]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Check 5/6 DDB split only when sprites are enabled
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46static __must_check int
07fe0b12
BW
47i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39 55 struct drm_file *file);
673a394b 56
61050808
CW
57static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
7dc19d5a
DC
63static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
d9973b43
CW
67static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 69static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 70
c76ce038
CW
71static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73{
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75}
76
2c22569b
CW
77static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78{
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83}
84
61050808
CW
85static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86{
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
5d82e3e6 93 obj->fence_dirty = false;
61050808
CW
94 obj->fence_reg = I915_FENCE_REG_NONE;
95}
96
73aa808f
CW
97/* some bookkeeping */
98static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100{
c20e8355 101 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
c20e8355 104 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105}
106
107static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109{
c20e8355 110 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
c20e8355 113 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
114}
115
21dd3734 116static int
33196ded 117i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 118{
30dbf0c0
CW
119 int ret;
120
7abb690a
DV
121#define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
1f83fee0 123 if (EXIT_COND)
30dbf0c0
CW
124 return 0;
125
0a6759c6
DV
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
1f83fee0
DV
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
0a6759c6
DV
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
30dbf0c0 138 return ret;
0a6759c6 139 }
1f83fee0 140#undef EXIT_COND
30dbf0c0 141
21dd3734 142 return 0;
30dbf0c0
CW
143}
144
54cf91dc 145int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 146{
33196ded 147 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
148 int ret;
149
33196ded 150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
23bc5982 158 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
159 return 0;
160}
30dbf0c0 161
7d1c4804 162static inline bool
05394f39 163i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 164{
9843877d 165 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
166}
167
79e53945
JB
168int
169i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 170 struct drm_file *file)
79e53945 171{
93d18799 172 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 173 struct drm_i915_gem_init *args = data;
2021746e 174
7bb6fb8d
DV
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
2021746e
CW
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
79e53945 181
f534bc0b
DV
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
79e53945 186 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
93d18799 189 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
190 mutex_unlock(&dev->struct_mutex);
191
2021746e 192 return 0;
673a394b
EA
193}
194
5a125c3c
EA
195int
196i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 197 struct drm_file *file)
5a125c3c 198{
73aa808f 199 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 200 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
5a125c3c 203
6299f992 204 pinned = 0;
73aa808f 205 mutex_lock(&dev->struct_mutex);
35c20a60 206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1b50247a 207 if (obj->pin_count)
f343c5f6 208 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 209 mutex_unlock(&dev->struct_mutex);
5a125c3c 210
853ba5d2 211 args->aper_size = dev_priv->gtt.base.total;
0206e353 212 args->aper_available_size = args->aper_size - pinned;
6299f992 213
5a125c3c
EA
214 return 0;
215}
216
42dcedd4
CW
217void *i915_gem_object_alloc(struct drm_device *dev)
218{
219 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
221}
222
223void i915_gem_object_free(struct drm_i915_gem_object *obj)
224{
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227}
228
ff72145b
DA
229static int
230i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
673a394b 234{
05394f39 235 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
236 int ret;
237 u32 handle;
673a394b 238
ff72145b 239 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
240 if (size == 0)
241 return -EINVAL;
673a394b
EA
242
243 /* Allocate the new object */
ff72145b 244 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
245 if (obj == NULL)
246 return -ENOMEM;
247
05394f39 248 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 249 /* drop reference from allocate - handle holds it now */
d861e338
DV
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
202f2fef 253
ff72145b 254 *handle_p = handle;
673a394b
EA
255 return 0;
256}
257
ff72145b
DA
258int
259i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262{
263 /* have to work out size/pitch and return them */
ed0291fd 264 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268}
269
ff72145b
DA
270/**
271 * Creates a new mm object and returns a handle to it.
272 */
273int
274i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276{
277 struct drm_i915_gem_create *args = data;
63ed2cb2 278
ff72145b
DA
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281}
282
8461d226
DV
283static inline int
284__copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287{
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307}
308
8c59967c 309static inline int
4f0c7cfb
BW
310__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
8c59967c
DV
312 int length)
313{
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333}
334
d174bd64
DV
335/* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
eb01459f 338static int
d174bd64
DV
339shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342{
343 char *vaddr;
344 int ret;
345
e7e58eb5 346 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
f60d7f0c 358 return ret ? -EFAULT : 0;
d174bd64
DV
359}
360
23c18c71
DV
361static void
362shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364{
e7e58eb5 365 if (unlikely(swizzled)) {
23c18c71
DV
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381}
382
d174bd64
DV
383/* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385static int
386shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389{
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
23c18c71
DV
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
d174bd64
DV
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
f60d7f0c 409 return ret ? - EFAULT : 0;
d174bd64
DV
410}
411
eb01459f 412static int
dbf7bff0
DV
413i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
eb01459f 417{
8461d226 418 char __user *user_data;
eb01459f 419 ssize_t remain;
8461d226 420 loff_t offset;
eb2c0c81 421 int shmem_page_offset, page_length, ret = 0;
8461d226 422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 423 int prefaulted = 0;
8489731c 424 int needs_clflush = 0;
67d5a50c 425 struct sg_page_iter sg_iter;
eb01459f 426
2bb4629a 427 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
428 remain = args->size;
429
8461d226 430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 431
8489731c
DV
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
c76ce038 437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
23f54483
BW
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
8489731c 441 }
eb01459f 442
f60d7f0c
CW
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
8461d226 449 offset = args->offset;
eb01459f 450
67d5a50c
ID
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
2db76d7c 453 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
454
455 if (remain <= 0)
456 break;
457
eb01459f
EA
458 /* Operation in this page
459 *
eb01459f 460 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
461 * page_length = bytes to copy for this page
462 */
c8cbbb8b 463 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 467
8461d226
DV
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
d174bd64
DV
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
dbf7bff0 476
dbf7bff0
DV
477 mutex_unlock(&dev->struct_mutex);
478
0b74b508 479 if (likely(!i915_prefault_disable) && !prefaulted) {
f56f821f 480 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
eb01459f 488
d174bd64
DV
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
eb01459f 492
dbf7bff0 493 mutex_lock(&dev->struct_mutex);
f60d7f0c 494
dbf7bff0 495next_page:
e5281ccd 496 mark_page_accessed(page);
e5281ccd 497
f60d7f0c 498 if (ret)
8461d226 499 goto out;
8461d226 500
eb01459f 501 remain -= page_length;
8461d226 502 user_data += page_length;
eb01459f
EA
503 offset += page_length;
504 }
505
4f27b75d 506out:
f60d7f0c
CW
507 i915_gem_object_unpin_pages(obj);
508
eb01459f
EA
509 return ret;
510}
511
673a394b
EA
512/**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517int
518i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 519 struct drm_file *file)
673a394b
EA
520{
521 struct drm_i915_gem_pread *args = data;
05394f39 522 struct drm_i915_gem_object *obj;
35b62a89 523 int ret = 0;
673a394b 524
51311d0a
CW
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
2bb4629a 529 to_user_ptr(args->data_ptr),
51311d0a
CW
530 args->size))
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
1286ff73
DV
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
db53a302
CW
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
dbf7bff0 560 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 561
35b62a89 562out:
05394f39 563 drm_gem_object_unreference(&obj->base);
1d7cfea1 564unlock:
4f27b75d 565 mutex_unlock(&dev->struct_mutex);
eb01459f 566 return ret;
673a394b
EA
567}
568
0839ccb8
KP
569/* This is the fast write path which cannot handle
570 * page faults in the source data
9b7530cc 571 */
0839ccb8
KP
572
573static inline int
574fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
9b7530cc 578{
4f0c7cfb
BW
579 void __iomem *vaddr_atomic;
580 void *vaddr;
0839ccb8 581 unsigned long unwritten;
9b7530cc 582
3e4d3af5 583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 587 user_data, length);
3e4d3af5 588 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 589 return unwritten;
0839ccb8
KP
590}
591
3de09aa3
EA
592/**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
673a394b 596static int
05394f39
CW
597i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
3de09aa3 599 struct drm_i915_gem_pwrite *args,
05394f39 600 struct drm_file *file)
673a394b 601{
0839ccb8 602 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 603 ssize_t remain;
0839ccb8 604 loff_t offset, page_base;
673a394b 605 char __user *user_data;
935aaa69
DV
606 int page_offset, page_length, ret;
607
c37e2204 608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
935aaa69
DV
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
673a394b 619
2bb4629a 620 user_data = to_user_ptr(args->data_ptr);
673a394b 621 remain = args->size;
673a394b 622
f343c5f6 623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
0839ccb8
KP
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
673a394b 631 */
c8cbbb8b
CW
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
0839ccb8
KP
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
0839ccb8 638 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
0839ccb8 641 */
5d4545ae 642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
673a394b 647
0839ccb8
KP
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
673a394b 651 }
673a394b 652
935aaa69
DV
653out_unpin:
654 i915_gem_object_unpin(obj);
655out:
3de09aa3 656 return ret;
673a394b
EA
657}
658
d174bd64
DV
659/* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
3043c60c 663static int
d174bd64
DV
664shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
673a394b 669{
d174bd64 670 char *vaddr;
673a394b 671 int ret;
3de09aa3 672
e7e58eb5 673 if (unlikely(page_do_bit17_swizzling))
d174bd64 674 return -EINVAL;
3de09aa3 675
d174bd64
DV
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
3de09aa3 687
755d2218 688 return ret ? -EFAULT : 0;
3de09aa3
EA
689}
690
d174bd64
DV
691/* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
3043c60c 693static int
d174bd64
DV
694shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
673a394b 699{
d174bd64
DV
700 char *vaddr;
701 int ret;
e5281ccd 702
d174bd64 703 vaddr = kmap(page);
e7e58eb5 704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
d174bd64
DV
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
710 user_data,
711 page_length);
d174bd64
DV
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
23c18c71
DV
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
d174bd64 720 kunmap(page);
40123c1f 721
755d2218 722 return ret ? -EFAULT : 0;
40123c1f
EA
723}
724
40123c1f 725static int
e244a443
DV
726i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
40123c1f 730{
40123c1f 731 ssize_t remain;
8c59967c
DV
732 loff_t offset;
733 char __user *user_data;
eb2c0c81 734 int shmem_page_offset, page_length, ret = 0;
8c59967c 735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 736 int hit_slowpath = 0;
58642885
DV
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
67d5a50c 739 struct sg_page_iter sg_iter;
40123c1f 740
2bb4629a 741 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
742 remain = args->size;
743
8c59967c 744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 745
58642885
DV
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
2c22569b 751 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
58642885 755 }
c76ce038
CW
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 761
755d2218
CW
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
673a394b 768 offset = args->offset;
05394f39 769 obj->dirty = 1;
673a394b 770
67d5a50c
ID
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
2db76d7c 773 struct page *page = sg_page_iter_page(&sg_iter);
58642885 774 int partial_cacheline_write;
e5281ccd 775
9da3da66
CW
776 if (remain <= 0)
777 break;
778
40123c1f
EA
779 /* Operation in this page
780 *
40123c1f 781 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
782 * page_length = bytes to copy for this page
783 */
c8cbbb8b 784 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 789
58642885
DV
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
8c59967c
DV
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
d174bd64
DV
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
e244a443
DV
806
807 hit_slowpath = 1;
e244a443 808 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
40123c1f 813
e244a443 814 mutex_lock(&dev->struct_mutex);
755d2218 815
e244a443 816next_page:
e5281ccd
CW
817 set_page_dirty(page);
818 mark_page_accessed(page);
e5281ccd 819
755d2218 820 if (ret)
8c59967c 821 goto out;
8c59967c 822
40123c1f 823 remain -= page_length;
8c59967c 824 user_data += page_length;
40123c1f 825 offset += page_length;
673a394b
EA
826 }
827
fbd5a26d 828out:
755d2218
CW
829 i915_gem_object_unpin_pages(obj);
830
e244a443 831 if (hit_slowpath) {
8dcf015e
DV
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
e244a443 841 }
8c59967c 842 }
673a394b 843
58642885 844 if (needs_clflush_after)
e76e9aeb 845 i915_gem_chipset_flush(dev);
58642885 846
40123c1f 847 return ret;
673a394b
EA
848}
849
850/**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855int
856i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 857 struct drm_file *file)
673a394b
EA
858{
859 struct drm_i915_gem_pwrite *args = data;
05394f39 860 struct drm_i915_gem_object *obj;
51311d0a
CW
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
2bb4629a 867 to_user_ptr(args->data_ptr),
51311d0a
CW
868 args->size))
869 return -EFAULT;
870
0b74b508
XZ
871 if (likely(!i915_prefault_disable)) {
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
673a394b 877
fbd5a26d 878 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 879 if (ret)
fbd5a26d 880 return ret;
1d7cfea1 881
05394f39 882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 883 if (&obj->base == NULL) {
1d7cfea1
CW
884 ret = -ENOENT;
885 goto unlock;
fbd5a26d 886 }
673a394b 887
7dcd2499 888 /* Bounds check destination. */
05394f39
CW
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
ce9d419d 891 ret = -EINVAL;
35b62a89 892 goto out;
ce9d419d
CW
893 }
894
1286ff73
DV
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
db53a302
CW
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
935aaa69 905 ret = -EFAULT;
673a394b
EA
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
5c0480f2 912 if (obj->phys_obj) {
fbd5a26d 913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
914 goto out;
915 }
916
2c22569b
CW
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
fbd5a26d 920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
fbd5a26d 924 }
673a394b 925
86a1ee26 926 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 928
35b62a89 929out:
05394f39 930 drm_gem_object_unreference(&obj->base);
1d7cfea1 931unlock:
fbd5a26d 932 mutex_unlock(&dev->struct_mutex);
673a394b
EA
933 return ret;
934}
935
b361237b 936int
33196ded 937i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
938 bool interruptible)
939{
1f83fee0 940 if (i915_reset_in_progress(error)) {
b361237b
CW
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
1f83fee0
DV
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
b361237b
CW
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954}
955
956/*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960static int
961i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962{
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
1823521d 968 if (seqno == ring->outstanding_lazy_seqno)
0025c077 969 ret = i915_add_request(ring, NULL);
b361237b
CW
970
971 return ret;
972}
973
094f9a54
CW
974static void fake_irq(unsigned long data)
975{
976 wake_up_process((struct task_struct *)data);
977}
978
979static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
981{
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983}
984
b29c19b6
CW
985static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986{
987 if (file_priv == NULL)
988 return true;
989
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
991}
992
b361237b
CW
993/**
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
f69061be 997 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000 *
f69061be
DV
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1007 *
b361237b
CW
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1010 */
1011static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 1012 unsigned reset_counter,
b29c19b6
CW
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
b361237b
CW
1016{
1017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
094f9a54
CW
1018 struct timespec before, now;
1019 DEFINE_WAIT(wait);
1020 long timeout_jiffies;
b361237b
CW
1021 int ret;
1022
c67a470b
PZ
1023 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1024
b361237b
CW
1025 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1026 return 0;
1027
094f9a54 1028 timeout_jiffies = timeout ? timespec_to_jiffies_timeout(timeout) : 1;
b361237b 1029
b29c19b6
CW
1030 if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1031 gen6_rps_boost(dev_priv);
1032 if (file_priv)
1033 mod_delayed_work(dev_priv->wq,
1034 &file_priv->mm.idle_work,
1035 msecs_to_jiffies(100));
1036 }
1037
094f9a54
CW
1038 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)) &&
1039 WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1040 return -ENODEV;
1041
094f9a54
CW
1042 /* Record current time in case interrupted by signal, or wedged */
1043 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1044 getrawmonotonic(&before);
094f9a54
CW
1045 for (;;) {
1046 struct timer_list timer;
1047 unsigned long expire;
b361237b 1048
094f9a54
CW
1049 prepare_to_wait(&ring->irq_queue, &wait,
1050 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1051
f69061be
DV
1052 /* We need to check whether any gpu reset happened in between
1053 * the caller grabbing the seqno and now ... */
094f9a54
CW
1054 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 * is truely gone. */
1057 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 if (ret == 0)
1059 ret = -EAGAIN;
1060 break;
1061 }
f69061be 1062
094f9a54
CW
1063 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 ret = 0;
1065 break;
1066 }
b361237b 1067
094f9a54
CW
1068 if (interruptible && signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1071 }
1072
1073 if (timeout_jiffies <= 0) {
1074 ret = -ETIME;
1075 break;
1076 }
1077
1078 timer.function = NULL;
1079 if (timeout || missed_irq(dev_priv, ring)) {
1080 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1081 expire = jiffies + (missed_irq(dev_priv, ring) ? 1: timeout_jiffies);
1082 mod_timer(&timer, expire);
1083 }
1084
5035c275 1085 io_schedule();
094f9a54
CW
1086
1087 if (timeout)
1088 timeout_jiffies = expire - jiffies;
1089
1090 if (timer.function) {
1091 del_singleshot_timer_sync(&timer);
1092 destroy_timer_on_stack(&timer);
1093 }
1094 }
b361237b 1095 getrawmonotonic(&now);
094f9a54 1096 trace_i915_gem_request_wait_end(ring, seqno);
b361237b
CW
1097
1098 ring->irq_put(ring);
094f9a54
CW
1099
1100 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1101
1102 if (timeout) {
1103 struct timespec sleep_time = timespec_sub(now, before);
1104 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1105 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1107 }
1108
094f9a54 1109 return ret;
b361237b
CW
1110}
1111
1112/**
1113 * Waits for a sequence number to be signaled, and cleans up the
1114 * request and object lists appropriately for that event.
1115 */
1116int
1117i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118{
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 bool interruptible = dev_priv->mm.interruptible;
1122 int ret;
1123
1124 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 BUG_ON(seqno == 0);
1126
33196ded 1127 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1128 if (ret)
1129 return ret;
1130
1131 ret = i915_gem_check_olr(ring, seqno);
1132 if (ret)
1133 return ret;
1134
f69061be
DV
1135 return __wait_seqno(ring, seqno,
1136 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1137 interruptible, NULL, NULL);
b361237b
CW
1138}
1139
d26e3af8
CW
1140static int
1141i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 struct intel_ring_buffer *ring)
1143{
1144 i915_gem_retire_requests_ring(ring);
1145
1146 /* Manually manage the write flush as we may have not yet
1147 * retired the buffer.
1148 *
1149 * Note that the last_write_seqno is always the earlier of
1150 * the two (read/write) seqno, so if we haved successfully waited,
1151 * we know we have passed the last write.
1152 */
1153 obj->last_write_seqno = 0;
1154 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156 return 0;
1157}
1158
b361237b
CW
1159/**
1160 * Ensures that all rendering to the object has completed and the object is
1161 * safe to unbind from the GTT or access from the CPU.
1162 */
1163static __must_check int
1164i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 bool readonly)
1166{
1167 struct intel_ring_buffer *ring = obj->ring;
1168 u32 seqno;
1169 int ret;
1170
1171 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 if (seqno == 0)
1173 return 0;
1174
1175 ret = i915_wait_seqno(ring, seqno);
1176 if (ret)
1177 return ret;
1178
d26e3af8 1179 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1180}
1181
3236f57a
CW
1182/* A nonblocking variant of the above wait. This is a highly dangerous routine
1183 * as the object state may change during this call.
1184 */
1185static __must_check int
1186i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
b29c19b6 1187 struct drm_file *file,
3236f57a
CW
1188 bool readonly)
1189{
1190 struct drm_device *dev = obj->base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_ring_buffer *ring = obj->ring;
f69061be 1193 unsigned reset_counter;
3236f57a
CW
1194 u32 seqno;
1195 int ret;
1196
1197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 BUG_ON(!dev_priv->mm.interruptible);
1199
1200 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 if (seqno == 0)
1202 return 0;
1203
33196ded 1204 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1205 if (ret)
1206 return ret;
1207
1208 ret = i915_gem_check_olr(ring, seqno);
1209 if (ret)
1210 return ret;
1211
f69061be 1212 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1213 mutex_unlock(&dev->struct_mutex);
b29c19b6 1214 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
3236f57a 1215 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1216 if (ret)
1217 return ret;
3236f57a 1218
d26e3af8 1219 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1220}
1221
673a394b 1222/**
2ef7eeaa
EA
1223 * Called when user space prepares to use an object with the CPU, either
1224 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1225 */
1226int
1227i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1228 struct drm_file *file)
673a394b
EA
1229{
1230 struct drm_i915_gem_set_domain *args = data;
05394f39 1231 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1232 uint32_t read_domains = args->read_domains;
1233 uint32_t write_domain = args->write_domain;
673a394b
EA
1234 int ret;
1235
2ef7eeaa 1236 /* Only handle setting domains to types used by the CPU. */
21d509e3 1237 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1238 return -EINVAL;
1239
21d509e3 1240 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1241 return -EINVAL;
1242
1243 /* Having something in the write domain implies it's in the read
1244 * domain, and only that read domain. Enforce that in the request.
1245 */
1246 if (write_domain != 0 && read_domains != write_domain)
1247 return -EINVAL;
1248
76c1dec1 1249 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1250 if (ret)
76c1dec1 1251 return ret;
1d7cfea1 1252
05394f39 1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1254 if (&obj->base == NULL) {
1d7cfea1
CW
1255 ret = -ENOENT;
1256 goto unlock;
76c1dec1 1257 }
673a394b 1258
3236f57a
CW
1259 /* Try to flush the object off the GPU without holding the lock.
1260 * We will repeat the flush holding the lock in the normal manner
1261 * to catch cases where we are gazumped.
1262 */
b29c19b6 1263 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
3236f57a
CW
1264 if (ret)
1265 goto unref;
1266
2ef7eeaa
EA
1267 if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1269
1270 /* Silently promote "you're not bound, there was nothing to do"
1271 * to success, since the client was just asking us to
1272 * make sure everything was done.
1273 */
1274 if (ret == -EINVAL)
1275 ret = 0;
2ef7eeaa 1276 } else {
e47c68e9 1277 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1278 }
1279
3236f57a 1280unref:
05394f39 1281 drm_gem_object_unreference(&obj->base);
1d7cfea1 1282unlock:
673a394b
EA
1283 mutex_unlock(&dev->struct_mutex);
1284 return ret;
1285}
1286
1287/**
1288 * Called when user space has done writes to this buffer
1289 */
1290int
1291i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1292 struct drm_file *file)
673a394b
EA
1293{
1294 struct drm_i915_gem_sw_finish *args = data;
05394f39 1295 struct drm_i915_gem_object *obj;
673a394b
EA
1296 int ret = 0;
1297
76c1dec1 1298 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1299 if (ret)
76c1dec1 1300 return ret;
1d7cfea1 1301
05394f39 1302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1303 if (&obj->base == NULL) {
1d7cfea1
CW
1304 ret = -ENOENT;
1305 goto unlock;
673a394b
EA
1306 }
1307
673a394b 1308 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1309 if (obj->pin_display)
1310 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1311
05394f39 1312 drm_gem_object_unreference(&obj->base);
1d7cfea1 1313unlock:
673a394b
EA
1314 mutex_unlock(&dev->struct_mutex);
1315 return ret;
1316}
1317
1318/**
1319 * Maps the contents of an object, returning the address it is mapped
1320 * into.
1321 *
1322 * While the mapping holds a reference on the contents of the object, it doesn't
1323 * imply a ref on the object itself.
1324 */
1325int
1326i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1327 struct drm_file *file)
673a394b
EA
1328{
1329 struct drm_i915_gem_mmap *args = data;
1330 struct drm_gem_object *obj;
673a394b
EA
1331 unsigned long addr;
1332
05394f39 1333 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1334 if (obj == NULL)
bf79cb91 1335 return -ENOENT;
673a394b 1336
1286ff73
DV
1337 /* prime objects have no backing filp to GEM mmap
1338 * pages from.
1339 */
1340 if (!obj->filp) {
1341 drm_gem_object_unreference_unlocked(obj);
1342 return -EINVAL;
1343 }
1344
6be5ceb0 1345 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1346 PROT_READ | PROT_WRITE, MAP_SHARED,
1347 args->offset);
bc9025bd 1348 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1349 if (IS_ERR((void *)addr))
1350 return addr;
1351
1352 args->addr_ptr = (uint64_t) addr;
1353
1354 return 0;
1355}
1356
de151cf6
JB
1357/**
1358 * i915_gem_fault - fault a page into the GTT
1359 * vma: VMA in question
1360 * vmf: fault info
1361 *
1362 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363 * from userspace. The fault handler takes care of binding the object to
1364 * the GTT (if needed), allocating and programming a fence register (again,
1365 * only if needed based on whether the old reg is still valid or the object
1366 * is tiled) and inserting a new PTE into the faulting process.
1367 *
1368 * Note that the faulting process may involve evicting existing objects
1369 * from the GTT and/or fence registers to make room. So performance may
1370 * suffer if the GTT working set is large or there are few fence registers
1371 * left.
1372 */
1373int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374{
05394f39
CW
1375 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 struct drm_device *dev = obj->base.dev;
7d1c4804 1377 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1378 pgoff_t page_offset;
1379 unsigned long pfn;
1380 int ret = 0;
0f973f27 1381 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1382
1383 /* We don't use vmf->pgoff since that has the fake offset */
1384 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1385 PAGE_SHIFT;
1386
d9bc7e9f
CW
1387 ret = i915_mutex_lock_interruptible(dev);
1388 if (ret)
1389 goto out;
a00b10c3 1390
db53a302
CW
1391 trace_i915_gem_object_fault(obj, page_offset, true, write);
1392
eb119bd6
CW
1393 /* Access to snoopable pages through the GTT is incoherent. */
1394 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1395 ret = -EINVAL;
1396 goto unlock;
1397 }
1398
d9bc7e9f 1399 /* Now bind it into the GTT if needed */
c37e2204 1400 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
c9839303
CW
1401 if (ret)
1402 goto unlock;
4a684a41 1403
c9839303
CW
1404 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1405 if (ret)
1406 goto unpin;
74898d7e 1407
06d98131 1408 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1409 if (ret)
c9839303 1410 goto unpin;
7d1c4804 1411
6299f992
CW
1412 obj->fault_mappable = true;
1413
f343c5f6
BW
1414 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1415 pfn >>= PAGE_SHIFT;
1416 pfn += page_offset;
de151cf6
JB
1417
1418 /* Finally, remap it using the new GTT offset */
1419 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1420unpin:
1421 i915_gem_object_unpin(obj);
c715089f 1422unlock:
de151cf6 1423 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1424out:
de151cf6 1425 switch (ret) {
d9bc7e9f 1426 case -EIO:
a9340cca
DV
1427 /* If this -EIO is due to a gpu hang, give the reset code a
1428 * chance to clean up the mess. Otherwise return the proper
1429 * SIGBUS. */
1f83fee0 1430 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1431 return VM_FAULT_SIGBUS;
045e769a 1432 case -EAGAIN:
571c608d
DV
1433 /*
1434 * EAGAIN means the gpu is hung and we'll wait for the error
1435 * handler to reset everything when re-faulting in
1436 * i915_mutex_lock_interruptible.
d9bc7e9f 1437 */
c715089f
CW
1438 case 0:
1439 case -ERESTARTSYS:
bed636ab 1440 case -EINTR:
e79e0fe3
DR
1441 case -EBUSY:
1442 /*
1443 * EBUSY is ok: this just means that another thread
1444 * already did the job.
1445 */
c715089f 1446 return VM_FAULT_NOPAGE;
de151cf6 1447 case -ENOMEM:
de151cf6 1448 return VM_FAULT_OOM;
a7c2e1aa
DV
1449 case -ENOSPC:
1450 return VM_FAULT_SIGBUS;
de151cf6 1451 default:
a7c2e1aa 1452 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1453 return VM_FAULT_SIGBUS;
de151cf6
JB
1454 }
1455}
1456
901782b2
CW
1457/**
1458 * i915_gem_release_mmap - remove physical page mappings
1459 * @obj: obj in question
1460 *
af901ca1 1461 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1462 * relinquish ownership of the pages back to the system.
1463 *
1464 * It is vital that we remove the page mapping if we have mapped a tiled
1465 * object through the GTT and then lose the fence register due to
1466 * resource pressure. Similarly if the object has been moved out of the
1467 * aperture, than pages mapped into userspace must be revoked. Removing the
1468 * mapping will then trigger a page fault on the next user access, allowing
1469 * fixup by i915_gem_fault().
1470 */
d05ca301 1471void
05394f39 1472i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1473{
6299f992
CW
1474 if (!obj->fault_mappable)
1475 return;
901782b2 1476
51335df9 1477 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
6299f992 1478 obj->fault_mappable = false;
901782b2
CW
1479}
1480
0fa87796 1481uint32_t
e28f8711 1482i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1483{
e28f8711 1484 uint32_t gtt_size;
92b88aeb
CW
1485
1486 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1487 tiling_mode == I915_TILING_NONE)
1488 return size;
92b88aeb
CW
1489
1490 /* Previous chips need a power-of-two fence region when tiling */
1491 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1492 gtt_size = 1024*1024;
92b88aeb 1493 else
e28f8711 1494 gtt_size = 512*1024;
92b88aeb 1495
e28f8711
CW
1496 while (gtt_size < size)
1497 gtt_size <<= 1;
92b88aeb 1498
e28f8711 1499 return gtt_size;
92b88aeb
CW
1500}
1501
de151cf6
JB
1502/**
1503 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1504 * @obj: object to check
1505 *
1506 * Return the required GTT alignment for an object, taking into account
5e783301 1507 * potential fence register mapping.
de151cf6 1508 */
d865110c
ID
1509uint32_t
1510i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1511 int tiling_mode, bool fenced)
de151cf6 1512{
de151cf6
JB
1513 /*
1514 * Minimum alignment is 4k (GTT page size), but might be greater
1515 * if a fence register is needed for the object.
1516 */
d865110c 1517 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1518 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1519 return 4096;
1520
a00b10c3
CW
1521 /*
1522 * Previous chips need to be aligned to the size of the smallest
1523 * fence register that can contain the object.
1524 */
e28f8711 1525 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1526}
1527
d8cb5086
CW
1528static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1529{
1530 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1531 int ret;
1532
0de23977 1533 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1534 return 0;
1535
da494d7c
DV
1536 dev_priv->mm.shrinker_no_lock_stealing = true;
1537
d8cb5086
CW
1538 ret = drm_gem_create_mmap_offset(&obj->base);
1539 if (ret != -ENOSPC)
da494d7c 1540 goto out;
d8cb5086
CW
1541
1542 /* Badly fragmented mmap space? The only way we can recover
1543 * space is by destroying unwanted objects. We can't randomly release
1544 * mmap_offsets as userspace expects them to be persistent for the
1545 * lifetime of the objects. The closest we can is to release the
1546 * offsets on purgeable objects by truncating it and marking it purged,
1547 * which prevents userspace from ever using that object again.
1548 */
1549 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1550 ret = drm_gem_create_mmap_offset(&obj->base);
1551 if (ret != -ENOSPC)
da494d7c 1552 goto out;
d8cb5086
CW
1553
1554 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1555 ret = drm_gem_create_mmap_offset(&obj->base);
1556out:
1557 dev_priv->mm.shrinker_no_lock_stealing = false;
1558
1559 return ret;
d8cb5086
CW
1560}
1561
1562static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1563{
d8cb5086
CW
1564 drm_gem_free_mmap_offset(&obj->base);
1565}
1566
de151cf6 1567int
ff72145b
DA
1568i915_gem_mmap_gtt(struct drm_file *file,
1569 struct drm_device *dev,
1570 uint32_t handle,
1571 uint64_t *offset)
de151cf6 1572{
da761a6e 1573 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1574 struct drm_i915_gem_object *obj;
de151cf6
JB
1575 int ret;
1576
76c1dec1 1577 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1578 if (ret)
76c1dec1 1579 return ret;
de151cf6 1580
ff72145b 1581 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1582 if (&obj->base == NULL) {
1d7cfea1
CW
1583 ret = -ENOENT;
1584 goto unlock;
1585 }
de151cf6 1586
5d4545ae 1587 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1588 ret = -E2BIG;
ff56b0bc 1589 goto out;
da761a6e
CW
1590 }
1591
05394f39 1592 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1593 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1594 ret = -EINVAL;
1595 goto out;
ab18282d
CW
1596 }
1597
d8cb5086
CW
1598 ret = i915_gem_object_create_mmap_offset(obj);
1599 if (ret)
1600 goto out;
de151cf6 1601
0de23977 1602 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1603
1d7cfea1 1604out:
05394f39 1605 drm_gem_object_unreference(&obj->base);
1d7cfea1 1606unlock:
de151cf6 1607 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1608 return ret;
de151cf6
JB
1609}
1610
ff72145b
DA
1611/**
1612 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1613 * @dev: DRM device
1614 * @data: GTT mapping ioctl data
1615 * @file: GEM object info
1616 *
1617 * Simply returns the fake offset to userspace so it can mmap it.
1618 * The mmap call will end up in drm_gem_mmap(), which will set things
1619 * up so we can get faults in the handler above.
1620 *
1621 * The fault handler will take care of binding the object into the GTT
1622 * (since it may have been evicted to make room for something), allocating
1623 * a fence register, and mapping the appropriate aperture address into
1624 * userspace.
1625 */
1626int
1627i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1628 struct drm_file *file)
1629{
1630 struct drm_i915_gem_mmap_gtt *args = data;
1631
ff72145b
DA
1632 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1633}
1634
225067ee
DV
1635/* Immediately discard the backing storage */
1636static void
1637i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1638{
e5281ccd 1639 struct inode *inode;
e5281ccd 1640
4d6294bf 1641 i915_gem_object_free_mmap_offset(obj);
1286ff73 1642
4d6294bf
CW
1643 if (obj->base.filp == NULL)
1644 return;
e5281ccd 1645
225067ee
DV
1646 /* Our goal here is to return as much of the memory as
1647 * is possible back to the system as we are called from OOM.
1648 * To do this we must instruct the shmfs to drop all of its
1649 * backing pages, *now*.
1650 */
496ad9aa 1651 inode = file_inode(obj->base.filp);
225067ee 1652 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1653
225067ee
DV
1654 obj->madv = __I915_MADV_PURGED;
1655}
e5281ccd 1656
225067ee
DV
1657static inline int
1658i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1659{
1660 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1661}
1662
5cdf5881 1663static void
05394f39 1664i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1665{
90797e6d
ID
1666 struct sg_page_iter sg_iter;
1667 int ret;
1286ff73 1668
05394f39 1669 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1670
6c085a72
CW
1671 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1672 if (ret) {
1673 /* In the event of a disaster, abandon all caches and
1674 * hope for the best.
1675 */
1676 WARN_ON(ret != -EIO);
2c22569b 1677 i915_gem_clflush_object(obj, true);
6c085a72
CW
1678 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1679 }
1680
6dacfd2f 1681 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1682 i915_gem_object_save_bit_17_swizzle(obj);
1683
05394f39
CW
1684 if (obj->madv == I915_MADV_DONTNEED)
1685 obj->dirty = 0;
3ef94daa 1686
90797e6d 1687 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1688 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1689
05394f39 1690 if (obj->dirty)
9da3da66 1691 set_page_dirty(page);
3ef94daa 1692
05394f39 1693 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1694 mark_page_accessed(page);
3ef94daa 1695
9da3da66 1696 page_cache_release(page);
3ef94daa 1697 }
05394f39 1698 obj->dirty = 0;
673a394b 1699
9da3da66
CW
1700 sg_free_table(obj->pages);
1701 kfree(obj->pages);
37e680a1 1702}
6c085a72 1703
dd624afd 1704int
37e680a1
CW
1705i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1706{
1707 const struct drm_i915_gem_object_ops *ops = obj->ops;
1708
2f745ad3 1709 if (obj->pages == NULL)
37e680a1
CW
1710 return 0;
1711
a5570178
CW
1712 if (obj->pages_pin_count)
1713 return -EBUSY;
1714
9843877d 1715 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1716
a2165e31
CW
1717 /* ->put_pages might need to allocate memory for the bit17 swizzle
1718 * array, hence protect them from being reaped by removing them from gtt
1719 * lists early. */
35c20a60 1720 list_del(&obj->global_list);
a2165e31 1721
37e680a1 1722 ops->put_pages(obj);
05394f39 1723 obj->pages = NULL;
37e680a1 1724
6c085a72
CW
1725 if (i915_gem_object_is_purgeable(obj))
1726 i915_gem_object_truncate(obj);
1727
1728 return 0;
1729}
1730
d9973b43 1731static unsigned long
93927ca5
DV
1732__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1733 bool purgeable_only)
6c085a72 1734{
57094f82 1735 struct list_head still_bound_list;
6c085a72 1736 struct drm_i915_gem_object *obj, *next;
d9973b43 1737 unsigned long count = 0;
6c085a72
CW
1738
1739 list_for_each_entry_safe(obj, next,
1740 &dev_priv->mm.unbound_list,
35c20a60 1741 global_list) {
93927ca5 1742 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1743 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1744 count += obj->base.size >> PAGE_SHIFT;
1745 if (count >= target)
1746 return count;
1747 }
1748 }
1749
57094f82
CW
1750 /*
1751 * As we may completely rewrite the bound list whilst unbinding
1752 * (due to retiring requests) we have to strictly process only
1753 * one element of the list at the time, and recheck the list
1754 * on every iteration.
1755 */
1756 INIT_LIST_HEAD(&still_bound_list);
1757 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1758 struct i915_vma *vma, *v;
80dcfdbd 1759
57094f82
CW
1760 obj = list_first_entry(&dev_priv->mm.bound_list,
1761 typeof(*obj), global_list);
1762 list_move_tail(&obj->global_list, &still_bound_list);
1763
80dcfdbd
BW
1764 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1765 continue;
1766
57094f82
CW
1767 /*
1768 * Hold a reference whilst we unbind this object, as we may
1769 * end up waiting for and retiring requests. This might
1770 * release the final reference (held by the active list)
1771 * and result in the object being freed from under us.
1772 * in this object being freed.
1773 *
1774 * Note 1: Shrinking the bound list is special since only active
1775 * (and hence bound objects) can contain such limbo objects, so
1776 * we don't need special tricks for shrinking the unbound list.
1777 * The only other place where we have to be careful with active
1778 * objects suddenly disappearing due to retiring requests is the
1779 * eviction code.
1780 *
1781 * Note 2: Even though the bound list doesn't hold a reference
1782 * to the object we can safely grab one here: The final object
1783 * unreferencing and the bound_list are both protected by the
1784 * dev->struct_mutex and so we won't ever be able to observe an
1785 * object on the bound_list with a reference count equals 0.
1786 */
1787 drm_gem_object_reference(&obj->base);
1788
07fe0b12
BW
1789 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1790 if (i915_vma_unbind(vma))
1791 break;
80dcfdbd 1792
57094f82 1793 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1794 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1795
1796 drm_gem_object_unreference(&obj->base);
6c085a72 1797 }
57094f82 1798 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
6c085a72
CW
1799
1800 return count;
1801}
1802
d9973b43 1803static unsigned long
93927ca5
DV
1804i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1805{
1806 return __i915_gem_shrink(dev_priv, target, true);
1807}
1808
d9973b43 1809static unsigned long
6c085a72
CW
1810i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1811{
1812 struct drm_i915_gem_object *obj, *next;
7dc19d5a 1813 long freed = 0;
6c085a72
CW
1814
1815 i915_gem_evict_everything(dev_priv->dev);
1816
35c20a60 1817 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
7dc19d5a 1818 global_list) {
d9973b43 1819 if (i915_gem_object_put_pages(obj) == 0)
7dc19d5a 1820 freed += obj->base.size >> PAGE_SHIFT;
7dc19d5a
DC
1821 }
1822 return freed;
225067ee
DV
1823}
1824
37e680a1 1825static int
6c085a72 1826i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1827{
6c085a72 1828 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1829 int page_count, i;
1830 struct address_space *mapping;
9da3da66
CW
1831 struct sg_table *st;
1832 struct scatterlist *sg;
90797e6d 1833 struct sg_page_iter sg_iter;
e5281ccd 1834 struct page *page;
90797e6d 1835 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1836 gfp_t gfp;
e5281ccd 1837
6c085a72
CW
1838 /* Assert that the object is not currently in any GPU domain. As it
1839 * wasn't in the GTT, there shouldn't be any way it could have been in
1840 * a GPU cache
1841 */
1842 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1843 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1844
9da3da66
CW
1845 st = kmalloc(sizeof(*st), GFP_KERNEL);
1846 if (st == NULL)
1847 return -ENOMEM;
1848
05394f39 1849 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1850 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1851 kfree(st);
e5281ccd 1852 return -ENOMEM;
9da3da66 1853 }
e5281ccd 1854
9da3da66
CW
1855 /* Get the list of pages out of our struct file. They'll be pinned
1856 * at this point until we release them.
1857 *
1858 * Fail silently without starting the shrinker
1859 */
496ad9aa 1860 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1861 gfp = mapping_gfp_mask(mapping);
caf49191 1862 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1863 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1864 sg = st->sgl;
1865 st->nents = 0;
1866 for (i = 0; i < page_count; i++) {
6c085a72
CW
1867 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1868 if (IS_ERR(page)) {
1869 i915_gem_purge(dev_priv, page_count);
1870 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1871 }
1872 if (IS_ERR(page)) {
1873 /* We've tried hard to allocate the memory by reaping
1874 * our own buffer, now let the real VM do its job and
1875 * go down in flames if truly OOM.
1876 */
caf49191 1877 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1878 gfp |= __GFP_IO | __GFP_WAIT;
1879
1880 i915_gem_shrink_all(dev_priv);
1881 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1882 if (IS_ERR(page))
1883 goto err_pages;
1884
caf49191 1885 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1886 gfp &= ~(__GFP_IO | __GFP_WAIT);
1887 }
426729dc
KRW
1888#ifdef CONFIG_SWIOTLB
1889 if (swiotlb_nr_tbl()) {
1890 st->nents++;
1891 sg_set_page(sg, page, PAGE_SIZE, 0);
1892 sg = sg_next(sg);
1893 continue;
1894 }
1895#endif
90797e6d
ID
1896 if (!i || page_to_pfn(page) != last_pfn + 1) {
1897 if (i)
1898 sg = sg_next(sg);
1899 st->nents++;
1900 sg_set_page(sg, page, PAGE_SIZE, 0);
1901 } else {
1902 sg->length += PAGE_SIZE;
1903 }
1904 last_pfn = page_to_pfn(page);
3bbbe706
DV
1905
1906 /* Check that the i965g/gm workaround works. */
1907 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 1908 }
426729dc
KRW
1909#ifdef CONFIG_SWIOTLB
1910 if (!swiotlb_nr_tbl())
1911#endif
1912 sg_mark_end(sg);
74ce6b6c
CW
1913 obj->pages = st;
1914
6dacfd2f 1915 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1916 i915_gem_object_do_bit_17_swizzle(obj);
1917
1918 return 0;
1919
1920err_pages:
90797e6d
ID
1921 sg_mark_end(sg);
1922 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1923 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1924 sg_free_table(st);
1925 kfree(st);
e5281ccd 1926 return PTR_ERR(page);
673a394b
EA
1927}
1928
37e680a1
CW
1929/* Ensure that the associated pages are gathered from the backing storage
1930 * and pinned into our object. i915_gem_object_get_pages() may be called
1931 * multiple times before they are released by a single call to
1932 * i915_gem_object_put_pages() - once the pages are no longer referenced
1933 * either as a result of memory pressure (reaping pages under the shrinker)
1934 * or as the object is itself released.
1935 */
1936int
1937i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1938{
1939 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1940 const struct drm_i915_gem_object_ops *ops = obj->ops;
1941 int ret;
1942
2f745ad3 1943 if (obj->pages)
37e680a1
CW
1944 return 0;
1945
43e28f09
CW
1946 if (obj->madv != I915_MADV_WILLNEED) {
1947 DRM_ERROR("Attempting to obtain a purgeable object\n");
1948 return -EINVAL;
1949 }
1950
a5570178
CW
1951 BUG_ON(obj->pages_pin_count);
1952
37e680a1
CW
1953 ret = ops->get_pages(obj);
1954 if (ret)
1955 return ret;
1956
35c20a60 1957 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1958 return 0;
673a394b
EA
1959}
1960
e2d05a8b 1961static void
05394f39 1962i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1963 struct intel_ring_buffer *ring)
673a394b 1964{
05394f39 1965 struct drm_device *dev = obj->base.dev;
69dc4987 1966 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1967 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1968
852835f3 1969 BUG_ON(ring == NULL);
02978ff5
CW
1970 if (obj->ring != ring && obj->last_write_seqno) {
1971 /* Keep the seqno relative to the current ring */
1972 obj->last_write_seqno = seqno;
1973 }
05394f39 1974 obj->ring = ring;
673a394b
EA
1975
1976 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1977 if (!obj->active) {
1978 drm_gem_object_reference(&obj->base);
1979 obj->active = 1;
673a394b 1980 }
e35a41de 1981
05394f39 1982 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1983
0201f1ec 1984 obj->last_read_seqno = seqno;
caea7476 1985
7dd49065 1986 if (obj->fenced_gpu_access) {
caea7476 1987 obj->last_fenced_seqno = seqno;
caea7476 1988
7dd49065
CW
1989 /* Bump MRU to take account of the delayed flush */
1990 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1991 struct drm_i915_fence_reg *reg;
1992
1993 reg = &dev_priv->fence_regs[obj->fence_reg];
1994 list_move_tail(&reg->lru_list,
1995 &dev_priv->mm.fence_list);
1996 }
caea7476
CW
1997 }
1998}
1999
e2d05a8b
BW
2000void i915_vma_move_to_active(struct i915_vma *vma,
2001 struct intel_ring_buffer *ring)
2002{
2003 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2004 return i915_gem_object_move_to_active(vma->obj, ring);
2005}
2006
caea7476 2007static void
caea7476 2008i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2009{
ca191b13
BW
2010 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2011 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2012 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
ce44b0ea 2013
65ce3027 2014 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2015 BUG_ON(!obj->active);
caea7476 2016
ca191b13 2017 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
caea7476 2018
65ce3027 2019 list_del_init(&obj->ring_list);
caea7476
CW
2020 obj->ring = NULL;
2021
65ce3027
CW
2022 obj->last_read_seqno = 0;
2023 obj->last_write_seqno = 0;
2024 obj->base.write_domain = 0;
2025
2026 obj->last_fenced_seqno = 0;
caea7476 2027 obj->fenced_gpu_access = false;
caea7476
CW
2028
2029 obj->active = 0;
2030 drm_gem_object_unreference(&obj->base);
2031
2032 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2033}
673a394b 2034
9d773091 2035static int
fca26bb4 2036i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2037{
9d773091
CW
2038 struct drm_i915_private *dev_priv = dev->dev_private;
2039 struct intel_ring_buffer *ring;
2040 int ret, i, j;
53d227f2 2041
107f27a5 2042 /* Carefully retire all requests without writing to the rings */
9d773091 2043 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2044 ret = intel_ring_idle(ring);
2045 if (ret)
2046 return ret;
9d773091 2047 }
9d773091 2048 i915_gem_retire_requests(dev);
107f27a5
CW
2049
2050 /* Finally reset hw state */
9d773091 2051 for_each_ring(ring, dev_priv, i) {
fca26bb4 2052 intel_ring_init_seqno(ring, seqno);
498d2ac1 2053
9d773091
CW
2054 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2055 ring->sync_seqno[j] = 0;
2056 }
53d227f2 2057
9d773091 2058 return 0;
53d227f2
DV
2059}
2060
fca26bb4
MK
2061int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2062{
2063 struct drm_i915_private *dev_priv = dev->dev_private;
2064 int ret;
2065
2066 if (seqno == 0)
2067 return -EINVAL;
2068
2069 /* HWS page needs to be set less than what we
2070 * will inject to ring
2071 */
2072 ret = i915_gem_init_seqno(dev, seqno - 1);
2073 if (ret)
2074 return ret;
2075
2076 /* Carefully set the last_seqno value so that wrap
2077 * detection still works
2078 */
2079 dev_priv->next_seqno = seqno;
2080 dev_priv->last_seqno = seqno - 1;
2081 if (dev_priv->last_seqno == 0)
2082 dev_priv->last_seqno--;
2083
2084 return 0;
2085}
2086
9d773091
CW
2087int
2088i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2089{
9d773091
CW
2090 struct drm_i915_private *dev_priv = dev->dev_private;
2091
2092 /* reserve 0 for non-seqno */
2093 if (dev_priv->next_seqno == 0) {
fca26bb4 2094 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2095 if (ret)
2096 return ret;
53d227f2 2097
9d773091
CW
2098 dev_priv->next_seqno = 1;
2099 }
53d227f2 2100
f72b3435 2101 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2102 return 0;
53d227f2
DV
2103}
2104
0025c077
MK
2105int __i915_add_request(struct intel_ring_buffer *ring,
2106 struct drm_file *file,
7d736f4f 2107 struct drm_i915_gem_object *obj,
0025c077 2108 u32 *out_seqno)
673a394b 2109{
db53a302 2110 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2111 struct drm_i915_gem_request *request;
7d736f4f 2112 u32 request_ring_position, request_start;
673a394b 2113 int was_empty;
3cce469c
CW
2114 int ret;
2115
7d736f4f 2116 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2117 /*
2118 * Emit any outstanding flushes - execbuf can fail to emit the flush
2119 * after having emitted the batchbuffer command. Hence we need to fix
2120 * things up similar to emitting the lazy request. The difference here
2121 * is that the flush _must_ happen before the next request, no matter
2122 * what.
2123 */
a7b9761d
CW
2124 ret = intel_ring_flush_all_caches(ring);
2125 if (ret)
2126 return ret;
cc889e0f 2127
3c0e234c
CW
2128 request = ring->preallocated_lazy_request;
2129 if (WARN_ON(request == NULL))
acb868d3 2130 return -ENOMEM;
cc889e0f 2131
a71d8d94
CW
2132 /* Record the position of the start of the request so that
2133 * should we detect the updated seqno part-way through the
2134 * GPU processing the request, we never over-estimate the
2135 * position of the head.
2136 */
2137 request_ring_position = intel_ring_get_tail(ring);
2138
9d773091 2139 ret = ring->add_request(ring);
3c0e234c 2140 if (ret)
3bb73aba 2141 return ret;
673a394b 2142
9d773091 2143 request->seqno = intel_ring_get_seqno(ring);
852835f3 2144 request->ring = ring;
7d736f4f 2145 request->head = request_start;
a71d8d94 2146 request->tail = request_ring_position;
7d736f4f
MK
2147
2148 /* Whilst this request exists, batch_obj will be on the
2149 * active_list, and so will hold the active reference. Only when this
2150 * request is retired will the the batch_obj be moved onto the
2151 * inactive_list and lose its active reference. Hence we do not need
2152 * to explicitly hold another reference here.
2153 */
9a7e0c2a 2154 request->batch_obj = obj;
0e50e96b 2155
9a7e0c2a
CW
2156 /* Hold a reference to the current context so that we can inspect
2157 * it later in case a hangcheck error event fires.
2158 */
2159 request->ctx = ring->last_context;
0e50e96b
MK
2160 if (request->ctx)
2161 i915_gem_context_reference(request->ctx);
2162
673a394b 2163 request->emitted_jiffies = jiffies;
852835f3
ZN
2164 was_empty = list_empty(&ring->request_list);
2165 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2166 request->file_priv = NULL;
852835f3 2167
db53a302
CW
2168 if (file) {
2169 struct drm_i915_file_private *file_priv = file->driver_priv;
2170
1c25595f 2171 spin_lock(&file_priv->mm.lock);
f787a5f5 2172 request->file_priv = file_priv;
b962442e 2173 list_add_tail(&request->client_list,
f787a5f5 2174 &file_priv->mm.request_list);
1c25595f 2175 spin_unlock(&file_priv->mm.lock);
b962442e 2176 }
673a394b 2177
9d773091 2178 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2179 ring->outstanding_lazy_seqno = 0;
3c0e234c 2180 ring->preallocated_lazy_request = NULL;
db53a302 2181
db1b76ca 2182 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2183 i915_queue_hangcheck(ring->dev);
2184
f047e395 2185 if (was_empty) {
b29c19b6 2186 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
b3b079db 2187 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2188 &dev_priv->mm.retire_work,
2189 round_jiffies_up_relative(HZ));
f047e395
CW
2190 intel_mark_busy(dev_priv->dev);
2191 }
f65d9421 2192 }
cc889e0f 2193
acb868d3 2194 if (out_seqno)
9d773091 2195 *out_seqno = request->seqno;
3cce469c 2196 return 0;
673a394b
EA
2197}
2198
f787a5f5
CW
2199static inline void
2200i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2201{
1c25595f 2202 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2203
1c25595f
CW
2204 if (!file_priv)
2205 return;
1c5d22f7 2206
1c25595f 2207 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2208 list_del(&request->client_list);
2209 request->file_priv = NULL;
1c25595f 2210 spin_unlock(&file_priv->mm.lock);
673a394b 2211}
673a394b 2212
d1ccbb5d
BW
2213static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2214 struct i915_address_space *vm)
aa60c664 2215{
d1ccbb5d
BW
2216 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2217 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
aa60c664
MK
2218 return true;
2219
2220 return false;
2221}
2222
2223static bool i915_head_inside_request(const u32 acthd_unmasked,
2224 const u32 request_start,
2225 const u32 request_end)
2226{
2227 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2228
2229 if (request_start < request_end) {
2230 if (acthd >= request_start && acthd < request_end)
2231 return true;
2232 } else if (request_start > request_end) {
2233 if (acthd >= request_start || acthd < request_end)
2234 return true;
2235 }
2236
2237 return false;
2238}
2239
d1ccbb5d
BW
2240static struct i915_address_space *
2241request_to_vm(struct drm_i915_gem_request *request)
2242{
2243 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2244 struct i915_address_space *vm;
2245
2246 vm = &dev_priv->gtt.base;
2247
2248 return vm;
2249}
2250
aa60c664
MK
2251static bool i915_request_guilty(struct drm_i915_gem_request *request,
2252 const u32 acthd, bool *inside)
2253{
2254 /* There is a possibility that unmasked head address
2255 * pointing inside the ring, matches the batch_obj address range.
2256 * However this is extremely unlikely.
2257 */
aa60c664 2258 if (request->batch_obj) {
d1ccbb5d
BW
2259 if (i915_head_inside_object(acthd, request->batch_obj,
2260 request_to_vm(request))) {
aa60c664
MK
2261 *inside = true;
2262 return true;
2263 }
2264 }
2265
2266 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2267 *inside = false;
2268 return true;
2269 }
2270
2271 return false;
2272}
2273
be62acb4
MK
2274static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2275{
2276 const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2277
2278 if (hs->banned)
2279 return true;
2280
2281 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2282 DRM_ERROR("context hanging too fast, declaring banned!\n");
2283 return true;
2284 }
2285
2286 return false;
2287}
2288
aa60c664
MK
2289static void i915_set_reset_status(struct intel_ring_buffer *ring,
2290 struct drm_i915_gem_request *request,
2291 u32 acthd)
2292{
2293 struct i915_ctx_hang_stats *hs = NULL;
2294 bool inside, guilty;
d1ccbb5d 2295 unsigned long offset = 0;
aa60c664
MK
2296
2297 /* Innocent until proven guilty */
2298 guilty = false;
2299
d1ccbb5d
BW
2300 if (request->batch_obj)
2301 offset = i915_gem_obj_offset(request->batch_obj,
2302 request_to_vm(request));
2303
f2f4d82f 2304 if (ring->hangcheck.action != HANGCHECK_WAIT &&
aa60c664 2305 i915_request_guilty(request, acthd, &inside)) {
f343c5f6 2306 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
aa60c664
MK
2307 ring->name,
2308 inside ? "inside" : "flushing",
d1ccbb5d 2309 offset,
aa60c664
MK
2310 request->ctx ? request->ctx->id : 0,
2311 acthd);
2312
2313 guilty = true;
2314 }
2315
2316 /* If contexts are disabled or this is the default context, use
2317 * file_priv->reset_state
2318 */
2319 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2320 hs = &request->ctx->hang_stats;
2321 else if (request->file_priv)
2322 hs = &request->file_priv->hang_stats;
2323
2324 if (hs) {
be62acb4
MK
2325 if (guilty) {
2326 hs->banned = i915_context_is_banned(hs);
aa60c664 2327 hs->batch_active++;
be62acb4
MK
2328 hs->guilty_ts = get_seconds();
2329 } else {
aa60c664 2330 hs->batch_pending++;
be62acb4 2331 }
aa60c664
MK
2332 }
2333}
2334
0e50e96b
MK
2335static void i915_gem_free_request(struct drm_i915_gem_request *request)
2336{
2337 list_del(&request->list);
2338 i915_gem_request_remove_from_client(request);
2339
2340 if (request->ctx)
2341 i915_gem_context_unreference(request->ctx);
2342
2343 kfree(request);
2344}
2345
dfaae392
CW
2346static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2347 struct intel_ring_buffer *ring)
9375e446 2348{
aa60c664
MK
2349 u32 completed_seqno;
2350 u32 acthd;
2351
2352 acthd = intel_ring_get_active_head(ring);
2353 completed_seqno = ring->get_seqno(ring, false);
2354
dfaae392
CW
2355 while (!list_empty(&ring->request_list)) {
2356 struct drm_i915_gem_request *request;
673a394b 2357
dfaae392
CW
2358 request = list_first_entry(&ring->request_list,
2359 struct drm_i915_gem_request,
2360 list);
de151cf6 2361
aa60c664
MK
2362 if (request->seqno > completed_seqno)
2363 i915_set_reset_status(ring, request, acthd);
2364
0e50e96b 2365 i915_gem_free_request(request);
dfaae392 2366 }
673a394b 2367
dfaae392 2368 while (!list_empty(&ring->active_list)) {
05394f39 2369 struct drm_i915_gem_object *obj;
9375e446 2370
05394f39
CW
2371 obj = list_first_entry(&ring->active_list,
2372 struct drm_i915_gem_object,
2373 ring_list);
9375e446 2374
05394f39 2375 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2376 }
2377}
2378
19b2dbde 2379void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2380{
2381 struct drm_i915_private *dev_priv = dev->dev_private;
2382 int i;
2383
4b9de737 2384 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2385 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2386
94a335db
DV
2387 /*
2388 * Commit delayed tiling changes if we have an object still
2389 * attached to the fence, otherwise just clear the fence.
2390 */
2391 if (reg->obj) {
2392 i915_gem_object_update_fence(reg->obj, reg,
2393 reg->obj->tiling_mode);
2394 } else {
2395 i915_gem_write_fence(dev, i, NULL);
2396 }
312817a3
CW
2397 }
2398}
2399
069efc1d 2400void i915_gem_reset(struct drm_device *dev)
673a394b 2401{
77f01230 2402 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2403 struct intel_ring_buffer *ring;
1ec14ad3 2404 int i;
673a394b 2405
b4519513
CW
2406 for_each_ring(ring, dev_priv, i)
2407 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2408
19b2dbde 2409 i915_gem_restore_fences(dev);
673a394b
EA
2410}
2411
2412/**
2413 * This function clears the request list as sequence numbers are passed.
2414 */
a71d8d94 2415void
db53a302 2416i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2417{
673a394b
EA
2418 uint32_t seqno;
2419
db53a302 2420 if (list_empty(&ring->request_list))
6c0594a3
KW
2421 return;
2422
db53a302 2423 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2424
b2eadbc8 2425 seqno = ring->get_seqno(ring, true);
1ec14ad3 2426
852835f3 2427 while (!list_empty(&ring->request_list)) {
673a394b 2428 struct drm_i915_gem_request *request;
673a394b 2429
852835f3 2430 request = list_first_entry(&ring->request_list,
673a394b
EA
2431 struct drm_i915_gem_request,
2432 list);
673a394b 2433
dfaae392 2434 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2435 break;
2436
db53a302 2437 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2438 /* We know the GPU must have read the request to have
2439 * sent us the seqno + interrupt, so use the position
2440 * of tail of the request to update the last known position
2441 * of the GPU head.
2442 */
2443 ring->last_retired_head = request->tail;
b84d5f0c 2444
0e50e96b 2445 i915_gem_free_request(request);
b84d5f0c 2446 }
673a394b 2447
b84d5f0c
CW
2448 /* Move any buffers on the active list that are no longer referenced
2449 * by the ringbuffer to the flushing/inactive lists as appropriate.
2450 */
2451 while (!list_empty(&ring->active_list)) {
05394f39 2452 struct drm_i915_gem_object *obj;
b84d5f0c 2453
0206e353 2454 obj = list_first_entry(&ring->active_list,
05394f39
CW
2455 struct drm_i915_gem_object,
2456 ring_list);
673a394b 2457
0201f1ec 2458 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2459 break;
b84d5f0c 2460
65ce3027 2461 i915_gem_object_move_to_inactive(obj);
673a394b 2462 }
9d34e5db 2463
db53a302
CW
2464 if (unlikely(ring->trace_irq_seqno &&
2465 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2466 ring->irq_put(ring);
db53a302 2467 ring->trace_irq_seqno = 0;
9d34e5db 2468 }
23bc5982 2469
db53a302 2470 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2471}
2472
b29c19b6 2473bool
b09a1fec
CW
2474i915_gem_retire_requests(struct drm_device *dev)
2475{
2476 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2477 struct intel_ring_buffer *ring;
b29c19b6 2478 bool idle = true;
1ec14ad3 2479 int i;
b09a1fec 2480
b29c19b6 2481 for_each_ring(ring, dev_priv, i) {
b4519513 2482 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2483 idle &= list_empty(&ring->request_list);
2484 }
2485
2486 if (idle)
2487 mod_delayed_work(dev_priv->wq,
2488 &dev_priv->mm.idle_work,
2489 msecs_to_jiffies(100));
2490
2491 return idle;
b09a1fec
CW
2492}
2493
75ef9da2 2494static void
673a394b
EA
2495i915_gem_retire_work_handler(struct work_struct *work)
2496{
b29c19b6
CW
2497 struct drm_i915_private *dev_priv =
2498 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2499 struct drm_device *dev = dev_priv->dev;
0a58705b 2500 bool idle;
673a394b 2501
891b48cf 2502 /* Come back later if the device is busy... */
b29c19b6
CW
2503 idle = false;
2504 if (mutex_trylock(&dev->struct_mutex)) {
2505 idle = i915_gem_retire_requests(dev);
2506 mutex_unlock(&dev->struct_mutex);
673a394b 2507 }
b29c19b6 2508 if (!idle)
bcb45086
CW
2509 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2510 round_jiffies_up_relative(HZ));
b29c19b6 2511}
0a58705b 2512
b29c19b6
CW
2513static void
2514i915_gem_idle_work_handler(struct work_struct *work)
2515{
2516 struct drm_i915_private *dev_priv =
2517 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2518
2519 intel_mark_idle(dev_priv->dev);
673a394b
EA
2520}
2521
30dfebf3
DV
2522/**
2523 * Ensures that an object will eventually get non-busy by flushing any required
2524 * write domains, emitting any outstanding lazy request and retiring and
2525 * completed requests.
2526 */
2527static int
2528i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2529{
2530 int ret;
2531
2532 if (obj->active) {
0201f1ec 2533 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2534 if (ret)
2535 return ret;
2536
30dfebf3
DV
2537 i915_gem_retire_requests_ring(obj->ring);
2538 }
2539
2540 return 0;
2541}
2542
23ba4fd0
BW
2543/**
2544 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2545 * @DRM_IOCTL_ARGS: standard ioctl arguments
2546 *
2547 * Returns 0 if successful, else an error is returned with the remaining time in
2548 * the timeout parameter.
2549 * -ETIME: object is still busy after timeout
2550 * -ERESTARTSYS: signal interrupted the wait
2551 * -ENONENT: object doesn't exist
2552 * Also possible, but rare:
2553 * -EAGAIN: GPU wedged
2554 * -ENOMEM: damn
2555 * -ENODEV: Internal IRQ fail
2556 * -E?: The add request failed
2557 *
2558 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2559 * non-zero timeout parameter the wait ioctl will wait for the given number of
2560 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2561 * without holding struct_mutex the object may become re-busied before this
2562 * function completes. A similar but shorter * race condition exists in the busy
2563 * ioctl
2564 */
2565int
2566i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2567{
f69061be 2568 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2569 struct drm_i915_gem_wait *args = data;
2570 struct drm_i915_gem_object *obj;
2571 struct intel_ring_buffer *ring = NULL;
eac1f14f 2572 struct timespec timeout_stack, *timeout = NULL;
f69061be 2573 unsigned reset_counter;
23ba4fd0
BW
2574 u32 seqno = 0;
2575 int ret = 0;
2576
eac1f14f
BW
2577 if (args->timeout_ns >= 0) {
2578 timeout_stack = ns_to_timespec(args->timeout_ns);
2579 timeout = &timeout_stack;
2580 }
23ba4fd0
BW
2581
2582 ret = i915_mutex_lock_interruptible(dev);
2583 if (ret)
2584 return ret;
2585
2586 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2587 if (&obj->base == NULL) {
2588 mutex_unlock(&dev->struct_mutex);
2589 return -ENOENT;
2590 }
2591
30dfebf3
DV
2592 /* Need to make sure the object gets inactive eventually. */
2593 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2594 if (ret)
2595 goto out;
2596
2597 if (obj->active) {
0201f1ec 2598 seqno = obj->last_read_seqno;
23ba4fd0
BW
2599 ring = obj->ring;
2600 }
2601
2602 if (seqno == 0)
2603 goto out;
2604
23ba4fd0
BW
2605 /* Do this after OLR check to make sure we make forward progress polling
2606 * on this IOCTL with a 0 timeout (like busy ioctl)
2607 */
2608 if (!args->timeout_ns) {
2609 ret = -ETIME;
2610 goto out;
2611 }
2612
2613 drm_gem_object_unreference(&obj->base);
f69061be 2614 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2615 mutex_unlock(&dev->struct_mutex);
2616
b29c19b6 2617 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2618 if (timeout)
eac1f14f 2619 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2620 return ret;
2621
2622out:
2623 drm_gem_object_unreference(&obj->base);
2624 mutex_unlock(&dev->struct_mutex);
2625 return ret;
2626}
2627
5816d648
BW
2628/**
2629 * i915_gem_object_sync - sync an object to a ring.
2630 *
2631 * @obj: object which may be in use on another ring.
2632 * @to: ring we wish to use the object on. May be NULL.
2633 *
2634 * This code is meant to abstract object synchronization with the GPU.
2635 * Calling with NULL implies synchronizing the object with the CPU
2636 * rather than a particular GPU ring.
2637 *
2638 * Returns 0 if successful, else propagates up the lower layer error.
2639 */
2911a35b
BW
2640int
2641i915_gem_object_sync(struct drm_i915_gem_object *obj,
2642 struct intel_ring_buffer *to)
2643{
2644 struct intel_ring_buffer *from = obj->ring;
2645 u32 seqno;
2646 int ret, idx;
2647
2648 if (from == NULL || to == from)
2649 return 0;
2650
5816d648 2651 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2652 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2653
2654 idx = intel_ring_sync_index(from, to);
2655
0201f1ec 2656 seqno = obj->last_read_seqno;
2911a35b
BW
2657 if (seqno <= from->sync_seqno[idx])
2658 return 0;
2659
b4aca010
BW
2660 ret = i915_gem_check_olr(obj->ring, seqno);
2661 if (ret)
2662 return ret;
2911a35b 2663
b52b89da 2664 trace_i915_gem_ring_sync_to(from, to, seqno);
1500f7ea 2665 ret = to->sync_to(to, from, seqno);
e3a5a225 2666 if (!ret)
7b01e260
MK
2667 /* We use last_read_seqno because sync_to()
2668 * might have just caused seqno wrap under
2669 * the radar.
2670 */
2671 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2672
e3a5a225 2673 return ret;
2911a35b
BW
2674}
2675
b5ffc9bc
CW
2676static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2677{
2678 u32 old_write_domain, old_read_domains;
2679
b5ffc9bc
CW
2680 /* Force a pagefault for domain tracking on next user access */
2681 i915_gem_release_mmap(obj);
2682
b97c3d9c
KP
2683 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2684 return;
2685
97c809fd
CW
2686 /* Wait for any direct GTT access to complete */
2687 mb();
2688
b5ffc9bc
CW
2689 old_read_domains = obj->base.read_domains;
2690 old_write_domain = obj->base.write_domain;
2691
2692 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2693 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2694
2695 trace_i915_gem_object_change_domain(obj,
2696 old_read_domains,
2697 old_write_domain);
2698}
2699
07fe0b12 2700int i915_vma_unbind(struct i915_vma *vma)
673a394b 2701{
07fe0b12 2702 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2703 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2704 int ret;
673a394b 2705
b93dab6e
DV
2706 /* For now we only ever use 1 vma per object */
2707 WARN_ON(!list_is_singular(&obj->vma_list));
2708
07fe0b12 2709 if (list_empty(&vma->vma_link))
673a394b
EA
2710 return 0;
2711
0ff501cb
DV
2712 if (!drm_mm_node_allocated(&vma->node)) {
2713 i915_gem_vma_destroy(vma);
2714
2715 return 0;
2716 }
433544bd 2717
31d8d651
CW
2718 if (obj->pin_count)
2719 return -EBUSY;
673a394b 2720
c4670ad0
CW
2721 BUG_ON(obj->pages == NULL);
2722
a8198eea 2723 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2724 if (ret)
a8198eea
CW
2725 return ret;
2726 /* Continue on if we fail due to EIO, the GPU is hung so we
2727 * should be safe and we need to cleanup or else we might
2728 * cause memory corruption through use-after-free.
2729 */
2730
b5ffc9bc 2731 i915_gem_object_finish_gtt(obj);
5323fd04 2732
96b47b65 2733 /* release the fence reg _after_ flushing */
d9e86c0e 2734 ret = i915_gem_object_put_fence(obj);
1488fc08 2735 if (ret)
d9e86c0e 2736 return ret;
96b47b65 2737
07fe0b12 2738 trace_i915_vma_unbind(vma);
db53a302 2739
74898d7e
DV
2740 if (obj->has_global_gtt_mapping)
2741 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2742 if (obj->has_aliasing_ppgtt_mapping) {
2743 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2744 obj->has_aliasing_ppgtt_mapping = 0;
2745 }
74163907 2746 i915_gem_gtt_finish_object(obj);
401c29f6 2747 i915_gem_object_unpin_pages(obj);
7bddb01f 2748
ca191b13 2749 list_del(&vma->mm_list);
75e9e915 2750 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2751 if (i915_is_ggtt(vma->vm))
2752 obj->map_and_fenceable = true;
673a394b 2753
2f633156 2754 drm_mm_remove_node(&vma->node);
433544bd 2755
2f633156
BW
2756 i915_gem_vma_destroy(vma);
2757
2758 /* Since the unbound list is global, only move to that list if
b93dab6e 2759 * no more VMAs exist. */
2f633156
BW
2760 if (list_empty(&obj->vma_list))
2761 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2762
88241785 2763 return 0;
54cf91dc
CW
2764}
2765
07fe0b12
BW
2766/**
2767 * Unbinds an object from the global GTT aperture.
2768 */
2769int
2770i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2771{
2772 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2773 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2774
58e73e15 2775 if (!i915_gem_obj_ggtt_bound(obj))
07fe0b12
BW
2776 return 0;
2777
2778 if (obj->pin_count)
2779 return -EBUSY;
2780
2781 BUG_ON(obj->pages == NULL);
2782
2783 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2784}
2785
b2da9fe5 2786int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2787{
2788 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2789 struct intel_ring_buffer *ring;
1ec14ad3 2790 int ret, i;
4df2faf4 2791
4df2faf4 2792 /* Flush everything onto the inactive list. */
b4519513 2793 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2794 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2795 if (ret)
2796 return ret;
2797
3e960501 2798 ret = intel_ring_idle(ring);
1ec14ad3
CW
2799 if (ret)
2800 return ret;
2801 }
4df2faf4 2802
8a1a49f9 2803 return 0;
4df2faf4
DV
2804}
2805
9ce079e4
CW
2806static void i965_write_fence_reg(struct drm_device *dev, int reg,
2807 struct drm_i915_gem_object *obj)
de151cf6 2808{
de151cf6 2809 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2810 int fence_reg;
2811 int fence_pitch_shift;
de151cf6 2812
56c844e5
ID
2813 if (INTEL_INFO(dev)->gen >= 6) {
2814 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2815 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2816 } else {
2817 fence_reg = FENCE_REG_965_0;
2818 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2819 }
2820
d18b9619
CW
2821 fence_reg += reg * 8;
2822
2823 /* To w/a incoherency with non-atomic 64-bit register updates,
2824 * we split the 64-bit update into two 32-bit writes. In order
2825 * for a partial fence not to be evaluated between writes, we
2826 * precede the update with write to turn off the fence register,
2827 * and only enable the fence as the last step.
2828 *
2829 * For extra levels of paranoia, we make sure each step lands
2830 * before applying the next step.
2831 */
2832 I915_WRITE(fence_reg, 0);
2833 POSTING_READ(fence_reg);
2834
9ce079e4 2835 if (obj) {
f343c5f6 2836 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2837 uint64_t val;
de151cf6 2838
f343c5f6 2839 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2840 0xfffff000) << 32;
f343c5f6 2841 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2842 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2843 if (obj->tiling_mode == I915_TILING_Y)
2844 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2845 val |= I965_FENCE_REG_VALID;
c6642782 2846
d18b9619
CW
2847 I915_WRITE(fence_reg + 4, val >> 32);
2848 POSTING_READ(fence_reg + 4);
2849
2850 I915_WRITE(fence_reg + 0, val);
2851 POSTING_READ(fence_reg);
2852 } else {
2853 I915_WRITE(fence_reg + 4, 0);
2854 POSTING_READ(fence_reg + 4);
2855 }
de151cf6
JB
2856}
2857
9ce079e4
CW
2858static void i915_write_fence_reg(struct drm_device *dev, int reg,
2859 struct drm_i915_gem_object *obj)
de151cf6 2860{
de151cf6 2861 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2862 u32 val;
de151cf6 2863
9ce079e4 2864 if (obj) {
f343c5f6 2865 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2866 int pitch_val;
2867 int tile_width;
c6642782 2868
f343c5f6 2869 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2870 (size & -size) != size ||
f343c5f6
BW
2871 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2872 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2873 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2874
9ce079e4
CW
2875 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2876 tile_width = 128;
2877 else
2878 tile_width = 512;
2879
2880 /* Note: pitch better be a power of two tile widths */
2881 pitch_val = obj->stride / tile_width;
2882 pitch_val = ffs(pitch_val) - 1;
2883
f343c5f6 2884 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2885 if (obj->tiling_mode == I915_TILING_Y)
2886 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2887 val |= I915_FENCE_SIZE_BITS(size);
2888 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2889 val |= I830_FENCE_REG_VALID;
2890 } else
2891 val = 0;
2892
2893 if (reg < 8)
2894 reg = FENCE_REG_830_0 + reg * 4;
2895 else
2896 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2897
2898 I915_WRITE(reg, val);
2899 POSTING_READ(reg);
de151cf6
JB
2900}
2901
9ce079e4
CW
2902static void i830_write_fence_reg(struct drm_device *dev, int reg,
2903 struct drm_i915_gem_object *obj)
de151cf6 2904{
de151cf6 2905 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2906 uint32_t val;
de151cf6 2907
9ce079e4 2908 if (obj) {
f343c5f6 2909 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2910 uint32_t pitch_val;
de151cf6 2911
f343c5f6 2912 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2913 (size & -size) != size ||
f343c5f6
BW
2914 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2915 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2916 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2917
9ce079e4
CW
2918 pitch_val = obj->stride / 128;
2919 pitch_val = ffs(pitch_val) - 1;
de151cf6 2920
f343c5f6 2921 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2922 if (obj->tiling_mode == I915_TILING_Y)
2923 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2924 val |= I830_FENCE_SIZE_BITS(size);
2925 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2926 val |= I830_FENCE_REG_VALID;
2927 } else
2928 val = 0;
c6642782 2929
9ce079e4
CW
2930 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2931 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2932}
2933
d0a57789
CW
2934inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2935{
2936 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2937}
2938
9ce079e4
CW
2939static void i915_gem_write_fence(struct drm_device *dev, int reg,
2940 struct drm_i915_gem_object *obj)
2941{
d0a57789
CW
2942 struct drm_i915_private *dev_priv = dev->dev_private;
2943
2944 /* Ensure that all CPU reads are completed before installing a fence
2945 * and all writes before removing the fence.
2946 */
2947 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2948 mb();
2949
94a335db
DV
2950 WARN(obj && (!obj->stride || !obj->tiling_mode),
2951 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2952 obj->stride, obj->tiling_mode);
2953
9ce079e4
CW
2954 switch (INTEL_INFO(dev)->gen) {
2955 case 7:
56c844e5 2956 case 6:
9ce079e4
CW
2957 case 5:
2958 case 4: i965_write_fence_reg(dev, reg, obj); break;
2959 case 3: i915_write_fence_reg(dev, reg, obj); break;
2960 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2961 default: BUG();
9ce079e4 2962 }
d0a57789
CW
2963
2964 /* And similarly be paranoid that no direct access to this region
2965 * is reordered to before the fence is installed.
2966 */
2967 if (i915_gem_object_needs_mb(obj))
2968 mb();
de151cf6
JB
2969}
2970
61050808
CW
2971static inline int fence_number(struct drm_i915_private *dev_priv,
2972 struct drm_i915_fence_reg *fence)
2973{
2974 return fence - dev_priv->fence_regs;
2975}
2976
2977static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2978 struct drm_i915_fence_reg *fence,
2979 bool enable)
2980{
2dc8aae0 2981 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2982 int reg = fence_number(dev_priv, fence);
2983
2984 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2985
2986 if (enable) {
46a0b638 2987 obj->fence_reg = reg;
61050808
CW
2988 fence->obj = obj;
2989 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2990 } else {
2991 obj->fence_reg = I915_FENCE_REG_NONE;
2992 fence->obj = NULL;
2993 list_del_init(&fence->lru_list);
2994 }
94a335db 2995 obj->fence_dirty = false;
61050808
CW
2996}
2997
d9e86c0e 2998static int
d0a57789 2999i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3000{
1c293ea3 3001 if (obj->last_fenced_seqno) {
86d5bc37 3002 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3003 if (ret)
3004 return ret;
d9e86c0e
CW
3005
3006 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3007 }
3008
86d5bc37 3009 obj->fenced_gpu_access = false;
d9e86c0e
CW
3010 return 0;
3011}
3012
3013int
3014i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3015{
61050808 3016 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3017 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3018 int ret;
3019
d0a57789 3020 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3021 if (ret)
3022 return ret;
3023
61050808
CW
3024 if (obj->fence_reg == I915_FENCE_REG_NONE)
3025 return 0;
d9e86c0e 3026
f9c513e9
CW
3027 fence = &dev_priv->fence_regs[obj->fence_reg];
3028
61050808 3029 i915_gem_object_fence_lost(obj);
f9c513e9 3030 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3031
3032 return 0;
3033}
3034
3035static struct drm_i915_fence_reg *
a360bb1a 3036i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3037{
ae3db24a 3038 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3039 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3040 int i;
ae3db24a
DV
3041
3042 /* First try to find a free reg */
d9e86c0e 3043 avail = NULL;
ae3db24a
DV
3044 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3045 reg = &dev_priv->fence_regs[i];
3046 if (!reg->obj)
d9e86c0e 3047 return reg;
ae3db24a 3048
1690e1eb 3049 if (!reg->pin_count)
d9e86c0e 3050 avail = reg;
ae3db24a
DV
3051 }
3052
d9e86c0e
CW
3053 if (avail == NULL)
3054 return NULL;
ae3db24a
DV
3055
3056 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3057 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3058 if (reg->pin_count)
ae3db24a
DV
3059 continue;
3060
8fe301ad 3061 return reg;
ae3db24a
DV
3062 }
3063
8fe301ad 3064 return NULL;
ae3db24a
DV
3065}
3066
de151cf6 3067/**
9a5a53b3 3068 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3069 * @obj: object to map through a fence reg
3070 *
3071 * When mapping objects through the GTT, userspace wants to be able to write
3072 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3073 * This function walks the fence regs looking for a free one for @obj,
3074 * stealing one if it can't find any.
3075 *
3076 * It then sets up the reg based on the object's properties: address, pitch
3077 * and tiling format.
9a5a53b3
CW
3078 *
3079 * For an untiled surface, this removes any existing fence.
de151cf6 3080 */
8c4b8c3f 3081int
06d98131 3082i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3083{
05394f39 3084 struct drm_device *dev = obj->base.dev;
79e53945 3085 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3086 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3087 struct drm_i915_fence_reg *reg;
ae3db24a 3088 int ret;
de151cf6 3089
14415745
CW
3090 /* Have we updated the tiling parameters upon the object and so
3091 * will need to serialise the write to the associated fence register?
3092 */
5d82e3e6 3093 if (obj->fence_dirty) {
d0a57789 3094 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3095 if (ret)
3096 return ret;
3097 }
9a5a53b3 3098
d9e86c0e 3099 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3100 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3101 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3102 if (!obj->fence_dirty) {
14415745
CW
3103 list_move_tail(&reg->lru_list,
3104 &dev_priv->mm.fence_list);
3105 return 0;
3106 }
3107 } else if (enable) {
3108 reg = i915_find_fence_reg(dev);
3109 if (reg == NULL)
3110 return -EDEADLK;
d9e86c0e 3111
14415745
CW
3112 if (reg->obj) {
3113 struct drm_i915_gem_object *old = reg->obj;
3114
d0a57789 3115 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3116 if (ret)
3117 return ret;
3118
14415745 3119 i915_gem_object_fence_lost(old);
29c5a587 3120 }
14415745 3121 } else
a09ba7fa 3122 return 0;
a09ba7fa 3123
14415745 3124 i915_gem_object_update_fence(obj, reg, enable);
14415745 3125
9ce079e4 3126 return 0;
de151cf6
JB
3127}
3128
42d6ab48
CW
3129static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3130 struct drm_mm_node *gtt_space,
3131 unsigned long cache_level)
3132{
3133 struct drm_mm_node *other;
3134
3135 /* On non-LLC machines we have to be careful when putting differing
3136 * types of snoopable memory together to avoid the prefetcher
4239ca77 3137 * crossing memory domains and dying.
42d6ab48
CW
3138 */
3139 if (HAS_LLC(dev))
3140 return true;
3141
c6cfb325 3142 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3143 return true;
3144
3145 if (list_empty(&gtt_space->node_list))
3146 return true;
3147
3148 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3149 if (other->allocated && !other->hole_follows && other->color != cache_level)
3150 return false;
3151
3152 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3153 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3154 return false;
3155
3156 return true;
3157}
3158
3159static void i915_gem_verify_gtt(struct drm_device *dev)
3160{
3161#if WATCH_GTT
3162 struct drm_i915_private *dev_priv = dev->dev_private;
3163 struct drm_i915_gem_object *obj;
3164 int err = 0;
3165
35c20a60 3166 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3167 if (obj->gtt_space == NULL) {
3168 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3169 err++;
3170 continue;
3171 }
3172
3173 if (obj->cache_level != obj->gtt_space->color) {
3174 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3175 i915_gem_obj_ggtt_offset(obj),
3176 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3177 obj->cache_level,
3178 obj->gtt_space->color);
3179 err++;
3180 continue;
3181 }
3182
3183 if (!i915_gem_valid_gtt_space(dev,
3184 obj->gtt_space,
3185 obj->cache_level)) {
3186 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3187 i915_gem_obj_ggtt_offset(obj),
3188 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3189 obj->cache_level);
3190 err++;
3191 continue;
3192 }
3193 }
3194
3195 WARN_ON(err);
3196#endif
3197}
3198
673a394b
EA
3199/**
3200 * Finds free space in the GTT aperture and binds the object there.
3201 */
3202static int
07fe0b12
BW
3203i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3204 struct i915_address_space *vm,
3205 unsigned alignment,
3206 bool map_and_fenceable,
3207 bool nonblocking)
673a394b 3208{
05394f39 3209 struct drm_device *dev = obj->base.dev;
673a394b 3210 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3211 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12
BW
3212 size_t gtt_max =
3213 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3214 struct i915_vma *vma;
07f73f69 3215 int ret;
673a394b 3216
e28f8711
CW
3217 fence_size = i915_gem_get_gtt_size(dev,
3218 obj->base.size,
3219 obj->tiling_mode);
3220 fence_alignment = i915_gem_get_gtt_alignment(dev,
3221 obj->base.size,
d865110c 3222 obj->tiling_mode, true);
e28f8711 3223 unfenced_alignment =
d865110c 3224 i915_gem_get_gtt_alignment(dev,
e28f8711 3225 obj->base.size,
d865110c 3226 obj->tiling_mode, false);
a00b10c3 3227
673a394b 3228 if (alignment == 0)
5e783301
DV
3229 alignment = map_and_fenceable ? fence_alignment :
3230 unfenced_alignment;
75e9e915 3231 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3232 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3233 return -EINVAL;
3234 }
3235
05394f39 3236 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3237
654fc607
CW
3238 /* If the object is bigger than the entire aperture, reject it early
3239 * before evicting everything in a vain attempt to find space.
3240 */
0a9ae0d7 3241 if (obj->base.size > gtt_max) {
3765f304 3242 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3243 obj->base.size,
3244 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3245 gtt_max);
654fc607
CW
3246 return -E2BIG;
3247 }
3248
37e680a1 3249 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3250 if (ret)
3251 return ret;
3252
fbdda6fb
CW
3253 i915_gem_object_pin_pages(obj);
3254
07fe0b12 3255 BUG_ON(!i915_is_ggtt(vm));
07fe0b12 3256
accfef2e 3257 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
db473b36 3258 if (IS_ERR(vma)) {
bc6bc15b
DV
3259 ret = PTR_ERR(vma);
3260 goto err_unpin;
2f633156
BW
3261 }
3262
accfef2e
BW
3263 /* For now we only ever use 1 vma per object */
3264 WARN_ON(!list_is_singular(&obj->vma_list));
3265
0a9ae0d7 3266search_free:
07fe0b12 3267 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3268 size, alignment,
31e5d7c6
DH
3269 obj->cache_level, 0, gtt_max,
3270 DRM_MM_SEARCH_DEFAULT);
dc9dd7a2 3271 if (ret) {
f6cd1f15 3272 ret = i915_gem_evict_something(dev, vm, size, alignment,
42d6ab48 3273 obj->cache_level,
86a1ee26
CW
3274 map_and_fenceable,
3275 nonblocking);
dc9dd7a2
CW
3276 if (ret == 0)
3277 goto search_free;
9731129c 3278
bc6bc15b 3279 goto err_free_vma;
673a394b 3280 }
2f633156 3281 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3282 obj->cache_level))) {
2f633156 3283 ret = -EINVAL;
bc6bc15b 3284 goto err_remove_node;
673a394b
EA
3285 }
3286
74163907 3287 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3288 if (ret)
bc6bc15b 3289 goto err_remove_node;
673a394b 3290
35c20a60 3291 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3292 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3293
4bd561b3
BW
3294 if (i915_is_ggtt(vm)) {
3295 bool mappable, fenceable;
a00b10c3 3296
49987099
DV
3297 fenceable = (vma->node.size == fence_size &&
3298 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3299
49987099
DV
3300 mappable = (vma->node.start + obj->base.size <=
3301 dev_priv->gtt.mappable_end);
a00b10c3 3302
5cacaac7 3303 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3304 }
75e9e915 3305
7ace7ef2 3306 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
75e9e915 3307
07fe0b12 3308 trace_i915_vma_bind(vma, map_and_fenceable);
42d6ab48 3309 i915_gem_verify_gtt(dev);
673a394b 3310 return 0;
2f633156 3311
bc6bc15b 3312err_remove_node:
6286ef9b 3313 drm_mm_remove_node(&vma->node);
bc6bc15b 3314err_free_vma:
2f633156 3315 i915_gem_vma_destroy(vma);
bc6bc15b 3316err_unpin:
2f633156 3317 i915_gem_object_unpin_pages(obj);
2f633156 3318 return ret;
673a394b
EA
3319}
3320
000433b6 3321bool
2c22569b
CW
3322i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3323 bool force)
673a394b 3324{
673a394b
EA
3325 /* If we don't have a page list set up, then we're not pinned
3326 * to GPU, and we can ignore the cache flush because it'll happen
3327 * again at bind time.
3328 */
05394f39 3329 if (obj->pages == NULL)
000433b6 3330 return false;
673a394b 3331
769ce464
ID
3332 /*
3333 * Stolen memory is always coherent with the GPU as it is explicitly
3334 * marked as wc by the system, or the system is cache-coherent.
3335 */
3336 if (obj->stolen)
000433b6 3337 return false;
769ce464 3338
9c23f7fc
CW
3339 /* If the GPU is snooping the contents of the CPU cache,
3340 * we do not need to manually clear the CPU cache lines. However,
3341 * the caches are only snooped when the render cache is
3342 * flushed/invalidated. As we always have to emit invalidations
3343 * and flushes when moving into and out of the RENDER domain, correct
3344 * snooping behaviour occurs naturally as the result of our domain
3345 * tracking.
3346 */
2c22569b 3347 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3348 return false;
9c23f7fc 3349
1c5d22f7 3350 trace_i915_gem_object_clflush(obj);
9da3da66 3351 drm_clflush_sg(obj->pages);
000433b6
CW
3352
3353 return true;
e47c68e9
EA
3354}
3355
3356/** Flushes the GTT write domain for the object if it's dirty. */
3357static void
05394f39 3358i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3359{
1c5d22f7
CW
3360 uint32_t old_write_domain;
3361
05394f39 3362 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3363 return;
3364
63256ec5 3365 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3366 * to it immediately go to main memory as far as we know, so there's
3367 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3368 *
3369 * However, we do have to enforce the order so that all writes through
3370 * the GTT land before any writes to the device, such as updates to
3371 * the GATT itself.
e47c68e9 3372 */
63256ec5
CW
3373 wmb();
3374
05394f39
CW
3375 old_write_domain = obj->base.write_domain;
3376 obj->base.write_domain = 0;
1c5d22f7
CW
3377
3378 trace_i915_gem_object_change_domain(obj,
05394f39 3379 obj->base.read_domains,
1c5d22f7 3380 old_write_domain);
e47c68e9
EA
3381}
3382
3383/** Flushes the CPU write domain for the object if it's dirty. */
3384static void
2c22569b
CW
3385i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3386 bool force)
e47c68e9 3387{
1c5d22f7 3388 uint32_t old_write_domain;
e47c68e9 3389
05394f39 3390 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3391 return;
3392
000433b6
CW
3393 if (i915_gem_clflush_object(obj, force))
3394 i915_gem_chipset_flush(obj->base.dev);
3395
05394f39
CW
3396 old_write_domain = obj->base.write_domain;
3397 obj->base.write_domain = 0;
1c5d22f7
CW
3398
3399 trace_i915_gem_object_change_domain(obj,
05394f39 3400 obj->base.read_domains,
1c5d22f7 3401 old_write_domain);
e47c68e9
EA
3402}
3403
2ef7eeaa
EA
3404/**
3405 * Moves a single object to the GTT read, and possibly write domain.
3406 *
3407 * This function returns when the move is complete, including waiting on
3408 * flushes to occur.
3409 */
79e53945 3410int
2021746e 3411i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3412{
8325a09d 3413 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3414 uint32_t old_write_domain, old_read_domains;
e47c68e9 3415 int ret;
2ef7eeaa 3416
02354392 3417 /* Not valid to be called on unbound objects. */
9843877d 3418 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3419 return -EINVAL;
3420
8d7e3de1
CW
3421 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3422 return 0;
3423
0201f1ec 3424 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3425 if (ret)
3426 return ret;
3427
2c22569b 3428 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3429
d0a57789
CW
3430 /* Serialise direct access to this object with the barriers for
3431 * coherent writes from the GPU, by effectively invalidating the
3432 * GTT domain upon first access.
3433 */
3434 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3435 mb();
3436
05394f39
CW
3437 old_write_domain = obj->base.write_domain;
3438 old_read_domains = obj->base.read_domains;
1c5d22f7 3439
e47c68e9
EA
3440 /* It should now be out of any other write domains, and we can update
3441 * the domain values for our changes.
3442 */
05394f39
CW
3443 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3444 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3445 if (write) {
05394f39
CW
3446 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3447 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3448 obj->dirty = 1;
2ef7eeaa
EA
3449 }
3450
1c5d22f7
CW
3451 trace_i915_gem_object_change_domain(obj,
3452 old_read_domains,
3453 old_write_domain);
3454
8325a09d 3455 /* And bump the LRU for this access */
ca191b13 3456 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3457 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3458 if (vma)
3459 list_move_tail(&vma->mm_list,
3460 &dev_priv->gtt.base.inactive_list);
3461
3462 }
8325a09d 3463
e47c68e9
EA
3464 return 0;
3465}
3466
e4ffd173
CW
3467int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3468 enum i915_cache_level cache_level)
3469{
7bddb01f
DV
3470 struct drm_device *dev = obj->base.dev;
3471 drm_i915_private_t *dev_priv = dev->dev_private;
3089c6f2 3472 struct i915_vma *vma;
e4ffd173
CW
3473 int ret;
3474
3475 if (obj->cache_level == cache_level)
3476 return 0;
3477
3478 if (obj->pin_count) {
3479 DRM_DEBUG("can not change the cache level of pinned objects\n");
3480 return -EBUSY;
3481 }
3482
3089c6f2
BW
3483 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3484 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3485 ret = i915_vma_unbind(vma);
3089c6f2
BW
3486 if (ret)
3487 return ret;
3488
3489 break;
3490 }
42d6ab48
CW
3491 }
3492
3089c6f2 3493 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3494 ret = i915_gem_object_finish_gpu(obj);
3495 if (ret)
3496 return ret;
3497
3498 i915_gem_object_finish_gtt(obj);
3499
3500 /* Before SandyBridge, you could not use tiling or fence
3501 * registers with snooped memory, so relinquish any fences
3502 * currently pointing to our region in the aperture.
3503 */
42d6ab48 3504 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3505 ret = i915_gem_object_put_fence(obj);
3506 if (ret)
3507 return ret;
3508 }
3509
74898d7e
DV
3510 if (obj->has_global_gtt_mapping)
3511 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3512 if (obj->has_aliasing_ppgtt_mapping)
3513 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3514 obj, cache_level);
e4ffd173
CW
3515 }
3516
2c22569b
CW
3517 list_for_each_entry(vma, &obj->vma_list, vma_link)
3518 vma->node.color = cache_level;
3519 obj->cache_level = cache_level;
3520
3521 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3522 u32 old_read_domains, old_write_domain;
3523
3524 /* If we're coming from LLC cached, then we haven't
3525 * actually been tracking whether the data is in the
3526 * CPU cache or not, since we only allow one bit set
3527 * in obj->write_domain and have been skipping the clflushes.
3528 * Just set it to the CPU cache for now.
3529 */
3530 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3531
3532 old_read_domains = obj->base.read_domains;
3533 old_write_domain = obj->base.write_domain;
3534
3535 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3536 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3537
3538 trace_i915_gem_object_change_domain(obj,
3539 old_read_domains,
3540 old_write_domain);
3541 }
3542
42d6ab48 3543 i915_gem_verify_gtt(dev);
e4ffd173
CW
3544 return 0;
3545}
3546
199adf40
BW
3547int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3548 struct drm_file *file)
e6994aee 3549{
199adf40 3550 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3551 struct drm_i915_gem_object *obj;
3552 int ret;
3553
3554 ret = i915_mutex_lock_interruptible(dev);
3555 if (ret)
3556 return ret;
3557
3558 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3559 if (&obj->base == NULL) {
3560 ret = -ENOENT;
3561 goto unlock;
3562 }
3563
651d794f
CW
3564 switch (obj->cache_level) {
3565 case I915_CACHE_LLC:
3566 case I915_CACHE_L3_LLC:
3567 args->caching = I915_CACHING_CACHED;
3568 break;
3569
4257d3ba
CW
3570 case I915_CACHE_WT:
3571 args->caching = I915_CACHING_DISPLAY;
3572 break;
3573
651d794f
CW
3574 default:
3575 args->caching = I915_CACHING_NONE;
3576 break;
3577 }
e6994aee
CW
3578
3579 drm_gem_object_unreference(&obj->base);
3580unlock:
3581 mutex_unlock(&dev->struct_mutex);
3582 return ret;
3583}
3584
199adf40
BW
3585int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3586 struct drm_file *file)
e6994aee 3587{
199adf40 3588 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3589 struct drm_i915_gem_object *obj;
3590 enum i915_cache_level level;
3591 int ret;
3592
199adf40
BW
3593 switch (args->caching) {
3594 case I915_CACHING_NONE:
e6994aee
CW
3595 level = I915_CACHE_NONE;
3596 break;
199adf40 3597 case I915_CACHING_CACHED:
e6994aee
CW
3598 level = I915_CACHE_LLC;
3599 break;
4257d3ba
CW
3600 case I915_CACHING_DISPLAY:
3601 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3602 break;
e6994aee
CW
3603 default:
3604 return -EINVAL;
3605 }
3606
3bc2913e
BW
3607 ret = i915_mutex_lock_interruptible(dev);
3608 if (ret)
3609 return ret;
3610
e6994aee
CW
3611 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3612 if (&obj->base == NULL) {
3613 ret = -ENOENT;
3614 goto unlock;
3615 }
3616
3617 ret = i915_gem_object_set_cache_level(obj, level);
3618
3619 drm_gem_object_unreference(&obj->base);
3620unlock:
3621 mutex_unlock(&dev->struct_mutex);
3622 return ret;
3623}
3624
cc98b413
CW
3625static bool is_pin_display(struct drm_i915_gem_object *obj)
3626{
3627 /* There are 3 sources that pin objects:
3628 * 1. The display engine (scanouts, sprites, cursors);
3629 * 2. Reservations for execbuffer;
3630 * 3. The user.
3631 *
3632 * We can ignore reservations as we hold the struct_mutex and
3633 * are only called outside of the reservation path. The user
3634 * can only increment pin_count once, and so if after
3635 * subtracting the potential reference by the user, any pin_count
3636 * remains, it must be due to another use by the display engine.
3637 */
3638 return obj->pin_count - !!obj->user_pin_count;
3639}
3640
b9241ea3 3641/*
2da3b9b9
CW
3642 * Prepare buffer for display plane (scanout, cursors, etc).
3643 * Can be called from an uninterruptible phase (modesetting) and allows
3644 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3645 */
3646int
2da3b9b9
CW
3647i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3648 u32 alignment,
919926ae 3649 struct intel_ring_buffer *pipelined)
b9241ea3 3650{
2da3b9b9 3651 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3652 int ret;
3653
0be73284 3654 if (pipelined != obj->ring) {
2911a35b
BW
3655 ret = i915_gem_object_sync(obj, pipelined);
3656 if (ret)
b9241ea3
ZW
3657 return ret;
3658 }
3659
cc98b413
CW
3660 /* Mark the pin_display early so that we account for the
3661 * display coherency whilst setting up the cache domains.
3662 */
3663 obj->pin_display = true;
3664
a7ef0640
EA
3665 /* The display engine is not coherent with the LLC cache on gen6. As
3666 * a result, we make sure that the pinning that is about to occur is
3667 * done with uncached PTEs. This is lowest common denominator for all
3668 * chipsets.
3669 *
3670 * However for gen6+, we could do better by using the GFDT bit instead
3671 * of uncaching, which would allow us to flush all the LLC-cached data
3672 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3673 */
651d794f
CW
3674 ret = i915_gem_object_set_cache_level(obj,
3675 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3676 if (ret)
cc98b413 3677 goto err_unpin_display;
a7ef0640 3678
2da3b9b9
CW
3679 /* As the user may map the buffer once pinned in the display plane
3680 * (e.g. libkms for the bootup splash), we have to ensure that we
3681 * always use map_and_fenceable for all scanout buffers.
3682 */
c37e2204 3683 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2da3b9b9 3684 if (ret)
cc98b413 3685 goto err_unpin_display;
2da3b9b9 3686
2c22569b 3687 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3688
2da3b9b9 3689 old_write_domain = obj->base.write_domain;
05394f39 3690 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3691
3692 /* It should now be out of any other write domains, and we can update
3693 * the domain values for our changes.
3694 */
e5f1d962 3695 obj->base.write_domain = 0;
05394f39 3696 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3697
3698 trace_i915_gem_object_change_domain(obj,
3699 old_read_domains,
2da3b9b9 3700 old_write_domain);
b9241ea3
ZW
3701
3702 return 0;
cc98b413
CW
3703
3704err_unpin_display:
3705 obj->pin_display = is_pin_display(obj);
3706 return ret;
3707}
3708
3709void
3710i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3711{
3712 i915_gem_object_unpin(obj);
3713 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3714}
3715
85345517 3716int
a8198eea 3717i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3718{
88241785
CW
3719 int ret;
3720
a8198eea 3721 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3722 return 0;
3723
0201f1ec 3724 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3725 if (ret)
3726 return ret;
3727
a8198eea
CW
3728 /* Ensure that we invalidate the GPU's caches and TLBs. */
3729 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3730 return 0;
85345517
CW
3731}
3732
e47c68e9
EA
3733/**
3734 * Moves a single object to the CPU read, and possibly write domain.
3735 *
3736 * This function returns when the move is complete, including waiting on
3737 * flushes to occur.
3738 */
dabdfe02 3739int
919926ae 3740i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3741{
1c5d22f7 3742 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3743 int ret;
3744
8d7e3de1
CW
3745 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3746 return 0;
3747
0201f1ec 3748 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3749 if (ret)
3750 return ret;
3751
e47c68e9 3752 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3753
05394f39
CW
3754 old_write_domain = obj->base.write_domain;
3755 old_read_domains = obj->base.read_domains;
1c5d22f7 3756
e47c68e9 3757 /* Flush the CPU cache if it's still invalid. */
05394f39 3758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3759 i915_gem_clflush_object(obj, false);
2ef7eeaa 3760
05394f39 3761 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3762 }
3763
3764 /* It should now be out of any other write domains, and we can update
3765 * the domain values for our changes.
3766 */
05394f39 3767 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3768
3769 /* If we're writing through the CPU, then the GPU read domains will
3770 * need to be invalidated at next use.
3771 */
3772 if (write) {
05394f39
CW
3773 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3774 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3775 }
2ef7eeaa 3776
1c5d22f7
CW
3777 trace_i915_gem_object_change_domain(obj,
3778 old_read_domains,
3779 old_write_domain);
3780
2ef7eeaa
EA
3781 return 0;
3782}
3783
673a394b
EA
3784/* Throttle our rendering by waiting until the ring has completed our requests
3785 * emitted over 20 msec ago.
3786 *
b962442e
EA
3787 * Note that if we were to use the current jiffies each time around the loop,
3788 * we wouldn't escape the function with any frames outstanding if the time to
3789 * render a frame was over 20ms.
3790 *
673a394b
EA
3791 * This should get us reasonable parallelism between CPU and GPU but also
3792 * relatively low latency when blocking on a particular request to finish.
3793 */
40a5f0de 3794static int
f787a5f5 3795i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3796{
f787a5f5
CW
3797 struct drm_i915_private *dev_priv = dev->dev_private;
3798 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3799 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3800 struct drm_i915_gem_request *request;
3801 struct intel_ring_buffer *ring = NULL;
f69061be 3802 unsigned reset_counter;
f787a5f5
CW
3803 u32 seqno = 0;
3804 int ret;
93533c29 3805
308887aa
DV
3806 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3807 if (ret)
3808 return ret;
3809
3810 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3811 if (ret)
3812 return ret;
e110e8d6 3813
1c25595f 3814 spin_lock(&file_priv->mm.lock);
f787a5f5 3815 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3816 if (time_after_eq(request->emitted_jiffies, recent_enough))
3817 break;
40a5f0de 3818
f787a5f5
CW
3819 ring = request->ring;
3820 seqno = request->seqno;
b962442e 3821 }
f69061be 3822 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3823 spin_unlock(&file_priv->mm.lock);
40a5f0de 3824
f787a5f5
CW
3825 if (seqno == 0)
3826 return 0;
2bc43b5c 3827
b29c19b6 3828 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
3829 if (ret == 0)
3830 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3831
3832 return ret;
3833}
3834
673a394b 3835int
05394f39 3836i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3837 struct i915_address_space *vm,
05394f39 3838 uint32_t alignment,
86a1ee26
CW
3839 bool map_and_fenceable,
3840 bool nonblocking)
673a394b 3841{
07fe0b12 3842 struct i915_vma *vma;
673a394b
EA
3843 int ret;
3844
7e81a42e
CW
3845 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3846 return -EBUSY;
ac0c6b5a 3847
07fe0b12
BW
3848 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3849
3850 vma = i915_gem_obj_to_vma(obj, vm);
3851
3852 if (vma) {
3853 if ((alignment &&
3854 vma->node.start & (alignment - 1)) ||
05394f39
CW
3855 (map_and_fenceable && !obj->map_and_fenceable)) {
3856 WARN(obj->pin_count,
ae7d49d8 3857 "bo is already pinned with incorrect alignment:"
f343c5f6 3858 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3859 " obj->map_and_fenceable=%d\n",
07fe0b12 3860 i915_gem_obj_offset(obj, vm), alignment,
75e9e915 3861 map_and_fenceable,
05394f39 3862 obj->map_and_fenceable);
07fe0b12 3863 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3864 if (ret)
3865 return ret;
3866 }
3867 }
3868
07fe0b12 3869 if (!i915_gem_obj_bound(obj, vm)) {
8742267a
CW
3870 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3871
07fe0b12
BW
3872 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3873 map_and_fenceable,
3874 nonblocking);
9731129c 3875 if (ret)
673a394b 3876 return ret;
8742267a
CW
3877
3878 if (!dev_priv->mm.aliasing_ppgtt)
3879 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3880 }
76446cac 3881
74898d7e
DV
3882 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3883 i915_gem_gtt_bind_object(obj, obj->cache_level);
3884
1b50247a 3885 obj->pin_count++;
6299f992 3886 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3887
3888 return 0;
3889}
3890
3891void
05394f39 3892i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3893{
05394f39 3894 BUG_ON(obj->pin_count == 0);
9843877d 3895 BUG_ON(!i915_gem_obj_bound_any(obj));
673a394b 3896
1b50247a 3897 if (--obj->pin_count == 0)
6299f992 3898 obj->pin_mappable = false;
673a394b
EA
3899}
3900
3901int
3902i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3903 struct drm_file *file)
673a394b
EA
3904{
3905 struct drm_i915_gem_pin *args = data;
05394f39 3906 struct drm_i915_gem_object *obj;
673a394b
EA
3907 int ret;
3908
1d7cfea1
CW
3909 ret = i915_mutex_lock_interruptible(dev);
3910 if (ret)
3911 return ret;
673a394b 3912
05394f39 3913 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3914 if (&obj->base == NULL) {
1d7cfea1
CW
3915 ret = -ENOENT;
3916 goto unlock;
673a394b 3917 }
673a394b 3918
05394f39 3919 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3920 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3921 ret = -EINVAL;
3922 goto out;
3ef94daa
CW
3923 }
3924
05394f39 3925 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3926 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3927 args->handle);
1d7cfea1
CW
3928 ret = -EINVAL;
3929 goto out;
79e53945
JB
3930 }
3931
93be8788 3932 if (obj->user_pin_count == 0) {
c37e2204 3933 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3934 if (ret)
3935 goto out;
673a394b
EA
3936 }
3937
93be8788
CW
3938 obj->user_pin_count++;
3939 obj->pin_filp = file;
3940
f343c5f6 3941 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3942out:
05394f39 3943 drm_gem_object_unreference(&obj->base);
1d7cfea1 3944unlock:
673a394b 3945 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3946 return ret;
673a394b
EA
3947}
3948
3949int
3950i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3951 struct drm_file *file)
673a394b
EA
3952{
3953 struct drm_i915_gem_pin *args = data;
05394f39 3954 struct drm_i915_gem_object *obj;
76c1dec1 3955 int ret;
673a394b 3956
1d7cfea1
CW
3957 ret = i915_mutex_lock_interruptible(dev);
3958 if (ret)
3959 return ret;
673a394b 3960
05394f39 3961 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3962 if (&obj->base == NULL) {
1d7cfea1
CW
3963 ret = -ENOENT;
3964 goto unlock;
673a394b 3965 }
76c1dec1 3966
05394f39 3967 if (obj->pin_filp != file) {
79e53945
JB
3968 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3969 args->handle);
1d7cfea1
CW
3970 ret = -EINVAL;
3971 goto out;
79e53945 3972 }
05394f39
CW
3973 obj->user_pin_count--;
3974 if (obj->user_pin_count == 0) {
3975 obj->pin_filp = NULL;
79e53945
JB
3976 i915_gem_object_unpin(obj);
3977 }
673a394b 3978
1d7cfea1 3979out:
05394f39 3980 drm_gem_object_unreference(&obj->base);
1d7cfea1 3981unlock:
673a394b 3982 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3983 return ret;
673a394b
EA
3984}
3985
3986int
3987i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3988 struct drm_file *file)
673a394b
EA
3989{
3990 struct drm_i915_gem_busy *args = data;
05394f39 3991 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3992 int ret;
3993
76c1dec1 3994 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3995 if (ret)
76c1dec1 3996 return ret;
673a394b 3997
05394f39 3998 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3999 if (&obj->base == NULL) {
1d7cfea1
CW
4000 ret = -ENOENT;
4001 goto unlock;
673a394b 4002 }
d1b851fc 4003
0be555b6
CW
4004 /* Count all active objects as busy, even if they are currently not used
4005 * by the gpu. Users of this interface expect objects to eventually
4006 * become non-busy without any further actions, therefore emit any
4007 * necessary flushes here.
c4de0a5d 4008 */
30dfebf3 4009 ret = i915_gem_object_flush_active(obj);
0be555b6 4010
30dfebf3 4011 args->busy = obj->active;
e9808edd
CW
4012 if (obj->ring) {
4013 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4014 args->busy |= intel_ring_flag(obj->ring) << 16;
4015 }
673a394b 4016
05394f39 4017 drm_gem_object_unreference(&obj->base);
1d7cfea1 4018unlock:
673a394b 4019 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4020 return ret;
673a394b
EA
4021}
4022
4023int
4024i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4025 struct drm_file *file_priv)
4026{
0206e353 4027 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4028}
4029
3ef94daa
CW
4030int
4031i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4032 struct drm_file *file_priv)
4033{
4034 struct drm_i915_gem_madvise *args = data;
05394f39 4035 struct drm_i915_gem_object *obj;
76c1dec1 4036 int ret;
3ef94daa
CW
4037
4038 switch (args->madv) {
4039 case I915_MADV_DONTNEED:
4040 case I915_MADV_WILLNEED:
4041 break;
4042 default:
4043 return -EINVAL;
4044 }
4045
1d7cfea1
CW
4046 ret = i915_mutex_lock_interruptible(dev);
4047 if (ret)
4048 return ret;
4049
05394f39 4050 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4051 if (&obj->base == NULL) {
1d7cfea1
CW
4052 ret = -ENOENT;
4053 goto unlock;
3ef94daa 4054 }
3ef94daa 4055
05394f39 4056 if (obj->pin_count) {
1d7cfea1
CW
4057 ret = -EINVAL;
4058 goto out;
3ef94daa
CW
4059 }
4060
05394f39
CW
4061 if (obj->madv != __I915_MADV_PURGED)
4062 obj->madv = args->madv;
3ef94daa 4063
6c085a72
CW
4064 /* if the object is no longer attached, discard its backing storage */
4065 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4066 i915_gem_object_truncate(obj);
4067
05394f39 4068 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4069
1d7cfea1 4070out:
05394f39 4071 drm_gem_object_unreference(&obj->base);
1d7cfea1 4072unlock:
3ef94daa 4073 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4074 return ret;
3ef94daa
CW
4075}
4076
37e680a1
CW
4077void i915_gem_object_init(struct drm_i915_gem_object *obj,
4078 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4079{
35c20a60 4080 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4081 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4082 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4083 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4084
37e680a1
CW
4085 obj->ops = ops;
4086
0327d6ba
CW
4087 obj->fence_reg = I915_FENCE_REG_NONE;
4088 obj->madv = I915_MADV_WILLNEED;
4089 /* Avoid an unnecessary call to unbind on the first bind. */
4090 obj->map_and_fenceable = true;
4091
4092 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4093}
4094
37e680a1
CW
4095static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4096 .get_pages = i915_gem_object_get_pages_gtt,
4097 .put_pages = i915_gem_object_put_pages_gtt,
4098};
4099
05394f39
CW
4100struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4101 size_t size)
ac52bc56 4102{
c397b908 4103 struct drm_i915_gem_object *obj;
5949eac4 4104 struct address_space *mapping;
1a240d4d 4105 gfp_t mask;
ac52bc56 4106
42dcedd4 4107 obj = i915_gem_object_alloc(dev);
c397b908
DV
4108 if (obj == NULL)
4109 return NULL;
673a394b 4110
c397b908 4111 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4112 i915_gem_object_free(obj);
c397b908
DV
4113 return NULL;
4114 }
673a394b 4115
bed1ea95
CW
4116 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4117 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4118 /* 965gm cannot relocate objects above 4GiB. */
4119 mask &= ~__GFP_HIGHMEM;
4120 mask |= __GFP_DMA32;
4121 }
4122
496ad9aa 4123 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4124 mapping_set_gfp_mask(mapping, mask);
5949eac4 4125
37e680a1 4126 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4127
c397b908
DV
4128 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4129 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4130
3d29b842
ED
4131 if (HAS_LLC(dev)) {
4132 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4133 * cache) for about a 10% performance improvement
4134 * compared to uncached. Graphics requests other than
4135 * display scanout are coherent with the CPU in
4136 * accessing this cache. This means in this mode we
4137 * don't need to clflush on the CPU side, and on the
4138 * GPU side we only need to flush internal caches to
4139 * get data visible to the CPU.
4140 *
4141 * However, we maintain the display planes as UC, and so
4142 * need to rebind when first used as such.
4143 */
4144 obj->cache_level = I915_CACHE_LLC;
4145 } else
4146 obj->cache_level = I915_CACHE_NONE;
4147
d861e338
DV
4148 trace_i915_gem_object_create(obj);
4149
05394f39 4150 return obj;
c397b908
DV
4151}
4152
1488fc08 4153void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4154{
1488fc08 4155 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4156 struct drm_device *dev = obj->base.dev;
be72615b 4157 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4158 struct i915_vma *vma, *next;
673a394b 4159
26e12f89
CW
4160 trace_i915_gem_object_destroy(obj);
4161
1488fc08
CW
4162 if (obj->phys_obj)
4163 i915_gem_detach_phys_object(dev, obj);
4164
4165 obj->pin_count = 0;
07fe0b12
BW
4166 /* NB: 0 or 1 elements */
4167 WARN_ON(!list_empty(&obj->vma_list) &&
4168 !list_is_singular(&obj->vma_list));
4169 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4170 int ret = i915_vma_unbind(vma);
4171 if (WARN_ON(ret == -ERESTARTSYS)) {
4172 bool was_interruptible;
1488fc08 4173
07fe0b12
BW
4174 was_interruptible = dev_priv->mm.interruptible;
4175 dev_priv->mm.interruptible = false;
1488fc08 4176
07fe0b12 4177 WARN_ON(i915_vma_unbind(vma));
1488fc08 4178
07fe0b12
BW
4179 dev_priv->mm.interruptible = was_interruptible;
4180 }
1488fc08
CW
4181 }
4182
1d64ae71
BW
4183 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4184 * before progressing. */
4185 if (obj->stolen)
4186 i915_gem_object_unpin_pages(obj);
4187
401c29f6
BW
4188 if (WARN_ON(obj->pages_pin_count))
4189 obj->pages_pin_count = 0;
37e680a1 4190 i915_gem_object_put_pages(obj);
d8cb5086 4191 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4192 i915_gem_object_release_stolen(obj);
de151cf6 4193
9da3da66
CW
4194 BUG_ON(obj->pages);
4195
2f745ad3
CW
4196 if (obj->base.import_attach)
4197 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4198
05394f39
CW
4199 drm_gem_object_release(&obj->base);
4200 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4201
05394f39 4202 kfree(obj->bit_17);
42dcedd4 4203 i915_gem_object_free(obj);
673a394b
EA
4204}
4205
e656a6cb 4206struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4207 struct i915_address_space *vm)
e656a6cb
DV
4208{
4209 struct i915_vma *vma;
4210 list_for_each_entry(vma, &obj->vma_list, vma_link)
4211 if (vma->vm == vm)
4212 return vma;
4213
4214 return NULL;
4215}
4216
4217static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4218 struct i915_address_space *vm)
2f633156
BW
4219{
4220 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4221 if (vma == NULL)
4222 return ERR_PTR(-ENOMEM);
4223
4224 INIT_LIST_HEAD(&vma->vma_link);
ca191b13 4225 INIT_LIST_HEAD(&vma->mm_list);
82a55ad1 4226 INIT_LIST_HEAD(&vma->exec_list);
2f633156
BW
4227 vma->vm = vm;
4228 vma->obj = obj;
4229
8b9c2b94
BW
4230 /* Keep GGTT vmas first to make debug easier */
4231 if (i915_is_ggtt(vm))
4232 list_add(&vma->vma_link, &obj->vma_list);
4233 else
4234 list_add_tail(&vma->vma_link, &obj->vma_list);
4235
2f633156
BW
4236 return vma;
4237}
4238
e656a6cb
DV
4239struct i915_vma *
4240i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4241 struct i915_address_space *vm)
4242{
4243 struct i915_vma *vma;
4244
4245 vma = i915_gem_obj_to_vma(obj, vm);
4246 if (!vma)
4247 vma = __i915_gem_vma_create(obj, vm);
4248
4249 return vma;
4250}
4251
2f633156
BW
4252void i915_gem_vma_destroy(struct i915_vma *vma)
4253{
4254 WARN_ON(vma->node.allocated);
aaa05667
CW
4255
4256 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4257 if (!list_empty(&vma->exec_list))
4258 return;
4259
8b9c2b94 4260 list_del(&vma->vma_link);
b93dab6e 4261
2f633156
BW
4262 kfree(vma);
4263}
4264
29105ccc
CW
4265int
4266i915_gem_idle(struct drm_device *dev)
4267{
4268 drm_i915_private_t *dev_priv = dev->dev_private;
4269 int ret;
28dfe52a 4270
f7403347 4271 if (dev_priv->ums.mm_suspended)
29105ccc 4272 return 0;
28dfe52a 4273
b2da9fe5 4274 ret = i915_gpu_idle(dev);
f7403347 4275 if (ret)
673a394b 4276 return ret;
f7403347 4277
b2da9fe5 4278 i915_gem_retire_requests(dev);
673a394b 4279
29105ccc 4280 /* Under UMS, be paranoid and evict. */
a39d7efc 4281 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4282 i915_gem_evict_everything(dev);
29105ccc 4283
99584db3 4284 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc
CW
4285
4286 i915_kernel_lost_context(dev);
6dbe2772 4287 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4288
29105ccc
CW
4289 /* Cancel the retire work handler, which should be idle now. */
4290 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4291 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4292
673a394b
EA
4293 return 0;
4294}
4295
c3787e2e 4296int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
b9524a1e 4297{
c3787e2e 4298 struct drm_device *dev = ring->dev;
b9524a1e 4299 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6
BW
4300 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4301 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4302 int i, ret;
b9524a1e 4303
040d2baa 4304 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4305 return 0;
b9524a1e 4306
c3787e2e
BW
4307 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4308 if (ret)
4309 return ret;
b9524a1e 4310
c3787e2e
BW
4311 /*
4312 * Note: We do not worry about the concurrent register cacheline hang
4313 * here because no other code should access these registers other than
4314 * at initialization time.
4315 */
b9524a1e 4316 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4317 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4318 intel_ring_emit(ring, reg_base + i);
4319 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4320 }
4321
c3787e2e 4322 intel_ring_advance(ring);
b9524a1e 4323
c3787e2e 4324 return ret;
b9524a1e
BW
4325}
4326
f691e2f4
DV
4327void i915_gem_init_swizzling(struct drm_device *dev)
4328{
4329 drm_i915_private_t *dev_priv = dev->dev_private;
4330
11782b02 4331 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4332 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4333 return;
4334
4335 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4336 DISP_TILE_SURFACE_SWIZZLING);
4337
11782b02
DV
4338 if (IS_GEN5(dev))
4339 return;
4340
f691e2f4
DV
4341 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4342 if (IS_GEN6(dev))
6b26c86d 4343 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4344 else if (IS_GEN7(dev))
6b26c86d 4345 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
4346 else
4347 BUG();
f691e2f4 4348}
e21af88d 4349
67b1b571
CW
4350static bool
4351intel_enable_blt(struct drm_device *dev)
4352{
4353 if (!HAS_BLT(dev))
4354 return false;
4355
4356 /* The blitter was dysfunctional on early prototypes */
4357 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4358 DRM_INFO("BLT not supported on this pre-production hardware;"
4359 " graphics performance will be degraded.\n");
4360 return false;
4361 }
4362
4363 return true;
4364}
4365
4fc7c971 4366static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4367{
4fc7c971 4368 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4369 int ret;
68f95ba9 4370
5c1143bb 4371 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4372 if (ret)
b6913e4b 4373 return ret;
68f95ba9
CW
4374
4375 if (HAS_BSD(dev)) {
5c1143bb 4376 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4377 if (ret)
4378 goto cleanup_render_ring;
d1b851fc 4379 }
68f95ba9 4380
67b1b571 4381 if (intel_enable_blt(dev)) {
549f7365
CW
4382 ret = intel_init_blt_ring_buffer(dev);
4383 if (ret)
4384 goto cleanup_bsd_ring;
4385 }
4386
9a8a2213
BW
4387 if (HAS_VEBOX(dev)) {
4388 ret = intel_init_vebox_ring_buffer(dev);
4389 if (ret)
4390 goto cleanup_blt_ring;
4391 }
4392
4393
99433931 4394 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4395 if (ret)
9a8a2213 4396 goto cleanup_vebox_ring;
4fc7c971
BW
4397
4398 return 0;
4399
9a8a2213
BW
4400cleanup_vebox_ring:
4401 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4402cleanup_blt_ring:
4403 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4404cleanup_bsd_ring:
4405 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4406cleanup_render_ring:
4407 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4408
4409 return ret;
4410}
4411
4412int
4413i915_gem_init_hw(struct drm_device *dev)
4414{
4415 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6 4416 int ret, i;
4fc7c971
BW
4417
4418 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4419 return -EIO;
4420
59124506 4421 if (dev_priv->ellc_size)
05e21cc4 4422 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4423
9435373e
RV
4424 if (IS_HSW_GT3(dev))
4425 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_ENABLED);
4426 else
4427 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_DISABLED);
4428
88a2b2a3
BW
4429 if (HAS_PCH_NOP(dev)) {
4430 u32 temp = I915_READ(GEN7_MSG_CTL);
4431 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4432 I915_WRITE(GEN7_MSG_CTL, temp);
4433 }
4434
4fc7c971
BW
4435 i915_gem_init_swizzling(dev);
4436
4437 ret = i915_gem_init_rings(dev);
99433931
MK
4438 if (ret)
4439 return ret;
4440
c3787e2e
BW
4441 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4442 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4443
254f965c
BW
4444 /*
4445 * XXX: There was some w/a described somewhere suggesting loading
4446 * contexts before PPGTT.
4447 */
4448 i915_gem_context_init(dev);
b7c36d25
BW
4449 if (dev_priv->mm.aliasing_ppgtt) {
4450 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4451 if (ret) {
4452 i915_gem_cleanup_aliasing_ppgtt(dev);
4453 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4454 }
4455 }
e21af88d 4456
68f95ba9 4457 return 0;
8187a2b7
ZN
4458}
4459
1070a42b
CW
4460int i915_gem_init(struct drm_device *dev)
4461{
4462 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4463 int ret;
4464
1070a42b 4465 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4466
4467 if (IS_VALLEYVIEW(dev)) {
4468 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4469 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4470 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4471 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4472 }
4473
d7e5008f 4474 i915_gem_init_global_gtt(dev);
d62b4892 4475
1070a42b
CW
4476 ret = i915_gem_init_hw(dev);
4477 mutex_unlock(&dev->struct_mutex);
4478 if (ret) {
4479 i915_gem_cleanup_aliasing_ppgtt(dev);
4480 return ret;
4481 }
4482
53ca26ca
DV
4483 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4484 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4485 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4486 return 0;
4487}
4488
8187a2b7
ZN
4489void
4490i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4491{
4492 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4493 struct intel_ring_buffer *ring;
1ec14ad3 4494 int i;
8187a2b7 4495
b4519513
CW
4496 for_each_ring(ring, dev_priv, i)
4497 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4498}
4499
673a394b
EA
4500int
4501i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4502 struct drm_file *file_priv)
4503{
db1b76ca 4504 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4505 int ret;
673a394b 4506
79e53945
JB
4507 if (drm_core_check_feature(dev, DRIVER_MODESET))
4508 return 0;
4509
1f83fee0 4510 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4511 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4512 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4513 }
4514
673a394b 4515 mutex_lock(&dev->struct_mutex);
db1b76ca 4516 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4517
f691e2f4 4518 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4519 if (ret != 0) {
4520 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4521 return ret;
d816f6ac 4522 }
9bb2d6f9 4523
5cef07e1 4524 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4525 mutex_unlock(&dev->struct_mutex);
dbb19d30 4526
5f35308b
CW
4527 ret = drm_irq_install(dev);
4528 if (ret)
4529 goto cleanup_ringbuffer;
dbb19d30 4530
673a394b 4531 return 0;
5f35308b
CW
4532
4533cleanup_ringbuffer:
4534 mutex_lock(&dev->struct_mutex);
4535 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4536 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4537 mutex_unlock(&dev->struct_mutex);
4538
4539 return ret;
673a394b
EA
4540}
4541
4542int
4543i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4544 struct drm_file *file_priv)
4545{
db1b76ca
DV
4546 struct drm_i915_private *dev_priv = dev->dev_private;
4547 int ret;
4548
79e53945
JB
4549 if (drm_core_check_feature(dev, DRIVER_MODESET))
4550 return 0;
4551
dbb19d30 4552 drm_irq_uninstall(dev);
db1b76ca
DV
4553
4554 mutex_lock(&dev->struct_mutex);
4555 ret = i915_gem_idle(dev);
4556
4557 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4558 * We need to replace this with a semaphore, or something.
4559 * And not confound ums.mm_suspended!
4560 */
4561 if (ret != 0)
4562 dev_priv->ums.mm_suspended = 1;
4563 mutex_unlock(&dev->struct_mutex);
4564
4565 return ret;
673a394b
EA
4566}
4567
4568void
4569i915_gem_lastclose(struct drm_device *dev)
4570{
4571 int ret;
673a394b 4572
e806b495
EA
4573 if (drm_core_check_feature(dev, DRIVER_MODESET))
4574 return;
4575
db1b76ca 4576 mutex_lock(&dev->struct_mutex);
6dbe2772
KP
4577 ret = i915_gem_idle(dev);
4578 if (ret)
4579 DRM_ERROR("failed to idle hardware: %d\n", ret);
db1b76ca 4580 mutex_unlock(&dev->struct_mutex);
673a394b
EA
4581}
4582
64193406
CW
4583static void
4584init_ring_lists(struct intel_ring_buffer *ring)
4585{
4586 INIT_LIST_HEAD(&ring->active_list);
4587 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4588}
4589
fc8c067e
BW
4590static void i915_init_vm(struct drm_i915_private *dev_priv,
4591 struct i915_address_space *vm)
4592{
4593 vm->dev = dev_priv->dev;
4594 INIT_LIST_HEAD(&vm->active_list);
4595 INIT_LIST_HEAD(&vm->inactive_list);
4596 INIT_LIST_HEAD(&vm->global_link);
4597 list_add(&vm->global_link, &dev_priv->vm_list);
4598}
4599
673a394b
EA
4600void
4601i915_gem_load(struct drm_device *dev)
4602{
4603 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4604 int i;
4605
4606 dev_priv->slab =
4607 kmem_cache_create("i915_gem_object",
4608 sizeof(struct drm_i915_gem_object), 0,
4609 SLAB_HWCACHE_ALIGN,
4610 NULL);
673a394b 4611
fc8c067e
BW
4612 INIT_LIST_HEAD(&dev_priv->vm_list);
4613 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4614
a33afea5 4615 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4616 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4617 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4618 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4619 for (i = 0; i < I915_NUM_RINGS; i++)
4620 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4621 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4622 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4623 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4624 i915_gem_retire_work_handler);
b29c19b6
CW
4625 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4626 i915_gem_idle_work_handler);
1f83fee0 4627 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4628
94400120
DA
4629 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4630 if (IS_GEN3(dev)) {
50743298
DV
4631 I915_WRITE(MI_ARB_STATE,
4632 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4633 }
4634
72bfa19c
CW
4635 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4636
de151cf6 4637 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4638 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4639 dev_priv->fence_reg_start = 3;
de151cf6 4640
42b5aeab
VS
4641 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4642 dev_priv->num_fence_regs = 32;
4643 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4644 dev_priv->num_fence_regs = 16;
4645 else
4646 dev_priv->num_fence_regs = 8;
4647
b5aa8a0f 4648 /* Initialize fence registers to zero */
19b2dbde
CW
4649 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4650 i915_gem_restore_fences(dev);
10ed13e4 4651
673a394b 4652 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4653 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4654
ce453d81
CW
4655 dev_priv->mm.interruptible = true;
4656
7dc19d5a
DC
4657 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4658 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
17250b71
CW
4659 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4660 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4661}
71acb5eb
DA
4662
4663/*
4664 * Create a physically contiguous memory object for this object
4665 * e.g. for cursor + overlay regs
4666 */
995b6762
CW
4667static int i915_gem_init_phys_object(struct drm_device *dev,
4668 int id, int size, int align)
71acb5eb
DA
4669{
4670 drm_i915_private_t *dev_priv = dev->dev_private;
4671 struct drm_i915_gem_phys_object *phys_obj;
4672 int ret;
4673
4674 if (dev_priv->mm.phys_objs[id - 1] || !size)
4675 return 0;
4676
b14c5679 4677 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
71acb5eb
DA
4678 if (!phys_obj)
4679 return -ENOMEM;
4680
4681 phys_obj->id = id;
4682
6eeefaf3 4683 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4684 if (!phys_obj->handle) {
4685 ret = -ENOMEM;
4686 goto kfree_obj;
4687 }
4688#ifdef CONFIG_X86
4689 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4690#endif
4691
4692 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4693
4694 return 0;
4695kfree_obj:
9a298b2a 4696 kfree(phys_obj);
71acb5eb
DA
4697 return ret;
4698}
4699
995b6762 4700static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4701{
4702 drm_i915_private_t *dev_priv = dev->dev_private;
4703 struct drm_i915_gem_phys_object *phys_obj;
4704
4705 if (!dev_priv->mm.phys_objs[id - 1])
4706 return;
4707
4708 phys_obj = dev_priv->mm.phys_objs[id - 1];
4709 if (phys_obj->cur_obj) {
4710 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4711 }
4712
4713#ifdef CONFIG_X86
4714 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4715#endif
4716 drm_pci_free(dev, phys_obj->handle);
4717 kfree(phys_obj);
4718 dev_priv->mm.phys_objs[id - 1] = NULL;
4719}
4720
4721void i915_gem_free_all_phys_object(struct drm_device *dev)
4722{
4723 int i;
4724
260883c8 4725 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4726 i915_gem_free_phys_object(dev, i);
4727}
4728
4729void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4730 struct drm_i915_gem_object *obj)
71acb5eb 4731{
496ad9aa 4732 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4733 char *vaddr;
71acb5eb 4734 int i;
71acb5eb
DA
4735 int page_count;
4736
05394f39 4737 if (!obj->phys_obj)
71acb5eb 4738 return;
05394f39 4739 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4740
05394f39 4741 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4742 for (i = 0; i < page_count; i++) {
5949eac4 4743 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4744 if (!IS_ERR(page)) {
4745 char *dst = kmap_atomic(page);
4746 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4747 kunmap_atomic(dst);
4748
4749 drm_clflush_pages(&page, 1);
4750
4751 set_page_dirty(page);
4752 mark_page_accessed(page);
4753 page_cache_release(page);
4754 }
71acb5eb 4755 }
e76e9aeb 4756 i915_gem_chipset_flush(dev);
d78b47b9 4757
05394f39
CW
4758 obj->phys_obj->cur_obj = NULL;
4759 obj->phys_obj = NULL;
71acb5eb
DA
4760}
4761
4762int
4763i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4764 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4765 int id,
4766 int align)
71acb5eb 4767{
496ad9aa 4768 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4769 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4770 int ret = 0;
4771 int page_count;
4772 int i;
4773
4774 if (id > I915_MAX_PHYS_OBJECT)
4775 return -EINVAL;
4776
05394f39
CW
4777 if (obj->phys_obj) {
4778 if (obj->phys_obj->id == id)
71acb5eb
DA
4779 return 0;
4780 i915_gem_detach_phys_object(dev, obj);
4781 }
4782
71acb5eb
DA
4783 /* create a new object */
4784 if (!dev_priv->mm.phys_objs[id - 1]) {
4785 ret = i915_gem_init_phys_object(dev, id,
05394f39 4786 obj->base.size, align);
71acb5eb 4787 if (ret) {
05394f39
CW
4788 DRM_ERROR("failed to init phys object %d size: %zu\n",
4789 id, obj->base.size);
e5281ccd 4790 return ret;
71acb5eb
DA
4791 }
4792 }
4793
4794 /* bind to the object */
05394f39
CW
4795 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4796 obj->phys_obj->cur_obj = obj;
71acb5eb 4797
05394f39 4798 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4799
4800 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4801 struct page *page;
4802 char *dst, *src;
4803
5949eac4 4804 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4805 if (IS_ERR(page))
4806 return PTR_ERR(page);
71acb5eb 4807
ff75b9bc 4808 src = kmap_atomic(page);
05394f39 4809 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4810 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4811 kunmap_atomic(src);
71acb5eb 4812
e5281ccd
CW
4813 mark_page_accessed(page);
4814 page_cache_release(page);
4815 }
d78b47b9 4816
71acb5eb 4817 return 0;
71acb5eb
DA
4818}
4819
4820static int
05394f39
CW
4821i915_gem_phys_pwrite(struct drm_device *dev,
4822 struct drm_i915_gem_object *obj,
71acb5eb
DA
4823 struct drm_i915_gem_pwrite *args,
4824 struct drm_file *file_priv)
4825{
05394f39 4826 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4827 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4828
b47b30cc
CW
4829 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4830 unsigned long unwritten;
4831
4832 /* The physical object once assigned is fixed for the lifetime
4833 * of the obj, so we can safely drop the lock and continue
4834 * to access vaddr.
4835 */
4836 mutex_unlock(&dev->struct_mutex);
4837 unwritten = copy_from_user(vaddr, user_data, args->size);
4838 mutex_lock(&dev->struct_mutex);
4839 if (unwritten)
4840 return -EFAULT;
4841 }
71acb5eb 4842
e76e9aeb 4843 i915_gem_chipset_flush(dev);
71acb5eb
DA
4844 return 0;
4845}
b962442e 4846
f787a5f5 4847void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4848{
f787a5f5 4849 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4850
b29c19b6
CW
4851 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4852
b962442e
EA
4853 /* Clean up our request list when the client is going away, so that
4854 * later retire_requests won't dereference our soon-to-be-gone
4855 * file_priv.
4856 */
1c25595f 4857 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4858 while (!list_empty(&file_priv->mm.request_list)) {
4859 struct drm_i915_gem_request *request;
4860
4861 request = list_first_entry(&file_priv->mm.request_list,
4862 struct drm_i915_gem_request,
4863 client_list);
4864 list_del(&request->client_list);
4865 request->file_priv = NULL;
4866 }
1c25595f 4867 spin_unlock(&file_priv->mm.lock);
b962442e 4868}
31169714 4869
b29c19b6
CW
4870static void
4871i915_gem_file_idle_work_handler(struct work_struct *work)
4872{
4873 struct drm_i915_file_private *file_priv =
4874 container_of(work, typeof(*file_priv), mm.idle_work.work);
4875
4876 atomic_set(&file_priv->rps_wait_boost, false);
4877}
4878
4879int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4880{
4881 struct drm_i915_file_private *file_priv;
4882
4883 DRM_DEBUG_DRIVER("\n");
4884
4885 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4886 if (!file_priv)
4887 return -ENOMEM;
4888
4889 file->driver_priv = file_priv;
4890 file_priv->dev_priv = dev->dev_private;
4891
4892 spin_lock_init(&file_priv->mm.lock);
4893 INIT_LIST_HEAD(&file_priv->mm.request_list);
4894 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4895 i915_gem_file_idle_work_handler);
4896
4897 idr_init(&file_priv->context_idr);
4898
4899 return 0;
4900}
4901
5774506f
CW
4902static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4903{
4904 if (!mutex_is_locked(mutex))
4905 return false;
4906
4907#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4908 return mutex->owner == task;
4909#else
4910 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4911 return false;
4912#endif
4913}
4914
7dc19d5a
DC
4915static unsigned long
4916i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4917{
17250b71
CW
4918 struct drm_i915_private *dev_priv =
4919 container_of(shrinker,
4920 struct drm_i915_private,
4921 mm.inactive_shrinker);
4922 struct drm_device *dev = dev_priv->dev;
6c085a72 4923 struct drm_i915_gem_object *obj;
5774506f 4924 bool unlock = true;
7dc19d5a 4925 unsigned long count;
17250b71 4926
5774506f
CW
4927 if (!mutex_trylock(&dev->struct_mutex)) {
4928 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4929 return 0;
5774506f 4930
677feac2 4931 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4932 return 0;
677feac2 4933
5774506f
CW
4934 unlock = false;
4935 }
31169714 4936
7dc19d5a 4937 count = 0;
35c20a60 4938 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 4939 if (obj->pages_pin_count == 0)
7dc19d5a 4940 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4941
4942 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4943 if (obj->active)
4944 continue;
4945
a5570178 4946 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
7dc19d5a 4947 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 4948 }
17250b71 4949
5774506f
CW
4950 if (unlock)
4951 mutex_unlock(&dev->struct_mutex);
d9973b43 4952
7dc19d5a 4953 return count;
31169714 4954}
a70a3148
BW
4955
4956/* All the new VM stuff */
4957unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4958 struct i915_address_space *vm)
4959{
4960 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4961 struct i915_vma *vma;
4962
4963 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4964 vm = &dev_priv->gtt.base;
4965
4966 BUG_ON(list_empty(&o->vma_list));
4967 list_for_each_entry(vma, &o->vma_list, vma_link) {
4968 if (vma->vm == vm)
4969 return vma->node.start;
4970
4971 }
4972 return -1;
4973}
4974
4975bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4976 struct i915_address_space *vm)
4977{
4978 struct i915_vma *vma;
4979
4980 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 4981 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
4982 return true;
4983
4984 return false;
4985}
4986
4987bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4988{
5a1d5eb0 4989 struct i915_vma *vma;
a70a3148 4990
5a1d5eb0
CW
4991 list_for_each_entry(vma, &o->vma_list, vma_link)
4992 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
4993 return true;
4994
4995 return false;
4996}
4997
4998unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4999 struct i915_address_space *vm)
5000{
5001 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5002 struct i915_vma *vma;
5003
5004 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5005 vm = &dev_priv->gtt.base;
5006
5007 BUG_ON(list_empty(&o->vma_list));
5008
5009 list_for_each_entry(vma, &o->vma_list, vma_link)
5010 if (vma->vm == vm)
5011 return vma->node.size;
5012
5013 return 0;
5014}
5015
7dc19d5a
DC
5016static unsigned long
5017i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5018{
5019 struct drm_i915_private *dev_priv =
5020 container_of(shrinker,
5021 struct drm_i915_private,
5022 mm.inactive_shrinker);
5023 struct drm_device *dev = dev_priv->dev;
7dc19d5a
DC
5024 unsigned long freed;
5025 bool unlock = true;
5026
5027 if (!mutex_trylock(&dev->struct_mutex)) {
5028 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 5029 return SHRINK_STOP;
7dc19d5a
DC
5030
5031 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 5032 return SHRINK_STOP;
7dc19d5a
DC
5033
5034 unlock = false;
5035 }
5036
d9973b43
CW
5037 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5038 if (freed < sc->nr_to_scan)
5039 freed += __i915_gem_shrink(dev_priv,
5040 sc->nr_to_scan - freed,
5041 false);
5042 if (freed < sc->nr_to_scan)
7dc19d5a
DC
5043 freed += i915_gem_shrink_all(dev_priv);
5044
5045 if (unlock)
5046 mutex_unlock(&dev->struct_mutex);
d9973b43 5047
7dc19d5a
DC
5048 return freed;
5049}
5c2abbea
BW
5050
5051struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5052{
5053 struct i915_vma *vma;
5054
5055 if (WARN_ON(list_empty(&obj->vma_list)))
5056 return NULL;
5057
5058 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5059 if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5060 return NULL;
5061
5062 return vma;
5063}