]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Update ring->add_request() to take a request structure
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808
CW
49static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
c76ce038
CW
55static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57{
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59}
60
2c22569b
CW
61static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62{
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67}
68
61050808
CW
69static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70{
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
5d82e3e6 77 obj->fence_dirty = false;
61050808
CW
78 obj->fence_reg = I915_FENCE_REG_NONE;
79}
80
73aa808f
CW
81/* some bookkeeping */
82static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
c20e8355 85 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
c20e8355 88 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89}
90
91static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93{
c20e8355 94 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
c20e8355 97 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98}
99
21dd3734 100static int
33196ded 101i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 102{
30dbf0c0
CW
103 int ret;
104
7abb690a
DV
105#define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
1f83fee0 107 if (EXIT_COND)
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0
DV
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
0a6759c6 123 }
1f83fee0 124#undef EXIT_COND
30dbf0c0 125
21dd3734 126 return 0;
30dbf0c0
CW
127}
128
54cf91dc 129int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 130{
33196ded 131 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
132 int ret;
133
33196ded 134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
23bc5982 142 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
73aa808f 150 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 151 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
5a125c3c 154
6299f992 155 pinned = 0;
73aa808f 156 mutex_lock(&dev->struct_mutex);
35c20a60 157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 158 if (i915_gem_obj_is_pinned(obj))
f343c5f6 159 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 160 mutex_unlock(&dev->struct_mutex);
5a125c3c 161
853ba5d2 162 args->aper_size = dev_priv->gtt.base.total;
0206e353 163 args->aper_available_size = args->aper_size - pinned;
6299f992 164
5a125c3c
EA
165 return 0;
166}
167
6a2c4232
CW
168static int
169i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 170{
6a2c4232
CW
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
00731155 176
6a2c4232
CW
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
00731155 211
6a2c4232
CW
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218}
219
220static void
221i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222{
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 226
6a2c4232
CW
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
00731155 240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 241 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
00731155 259 mark_page_accessed(page);
6a2c4232 260 page_cache_release(page);
00731155
CW
261 vaddr += PAGE_SIZE;
262 }
6a2c4232 263 obj->dirty = 0;
00731155
CW
264 }
265
6a2c4232
CW
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270}
271
272static void
273i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274{
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276}
277
278static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282};
283
284static int
285drop_pages(struct drm_i915_gem_object *obj)
286{
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
00731155
CW
299}
300
301int
302i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304{
305 drm_dma_handle_t *phys;
6a2c4232 306 int ret;
00731155
CW
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
6a2c4232
CW
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
00731155
CW
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
00731155 330 obj->phys_handle = phys;
6a2c4232
CW
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
00731155
CW
334}
335
336static int
337i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340{
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 344 int ret = 0;
6a2c4232
CW
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
00731155 352
77a0d1ca 353 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
00731155
CW
368 }
369
6a2c4232 370 drm_clflush_virt_range(vaddr, args->size);
00731155 371 i915_gem_chipset_flush(dev);
063e4e6b
PZ
372
373out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
00731155
CW
376}
377
42dcedd4
CW
378void *i915_gem_object_alloc(struct drm_device *dev)
379{
380 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
382}
383
384void i915_gem_object_free(struct drm_i915_gem_object *obj)
385{
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 387 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
388}
389
ff72145b
DA
390static int
391i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
673a394b 395{
05394f39 396 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
397 int ret;
398 u32 handle;
673a394b 399
ff72145b 400 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
401 if (size == 0)
402 return -EINVAL;
673a394b
EA
403
404 /* Allocate the new object */
ff72145b 405 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
406 if (obj == NULL)
407 return -ENOMEM;
408
05394f39 409 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 410 /* drop reference from allocate - handle holds it now */
d861e338
DV
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
202f2fef 414
ff72145b 415 *handle_p = handle;
673a394b
EA
416 return 0;
417}
418
ff72145b
DA
419int
420i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423{
424 /* have to work out size/pitch and return them */
de45eaf7 425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
da6b51d0 428 args->size, &args->handle);
ff72145b
DA
429}
430
ff72145b
DA
431/**
432 * Creates a new mm object and returns a handle to it.
433 */
434int
435i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437{
438 struct drm_i915_gem_create *args = data;
63ed2cb2 439
ff72145b 440 return i915_gem_create(file, dev,
da6b51d0 441 args->size, &args->handle);
ff72145b
DA
442}
443
8461d226
DV
444static inline int
445__copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448{
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468}
469
8c59967c 470static inline int
4f0c7cfb
BW
471__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
8c59967c
DV
473 int length)
474{
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494}
495
4c914c0c
BV
496/*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503{
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521 }
522
523 ret = i915_gem_object_get_pages(obj);
524 if (ret)
525 return ret;
526
527 i915_gem_object_pin_pages(obj);
528
529 return ret;
530}
531
d174bd64
DV
532/* Per-page copy function for the shmem pread fastpath.
533 * Flushes invalid cachelines before reading the target if
534 * needs_clflush is set. */
eb01459f 535static int
d174bd64
DV
536shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
537 char __user *user_data,
538 bool page_do_bit17_swizzling, bool needs_clflush)
539{
540 char *vaddr;
541 int ret;
542
e7e58eb5 543 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
544 return -EINVAL;
545
546 vaddr = kmap_atomic(page);
547 if (needs_clflush)
548 drm_clflush_virt_range(vaddr + shmem_page_offset,
549 page_length);
550 ret = __copy_to_user_inatomic(user_data,
551 vaddr + shmem_page_offset,
552 page_length);
553 kunmap_atomic(vaddr);
554
f60d7f0c 555 return ret ? -EFAULT : 0;
d174bd64
DV
556}
557
23c18c71
DV
558static void
559shmem_clflush_swizzled_range(char *addr, unsigned long length,
560 bool swizzled)
561{
e7e58eb5 562 if (unlikely(swizzled)) {
23c18c71
DV
563 unsigned long start = (unsigned long) addr;
564 unsigned long end = (unsigned long) addr + length;
565
566 /* For swizzling simply ensure that we always flush both
567 * channels. Lame, but simple and it works. Swizzled
568 * pwrite/pread is far from a hotpath - current userspace
569 * doesn't use it at all. */
570 start = round_down(start, 128);
571 end = round_up(end, 128);
572
573 drm_clflush_virt_range((void *)start, end - start);
574 } else {
575 drm_clflush_virt_range(addr, length);
576 }
577
578}
579
d174bd64
DV
580/* Only difference to the fast-path function is that this can handle bit17
581 * and uses non-atomic copy and kmap functions. */
582static int
583shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
584 char __user *user_data,
585 bool page_do_bit17_swizzling, bool needs_clflush)
586{
587 char *vaddr;
588 int ret;
589
590 vaddr = kmap(page);
591 if (needs_clflush)
23c18c71
DV
592 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
593 page_length,
594 page_do_bit17_swizzling);
d174bd64
DV
595
596 if (page_do_bit17_swizzling)
597 ret = __copy_to_user_swizzled(user_data,
598 vaddr, shmem_page_offset,
599 page_length);
600 else
601 ret = __copy_to_user(user_data,
602 vaddr + shmem_page_offset,
603 page_length);
604 kunmap(page);
605
f60d7f0c 606 return ret ? - EFAULT : 0;
d174bd64
DV
607}
608
eb01459f 609static int
dbf7bff0
DV
610i915_gem_shmem_pread(struct drm_device *dev,
611 struct drm_i915_gem_object *obj,
612 struct drm_i915_gem_pread *args,
613 struct drm_file *file)
eb01459f 614{
8461d226 615 char __user *user_data;
eb01459f 616 ssize_t remain;
8461d226 617 loff_t offset;
eb2c0c81 618 int shmem_page_offset, page_length, ret = 0;
8461d226 619 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 620 int prefaulted = 0;
8489731c 621 int needs_clflush = 0;
67d5a50c 622 struct sg_page_iter sg_iter;
eb01459f 623
2bb4629a 624 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
625 remain = args->size;
626
8461d226 627 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 628
4c914c0c 629 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
630 if (ret)
631 return ret;
632
8461d226 633 offset = args->offset;
eb01459f 634
67d5a50c
ID
635 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
636 offset >> PAGE_SHIFT) {
2db76d7c 637 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
638
639 if (remain <= 0)
640 break;
641
eb01459f
EA
642 /* Operation in this page
643 *
eb01459f 644 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
645 * page_length = bytes to copy for this page
646 */
c8cbbb8b 647 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
648 page_length = remain;
649 if ((shmem_page_offset + page_length) > PAGE_SIZE)
650 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 651
8461d226
DV
652 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
653 (page_to_phys(page) & (1 << 17)) != 0;
654
d174bd64
DV
655 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
656 user_data, page_do_bit17_swizzling,
657 needs_clflush);
658 if (ret == 0)
659 goto next_page;
dbf7bff0 660
dbf7bff0
DV
661 mutex_unlock(&dev->struct_mutex);
662
d330a953 663 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 664 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
665 /* Userspace is tricking us, but we've already clobbered
666 * its pages with the prefault and promised to write the
667 * data up to the first fault. Hence ignore any errors
668 * and just continue. */
669 (void)ret;
670 prefaulted = 1;
671 }
eb01459f 672
d174bd64
DV
673 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
674 user_data, page_do_bit17_swizzling,
675 needs_clflush);
eb01459f 676
dbf7bff0 677 mutex_lock(&dev->struct_mutex);
f60d7f0c 678
f60d7f0c 679 if (ret)
8461d226 680 goto out;
8461d226 681
17793c9a 682next_page:
eb01459f 683 remain -= page_length;
8461d226 684 user_data += page_length;
eb01459f
EA
685 offset += page_length;
686 }
687
4f27b75d 688out:
f60d7f0c
CW
689 i915_gem_object_unpin_pages(obj);
690
eb01459f
EA
691 return ret;
692}
693
673a394b
EA
694/**
695 * Reads data from the object referenced by handle.
696 *
697 * On error, the contents of *data are undefined.
698 */
699int
700i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 701 struct drm_file *file)
673a394b
EA
702{
703 struct drm_i915_gem_pread *args = data;
05394f39 704 struct drm_i915_gem_object *obj;
35b62a89 705 int ret = 0;
673a394b 706
51311d0a
CW
707 if (args->size == 0)
708 return 0;
709
710 if (!access_ok(VERIFY_WRITE,
2bb4629a 711 to_user_ptr(args->data_ptr),
51311d0a
CW
712 args->size))
713 return -EFAULT;
714
4f27b75d 715 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 716 if (ret)
4f27b75d 717 return ret;
673a394b 718
05394f39 719 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 720 if (&obj->base == NULL) {
1d7cfea1
CW
721 ret = -ENOENT;
722 goto unlock;
4f27b75d 723 }
673a394b 724
7dcd2499 725 /* Bounds check source. */
05394f39
CW
726 if (args->offset > obj->base.size ||
727 args->size > obj->base.size - args->offset) {
ce9d419d 728 ret = -EINVAL;
35b62a89 729 goto out;
ce9d419d
CW
730 }
731
1286ff73
DV
732 /* prime objects have no backing filp to GEM pread/pwrite
733 * pages from.
734 */
735 if (!obj->base.filp) {
736 ret = -EINVAL;
737 goto out;
738 }
739
db53a302
CW
740 trace_i915_gem_object_pread(obj, args->offset, args->size);
741
dbf7bff0 742 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 743
35b62a89 744out:
05394f39 745 drm_gem_object_unreference(&obj->base);
1d7cfea1 746unlock:
4f27b75d 747 mutex_unlock(&dev->struct_mutex);
eb01459f 748 return ret;
673a394b
EA
749}
750
0839ccb8
KP
751/* This is the fast write path which cannot handle
752 * page faults in the source data
9b7530cc 753 */
0839ccb8
KP
754
755static inline int
756fast_user_write(struct io_mapping *mapping,
757 loff_t page_base, int page_offset,
758 char __user *user_data,
759 int length)
9b7530cc 760{
4f0c7cfb
BW
761 void __iomem *vaddr_atomic;
762 void *vaddr;
0839ccb8 763 unsigned long unwritten;
9b7530cc 764
3e4d3af5 765 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
766 /* We can use the cpu mem copy function because this is X86. */
767 vaddr = (void __force*)vaddr_atomic + page_offset;
768 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 769 user_data, length);
3e4d3af5 770 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 771 return unwritten;
0839ccb8
KP
772}
773
3de09aa3
EA
774/**
775 * This is the fast pwrite path, where we copy the data directly from the
776 * user into the GTT, uncached.
777 */
673a394b 778static int
05394f39
CW
779i915_gem_gtt_pwrite_fast(struct drm_device *dev,
780 struct drm_i915_gem_object *obj,
3de09aa3 781 struct drm_i915_gem_pwrite *args,
05394f39 782 struct drm_file *file)
673a394b 783{
3e31c6c0 784 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 785 ssize_t remain;
0839ccb8 786 loff_t offset, page_base;
673a394b 787 char __user *user_data;
935aaa69
DV
788 int page_offset, page_length, ret;
789
1ec9e26d 790 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
791 if (ret)
792 goto out;
793
794 ret = i915_gem_object_set_to_gtt_domain(obj, true);
795 if (ret)
796 goto out_unpin;
797
798 ret = i915_gem_object_put_fence(obj);
799 if (ret)
800 goto out_unpin;
673a394b 801
2bb4629a 802 user_data = to_user_ptr(args->data_ptr);
673a394b 803 remain = args->size;
673a394b 804
f343c5f6 805 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 806
77a0d1ca 807 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 808
673a394b
EA
809 while (remain > 0) {
810 /* Operation in this page
811 *
0839ccb8
KP
812 * page_base = page offset within aperture
813 * page_offset = offset within page
814 * page_length = bytes to copy for this page
673a394b 815 */
c8cbbb8b
CW
816 page_base = offset & PAGE_MASK;
817 page_offset = offset_in_page(offset);
0839ccb8
KP
818 page_length = remain;
819 if ((page_offset + remain) > PAGE_SIZE)
820 page_length = PAGE_SIZE - page_offset;
821
0839ccb8 822 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
823 * source page isn't available. Return the error and we'll
824 * retry in the slow path.
0839ccb8 825 */
5d4545ae 826 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
827 page_offset, user_data, page_length)) {
828 ret = -EFAULT;
063e4e6b 829 goto out_flush;
935aaa69 830 }
673a394b 831
0839ccb8
KP
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
673a394b 835 }
673a394b 836
063e4e6b
PZ
837out_flush:
838 intel_fb_obj_flush(obj, false);
935aaa69 839out_unpin:
d7f46fc4 840 i915_gem_object_ggtt_unpin(obj);
935aaa69 841out:
3de09aa3 842 return ret;
673a394b
EA
843}
844
d174bd64
DV
845/* Per-page copy function for the shmem pwrite fastpath.
846 * Flushes invalid cachelines before writing to the target if
847 * needs_clflush_before is set and flushes out any written cachelines after
848 * writing if needs_clflush is set. */
3043c60c 849static int
d174bd64
DV
850shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
851 char __user *user_data,
852 bool page_do_bit17_swizzling,
853 bool needs_clflush_before,
854 bool needs_clflush_after)
673a394b 855{
d174bd64 856 char *vaddr;
673a394b 857 int ret;
3de09aa3 858
e7e58eb5 859 if (unlikely(page_do_bit17_swizzling))
d174bd64 860 return -EINVAL;
3de09aa3 861
d174bd64
DV
862 vaddr = kmap_atomic(page);
863 if (needs_clflush_before)
864 drm_clflush_virt_range(vaddr + shmem_page_offset,
865 page_length);
c2831a94
CW
866 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
867 user_data, page_length);
d174bd64
DV
868 if (needs_clflush_after)
869 drm_clflush_virt_range(vaddr + shmem_page_offset,
870 page_length);
871 kunmap_atomic(vaddr);
3de09aa3 872
755d2218 873 return ret ? -EFAULT : 0;
3de09aa3
EA
874}
875
d174bd64
DV
876/* Only difference to the fast-path function is that this can handle bit17
877 * and uses non-atomic copy and kmap functions. */
3043c60c 878static int
d174bd64
DV
879shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
880 char __user *user_data,
881 bool page_do_bit17_swizzling,
882 bool needs_clflush_before,
883 bool needs_clflush_after)
673a394b 884{
d174bd64
DV
885 char *vaddr;
886 int ret;
e5281ccd 887
d174bd64 888 vaddr = kmap(page);
e7e58eb5 889 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
890 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
891 page_length,
892 page_do_bit17_swizzling);
d174bd64
DV
893 if (page_do_bit17_swizzling)
894 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
895 user_data,
896 page_length);
d174bd64
DV
897 else
898 ret = __copy_from_user(vaddr + shmem_page_offset,
899 user_data,
900 page_length);
901 if (needs_clflush_after)
23c18c71
DV
902 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903 page_length,
904 page_do_bit17_swizzling);
d174bd64 905 kunmap(page);
40123c1f 906
755d2218 907 return ret ? -EFAULT : 0;
40123c1f
EA
908}
909
40123c1f 910static int
e244a443
DV
911i915_gem_shmem_pwrite(struct drm_device *dev,
912 struct drm_i915_gem_object *obj,
913 struct drm_i915_gem_pwrite *args,
914 struct drm_file *file)
40123c1f 915{
40123c1f 916 ssize_t remain;
8c59967c
DV
917 loff_t offset;
918 char __user *user_data;
eb2c0c81 919 int shmem_page_offset, page_length, ret = 0;
8c59967c 920 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 921 int hit_slowpath = 0;
58642885
DV
922 int needs_clflush_after = 0;
923 int needs_clflush_before = 0;
67d5a50c 924 struct sg_page_iter sg_iter;
40123c1f 925
2bb4629a 926 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
927 remain = args->size;
928
8c59967c 929 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 930
58642885
DV
931 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932 /* If we're not in the cpu write domain, set ourself into the gtt
933 * write domain and manually flush cachelines (if required). This
934 * optimizes for the case when the gpu will use the data
935 * right away and we therefore have to clflush anyway. */
2c22569b 936 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
937 ret = i915_gem_object_wait_rendering(obj, false);
938 if (ret)
939 return ret;
58642885 940 }
c76ce038
CW
941 /* Same trick applies to invalidate partially written cachelines read
942 * before writing. */
943 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
944 needs_clflush_before =
945 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 946
755d2218
CW
947 ret = i915_gem_object_get_pages(obj);
948 if (ret)
949 return ret;
950
77a0d1ca 951 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 952
755d2218
CW
953 i915_gem_object_pin_pages(obj);
954
673a394b 955 offset = args->offset;
05394f39 956 obj->dirty = 1;
673a394b 957
67d5a50c
ID
958 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
959 offset >> PAGE_SHIFT) {
2db76d7c 960 struct page *page = sg_page_iter_page(&sg_iter);
58642885 961 int partial_cacheline_write;
e5281ccd 962
9da3da66
CW
963 if (remain <= 0)
964 break;
965
40123c1f
EA
966 /* Operation in this page
967 *
40123c1f 968 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
969 * page_length = bytes to copy for this page
970 */
c8cbbb8b 971 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
972
973 page_length = remain;
974 if ((shmem_page_offset + page_length) > PAGE_SIZE)
975 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 976
58642885
DV
977 /* If we don't overwrite a cacheline completely we need to be
978 * careful to have up-to-date data by first clflushing. Don't
979 * overcomplicate things and flush the entire patch. */
980 partial_cacheline_write = needs_clflush_before &&
981 ((shmem_page_offset | page_length)
982 & (boot_cpu_data.x86_clflush_size - 1));
983
8c59967c
DV
984 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
985 (page_to_phys(page) & (1 << 17)) != 0;
986
d174bd64
DV
987 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
988 user_data, page_do_bit17_swizzling,
989 partial_cacheline_write,
990 needs_clflush_after);
991 if (ret == 0)
992 goto next_page;
e244a443
DV
993
994 hit_slowpath = 1;
e244a443 995 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
996 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
997 user_data, page_do_bit17_swizzling,
998 partial_cacheline_write,
999 needs_clflush_after);
40123c1f 1000
e244a443 1001 mutex_lock(&dev->struct_mutex);
755d2218 1002
755d2218 1003 if (ret)
8c59967c 1004 goto out;
8c59967c 1005
17793c9a 1006next_page:
40123c1f 1007 remain -= page_length;
8c59967c 1008 user_data += page_length;
40123c1f 1009 offset += page_length;
673a394b
EA
1010 }
1011
fbd5a26d 1012out:
755d2218
CW
1013 i915_gem_object_unpin_pages(obj);
1014
e244a443 1015 if (hit_slowpath) {
8dcf015e
DV
1016 /*
1017 * Fixup: Flush cpu caches in case we didn't flush the dirty
1018 * cachelines in-line while writing and the object moved
1019 * out of the cpu write domain while we've dropped the lock.
1020 */
1021 if (!needs_clflush_after &&
1022 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1023 if (i915_gem_clflush_object(obj, obj->pin_display))
1024 i915_gem_chipset_flush(dev);
e244a443 1025 }
8c59967c 1026 }
673a394b 1027
58642885 1028 if (needs_clflush_after)
e76e9aeb 1029 i915_gem_chipset_flush(dev);
58642885 1030
063e4e6b 1031 intel_fb_obj_flush(obj, false);
40123c1f 1032 return ret;
673a394b
EA
1033}
1034
1035/**
1036 * Writes data to the object referenced by handle.
1037 *
1038 * On error, the contents of the buffer that were to be modified are undefined.
1039 */
1040int
1041i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1042 struct drm_file *file)
673a394b 1043{
5d77d9c5 1044 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1045 struct drm_i915_gem_pwrite *args = data;
05394f39 1046 struct drm_i915_gem_object *obj;
51311d0a
CW
1047 int ret;
1048
1049 if (args->size == 0)
1050 return 0;
1051
1052 if (!access_ok(VERIFY_READ,
2bb4629a 1053 to_user_ptr(args->data_ptr),
51311d0a
CW
1054 args->size))
1055 return -EFAULT;
1056
d330a953 1057 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1058 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059 args->size);
1060 if (ret)
1061 return -EFAULT;
1062 }
673a394b 1063
5d77d9c5
ID
1064 intel_runtime_pm_get(dev_priv);
1065
fbd5a26d 1066 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1067 if (ret)
5d77d9c5 1068 goto put_rpm;
1d7cfea1 1069
05394f39 1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1071 if (&obj->base == NULL) {
1d7cfea1
CW
1072 ret = -ENOENT;
1073 goto unlock;
fbd5a26d 1074 }
673a394b 1075
7dcd2499 1076 /* Bounds check destination. */
05394f39
CW
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
ce9d419d 1079 ret = -EINVAL;
35b62a89 1080 goto out;
ce9d419d
CW
1081 }
1082
1286ff73
DV
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
db53a302
CW
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
935aaa69 1093 ret = -EFAULT;
673a394b
EA
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
2c22569b
CW
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
fbd5a26d 1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1107 }
673a394b 1108
6a2c4232
CW
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
5c0480f2 1115
35b62a89 1116out:
05394f39 1117 drm_gem_object_unreference(&obj->base);
1d7cfea1 1118unlock:
fbd5a26d 1119 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1120put_rpm:
1121 intel_runtime_pm_put(dev_priv);
1122
673a394b
EA
1123 return ret;
1124}
1125
b361237b 1126int
33196ded 1127i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1128 bool interruptible)
1129{
1f83fee0 1130 if (i915_reset_in_progress(error)) {
b361237b
CW
1131 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132 * -EIO unconditionally for these. */
1133 if (!interruptible)
1134 return -EIO;
1135
1f83fee0
DV
1136 /* Recovery complete, but the reset failed ... */
1137 if (i915_terminally_wedged(error))
b361237b
CW
1138 return -EIO;
1139
6689c167
MA
1140 /*
1141 * Check if GPU Reset is in progress - we need intel_ring_begin
1142 * to work properly to reinit the hw state while the gpu is
1143 * still marked as reset-in-progress. Handle this with a flag.
1144 */
1145 if (!error->reload_in_reset)
1146 return -EAGAIN;
b361237b
CW
1147 }
1148
1149 return 0;
1150}
1151
1152/*
b6660d59 1153 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1154 */
84c33a64 1155int
b6660d59 1156i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b 1157{
b6660d59 1158 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b 1159
b6660d59 1160 if (req == req->ring->outstanding_lazy_request)
75289874 1161 i915_add_request(req);
b361237b 1162
bf7dc5b7 1163 return 0;
b361237b
CW
1164}
1165
094f9a54
CW
1166static void fake_irq(unsigned long data)
1167{
1168 wake_up_process((struct task_struct *)data);
1169}
1170
1171static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1172 struct intel_engine_cs *ring)
094f9a54
CW
1173{
1174 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1175}
1176
eed29a5b 1177static int __i915_spin_request(struct drm_i915_gem_request *req)
b29c19b6 1178{
2def4ad9
CW
1179 unsigned long timeout;
1180
eed29a5b 1181 if (i915_gem_request_get_ring(req)->irq_refcount)
2def4ad9
CW
1182 return -EBUSY;
1183
1184 timeout = jiffies + 1;
1185 while (!need_resched()) {
eed29a5b 1186 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1187 return 0;
1188
1189 if (time_after_eq(jiffies, timeout))
1190 break;
b29c19b6 1191
2def4ad9
CW
1192 cpu_relax_lowlatency();
1193 }
eed29a5b 1194 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1195 return 0;
1196
1197 return -EAGAIN;
b29c19b6
CW
1198}
1199
b361237b 1200/**
9c654818
JH
1201 * __i915_wait_request - wait until execution of request has finished
1202 * @req: duh!
1203 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1204 * @interruptible: do an interruptible wait (normally yes)
1205 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1206 *
f69061be
DV
1207 * Note: It is of utmost importance that the passed in seqno and reset_counter
1208 * values have been read by the caller in an smp safe manner. Where read-side
1209 * locks are involved, it is sufficient to read the reset_counter before
1210 * unlocking the lock that protects the seqno. For lockless tricks, the
1211 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1212 * inserted.
1213 *
9c654818 1214 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1215 * errno with remaining time filled in timeout argument.
1216 */
9c654818 1217int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1218 unsigned reset_counter,
b29c19b6 1219 bool interruptible,
5ed0bdf2 1220 s64 *timeout,
2e1b8730 1221 struct intel_rps_client *rps)
b361237b 1222{
9c654818 1223 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1224 struct drm_device *dev = ring->dev;
3e31c6c0 1225 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1226 const bool irq_test_in_progress =
1227 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1228 DEFINE_WAIT(wait);
47e9766d 1229 unsigned long timeout_expire;
5ed0bdf2 1230 s64 before, now;
b361237b
CW
1231 int ret;
1232
9df7575f 1233 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1234
b4716185
CW
1235 if (list_empty(&req->list))
1236 return 0;
1237
1b5a433a 1238 if (i915_gem_request_completed(req, true))
b361237b
CW
1239 return 0;
1240
7bd0e226
DV
1241 timeout_expire = timeout ?
1242 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1243
2e1b8730 1244 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1245 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1246
094f9a54 1247 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1248 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1249 before = ktime_get_raw_ns();
2def4ad9
CW
1250
1251 /* Optimistic spin for the next jiffie before touching IRQs */
1252 ret = __i915_spin_request(req);
1253 if (ret == 0)
1254 goto out;
1255
1256 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1257 ret = -ENODEV;
1258 goto out;
1259 }
1260
094f9a54
CW
1261 for (;;) {
1262 struct timer_list timer;
b361237b 1263
094f9a54
CW
1264 prepare_to_wait(&ring->irq_queue, &wait,
1265 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1266
f69061be
DV
1267 /* We need to check whether any gpu reset happened in between
1268 * the caller grabbing the seqno and now ... */
094f9a54
CW
1269 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1270 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1271 * is truely gone. */
1272 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1273 if (ret == 0)
1274 ret = -EAGAIN;
1275 break;
1276 }
f69061be 1277
1b5a433a 1278 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1279 ret = 0;
1280 break;
1281 }
b361237b 1282
094f9a54
CW
1283 if (interruptible && signal_pending(current)) {
1284 ret = -ERESTARTSYS;
1285 break;
1286 }
1287
47e9766d 1288 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1289 ret = -ETIME;
1290 break;
1291 }
1292
1293 timer.function = NULL;
1294 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1295 unsigned long expire;
1296
094f9a54 1297 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1298 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1299 mod_timer(&timer, expire);
1300 }
1301
5035c275 1302 io_schedule();
094f9a54 1303
094f9a54
CW
1304 if (timer.function) {
1305 del_singleshot_timer_sync(&timer);
1306 destroy_timer_on_stack(&timer);
1307 }
1308 }
168c3f21
MK
1309 if (!irq_test_in_progress)
1310 ring->irq_put(ring);
094f9a54
CW
1311
1312 finish_wait(&ring->irq_queue, &wait);
b361237b 1313
2def4ad9
CW
1314out:
1315 now = ktime_get_raw_ns();
1316 trace_i915_gem_request_wait_end(req);
1317
b361237b 1318 if (timeout) {
5ed0bdf2
TG
1319 s64 tres = *timeout - (now - before);
1320
1321 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1322
1323 /*
1324 * Apparently ktime isn't accurate enough and occasionally has a
1325 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1326 * things up to make the test happy. We allow up to 1 jiffy.
1327 *
1328 * This is a regrssion from the timespec->ktime conversion.
1329 */
1330 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1331 *timeout = 0;
b361237b
CW
1332 }
1333
094f9a54 1334 return ret;
b361237b
CW
1335}
1336
b4716185
CW
1337static inline void
1338i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1339{
1340 struct drm_i915_file_private *file_priv = request->file_priv;
1341
1342 if (!file_priv)
1343 return;
1344
1345 spin_lock(&file_priv->mm.lock);
1346 list_del(&request->client_list);
1347 request->file_priv = NULL;
1348 spin_unlock(&file_priv->mm.lock);
1349}
1350
1351static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1352{
1353 trace_i915_gem_request_retire(request);
1354
1355 /* We know the GPU must have read the request to have
1356 * sent us the seqno + interrupt, so use the position
1357 * of tail of the request to update the last known position
1358 * of the GPU head.
1359 *
1360 * Note this requires that we are always called in request
1361 * completion order.
1362 */
1363 request->ringbuf->last_retired_head = request->postfix;
1364
1365 list_del_init(&request->list);
1366 i915_gem_request_remove_from_client(request);
1367
1368 put_pid(request->pid);
1369
1370 i915_gem_request_unreference(request);
1371}
1372
1373static void
1374__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375{
1376 struct intel_engine_cs *engine = req->ring;
1377 struct drm_i915_gem_request *tmp;
1378
1379 lockdep_assert_held(&engine->dev->struct_mutex);
1380
1381 if (list_empty(&req->list))
1382 return;
1383
1384 do {
1385 tmp = list_first_entry(&engine->request_list,
1386 typeof(*tmp), list);
1387
1388 i915_gem_request_retire(tmp);
1389 } while (tmp != req);
1390
1391 WARN_ON(i915_verify_lists(engine->dev));
1392}
1393
b361237b 1394/**
a4b3a571 1395 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1396 * request and object lists appropriately for that event.
1397 */
1398int
a4b3a571 1399i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1400{
a4b3a571
DV
1401 struct drm_device *dev;
1402 struct drm_i915_private *dev_priv;
1403 bool interruptible;
b361237b
CW
1404 int ret;
1405
a4b3a571
DV
1406 BUG_ON(req == NULL);
1407
1408 dev = req->ring->dev;
1409 dev_priv = dev->dev_private;
1410 interruptible = dev_priv->mm.interruptible;
1411
b361237b 1412 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1413
33196ded 1414 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1415 if (ret)
1416 return ret;
1417
a4b3a571 1418 ret = i915_gem_check_olr(req);
b361237b
CW
1419 if (ret)
1420 return ret;
1421
b4716185
CW
1422 ret = __i915_wait_request(req,
1423 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1424 interruptible, NULL, NULL);
b4716185
CW
1425 if (ret)
1426 return ret;
d26e3af8 1427
b4716185 1428 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1429 return 0;
1430}
1431
b361237b
CW
1432/**
1433 * Ensures that all rendering to the object has completed and the object is
1434 * safe to unbind from the GTT or access from the CPU.
1435 */
2e2f351d 1436int
b361237b
CW
1437i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1438 bool readonly)
1439{
b4716185 1440 int ret, i;
b361237b 1441
b4716185 1442 if (!obj->active)
b361237b
CW
1443 return 0;
1444
b4716185
CW
1445 if (readonly) {
1446 if (obj->last_write_req != NULL) {
1447 ret = i915_wait_request(obj->last_write_req);
1448 if (ret)
1449 return ret;
b361237b 1450
b4716185
CW
1451 i = obj->last_write_req->ring->id;
1452 if (obj->last_read_req[i] == obj->last_write_req)
1453 i915_gem_object_retire__read(obj, i);
1454 else
1455 i915_gem_object_retire__write(obj);
1456 }
1457 } else {
1458 for (i = 0; i < I915_NUM_RINGS; i++) {
1459 if (obj->last_read_req[i] == NULL)
1460 continue;
1461
1462 ret = i915_wait_request(obj->last_read_req[i]);
1463 if (ret)
1464 return ret;
1465
1466 i915_gem_object_retire__read(obj, i);
1467 }
1468 RQ_BUG_ON(obj->active);
1469 }
1470
1471 return 0;
1472}
1473
1474static void
1475i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1476 struct drm_i915_gem_request *req)
1477{
1478 int ring = req->ring->id;
1479
1480 if (obj->last_read_req[ring] == req)
1481 i915_gem_object_retire__read(obj, ring);
1482 else if (obj->last_write_req == req)
1483 i915_gem_object_retire__write(obj);
1484
1485 __i915_gem_request_retire__upto(req);
b361237b
CW
1486}
1487
3236f57a
CW
1488/* A nonblocking variant of the above wait. This is a highly dangerous routine
1489 * as the object state may change during this call.
1490 */
1491static __must_check int
1492i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1493 struct intel_rps_client *rps,
3236f57a
CW
1494 bool readonly)
1495{
1496 struct drm_device *dev = obj->base.dev;
1497 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1498 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1499 unsigned reset_counter;
b4716185 1500 int ret, i, n = 0;
3236f57a
CW
1501
1502 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1503 BUG_ON(!dev_priv->mm.interruptible);
1504
b4716185 1505 if (!obj->active)
3236f57a
CW
1506 return 0;
1507
33196ded 1508 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1509 if (ret)
1510 return ret;
1511
f69061be 1512 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1513
1514 if (readonly) {
1515 struct drm_i915_gem_request *req;
1516
1517 req = obj->last_write_req;
1518 if (req == NULL)
1519 return 0;
1520
1521 ret = i915_gem_check_olr(req);
1522 if (ret)
1523 goto err;
1524
1525 requests[n++] = i915_gem_request_reference(req);
1526 } else {
1527 for (i = 0; i < I915_NUM_RINGS; i++) {
1528 struct drm_i915_gem_request *req;
1529
1530 req = obj->last_read_req[i];
1531 if (req == NULL)
1532 continue;
1533
1534 ret = i915_gem_check_olr(req);
1535 if (ret)
1536 goto err;
1537
1538 requests[n++] = i915_gem_request_reference(req);
1539 }
1540 }
1541
3236f57a 1542 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1543 for (i = 0; ret == 0 && i < n; i++)
1544 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1545 NULL, rps);
3236f57a
CW
1546 mutex_lock(&dev->struct_mutex);
1547
b4716185
CW
1548err:
1549 for (i = 0; i < n; i++) {
1550 if (ret == 0)
1551 i915_gem_object_retire_request(obj, requests[i]);
1552 i915_gem_request_unreference(requests[i]);
1553 }
1554
1555 return ret;
3236f57a
CW
1556}
1557
2e1b8730
CW
1558static struct intel_rps_client *to_rps_client(struct drm_file *file)
1559{
1560 struct drm_i915_file_private *fpriv = file->driver_priv;
1561 return &fpriv->rps;
1562}
1563
673a394b 1564/**
2ef7eeaa
EA
1565 * Called when user space prepares to use an object with the CPU, either
1566 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1567 */
1568int
1569i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1570 struct drm_file *file)
673a394b
EA
1571{
1572 struct drm_i915_gem_set_domain *args = data;
05394f39 1573 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1574 uint32_t read_domains = args->read_domains;
1575 uint32_t write_domain = args->write_domain;
673a394b
EA
1576 int ret;
1577
2ef7eeaa 1578 /* Only handle setting domains to types used by the CPU. */
21d509e3 1579 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1580 return -EINVAL;
1581
21d509e3 1582 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1583 return -EINVAL;
1584
1585 /* Having something in the write domain implies it's in the read
1586 * domain, and only that read domain. Enforce that in the request.
1587 */
1588 if (write_domain != 0 && read_domains != write_domain)
1589 return -EINVAL;
1590
76c1dec1 1591 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1592 if (ret)
76c1dec1 1593 return ret;
1d7cfea1 1594
05394f39 1595 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1596 if (&obj->base == NULL) {
1d7cfea1
CW
1597 ret = -ENOENT;
1598 goto unlock;
76c1dec1 1599 }
673a394b 1600
3236f57a
CW
1601 /* Try to flush the object off the GPU without holding the lock.
1602 * We will repeat the flush holding the lock in the normal manner
1603 * to catch cases where we are gazumped.
1604 */
6e4930f6 1605 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1606 to_rps_client(file),
6e4930f6 1607 !write_domain);
3236f57a
CW
1608 if (ret)
1609 goto unref;
1610
43566ded 1611 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1612 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1613 else
e47c68e9 1614 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1615
3236f57a 1616unref:
05394f39 1617 drm_gem_object_unreference(&obj->base);
1d7cfea1 1618unlock:
673a394b
EA
1619 mutex_unlock(&dev->struct_mutex);
1620 return ret;
1621}
1622
1623/**
1624 * Called when user space has done writes to this buffer
1625 */
1626int
1627i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1628 struct drm_file *file)
673a394b
EA
1629{
1630 struct drm_i915_gem_sw_finish *args = data;
05394f39 1631 struct drm_i915_gem_object *obj;
673a394b
EA
1632 int ret = 0;
1633
76c1dec1 1634 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1635 if (ret)
76c1dec1 1636 return ret;
1d7cfea1 1637
05394f39 1638 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1639 if (&obj->base == NULL) {
1d7cfea1
CW
1640 ret = -ENOENT;
1641 goto unlock;
673a394b
EA
1642 }
1643
673a394b 1644 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1645 if (obj->pin_display)
e62b59e4 1646 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1647
05394f39 1648 drm_gem_object_unreference(&obj->base);
1d7cfea1 1649unlock:
673a394b
EA
1650 mutex_unlock(&dev->struct_mutex);
1651 return ret;
1652}
1653
1654/**
1655 * Maps the contents of an object, returning the address it is mapped
1656 * into.
1657 *
1658 * While the mapping holds a reference on the contents of the object, it doesn't
1659 * imply a ref on the object itself.
34367381
DV
1660 *
1661 * IMPORTANT:
1662 *
1663 * DRM driver writers who look a this function as an example for how to do GEM
1664 * mmap support, please don't implement mmap support like here. The modern way
1665 * to implement DRM mmap support is with an mmap offset ioctl (like
1666 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667 * That way debug tooling like valgrind will understand what's going on, hiding
1668 * the mmap call in a driver private ioctl will break that. The i915 driver only
1669 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1670 */
1671int
1672i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1673 struct drm_file *file)
673a394b
EA
1674{
1675 struct drm_i915_gem_mmap *args = data;
1676 struct drm_gem_object *obj;
673a394b
EA
1677 unsigned long addr;
1678
1816f923
AG
1679 if (args->flags & ~(I915_MMAP_WC))
1680 return -EINVAL;
1681
1682 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1683 return -ENODEV;
1684
05394f39 1685 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1686 if (obj == NULL)
bf79cb91 1687 return -ENOENT;
673a394b 1688
1286ff73
DV
1689 /* prime objects have no backing filp to GEM mmap
1690 * pages from.
1691 */
1692 if (!obj->filp) {
1693 drm_gem_object_unreference_unlocked(obj);
1694 return -EINVAL;
1695 }
1696
6be5ceb0 1697 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1698 PROT_READ | PROT_WRITE, MAP_SHARED,
1699 args->offset);
1816f923
AG
1700 if (args->flags & I915_MMAP_WC) {
1701 struct mm_struct *mm = current->mm;
1702 struct vm_area_struct *vma;
1703
1704 down_write(&mm->mmap_sem);
1705 vma = find_vma(mm, addr);
1706 if (vma)
1707 vma->vm_page_prot =
1708 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1709 else
1710 addr = -ENOMEM;
1711 up_write(&mm->mmap_sem);
1712 }
bc9025bd 1713 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1714 if (IS_ERR((void *)addr))
1715 return addr;
1716
1717 args->addr_ptr = (uint64_t) addr;
1718
1719 return 0;
1720}
1721
de151cf6
JB
1722/**
1723 * i915_gem_fault - fault a page into the GTT
1724 * vma: VMA in question
1725 * vmf: fault info
1726 *
1727 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1728 * from userspace. The fault handler takes care of binding the object to
1729 * the GTT (if needed), allocating and programming a fence register (again,
1730 * only if needed based on whether the old reg is still valid or the object
1731 * is tiled) and inserting a new PTE into the faulting process.
1732 *
1733 * Note that the faulting process may involve evicting existing objects
1734 * from the GTT and/or fence registers to make room. So performance may
1735 * suffer if the GTT working set is large or there are few fence registers
1736 * left.
1737 */
1738int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1739{
05394f39
CW
1740 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1741 struct drm_device *dev = obj->base.dev;
3e31c6c0 1742 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1743 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1744 pgoff_t page_offset;
1745 unsigned long pfn;
1746 int ret = 0;
0f973f27 1747 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1748
f65c9168
PZ
1749 intel_runtime_pm_get(dev_priv);
1750
de151cf6
JB
1751 /* We don't use vmf->pgoff since that has the fake offset */
1752 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1753 PAGE_SHIFT;
1754
d9bc7e9f
CW
1755 ret = i915_mutex_lock_interruptible(dev);
1756 if (ret)
1757 goto out;
a00b10c3 1758
db53a302
CW
1759 trace_i915_gem_object_fault(obj, page_offset, true, write);
1760
6e4930f6
CW
1761 /* Try to flush the object off the GPU first without holding the lock.
1762 * Upon reacquiring the lock, we will perform our sanity checks and then
1763 * repeat the flush holding the lock in the normal manner to catch cases
1764 * where we are gazumped.
1765 */
1766 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1767 if (ret)
1768 goto unlock;
1769
eb119bd6
CW
1770 /* Access to snoopable pages through the GTT is incoherent. */
1771 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1772 ret = -EFAULT;
eb119bd6
CW
1773 goto unlock;
1774 }
1775
c5ad54cf 1776 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1777 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1778 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1779 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1780
c5ad54cf
JL
1781 memset(&view, 0, sizeof(view));
1782 view.type = I915_GGTT_VIEW_PARTIAL;
1783 view.params.partial.offset = rounddown(page_offset, chunk_size);
1784 view.params.partial.size =
1785 min_t(unsigned int,
1786 chunk_size,
1787 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1788 view.params.partial.offset);
1789 }
1790
1791 /* Now pin it into the GTT if needed */
1792 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1793 if (ret)
1794 goto unlock;
4a684a41 1795
c9839303
CW
1796 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1797 if (ret)
1798 goto unpin;
74898d7e 1799
06d98131 1800 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1801 if (ret)
c9839303 1802 goto unpin;
7d1c4804 1803
b90b91d8 1804 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1805 pfn = dev_priv->gtt.mappable_base +
1806 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1807 pfn >>= PAGE_SHIFT;
de151cf6 1808
c5ad54cf
JL
1809 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1810 /* Overriding existing pages in partial view does not cause
1811 * us any trouble as TLBs are still valid because the fault
1812 * is due to userspace losing part of the mapping or never
1813 * having accessed it before (at this partials' range).
1814 */
1815 unsigned long base = vma->vm_start +
1816 (view.params.partial.offset << PAGE_SHIFT);
1817 unsigned int i;
b90b91d8 1818
c5ad54cf
JL
1819 for (i = 0; i < view.params.partial.size; i++) {
1820 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1821 if (ret)
1822 break;
1823 }
1824
1825 obj->fault_mappable = true;
c5ad54cf
JL
1826 } else {
1827 if (!obj->fault_mappable) {
1828 unsigned long size = min_t(unsigned long,
1829 vma->vm_end - vma->vm_start,
1830 obj->base.size);
1831 int i;
1832
1833 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1834 ret = vm_insert_pfn(vma,
1835 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1836 pfn + i);
1837 if (ret)
1838 break;
1839 }
1840
1841 obj->fault_mappable = true;
1842 } else
1843 ret = vm_insert_pfn(vma,
1844 (unsigned long)vmf->virtual_address,
1845 pfn + page_offset);
1846 }
c9839303 1847unpin:
c5ad54cf 1848 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1849unlock:
de151cf6 1850 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1851out:
de151cf6 1852 switch (ret) {
d9bc7e9f 1853 case -EIO:
2232f031
DV
1854 /*
1855 * We eat errors when the gpu is terminally wedged to avoid
1856 * userspace unduly crashing (gl has no provisions for mmaps to
1857 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1858 * and so needs to be reported.
1859 */
1860 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1861 ret = VM_FAULT_SIGBUS;
1862 break;
1863 }
045e769a 1864 case -EAGAIN:
571c608d
DV
1865 /*
1866 * EAGAIN means the gpu is hung and we'll wait for the error
1867 * handler to reset everything when re-faulting in
1868 * i915_mutex_lock_interruptible.
d9bc7e9f 1869 */
c715089f
CW
1870 case 0:
1871 case -ERESTARTSYS:
bed636ab 1872 case -EINTR:
e79e0fe3
DR
1873 case -EBUSY:
1874 /*
1875 * EBUSY is ok: this just means that another thread
1876 * already did the job.
1877 */
f65c9168
PZ
1878 ret = VM_FAULT_NOPAGE;
1879 break;
de151cf6 1880 case -ENOMEM:
f65c9168
PZ
1881 ret = VM_FAULT_OOM;
1882 break;
a7c2e1aa 1883 case -ENOSPC:
45d67817 1884 case -EFAULT:
f65c9168
PZ
1885 ret = VM_FAULT_SIGBUS;
1886 break;
de151cf6 1887 default:
a7c2e1aa 1888 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1889 ret = VM_FAULT_SIGBUS;
1890 break;
de151cf6 1891 }
f65c9168
PZ
1892
1893 intel_runtime_pm_put(dev_priv);
1894 return ret;
de151cf6
JB
1895}
1896
901782b2
CW
1897/**
1898 * i915_gem_release_mmap - remove physical page mappings
1899 * @obj: obj in question
1900 *
af901ca1 1901 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1902 * relinquish ownership of the pages back to the system.
1903 *
1904 * It is vital that we remove the page mapping if we have mapped a tiled
1905 * object through the GTT and then lose the fence register due to
1906 * resource pressure. Similarly if the object has been moved out of the
1907 * aperture, than pages mapped into userspace must be revoked. Removing the
1908 * mapping will then trigger a page fault on the next user access, allowing
1909 * fixup by i915_gem_fault().
1910 */
d05ca301 1911void
05394f39 1912i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1913{
6299f992
CW
1914 if (!obj->fault_mappable)
1915 return;
901782b2 1916
6796cb16
DH
1917 drm_vma_node_unmap(&obj->base.vma_node,
1918 obj->base.dev->anon_inode->i_mapping);
6299f992 1919 obj->fault_mappable = false;
901782b2
CW
1920}
1921
eedd10f4
CW
1922void
1923i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1924{
1925 struct drm_i915_gem_object *obj;
1926
1927 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1928 i915_gem_release_mmap(obj);
1929}
1930
0fa87796 1931uint32_t
e28f8711 1932i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1933{
e28f8711 1934 uint32_t gtt_size;
92b88aeb
CW
1935
1936 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1937 tiling_mode == I915_TILING_NONE)
1938 return size;
92b88aeb
CW
1939
1940 /* Previous chips need a power-of-two fence region when tiling */
1941 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1942 gtt_size = 1024*1024;
92b88aeb 1943 else
e28f8711 1944 gtt_size = 512*1024;
92b88aeb 1945
e28f8711
CW
1946 while (gtt_size < size)
1947 gtt_size <<= 1;
92b88aeb 1948
e28f8711 1949 return gtt_size;
92b88aeb
CW
1950}
1951
de151cf6
JB
1952/**
1953 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1954 * @obj: object to check
1955 *
1956 * Return the required GTT alignment for an object, taking into account
5e783301 1957 * potential fence register mapping.
de151cf6 1958 */
d865110c
ID
1959uint32_t
1960i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1961 int tiling_mode, bool fenced)
de151cf6 1962{
de151cf6
JB
1963 /*
1964 * Minimum alignment is 4k (GTT page size), but might be greater
1965 * if a fence register is needed for the object.
1966 */
d865110c 1967 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1968 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1969 return 4096;
1970
a00b10c3
CW
1971 /*
1972 * Previous chips need to be aligned to the size of the smallest
1973 * fence register that can contain the object.
1974 */
e28f8711 1975 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1976}
1977
d8cb5086
CW
1978static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1979{
1980 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1981 int ret;
1982
0de23977 1983 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1984 return 0;
1985
da494d7c
DV
1986 dev_priv->mm.shrinker_no_lock_stealing = true;
1987
d8cb5086
CW
1988 ret = drm_gem_create_mmap_offset(&obj->base);
1989 if (ret != -ENOSPC)
da494d7c 1990 goto out;
d8cb5086
CW
1991
1992 /* Badly fragmented mmap space? The only way we can recover
1993 * space is by destroying unwanted objects. We can't randomly release
1994 * mmap_offsets as userspace expects them to be persistent for the
1995 * lifetime of the objects. The closest we can is to release the
1996 * offsets on purgeable objects by truncating it and marking it purged,
1997 * which prevents userspace from ever using that object again.
1998 */
21ab4e74
CW
1999 i915_gem_shrink(dev_priv,
2000 obj->base.size >> PAGE_SHIFT,
2001 I915_SHRINK_BOUND |
2002 I915_SHRINK_UNBOUND |
2003 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2004 ret = drm_gem_create_mmap_offset(&obj->base);
2005 if (ret != -ENOSPC)
da494d7c 2006 goto out;
d8cb5086
CW
2007
2008 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2009 ret = drm_gem_create_mmap_offset(&obj->base);
2010out:
2011 dev_priv->mm.shrinker_no_lock_stealing = false;
2012
2013 return ret;
d8cb5086
CW
2014}
2015
2016static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2017{
d8cb5086
CW
2018 drm_gem_free_mmap_offset(&obj->base);
2019}
2020
da6b51d0 2021int
ff72145b
DA
2022i915_gem_mmap_gtt(struct drm_file *file,
2023 struct drm_device *dev,
da6b51d0 2024 uint32_t handle,
ff72145b 2025 uint64_t *offset)
de151cf6 2026{
05394f39 2027 struct drm_i915_gem_object *obj;
de151cf6
JB
2028 int ret;
2029
76c1dec1 2030 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2031 if (ret)
76c1dec1 2032 return ret;
de151cf6 2033
ff72145b 2034 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2035 if (&obj->base == NULL) {
1d7cfea1
CW
2036 ret = -ENOENT;
2037 goto unlock;
2038 }
de151cf6 2039
05394f39 2040 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2041 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2042 ret = -EFAULT;
1d7cfea1 2043 goto out;
ab18282d
CW
2044 }
2045
d8cb5086
CW
2046 ret = i915_gem_object_create_mmap_offset(obj);
2047 if (ret)
2048 goto out;
de151cf6 2049
0de23977 2050 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2051
1d7cfea1 2052out:
05394f39 2053 drm_gem_object_unreference(&obj->base);
1d7cfea1 2054unlock:
de151cf6 2055 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2056 return ret;
de151cf6
JB
2057}
2058
ff72145b
DA
2059/**
2060 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2061 * @dev: DRM device
2062 * @data: GTT mapping ioctl data
2063 * @file: GEM object info
2064 *
2065 * Simply returns the fake offset to userspace so it can mmap it.
2066 * The mmap call will end up in drm_gem_mmap(), which will set things
2067 * up so we can get faults in the handler above.
2068 *
2069 * The fault handler will take care of binding the object into the GTT
2070 * (since it may have been evicted to make room for something), allocating
2071 * a fence register, and mapping the appropriate aperture address into
2072 * userspace.
2073 */
2074int
2075i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2076 struct drm_file *file)
2077{
2078 struct drm_i915_gem_mmap_gtt *args = data;
2079
da6b51d0 2080 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2081}
2082
225067ee
DV
2083/* Immediately discard the backing storage */
2084static void
2085i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2086{
4d6294bf 2087 i915_gem_object_free_mmap_offset(obj);
1286ff73 2088
4d6294bf
CW
2089 if (obj->base.filp == NULL)
2090 return;
e5281ccd 2091
225067ee
DV
2092 /* Our goal here is to return as much of the memory as
2093 * is possible back to the system as we are called from OOM.
2094 * To do this we must instruct the shmfs to drop all of its
2095 * backing pages, *now*.
2096 */
5537252b 2097 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2098 obj->madv = __I915_MADV_PURGED;
2099}
e5281ccd 2100
5537252b
CW
2101/* Try to discard unwanted pages */
2102static void
2103i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2104{
5537252b
CW
2105 struct address_space *mapping;
2106
2107 switch (obj->madv) {
2108 case I915_MADV_DONTNEED:
2109 i915_gem_object_truncate(obj);
2110 case __I915_MADV_PURGED:
2111 return;
2112 }
2113
2114 if (obj->base.filp == NULL)
2115 return;
2116
2117 mapping = file_inode(obj->base.filp)->i_mapping,
2118 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2119}
2120
5cdf5881 2121static void
05394f39 2122i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2123{
90797e6d
ID
2124 struct sg_page_iter sg_iter;
2125 int ret;
1286ff73 2126
05394f39 2127 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2128
6c085a72
CW
2129 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2130 if (ret) {
2131 /* In the event of a disaster, abandon all caches and
2132 * hope for the best.
2133 */
2134 WARN_ON(ret != -EIO);
2c22569b 2135 i915_gem_clflush_object(obj, true);
6c085a72
CW
2136 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2137 }
2138
6dacfd2f 2139 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2140 i915_gem_object_save_bit_17_swizzle(obj);
2141
05394f39
CW
2142 if (obj->madv == I915_MADV_DONTNEED)
2143 obj->dirty = 0;
3ef94daa 2144
90797e6d 2145 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2146 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2147
05394f39 2148 if (obj->dirty)
9da3da66 2149 set_page_dirty(page);
3ef94daa 2150
05394f39 2151 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2152 mark_page_accessed(page);
3ef94daa 2153
9da3da66 2154 page_cache_release(page);
3ef94daa 2155 }
05394f39 2156 obj->dirty = 0;
673a394b 2157
9da3da66
CW
2158 sg_free_table(obj->pages);
2159 kfree(obj->pages);
37e680a1 2160}
6c085a72 2161
dd624afd 2162int
37e680a1
CW
2163i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2164{
2165 const struct drm_i915_gem_object_ops *ops = obj->ops;
2166
2f745ad3 2167 if (obj->pages == NULL)
37e680a1
CW
2168 return 0;
2169
a5570178
CW
2170 if (obj->pages_pin_count)
2171 return -EBUSY;
2172
9843877d 2173 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2174
a2165e31
CW
2175 /* ->put_pages might need to allocate memory for the bit17 swizzle
2176 * array, hence protect them from being reaped by removing them from gtt
2177 * lists early. */
35c20a60 2178 list_del(&obj->global_list);
a2165e31 2179
37e680a1 2180 ops->put_pages(obj);
05394f39 2181 obj->pages = NULL;
37e680a1 2182
5537252b 2183 i915_gem_object_invalidate(obj);
6c085a72
CW
2184
2185 return 0;
2186}
2187
37e680a1 2188static int
6c085a72 2189i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2190{
6c085a72 2191 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2192 int page_count, i;
2193 struct address_space *mapping;
9da3da66
CW
2194 struct sg_table *st;
2195 struct scatterlist *sg;
90797e6d 2196 struct sg_page_iter sg_iter;
e5281ccd 2197 struct page *page;
90797e6d 2198 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2199 gfp_t gfp;
e5281ccd 2200
6c085a72
CW
2201 /* Assert that the object is not currently in any GPU domain. As it
2202 * wasn't in the GTT, there shouldn't be any way it could have been in
2203 * a GPU cache
2204 */
2205 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2206 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2207
9da3da66
CW
2208 st = kmalloc(sizeof(*st), GFP_KERNEL);
2209 if (st == NULL)
2210 return -ENOMEM;
2211
05394f39 2212 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2213 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2214 kfree(st);
e5281ccd 2215 return -ENOMEM;
9da3da66 2216 }
e5281ccd 2217
9da3da66
CW
2218 /* Get the list of pages out of our struct file. They'll be pinned
2219 * at this point until we release them.
2220 *
2221 * Fail silently without starting the shrinker
2222 */
496ad9aa 2223 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2224 gfp = mapping_gfp_mask(mapping);
caf49191 2225 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2226 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2227 sg = st->sgl;
2228 st->nents = 0;
2229 for (i = 0; i < page_count; i++) {
6c085a72
CW
2230 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2231 if (IS_ERR(page)) {
21ab4e74
CW
2232 i915_gem_shrink(dev_priv,
2233 page_count,
2234 I915_SHRINK_BOUND |
2235 I915_SHRINK_UNBOUND |
2236 I915_SHRINK_PURGEABLE);
6c085a72
CW
2237 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2238 }
2239 if (IS_ERR(page)) {
2240 /* We've tried hard to allocate the memory by reaping
2241 * our own buffer, now let the real VM do its job and
2242 * go down in flames if truly OOM.
2243 */
6c085a72 2244 i915_gem_shrink_all(dev_priv);
f461d1be 2245 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2246 if (IS_ERR(page))
2247 goto err_pages;
6c085a72 2248 }
426729dc
KRW
2249#ifdef CONFIG_SWIOTLB
2250 if (swiotlb_nr_tbl()) {
2251 st->nents++;
2252 sg_set_page(sg, page, PAGE_SIZE, 0);
2253 sg = sg_next(sg);
2254 continue;
2255 }
2256#endif
90797e6d
ID
2257 if (!i || page_to_pfn(page) != last_pfn + 1) {
2258 if (i)
2259 sg = sg_next(sg);
2260 st->nents++;
2261 sg_set_page(sg, page, PAGE_SIZE, 0);
2262 } else {
2263 sg->length += PAGE_SIZE;
2264 }
2265 last_pfn = page_to_pfn(page);
3bbbe706
DV
2266
2267 /* Check that the i965g/gm workaround works. */
2268 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2269 }
426729dc
KRW
2270#ifdef CONFIG_SWIOTLB
2271 if (!swiotlb_nr_tbl())
2272#endif
2273 sg_mark_end(sg);
74ce6b6c
CW
2274 obj->pages = st;
2275
6dacfd2f 2276 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2277 i915_gem_object_do_bit_17_swizzle(obj);
2278
656bfa3a
DV
2279 if (obj->tiling_mode != I915_TILING_NONE &&
2280 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2281 i915_gem_object_pin_pages(obj);
2282
e5281ccd
CW
2283 return 0;
2284
2285err_pages:
90797e6d
ID
2286 sg_mark_end(sg);
2287 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2288 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2289 sg_free_table(st);
2290 kfree(st);
0820baf3
CW
2291
2292 /* shmemfs first checks if there is enough memory to allocate the page
2293 * and reports ENOSPC should there be insufficient, along with the usual
2294 * ENOMEM for a genuine allocation failure.
2295 *
2296 * We use ENOSPC in our driver to mean that we have run out of aperture
2297 * space and so want to translate the error from shmemfs back to our
2298 * usual understanding of ENOMEM.
2299 */
2300 if (PTR_ERR(page) == -ENOSPC)
2301 return -ENOMEM;
2302 else
2303 return PTR_ERR(page);
673a394b
EA
2304}
2305
37e680a1
CW
2306/* Ensure that the associated pages are gathered from the backing storage
2307 * and pinned into our object. i915_gem_object_get_pages() may be called
2308 * multiple times before they are released by a single call to
2309 * i915_gem_object_put_pages() - once the pages are no longer referenced
2310 * either as a result of memory pressure (reaping pages under the shrinker)
2311 * or as the object is itself released.
2312 */
2313int
2314i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2315{
2316 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2317 const struct drm_i915_gem_object_ops *ops = obj->ops;
2318 int ret;
2319
2f745ad3 2320 if (obj->pages)
37e680a1
CW
2321 return 0;
2322
43e28f09 2323 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2324 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2325 return -EFAULT;
43e28f09
CW
2326 }
2327
a5570178
CW
2328 BUG_ON(obj->pages_pin_count);
2329
37e680a1
CW
2330 ret = ops->get_pages(obj);
2331 if (ret)
2332 return ret;
2333
35c20a60 2334 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2335
2336 obj->get_page.sg = obj->pages->sgl;
2337 obj->get_page.last = 0;
2338
37e680a1 2339 return 0;
673a394b
EA
2340}
2341
b4716185 2342void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2343 struct drm_i915_gem_request *req)
673a394b 2344{
b4716185 2345 struct drm_i915_gem_object *obj = vma->obj;
b2af0376
JH
2346 struct intel_engine_cs *ring;
2347
2348 ring = i915_gem_request_get_ring(req);
673a394b
EA
2349
2350 /* Add a reference if we're newly entering the active list. */
b4716185 2351 if (obj->active == 0)
05394f39 2352 drm_gem_object_reference(&obj->base);
b4716185 2353 obj->active |= intel_ring_flag(ring);
e35a41de 2354
b4716185 2355 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
b2af0376 2356 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
caea7476 2357
b4716185 2358 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2359}
2360
b4716185
CW
2361static void
2362i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2363{
b4716185
CW
2364 RQ_BUG_ON(obj->last_write_req == NULL);
2365 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2366
2367 i915_gem_request_assign(&obj->last_write_req, NULL);
2368 intel_fb_obj_flush(obj, true);
e2d05a8b
BW
2369}
2370
caea7476 2371static void
b4716185 2372i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2373{
feb822cf 2374 struct i915_vma *vma;
ce44b0ea 2375
b4716185
CW
2376 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2377 RQ_BUG_ON(!(obj->active & (1 << ring)));
2378
2379 list_del_init(&obj->ring_list[ring]);
2380 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2381
2382 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2383 i915_gem_object_retire__write(obj);
2384
2385 obj->active &= ~(1 << ring);
2386 if (obj->active)
2387 return;
caea7476 2388
fe14d5f4
TU
2389 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2390 if (!list_empty(&vma->mm_list))
2391 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2392 }
caea7476 2393
97b2a6a1 2394 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2395 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2396}
2397
9d773091 2398static int
fca26bb4 2399i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2400{
9d773091 2401 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2402 struct intel_engine_cs *ring;
9d773091 2403 int ret, i, j;
53d227f2 2404
107f27a5 2405 /* Carefully retire all requests without writing to the rings */
9d773091 2406 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2407 ret = intel_ring_idle(ring);
2408 if (ret)
2409 return ret;
9d773091 2410 }
9d773091 2411 i915_gem_retire_requests(dev);
107f27a5
CW
2412
2413 /* Finally reset hw state */
9d773091 2414 for_each_ring(ring, dev_priv, i) {
fca26bb4 2415 intel_ring_init_seqno(ring, seqno);
498d2ac1 2416
ebc348b2
BW
2417 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2418 ring->semaphore.sync_seqno[j] = 0;
9d773091 2419 }
53d227f2 2420
9d773091 2421 return 0;
53d227f2
DV
2422}
2423
fca26bb4
MK
2424int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2425{
2426 struct drm_i915_private *dev_priv = dev->dev_private;
2427 int ret;
2428
2429 if (seqno == 0)
2430 return -EINVAL;
2431
2432 /* HWS page needs to be set less than what we
2433 * will inject to ring
2434 */
2435 ret = i915_gem_init_seqno(dev, seqno - 1);
2436 if (ret)
2437 return ret;
2438
2439 /* Carefully set the last_seqno value so that wrap
2440 * detection still works
2441 */
2442 dev_priv->next_seqno = seqno;
2443 dev_priv->last_seqno = seqno - 1;
2444 if (dev_priv->last_seqno == 0)
2445 dev_priv->last_seqno--;
2446
2447 return 0;
2448}
2449
9d773091
CW
2450int
2451i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2452{
9d773091
CW
2453 struct drm_i915_private *dev_priv = dev->dev_private;
2454
2455 /* reserve 0 for non-seqno */
2456 if (dev_priv->next_seqno == 0) {
fca26bb4 2457 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2458 if (ret)
2459 return ret;
53d227f2 2460
9d773091
CW
2461 dev_priv->next_seqno = 1;
2462 }
53d227f2 2463
f72b3435 2464 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2465 return 0;
53d227f2
DV
2466}
2467
bf7dc5b7
JH
2468/*
2469 * NB: This function is not allowed to fail. Doing so would mean the the
2470 * request is not being tracked for completion but the work itself is
2471 * going to happen on the hardware. This would be a Bad Thing(tm).
2472 */
75289874 2473void __i915_add_request(struct drm_i915_gem_request *request,
bf7dc5b7 2474 struct drm_file *file,
5b4a60c2
JH
2475 struct drm_i915_gem_object *obj,
2476 bool flush_caches)
673a394b 2477{
75289874
JH
2478 struct intel_engine_cs *ring;
2479 struct drm_i915_private *dev_priv;
48e29f55 2480 struct intel_ringbuffer *ringbuf;
6d3d8274 2481 u32 request_start;
3cce469c
CW
2482 int ret;
2483
48e29f55 2484 if (WARN_ON(request == NULL))
bf7dc5b7 2485 return;
48e29f55 2486
75289874
JH
2487 ring = request->ring;
2488 dev_priv = ring->dev->dev_private;
2489 ringbuf = request->ringbuf;
2490
2491 WARN_ON(request != ring->outstanding_lazy_request);
48e29f55 2492
29b1b415
JH
2493 /*
2494 * To ensure that this call will not fail, space for its emissions
2495 * should already have been reserved in the ring buffer. Let the ring
2496 * know that it is time to use that space up.
2497 */
2498 intel_ring_reserved_space_use(ringbuf);
2499
48e29f55 2500 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2501 /*
2502 * Emit any outstanding flushes - execbuf can fail to emit the flush
2503 * after having emitted the batchbuffer command. Hence we need to fix
2504 * things up similar to emitting the lazy request. The difference here
2505 * is that the flush _must_ happen before the next request, no matter
2506 * what.
2507 */
5b4a60c2
JH
2508 if (flush_caches) {
2509 if (i915.enable_execlists)
4866d729 2510 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2511 else
4866d729 2512 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2513 /* Not allowed to fail! */
2514 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2515 }
cc889e0f 2516
a71d8d94
CW
2517 /* Record the position of the start of the request so that
2518 * should we detect the updated seqno part-way through the
2519 * GPU processing the request, we never over-estimate the
2520 * position of the head.
2521 */
6d3d8274 2522 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2523
bf7dc5b7 2524 if (i915.enable_execlists)
72f95afa 2525 ret = ring->emit_request(ringbuf, request);
bf7dc5b7 2526 else {
ee044a88 2527 ret = ring->add_request(request);
53292cdb
MT
2528
2529 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2530 }
bf7dc5b7
JH
2531 /* Not allowed to fail! */
2532 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2533
7d736f4f 2534 request->head = request_start;
7d736f4f
MK
2535
2536 /* Whilst this request exists, batch_obj will be on the
2537 * active_list, and so will hold the active reference. Only when this
2538 * request is retired will the the batch_obj be moved onto the
2539 * inactive_list and lose its active reference. Hence we do not need
2540 * to explicitly hold another reference here.
2541 */
9a7e0c2a 2542 request->batch_obj = obj;
0e50e96b 2543
673a394b 2544 request->emitted_jiffies = jiffies;
852835f3 2545 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2546 request->file_priv = NULL;
852835f3 2547
db53a302
CW
2548 if (file) {
2549 struct drm_i915_file_private *file_priv = file->driver_priv;
2550
1c25595f 2551 spin_lock(&file_priv->mm.lock);
f787a5f5 2552 request->file_priv = file_priv;
b962442e 2553 list_add_tail(&request->client_list,
f787a5f5 2554 &file_priv->mm.request_list);
1c25595f 2555 spin_unlock(&file_priv->mm.lock);
071c92de
MK
2556
2557 request->pid = get_pid(task_pid(current));
b962442e 2558 }
673a394b 2559
74328ee5 2560 trace_i915_gem_request_add(request);
6259cead 2561 ring->outstanding_lazy_request = NULL;
db53a302 2562
87255483 2563 i915_queue_hangcheck(ring->dev);
10cd45b6 2564
87255483
DV
2565 queue_delayed_work(dev_priv->wq,
2566 &dev_priv->mm.retire_work,
2567 round_jiffies_up_relative(HZ));
2568 intel_mark_busy(dev_priv->dev);
cc889e0f 2569
29b1b415
JH
2570 /* Sanity check that the reserved size was large enough. */
2571 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2572}
2573
939fd762 2574static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2575 const struct intel_context *ctx)
be62acb4 2576{
44e2c070 2577 unsigned long elapsed;
be62acb4 2578
44e2c070
MK
2579 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2580
2581 if (ctx->hang_stats.banned)
be62acb4
MK
2582 return true;
2583
676fa572
CW
2584 if (ctx->hang_stats.ban_period_seconds &&
2585 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2586 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2587 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2588 return true;
88b4aa87
MK
2589 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2590 if (i915_stop_ring_allow_warn(dev_priv))
2591 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2592 return true;
3fac8978 2593 }
be62acb4
MK
2594 }
2595
2596 return false;
2597}
2598
939fd762 2599static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2600 struct intel_context *ctx,
b6b0fac0 2601 const bool guilty)
aa60c664 2602{
44e2c070
MK
2603 struct i915_ctx_hang_stats *hs;
2604
2605 if (WARN_ON(!ctx))
2606 return;
aa60c664 2607
44e2c070
MK
2608 hs = &ctx->hang_stats;
2609
2610 if (guilty) {
939fd762 2611 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2612 hs->batch_active++;
2613 hs->guilty_ts = get_seconds();
2614 } else {
2615 hs->batch_pending++;
aa60c664
MK
2616 }
2617}
2618
abfe262a
JH
2619void i915_gem_request_free(struct kref *req_ref)
2620{
2621 struct drm_i915_gem_request *req = container_of(req_ref,
2622 typeof(*req), ref);
2623 struct intel_context *ctx = req->ctx;
2624
0794aed3
TD
2625 if (ctx) {
2626 if (i915.enable_execlists) {
abfe262a 2627 struct intel_engine_cs *ring = req->ring;
0e50e96b 2628
0794aed3
TD
2629 if (ctx != ring->default_context)
2630 intel_lr_context_unpin(ring, ctx);
2631 }
abfe262a 2632
dcb4c12a
OM
2633 i915_gem_context_unreference(ctx);
2634 }
abfe262a 2635
efab6d8d 2636 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2637}
2638
6689cb2b 2639int i915_gem_request_alloc(struct intel_engine_cs *ring,
217e46b5
JH
2640 struct intel_context *ctx,
2641 struct drm_i915_gem_request **req_out)
6689cb2b 2642{
efab6d8d 2643 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2644 struct drm_i915_gem_request *req;
6689cb2b 2645 int ret;
6689cb2b 2646
217e46b5
JH
2647 if (!req_out)
2648 return -EINVAL;
2649
2650 if ((*req_out = ring->outstanding_lazy_request) != NULL)
6689cb2b
JH
2651 return 0;
2652
eed29a5b
DV
2653 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2654 if (req == NULL)
6689cb2b
JH
2655 return -ENOMEM;
2656
eed29a5b 2657 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2658 if (ret)
2659 goto err;
6689cb2b 2660
40e895ce
JH
2661 kref_init(&req->ref);
2662 req->i915 = dev_priv;
eed29a5b 2663 req->ring = ring;
40e895ce
JH
2664 req->ctx = ctx;
2665 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2666
2667 if (i915.enable_execlists)
40e895ce 2668 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2669 else
eed29a5b 2670 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2671 if (ret) {
2672 i915_gem_context_unreference(req->ctx);
9a0c1e27 2673 goto err;
40e895ce 2674 }
6689cb2b 2675
29b1b415
JH
2676 /*
2677 * Reserve space in the ring buffer for all the commands required to
2678 * eventually emit this request. This is to guarantee that the
2679 * i915_add_request() call can't fail. Note that the reserve may need
2680 * to be redone if the request is not actually submitted straight
2681 * away, e.g. because a GPU scheduler has deferred it.
2682 *
2683 * Note further that this call merely notes the reserve request. A
2684 * subsequent call to *_ring_begin() is required to actually ensure
2685 * that the reservation is available. Without the begin, if the
2686 * request creator immediately submitted the request without adding
2687 * any commands to it then there might not actually be sufficient
2688 * room for the submission commands. Unfortunately, the current
2689 * *_ring_begin() implementations potentially call back here to
2690 * i915_gem_request_alloc(). Thus calling _begin() here would lead to
2691 * infinite recursion! Until that back call path is removed, it is
2692 * necessary to do a manual _begin() outside.
2693 */
2694 intel_ring_reserved_space_reserve(req->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2695
217e46b5 2696 *req_out = ring->outstanding_lazy_request = req;
6689cb2b 2697 return 0;
9a0c1e27
CW
2698
2699err:
2700 kmem_cache_free(dev_priv->requests, req);
2701 return ret;
0e50e96b
MK
2702}
2703
29b1b415
JH
2704void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2705{
2706 intel_ring_reserved_space_cancel(req->ringbuf);
2707
2708 i915_gem_request_unreference(req);
2709}
2710
8d9fc7fd 2711struct drm_i915_gem_request *
a4872ba6 2712i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2713{
4db080f9
CW
2714 struct drm_i915_gem_request *request;
2715
2716 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2717 if (i915_gem_request_completed(request, false))
4db080f9 2718 continue;
aa60c664 2719
b6b0fac0 2720 return request;
4db080f9 2721 }
b6b0fac0
MK
2722
2723 return NULL;
2724}
2725
2726static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2727 struct intel_engine_cs *ring)
b6b0fac0
MK
2728{
2729 struct drm_i915_gem_request *request;
2730 bool ring_hung;
2731
8d9fc7fd 2732 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2733
2734 if (request == NULL)
2735 return;
2736
2737 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2738
939fd762 2739 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2740
2741 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2742 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2743}
aa60c664 2744
4db080f9 2745static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2746 struct intel_engine_cs *ring)
4db080f9 2747{
dfaae392 2748 while (!list_empty(&ring->active_list)) {
05394f39 2749 struct drm_i915_gem_object *obj;
9375e446 2750
05394f39
CW
2751 obj = list_first_entry(&ring->active_list,
2752 struct drm_i915_gem_object,
b4716185 2753 ring_list[ring->id]);
9375e446 2754
b4716185 2755 i915_gem_object_retire__read(obj, ring->id);
673a394b 2756 }
1d62beea 2757
dcb4c12a
OM
2758 /*
2759 * Clear the execlists queue up before freeing the requests, as those
2760 * are the ones that keep the context and ringbuffer backing objects
2761 * pinned in place.
2762 */
2763 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2764 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2765
2766 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2767 struct drm_i915_gem_request,
dcb4c12a
OM
2768 execlist_link);
2769 list_del(&submit_req->execlist_link);
1197b4f2
MK
2770
2771 if (submit_req->ctx != ring->default_context)
2772 intel_lr_context_unpin(ring, submit_req->ctx);
2773
b3a38998 2774 i915_gem_request_unreference(submit_req);
dcb4c12a
OM
2775 }
2776
1d62beea
BW
2777 /*
2778 * We must free the requests after all the corresponding objects have
2779 * been moved off active lists. Which is the same order as the normal
2780 * retire_requests function does. This is important if object hold
2781 * implicit references on things like e.g. ppgtt address spaces through
2782 * the request.
2783 */
2784 while (!list_empty(&ring->request_list)) {
2785 struct drm_i915_gem_request *request;
2786
2787 request = list_first_entry(&ring->request_list,
2788 struct drm_i915_gem_request,
2789 list);
2790
b4716185 2791 i915_gem_request_retire(request);
1d62beea 2792 }
e3efda49 2793
6259cead
JH
2794 /* This may not have been flushed before the reset, so clean it now */
2795 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2796}
2797
19b2dbde 2798void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2799{
2800 struct drm_i915_private *dev_priv = dev->dev_private;
2801 int i;
2802
4b9de737 2803 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2804 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2805
94a335db
DV
2806 /*
2807 * Commit delayed tiling changes if we have an object still
2808 * attached to the fence, otherwise just clear the fence.
2809 */
2810 if (reg->obj) {
2811 i915_gem_object_update_fence(reg->obj, reg,
2812 reg->obj->tiling_mode);
2813 } else {
2814 i915_gem_write_fence(dev, i, NULL);
2815 }
312817a3
CW
2816 }
2817}
2818
069efc1d 2819void i915_gem_reset(struct drm_device *dev)
673a394b 2820{
77f01230 2821 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2822 struct intel_engine_cs *ring;
1ec14ad3 2823 int i;
673a394b 2824
4db080f9
CW
2825 /*
2826 * Before we free the objects from the requests, we need to inspect
2827 * them for finding the guilty party. As the requests only borrow
2828 * their reference to the objects, the inspection must be done first.
2829 */
2830 for_each_ring(ring, dev_priv, i)
2831 i915_gem_reset_ring_status(dev_priv, ring);
2832
b4519513 2833 for_each_ring(ring, dev_priv, i)
4db080f9 2834 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2835
acce9ffa
BW
2836 i915_gem_context_reset(dev);
2837
19b2dbde 2838 i915_gem_restore_fences(dev);
b4716185
CW
2839
2840 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2841}
2842
2843/**
2844 * This function clears the request list as sequence numbers are passed.
2845 */
1cf0ba14 2846void
a4872ba6 2847i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2848{
db53a302 2849 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2850
832a3aad
CW
2851 /* Retire requests first as we use it above for the early return.
2852 * If we retire requests last, we may use a later seqno and so clear
2853 * the requests lists without clearing the active list, leading to
2854 * confusion.
e9103038 2855 */
852835f3 2856 while (!list_empty(&ring->request_list)) {
673a394b 2857 struct drm_i915_gem_request *request;
673a394b 2858
852835f3 2859 request = list_first_entry(&ring->request_list,
673a394b
EA
2860 struct drm_i915_gem_request,
2861 list);
673a394b 2862
1b5a433a 2863 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2864 break;
2865
b4716185 2866 i915_gem_request_retire(request);
b84d5f0c 2867 }
673a394b 2868
832a3aad
CW
2869 /* Move any buffers on the active list that are no longer referenced
2870 * by the ringbuffer to the flushing/inactive lists as appropriate,
2871 * before we free the context associated with the requests.
2872 */
2873 while (!list_empty(&ring->active_list)) {
2874 struct drm_i915_gem_object *obj;
2875
2876 obj = list_first_entry(&ring->active_list,
2877 struct drm_i915_gem_object,
b4716185 2878 ring_list[ring->id]);
832a3aad 2879
b4716185 2880 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2881 break;
2882
b4716185 2883 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2884 }
2885
581c26e8
JH
2886 if (unlikely(ring->trace_irq_req &&
2887 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2888 ring->irq_put(ring);
581c26e8 2889 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2890 }
23bc5982 2891
db53a302 2892 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2893}
2894
b29c19b6 2895bool
b09a1fec
CW
2896i915_gem_retire_requests(struct drm_device *dev)
2897{
3e31c6c0 2898 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2899 struct intel_engine_cs *ring;
b29c19b6 2900 bool idle = true;
1ec14ad3 2901 int i;
b09a1fec 2902
b29c19b6 2903 for_each_ring(ring, dev_priv, i) {
b4519513 2904 i915_gem_retire_requests_ring(ring);
b29c19b6 2905 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2906 if (i915.enable_execlists) {
2907 unsigned long flags;
2908
2909 spin_lock_irqsave(&ring->execlist_lock, flags);
2910 idle &= list_empty(&ring->execlist_queue);
2911 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2912
2913 intel_execlists_retire_requests(ring);
2914 }
b29c19b6
CW
2915 }
2916
2917 if (idle)
2918 mod_delayed_work(dev_priv->wq,
2919 &dev_priv->mm.idle_work,
2920 msecs_to_jiffies(100));
2921
2922 return idle;
b09a1fec
CW
2923}
2924
75ef9da2 2925static void
673a394b
EA
2926i915_gem_retire_work_handler(struct work_struct *work)
2927{
b29c19b6
CW
2928 struct drm_i915_private *dev_priv =
2929 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2930 struct drm_device *dev = dev_priv->dev;
0a58705b 2931 bool idle;
673a394b 2932
891b48cf 2933 /* Come back later if the device is busy... */
b29c19b6
CW
2934 idle = false;
2935 if (mutex_trylock(&dev->struct_mutex)) {
2936 idle = i915_gem_retire_requests(dev);
2937 mutex_unlock(&dev->struct_mutex);
673a394b 2938 }
b29c19b6 2939 if (!idle)
bcb45086
CW
2940 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2941 round_jiffies_up_relative(HZ));
b29c19b6 2942}
0a58705b 2943
b29c19b6
CW
2944static void
2945i915_gem_idle_work_handler(struct work_struct *work)
2946{
2947 struct drm_i915_private *dev_priv =
2948 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2949 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2950 struct intel_engine_cs *ring;
2951 int i;
b29c19b6 2952
423795cb
CW
2953 for_each_ring(ring, dev_priv, i)
2954 if (!list_empty(&ring->request_list))
2955 return;
35c94185
CW
2956
2957 intel_mark_idle(dev);
2958
2959 if (mutex_trylock(&dev->struct_mutex)) {
2960 struct intel_engine_cs *ring;
2961 int i;
2962
2963 for_each_ring(ring, dev_priv, i)
2964 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 2965
35c94185
CW
2966 mutex_unlock(&dev->struct_mutex);
2967 }
673a394b
EA
2968}
2969
30dfebf3
DV
2970/**
2971 * Ensures that an object will eventually get non-busy by flushing any required
2972 * write domains, emitting any outstanding lazy request and retiring and
2973 * completed requests.
2974 */
2975static int
2976i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2977{
b4716185
CW
2978 int ret, i;
2979
2980 if (!obj->active)
2981 return 0;
30dfebf3 2982
b4716185
CW
2983 for (i = 0; i < I915_NUM_RINGS; i++) {
2984 struct drm_i915_gem_request *req;
41c52415 2985
b4716185
CW
2986 req = obj->last_read_req[i];
2987 if (req == NULL)
2988 continue;
2989
2990 if (list_empty(&req->list))
2991 goto retire;
2992
2993 ret = i915_gem_check_olr(req);
30dfebf3
DV
2994 if (ret)
2995 return ret;
2996
b4716185
CW
2997 if (i915_gem_request_completed(req, true)) {
2998 __i915_gem_request_retire__upto(req);
2999retire:
3000 i915_gem_object_retire__read(obj, i);
3001 }
30dfebf3
DV
3002 }
3003
3004 return 0;
3005}
3006
23ba4fd0
BW
3007/**
3008 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3009 * @DRM_IOCTL_ARGS: standard ioctl arguments
3010 *
3011 * Returns 0 if successful, else an error is returned with the remaining time in
3012 * the timeout parameter.
3013 * -ETIME: object is still busy after timeout
3014 * -ERESTARTSYS: signal interrupted the wait
3015 * -ENONENT: object doesn't exist
3016 * Also possible, but rare:
3017 * -EAGAIN: GPU wedged
3018 * -ENOMEM: damn
3019 * -ENODEV: Internal IRQ fail
3020 * -E?: The add request failed
3021 *
3022 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3023 * non-zero timeout parameter the wait ioctl will wait for the given number of
3024 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3025 * without holding struct_mutex the object may become re-busied before this
3026 * function completes. A similar but shorter * race condition exists in the busy
3027 * ioctl
3028 */
3029int
3030i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3031{
3e31c6c0 3032 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3033 struct drm_i915_gem_wait *args = data;
3034 struct drm_i915_gem_object *obj;
b4716185 3035 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 3036 unsigned reset_counter;
b4716185
CW
3037 int i, n = 0;
3038 int ret;
23ba4fd0 3039
11b5d511
DV
3040 if (args->flags != 0)
3041 return -EINVAL;
3042
23ba4fd0
BW
3043 ret = i915_mutex_lock_interruptible(dev);
3044 if (ret)
3045 return ret;
3046
3047 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3048 if (&obj->base == NULL) {
3049 mutex_unlock(&dev->struct_mutex);
3050 return -ENOENT;
3051 }
3052
30dfebf3
DV
3053 /* Need to make sure the object gets inactive eventually. */
3054 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3055 if (ret)
3056 goto out;
3057
b4716185 3058 if (!obj->active)
97b2a6a1 3059 goto out;
23ba4fd0 3060
23ba4fd0 3061 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3062 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3063 */
762e4583 3064 if (args->timeout_ns == 0) {
23ba4fd0
BW
3065 ret = -ETIME;
3066 goto out;
3067 }
3068
3069 drm_gem_object_unreference(&obj->base);
f69061be 3070 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
3071
3072 for (i = 0; i < I915_NUM_RINGS; i++) {
3073 if (obj->last_read_req[i] == NULL)
3074 continue;
3075
3076 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3077 }
3078
23ba4fd0
BW
3079 mutex_unlock(&dev->struct_mutex);
3080
b4716185
CW
3081 for (i = 0; i < n; i++) {
3082 if (ret == 0)
3083 ret = __i915_wait_request(req[i], reset_counter, true,
3084 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3085 file->driver_priv);
3086 i915_gem_request_unreference__unlocked(req[i]);
3087 }
ff865885 3088 return ret;
23ba4fd0
BW
3089
3090out:
3091 drm_gem_object_unreference(&obj->base);
3092 mutex_unlock(&dev->struct_mutex);
3093 return ret;
3094}
3095
b4716185
CW
3096static int
3097__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3098 struct intel_engine_cs *to,
91af127f
JH
3099 struct drm_i915_gem_request *from_req,
3100 struct drm_i915_gem_request **to_req)
b4716185
CW
3101{
3102 struct intel_engine_cs *from;
3103 int ret;
3104
91af127f 3105 from = i915_gem_request_get_ring(from_req);
b4716185
CW
3106 if (to == from)
3107 return 0;
3108
91af127f 3109 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3110 return 0;
3111
91af127f 3112 ret = i915_gem_check_olr(from_req);
b4716185
CW
3113 if (ret)
3114 return ret;
3115
3116 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3117 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3118 ret = __i915_wait_request(from_req,
a6f766f3
CW
3119 atomic_read(&i915->gpu_error.reset_counter),
3120 i915->mm.interruptible,
3121 NULL,
3122 &i915->rps.semaphores);
b4716185
CW
3123 if (ret)
3124 return ret;
3125
91af127f 3126 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3127 } else {
3128 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3129 u32 seqno = i915_gem_request_get_seqno(from_req);
3130
3131 WARN_ON(!to_req);
b4716185
CW
3132
3133 if (seqno <= from->semaphore.sync_seqno[idx])
3134 return 0;
3135
91af127f
JH
3136 if (*to_req == NULL) {
3137 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3138 if (ret)
3139 return ret;
3140 }
3141
3142 trace_i915_gem_ring_sync_to(from, to, from_req);
b4716185
CW
3143 ret = to->semaphore.sync_to(to, from, seqno);
3144 if (ret)
3145 return ret;
3146
3147 /* We use last_read_req because sync_to()
3148 * might have just caused seqno wrap under
3149 * the radar.
3150 */
3151 from->semaphore.sync_seqno[idx] =
3152 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3153 }
3154
3155 return 0;
3156}
3157
5816d648
BW
3158/**
3159 * i915_gem_object_sync - sync an object to a ring.
3160 *
3161 * @obj: object which may be in use on another ring.
3162 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3163 * @to_req: request we wish to use the object for. See below.
3164 * This will be allocated and returned if a request is
3165 * required but not passed in.
5816d648
BW
3166 *
3167 * This code is meant to abstract object synchronization with the GPU.
3168 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3169 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3170 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3171 * into a buffer at any time, but multiple readers. To ensure each has
3172 * a coherent view of memory, we must:
3173 *
3174 * - If there is an outstanding write request to the object, the new
3175 * request must wait for it to complete (either CPU or in hw, requests
3176 * on the same ring will be naturally ordered).
3177 *
3178 * - If we are a write request (pending_write_domain is set), the new
3179 * request must wait for outstanding read requests to complete.
5816d648 3180 *
91af127f
JH
3181 * For CPU synchronisation (NULL to) no request is required. For syncing with
3182 * rings to_req must be non-NULL. However, a request does not have to be
3183 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3184 * request will be allocated automatically and returned through *to_req. Note
3185 * that it is not guaranteed that commands will be emitted (because the system
3186 * might already be idle). Hence there is no need to create a request that
3187 * might never have any work submitted. Note further that if a request is
3188 * returned in *to_req, it is the responsibility of the caller to submit
3189 * that request (after potentially adding more work to it).
3190 *
5816d648
BW
3191 * Returns 0 if successful, else propagates up the lower layer error.
3192 */
2911a35b
BW
3193int
3194i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3195 struct intel_engine_cs *to,
3196 struct drm_i915_gem_request **to_req)
2911a35b 3197{
b4716185
CW
3198 const bool readonly = obj->base.pending_write_domain == 0;
3199 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3200 int ret, i, n;
41c52415 3201
b4716185 3202 if (!obj->active)
2911a35b
BW
3203 return 0;
3204
b4716185
CW
3205 if (to == NULL)
3206 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3207
b4716185
CW
3208 n = 0;
3209 if (readonly) {
3210 if (obj->last_write_req)
3211 req[n++] = obj->last_write_req;
3212 } else {
3213 for (i = 0; i < I915_NUM_RINGS; i++)
3214 if (obj->last_read_req[i])
3215 req[n++] = obj->last_read_req[i];
3216 }
3217 for (i = 0; i < n; i++) {
91af127f 3218 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3219 if (ret)
3220 return ret;
3221 }
2911a35b 3222
b4716185 3223 return 0;
2911a35b
BW
3224}
3225
b5ffc9bc
CW
3226static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3227{
3228 u32 old_write_domain, old_read_domains;
3229
b5ffc9bc
CW
3230 /* Force a pagefault for domain tracking on next user access */
3231 i915_gem_release_mmap(obj);
3232
b97c3d9c
KP
3233 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3234 return;
3235
97c809fd
CW
3236 /* Wait for any direct GTT access to complete */
3237 mb();
3238
b5ffc9bc
CW
3239 old_read_domains = obj->base.read_domains;
3240 old_write_domain = obj->base.write_domain;
3241
3242 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3243 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3244
3245 trace_i915_gem_object_change_domain(obj,
3246 old_read_domains,
3247 old_write_domain);
3248}
3249
07fe0b12 3250int i915_vma_unbind(struct i915_vma *vma)
673a394b 3251{
07fe0b12 3252 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3253 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3254 int ret;
673a394b 3255
07fe0b12 3256 if (list_empty(&vma->vma_link))
673a394b
EA
3257 return 0;
3258
0ff501cb
DV
3259 if (!drm_mm_node_allocated(&vma->node)) {
3260 i915_gem_vma_destroy(vma);
0ff501cb
DV
3261 return 0;
3262 }
433544bd 3263
d7f46fc4 3264 if (vma->pin_count)
31d8d651 3265 return -EBUSY;
673a394b 3266
c4670ad0
CW
3267 BUG_ON(obj->pages == NULL);
3268
2e2f351d 3269 ret = i915_gem_object_wait_rendering(obj, false);
1488fc08 3270 if (ret)
a8198eea
CW
3271 return ret;
3272 /* Continue on if we fail due to EIO, the GPU is hung so we
3273 * should be safe and we need to cleanup or else we might
3274 * cause memory corruption through use-after-free.
3275 */
3276
fe14d5f4
TU
3277 if (i915_is_ggtt(vma->vm) &&
3278 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3279 i915_gem_object_finish_gtt(obj);
5323fd04 3280
8b1bc9b4
DV
3281 /* release the fence reg _after_ flushing */
3282 ret = i915_gem_object_put_fence(obj);
3283 if (ret)
3284 return ret;
3285 }
96b47b65 3286
07fe0b12 3287 trace_i915_vma_unbind(vma);
db53a302 3288
777dc5bb 3289 vma->vm->unbind_vma(vma);
5e562f1d 3290 vma->bound = 0;
6f65e29a 3291
64bf9303 3292 list_del_init(&vma->mm_list);
fe14d5f4
TU
3293 if (i915_is_ggtt(vma->vm)) {
3294 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3295 obj->map_and_fenceable = false;
3296 } else if (vma->ggtt_view.pages) {
3297 sg_free_table(vma->ggtt_view.pages);
3298 kfree(vma->ggtt_view.pages);
3299 vma->ggtt_view.pages = NULL;
3300 }
3301 }
673a394b 3302
2f633156
BW
3303 drm_mm_remove_node(&vma->node);
3304 i915_gem_vma_destroy(vma);
3305
3306 /* Since the unbound list is global, only move to that list if
b93dab6e 3307 * no more VMAs exist. */
9490edb5
AR
3308 if (list_empty(&obj->vma_list)) {
3309 i915_gem_gtt_finish_object(obj);
2f633156 3310 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3311 }
673a394b 3312
70903c3b
CW
3313 /* And finally now the object is completely decoupled from this vma,
3314 * we can drop its hold on the backing storage and allow it to be
3315 * reaped by the shrinker.
3316 */
3317 i915_gem_object_unpin_pages(obj);
3318
88241785 3319 return 0;
54cf91dc
CW
3320}
3321
b2da9fe5 3322int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3323{
3e31c6c0 3324 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3325 struct intel_engine_cs *ring;
1ec14ad3 3326 int ret, i;
4df2faf4 3327
4df2faf4 3328 /* Flush everything onto the inactive list. */
b4519513 3329 for_each_ring(ring, dev_priv, i) {
ecdb5fd8 3330 if (!i915.enable_execlists) {
73cfa865
JH
3331 struct drm_i915_gem_request *req;
3332
3333 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
ecdb5fd8
TD
3334 if (ret)
3335 return ret;
73cfa865 3336
ba01cc93 3337 ret = i915_switch_context(req);
73cfa865
JH
3338 if (ret) {
3339 i915_gem_request_cancel(req);
3340 return ret;
3341 }
3342
75289874 3343 i915_add_request_no_flush(req);
ecdb5fd8 3344 }
b6c7488d 3345
73cfa865
JH
3346 WARN_ON(ring->outstanding_lazy_request);
3347
3e960501 3348 ret = intel_ring_idle(ring);
1ec14ad3
CW
3349 if (ret)
3350 return ret;
3351 }
4df2faf4 3352
b4716185 3353 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3354 return 0;
4df2faf4
DV
3355}
3356
9ce079e4
CW
3357static void i965_write_fence_reg(struct drm_device *dev, int reg,
3358 struct drm_i915_gem_object *obj)
de151cf6 3359{
3e31c6c0 3360 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3361 int fence_reg;
3362 int fence_pitch_shift;
de151cf6 3363
56c844e5
ID
3364 if (INTEL_INFO(dev)->gen >= 6) {
3365 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3366 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3367 } else {
3368 fence_reg = FENCE_REG_965_0;
3369 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3370 }
3371
d18b9619
CW
3372 fence_reg += reg * 8;
3373
3374 /* To w/a incoherency with non-atomic 64-bit register updates,
3375 * we split the 64-bit update into two 32-bit writes. In order
3376 * for a partial fence not to be evaluated between writes, we
3377 * precede the update with write to turn off the fence register,
3378 * and only enable the fence as the last step.
3379 *
3380 * For extra levels of paranoia, we make sure each step lands
3381 * before applying the next step.
3382 */
3383 I915_WRITE(fence_reg, 0);
3384 POSTING_READ(fence_reg);
3385
9ce079e4 3386 if (obj) {
f343c5f6 3387 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3388 uint64_t val;
de151cf6 3389
af1a7301
BP
3390 /* Adjust fence size to match tiled area */
3391 if (obj->tiling_mode != I915_TILING_NONE) {
3392 uint32_t row_size = obj->stride *
3393 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3394 size = (size / row_size) * row_size;
3395 }
3396
f343c5f6 3397 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3398 0xfffff000) << 32;
f343c5f6 3399 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3400 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3401 if (obj->tiling_mode == I915_TILING_Y)
3402 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3403 val |= I965_FENCE_REG_VALID;
c6642782 3404
d18b9619
CW
3405 I915_WRITE(fence_reg + 4, val >> 32);
3406 POSTING_READ(fence_reg + 4);
3407
3408 I915_WRITE(fence_reg + 0, val);
3409 POSTING_READ(fence_reg);
3410 } else {
3411 I915_WRITE(fence_reg + 4, 0);
3412 POSTING_READ(fence_reg + 4);
3413 }
de151cf6
JB
3414}
3415
9ce079e4
CW
3416static void i915_write_fence_reg(struct drm_device *dev, int reg,
3417 struct drm_i915_gem_object *obj)
de151cf6 3418{
3e31c6c0 3419 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3420 u32 val;
de151cf6 3421
9ce079e4 3422 if (obj) {
f343c5f6 3423 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3424 int pitch_val;
3425 int tile_width;
c6642782 3426
f343c5f6 3427 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3428 (size & -size) != size ||
f343c5f6
BW
3429 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3430 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3431 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3432
9ce079e4
CW
3433 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3434 tile_width = 128;
3435 else
3436 tile_width = 512;
3437
3438 /* Note: pitch better be a power of two tile widths */
3439 pitch_val = obj->stride / tile_width;
3440 pitch_val = ffs(pitch_val) - 1;
3441
f343c5f6 3442 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3443 if (obj->tiling_mode == I915_TILING_Y)
3444 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3445 val |= I915_FENCE_SIZE_BITS(size);
3446 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3447 val |= I830_FENCE_REG_VALID;
3448 } else
3449 val = 0;
3450
3451 if (reg < 8)
3452 reg = FENCE_REG_830_0 + reg * 4;
3453 else
3454 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3455
3456 I915_WRITE(reg, val);
3457 POSTING_READ(reg);
de151cf6
JB
3458}
3459
9ce079e4
CW
3460static void i830_write_fence_reg(struct drm_device *dev, int reg,
3461 struct drm_i915_gem_object *obj)
de151cf6 3462{
3e31c6c0 3463 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3464 uint32_t val;
de151cf6 3465
9ce079e4 3466 if (obj) {
f343c5f6 3467 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3468 uint32_t pitch_val;
de151cf6 3469
f343c5f6 3470 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3471 (size & -size) != size ||
f343c5f6
BW
3472 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3473 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3474 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3475
9ce079e4
CW
3476 pitch_val = obj->stride / 128;
3477 pitch_val = ffs(pitch_val) - 1;
de151cf6 3478
f343c5f6 3479 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3480 if (obj->tiling_mode == I915_TILING_Y)
3481 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3482 val |= I830_FENCE_SIZE_BITS(size);
3483 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3484 val |= I830_FENCE_REG_VALID;
3485 } else
3486 val = 0;
c6642782 3487
9ce079e4
CW
3488 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3489 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3490}
3491
d0a57789
CW
3492inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3493{
3494 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3495}
3496
9ce079e4
CW
3497static void i915_gem_write_fence(struct drm_device *dev, int reg,
3498 struct drm_i915_gem_object *obj)
3499{
d0a57789
CW
3500 struct drm_i915_private *dev_priv = dev->dev_private;
3501
3502 /* Ensure that all CPU reads are completed before installing a fence
3503 * and all writes before removing the fence.
3504 */
3505 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3506 mb();
3507
94a335db
DV
3508 WARN(obj && (!obj->stride || !obj->tiling_mode),
3509 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3510 obj->stride, obj->tiling_mode);
3511
ce38ab05
RV
3512 if (IS_GEN2(dev))
3513 i830_write_fence_reg(dev, reg, obj);
3514 else if (IS_GEN3(dev))
3515 i915_write_fence_reg(dev, reg, obj);
3516 else if (INTEL_INFO(dev)->gen >= 4)
3517 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3518
3519 /* And similarly be paranoid that no direct access to this region
3520 * is reordered to before the fence is installed.
3521 */
3522 if (i915_gem_object_needs_mb(obj))
3523 mb();
de151cf6
JB
3524}
3525
61050808
CW
3526static inline int fence_number(struct drm_i915_private *dev_priv,
3527 struct drm_i915_fence_reg *fence)
3528{
3529 return fence - dev_priv->fence_regs;
3530}
3531
3532static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3533 struct drm_i915_fence_reg *fence,
3534 bool enable)
3535{
2dc8aae0 3536 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3537 int reg = fence_number(dev_priv, fence);
3538
3539 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3540
3541 if (enable) {
46a0b638 3542 obj->fence_reg = reg;
61050808
CW
3543 fence->obj = obj;
3544 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3545 } else {
3546 obj->fence_reg = I915_FENCE_REG_NONE;
3547 fence->obj = NULL;
3548 list_del_init(&fence->lru_list);
3549 }
94a335db 3550 obj->fence_dirty = false;
61050808
CW
3551}
3552
d9e86c0e 3553static int
d0a57789 3554i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3555{
97b2a6a1 3556 if (obj->last_fenced_req) {
a4b3a571 3557 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3558 if (ret)
3559 return ret;
d9e86c0e 3560
97b2a6a1 3561 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3562 }
3563
3564 return 0;
3565}
3566
3567int
3568i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3569{
61050808 3570 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3571 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3572 int ret;
3573
d0a57789 3574 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3575 if (ret)
3576 return ret;
3577
61050808
CW
3578 if (obj->fence_reg == I915_FENCE_REG_NONE)
3579 return 0;
d9e86c0e 3580
f9c513e9
CW
3581 fence = &dev_priv->fence_regs[obj->fence_reg];
3582
aff10b30
DV
3583 if (WARN_ON(fence->pin_count))
3584 return -EBUSY;
3585
61050808 3586 i915_gem_object_fence_lost(obj);
f9c513e9 3587 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3588
3589 return 0;
3590}
3591
3592static struct drm_i915_fence_reg *
a360bb1a 3593i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3594{
ae3db24a 3595 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3596 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3597 int i;
ae3db24a
DV
3598
3599 /* First try to find a free reg */
d9e86c0e 3600 avail = NULL;
ae3db24a
DV
3601 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3602 reg = &dev_priv->fence_regs[i];
3603 if (!reg->obj)
d9e86c0e 3604 return reg;
ae3db24a 3605
1690e1eb 3606 if (!reg->pin_count)
d9e86c0e 3607 avail = reg;
ae3db24a
DV
3608 }
3609
d9e86c0e 3610 if (avail == NULL)
5dce5b93 3611 goto deadlock;
ae3db24a
DV
3612
3613 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3614 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3615 if (reg->pin_count)
ae3db24a
DV
3616 continue;
3617
8fe301ad 3618 return reg;
ae3db24a
DV
3619 }
3620
5dce5b93
CW
3621deadlock:
3622 /* Wait for completion of pending flips which consume fences */
3623 if (intel_has_pending_fb_unpin(dev))
3624 return ERR_PTR(-EAGAIN);
3625
3626 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3627}
3628
de151cf6 3629/**
9a5a53b3 3630 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3631 * @obj: object to map through a fence reg
3632 *
3633 * When mapping objects through the GTT, userspace wants to be able to write
3634 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3635 * This function walks the fence regs looking for a free one for @obj,
3636 * stealing one if it can't find any.
3637 *
3638 * It then sets up the reg based on the object's properties: address, pitch
3639 * and tiling format.
9a5a53b3
CW
3640 *
3641 * For an untiled surface, this removes any existing fence.
de151cf6 3642 */
8c4b8c3f 3643int
06d98131 3644i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3645{
05394f39 3646 struct drm_device *dev = obj->base.dev;
79e53945 3647 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3648 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3649 struct drm_i915_fence_reg *reg;
ae3db24a 3650 int ret;
de151cf6 3651
14415745
CW
3652 /* Have we updated the tiling parameters upon the object and so
3653 * will need to serialise the write to the associated fence register?
3654 */
5d82e3e6 3655 if (obj->fence_dirty) {
d0a57789 3656 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3657 if (ret)
3658 return ret;
3659 }
9a5a53b3 3660
d9e86c0e 3661 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3662 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3663 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3664 if (!obj->fence_dirty) {
14415745
CW
3665 list_move_tail(&reg->lru_list,
3666 &dev_priv->mm.fence_list);
3667 return 0;
3668 }
3669 } else if (enable) {
e6a84468
CW
3670 if (WARN_ON(!obj->map_and_fenceable))
3671 return -EINVAL;
3672
14415745 3673 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3674 if (IS_ERR(reg))
3675 return PTR_ERR(reg);
d9e86c0e 3676
14415745
CW
3677 if (reg->obj) {
3678 struct drm_i915_gem_object *old = reg->obj;
3679
d0a57789 3680 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3681 if (ret)
3682 return ret;
3683
14415745 3684 i915_gem_object_fence_lost(old);
29c5a587 3685 }
14415745 3686 } else
a09ba7fa 3687 return 0;
a09ba7fa 3688
14415745 3689 i915_gem_object_update_fence(obj, reg, enable);
14415745 3690
9ce079e4 3691 return 0;
de151cf6
JB
3692}
3693
4144f9b5 3694static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3695 unsigned long cache_level)
3696{
4144f9b5 3697 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3698 struct drm_mm_node *other;
3699
4144f9b5
CW
3700 /*
3701 * On some machines we have to be careful when putting differing types
3702 * of snoopable memory together to avoid the prefetcher crossing memory
3703 * domains and dying. During vm initialisation, we decide whether or not
3704 * these constraints apply and set the drm_mm.color_adjust
3705 * appropriately.
42d6ab48 3706 */
4144f9b5 3707 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3708 return true;
3709
c6cfb325 3710 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3711 return true;
3712
3713 if (list_empty(&gtt_space->node_list))
3714 return true;
3715
3716 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3717 if (other->allocated && !other->hole_follows && other->color != cache_level)
3718 return false;
3719
3720 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3721 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3722 return false;
3723
3724 return true;
3725}
3726
673a394b 3727/**
91e6711e
JL
3728 * Finds free space in the GTT aperture and binds the object or a view of it
3729 * there.
673a394b 3730 */
262de145 3731static struct i915_vma *
07fe0b12
BW
3732i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3733 struct i915_address_space *vm,
ec7adb6e 3734 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3735 unsigned alignment,
ec7adb6e 3736 uint64_t flags)
673a394b 3737{
05394f39 3738 struct drm_device *dev = obj->base.dev;
3e31c6c0 3739 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3740 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3741 unsigned long start =
3742 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3743 unsigned long end =
1ec9e26d 3744 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3745 struct i915_vma *vma;
07f73f69 3746 int ret;
673a394b 3747
91e6711e
JL
3748 if (i915_is_ggtt(vm)) {
3749 u32 view_size;
3750
3751 if (WARN_ON(!ggtt_view))
3752 return ERR_PTR(-EINVAL);
ec7adb6e 3753
91e6711e
JL
3754 view_size = i915_ggtt_view_size(obj, ggtt_view);
3755
3756 fence_size = i915_gem_get_gtt_size(dev,
3757 view_size,
3758 obj->tiling_mode);
3759 fence_alignment = i915_gem_get_gtt_alignment(dev,
3760 view_size,
3761 obj->tiling_mode,
3762 true);
3763 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3764 view_size,
3765 obj->tiling_mode,
3766 false);
3767 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3768 } else {
3769 fence_size = i915_gem_get_gtt_size(dev,
3770 obj->base.size,
3771 obj->tiling_mode);
3772 fence_alignment = i915_gem_get_gtt_alignment(dev,
3773 obj->base.size,
3774 obj->tiling_mode,
3775 true);
3776 unfenced_alignment =
3777 i915_gem_get_gtt_alignment(dev,
3778 obj->base.size,
3779 obj->tiling_mode,
3780 false);
3781 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3782 }
a00b10c3 3783
673a394b 3784 if (alignment == 0)
1ec9e26d 3785 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3786 unfenced_alignment;
1ec9e26d 3787 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3788 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3789 ggtt_view ? ggtt_view->type : 0,
3790 alignment);
262de145 3791 return ERR_PTR(-EINVAL);
673a394b
EA
3792 }
3793
91e6711e
JL
3794 /* If binding the object/GGTT view requires more space than the entire
3795 * aperture has, reject it early before evicting everything in a vain
3796 * attempt to find space.
654fc607 3797 */
91e6711e
JL
3798 if (size > end) {
3799 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3800 ggtt_view ? ggtt_view->type : 0,
3801 size,
1ec9e26d 3802 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3803 end);
262de145 3804 return ERR_PTR(-E2BIG);
654fc607
CW
3805 }
3806
37e680a1 3807 ret = i915_gem_object_get_pages(obj);
6c085a72 3808 if (ret)
262de145 3809 return ERR_PTR(ret);
6c085a72 3810
fbdda6fb
CW
3811 i915_gem_object_pin_pages(obj);
3812
ec7adb6e
JL
3813 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3814 i915_gem_obj_lookup_or_create_vma(obj, vm);
3815
262de145 3816 if (IS_ERR(vma))
bc6bc15b 3817 goto err_unpin;
2f633156 3818
0a9ae0d7 3819search_free:
07fe0b12 3820 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3821 size, alignment,
d23db88c
CW
3822 obj->cache_level,
3823 start, end,
62347f9e
LK
3824 DRM_MM_SEARCH_DEFAULT,
3825 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3826 if (ret) {
f6cd1f15 3827 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3828 obj->cache_level,
3829 start, end,
3830 flags);
dc9dd7a2
CW
3831 if (ret == 0)
3832 goto search_free;
9731129c 3833
bc6bc15b 3834 goto err_free_vma;
673a394b 3835 }
4144f9b5 3836 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3837 ret = -EINVAL;
bc6bc15b 3838 goto err_remove_node;
673a394b
EA
3839 }
3840
74163907 3841 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3842 if (ret)
bc6bc15b 3843 goto err_remove_node;
673a394b 3844
fe14d5f4 3845 trace_i915_vma_bind(vma, flags);
0875546c 3846 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
3847 if (ret)
3848 goto err_finish_gtt;
3849
35c20a60 3850 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3851 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3852
262de145 3853 return vma;
2f633156 3854
fe14d5f4
TU
3855err_finish_gtt:
3856 i915_gem_gtt_finish_object(obj);
bc6bc15b 3857err_remove_node:
6286ef9b 3858 drm_mm_remove_node(&vma->node);
bc6bc15b 3859err_free_vma:
2f633156 3860 i915_gem_vma_destroy(vma);
262de145 3861 vma = ERR_PTR(ret);
bc6bc15b 3862err_unpin:
2f633156 3863 i915_gem_object_unpin_pages(obj);
262de145 3864 return vma;
673a394b
EA
3865}
3866
000433b6 3867bool
2c22569b
CW
3868i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3869 bool force)
673a394b 3870{
673a394b
EA
3871 /* If we don't have a page list set up, then we're not pinned
3872 * to GPU, and we can ignore the cache flush because it'll happen
3873 * again at bind time.
3874 */
05394f39 3875 if (obj->pages == NULL)
000433b6 3876 return false;
673a394b 3877
769ce464
ID
3878 /*
3879 * Stolen memory is always coherent with the GPU as it is explicitly
3880 * marked as wc by the system, or the system is cache-coherent.
3881 */
6a2c4232 3882 if (obj->stolen || obj->phys_handle)
000433b6 3883 return false;
769ce464 3884
9c23f7fc
CW
3885 /* If the GPU is snooping the contents of the CPU cache,
3886 * we do not need to manually clear the CPU cache lines. However,
3887 * the caches are only snooped when the render cache is
3888 * flushed/invalidated. As we always have to emit invalidations
3889 * and flushes when moving into and out of the RENDER domain, correct
3890 * snooping behaviour occurs naturally as the result of our domain
3891 * tracking.
3892 */
0f71979a
CW
3893 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3894 obj->cache_dirty = true;
000433b6 3895 return false;
0f71979a 3896 }
9c23f7fc 3897
1c5d22f7 3898 trace_i915_gem_object_clflush(obj);
9da3da66 3899 drm_clflush_sg(obj->pages);
0f71979a 3900 obj->cache_dirty = false;
000433b6
CW
3901
3902 return true;
e47c68e9
EA
3903}
3904
3905/** Flushes the GTT write domain for the object if it's dirty. */
3906static void
05394f39 3907i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3908{
1c5d22f7
CW
3909 uint32_t old_write_domain;
3910
05394f39 3911 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3912 return;
3913
63256ec5 3914 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3915 * to it immediately go to main memory as far as we know, so there's
3916 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3917 *
3918 * However, we do have to enforce the order so that all writes through
3919 * the GTT land before any writes to the device, such as updates to
3920 * the GATT itself.
e47c68e9 3921 */
63256ec5
CW
3922 wmb();
3923
05394f39
CW
3924 old_write_domain = obj->base.write_domain;
3925 obj->base.write_domain = 0;
1c5d22f7 3926
f99d7069
DV
3927 intel_fb_obj_flush(obj, false);
3928
1c5d22f7 3929 trace_i915_gem_object_change_domain(obj,
05394f39 3930 obj->base.read_domains,
1c5d22f7 3931 old_write_domain);
e47c68e9
EA
3932}
3933
3934/** Flushes the CPU write domain for the object if it's dirty. */
3935static void
e62b59e4 3936i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3937{
1c5d22f7 3938 uint32_t old_write_domain;
e47c68e9 3939
05394f39 3940 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3941 return;
3942
e62b59e4 3943 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3944 i915_gem_chipset_flush(obj->base.dev);
3945
05394f39
CW
3946 old_write_domain = obj->base.write_domain;
3947 obj->base.write_domain = 0;
1c5d22f7 3948
f99d7069
DV
3949 intel_fb_obj_flush(obj, false);
3950
1c5d22f7 3951 trace_i915_gem_object_change_domain(obj,
05394f39 3952 obj->base.read_domains,
1c5d22f7 3953 old_write_domain);
e47c68e9
EA
3954}
3955
2ef7eeaa
EA
3956/**
3957 * Moves a single object to the GTT read, and possibly write domain.
3958 *
3959 * This function returns when the move is complete, including waiting on
3960 * flushes to occur.
3961 */
79e53945 3962int
2021746e 3963i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3964{
1c5d22f7 3965 uint32_t old_write_domain, old_read_domains;
43566ded 3966 struct i915_vma *vma;
e47c68e9 3967 int ret;
2ef7eeaa 3968
8d7e3de1
CW
3969 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3970 return 0;
3971
0201f1ec 3972 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3973 if (ret)
3974 return ret;
3975
43566ded
CW
3976 /* Flush and acquire obj->pages so that we are coherent through
3977 * direct access in memory with previous cached writes through
3978 * shmemfs and that our cache domain tracking remains valid.
3979 * For example, if the obj->filp was moved to swap without us
3980 * being notified and releasing the pages, we would mistakenly
3981 * continue to assume that the obj remained out of the CPU cached
3982 * domain.
3983 */
3984 ret = i915_gem_object_get_pages(obj);
3985 if (ret)
3986 return ret;
3987
e62b59e4 3988 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3989
d0a57789
CW
3990 /* Serialise direct access to this object with the barriers for
3991 * coherent writes from the GPU, by effectively invalidating the
3992 * GTT domain upon first access.
3993 */
3994 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3995 mb();
3996
05394f39
CW
3997 old_write_domain = obj->base.write_domain;
3998 old_read_domains = obj->base.read_domains;
1c5d22f7 3999
e47c68e9
EA
4000 /* It should now be out of any other write domains, and we can update
4001 * the domain values for our changes.
4002 */
05394f39
CW
4003 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4004 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 4005 if (write) {
05394f39
CW
4006 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4007 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4008 obj->dirty = 1;
2ef7eeaa
EA
4009 }
4010
f99d7069 4011 if (write)
77a0d1ca 4012 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
f99d7069 4013
1c5d22f7
CW
4014 trace_i915_gem_object_change_domain(obj,
4015 old_read_domains,
4016 old_write_domain);
4017
8325a09d 4018 /* And bump the LRU for this access */
43566ded
CW
4019 vma = i915_gem_obj_to_ggtt(obj);
4020 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 4021 list_move_tail(&vma->mm_list,
43566ded 4022 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 4023
e47c68e9
EA
4024 return 0;
4025}
4026
e4ffd173
CW
4027int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4028 enum i915_cache_level cache_level)
4029{
7bddb01f 4030 struct drm_device *dev = obj->base.dev;
df6f783a 4031 struct i915_vma *vma, *next;
e4ffd173
CW
4032 int ret;
4033
4034 if (obj->cache_level == cache_level)
4035 return 0;
4036
d7f46fc4 4037 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
4038 DRM_DEBUG("can not change the cache level of pinned objects\n");
4039 return -EBUSY;
4040 }
4041
df6f783a 4042 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 4043 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 4044 ret = i915_vma_unbind(vma);
3089c6f2
BW
4045 if (ret)
4046 return ret;
3089c6f2 4047 }
42d6ab48
CW
4048 }
4049
3089c6f2 4050 if (i915_gem_obj_bound_any(obj)) {
2e2f351d 4051 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
4052 if (ret)
4053 return ret;
4054
4055 i915_gem_object_finish_gtt(obj);
4056
4057 /* Before SandyBridge, you could not use tiling or fence
4058 * registers with snooped memory, so relinquish any fences
4059 * currently pointing to our region in the aperture.
4060 */
42d6ab48 4061 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
4062 ret = i915_gem_object_put_fence(obj);
4063 if (ret)
4064 return ret;
4065 }
4066
6f65e29a 4067 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
4068 if (drm_mm_node_allocated(&vma->node)) {
4069 ret = i915_vma_bind(vma, cache_level,
0875546c 4070 PIN_UPDATE);
fe14d5f4
TU
4071 if (ret)
4072 return ret;
4073 }
e4ffd173
CW
4074 }
4075
2c22569b
CW
4076 list_for_each_entry(vma, &obj->vma_list, vma_link)
4077 vma->node.color = cache_level;
4078 obj->cache_level = cache_level;
4079
0f71979a
CW
4080 if (obj->cache_dirty &&
4081 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4082 cpu_write_needs_clflush(obj)) {
4083 if (i915_gem_clflush_object(obj, true))
4084 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
4085 }
4086
e4ffd173
CW
4087 return 0;
4088}
4089
199adf40
BW
4090int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4091 struct drm_file *file)
e6994aee 4092{
199adf40 4093 struct drm_i915_gem_caching *args = data;
e6994aee 4094 struct drm_i915_gem_object *obj;
e6994aee
CW
4095
4096 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
4097 if (&obj->base == NULL)
4098 return -ENOENT;
e6994aee 4099
651d794f
CW
4100 switch (obj->cache_level) {
4101 case I915_CACHE_LLC:
4102 case I915_CACHE_L3_LLC:
4103 args->caching = I915_CACHING_CACHED;
4104 break;
4105
4257d3ba
CW
4106 case I915_CACHE_WT:
4107 args->caching = I915_CACHING_DISPLAY;
4108 break;
4109
651d794f
CW
4110 default:
4111 args->caching = I915_CACHING_NONE;
4112 break;
4113 }
e6994aee 4114
432be69d
CW
4115 drm_gem_object_unreference_unlocked(&obj->base);
4116 return 0;
e6994aee
CW
4117}
4118
199adf40
BW
4119int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4120 struct drm_file *file)
e6994aee 4121{
199adf40 4122 struct drm_i915_gem_caching *args = data;
e6994aee
CW
4123 struct drm_i915_gem_object *obj;
4124 enum i915_cache_level level;
4125 int ret;
4126
199adf40
BW
4127 switch (args->caching) {
4128 case I915_CACHING_NONE:
e6994aee
CW
4129 level = I915_CACHE_NONE;
4130 break;
199adf40 4131 case I915_CACHING_CACHED:
e6994aee
CW
4132 level = I915_CACHE_LLC;
4133 break;
4257d3ba
CW
4134 case I915_CACHING_DISPLAY:
4135 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4136 break;
e6994aee
CW
4137 default:
4138 return -EINVAL;
4139 }
4140
3bc2913e
BW
4141 ret = i915_mutex_lock_interruptible(dev);
4142 if (ret)
4143 return ret;
4144
e6994aee
CW
4145 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4146 if (&obj->base == NULL) {
4147 ret = -ENOENT;
4148 goto unlock;
4149 }
4150
4151 ret = i915_gem_object_set_cache_level(obj, level);
4152
4153 drm_gem_object_unreference(&obj->base);
4154unlock:
4155 mutex_unlock(&dev->struct_mutex);
4156 return ret;
4157}
4158
b9241ea3 4159/*
2da3b9b9
CW
4160 * Prepare buffer for display plane (scanout, cursors, etc).
4161 * Can be called from an uninterruptible phase (modesetting) and allows
4162 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4163 */
4164int
2da3b9b9
CW
4165i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4166 u32 alignment,
e6617330 4167 struct intel_engine_cs *pipelined,
91af127f 4168 struct drm_i915_gem_request **pipelined_request,
e6617330 4169 const struct i915_ggtt_view *view)
b9241ea3 4170{
2da3b9b9 4171 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4172 int ret;
4173
91af127f 4174 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
b4716185
CW
4175 if (ret)
4176 return ret;
b9241ea3 4177
cc98b413
CW
4178 /* Mark the pin_display early so that we account for the
4179 * display coherency whilst setting up the cache domains.
4180 */
8a0c39b1 4181 obj->pin_display++;
cc98b413 4182
a7ef0640
EA
4183 /* The display engine is not coherent with the LLC cache on gen6. As
4184 * a result, we make sure that the pinning that is about to occur is
4185 * done with uncached PTEs. This is lowest common denominator for all
4186 * chipsets.
4187 *
4188 * However for gen6+, we could do better by using the GFDT bit instead
4189 * of uncaching, which would allow us to flush all the LLC-cached data
4190 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4191 */
651d794f
CW
4192 ret = i915_gem_object_set_cache_level(obj,
4193 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4194 if (ret)
cc98b413 4195 goto err_unpin_display;
a7ef0640 4196
2da3b9b9
CW
4197 /* As the user may map the buffer once pinned in the display plane
4198 * (e.g. libkms for the bootup splash), we have to ensure that we
4199 * always use map_and_fenceable for all scanout buffers.
4200 */
50470bb0
TU
4201 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4202 view->type == I915_GGTT_VIEW_NORMAL ?
4203 PIN_MAPPABLE : 0);
2da3b9b9 4204 if (ret)
cc98b413 4205 goto err_unpin_display;
2da3b9b9 4206
e62b59e4 4207 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4208
2da3b9b9 4209 old_write_domain = obj->base.write_domain;
05394f39 4210 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4211
4212 /* It should now be out of any other write domains, and we can update
4213 * the domain values for our changes.
4214 */
e5f1d962 4215 obj->base.write_domain = 0;
05394f39 4216 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4217
4218 trace_i915_gem_object_change_domain(obj,
4219 old_read_domains,
2da3b9b9 4220 old_write_domain);
b9241ea3
ZW
4221
4222 return 0;
cc98b413
CW
4223
4224err_unpin_display:
8a0c39b1 4225 obj->pin_display--;
cc98b413
CW
4226 return ret;
4227}
4228
4229void
e6617330
TU
4230i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4231 const struct i915_ggtt_view *view)
cc98b413 4232{
8a0c39b1
TU
4233 if (WARN_ON(obj->pin_display == 0))
4234 return;
4235
e6617330
TU
4236 i915_gem_object_ggtt_unpin_view(obj, view);
4237
8a0c39b1 4238 obj->pin_display--;
b9241ea3
ZW
4239}
4240
e47c68e9
EA
4241/**
4242 * Moves a single object to the CPU read, and possibly write domain.
4243 *
4244 * This function returns when the move is complete, including waiting on
4245 * flushes to occur.
4246 */
dabdfe02 4247int
919926ae 4248i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4249{
1c5d22f7 4250 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4251 int ret;
4252
8d7e3de1
CW
4253 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4254 return 0;
4255
0201f1ec 4256 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4257 if (ret)
4258 return ret;
4259
e47c68e9 4260 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4261
05394f39
CW
4262 old_write_domain = obj->base.write_domain;
4263 old_read_domains = obj->base.read_domains;
1c5d22f7 4264
e47c68e9 4265 /* Flush the CPU cache if it's still invalid. */
05394f39 4266 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4267 i915_gem_clflush_object(obj, false);
2ef7eeaa 4268
05394f39 4269 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4270 }
4271
4272 /* It should now be out of any other write domains, and we can update
4273 * the domain values for our changes.
4274 */
05394f39 4275 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4276
4277 /* If we're writing through the CPU, then the GPU read domains will
4278 * need to be invalidated at next use.
4279 */
4280 if (write) {
05394f39
CW
4281 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4282 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4283 }
2ef7eeaa 4284
f99d7069 4285 if (write)
77a0d1ca 4286 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
f99d7069 4287
1c5d22f7
CW
4288 trace_i915_gem_object_change_domain(obj,
4289 old_read_domains,
4290 old_write_domain);
4291
2ef7eeaa
EA
4292 return 0;
4293}
4294
673a394b
EA
4295/* Throttle our rendering by waiting until the ring has completed our requests
4296 * emitted over 20 msec ago.
4297 *
b962442e
EA
4298 * Note that if we were to use the current jiffies each time around the loop,
4299 * we wouldn't escape the function with any frames outstanding if the time to
4300 * render a frame was over 20ms.
4301 *
673a394b
EA
4302 * This should get us reasonable parallelism between CPU and GPU but also
4303 * relatively low latency when blocking on a particular request to finish.
4304 */
40a5f0de 4305static int
f787a5f5 4306i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4307{
f787a5f5
CW
4308 struct drm_i915_private *dev_priv = dev->dev_private;
4309 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4310 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4311 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4312 unsigned reset_counter;
f787a5f5 4313 int ret;
93533c29 4314
308887aa
DV
4315 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4316 if (ret)
4317 return ret;
4318
4319 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4320 if (ret)
4321 return ret;
e110e8d6 4322
1c25595f 4323 spin_lock(&file_priv->mm.lock);
f787a5f5 4324 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4325 if (time_after_eq(request->emitted_jiffies, recent_enough))
4326 break;
40a5f0de 4327
54fb2411 4328 target = request;
b962442e 4329 }
f69061be 4330 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4331 if (target)
4332 i915_gem_request_reference(target);
1c25595f 4333 spin_unlock(&file_priv->mm.lock);
40a5f0de 4334
54fb2411 4335 if (target == NULL)
f787a5f5 4336 return 0;
2bc43b5c 4337
9c654818 4338 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4339 if (ret == 0)
4340 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4341
41037f9f 4342 i915_gem_request_unreference__unlocked(target);
ff865885 4343
40a5f0de
EA
4344 return ret;
4345}
4346
d23db88c
CW
4347static bool
4348i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4349{
4350 struct drm_i915_gem_object *obj = vma->obj;
4351
4352 if (alignment &&
4353 vma->node.start & (alignment - 1))
4354 return true;
4355
4356 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4357 return true;
4358
4359 if (flags & PIN_OFFSET_BIAS &&
4360 vma->node.start < (flags & PIN_OFFSET_MASK))
4361 return true;
4362
4363 return false;
4364}
4365
ec7adb6e
JL
4366static int
4367i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4368 struct i915_address_space *vm,
4369 const struct i915_ggtt_view *ggtt_view,
4370 uint32_t alignment,
4371 uint64_t flags)
673a394b 4372{
6e7186af 4373 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4374 struct i915_vma *vma;
ef79e17c 4375 unsigned bound;
673a394b
EA
4376 int ret;
4377
6e7186af
BW
4378 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4379 return -ENODEV;
4380
bf3d149b 4381 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4382 return -EINVAL;
07fe0b12 4383
c826c449
CW
4384 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4385 return -EINVAL;
4386
ec7adb6e
JL
4387 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4388 return -EINVAL;
4389
4390 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4391 i915_gem_obj_to_vma(obj, vm);
4392
4393 if (IS_ERR(vma))
4394 return PTR_ERR(vma);
4395
07fe0b12 4396 if (vma) {
d7f46fc4
BW
4397 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4398 return -EBUSY;
4399
d23db88c 4400 if (i915_vma_misplaced(vma, alignment, flags)) {
ec7adb6e 4401 unsigned long offset;
9abc4648 4402 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
ec7adb6e 4403 i915_gem_obj_offset(obj, vm);
d7f46fc4 4404 WARN(vma->pin_count,
ec7adb6e 4405 "bo is already pinned in %s with incorrect alignment:"
f343c5f6 4406 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4407 " obj->map_and_fenceable=%d\n",
ec7adb6e
JL
4408 ggtt_view ? "ggtt" : "ppgtt",
4409 offset,
fe14d5f4 4410 alignment,
d23db88c 4411 !!(flags & PIN_MAPPABLE),
05394f39 4412 obj->map_and_fenceable);
07fe0b12 4413 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4414 if (ret)
4415 return ret;
8ea99c92
DV
4416
4417 vma = NULL;
ac0c6b5a
CW
4418 }
4419 }
4420
ef79e17c 4421 bound = vma ? vma->bound : 0;
8ea99c92 4422 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4423 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4424 flags);
262de145
DV
4425 if (IS_ERR(vma))
4426 return PTR_ERR(vma);
0875546c
DV
4427 } else {
4428 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4429 if (ret)
4430 return ret;
4431 }
74898d7e 4432
91e6711e
JL
4433 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4434 (bound ^ vma->bound) & GLOBAL_BIND) {
ef79e17c
CW
4435 bool mappable, fenceable;
4436 u32 fence_size, fence_alignment;
4437
4438 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4439 obj->base.size,
4440 obj->tiling_mode);
4441 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4442 obj->base.size,
4443 obj->tiling_mode,
4444 true);
4445
4446 fenceable = (vma->node.size == fence_size &&
4447 (vma->node.start & (fence_alignment - 1)) == 0);
4448
e8dec1dd 4449 mappable = (vma->node.start + fence_size <=
ef79e17c
CW
4450 dev_priv->gtt.mappable_end);
4451
4452 obj->map_and_fenceable = mappable && fenceable;
ef79e17c 4453
91e6711e
JL
4454 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4455 }
ef79e17c 4456
8ea99c92 4457 vma->pin_count++;
673a394b
EA
4458 return 0;
4459}
4460
ec7adb6e
JL
4461int
4462i915_gem_object_pin(struct drm_i915_gem_object *obj,
4463 struct i915_address_space *vm,
4464 uint32_t alignment,
4465 uint64_t flags)
4466{
4467 return i915_gem_object_do_pin(obj, vm,
4468 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4469 alignment, flags);
4470}
4471
4472int
4473i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4474 const struct i915_ggtt_view *view,
4475 uint32_t alignment,
4476 uint64_t flags)
4477{
4478 if (WARN_ONCE(!view, "no view specified"))
4479 return -EINVAL;
4480
4481 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4482 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4483}
4484
673a394b 4485void
e6617330
TU
4486i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4487 const struct i915_ggtt_view *view)
673a394b 4488{
e6617330 4489 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4490
d7f46fc4 4491 BUG_ON(!vma);
e6617330 4492 WARN_ON(vma->pin_count == 0);
9abc4648 4493 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4494
30154650 4495 --vma->pin_count;
673a394b
EA
4496}
4497
d8ffa60b
DV
4498bool
4499i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4500{
4501 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4502 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4503 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4504
4505 WARN_ON(!ggtt_vma ||
4506 dev_priv->fence_regs[obj->fence_reg].pin_count >
4507 ggtt_vma->pin_count);
4508 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4509 return true;
4510 } else
4511 return false;
4512}
4513
4514void
4515i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4516{
4517 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4518 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4519 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4520 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4521 }
4522}
4523
673a394b
EA
4524int
4525i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4526 struct drm_file *file)
673a394b
EA
4527{
4528 struct drm_i915_gem_busy *args = data;
05394f39 4529 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4530 int ret;
4531
76c1dec1 4532 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4533 if (ret)
76c1dec1 4534 return ret;
673a394b 4535
05394f39 4536 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4537 if (&obj->base == NULL) {
1d7cfea1
CW
4538 ret = -ENOENT;
4539 goto unlock;
673a394b 4540 }
d1b851fc 4541
0be555b6
CW
4542 /* Count all active objects as busy, even if they are currently not used
4543 * by the gpu. Users of this interface expect objects to eventually
4544 * become non-busy without any further actions, therefore emit any
4545 * necessary flushes here.
c4de0a5d 4546 */
30dfebf3 4547 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4548 if (ret)
4549 goto unref;
0be555b6 4550
b4716185
CW
4551 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4552 args->busy = obj->active << 16;
4553 if (obj->last_write_req)
4554 args->busy |= obj->last_write_req->ring->id;
673a394b 4555
b4716185 4556unref:
05394f39 4557 drm_gem_object_unreference(&obj->base);
1d7cfea1 4558unlock:
673a394b 4559 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4560 return ret;
673a394b
EA
4561}
4562
4563int
4564i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4565 struct drm_file *file_priv)
4566{
0206e353 4567 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4568}
4569
3ef94daa
CW
4570int
4571i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4572 struct drm_file *file_priv)
4573{
656bfa3a 4574 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4575 struct drm_i915_gem_madvise *args = data;
05394f39 4576 struct drm_i915_gem_object *obj;
76c1dec1 4577 int ret;
3ef94daa
CW
4578
4579 switch (args->madv) {
4580 case I915_MADV_DONTNEED:
4581 case I915_MADV_WILLNEED:
4582 break;
4583 default:
4584 return -EINVAL;
4585 }
4586
1d7cfea1
CW
4587 ret = i915_mutex_lock_interruptible(dev);
4588 if (ret)
4589 return ret;
4590
05394f39 4591 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4592 if (&obj->base == NULL) {
1d7cfea1
CW
4593 ret = -ENOENT;
4594 goto unlock;
3ef94daa 4595 }
3ef94daa 4596
d7f46fc4 4597 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4598 ret = -EINVAL;
4599 goto out;
3ef94daa
CW
4600 }
4601
656bfa3a
DV
4602 if (obj->pages &&
4603 obj->tiling_mode != I915_TILING_NONE &&
4604 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4605 if (obj->madv == I915_MADV_WILLNEED)
4606 i915_gem_object_unpin_pages(obj);
4607 if (args->madv == I915_MADV_WILLNEED)
4608 i915_gem_object_pin_pages(obj);
4609 }
4610
05394f39
CW
4611 if (obj->madv != __I915_MADV_PURGED)
4612 obj->madv = args->madv;
3ef94daa 4613
6c085a72 4614 /* if the object is no longer attached, discard its backing storage */
be6a0376 4615 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4616 i915_gem_object_truncate(obj);
4617
05394f39 4618 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4619
1d7cfea1 4620out:
05394f39 4621 drm_gem_object_unreference(&obj->base);
1d7cfea1 4622unlock:
3ef94daa 4623 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4624 return ret;
3ef94daa
CW
4625}
4626
37e680a1
CW
4627void i915_gem_object_init(struct drm_i915_gem_object *obj,
4628 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4629{
b4716185
CW
4630 int i;
4631
35c20a60 4632 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4633 for (i = 0; i < I915_NUM_RINGS; i++)
4634 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4635 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4636 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4637 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4638
37e680a1
CW
4639 obj->ops = ops;
4640
0327d6ba
CW
4641 obj->fence_reg = I915_FENCE_REG_NONE;
4642 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4643
4644 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4645}
4646
37e680a1
CW
4647static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4648 .get_pages = i915_gem_object_get_pages_gtt,
4649 .put_pages = i915_gem_object_put_pages_gtt,
4650};
4651
05394f39
CW
4652struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4653 size_t size)
ac52bc56 4654{
c397b908 4655 struct drm_i915_gem_object *obj;
5949eac4 4656 struct address_space *mapping;
1a240d4d 4657 gfp_t mask;
ac52bc56 4658
42dcedd4 4659 obj = i915_gem_object_alloc(dev);
c397b908
DV
4660 if (obj == NULL)
4661 return NULL;
673a394b 4662
c397b908 4663 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4664 i915_gem_object_free(obj);
c397b908
DV
4665 return NULL;
4666 }
673a394b 4667
bed1ea95
CW
4668 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4669 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4670 /* 965gm cannot relocate objects above 4GiB. */
4671 mask &= ~__GFP_HIGHMEM;
4672 mask |= __GFP_DMA32;
4673 }
4674
496ad9aa 4675 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4676 mapping_set_gfp_mask(mapping, mask);
5949eac4 4677
37e680a1 4678 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4679
c397b908
DV
4680 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4681 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4682
3d29b842
ED
4683 if (HAS_LLC(dev)) {
4684 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4685 * cache) for about a 10% performance improvement
4686 * compared to uncached. Graphics requests other than
4687 * display scanout are coherent with the CPU in
4688 * accessing this cache. This means in this mode we
4689 * don't need to clflush on the CPU side, and on the
4690 * GPU side we only need to flush internal caches to
4691 * get data visible to the CPU.
4692 *
4693 * However, we maintain the display planes as UC, and so
4694 * need to rebind when first used as such.
4695 */
4696 obj->cache_level = I915_CACHE_LLC;
4697 } else
4698 obj->cache_level = I915_CACHE_NONE;
4699
d861e338
DV
4700 trace_i915_gem_object_create(obj);
4701
05394f39 4702 return obj;
c397b908
DV
4703}
4704
340fbd8c
CW
4705static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4706{
4707 /* If we are the last user of the backing storage (be it shmemfs
4708 * pages or stolen etc), we know that the pages are going to be
4709 * immediately released. In this case, we can then skip copying
4710 * back the contents from the GPU.
4711 */
4712
4713 if (obj->madv != I915_MADV_WILLNEED)
4714 return false;
4715
4716 if (obj->base.filp == NULL)
4717 return true;
4718
4719 /* At first glance, this looks racy, but then again so would be
4720 * userspace racing mmap against close. However, the first external
4721 * reference to the filp can only be obtained through the
4722 * i915_gem_mmap_ioctl() which safeguards us against the user
4723 * acquiring such a reference whilst we are in the middle of
4724 * freeing the object.
4725 */
4726 return atomic_long_read(&obj->base.filp->f_count) == 1;
4727}
4728
1488fc08 4729void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4730{
1488fc08 4731 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4732 struct drm_device *dev = obj->base.dev;
3e31c6c0 4733 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4734 struct i915_vma *vma, *next;
673a394b 4735
f65c9168
PZ
4736 intel_runtime_pm_get(dev_priv);
4737
26e12f89
CW
4738 trace_i915_gem_object_destroy(obj);
4739
07fe0b12 4740 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4741 int ret;
4742
4743 vma->pin_count = 0;
4744 ret = i915_vma_unbind(vma);
07fe0b12
BW
4745 if (WARN_ON(ret == -ERESTARTSYS)) {
4746 bool was_interruptible;
1488fc08 4747
07fe0b12
BW
4748 was_interruptible = dev_priv->mm.interruptible;
4749 dev_priv->mm.interruptible = false;
1488fc08 4750
07fe0b12 4751 WARN_ON(i915_vma_unbind(vma));
1488fc08 4752
07fe0b12
BW
4753 dev_priv->mm.interruptible = was_interruptible;
4754 }
1488fc08
CW
4755 }
4756
1d64ae71
BW
4757 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4758 * before progressing. */
4759 if (obj->stolen)
4760 i915_gem_object_unpin_pages(obj);
4761
a071fa00
DV
4762 WARN_ON(obj->frontbuffer_bits);
4763
656bfa3a
DV
4764 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4765 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4766 obj->tiling_mode != I915_TILING_NONE)
4767 i915_gem_object_unpin_pages(obj);
4768
401c29f6
BW
4769 if (WARN_ON(obj->pages_pin_count))
4770 obj->pages_pin_count = 0;
340fbd8c 4771 if (discard_backing_storage(obj))
5537252b 4772 obj->madv = I915_MADV_DONTNEED;
37e680a1 4773 i915_gem_object_put_pages(obj);
d8cb5086 4774 i915_gem_object_free_mmap_offset(obj);
de151cf6 4775
9da3da66
CW
4776 BUG_ON(obj->pages);
4777
2f745ad3
CW
4778 if (obj->base.import_attach)
4779 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4780
5cc9ed4b
CW
4781 if (obj->ops->release)
4782 obj->ops->release(obj);
4783
05394f39
CW
4784 drm_gem_object_release(&obj->base);
4785 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4786
05394f39 4787 kfree(obj->bit_17);
42dcedd4 4788 i915_gem_object_free(obj);
f65c9168
PZ
4789
4790 intel_runtime_pm_put(dev_priv);
673a394b
EA
4791}
4792
ec7adb6e
JL
4793struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4794 struct i915_address_space *vm)
e656a6cb
DV
4795{
4796 struct i915_vma *vma;
ec7adb6e
JL
4797 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4798 if (i915_is_ggtt(vma->vm) &&
4799 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4800 continue;
4801 if (vma->vm == vm)
e656a6cb 4802 return vma;
ec7adb6e
JL
4803 }
4804 return NULL;
4805}
4806
4807struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4808 const struct i915_ggtt_view *view)
4809{
4810 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4811 struct i915_vma *vma;
e656a6cb 4812
ec7adb6e
JL
4813 if (WARN_ONCE(!view, "no view specified"))
4814 return ERR_PTR(-EINVAL);
4815
4816 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4817 if (vma->vm == ggtt &&
4818 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4819 return vma;
e656a6cb
DV
4820 return NULL;
4821}
4822
2f633156
BW
4823void i915_gem_vma_destroy(struct i915_vma *vma)
4824{
b9d06dd9 4825 struct i915_address_space *vm = NULL;
2f633156 4826 WARN_ON(vma->node.allocated);
aaa05667
CW
4827
4828 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4829 if (!list_empty(&vma->exec_list))
4830 return;
4831
b9d06dd9 4832 vm = vma->vm;
b9d06dd9 4833
841cd773
DV
4834 if (!i915_is_ggtt(vm))
4835 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4836
8b9c2b94 4837 list_del(&vma->vma_link);
b93dab6e 4838
e20d2ab7 4839 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4840}
4841
e3efda49
CW
4842static void
4843i915_gem_stop_ringbuffers(struct drm_device *dev)
4844{
4845 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4846 struct intel_engine_cs *ring;
e3efda49
CW
4847 int i;
4848
4849 for_each_ring(ring, dev_priv, i)
a83014d3 4850 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4851}
4852
29105ccc 4853int
45c5f202 4854i915_gem_suspend(struct drm_device *dev)
29105ccc 4855{
3e31c6c0 4856 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4857 int ret = 0;
28dfe52a 4858
45c5f202 4859 mutex_lock(&dev->struct_mutex);
b2da9fe5 4860 ret = i915_gpu_idle(dev);
f7403347 4861 if (ret)
45c5f202 4862 goto err;
f7403347 4863
b2da9fe5 4864 i915_gem_retire_requests(dev);
673a394b 4865
e3efda49 4866 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4867 mutex_unlock(&dev->struct_mutex);
4868
737b1506 4869 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4870 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4871 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4872
bdcf120b
CW
4873 /* Assert that we sucessfully flushed all the work and
4874 * reset the GPU back to its idle, low power state.
4875 */
4876 WARN_ON(dev_priv->mm.busy);
4877
673a394b 4878 return 0;
45c5f202
CW
4879
4880err:
4881 mutex_unlock(&dev->struct_mutex);
4882 return ret;
673a394b
EA
4883}
4884
6909a666 4885int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4886{
6909a666 4887 struct intel_engine_cs *ring = req->ring;
c3787e2e 4888 struct drm_device *dev = ring->dev;
3e31c6c0 4889 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4890 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4891 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4892 int i, ret;
b9524a1e 4893
040d2baa 4894 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4895 return 0;
b9524a1e 4896
c3787e2e
BW
4897 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4898 if (ret)
4899 return ret;
b9524a1e 4900
c3787e2e
BW
4901 /*
4902 * Note: We do not worry about the concurrent register cacheline hang
4903 * here because no other code should access these registers other than
4904 * at initialization time.
4905 */
b9524a1e 4906 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4907 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4908 intel_ring_emit(ring, reg_base + i);
4909 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4910 }
4911
c3787e2e 4912 intel_ring_advance(ring);
b9524a1e 4913
c3787e2e 4914 return ret;
b9524a1e
BW
4915}
4916
f691e2f4
DV
4917void i915_gem_init_swizzling(struct drm_device *dev)
4918{
3e31c6c0 4919 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4920
11782b02 4921 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4922 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4923 return;
4924
4925 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4926 DISP_TILE_SURFACE_SWIZZLING);
4927
11782b02
DV
4928 if (IS_GEN5(dev))
4929 return;
4930
f691e2f4
DV
4931 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4932 if (IS_GEN6(dev))
6b26c86d 4933 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4934 else if (IS_GEN7(dev))
6b26c86d 4935 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4936 else if (IS_GEN8(dev))
4937 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4938 else
4939 BUG();
f691e2f4 4940}
e21af88d 4941
67b1b571
CW
4942static bool
4943intel_enable_blt(struct drm_device *dev)
4944{
4945 if (!HAS_BLT(dev))
4946 return false;
4947
4948 /* The blitter was dysfunctional on early prototypes */
4949 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4950 DRM_INFO("BLT not supported on this pre-production hardware;"
4951 " graphics performance will be degraded.\n");
4952 return false;
4953 }
4954
4955 return true;
4956}
4957
81e7f200
VS
4958static void init_unused_ring(struct drm_device *dev, u32 base)
4959{
4960 struct drm_i915_private *dev_priv = dev->dev_private;
4961
4962 I915_WRITE(RING_CTL(base), 0);
4963 I915_WRITE(RING_HEAD(base), 0);
4964 I915_WRITE(RING_TAIL(base), 0);
4965 I915_WRITE(RING_START(base), 0);
4966}
4967
4968static void init_unused_rings(struct drm_device *dev)
4969{
4970 if (IS_I830(dev)) {
4971 init_unused_ring(dev, PRB1_BASE);
4972 init_unused_ring(dev, SRB0_BASE);
4973 init_unused_ring(dev, SRB1_BASE);
4974 init_unused_ring(dev, SRB2_BASE);
4975 init_unused_ring(dev, SRB3_BASE);
4976 } else if (IS_GEN2(dev)) {
4977 init_unused_ring(dev, SRB0_BASE);
4978 init_unused_ring(dev, SRB1_BASE);
4979 } else if (IS_GEN3(dev)) {
4980 init_unused_ring(dev, PRB1_BASE);
4981 init_unused_ring(dev, PRB2_BASE);
4982 }
4983}
4984
a83014d3 4985int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4986{
4fc7c971 4987 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4988 int ret;
68f95ba9 4989
5c1143bb 4990 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4991 if (ret)
b6913e4b 4992 return ret;
68f95ba9
CW
4993
4994 if (HAS_BSD(dev)) {
5c1143bb 4995 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4996 if (ret)
4997 goto cleanup_render_ring;
d1b851fc 4998 }
68f95ba9 4999
67b1b571 5000 if (intel_enable_blt(dev)) {
549f7365
CW
5001 ret = intel_init_blt_ring_buffer(dev);
5002 if (ret)
5003 goto cleanup_bsd_ring;
5004 }
5005
9a8a2213
BW
5006 if (HAS_VEBOX(dev)) {
5007 ret = intel_init_vebox_ring_buffer(dev);
5008 if (ret)
5009 goto cleanup_blt_ring;
5010 }
5011
845f74a7
ZY
5012 if (HAS_BSD2(dev)) {
5013 ret = intel_init_bsd2_ring_buffer(dev);
5014 if (ret)
5015 goto cleanup_vebox_ring;
5016 }
9a8a2213 5017
99433931 5018 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 5019 if (ret)
845f74a7 5020 goto cleanup_bsd2_ring;
4fc7c971
BW
5021
5022 return 0;
5023
845f74a7
ZY
5024cleanup_bsd2_ring:
5025 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
5026cleanup_vebox_ring:
5027 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
5028cleanup_blt_ring:
5029 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5030cleanup_bsd_ring:
5031 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5032cleanup_render_ring:
5033 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5034
5035 return ret;
5036}
5037
5038int
5039i915_gem_init_hw(struct drm_device *dev)
5040{
3e31c6c0 5041 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 5042 struct intel_engine_cs *ring;
4ad2fd88 5043 int ret, i, j;
4fc7c971
BW
5044
5045 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5046 return -EIO;
5047
5e4f5189
CW
5048 /* Double layer security blanket, see i915_gem_init() */
5049 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5050
59124506 5051 if (dev_priv->ellc_size)
05e21cc4 5052 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 5053
0bf21347
VS
5054 if (IS_HASWELL(dev))
5055 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5056 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 5057
88a2b2a3 5058 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
5059 if (IS_IVYBRIDGE(dev)) {
5060 u32 temp = I915_READ(GEN7_MSG_CTL);
5061 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5062 I915_WRITE(GEN7_MSG_CTL, temp);
5063 } else if (INTEL_INFO(dev)->gen >= 7) {
5064 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5065 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5066 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5067 }
88a2b2a3
BW
5068 }
5069
4fc7c971
BW
5070 i915_gem_init_swizzling(dev);
5071
d5abdfda
DV
5072 /*
5073 * At least 830 can leave some of the unused rings
5074 * "active" (ie. head != tail) after resume which
5075 * will prevent c3 entry. Makes sure all unused rings
5076 * are totally idle.
5077 */
5078 init_unused_rings(dev);
5079
90638cc1
JH
5080 BUG_ON(!dev_priv->ring[RCS].default_context);
5081
4ad2fd88
JH
5082 ret = i915_ppgtt_init_hw(dev);
5083 if (ret) {
5084 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5085 goto out;
5086 }
5087
5088 /* Need to do basic initialisation of all rings first: */
35a57ffb
DV
5089 for_each_ring(ring, dev_priv, i) {
5090 ret = ring->init_hw(ring);
5091 if (ret)
5e4f5189 5092 goto out;
35a57ffb 5093 }
99433931 5094
4ad2fd88
JH
5095 /* Now it is safe to go back round and do everything else: */
5096 for_each_ring(ring, dev_priv, i) {
dc4be607
JH
5097 struct drm_i915_gem_request *req;
5098
90638cc1
JH
5099 WARN_ON(!ring->default_context);
5100
dc4be607
JH
5101 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
5102 if (ret) {
5103 i915_gem_cleanup_ringbuffer(dev);
5104 goto out;
5105 }
5106
4ad2fd88
JH
5107 if (ring->id == RCS) {
5108 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 5109 i915_gem_l3_remap(req, j);
4ad2fd88 5110 }
c3787e2e 5111
b3dd6b96 5112 ret = i915_ppgtt_init_ring(req);
4ad2fd88
JH
5113 if (ret && ret != -EIO) {
5114 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
dc4be607 5115 i915_gem_request_cancel(req);
4ad2fd88
JH
5116 i915_gem_cleanup_ringbuffer(dev);
5117 goto out;
5118 }
82460d97 5119
b3dd6b96 5120 ret = i915_gem_context_enable(req);
90638cc1
JH
5121 if (ret && ret != -EIO) {
5122 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
dc4be607 5123 i915_gem_request_cancel(req);
90638cc1
JH
5124 i915_gem_cleanup_ringbuffer(dev);
5125 goto out;
5126 }
dc4be607 5127
75289874 5128 i915_add_request_no_flush(req);
b7c36d25 5129 }
e21af88d 5130
5e4f5189
CW
5131out:
5132 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 5133 return ret;
8187a2b7
ZN
5134}
5135
1070a42b
CW
5136int i915_gem_init(struct drm_device *dev)
5137{
5138 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
5139 int ret;
5140
127f1003
OM
5141 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5142 i915.enable_execlists);
5143
1070a42b 5144 mutex_lock(&dev->struct_mutex);
d62b4892
JB
5145
5146 if (IS_VALLEYVIEW(dev)) {
5147 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
5148 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5149 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5150 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
5151 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5152 }
5153
a83014d3 5154 if (!i915.enable_execlists) {
f3dc74c0 5155 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
5156 dev_priv->gt.init_rings = i915_gem_init_rings;
5157 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5158 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 5159 } else {
f3dc74c0 5160 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
5161 dev_priv->gt.init_rings = intel_logical_rings_init;
5162 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5163 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
5164 }
5165
5e4f5189
CW
5166 /* This is just a security blanket to placate dragons.
5167 * On some systems, we very sporadically observe that the first TLBs
5168 * used by the CS may be stale, despite us poking the TLB reset. If
5169 * we hold the forcewake during initialisation these problems
5170 * just magically go away.
5171 */
5172 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5173
6c5566a8 5174 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
5175 if (ret)
5176 goto out_unlock;
6c5566a8 5177
d7e5008f 5178 i915_gem_init_global_gtt(dev);
d62b4892 5179
2fa48d8d 5180 ret = i915_gem_context_init(dev);
7bcc3777
JN
5181 if (ret)
5182 goto out_unlock;
2fa48d8d 5183
35a57ffb
DV
5184 ret = dev_priv->gt.init_rings(dev);
5185 if (ret)
7bcc3777 5186 goto out_unlock;
2fa48d8d 5187
1070a42b 5188 ret = i915_gem_init_hw(dev);
60990320
CW
5189 if (ret == -EIO) {
5190 /* Allow ring initialisation to fail by marking the GPU as
5191 * wedged. But we only want to do this where the GPU is angry,
5192 * for all other failure, such as an allocation failure, bail.
5193 */
5194 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5195 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5196 ret = 0;
1070a42b 5197 }
7bcc3777
JN
5198
5199out_unlock:
5e4f5189 5200 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 5201 mutex_unlock(&dev->struct_mutex);
1070a42b 5202
60990320 5203 return ret;
1070a42b
CW
5204}
5205
8187a2b7
ZN
5206void
5207i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5208{
3e31c6c0 5209 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 5210 struct intel_engine_cs *ring;
1ec14ad3 5211 int i;
8187a2b7 5212
b4519513 5213 for_each_ring(ring, dev_priv, i)
a83014d3 5214 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
5215}
5216
64193406 5217static void
a4872ba6 5218init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
5219{
5220 INIT_LIST_HEAD(&ring->active_list);
5221 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
5222}
5223
7e0d96bc
BW
5224void i915_init_vm(struct drm_i915_private *dev_priv,
5225 struct i915_address_space *vm)
fc8c067e 5226{
7e0d96bc
BW
5227 if (!i915_is_ggtt(vm))
5228 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
5229 vm->dev = dev_priv->dev;
5230 INIT_LIST_HEAD(&vm->active_list);
5231 INIT_LIST_HEAD(&vm->inactive_list);
5232 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 5233 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
5234}
5235
673a394b
EA
5236void
5237i915_gem_load(struct drm_device *dev)
5238{
3e31c6c0 5239 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5240 int i;
5241
efab6d8d 5242 dev_priv->objects =
42dcedd4
CW
5243 kmem_cache_create("i915_gem_object",
5244 sizeof(struct drm_i915_gem_object), 0,
5245 SLAB_HWCACHE_ALIGN,
5246 NULL);
e20d2ab7
CW
5247 dev_priv->vmas =
5248 kmem_cache_create("i915_gem_vma",
5249 sizeof(struct i915_vma), 0,
5250 SLAB_HWCACHE_ALIGN,
5251 NULL);
efab6d8d
CW
5252 dev_priv->requests =
5253 kmem_cache_create("i915_gem_request",
5254 sizeof(struct drm_i915_gem_request), 0,
5255 SLAB_HWCACHE_ALIGN,
5256 NULL);
673a394b 5257
fc8c067e
BW
5258 INIT_LIST_HEAD(&dev_priv->vm_list);
5259 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5260
a33afea5 5261 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5262 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5263 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5264 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
5265 for (i = 0; i < I915_NUM_RINGS; i++)
5266 init_ring_lists(&dev_priv->ring[i]);
4b9de737 5267 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5268 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5269 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5270 i915_gem_retire_work_handler);
b29c19b6
CW
5271 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5272 i915_gem_idle_work_handler);
1f83fee0 5273 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5274
72bfa19c
CW
5275 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5276
42b5aeab
VS
5277 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5278 dev_priv->num_fence_regs = 32;
5279 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5280 dev_priv->num_fence_regs = 16;
5281 else
5282 dev_priv->num_fence_regs = 8;
5283
eb82289a
YZ
5284 if (intel_vgpu_active(dev))
5285 dev_priv->num_fence_regs =
5286 I915_READ(vgtif_reg(avail_rs.fence_num));
5287
b5aa8a0f 5288 /* Initialize fence registers to zero */
19b2dbde
CW
5289 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5290 i915_gem_restore_fences(dev);
10ed13e4 5291
673a394b 5292 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5293 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5294
ce453d81
CW
5295 dev_priv->mm.interruptible = true;
5296
be6a0376 5297 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
5298
5299 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5300}
71acb5eb 5301
f787a5f5 5302void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5303{
f787a5f5 5304 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5305
5306 /* Clean up our request list when the client is going away, so that
5307 * later retire_requests won't dereference our soon-to-be-gone
5308 * file_priv.
5309 */
1c25595f 5310 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5311 while (!list_empty(&file_priv->mm.request_list)) {
5312 struct drm_i915_gem_request *request;
5313
5314 request = list_first_entry(&file_priv->mm.request_list,
5315 struct drm_i915_gem_request,
5316 client_list);
5317 list_del(&request->client_list);
5318 request->file_priv = NULL;
5319 }
1c25595f 5320 spin_unlock(&file_priv->mm.lock);
b29c19b6 5321
2e1b8730 5322 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5323 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5324 list_del(&file_priv->rps.link);
8d3afd7d 5325 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5326 }
b29c19b6
CW
5327}
5328
5329int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5330{
5331 struct drm_i915_file_private *file_priv;
e422b888 5332 int ret;
b29c19b6
CW
5333
5334 DRM_DEBUG_DRIVER("\n");
5335
5336 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5337 if (!file_priv)
5338 return -ENOMEM;
5339
5340 file->driver_priv = file_priv;
5341 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5342 file_priv->file = file;
2e1b8730 5343 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5344
5345 spin_lock_init(&file_priv->mm.lock);
5346 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5347
e422b888
BW
5348 ret = i915_gem_context_open(dev, file);
5349 if (ret)
5350 kfree(file_priv);
b29c19b6 5351
e422b888 5352 return ret;
b29c19b6
CW
5353}
5354
b680c37a
DV
5355/**
5356 * i915_gem_track_fb - update frontbuffer tracking
5357 * old: current GEM buffer for the frontbuffer slots
5358 * new: new GEM buffer for the frontbuffer slots
5359 * frontbuffer_bits: bitmask of frontbuffer slots
5360 *
5361 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5362 * from @old and setting them in @new. Both @old and @new can be NULL.
5363 */
a071fa00
DV
5364void i915_gem_track_fb(struct drm_i915_gem_object *old,
5365 struct drm_i915_gem_object *new,
5366 unsigned frontbuffer_bits)
5367{
5368 if (old) {
5369 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5370 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5371 old->frontbuffer_bits &= ~frontbuffer_bits;
5372 }
5373
5374 if (new) {
5375 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5376 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5377 new->frontbuffer_bits |= frontbuffer_bits;
5378 }
5379}
5380
a70a3148 5381/* All the new VM stuff */
ec7adb6e
JL
5382unsigned long
5383i915_gem_obj_offset(struct drm_i915_gem_object *o,
5384 struct i915_address_space *vm)
a70a3148
BW
5385{
5386 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5387 struct i915_vma *vma;
5388
896ab1a5 5389 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5390
a70a3148 5391 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5392 if (i915_is_ggtt(vma->vm) &&
5393 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5394 continue;
5395 if (vma->vm == vm)
a70a3148 5396 return vma->node.start;
a70a3148 5397 }
ec7adb6e 5398
f25748ea
DV
5399 WARN(1, "%s vma for this object not found.\n",
5400 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5401 return -1;
5402}
5403
ec7adb6e
JL
5404unsigned long
5405i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
9abc4648 5406 const struct i915_ggtt_view *view)
a70a3148 5407{
ec7adb6e 5408 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5409 struct i915_vma *vma;
5410
5411 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5412 if (vma->vm == ggtt &&
5413 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5414 return vma->node.start;
5415
5678ad73 5416 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5417 return -1;
5418}
5419
5420bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5421 struct i915_address_space *vm)
5422{
5423 struct i915_vma *vma;
5424
5425 list_for_each_entry(vma, &o->vma_list, vma_link) {
5426 if (i915_is_ggtt(vma->vm) &&
5427 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5428 continue;
5429 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5430 return true;
5431 }
5432
5433 return false;
5434}
5435
5436bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5437 const struct i915_ggtt_view *view)
ec7adb6e
JL
5438{
5439 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5440 struct i915_vma *vma;
5441
5442 list_for_each_entry(vma, &o->vma_list, vma_link)
5443 if (vma->vm == ggtt &&
9abc4648 5444 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5445 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5446 return true;
5447
5448 return false;
5449}
5450
5451bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5452{
5a1d5eb0 5453 struct i915_vma *vma;
a70a3148 5454
5a1d5eb0
CW
5455 list_for_each_entry(vma, &o->vma_list, vma_link)
5456 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5457 return true;
5458
5459 return false;
5460}
5461
5462unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5463 struct i915_address_space *vm)
5464{
5465 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5466 struct i915_vma *vma;
5467
896ab1a5 5468 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5469
5470 BUG_ON(list_empty(&o->vma_list));
5471
ec7adb6e
JL
5472 list_for_each_entry(vma, &o->vma_list, vma_link) {
5473 if (i915_is_ggtt(vma->vm) &&
5474 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5475 continue;
a70a3148
BW
5476 if (vma->vm == vm)
5477 return vma->node.size;
ec7adb6e 5478 }
a70a3148
BW
5479 return 0;
5480}
5481
ec7adb6e 5482bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5483{
5484 struct i915_vma *vma;
a6631ae1 5485 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5486 if (vma->pin_count > 0)
5487 return true;
a6631ae1 5488
ec7adb6e 5489 return false;
5c2abbea 5490}
ec7adb6e 5491