, i;
1311 struct address_space *mapping;
1312 struct inode *inode;
1313 struct page *page;
1314
1315 /* Get the list of pages out of our struct file. They'll be pinned
1316 * at this point until we release them.
1317 */
05394f39
CW
1318 page_count = obj->base.size / PAGE_SIZE;
1319 BUG_ON(obj->pages != NULL);
1320 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1321 if (obj->pages == NULL)
e5281ccd
CW
1322 return -ENOMEM;
1323
05394f39 1324 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1325 mapping = inode->i_mapping;
5949eac4
HD
1326 gfpmask |= mapping_gfp_mask(mapping);
1327
e5281ccd 1328 for (i = 0; i < page_count; i++) {
5949eac4 1329 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1330 if (IS_ERR(page))
1331 goto err_pages;
1332
05394f39 1333 obj->pages[i] = page;
e5281ccd
CW
1334 }
1335
6dacfd2f 1336 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1337 i915_gem_object_do_bit_17_swizzle(obj);
1338
1339 return 0;
1340
1341err_pages:
1342 while (i--)
05394f39 1343 page_cache_release(obj->pages[i]);
e5281ccd 1344
05394f39
CW
1345 drm_free_large(obj->pages);
1346 obj->pages = NULL;
e5281ccd
CW
1347 return PTR_ERR(page);
1348}
1349
5cdf5881 1350static void
05394f39 1351i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1352{
05394f39 1353 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1354 int i;
1355
05394f39 1356 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1357
6dacfd2f 1358 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1359 i915_gem_object_save_bit_17_swizzle(obj);
1360
05394f39
CW
1361 if (obj->madv == I915_MADV_DONTNEED)
1362 obj->dirty = 0;
3ef94daa
CW
1363
1364 for (i = 0; i < page_count; i++) {
05394f39
CW
1365 if (obj->dirty)
1366 set_page_dirty(obj->pages[i]);
3ef94daa 1367
05394f39
CW
1368 if (obj->madv == I915_MADV_WILLNEED)
1369 mark_page_accessed(obj->pages[i]);
3ef94daa 1370
05394f39 1371 page_cache_release(obj->pages[i]);
3ef94daa 1372 }
05394f39 1373 obj->dirty = 0;
673a394b 1374
05394f39
CW
1375 drm_free_large(obj->pages);
1376 obj->pages = NULL;
673a394b
EA
1377}
1378
54cf91dc 1379void
05394f39 1380i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1381 struct intel_ring_buffer *ring,
1382 u32 seqno)
673a394b 1383{
05394f39 1384 struct drm_device *dev = obj->base.dev;
69dc4987 1385 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1386
852835f3 1387 BUG_ON(ring == NULL);
05394f39 1388 obj->ring = ring;
673a394b
EA
1389
1390 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1391 if (!obj->active) {
1392 drm_gem_object_reference(&obj->base);
1393 obj->active = 1;
673a394b 1394 }
e35a41de 1395
673a394b 1396 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1397 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1398 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1399
05394f39 1400 obj->last_rendering_seqno = seqno;
caea7476 1401
7dd49065 1402 if (obj->fenced_gpu_access) {
caea7476 1403 obj->last_fenced_seqno = seqno;
caea7476 1404
7dd49065
CW
1405 /* Bump MRU to take account of the delayed flush */
1406 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1407 struct drm_i915_fence_reg *reg;
1408
1409 reg = &dev_priv->fence_regs[obj->fence_reg];
1410 list_move_tail(&reg->lru_list,
1411 &dev_priv->mm.fence_list);
1412 }
caea7476
CW
1413 }
1414}
1415
1416static void
1417i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1418{
1419 list_del_init(&obj->ring_list);
1420 obj->last_rendering_seqno = 0;
15a13bbd 1421 obj->last_fenced_seqno = 0;
673a394b
EA
1422}
1423
ce44b0ea 1424static void
05394f39 1425i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1426{
05394f39 1427 struct drm_device *dev = obj->base.dev;
ce44b0ea 1428 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1429
05394f39
CW
1430 BUG_ON(!obj->active);
1431 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1432
1433 i915_gem_object_move_off_active(obj);
1434}
1435
1436static void
1437i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1438{
1439 struct drm_device *dev = obj->base.dev;
1440 struct drm_i915_private *dev_priv = dev->dev_private;
1441
1b50247a 1442 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476
CW
1443
1444 BUG_ON(!list_empty(&obj->gpu_write_list));
1445 BUG_ON(!obj->active);
1446 obj->ring = NULL;
1447
1448 i915_gem_object_move_off_active(obj);
1449 obj->fenced_gpu_access = false;
caea7476
CW
1450
1451 obj->active = 0;
87ca9c8a 1452 obj->pending_gpu_write = false;
caea7476
CW
1453 drm_gem_object_unreference(&obj->base);
1454
1455 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1456}
673a394b 1457
963b4836
CW
1458/* Immediately discard the backing storage */
1459static void
05394f39 1460i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1461{
bb6baf76 1462 struct inode *inode;
963b4836 1463
ae9fed6b
CW
1464 /* Our goal here is to return as much of the memory as
1465 * is possible back to the system as we are called from OOM.
1466 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1467 * backing pages, *now*.
ae9fed6b 1468 */
05394f39 1469 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1470 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1471
a14917ee
CW
1472 if (obj->base.map_list.map)
1473 drm_gem_free_mmap_offset(&obj->base);
1474
05394f39 1475 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1476}
1477
1478static inline int
05394f39 1479i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1480{
05394f39 1481 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1482}
1483
63560396 1484static void
db53a302
CW
1485i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1486 uint32_t flush_domains)
63560396 1487{
05394f39 1488 struct drm_i915_gem_object *obj, *next;
63560396 1489
05394f39 1490 list_for_each_entry_safe(obj, next,
64193406 1491 &ring->gpu_write_list,
63560396 1492 gpu_write_list) {
05394f39
CW
1493 if (obj->base.write_domain & flush_domains) {
1494 uint32_t old_write_domain = obj->base.write_domain;
63560396 1495
05394f39
CW
1496 obj->base.write_domain = 0;
1497 list_del_init(&obj->gpu_write_list);
1ec14ad3 1498 i915_gem_object_move_to_active(obj, ring,
db53a302 1499 i915_gem_next_request_seqno(ring));
63560396 1500
63560396 1501 trace_i915_gem_object_change_domain(obj,
05394f39 1502 obj->base.read_domains,
63560396
DV
1503 old_write_domain);
1504 }
1505 }
1506}
8187a2b7 1507
53d227f2
DV
1508static u32
1509i915_gem_get_seqno(struct drm_device *dev)
1510{
1511 drm_i915_private_t *dev_priv = dev->dev_private;
1512 u32 seqno = dev_priv->next_seqno;
1513
1514 /* reserve 0 for non-seqno */
1515 if (++dev_priv->next_seqno == 0)
1516 dev_priv->next_seqno = 1;
1517
1518 return seqno;
1519}
1520
1521u32
1522i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1523{
1524 if (ring->outstanding_lazy_request == 0)
1525 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1526
1527 return ring->outstanding_lazy_request;
1528}
1529
3cce469c 1530int
db53a302 1531i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1532 struct drm_file *file,
db53a302 1533 struct drm_i915_gem_request *request)
673a394b 1534{
db53a302 1535 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1536 uint32_t seqno;
a71d8d94 1537 u32 request_ring_position;
673a394b 1538 int was_empty;
3cce469c
CW
1539 int ret;
1540
1541 BUG_ON(request == NULL);
53d227f2 1542 seqno = i915_gem_next_request_seqno(ring);
673a394b 1543
a71d8d94
CW
1544 /* Record the position of the start of the request so that
1545 * should we detect the updated seqno part-way through the
1546 * GPU processing the request, we never over-estimate the
1547 * position of the head.
1548 */
1549 request_ring_position = intel_ring_get_tail(ring);
1550
3cce469c
CW
1551 ret = ring->add_request(ring, &seqno);
1552 if (ret)
1553 return ret;
673a394b 1554
db53a302 1555 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1556
1557 request->seqno = seqno;
852835f3 1558 request->ring = ring;
a71d8d94 1559 request->tail = request_ring_position;
673a394b 1560 request->emitted_jiffies = jiffies;
852835f3
ZN
1561 was_empty = list_empty(&ring->request_list);
1562 list_add_tail(&request->list, &ring->request_list);
1563
db53a302
CW
1564 if (file) {
1565 struct drm_i915_file_private *file_priv = file->driver_priv;
1566
1c25595f 1567 spin_lock(&file_priv->mm.lock);
f787a5f5 1568 request->file_priv = file_priv;
b962442e 1569 list_add_tail(&request->client_list,
f787a5f5 1570 &file_priv->mm.request_list);
1c25595f 1571 spin_unlock(&file_priv->mm.lock);
b962442e 1572 }
673a394b 1573
5391d0cf 1574 ring->outstanding_lazy_request = 0;
db53a302 1575
f65d9421 1576 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1577 if (i915_enable_hangcheck) {
1578 mod_timer(&dev_priv->hangcheck_timer,
1579 jiffies +
1580 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1581 }
f65d9421 1582 if (was_empty)
b3b079db
CW
1583 queue_delayed_work(dev_priv->wq,
1584 &dev_priv->mm.retire_work, HZ);
f65d9421 1585 }
3cce469c 1586 return 0;
673a394b
EA
1587}
1588
f787a5f5
CW
1589static inline void
1590i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1591{
1c25595f 1592 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1593
1c25595f
CW
1594 if (!file_priv)
1595 return;
1c5d22f7 1596
1c25595f 1597 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1598 if (request->file_priv) {
1599 list_del(&request->client_list);
1600 request->file_priv = NULL;
1601 }
1c25595f 1602 spin_unlock(&file_priv->mm.lock);
673a394b 1603}
673a394b 1604
dfaae392
CW
1605static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1606 struct intel_ring_buffer *ring)
9375e446 1607{
dfaae392
CW
1608 while (!list_empty(&ring->request_list)) {
1609 struct drm_i915_gem_request *request;
673a394b 1610
dfaae392
CW
1611 request = list_first_entry(&ring->request_list,
1612 struct drm_i915_gem_request,
1613 list);
de151cf6 1614
dfaae392 1615 list_del(&request->list);
f787a5f5 1616 i915_gem_request_remove_from_client(request);
dfaae392
CW
1617 kfree(request);
1618 }
673a394b 1619
dfaae392 1620 while (!list_empty(&ring->active_list)) {
05394f39 1621 struct drm_i915_gem_object *obj;
9375e446 1622
05394f39
CW
1623 obj = list_first_entry(&ring->active_list,
1624 struct drm_i915_gem_object,
1625 ring_list);
9375e446 1626
05394f39
CW
1627 obj->base.write_domain = 0;
1628 list_del_init(&obj->gpu_write_list);
1629 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1630 }
1631}
1632
312817a3
CW
1633static void i915_gem_reset_fences(struct drm_device *dev)
1634{
1635 struct drm_i915_private *dev_priv = dev->dev_private;
1636 int i;
1637
4b9de737 1638 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1639 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 1640
ada726c7 1641 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 1642
ada726c7
CW
1643 if (reg->obj)
1644 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 1645
ada726c7
CW
1646 reg->pin_count = 0;
1647 reg->obj = NULL;
1648 INIT_LIST_HEAD(&reg->lru_list);
312817a3 1649 }
ada726c7
CW
1650
1651 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
1652}
1653
069efc1d 1654void i915_gem_reset(struct drm_device *dev)
673a394b 1655{
77f01230 1656 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1657 struct drm_i915_gem_object *obj;
1ec14ad3 1658 int i;
673a394b 1659
1ec14ad3
CW
1660 for (i = 0; i < I915_NUM_RINGS; i++)
1661 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1662
1663 /* Remove anything from the flushing lists. The GPU cache is likely
1664 * to be lost on reset along with the data, so simply move the
1665 * lost bo to the inactive list.
1666 */
1667 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1668 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1669 struct drm_i915_gem_object,
1670 mm_list);
dfaae392 1671
05394f39
CW
1672 obj->base.write_domain = 0;
1673 list_del_init(&obj->gpu_write_list);
1674 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1675 }
1676
1677 /* Move everything out of the GPU domains to ensure we do any
1678 * necessary invalidation upon reuse.
1679 */
05394f39 1680 list_for_each_entry(obj,
77f01230 1681 &dev_priv->mm.inactive_list,
69dc4987 1682 mm_list)
77f01230 1683 {
05394f39 1684 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1685 }
069efc1d
CW
1686
1687 /* The fence registers are invalidated so clear them out */
312817a3 1688 i915_gem_reset_fences(dev);
673a394b
EA
1689}
1690
1691/**
1692 * This function clears the request list as sequence numbers are passed.
1693 */
a71d8d94 1694void
db53a302 1695i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1696{
673a394b 1697 uint32_t seqno;
1ec14ad3 1698 int i;
673a394b 1699
db53a302 1700 if (list_empty(&ring->request_list))
6c0594a3
KW
1701 return;
1702
db53a302 1703 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1704
78501eac 1705 seqno = ring->get_seqno(ring);
1ec14ad3 1706
076e2c0e 1707 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1708 if (seqno >= ring->sync_seqno[i])
1709 ring->sync_seqno[i] = 0;
1710
852835f3 1711 while (!list_empty(&ring->request_list)) {
673a394b 1712 struct drm_i915_gem_request *request;
673a394b 1713
852835f3 1714 request = list_first_entry(&ring->request_list,
673a394b
EA
1715 struct drm_i915_gem_request,
1716 list);
673a394b 1717
dfaae392 1718 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1719 break;
1720
db53a302 1721 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1722 /* We know the GPU must have read the request to have
1723 * sent us the seqno + interrupt, so use the position
1724 * of tail of the request to update the last known position
1725 * of the GPU head.
1726 */
1727 ring->last_retired_head = request->tail;
b84d5f0c
CW
1728
1729 list_del(&request->list);
f787a5f5 1730 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1731 kfree(request);
1732 }
673a394b 1733
b84d5f0c
CW
1734 /* Move any buffers on the active list that are no longer referenced
1735 * by the ringbuffer to the flushing/inactive lists as appropriate.
1736 */
1737 while (!list_empty(&ring->active_list)) {
05394f39 1738 struct drm_i915_gem_object *obj;
b84d5f0c 1739
0206e353 1740 obj = list_first_entry(&ring->active_list,
05394f39
CW
1741 struct drm_i915_gem_object,
1742 ring_list);
673a394b 1743
05394f39 1744 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1745 break;
b84d5f0c 1746
05394f39 1747 if (obj->base.write_domain != 0)
b84d5f0c
CW
1748 i915_gem_object_move_to_flushing(obj);
1749 else
1750 i915_gem_object_move_to_inactive(obj);
673a394b 1751 }
9d34e5db 1752
db53a302
CW
1753 if (unlikely(ring->trace_irq_seqno &&
1754 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1755 ring->irq_put(ring);
db53a302 1756 ring->trace_irq_seqno = 0;
9d34e5db 1757 }
23bc5982 1758
db53a302 1759 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1760}
1761
b09a1fec
CW
1762void
1763i915_gem_retire_requests(struct drm_device *dev)
1764{
1765 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1766 int i;
b09a1fec 1767
1ec14ad3 1768 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1769 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1770}
1771
75ef9da2 1772static void
673a394b
EA
1773i915_gem_retire_work_handler(struct work_struct *work)
1774{
1775 drm_i915_private_t *dev_priv;
1776 struct drm_device *dev;
0a58705b
CW
1777 bool idle;
1778 int i;
673a394b
EA
1779
1780 dev_priv = container_of(work, drm_i915_private_t,
1781 mm.retire_work.work);
1782 dev = dev_priv->dev;
1783
891b48cf
CW
1784 /* Come back later if the device is busy... */
1785 if (!mutex_trylock(&dev->struct_mutex)) {
1786 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1787 return;
1788 }
1789
b09a1fec 1790 i915_gem_retire_requests(dev);
d1b851fc 1791
0a58705b
CW
1792 /* Send a periodic flush down the ring so we don't hold onto GEM
1793 * objects indefinitely.
1794 */
1795 idle = true;
1796 for (i = 0; i < I915_NUM_RINGS; i++) {
1797 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1798
1799 if (!list_empty(&ring->gpu_write_list)) {
1800 struct drm_i915_gem_request *request;
1801 int ret;
1802
db53a302
CW
1803 ret = i915_gem_flush_ring(ring,
1804 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1805 request = kzalloc(sizeof(*request), GFP_KERNEL);
1806 if (ret || request == NULL ||
db53a302 1807 i915_add_request(ring, NULL, request))
0a58705b
CW
1808 kfree(request);
1809 }
1810
1811 idle &= list_empty(&ring->request_list);
1812 }
1813
1814 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1815 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1816
673a394b
EA
1817 mutex_unlock(&dev->struct_mutex);
1818}
1819
b4aca010
BW
1820static int
1821i915_gem_check_wedge(struct drm_i915_private *dev_priv)
1822{
1823 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1824
1825 if (atomic_read(&dev_priv->mm.wedged)) {
1826 struct completion *x = &dev_priv->error_completion;
1827 bool recovery_complete;
1828 unsigned long flags;
1829
1830 /* Give the error handler a chance to run. */
1831 spin_lock_irqsave(&x->wait.lock, flags);
1832 recovery_complete = x->done > 0;
1833 spin_unlock_irqrestore(&x->wait.lock, flags);
1834
1835 return recovery_complete ? -EIO : -EAGAIN;
1836 }
1837
1838 return 0;
1839}
1840
1841/*
1842 * Compare seqno against outstanding lazy request. Emit a request if they are
1843 * equal.
1844 */
1845static int
1846i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1847{
1848 int ret = 0;
1849
1850 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1851
1852 if (seqno == ring->outstanding_lazy_request) {
1853 struct drm_i915_gem_request *request;
1854
1855 request = kzalloc(sizeof(*request), GFP_KERNEL);
1856 if (request == NULL)
1857 return -ENOMEM;
1858
1859 ret = i915_add_request(ring, NULL, request);
1860 if (ret) {
1861 kfree(request);
1862 return ret;
1863 }
1864
1865 BUG_ON(seqno != request->seqno);
1866 }
1867
1868 return ret;
1869}
1870
604dd3ec
BW
1871static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1872 bool interruptible)
1873{
1874 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1875 int ret = 0;
1876
1877 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1878 return 0;
1879
1880 trace_i915_gem_request_wait_begin(ring, seqno);
1881 if (WARN_ON(!ring->irq_get(ring)))
1882 return -ENODEV;
1883
1884#define EXIT_COND \
1885 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1886 atomic_read(&dev_priv->mm.wedged))
1887
1888 if (interruptible)
1889 ret = wait_event_interruptible(ring->irq_queue,
1890 EXIT_COND);
1891 else
1892 wait_event(ring->irq_queue, EXIT_COND);
1893
1894 ring->irq_put(ring);
1895 trace_i915_gem_request_wait_end(ring, seqno);
1896#undef EXIT_COND
1897
1898 return ret;
1899}
1900
db53a302
CW
1901/**
1902 * Waits for a sequence number to be signaled, and cleans up the
1903 * request and object lists appropriately for that event.
1904 */
5a5a0c64 1905int
db53a302 1906i915_wait_request(struct intel_ring_buffer *ring,
b2da9fe5 1907 uint32_t seqno)
673a394b 1908{
db53a302 1909 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
1910 int ret = 0;
1911
1912 BUG_ON(seqno == 0);
1913
b4aca010
BW
1914 ret = i915_gem_check_wedge(dev_priv);
1915 if (ret)
1916 return ret;
3cce469c 1917
b4aca010
BW
1918 ret = i915_gem_check_olr(ring, seqno);
1919 if (ret)
1920 return ret;
ffed1d09 1921
604dd3ec 1922 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible);
ba1234d1 1923 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1924 ret = -EAGAIN;
673a394b 1925
673a394b
EA
1926 return ret;
1927}
1928
673a394b
EA
1929/**
1930 * Ensures that all rendering to the object has completed and the object is
1931 * safe to unbind from the GTT or access from the CPU.
1932 */
54cf91dc 1933int
ce453d81 1934i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 1935{
673a394b
EA
1936 int ret;
1937
e47c68e9
EA
1938 /* This function only exists to support waiting for existing rendering,
1939 * not for emitting required flushes.
673a394b 1940 */
05394f39 1941 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1942
1943 /* If there is rendering queued on the buffer being evicted, wait for
1944 * it.
1945 */
05394f39 1946 if (obj->active) {
b2da9fe5 1947 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2cf34d7b 1948 if (ret)
673a394b 1949 return ret;
b2da9fe5 1950 i915_gem_retire_requests_ring(obj->ring);
673a394b
EA
1951 }
1952
1953 return 0;
1954}
1955
5816d648
BW
1956/**
1957 * i915_gem_object_sync - sync an object to a ring.
1958 *
1959 * @obj: object which may be in use on another ring.
1960 * @to: ring we wish to use the object on. May be NULL.
1961 *
1962 * This code is meant to abstract object synchronization with the GPU.
1963 * Calling with NULL implies synchronizing the object with the CPU
1964 * rather than a particular GPU ring.
1965 *
1966 * Returns 0 if successful, else propagates up the lower layer error.
1967 */
2911a35b
BW
1968int
1969i915_gem_object_sync(struct drm_i915_gem_object *obj,
1970 struct intel_ring_buffer *to)
1971{
1972 struct intel_ring_buffer *from = obj->ring;
1973 u32 seqno;
1974 int ret, idx;
1975
1976 if (from == NULL || to == from)
1977 return 0;
1978
5816d648 1979 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2911a35b
BW
1980 return i915_gem_object_wait_rendering(obj);
1981
1982 idx = intel_ring_sync_index(from, to);
1983
1984 seqno = obj->last_rendering_seqno;
1985 if (seqno <= from->sync_seqno[idx])
1986 return 0;
1987
b4aca010
BW
1988 ret = i915_gem_check_olr(obj->ring, seqno);
1989 if (ret)
1990 return ret;
2911a35b 1991
1500f7ea 1992 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
1993 if (!ret)
1994 from->sync_seqno[idx] = seqno;
2911a35b 1995
e3a5a225 1996 return ret;
2911a35b
BW
1997}
1998
b5ffc9bc
CW
1999static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2000{
2001 u32 old_write_domain, old_read_domains;
2002
b5ffc9bc
CW
2003 /* Act a barrier for all accesses through the GTT */
2004 mb();
2005
2006 /* Force a pagefault for domain tracking on next user access */
2007 i915_gem_release_mmap(obj);
2008
b97c3d9c
KP
2009 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2010 return;
2011
b5ffc9bc
CW
2012 old_read_domains = obj->base.read_domains;
2013 old_write_domain = obj->base.write_domain;
2014
2015 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2016 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2017
2018 trace_i915_gem_object_change_domain(obj,
2019 old_read_domains,
2020 old_write_domain);
2021}
2022
673a394b
EA
2023/**
2024 * Unbinds an object from the GTT aperture.
2025 */
0f973f27 2026int
05394f39 2027i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2028{
7bddb01f 2029 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2030 int ret = 0;
2031
05394f39 2032 if (obj->gtt_space == NULL)
673a394b
EA
2033 return 0;
2034
05394f39 2035 if (obj->pin_count != 0) {
673a394b
EA
2036 DRM_ERROR("Attempting to unbind pinned buffer\n");
2037 return -EINVAL;
2038 }
2039
a8198eea 2040 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2041 if (ret)
a8198eea
CW
2042 return ret;
2043 /* Continue on if we fail due to EIO, the GPU is hung so we
2044 * should be safe and we need to cleanup or else we might
2045 * cause memory corruption through use-after-free.
2046 */
2047
b5ffc9bc 2048 i915_gem_object_finish_gtt(obj);
5323fd04 2049
673a394b
EA
2050 /* Move the object to the CPU domain to ensure that
2051 * any possible CPU writes while it's not in the GTT
a8198eea 2052 * are flushed when we go to remap it.
673a394b 2053 */
a8198eea
CW
2054 if (ret == 0)
2055 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2056 if (ret == -ERESTARTSYS)
673a394b 2057 return ret;
812ed492 2058 if (ret) {
a8198eea
CW
2059 /* In the event of a disaster, abandon all caches and
2060 * hope for the best.
2061 */
812ed492 2062 i915_gem_clflush_object(obj);
05394f39 2063 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2064 }
673a394b 2065
96b47b65 2066 /* release the fence reg _after_ flushing */
d9e86c0e 2067 ret = i915_gem_object_put_fence(obj);
1488fc08 2068 if (ret)
d9e86c0e 2069 return ret;
96b47b65 2070
db53a302
CW
2071 trace_i915_gem_object_unbind(obj);
2072
74898d7e
DV
2073 if (obj->has_global_gtt_mapping)
2074 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2075 if (obj->has_aliasing_ppgtt_mapping) {
2076 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2077 obj->has_aliasing_ppgtt_mapping = 0;
2078 }
74163907 2079 i915_gem_gtt_finish_object(obj);
7bddb01f 2080
e5281ccd 2081 i915_gem_object_put_pages_gtt(obj);
673a394b 2082
6299f992 2083 list_del_init(&obj->gtt_list);
05394f39 2084 list_del_init(&obj->mm_list);
75e9e915 2085 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2086 obj->map_and_fenceable = true;
673a394b 2087
05394f39
CW
2088 drm_mm_put_block(obj->gtt_space);
2089 obj->gtt_space = NULL;
2090 obj->gtt_offset = 0;
673a394b 2091
05394f39 2092 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2093 i915_gem_object_truncate(obj);
2094
8dc1775d 2095 return ret;
673a394b
EA
2096}
2097
88241785 2098int
db53a302 2099i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2100 uint32_t invalidate_domains,
2101 uint32_t flush_domains)
2102{
88241785
CW
2103 int ret;
2104
36d527de
CW
2105 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2106 return 0;
2107
db53a302
CW
2108 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2109
88241785
CW
2110 ret = ring->flush(ring, invalidate_domains, flush_domains);
2111 if (ret)
2112 return ret;
2113
36d527de
CW
2114 if (flush_domains & I915_GEM_GPU_DOMAINS)
2115 i915_gem_process_flushing_list(ring, flush_domains);
2116
88241785 2117 return 0;
54cf91dc
CW
2118}
2119
b2da9fe5 2120static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2121{
88241785
CW
2122 int ret;
2123
395b70be 2124 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2125 return 0;
2126
88241785 2127 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2128 ret = i915_gem_flush_ring(ring,
0ac74c6b 2129 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2130 if (ret)
2131 return ret;
2132 }
2133
b2da9fe5 2134 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2135}
2136
b2da9fe5 2137int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2138{
2139 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 2140 int ret, i;
4df2faf4 2141
4df2faf4 2142 /* Flush everything onto the inactive list. */
1ec14ad3 2143 for (i = 0; i < I915_NUM_RINGS; i++) {
b2da9fe5 2144 ret = i915_ring_idle(&dev_priv->ring[i]);
1ec14ad3
CW
2145 if (ret)
2146 return ret;
2147 }
4df2faf4 2148
8a1a49f9 2149 return 0;
4df2faf4
DV
2150}
2151
9ce079e4
CW
2152static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2153 struct drm_i915_gem_object *obj)
4e901fdc 2154{
4e901fdc 2155 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2156 uint64_t val;
2157
9ce079e4
CW
2158 if (obj) {
2159 u32 size = obj->gtt_space->size;
4e901fdc 2160
9ce079e4
CW
2161 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2162 0xfffff000) << 32;
2163 val |= obj->gtt_offset & 0xfffff000;
2164 val |= (uint64_t)((obj->stride / 128) - 1) <<
2165 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2166
9ce079e4
CW
2167 if (obj->tiling_mode == I915_TILING_Y)
2168 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2169 val |= I965_FENCE_REG_VALID;
2170 } else
2171 val = 0;
c6642782 2172
9ce079e4
CW
2173 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2174 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2175}
2176
9ce079e4
CW
2177static void i965_write_fence_reg(struct drm_device *dev, int reg,
2178 struct drm_i915_gem_object *obj)
de151cf6 2179{
de151cf6 2180 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2181 uint64_t val;
2182
9ce079e4
CW
2183 if (obj) {
2184 u32 size = obj->gtt_space->size;
de151cf6 2185
9ce079e4
CW
2186 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2187 0xfffff000) << 32;
2188 val |= obj->gtt_offset & 0xfffff000;
2189 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2190 if (obj->tiling_mode == I915_TILING_Y)
2191 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2192 val |= I965_FENCE_REG_VALID;
2193 } else
2194 val = 0;
c6642782 2195
9ce079e4
CW
2196 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2197 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2198}
2199
9ce079e4
CW
2200static void i915_write_fence_reg(struct drm_device *dev, int reg,
2201 struct drm_i915_gem_object *obj)
de151cf6 2202{
de151cf6 2203 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2204 u32 val;
de151cf6 2205
9ce079e4
CW
2206 if (obj) {
2207 u32 size = obj->gtt_space->size;
2208 int pitch_val;
2209 int tile_width;
c6642782 2210
9ce079e4
CW
2211 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2212 (size & -size) != size ||
2213 (obj->gtt_offset & (size - 1)),
2214 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2215 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2216
9ce079e4
CW
2217 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2218 tile_width = 128;
2219 else
2220 tile_width = 512;
2221
2222 /* Note: pitch better be a power of two tile widths */
2223 pitch_val = obj->stride / tile_width;
2224 pitch_val = ffs(pitch_val) - 1;
2225
2226 val = obj->gtt_offset;
2227 if (obj->tiling_mode == I915_TILING_Y)
2228 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2229 val |= I915_FENCE_SIZE_BITS(size);
2230 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2231 val |= I830_FENCE_REG_VALID;
2232 } else
2233 val = 0;
2234
2235 if (reg < 8)
2236 reg = FENCE_REG_830_0 + reg * 4;
2237 else
2238 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2239
2240 I915_WRITE(reg, val);
2241 POSTING_READ(reg);
de151cf6
JB
2242}
2243
9ce079e4
CW
2244static void i830_write_fence_reg(struct drm_device *dev, int reg,
2245 struct drm_i915_gem_object *obj)
de151cf6 2246{
de151cf6 2247 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2248 uint32_t val;
de151cf6 2249
9ce079e4
CW
2250 if (obj) {
2251 u32 size = obj->gtt_space->size;
2252 uint32_t pitch_val;
de151cf6 2253
9ce079e4
CW
2254 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2255 (size & -size) != size ||
2256 (obj->gtt_offset & (size - 1)),
2257 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2258 obj->gtt_offset, size);
e76a16de 2259
9ce079e4
CW
2260 pitch_val = obj->stride / 128;
2261 pitch_val = ffs(pitch_val) - 1;
de151cf6 2262
9ce079e4
CW
2263 val = obj->gtt_offset;
2264 if (obj->tiling_mode == I915_TILING_Y)
2265 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2266 val |= I830_FENCE_SIZE_BITS(size);
2267 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2268 val |= I830_FENCE_REG_VALID;
2269 } else
2270 val = 0;
c6642782 2271
9ce079e4
CW
2272 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2273 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2274}
2275
2276static void i915_gem_write_fence(struct drm_device *dev, int reg,
2277 struct drm_i915_gem_object *obj)
2278{
2279 switch (INTEL_INFO(dev)->gen) {
2280 case 7:
2281 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2282 case 5:
2283 case 4: i965_write_fence_reg(dev, reg, obj); break;
2284 case 3: i915_write_fence_reg(dev, reg, obj); break;
2285 case 2: i830_write_fence_reg(dev, reg, obj); break;
2286 default: break;
2287 }
de151cf6
JB
2288}
2289
61050808
CW
2290static inline int fence_number(struct drm_i915_private *dev_priv,
2291 struct drm_i915_fence_reg *fence)
2292{
2293 return fence - dev_priv->fence_regs;
2294}
2295
2296static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2297 struct drm_i915_fence_reg *fence,
2298 bool enable)
2299{
2300 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2301 int reg = fence_number(dev_priv, fence);
2302
2303 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2304
2305 if (enable) {
2306 obj->fence_reg = reg;
2307 fence->obj = obj;
2308 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2309 } else {
2310 obj->fence_reg = I915_FENCE_REG_NONE;
2311 fence->obj = NULL;
2312 list_del_init(&fence->lru_list);
2313 }
2314}
2315
d9e86c0e 2316static int
a360bb1a 2317i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e
CW
2318{
2319 int ret;
2320
2321 if (obj->fenced_gpu_access) {
88241785 2322 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
1c293ea3 2323 ret = i915_gem_flush_ring(obj->ring,
88241785
CW
2324 0, obj->base.write_domain);
2325 if (ret)
2326 return ret;
2327 }
d9e86c0e
CW
2328
2329 obj->fenced_gpu_access = false;
2330 }
2331
1c293ea3 2332 if (obj->last_fenced_seqno) {
b2da9fe5 2333 ret = i915_wait_request(obj->ring, obj->last_fenced_seqno);
18991845
CW
2334 if (ret)
2335 return ret;
d9e86c0e
CW
2336
2337 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2338 }
2339
63256ec5
CW
2340 /* Ensure that all CPU reads are completed before installing a fence
2341 * and all writes before removing the fence.
2342 */
2343 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2344 mb();
2345
d9e86c0e
CW
2346 return 0;
2347}
2348
2349int
2350i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2351{
61050808 2352 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2353 int ret;
2354
a360bb1a 2355 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2356 if (ret)
2357 return ret;
2358
61050808
CW
2359 if (obj->fence_reg == I915_FENCE_REG_NONE)
2360 return 0;
d9e86c0e 2361
61050808
CW
2362 i915_gem_object_update_fence(obj,
2363 &dev_priv->fence_regs[obj->fence_reg],
2364 false);
2365 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2366
2367 return 0;
2368}
2369
2370static struct drm_i915_fence_reg *
a360bb1a 2371i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2372{
ae3db24a 2373 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2374 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2375 int i;
ae3db24a
DV
2376
2377 /* First try to find a free reg */
d9e86c0e 2378 avail = NULL;
ae3db24a
DV
2379 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2380 reg = &dev_priv->fence_regs[i];
2381 if (!reg->obj)
d9e86c0e 2382 return reg;
ae3db24a 2383
1690e1eb 2384 if (!reg->pin_count)
d9e86c0e 2385 avail = reg;
ae3db24a
DV
2386 }
2387
d9e86c0e
CW
2388 if (avail == NULL)
2389 return NULL;
ae3db24a
DV
2390
2391 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2392 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2393 if (reg->pin_count)
ae3db24a
DV
2394 continue;
2395
8fe301ad 2396 return reg;
ae3db24a
DV
2397 }
2398
8fe301ad 2399 return NULL;
ae3db24a
DV
2400}
2401
de151cf6 2402/**
9a5a53b3 2403 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2404 * @obj: object to map through a fence reg
2405 *
2406 * When mapping objects through the GTT, userspace wants to be able to write
2407 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2408 * This function walks the fence regs looking for a free one for @obj,
2409 * stealing one if it can't find any.
2410 *
2411 * It then sets up the reg based on the object's properties: address, pitch
2412 * and tiling format.
9a5a53b3
CW
2413 *
2414 * For an untiled surface, this removes any existing fence.
de151cf6 2415 */
8c4b8c3f 2416int
06d98131 2417i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2418{
05394f39 2419 struct drm_device *dev = obj->base.dev;
79e53945 2420 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2421 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2422 struct drm_i915_fence_reg *reg;
ae3db24a 2423 int ret;
de151cf6 2424
14415745
CW
2425 /* Have we updated the tiling parameters upon the object and so
2426 * will need to serialise the write to the associated fence register?
2427 */
5d82e3e6 2428 if (obj->fence_dirty) {
14415745
CW
2429 ret = i915_gem_object_flush_fence(obj);
2430 if (ret)
2431 return ret;
2432 }
9a5a53b3 2433
d9e86c0e 2434 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2435 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2436 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2437 if (!obj->fence_dirty) {
14415745
CW
2438 list_move_tail(&reg->lru_list,
2439 &dev_priv->mm.fence_list);
2440 return 0;
2441 }
2442 } else if (enable) {
2443 reg = i915_find_fence_reg(dev);
2444 if (reg == NULL)
2445 return -EDEADLK;
d9e86c0e 2446
14415745
CW
2447 if (reg->obj) {
2448 struct drm_i915_gem_object *old = reg->obj;
2449
2450 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2451 if (ret)
2452 return ret;
2453
14415745 2454 i915_gem_object_fence_lost(old);
29c5a587 2455 }
14415745 2456 } else
a09ba7fa 2457 return 0;
a09ba7fa 2458
14415745 2459 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2460 obj->fence_dirty = false;
14415745 2461
9ce079e4 2462 return 0;
de151cf6
JB
2463}
2464
673a394b
EA
2465/**
2466 * Finds free space in the GTT aperture and binds the object there.
2467 */
2468static int
05394f39 2469i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2470 unsigned alignment,
75e9e915 2471 bool map_and_fenceable)
673a394b 2472{
05394f39 2473 struct drm_device *dev = obj->base.dev;
673a394b 2474 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2475 struct drm_mm_node *free_space;
a00b10c3 2476 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2477 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2478 bool mappable, fenceable;
07f73f69 2479 int ret;
673a394b 2480
05394f39 2481 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2482 DRM_ERROR("Attempting to bind a purgeable object\n");
2483 return -EINVAL;
2484 }
2485
e28f8711
CW
2486 fence_size = i915_gem_get_gtt_size(dev,
2487 obj->base.size,
2488 obj->tiling_mode);
2489 fence_alignment = i915_gem_get_gtt_alignment(dev,
2490 obj->base.size,
2491 obj->tiling_mode);
2492 unfenced_alignment =
2493 i915_gem_get_unfenced_gtt_alignment(dev,
2494 obj->base.size,
2495 obj->tiling_mode);
a00b10c3 2496
673a394b 2497 if (alignment == 0)
5e783301
DV
2498 alignment = map_and_fenceable ? fence_alignment :
2499 unfenced_alignment;
75e9e915 2500 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2501 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2502 return -EINVAL;
2503 }
2504
05394f39 2505 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2506
654fc607
CW
2507 /* If the object is bigger than the entire aperture, reject it early
2508 * before evicting everything in a vain attempt to find space.
2509 */
05394f39 2510 if (obj->base.size >
75e9e915 2511 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2512 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2513 return -E2BIG;
2514 }
2515
673a394b 2516 search_free:
75e9e915 2517 if (map_and_fenceable)
920afa77
DV
2518 free_space =
2519 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2520 size, alignment, 0,
920afa77
DV
2521 dev_priv->mm.gtt_mappable_end,
2522 0);
2523 else
2524 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2525 size, alignment, 0);
920afa77
DV
2526
2527 if (free_space != NULL) {
75e9e915 2528 if (map_and_fenceable)
05394f39 2529 obj->gtt_space =
920afa77 2530 drm_mm_get_block_range_generic(free_space,
a00b10c3 2531 size, alignment, 0,
920afa77
DV
2532 dev_priv->mm.gtt_mappable_end,
2533 0);
2534 else
05394f39 2535 obj->gtt_space =
a00b10c3 2536 drm_mm_get_block(free_space, size, alignment);
920afa77 2537 }
05394f39 2538 if (obj->gtt_space == NULL) {
673a394b
EA
2539 /* If the gtt is empty and we're still having trouble
2540 * fitting our object in, we're out of memory.
2541 */
75e9e915
DV
2542 ret = i915_gem_evict_something(dev, size, alignment,
2543 map_and_fenceable);
9731129c 2544 if (ret)
673a394b 2545 return ret;
9731129c 2546
673a394b
EA
2547 goto search_free;
2548 }
2549
e5281ccd 2550 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2551 if (ret) {
05394f39
CW
2552 drm_mm_put_block(obj->gtt_space);
2553 obj->gtt_space = NULL;
07f73f69
CW
2554
2555 if (ret == -ENOMEM) {
809b6334
CW
2556 /* first try to reclaim some memory by clearing the GTT */
2557 ret = i915_gem_evict_everything(dev, false);
07f73f69 2558 if (ret) {
07f73f69 2559 /* now try to shrink everyone else */
4bdadb97
CW
2560 if (gfpmask) {
2561 gfpmask = 0;
2562 goto search_free;
07f73f69
CW
2563 }
2564
809b6334 2565 return -ENOMEM;
07f73f69
CW
2566 }
2567
2568 goto search_free;
2569 }
2570
673a394b
EA
2571 return ret;
2572 }
2573
74163907 2574 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2575 if (ret) {
e5281ccd 2576 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2577 drm_mm_put_block(obj->gtt_space);
2578 obj->gtt_space = NULL;
07f73f69 2579
809b6334 2580 if (i915_gem_evict_everything(dev, false))
07f73f69 2581 return ret;
07f73f69
CW
2582
2583 goto search_free;
673a394b 2584 }
673a394b 2585
0ebb9829
DV
2586 if (!dev_priv->mm.aliasing_ppgtt)
2587 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2588
6299f992 2589 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2590 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2591
673a394b
EA
2592 /* Assert that the object is not currently in any GPU domain. As it
2593 * wasn't in the GTT, there shouldn't be any way it could have been in
2594 * a GPU cache
2595 */
05394f39
CW
2596 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2597 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2598
6299f992 2599 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2600
75e9e915 2601 fenceable =
05394f39 2602 obj->gtt_space->size == fence_size &&
0206e353 2603 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2604
75e9e915 2605 mappable =
05394f39 2606 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2607
05394f39 2608 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2609
db53a302 2610 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2611 return 0;
2612}
2613
2614void
05394f39 2615i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2616{
673a394b
EA
2617 /* If we don't have a page list set up, then we're not pinned
2618 * to GPU, and we can ignore the cache flush because it'll happen
2619 * again at bind time.
2620 */
05394f39 2621 if (obj->pages == NULL)
673a394b
EA
2622 return;
2623
9c23f7fc
CW
2624 /* If the GPU is snooping the contents of the CPU cache,
2625 * we do not need to manually clear the CPU cache lines. However,
2626 * the caches are only snooped when the render cache is
2627 * flushed/invalidated. As we always have to emit invalidations
2628 * and flushes when moving into and out of the RENDER domain, correct
2629 * snooping behaviour occurs naturally as the result of our domain
2630 * tracking.
2631 */
2632 if (obj->cache_level != I915_CACHE_NONE)
2633 return;
2634
1c5d22f7 2635 trace_i915_gem_object_clflush(obj);
cfa16a0d 2636
05394f39 2637 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2638}
2639
e47c68e9 2640/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2641static int
3619df03 2642i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2643{
05394f39 2644 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2645 return 0;
e47c68e9
EA
2646
2647 /* Queue the GPU write cache flushing we need. */
db53a302 2648 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2649}
2650
2651/** Flushes the GTT write domain for the object if it's dirty. */
2652static void
05394f39 2653i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2654{
1c5d22f7
CW
2655 uint32_t old_write_domain;
2656
05394f39 2657 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2658 return;
2659
63256ec5 2660 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2661 * to it immediately go to main memory as far as we know, so there's
2662 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2663 *
2664 * However, we do have to enforce the order so that all writes through
2665 * the GTT land before any writes to the device, such as updates to
2666 * the GATT itself.
e47c68e9 2667 */
63256ec5
CW
2668 wmb();
2669
05394f39
CW
2670 old_write_domain = obj->base.write_domain;
2671 obj->base.write_domain = 0;
1c5d22f7
CW
2672
2673 trace_i915_gem_object_change_domain(obj,
05394f39 2674 obj->base.read_domains,
1c5d22f7 2675 old_write_domain);
e47c68e9
EA
2676}
2677
2678/** Flushes the CPU write domain for the object if it's dirty. */
2679static void
05394f39 2680i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2681{
1c5d22f7 2682 uint32_t old_write_domain;
e47c68e9 2683
05394f39 2684 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2685 return;
2686
2687 i915_gem_clflush_object(obj);
40ce6575 2688 intel_gtt_chipset_flush();
05394f39
CW
2689 old_write_domain = obj->base.write_domain;
2690 obj->base.write_domain = 0;
1c5d22f7
CW
2691
2692 trace_i915_gem_object_change_domain(obj,
05394f39 2693 obj->base.read_domains,
1c5d22f7 2694 old_write_domain);
e47c68e9
EA
2695}
2696
2ef7eeaa
EA
2697/**
2698 * Moves a single object to the GTT read, and possibly write domain.
2699 *
2700 * This function returns when the move is complete, including waiting on
2701 * flushes to occur.
2702 */
79e53945 2703int
2021746e 2704i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2705{
8325a09d 2706 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 2707 uint32_t old_write_domain, old_read_domains;
e47c68e9 2708 int ret;
2ef7eeaa 2709
02354392 2710 /* Not valid to be called on unbound objects. */
05394f39 2711 if (obj->gtt_space == NULL)
02354392
EA
2712 return -EINVAL;
2713
8d7e3de1
CW
2714 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2715 return 0;
2716
88241785
CW
2717 ret = i915_gem_object_flush_gpu_write_domain(obj);
2718 if (ret)
2719 return ret;
2720
87ca9c8a 2721 if (obj->pending_gpu_write || write) {
ce453d81 2722 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2723 if (ret)
2724 return ret;
2725 }
2dafb1e0 2726
7213342d 2727 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2728
05394f39
CW
2729 old_write_domain = obj->base.write_domain;
2730 old_read_domains = obj->base.read_domains;
1c5d22f7 2731
e47c68e9
EA
2732 /* It should now be out of any other write domains, and we can update
2733 * the domain values for our changes.
2734 */
05394f39
CW
2735 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2736 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2737 if (write) {
05394f39
CW
2738 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2739 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2740 obj->dirty = 1;
2ef7eeaa
EA
2741 }
2742
1c5d22f7
CW
2743 trace_i915_gem_object_change_domain(obj,
2744 old_read_domains,
2745 old_write_domain);
2746
8325a09d
CW
2747 /* And bump the LRU for this access */
2748 if (i915_gem_object_is_inactive(obj))
2749 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2750
e47c68e9
EA
2751 return 0;
2752}
2753
e4ffd173
CW
2754int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2755 enum i915_cache_level cache_level)
2756{
7bddb01f
DV
2757 struct drm_device *dev = obj->base.dev;
2758 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2759 int ret;
2760
2761 if (obj->cache_level == cache_level)
2762 return 0;
2763
2764 if (obj->pin_count) {
2765 DRM_DEBUG("can not change the cache level of pinned objects\n");
2766 return -EBUSY;
2767 }
2768
2769 if (obj->gtt_space) {
2770 ret = i915_gem_object_finish_gpu(obj);
2771 if (ret)
2772 return ret;
2773
2774 i915_gem_object_finish_gtt(obj);
2775
2776 /* Before SandyBridge, you could not use tiling or fence
2777 * registers with snooped memory, so relinquish any fences
2778 * currently pointing to our region in the aperture.
2779 */
2780 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2781 ret = i915_gem_object_put_fence(obj);
2782 if (ret)
2783 return ret;
2784 }
2785
74898d7e
DV
2786 if (obj->has_global_gtt_mapping)
2787 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2788 if (obj->has_aliasing_ppgtt_mapping)
2789 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2790 obj, cache_level);
e4ffd173
CW
2791 }
2792
2793 if (cache_level == I915_CACHE_NONE) {
2794 u32 old_read_domains, old_write_domain;
2795
2796 /* If we're coming from LLC cached, then we haven't
2797 * actually been tracking whether the data is in the
2798 * CPU cache or not, since we only allow one bit set
2799 * in obj->write_domain and have been skipping the clflushes.
2800 * Just set it to the CPU cache for now.
2801 */
2802 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2803 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2804
2805 old_read_domains = obj->base.read_domains;
2806 old_write_domain = obj->base.write_domain;
2807
2808 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2809 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2810
2811 trace_i915_gem_object_change_domain(obj,
2812 old_read_domains,
2813 old_write_domain);
2814 }
2815
2816 obj->cache_level = cache_level;
2817 return 0;
2818}
2819
b9241ea3 2820/*
2da3b9b9
CW
2821 * Prepare buffer for display plane (scanout, cursors, etc).
2822 * Can be called from an uninterruptible phase (modesetting) and allows
2823 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
2824 */
2825int
2da3b9b9
CW
2826i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2827 u32 alignment,
919926ae 2828 struct intel_ring_buffer *pipelined)
b9241ea3 2829{
2da3b9b9 2830 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2831 int ret;
2832
88241785
CW
2833 ret = i915_gem_object_flush_gpu_write_domain(obj);
2834 if (ret)
2835 return ret;
2836
0be73284 2837 if (pipelined != obj->ring) {
2911a35b
BW
2838 ret = i915_gem_object_sync(obj, pipelined);
2839 if (ret)
b9241ea3
ZW
2840 return ret;
2841 }
2842
a7ef0640
EA
2843 /* The display engine is not coherent with the LLC cache on gen6. As
2844 * a result, we make sure that the pinning that is about to occur is
2845 * done with uncached PTEs. This is lowest common denominator for all
2846 * chipsets.
2847 *
2848 * However for gen6+, we could do better by using the GFDT bit instead
2849 * of uncaching, which would allow us to flush all the LLC-cached data
2850 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2851 */
2852 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2853 if (ret)
2854 return ret;
2855
2da3b9b9
CW
2856 /* As the user may map the buffer once pinned in the display plane
2857 * (e.g. libkms for the bootup splash), we have to ensure that we
2858 * always use map_and_fenceable for all scanout buffers.
2859 */
2860 ret = i915_gem_object_pin(obj, alignment, true);
2861 if (ret)
2862 return ret;
2863
b118c1e3
CW
2864 i915_gem_object_flush_cpu_write_domain(obj);
2865
2da3b9b9 2866 old_write_domain = obj->base.write_domain;
05394f39 2867 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
2868
2869 /* It should now be out of any other write domains, and we can update
2870 * the domain values for our changes.
2871 */
2872 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 2873 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2874
2875 trace_i915_gem_object_change_domain(obj,
2876 old_read_domains,
2da3b9b9 2877 old_write_domain);
b9241ea3
ZW
2878
2879 return 0;
2880}
2881
85345517 2882int
a8198eea 2883i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 2884{
88241785
CW
2885 int ret;
2886
a8198eea 2887 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
2888 return 0;
2889
88241785 2890 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2891 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
2892 if (ret)
2893 return ret;
2894 }
85345517 2895
c501ae7f
CW
2896 ret = i915_gem_object_wait_rendering(obj);
2897 if (ret)
2898 return ret;
2899
a8198eea
CW
2900 /* Ensure that we invalidate the GPU's caches and TLBs. */
2901 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 2902 return 0;
85345517
CW
2903}
2904
e47c68e9
EA
2905/**
2906 * Moves a single object to the CPU read, and possibly write domain.
2907 *
2908 * This function returns when the move is complete, including waiting on
2909 * flushes to occur.
2910 */
dabdfe02 2911int
919926ae 2912i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 2913{
1c5d22f7 2914 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2915 int ret;
2916
8d7e3de1
CW
2917 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
2918 return 0;
2919
88241785
CW
2920 ret = i915_gem_object_flush_gpu_write_domain(obj);
2921 if (ret)
2922 return ret;
2923
f8413190
CW
2924 if (write || obj->pending_gpu_write) {
2925 ret = i915_gem_object_wait_rendering(obj);
2926 if (ret)
2927 return ret;
2928 }
2ef7eeaa 2929
e47c68e9 2930 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2931
05394f39
CW
2932 old_write_domain = obj->base.write_domain;
2933 old_read_domains = obj->base.read_domains;
1c5d22f7 2934
e47c68e9 2935 /* Flush the CPU cache if it's still invalid. */
05394f39 2936 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2937 i915_gem_clflush_object(obj);
2ef7eeaa 2938
05394f39 2939 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2940 }
2941
2942 /* It should now be out of any other write domains, and we can update
2943 * the domain values for our changes.
2944 */
05394f39 2945 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
2946
2947 /* If we're writing through the CPU, then the GPU read domains will
2948 * need to be invalidated at next use.
2949 */
2950 if (write) {
05394f39
CW
2951 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2952 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 2953 }
2ef7eeaa 2954
1c5d22f7
CW
2955 trace_i915_gem_object_change_domain(obj,
2956 old_read_domains,
2957 old_write_domain);
2958
2ef7eeaa
EA
2959 return 0;
2960}
2961
673a394b
EA
2962/* Throttle our rendering by waiting until the ring has completed our requests
2963 * emitted over 20 msec ago.
2964 *
b962442e
EA
2965 * Note that if we were to use the current jiffies each time around the loop,
2966 * we wouldn't escape the function with any frames outstanding if the time to
2967 * render a frame was over 20ms.
2968 *
673a394b
EA
2969 * This should get us reasonable parallelism between CPU and GPU but also
2970 * relatively low latency when blocking on a particular request to finish.
2971 */
40a5f0de 2972static int
f787a5f5 2973i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 2974{
f787a5f5
CW
2975 struct drm_i915_private *dev_priv = dev->dev_private;
2976 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 2977 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
2978 struct drm_i915_gem_request *request;
2979 struct intel_ring_buffer *ring = NULL;
2980 u32 seqno = 0;
2981 int ret;
93533c29 2982
e110e8d6
CW
2983 if (atomic_read(&dev_priv->mm.wedged))
2984 return -EIO;
2985
1c25595f 2986 spin_lock(&file_priv->mm.lock);
f787a5f5 2987 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
2988 if (time_after_eq(request->emitted_jiffies, recent_enough))
2989 break;
40a5f0de 2990
f787a5f5
CW
2991 ring = request->ring;
2992 seqno = request->seqno;
b962442e 2993 }
1c25595f 2994 spin_unlock(&file_priv->mm.lock);
40a5f0de 2995
f787a5f5
CW
2996 if (seqno == 0)
2997 return 0;
2bc43b5c 2998
3b88cc0d 2999 ret = __wait_seqno(ring, seqno, true);
f787a5f5
CW
3000 if (ret == 0)
3001 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3002
3003 return ret;
3004}
3005
673a394b 3006int
05394f39
CW
3007i915_gem_object_pin(struct drm_i915_gem_object *obj,
3008 uint32_t alignment,
75e9e915 3009 bool map_and_fenceable)
673a394b 3010{
673a394b
EA
3011 int ret;
3012
05394f39 3013 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
ac0c6b5a 3014
05394f39
CW
3015 if (obj->gtt_space != NULL) {
3016 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3017 (map_and_fenceable && !obj->map_and_fenceable)) {
3018 WARN(obj->pin_count,
ae7d49d8 3019 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3020 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3021 " obj->map_and_fenceable=%d\n",
05394f39 3022 obj->gtt_offset, alignment,
75e9e915 3023 map_and_fenceable,
05394f39 3024 obj->map_and_fenceable);
ac0c6b5a
CW
3025 ret = i915_gem_object_unbind(obj);
3026 if (ret)
3027 return ret;
3028 }
3029 }
3030
05394f39 3031 if (obj->gtt_space == NULL) {
a00b10c3 3032 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3033 map_and_fenceable);
9731129c 3034 if (ret)
673a394b 3035 return ret;
22c344e9 3036 }
76446cac 3037
74898d7e
DV
3038 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3039 i915_gem_gtt_bind_object(obj, obj->cache_level);
3040
1b50247a 3041 obj->pin_count++;
6299f992 3042 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3043
3044 return 0;
3045}
3046
3047void
05394f39 3048i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3049{
05394f39
CW
3050 BUG_ON(obj->pin_count == 0);
3051 BUG_ON(obj->gtt_space == NULL);
673a394b 3052
1b50247a 3053 if (--obj->pin_count == 0)
6299f992 3054 obj->pin_mappable = false;
673a394b
EA
3055}
3056
3057int
3058i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3059 struct drm_file *file)
673a394b
EA
3060{
3061 struct drm_i915_gem_pin *args = data;
05394f39 3062 struct drm_i915_gem_object *obj;
673a394b
EA
3063 int ret;
3064
1d7cfea1
CW
3065 ret = i915_mutex_lock_interruptible(dev);
3066 if (ret)
3067 return ret;
673a394b 3068
05394f39 3069 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3070 if (&obj->base == NULL) {
1d7cfea1
CW
3071 ret = -ENOENT;
3072 goto unlock;
673a394b 3073 }
673a394b 3074
05394f39 3075 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3076 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3077 ret = -EINVAL;
3078 goto out;
3ef94daa
CW
3079 }
3080
05394f39 3081 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3082 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3083 args->handle);
1d7cfea1
CW
3084 ret = -EINVAL;
3085 goto out;
79e53945
JB
3086 }
3087
05394f39
CW
3088 obj->user_pin_count++;
3089 obj->pin_filp = file;
3090 if (obj->user_pin_count == 1) {
75e9e915 3091 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3092 if (ret)
3093 goto out;
673a394b
EA
3094 }
3095
3096 /* XXX - flush the CPU caches for pinned objects
3097 * as the X server doesn't manage domains yet
3098 */
e47c68e9 3099 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3100 args->offset = obj->gtt_offset;
1d7cfea1 3101out:
05394f39 3102 drm_gem_object_unreference(&obj->base);
1d7cfea1 3103unlock:
673a394b 3104 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3105 return ret;
673a394b
EA
3106}
3107
3108int
3109i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3110 struct drm_file *file)
673a394b
EA
3111{
3112 struct drm_i915_gem_pin *args = data;
05394f39 3113 struct drm_i915_gem_object *obj;
76c1dec1 3114 int ret;
673a394b 3115
1d7cfea1
CW
3116 ret = i915_mutex_lock_interruptible(dev);
3117 if (ret)
3118 return ret;
673a394b 3119
05394f39 3120 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3121 if (&obj->base == NULL) {
1d7cfea1
CW
3122 ret = -ENOENT;
3123 goto unlock;
673a394b 3124 }
76c1dec1 3125
05394f39 3126 if (obj->pin_filp != file) {
79e53945
JB
3127 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3128 args->handle);
1d7cfea1
CW
3129 ret = -EINVAL;
3130 goto out;
79e53945 3131 }
05394f39
CW
3132 obj->user_pin_count--;
3133 if (obj->user_pin_count == 0) {
3134 obj->pin_filp = NULL;
79e53945
JB
3135 i915_gem_object_unpin(obj);
3136 }
673a394b 3137
1d7cfea1 3138out:
05394f39 3139 drm_gem_object_unreference(&obj->base);
1d7cfea1 3140unlock:
673a394b 3141 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3142 return ret;
673a394b
EA
3143}
3144
3145int
3146i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3147 struct drm_file *file)
673a394b
EA
3148{
3149 struct drm_i915_gem_busy *args = data;
05394f39 3150 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3151 int ret;
3152
76c1dec1 3153 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3154 if (ret)
76c1dec1 3155 return ret;
673a394b 3156
05394f39 3157 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3158 if (&obj->base == NULL) {
1d7cfea1
CW
3159 ret = -ENOENT;
3160 goto unlock;
673a394b 3161 }
d1b851fc 3162
0be555b6
CW
3163 /* Count all active objects as busy, even if they are currently not used
3164 * by the gpu. Users of this interface expect objects to eventually
3165 * become non-busy without any further actions, therefore emit any
3166 * necessary flushes here.
c4de0a5d 3167 */
05394f39 3168 args->busy = obj->active;
0be555b6
CW
3169 if (args->busy) {
3170 /* Unconditionally flush objects, even when the gpu still uses this
3171 * object. Userspace calling this function indicates that it wants to
3172 * use this buffer rather sooner than later, so issuing the required
3173 * flush earlier is beneficial.
3174 */
1a1c6976 3175 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3176 ret = i915_gem_flush_ring(obj->ring,
88241785 3177 0, obj->base.write_domain);
b4aca010
BW
3178 } else {
3179 ret = i915_gem_check_olr(obj->ring,
3180 obj->last_rendering_seqno);
7a194876 3181 }
0be555b6
CW
3182
3183 /* Update the active list for the hardware's current position.
3184 * Otherwise this only updates on a delayed timer or when irqs
3185 * are actually unmasked, and our working set ends up being
3186 * larger than required.
3187 */
db53a302 3188 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3189
05394f39 3190 args->busy = obj->active;
0be555b6 3191 }
673a394b 3192
05394f39 3193 drm_gem_object_unreference(&obj->base);
1d7cfea1 3194unlock:
673a394b 3195 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3196 return ret;
673a394b
EA
3197}
3198
3199int
3200i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3201 struct drm_file *file_priv)
3202{
0206e353 3203 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3204}
3205
3ef94daa
CW
3206int
3207i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3208 struct drm_file *file_priv)
3209{
3210 struct drm_i915_gem_madvise *args = data;
05394f39 3211 struct drm_i915_gem_object *obj;
76c1dec1 3212 int ret;
3ef94daa
CW
3213
3214 switch (args->madv) {
3215 case I915_MADV_DONTNEED:
3216 case I915_MADV_WILLNEED:
3217 break;
3218 default:
3219 return -EINVAL;
3220 }
3221
1d7cfea1
CW
3222 ret = i915_mutex_lock_interruptible(dev);
3223 if (ret)
3224 return ret;
3225
05394f39 3226 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3227 if (&obj->base == NULL) {
1d7cfea1
CW
3228 ret = -ENOENT;
3229 goto unlock;
3ef94daa 3230 }
3ef94daa 3231
05394f39 3232 if (obj->pin_count) {
1d7cfea1
CW
3233 ret = -EINVAL;
3234 goto out;
3ef94daa
CW
3235 }
3236
05394f39
CW
3237 if (obj->madv != __I915_MADV_PURGED)
3238 obj->madv = args->madv;
3ef94daa 3239
2d7ef395 3240 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3241 if (i915_gem_object_is_purgeable(obj) &&
3242 obj->gtt_space == NULL)
2d7ef395
CW
3243 i915_gem_object_truncate(obj);
3244
05394f39 3245 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3246
1d7cfea1 3247out:
05394f39 3248 drm_gem_object_unreference(&obj->base);
1d7cfea1 3249unlock:
3ef94daa 3250 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3251 return ret;
3ef94daa
CW
3252}
3253
05394f39
CW
3254struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3255 size_t size)
ac52bc56 3256{
73aa808f 3257 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3258 struct drm_i915_gem_object *obj;
5949eac4 3259 struct address_space *mapping;
ac52bc56 3260
c397b908
DV
3261 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3262 if (obj == NULL)
3263 return NULL;
673a394b 3264
c397b908
DV
3265 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3266 kfree(obj);
3267 return NULL;
3268 }
673a394b 3269
5949eac4
HD
3270 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3271 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3272
73aa808f
CW
3273 i915_gem_info_add_obj(dev_priv, size);
3274
c397b908
DV
3275 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3276 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3277
3d29b842
ED
3278 if (HAS_LLC(dev)) {
3279 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3280 * cache) for about a 10% performance improvement
3281 * compared to uncached. Graphics requests other than
3282 * display scanout are coherent with the CPU in
3283 * accessing this cache. This means in this mode we
3284 * don't need to clflush on the CPU side, and on the
3285 * GPU side we only need to flush internal caches to
3286 * get data visible to the CPU.
3287 *
3288 * However, we maintain the display planes as UC, and so
3289 * need to rebind when first used as such.
3290 */
3291 obj->cache_level = I915_CACHE_LLC;
3292 } else
3293 obj->cache_level = I915_CACHE_NONE;
3294
62b8b215 3295 obj->base.driver_private = NULL;
c397b908 3296 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3297 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3298 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3299 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3300 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3301 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3302 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3303 /* Avoid an unnecessary call to unbind on the first bind. */
3304 obj->map_and_fenceable = true;
de151cf6 3305
05394f39 3306 return obj;
c397b908
DV
3307}
3308
3309int i915_gem_init_object(struct drm_gem_object *obj)
3310{
3311 BUG();
de151cf6 3312
673a394b
EA
3313 return 0;
3314}
3315
1488fc08 3316void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3317{
1488fc08 3318 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3319 struct drm_device *dev = obj->base.dev;
be72615b 3320 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3321
26e12f89
CW
3322 trace_i915_gem_object_destroy(obj);
3323
1488fc08
CW
3324 if (obj->phys_obj)
3325 i915_gem_detach_phys_object(dev, obj);
3326
3327 obj->pin_count = 0;
3328 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3329 bool was_interruptible;
3330
3331 was_interruptible = dev_priv->mm.interruptible;
3332 dev_priv->mm.interruptible = false;
3333
3334 WARN_ON(i915_gem_object_unbind(obj));
3335
3336 dev_priv->mm.interruptible = was_interruptible;
3337 }
3338
05394f39 3339 if (obj->base.map_list.map)
b464e9a2 3340 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3341
05394f39
CW
3342 drm_gem_object_release(&obj->base);
3343 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3344
05394f39
CW
3345 kfree(obj->bit_17);
3346 kfree(obj);
673a394b
EA
3347}
3348
29105ccc
CW
3349int
3350i915_gem_idle(struct drm_device *dev)
3351{
3352 drm_i915_private_t *dev_priv = dev->dev_private;
3353 int ret;
28dfe52a 3354
29105ccc 3355 mutex_lock(&dev->struct_mutex);
1c5d22f7 3356
87acb0a5 3357 if (dev_priv->mm.suspended) {
29105ccc
CW
3358 mutex_unlock(&dev->struct_mutex);
3359 return 0;
28dfe52a
EA
3360 }
3361
b2da9fe5 3362 ret = i915_gpu_idle(dev);
6dbe2772
KP
3363 if (ret) {
3364 mutex_unlock(&dev->struct_mutex);
673a394b 3365 return ret;
6dbe2772 3366 }
b2da9fe5 3367 i915_gem_retire_requests(dev);
673a394b 3368
29105ccc 3369 /* Under UMS, be paranoid and evict. */
a39d7efc
CW
3370 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3371 i915_gem_evict_everything(dev, false);
29105ccc 3372
312817a3
CW
3373 i915_gem_reset_fences(dev);
3374
29105ccc
CW
3375 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3376 * We need to replace this with a semaphore, or something.
3377 * And not confound mm.suspended!
3378 */
3379 dev_priv->mm.suspended = 1;
bc0c7f14 3380 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3381
3382 i915_kernel_lost_context(dev);
6dbe2772 3383 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3384
6dbe2772
KP
3385 mutex_unlock(&dev->struct_mutex);
3386
29105ccc
CW
3387 /* Cancel the retire work handler, which should be idle now. */
3388 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3389
673a394b
EA
3390 return 0;
3391}
3392
f691e2f4
DV
3393void i915_gem_init_swizzling(struct drm_device *dev)
3394{
3395 drm_i915_private_t *dev_priv = dev->dev_private;
3396
11782b02 3397 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3398 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3399 return;
3400
3401 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3402 DISP_TILE_SURFACE_SWIZZLING);
3403
11782b02
DV
3404 if (IS_GEN5(dev))
3405 return;
3406
f691e2f4
DV
3407 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3408 if (IS_GEN6(dev))
6b26c86d 3409 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3410 else
6b26c86d 3411 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3412}
e21af88d
DV
3413
3414void i915_gem_init_ppgtt(struct drm_device *dev)
3415{
3416 drm_i915_private_t *dev_priv = dev->dev_private;
3417 uint32_t pd_offset;
3418 struct intel_ring_buffer *ring;
55a254ac
DV
3419 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3420 uint32_t __iomem *pd_addr;
3421 uint32_t pd_entry;
e21af88d
DV
3422 int i;
3423
3424 if (!dev_priv->mm.aliasing_ppgtt)
3425 return;
3426
55a254ac
DV
3427
3428 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3429 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3430 dma_addr_t pt_addr;
3431
3432 if (dev_priv->mm.gtt->needs_dmar)
3433 pt_addr = ppgtt->pt_dma_addr[i];
3434 else
3435 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3436
3437 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3438 pd_entry |= GEN6_PDE_VALID;
3439
3440 writel(pd_entry, pd_addr + i);
3441 }
3442 readl(pd_addr);
3443
3444 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3445 pd_offset /= 64; /* in cachelines, */
3446 pd_offset <<= 16;
3447
3448 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3449 uint32_t ecochk, gab_ctl, ecobits;
3450
3451 ecobits = I915_READ(GAC_ECO_BITS);
3452 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3453
3454 gab_ctl = I915_READ(GAB_CTL);
3455 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3456
3457 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3458 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3459 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3460 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3461 } else if (INTEL_INFO(dev)->gen >= 7) {
3462 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3463 /* GFX_MODE is per-ring on gen7+ */
3464 }
3465
3466 for (i = 0; i < I915_NUM_RINGS; i++) {
3467 ring = &dev_priv->ring[i];
3468
3469 if (INTEL_INFO(dev)->gen >= 7)
3470 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3471 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3472
3473 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3474 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3475 }
3476}
3477
8187a2b7 3478int
f691e2f4 3479i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3480{
3481 drm_i915_private_t *dev_priv = dev->dev_private;
3482 int ret;
68f95ba9 3483
f691e2f4
DV
3484 i915_gem_init_swizzling(dev);
3485
5c1143bb 3486 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3487 if (ret)
b6913e4b 3488 return ret;
68f95ba9
CW
3489
3490 if (HAS_BSD(dev)) {
5c1143bb 3491 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3492 if (ret)
3493 goto cleanup_render_ring;
d1b851fc 3494 }
68f95ba9 3495
549f7365
CW
3496 if (HAS_BLT(dev)) {
3497 ret = intel_init_blt_ring_buffer(dev);
3498 if (ret)
3499 goto cleanup_bsd_ring;
3500 }
3501
6f392d54
CW
3502 dev_priv->next_seqno = 1;
3503
e21af88d
DV
3504 i915_gem_init_ppgtt(dev);
3505
68f95ba9
CW
3506 return 0;
3507
549f7365 3508cleanup_bsd_ring:
1ec14ad3 3509 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3510cleanup_render_ring:
1ec14ad3 3511 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3512 return ret;
3513}
3514
1070a42b
CW
3515static bool
3516intel_enable_ppgtt(struct drm_device *dev)
3517{
3518 if (i915_enable_ppgtt >= 0)
3519 return i915_enable_ppgtt;
3520
3521#ifdef CONFIG_INTEL_IOMMU
3522 /* Disable ppgtt on SNB if VT-d is on. */
3523 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3524 return false;
3525#endif
3526
3527 return true;
3528}
3529
3530int i915_gem_init(struct drm_device *dev)
3531{
3532 struct drm_i915_private *dev_priv = dev->dev_private;
3533 unsigned long gtt_size, mappable_size;
3534 int ret;
3535
3536 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3537 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3538
3539 mutex_lock(&dev->struct_mutex);
3540 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3541 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3542 * aperture accordingly when using aliasing ppgtt. */
3543 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3544
3545 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3546
3547 ret = i915_gem_init_aliasing_ppgtt(dev);
3548 if (ret) {
3549 mutex_unlock(&dev->struct_mutex);
3550 return ret;
3551 }
3552 } else {
3553 /* Let GEM Manage all of the aperture.
3554 *
3555 * However, leave one page at the end still bound to the scratch
3556 * page. There are a number of places where the hardware
3557 * apparently prefetches past the end of the object, and we've
3558 * seen multiple hangs with the GPU head pointer stuck in a
3559 * batchbuffer bound at the last page of the aperture. One page
3560 * should be enough to keep any prefetching inside of the
3561 * aperture.
3562 */
3563 i915_gem_init_global_gtt(dev, 0, mappable_size,
3564 gtt_size);
3565 }
3566
3567 ret = i915_gem_init_hw(dev);
3568 mutex_unlock(&dev->struct_mutex);
3569 if (ret) {
3570 i915_gem_cleanup_aliasing_ppgtt(dev);
3571 return ret;
3572 }
3573
53ca26ca
DV
3574 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3575 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3576 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
3577 return 0;
3578}
3579
8187a2b7
ZN
3580void
3581i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3582{
3583 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3584 int i;
8187a2b7 3585
1ec14ad3
CW
3586 for (i = 0; i < I915_NUM_RINGS; i++)
3587 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3588}
3589
673a394b
EA
3590int
3591i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3592 struct drm_file *file_priv)
3593{
3594 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3595 int ret, i;
673a394b 3596
79e53945
JB
3597 if (drm_core_check_feature(dev, DRIVER_MODESET))
3598 return 0;
3599
ba1234d1 3600 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3601 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3602 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3603 }
3604
673a394b 3605 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3606 dev_priv->mm.suspended = 0;
3607
f691e2f4 3608 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3609 if (ret != 0) {
3610 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3611 return ret;
d816f6ac 3612 }
9bb2d6f9 3613
69dc4987 3614 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3615 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3616 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3617 for (i = 0; i < I915_NUM_RINGS; i++) {
3618 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3619 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3620 }
673a394b 3621 mutex_unlock(&dev->struct_mutex);
dbb19d30 3622
5f35308b
CW
3623 ret = drm_irq_install(dev);
3624 if (ret)
3625 goto cleanup_ringbuffer;
dbb19d30 3626
673a394b 3627 return 0;
5f35308b
CW
3628
3629cleanup_ringbuffer:
3630 mutex_lock(&dev->struct_mutex);
3631 i915_gem_cleanup_ringbuffer(dev);
3632 dev_priv->mm.suspended = 1;
3633 mutex_unlock(&dev->struct_mutex);
3634
3635 return ret;
673a394b
EA
3636}
3637
3638int
3639i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3640 struct drm_file *file_priv)
3641{
79e53945
JB
3642 if (drm_core_check_feature(dev, DRIVER_MODESET))
3643 return 0;
3644
dbb19d30 3645 drm_irq_uninstall(dev);
e6890f6f 3646 return i915_gem_idle(dev);
673a394b
EA
3647}
3648
3649void
3650i915_gem_lastclose(struct drm_device *dev)
3651{
3652 int ret;
673a394b 3653
e806b495
EA
3654 if (drm_core_check_feature(dev, DRIVER_MODESET))
3655 return;
3656
6dbe2772
KP
3657 ret = i915_gem_idle(dev);
3658 if (ret)
3659 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3660}
3661
64193406
CW
3662static void
3663init_ring_lists(struct intel_ring_buffer *ring)
3664{
3665 INIT_LIST_HEAD(&ring->active_list);
3666 INIT_LIST_HEAD(&ring->request_list);
3667 INIT_LIST_HEAD(&ring->gpu_write_list);
3668}
3669
673a394b
EA
3670void
3671i915_gem_load(struct drm_device *dev)
3672{
b5aa8a0f 3673 int i;
673a394b
EA
3674 drm_i915_private_t *dev_priv = dev->dev_private;
3675
69dc4987 3676 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3677 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3678 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 3679 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
93a37f20 3680 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3681 for (i = 0; i < I915_NUM_RINGS; i++)
3682 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3683 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3684 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3685 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3686 i915_gem_retire_work_handler);
30dbf0c0 3687 init_completion(&dev_priv->error_completion);
31169714 3688
94400120
DA
3689 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3690 if (IS_GEN3(dev)) {
50743298
DV
3691 I915_WRITE(MI_ARB_STATE,
3692 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
3693 }
3694
72bfa19c
CW
3695 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3696
de151cf6 3697 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3698 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3699 dev_priv->fence_reg_start = 3;
de151cf6 3700
a6c45cf0 3701 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3702 dev_priv->num_fence_regs = 16;
3703 else
3704 dev_priv->num_fence_regs = 8;
3705
b5aa8a0f 3706 /* Initialize fence registers to zero */
ada726c7 3707 i915_gem_reset_fences(dev);
10ed13e4 3708
673a394b 3709 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3710 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3711
ce453d81
CW
3712 dev_priv->mm.interruptible = true;
3713
17250b71
CW
3714 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3715 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3716 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3717}
71acb5eb
DA
3718
3719/*
3720 * Create a physically contiguous memory object for this object
3721 * e.g. for cursor + overlay regs
3722 */
995b6762
CW
3723static int i915_gem_init_phys_object(struct drm_device *dev,
3724 int id, int size, int align)
71acb5eb
DA
3725{
3726 drm_i915_private_t *dev_priv = dev->dev_private;
3727 struct drm_i915_gem_phys_object *phys_obj;
3728 int ret;
3729
3730 if (dev_priv->mm.phys_objs[id - 1] || !size)
3731 return 0;
3732
9a298b2a 3733 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3734 if (!phys_obj)
3735 return -ENOMEM;
3736
3737 phys_obj->id = id;
3738
6eeefaf3 3739 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3740 if (!phys_obj->handle) {
3741 ret = -ENOMEM;
3742 goto kfree_obj;
3743 }
3744#ifdef CONFIG_X86
3745 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3746#endif
3747
3748 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3749
3750 return 0;
3751kfree_obj:
9a298b2a 3752 kfree(phys_obj);
71acb5eb
DA
3753 return ret;
3754}
3755
995b6762 3756static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3757{
3758 drm_i915_private_t *dev_priv = dev->dev_private;
3759 struct drm_i915_gem_phys_object *phys_obj;
3760
3761 if (!dev_priv->mm.phys_objs[id - 1])
3762 return;
3763
3764 phys_obj = dev_priv->mm.phys_objs[id - 1];
3765 if (phys_obj->cur_obj) {
3766 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3767 }
3768
3769#ifdef CONFIG_X86
3770 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3771#endif
3772 drm_pci_free(dev, phys_obj->handle);
3773 kfree(phys_obj);
3774 dev_priv->mm.phys_objs[id - 1] = NULL;
3775}
3776
3777void i915_gem_free_all_phys_object(struct drm_device *dev)
3778{
3779 int i;
3780
260883c8 3781 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3782 i915_gem_free_phys_object(dev, i);
3783}
3784
3785void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3786 struct drm_i915_gem_object *obj)
71acb5eb 3787{
05394f39 3788 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3789 char *vaddr;
71acb5eb 3790 int i;
71acb5eb
DA
3791 int page_count;
3792
05394f39 3793 if (!obj->phys_obj)
71acb5eb 3794 return;
05394f39 3795 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3796
05394f39 3797 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3798 for (i = 0; i < page_count; i++) {
5949eac4 3799 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3800 if (!IS_ERR(page)) {
3801 char *dst = kmap_atomic(page);
3802 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3803 kunmap_atomic(dst);
3804
3805 drm_clflush_pages(&page, 1);
3806
3807 set_page_dirty(page);
3808 mark_page_accessed(page);
3809 page_cache_release(page);
3810 }
71acb5eb 3811 }
40ce6575 3812 intel_gtt_chipset_flush();
d78b47b9 3813
05394f39
CW
3814 obj->phys_obj->cur_obj = NULL;
3815 obj->phys_obj = NULL;
71acb5eb
DA
3816}
3817
3818int
3819i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3820 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3821 int id,
3822 int align)
71acb5eb 3823{
05394f39 3824 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3825 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3826 int ret = 0;
3827 int page_count;
3828 int i;
3829
3830 if (id > I915_MAX_PHYS_OBJECT)
3831 return -EINVAL;
3832
05394f39
CW
3833 if (obj->phys_obj) {
3834 if (obj->phys_obj->id == id)
71acb5eb
DA
3835 return 0;
3836 i915_gem_detach_phys_object(dev, obj);
3837 }
3838
71acb5eb
DA
3839 /* create a new object */
3840 if (!dev_priv->mm.phys_objs[id - 1]) {
3841 ret = i915_gem_init_phys_object(dev, id,
05394f39 3842 obj->base.size, align);
71acb5eb 3843 if (ret) {
05394f39
CW
3844 DRM_ERROR("failed to init phys object %d size: %zu\n",
3845 id, obj->base.size);
e5281ccd 3846 return ret;
71acb5eb
DA
3847 }
3848 }
3849
3850 /* bind to the object */
05394f39
CW
3851 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3852 obj->phys_obj->cur_obj = obj;
71acb5eb 3853
05394f39 3854 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
3855
3856 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3857 struct page *page;
3858 char *dst, *src;
3859
5949eac4 3860 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3861 if (IS_ERR(page))
3862 return PTR_ERR(page);
71acb5eb 3863
ff75b9bc 3864 src = kmap_atomic(page);
05394f39 3865 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 3866 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 3867 kunmap_atomic(src);
71acb5eb 3868
e5281ccd
CW
3869 mark_page_accessed(page);
3870 page_cache_release(page);
3871 }
d78b47b9 3872
71acb5eb 3873 return 0;
71acb5eb
DA
3874}
3875
3876static int
05394f39
CW
3877i915_gem_phys_pwrite(struct drm_device *dev,
3878 struct drm_i915_gem_object *obj,
71acb5eb
DA
3879 struct drm_i915_gem_pwrite *args,
3880 struct drm_file *file_priv)
3881{
05394f39 3882 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 3883 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 3884
b47b30cc
CW
3885 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3886 unsigned long unwritten;
3887
3888 /* The physical object once assigned is fixed for the lifetime
3889 * of the obj, so we can safely drop the lock and continue
3890 * to access vaddr.
3891 */
3892 mutex_unlock(&dev->struct_mutex);
3893 unwritten = copy_from_user(vaddr, user_data, args->size);
3894 mutex_lock(&dev->struct_mutex);
3895 if (unwritten)
3896 return -EFAULT;
3897 }
71acb5eb 3898
40ce6575 3899 intel_gtt_chipset_flush();
71acb5eb
DA
3900 return 0;
3901}
b962442e 3902
f787a5f5 3903void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 3904{
f787a5f5 3905 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
3906
3907 /* Clean up our request list when the client is going away, so that
3908 * later retire_requests won't dereference our soon-to-be-gone
3909 * file_priv.
3910 */
1c25595f 3911 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
3912 while (!list_empty(&file_priv->mm.request_list)) {
3913 struct drm_i915_gem_request *request;
3914
3915 request = list_first_entry(&file_priv->mm.request_list,
3916 struct drm_i915_gem_request,
3917 client_list);
3918 list_del(&request->client_list);
3919 request->file_priv = NULL;
3920 }
1c25595f 3921 spin_unlock(&file_priv->mm.lock);
b962442e 3922}
31169714 3923
1637ef41
CW
3924static int
3925i915_gpu_is_active(struct drm_device *dev)
3926{
3927 drm_i915_private_t *dev_priv = dev->dev_private;
3928 int lists_empty;
3929
1637ef41 3930 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 3931 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
3932
3933 return !lists_empty;
3934}
3935
31169714 3936static int
1495f230 3937i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 3938{
17250b71
CW
3939 struct drm_i915_private *dev_priv =
3940 container_of(shrinker,
3941 struct drm_i915_private,
3942 mm.inactive_shrinker);
3943 struct drm_device *dev = dev_priv->dev;
3944 struct drm_i915_gem_object *obj, *next;
1495f230 3945 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
3946 int cnt;
3947
3948 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 3949 return 0;
31169714
CW
3950
3951 /* "fast-path" to count number of available objects */
3952 if (nr_to_scan == 0) {
17250b71
CW
3953 cnt = 0;
3954 list_for_each_entry(obj,
3955 &dev_priv->mm.inactive_list,
3956 mm_list)
3957 cnt++;
3958 mutex_unlock(&dev->struct_mutex);
3959 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
3960 }
3961
1637ef41 3962rescan:
31169714 3963 /* first scan for clean buffers */
17250b71 3964 i915_gem_retire_requests(dev);
31169714 3965
17250b71
CW
3966 list_for_each_entry_safe(obj, next,
3967 &dev_priv->mm.inactive_list,
3968 mm_list) {
3969 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
3970 if (i915_gem_object_unbind(obj) == 0 &&
3971 --nr_to_scan == 0)
17250b71 3972 break;
31169714 3973 }
31169714
CW
3974 }
3975
3976 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
3977 cnt = 0;
3978 list_for_each_entry_safe(obj, next,
3979 &dev_priv->mm.inactive_list,
3980 mm_list) {
2021746e
CW
3981 if (nr_to_scan &&
3982 i915_gem_object_unbind(obj) == 0)
17250b71 3983 nr_to_scan--;
2021746e 3984 else
17250b71
CW
3985 cnt++;
3986 }
3987
3988 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
3989 /*
3990 * We are desperate for pages, so as a last resort, wait
3991 * for the GPU to finish and discard whatever we can.
3992 * This has a dramatic impact to reduce the number of
3993 * OOM-killer events whilst running the GPU aggressively.
3994 */
b2da9fe5 3995 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
3996 goto rescan;
3997 }
17250b71
CW
3998 mutex_unlock(&dev->struct_mutex);
3999 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4000}