]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Add missing statics to recent psr functions
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43
CW
63static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 65
c76ce038
CW
66static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
68{
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
70}
71
2c22569b
CW
72static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73{
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
76
77 return obj->pin_display;
78}
79
61050808
CW
80static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81{
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
84
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
87 */
5d82e3e6 88 obj->fence_dirty = false;
61050808
CW
89 obj->fence_reg = I915_FENCE_REG_NONE;
90}
91
73aa808f
CW
92/* some bookkeeping */
93static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
102static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104{
c20e8355 105 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
c20e8355 108 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
109}
110
21dd3734 111static int
33196ded 112i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 113{
30dbf0c0
CW
114 int ret;
115
7abb690a
DV
116#define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
1f83fee0 118 if (EXIT_COND)
30dbf0c0
CW
119 return 0;
120
0a6759c6
DV
121 /*
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
125 */
1f83fee0
DV
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
0a6759c6
DV
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
30dbf0c0 133 return ret;
0a6759c6 134 }
1f83fee0 135#undef EXIT_COND
30dbf0c0 136
21dd3734 137 return 0;
30dbf0c0
CW
138}
139
54cf91dc 140int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 141{
33196ded 142 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
143 int ret;
144
33196ded 145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
146 if (ret)
147 return ret;
148
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
152
23bc5982 153 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
154 return 0;
155}
30dbf0c0 156
7d1c4804 157static inline bool
05394f39 158i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 159{
9843877d 160 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
161}
162
79e53945
JB
163int
164i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 165 struct drm_file *file)
79e53945 166{
93d18799 167 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 168 struct drm_i915_gem_init *args = data;
2021746e 169
7bb6fb8d
DV
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
172
2021746e
CW
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
79e53945 176
f534bc0b
DV
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
180
79e53945 181 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
93d18799 184 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
185 mutex_unlock(&dev->struct_mutex);
186
2021746e 187 return 0;
673a394b
EA
188}
189
5a125c3c
EA
190int
191i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 192 struct drm_file *file)
5a125c3c 193{
73aa808f 194 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 195 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
5a125c3c 198
6299f992 199 pinned = 0;
73aa808f 200 mutex_lock(&dev->struct_mutex);
35c20a60 201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 202 if (i915_gem_obj_is_pinned(obj))
f343c5f6 203 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 204 mutex_unlock(&dev->struct_mutex);
5a125c3c 205
853ba5d2 206 args->aper_size = dev_priv->gtt.base.total;
0206e353 207 args->aper_available_size = args->aper_size - pinned;
6299f992 208
5a125c3c
EA
209 return 0;
210}
211
00731155
CW
212static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
213{
214 drm_dma_handle_t *phys = obj->phys_handle;
215
216 if (!phys)
217 return;
218
219 if (obj->madv == I915_MADV_WILLNEED) {
220 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221 char *vaddr = phys->vaddr;
222 int i;
223
224 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225 struct page *page = shmem_read_mapping_page(mapping, i);
226 if (!IS_ERR(page)) {
227 char *dst = kmap_atomic(page);
228 memcpy(dst, vaddr, PAGE_SIZE);
229 drm_clflush_virt_range(dst, PAGE_SIZE);
230 kunmap_atomic(dst);
231
232 set_page_dirty(page);
233 mark_page_accessed(page);
234 page_cache_release(page);
235 }
236 vaddr += PAGE_SIZE;
237 }
238 i915_gem_chipset_flush(obj->base.dev);
239 }
240
241#ifdef CONFIG_X86
242 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
243#endif
244 drm_pci_free(obj->base.dev, phys);
245 obj->phys_handle = NULL;
246}
247
248int
249i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
250 int align)
251{
252 drm_dma_handle_t *phys;
253 struct address_space *mapping;
254 char *vaddr;
255 int i;
256
257 if (obj->phys_handle) {
258 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
259 return -EBUSY;
260
261 return 0;
262 }
263
264 if (obj->madv != I915_MADV_WILLNEED)
265 return -EFAULT;
266
267 if (obj->base.filp == NULL)
268 return -EINVAL;
269
270 /* create a new object */
271 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
272 if (!phys)
273 return -ENOMEM;
274
275 vaddr = phys->vaddr;
276#ifdef CONFIG_X86
277 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
278#endif
279 mapping = file_inode(obj->base.filp)->i_mapping;
280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281 struct page *page;
282 char *src;
283
284 page = shmem_read_mapping_page(mapping, i);
285 if (IS_ERR(page)) {
286#ifdef CONFIG_X86
287 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
288#endif
289 drm_pci_free(obj->base.dev, phys);
290 return PTR_ERR(page);
291 }
292
293 src = kmap_atomic(page);
294 memcpy(vaddr, src, PAGE_SIZE);
295 kunmap_atomic(src);
296
297 mark_page_accessed(page);
298 page_cache_release(page);
299
300 vaddr += PAGE_SIZE;
301 }
302
303 obj->phys_handle = phys;
304 return 0;
305}
306
307static int
308i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309 struct drm_i915_gem_pwrite *args,
310 struct drm_file *file_priv)
311{
312 struct drm_device *dev = obj->base.dev;
313 void *vaddr = obj->phys_handle->vaddr + args->offset;
314 char __user *user_data = to_user_ptr(args->data_ptr);
315
316 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317 unsigned long unwritten;
318
319 /* The physical object once assigned is fixed for the lifetime
320 * of the obj, so we can safely drop the lock and continue
321 * to access vaddr.
322 */
323 mutex_unlock(&dev->struct_mutex);
324 unwritten = copy_from_user(vaddr, user_data, args->size);
325 mutex_lock(&dev->struct_mutex);
326 if (unwritten)
327 return -EFAULT;
328 }
329
330 i915_gem_chipset_flush(dev);
331 return 0;
332}
333
42dcedd4
CW
334void *i915_gem_object_alloc(struct drm_device *dev)
335{
336 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 337 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
338}
339
340void i915_gem_object_free(struct drm_i915_gem_object *obj)
341{
342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343 kmem_cache_free(dev_priv->slab, obj);
344}
345
ff72145b
DA
346static int
347i915_gem_create(struct drm_file *file,
348 struct drm_device *dev,
349 uint64_t size,
350 uint32_t *handle_p)
673a394b 351{
05394f39 352 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
353 int ret;
354 u32 handle;
673a394b 355
ff72145b 356 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
357 if (size == 0)
358 return -EINVAL;
673a394b
EA
359
360 /* Allocate the new object */
ff72145b 361 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
362 if (obj == NULL)
363 return -ENOMEM;
364
05394f39 365 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 366 /* drop reference from allocate - handle holds it now */
d861e338
DV
367 drm_gem_object_unreference_unlocked(&obj->base);
368 if (ret)
369 return ret;
202f2fef 370
ff72145b 371 *handle_p = handle;
673a394b
EA
372 return 0;
373}
374
ff72145b
DA
375int
376i915_gem_dumb_create(struct drm_file *file,
377 struct drm_device *dev,
378 struct drm_mode_create_dumb *args)
379{
380 /* have to work out size/pitch and return them */
de45eaf7 381 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
382 args->size = args->pitch * args->height;
383 return i915_gem_create(file, dev,
384 args->size, &args->handle);
385}
386
ff72145b
DA
387/**
388 * Creates a new mm object and returns a handle to it.
389 */
390int
391i915_gem_create_ioctl(struct drm_device *dev, void *data,
392 struct drm_file *file)
393{
394 struct drm_i915_gem_create *args = data;
63ed2cb2 395
ff72145b
DA
396 return i915_gem_create(file, dev,
397 args->size, &args->handle);
398}
399
8461d226
DV
400static inline int
401__copy_to_user_swizzled(char __user *cpu_vaddr,
402 const char *gpu_vaddr, int gpu_offset,
403 int length)
404{
405 int ret, cpu_offset = 0;
406
407 while (length > 0) {
408 int cacheline_end = ALIGN(gpu_offset + 1, 64);
409 int this_length = min(cacheline_end - gpu_offset, length);
410 int swizzled_gpu_offset = gpu_offset ^ 64;
411
412 ret = __copy_to_user(cpu_vaddr + cpu_offset,
413 gpu_vaddr + swizzled_gpu_offset,
414 this_length);
415 if (ret)
416 return ret + length;
417
418 cpu_offset += this_length;
419 gpu_offset += this_length;
420 length -= this_length;
421 }
422
423 return 0;
424}
425
8c59967c 426static inline int
4f0c7cfb
BW
427__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428 const char __user *cpu_vaddr,
8c59967c
DV
429 int length)
430{
431 int ret, cpu_offset = 0;
432
433 while (length > 0) {
434 int cacheline_end = ALIGN(gpu_offset + 1, 64);
435 int this_length = min(cacheline_end - gpu_offset, length);
436 int swizzled_gpu_offset = gpu_offset ^ 64;
437
438 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439 cpu_vaddr + cpu_offset,
440 this_length);
441 if (ret)
442 return ret + length;
443
444 cpu_offset += this_length;
445 gpu_offset += this_length;
446 length -= this_length;
447 }
448
449 return 0;
450}
451
4c914c0c
BV
452/*
453 * Pins the specified object's pages and synchronizes the object with
454 * GPU accesses. Sets needs_clflush to non-zero if the caller should
455 * flush the object from the CPU cache.
456 */
457int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
458 int *needs_clflush)
459{
460 int ret;
461
462 *needs_clflush = 0;
463
464 if (!obj->base.filp)
465 return -EINVAL;
466
467 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468 /* If we're not in the cpu read domain, set ourself into the gtt
469 * read domain and manually flush cachelines (if required). This
470 * optimizes for the case when the gpu will dirty the data
471 * anyway again before the next pread happens. */
472 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
473 obj->cache_level);
474 ret = i915_gem_object_wait_rendering(obj, true);
475 if (ret)
476 return ret;
c8725f3d
CW
477
478 i915_gem_object_retire(obj);
4c914c0c
BV
479 }
480
481 ret = i915_gem_object_get_pages(obj);
482 if (ret)
483 return ret;
484
485 i915_gem_object_pin_pages(obj);
486
487 return ret;
488}
489
d174bd64
DV
490/* Per-page copy function for the shmem pread fastpath.
491 * Flushes invalid cachelines before reading the target if
492 * needs_clflush is set. */
eb01459f 493static int
d174bd64
DV
494shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495 char __user *user_data,
496 bool page_do_bit17_swizzling, bool needs_clflush)
497{
498 char *vaddr;
499 int ret;
500
e7e58eb5 501 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
502 return -EINVAL;
503
504 vaddr = kmap_atomic(page);
505 if (needs_clflush)
506 drm_clflush_virt_range(vaddr + shmem_page_offset,
507 page_length);
508 ret = __copy_to_user_inatomic(user_data,
509 vaddr + shmem_page_offset,
510 page_length);
511 kunmap_atomic(vaddr);
512
f60d7f0c 513 return ret ? -EFAULT : 0;
d174bd64
DV
514}
515
23c18c71
DV
516static void
517shmem_clflush_swizzled_range(char *addr, unsigned long length,
518 bool swizzled)
519{
e7e58eb5 520 if (unlikely(swizzled)) {
23c18c71
DV
521 unsigned long start = (unsigned long) addr;
522 unsigned long end = (unsigned long) addr + length;
523
524 /* For swizzling simply ensure that we always flush both
525 * channels. Lame, but simple and it works. Swizzled
526 * pwrite/pread is far from a hotpath - current userspace
527 * doesn't use it at all. */
528 start = round_down(start, 128);
529 end = round_up(end, 128);
530
531 drm_clflush_virt_range((void *)start, end - start);
532 } else {
533 drm_clflush_virt_range(addr, length);
534 }
535
536}
537
d174bd64
DV
538/* Only difference to the fast-path function is that this can handle bit17
539 * and uses non-atomic copy and kmap functions. */
540static int
541shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542 char __user *user_data,
543 bool page_do_bit17_swizzling, bool needs_clflush)
544{
545 char *vaddr;
546 int ret;
547
548 vaddr = kmap(page);
549 if (needs_clflush)
23c18c71
DV
550 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
551 page_length,
552 page_do_bit17_swizzling);
d174bd64
DV
553
554 if (page_do_bit17_swizzling)
555 ret = __copy_to_user_swizzled(user_data,
556 vaddr, shmem_page_offset,
557 page_length);
558 else
559 ret = __copy_to_user(user_data,
560 vaddr + shmem_page_offset,
561 page_length);
562 kunmap(page);
563
f60d7f0c 564 return ret ? - EFAULT : 0;
d174bd64
DV
565}
566
eb01459f 567static int
dbf7bff0
DV
568i915_gem_shmem_pread(struct drm_device *dev,
569 struct drm_i915_gem_object *obj,
570 struct drm_i915_gem_pread *args,
571 struct drm_file *file)
eb01459f 572{
8461d226 573 char __user *user_data;
eb01459f 574 ssize_t remain;
8461d226 575 loff_t offset;
eb2c0c81 576 int shmem_page_offset, page_length, ret = 0;
8461d226 577 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 578 int prefaulted = 0;
8489731c 579 int needs_clflush = 0;
67d5a50c 580 struct sg_page_iter sg_iter;
eb01459f 581
2bb4629a 582 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
583 remain = args->size;
584
8461d226 585 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 586
4c914c0c 587 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
588 if (ret)
589 return ret;
590
8461d226 591 offset = args->offset;
eb01459f 592
67d5a50c
ID
593 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594 offset >> PAGE_SHIFT) {
2db76d7c 595 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
596
597 if (remain <= 0)
598 break;
599
eb01459f
EA
600 /* Operation in this page
601 *
eb01459f 602 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
603 * page_length = bytes to copy for this page
604 */
c8cbbb8b 605 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
606 page_length = remain;
607 if ((shmem_page_offset + page_length) > PAGE_SIZE)
608 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 609
8461d226
DV
610 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
611 (page_to_phys(page) & (1 << 17)) != 0;
612
d174bd64
DV
613 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
614 user_data, page_do_bit17_swizzling,
615 needs_clflush);
616 if (ret == 0)
617 goto next_page;
dbf7bff0 618
dbf7bff0
DV
619 mutex_unlock(&dev->struct_mutex);
620
d330a953 621 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 622 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
623 /* Userspace is tricking us, but we've already clobbered
624 * its pages with the prefault and promised to write the
625 * data up to the first fault. Hence ignore any errors
626 * and just continue. */
627 (void)ret;
628 prefaulted = 1;
629 }
eb01459f 630
d174bd64
DV
631 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
632 user_data, page_do_bit17_swizzling,
633 needs_clflush);
eb01459f 634
dbf7bff0 635 mutex_lock(&dev->struct_mutex);
f60d7f0c 636
f60d7f0c 637 if (ret)
8461d226 638 goto out;
8461d226 639
17793c9a 640next_page:
eb01459f 641 remain -= page_length;
8461d226 642 user_data += page_length;
eb01459f
EA
643 offset += page_length;
644 }
645
4f27b75d 646out:
f60d7f0c
CW
647 i915_gem_object_unpin_pages(obj);
648
eb01459f
EA
649 return ret;
650}
651
673a394b
EA
652/**
653 * Reads data from the object referenced by handle.
654 *
655 * On error, the contents of *data are undefined.
656 */
657int
658i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 659 struct drm_file *file)
673a394b
EA
660{
661 struct drm_i915_gem_pread *args = data;
05394f39 662 struct drm_i915_gem_object *obj;
35b62a89 663 int ret = 0;
673a394b 664
51311d0a
CW
665 if (args->size == 0)
666 return 0;
667
668 if (!access_ok(VERIFY_WRITE,
2bb4629a 669 to_user_ptr(args->data_ptr),
51311d0a
CW
670 args->size))
671 return -EFAULT;
672
4f27b75d 673 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 674 if (ret)
4f27b75d 675 return ret;
673a394b 676
05394f39 677 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 678 if (&obj->base == NULL) {
1d7cfea1
CW
679 ret = -ENOENT;
680 goto unlock;
4f27b75d 681 }
673a394b 682
7dcd2499 683 /* Bounds check source. */
05394f39
CW
684 if (args->offset > obj->base.size ||
685 args->size > obj->base.size - args->offset) {
ce9d419d 686 ret = -EINVAL;
35b62a89 687 goto out;
ce9d419d
CW
688 }
689
1286ff73
DV
690 /* prime objects have no backing filp to GEM pread/pwrite
691 * pages from.
692 */
693 if (!obj->base.filp) {
694 ret = -EINVAL;
695 goto out;
696 }
697
db53a302
CW
698 trace_i915_gem_object_pread(obj, args->offset, args->size);
699
dbf7bff0 700 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 701
35b62a89 702out:
05394f39 703 drm_gem_object_unreference(&obj->base);
1d7cfea1 704unlock:
4f27b75d 705 mutex_unlock(&dev->struct_mutex);
eb01459f 706 return ret;
673a394b
EA
707}
708
0839ccb8
KP
709/* This is the fast write path which cannot handle
710 * page faults in the source data
9b7530cc 711 */
0839ccb8
KP
712
713static inline int
714fast_user_write(struct io_mapping *mapping,
715 loff_t page_base, int page_offset,
716 char __user *user_data,
717 int length)
9b7530cc 718{
4f0c7cfb
BW
719 void __iomem *vaddr_atomic;
720 void *vaddr;
0839ccb8 721 unsigned long unwritten;
9b7530cc 722
3e4d3af5 723 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
724 /* We can use the cpu mem copy function because this is X86. */
725 vaddr = (void __force*)vaddr_atomic + page_offset;
726 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 727 user_data, length);
3e4d3af5 728 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 729 return unwritten;
0839ccb8
KP
730}
731
3de09aa3
EA
732/**
733 * This is the fast pwrite path, where we copy the data directly from the
734 * user into the GTT, uncached.
735 */
673a394b 736static int
05394f39
CW
737i915_gem_gtt_pwrite_fast(struct drm_device *dev,
738 struct drm_i915_gem_object *obj,
3de09aa3 739 struct drm_i915_gem_pwrite *args,
05394f39 740 struct drm_file *file)
673a394b 741{
3e31c6c0 742 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 743 ssize_t remain;
0839ccb8 744 loff_t offset, page_base;
673a394b 745 char __user *user_data;
935aaa69
DV
746 int page_offset, page_length, ret;
747
1ec9e26d 748 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
749 if (ret)
750 goto out;
751
752 ret = i915_gem_object_set_to_gtt_domain(obj, true);
753 if (ret)
754 goto out_unpin;
755
756 ret = i915_gem_object_put_fence(obj);
757 if (ret)
758 goto out_unpin;
673a394b 759
2bb4629a 760 user_data = to_user_ptr(args->data_ptr);
673a394b 761 remain = args->size;
673a394b 762
f343c5f6 763 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
764
765 while (remain > 0) {
766 /* Operation in this page
767 *
0839ccb8
KP
768 * page_base = page offset within aperture
769 * page_offset = offset within page
770 * page_length = bytes to copy for this page
673a394b 771 */
c8cbbb8b
CW
772 page_base = offset & PAGE_MASK;
773 page_offset = offset_in_page(offset);
0839ccb8
KP
774 page_length = remain;
775 if ((page_offset + remain) > PAGE_SIZE)
776 page_length = PAGE_SIZE - page_offset;
777
0839ccb8 778 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
779 * source page isn't available. Return the error and we'll
780 * retry in the slow path.
0839ccb8 781 */
5d4545ae 782 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
783 page_offset, user_data, page_length)) {
784 ret = -EFAULT;
785 goto out_unpin;
786 }
673a394b 787
0839ccb8
KP
788 remain -= page_length;
789 user_data += page_length;
790 offset += page_length;
673a394b 791 }
673a394b 792
935aaa69 793out_unpin:
d7f46fc4 794 i915_gem_object_ggtt_unpin(obj);
935aaa69 795out:
3de09aa3 796 return ret;
673a394b
EA
797}
798
d174bd64
DV
799/* Per-page copy function for the shmem pwrite fastpath.
800 * Flushes invalid cachelines before writing to the target if
801 * needs_clflush_before is set and flushes out any written cachelines after
802 * writing if needs_clflush is set. */
3043c60c 803static int
d174bd64
DV
804shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
805 char __user *user_data,
806 bool page_do_bit17_swizzling,
807 bool needs_clflush_before,
808 bool needs_clflush_after)
673a394b 809{
d174bd64 810 char *vaddr;
673a394b 811 int ret;
3de09aa3 812
e7e58eb5 813 if (unlikely(page_do_bit17_swizzling))
d174bd64 814 return -EINVAL;
3de09aa3 815
d174bd64
DV
816 vaddr = kmap_atomic(page);
817 if (needs_clflush_before)
818 drm_clflush_virt_range(vaddr + shmem_page_offset,
819 page_length);
c2831a94
CW
820 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
821 user_data, page_length);
d174bd64
DV
822 if (needs_clflush_after)
823 drm_clflush_virt_range(vaddr + shmem_page_offset,
824 page_length);
825 kunmap_atomic(vaddr);
3de09aa3 826
755d2218 827 return ret ? -EFAULT : 0;
3de09aa3
EA
828}
829
d174bd64
DV
830/* Only difference to the fast-path function is that this can handle bit17
831 * and uses non-atomic copy and kmap functions. */
3043c60c 832static int
d174bd64
DV
833shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
834 char __user *user_data,
835 bool page_do_bit17_swizzling,
836 bool needs_clflush_before,
837 bool needs_clflush_after)
673a394b 838{
d174bd64
DV
839 char *vaddr;
840 int ret;
e5281ccd 841
d174bd64 842 vaddr = kmap(page);
e7e58eb5 843 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
844 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
845 page_length,
846 page_do_bit17_swizzling);
d174bd64
DV
847 if (page_do_bit17_swizzling)
848 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
849 user_data,
850 page_length);
d174bd64
DV
851 else
852 ret = __copy_from_user(vaddr + shmem_page_offset,
853 user_data,
854 page_length);
855 if (needs_clflush_after)
23c18c71
DV
856 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
857 page_length,
858 page_do_bit17_swizzling);
d174bd64 859 kunmap(page);
40123c1f 860
755d2218 861 return ret ? -EFAULT : 0;
40123c1f
EA
862}
863
40123c1f 864static int
e244a443
DV
865i915_gem_shmem_pwrite(struct drm_device *dev,
866 struct drm_i915_gem_object *obj,
867 struct drm_i915_gem_pwrite *args,
868 struct drm_file *file)
40123c1f 869{
40123c1f 870 ssize_t remain;
8c59967c
DV
871 loff_t offset;
872 char __user *user_data;
eb2c0c81 873 int shmem_page_offset, page_length, ret = 0;
8c59967c 874 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 875 int hit_slowpath = 0;
58642885
DV
876 int needs_clflush_after = 0;
877 int needs_clflush_before = 0;
67d5a50c 878 struct sg_page_iter sg_iter;
40123c1f 879
2bb4629a 880 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
881 remain = args->size;
882
8c59967c 883 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 884
58642885
DV
885 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
886 /* If we're not in the cpu write domain, set ourself into the gtt
887 * write domain and manually flush cachelines (if required). This
888 * optimizes for the case when the gpu will use the data
889 * right away and we therefore have to clflush anyway. */
2c22569b 890 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
891 ret = i915_gem_object_wait_rendering(obj, false);
892 if (ret)
893 return ret;
c8725f3d
CW
894
895 i915_gem_object_retire(obj);
58642885 896 }
c76ce038
CW
897 /* Same trick applies to invalidate partially written cachelines read
898 * before writing. */
899 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
900 needs_clflush_before =
901 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 902
755d2218
CW
903 ret = i915_gem_object_get_pages(obj);
904 if (ret)
905 return ret;
906
907 i915_gem_object_pin_pages(obj);
908
673a394b 909 offset = args->offset;
05394f39 910 obj->dirty = 1;
673a394b 911
67d5a50c
ID
912 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
913 offset >> PAGE_SHIFT) {
2db76d7c 914 struct page *page = sg_page_iter_page(&sg_iter);
58642885 915 int partial_cacheline_write;
e5281ccd 916
9da3da66
CW
917 if (remain <= 0)
918 break;
919
40123c1f
EA
920 /* Operation in this page
921 *
40123c1f 922 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
923 * page_length = bytes to copy for this page
924 */
c8cbbb8b 925 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
926
927 page_length = remain;
928 if ((shmem_page_offset + page_length) > PAGE_SIZE)
929 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 930
58642885
DV
931 /* If we don't overwrite a cacheline completely we need to be
932 * careful to have up-to-date data by first clflushing. Don't
933 * overcomplicate things and flush the entire patch. */
934 partial_cacheline_write = needs_clflush_before &&
935 ((shmem_page_offset | page_length)
936 & (boot_cpu_data.x86_clflush_size - 1));
937
8c59967c
DV
938 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
939 (page_to_phys(page) & (1 << 17)) != 0;
940
d174bd64
DV
941 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
942 user_data, page_do_bit17_swizzling,
943 partial_cacheline_write,
944 needs_clflush_after);
945 if (ret == 0)
946 goto next_page;
e244a443
DV
947
948 hit_slowpath = 1;
e244a443 949 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
950 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
951 user_data, page_do_bit17_swizzling,
952 partial_cacheline_write,
953 needs_clflush_after);
40123c1f 954
e244a443 955 mutex_lock(&dev->struct_mutex);
755d2218 956
755d2218 957 if (ret)
8c59967c 958 goto out;
8c59967c 959
17793c9a 960next_page:
40123c1f 961 remain -= page_length;
8c59967c 962 user_data += page_length;
40123c1f 963 offset += page_length;
673a394b
EA
964 }
965
fbd5a26d 966out:
755d2218
CW
967 i915_gem_object_unpin_pages(obj);
968
e244a443 969 if (hit_slowpath) {
8dcf015e
DV
970 /*
971 * Fixup: Flush cpu caches in case we didn't flush the dirty
972 * cachelines in-line while writing and the object moved
973 * out of the cpu write domain while we've dropped the lock.
974 */
975 if (!needs_clflush_after &&
976 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
977 if (i915_gem_clflush_object(obj, obj->pin_display))
978 i915_gem_chipset_flush(dev);
e244a443 979 }
8c59967c 980 }
673a394b 981
58642885 982 if (needs_clflush_after)
e76e9aeb 983 i915_gem_chipset_flush(dev);
58642885 984
40123c1f 985 return ret;
673a394b
EA
986}
987
988/**
989 * Writes data to the object referenced by handle.
990 *
991 * On error, the contents of the buffer that were to be modified are undefined.
992 */
993int
994i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 995 struct drm_file *file)
673a394b
EA
996{
997 struct drm_i915_gem_pwrite *args = data;
05394f39 998 struct drm_i915_gem_object *obj;
51311d0a
CW
999 int ret;
1000
1001 if (args->size == 0)
1002 return 0;
1003
1004 if (!access_ok(VERIFY_READ,
2bb4629a 1005 to_user_ptr(args->data_ptr),
51311d0a
CW
1006 args->size))
1007 return -EFAULT;
1008
d330a953 1009 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1010 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1011 args->size);
1012 if (ret)
1013 return -EFAULT;
1014 }
673a394b 1015
fbd5a26d 1016 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1017 if (ret)
fbd5a26d 1018 return ret;
1d7cfea1 1019
05394f39 1020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1021 if (&obj->base == NULL) {
1d7cfea1
CW
1022 ret = -ENOENT;
1023 goto unlock;
fbd5a26d 1024 }
673a394b 1025
7dcd2499 1026 /* Bounds check destination. */
05394f39
CW
1027 if (args->offset > obj->base.size ||
1028 args->size > obj->base.size - args->offset) {
ce9d419d 1029 ret = -EINVAL;
35b62a89 1030 goto out;
ce9d419d
CW
1031 }
1032
1286ff73
DV
1033 /* prime objects have no backing filp to GEM pread/pwrite
1034 * pages from.
1035 */
1036 if (!obj->base.filp) {
1037 ret = -EINVAL;
1038 goto out;
1039 }
1040
db53a302
CW
1041 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1042
935aaa69 1043 ret = -EFAULT;
673a394b
EA
1044 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1045 * it would end up going through the fenced access, and we'll get
1046 * different detiling behavior between reading and writing.
1047 * pread/pwrite currently are reading and writing from the CPU
1048 * perspective, requiring manual detiling by the client.
1049 */
00731155
CW
1050 if (obj->phys_handle) {
1051 ret = i915_gem_phys_pwrite(obj, args, file);
5c0480f2
DV
1052 goto out;
1053 }
1054
2c22569b
CW
1055 if (obj->tiling_mode == I915_TILING_NONE &&
1056 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1057 cpu_write_needs_clflush(obj)) {
fbd5a26d 1058 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1059 /* Note that the gtt paths might fail with non-page-backed user
1060 * pointers (e.g. gtt mappings when moving data between
1061 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1062 }
673a394b 1063
86a1ee26 1064 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 1065 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 1066
35b62a89 1067out:
05394f39 1068 drm_gem_object_unreference(&obj->base);
1d7cfea1 1069unlock:
fbd5a26d 1070 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1071 return ret;
1072}
1073
b361237b 1074int
33196ded 1075i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1076 bool interruptible)
1077{
1f83fee0 1078 if (i915_reset_in_progress(error)) {
b361237b
CW
1079 /* Non-interruptible callers can't handle -EAGAIN, hence return
1080 * -EIO unconditionally for these. */
1081 if (!interruptible)
1082 return -EIO;
1083
1f83fee0
DV
1084 /* Recovery complete, but the reset failed ... */
1085 if (i915_terminally_wedged(error))
b361237b
CW
1086 return -EIO;
1087
1088 return -EAGAIN;
1089 }
1090
1091 return 0;
1092}
1093
1094/*
1095 * Compare seqno against outstanding lazy request. Emit a request if they are
1096 * equal.
1097 */
1098static int
a4872ba6 1099i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
b361237b
CW
1100{
1101 int ret;
1102
1103 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1104
1105 ret = 0;
1823521d 1106 if (seqno == ring->outstanding_lazy_seqno)
0025c077 1107 ret = i915_add_request(ring, NULL);
b361237b
CW
1108
1109 return ret;
1110}
1111
094f9a54
CW
1112static void fake_irq(unsigned long data)
1113{
1114 wake_up_process((struct task_struct *)data);
1115}
1116
1117static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1118 struct intel_engine_cs *ring)
094f9a54
CW
1119{
1120 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1121}
1122
b29c19b6
CW
1123static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1124{
1125 if (file_priv == NULL)
1126 return true;
1127
1128 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1129}
1130
b361237b
CW
1131/**
1132 * __wait_seqno - wait until execution of seqno has finished
1133 * @ring: the ring expected to report seqno
1134 * @seqno: duh!
f69061be 1135 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1136 * @interruptible: do an interruptible wait (normally yes)
1137 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1138 *
f69061be
DV
1139 * Note: It is of utmost importance that the passed in seqno and reset_counter
1140 * values have been read by the caller in an smp safe manner. Where read-side
1141 * locks are involved, it is sufficient to read the reset_counter before
1142 * unlocking the lock that protects the seqno. For lockless tricks, the
1143 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1144 * inserted.
1145 *
b361237b
CW
1146 * Returns 0 if the seqno was found within the alloted time. Else returns the
1147 * errno with remaining time filled in timeout argument.
1148 */
a4872ba6 1149static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
f69061be 1150 unsigned reset_counter,
b29c19b6
CW
1151 bool interruptible,
1152 struct timespec *timeout,
1153 struct drm_i915_file_private *file_priv)
b361237b 1154{
3d13ef2e 1155 struct drm_device *dev = ring->dev;
3e31c6c0 1156 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1157 const bool irq_test_in_progress =
1158 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1159 struct timespec before, now;
1160 DEFINE_WAIT(wait);
47e9766d 1161 unsigned long timeout_expire;
b361237b
CW
1162 int ret;
1163
5d584b2e 1164 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
c67a470b 1165
b361237b
CW
1166 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1167 return 0;
1168
47e9766d 1169 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1170
3d13ef2e 1171 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
b29c19b6
CW
1172 gen6_rps_boost(dev_priv);
1173 if (file_priv)
1174 mod_delayed_work(dev_priv->wq,
1175 &file_priv->mm.idle_work,
1176 msecs_to_jiffies(100));
1177 }
1178
168c3f21 1179 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1180 return -ENODEV;
1181
094f9a54
CW
1182 /* Record current time in case interrupted by signal, or wedged */
1183 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1184 getrawmonotonic(&before);
094f9a54
CW
1185 for (;;) {
1186 struct timer_list timer;
b361237b 1187
094f9a54
CW
1188 prepare_to_wait(&ring->irq_queue, &wait,
1189 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1190
f69061be
DV
1191 /* We need to check whether any gpu reset happened in between
1192 * the caller grabbing the seqno and now ... */
094f9a54
CW
1193 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1194 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1195 * is truely gone. */
1196 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1197 if (ret == 0)
1198 ret = -EAGAIN;
1199 break;
1200 }
f69061be 1201
094f9a54
CW
1202 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1203 ret = 0;
1204 break;
1205 }
b361237b 1206
094f9a54
CW
1207 if (interruptible && signal_pending(current)) {
1208 ret = -ERESTARTSYS;
1209 break;
1210 }
1211
47e9766d 1212 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1213 ret = -ETIME;
1214 break;
1215 }
1216
1217 timer.function = NULL;
1218 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1219 unsigned long expire;
1220
094f9a54 1221 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1222 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1223 mod_timer(&timer, expire);
1224 }
1225
5035c275 1226 io_schedule();
094f9a54 1227
094f9a54
CW
1228 if (timer.function) {
1229 del_singleshot_timer_sync(&timer);
1230 destroy_timer_on_stack(&timer);
1231 }
1232 }
b361237b 1233 getrawmonotonic(&now);
094f9a54 1234 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1235
168c3f21
MK
1236 if (!irq_test_in_progress)
1237 ring->irq_put(ring);
094f9a54
CW
1238
1239 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1240
1241 if (timeout) {
1242 struct timespec sleep_time = timespec_sub(now, before);
1243 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1244 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1245 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1246 }
1247
094f9a54 1248 return ret;
b361237b
CW
1249}
1250
1251/**
1252 * Waits for a sequence number to be signaled, and cleans up the
1253 * request and object lists appropriately for that event.
1254 */
1255int
a4872ba6 1256i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
b361237b
CW
1257{
1258 struct drm_device *dev = ring->dev;
1259 struct drm_i915_private *dev_priv = dev->dev_private;
1260 bool interruptible = dev_priv->mm.interruptible;
1261 int ret;
1262
1263 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1264 BUG_ON(seqno == 0);
1265
33196ded 1266 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1267 if (ret)
1268 return ret;
1269
1270 ret = i915_gem_check_olr(ring, seqno);
1271 if (ret)
1272 return ret;
1273
f69061be
DV
1274 return __wait_seqno(ring, seqno,
1275 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1276 interruptible, NULL, NULL);
b361237b
CW
1277}
1278
d26e3af8
CW
1279static int
1280i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
a4872ba6 1281 struct intel_engine_cs *ring)
d26e3af8 1282{
c8725f3d
CW
1283 if (!obj->active)
1284 return 0;
d26e3af8
CW
1285
1286 /* Manually manage the write flush as we may have not yet
1287 * retired the buffer.
1288 *
1289 * Note that the last_write_seqno is always the earlier of
1290 * the two (read/write) seqno, so if we haved successfully waited,
1291 * we know we have passed the last write.
1292 */
1293 obj->last_write_seqno = 0;
d26e3af8
CW
1294
1295 return 0;
1296}
1297
b361237b
CW
1298/**
1299 * Ensures that all rendering to the object has completed and the object is
1300 * safe to unbind from the GTT or access from the CPU.
1301 */
1302static __must_check int
1303i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1304 bool readonly)
1305{
a4872ba6 1306 struct intel_engine_cs *ring = obj->ring;
b361237b
CW
1307 u32 seqno;
1308 int ret;
1309
1310 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1311 if (seqno == 0)
1312 return 0;
1313
1314 ret = i915_wait_seqno(ring, seqno);
1315 if (ret)
1316 return ret;
1317
d26e3af8 1318 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1319}
1320
3236f57a
CW
1321/* A nonblocking variant of the above wait. This is a highly dangerous routine
1322 * as the object state may change during this call.
1323 */
1324static __must_check int
1325i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1326 struct drm_i915_file_private *file_priv,
3236f57a
CW
1327 bool readonly)
1328{
1329 struct drm_device *dev = obj->base.dev;
1330 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 1331 struct intel_engine_cs *ring = obj->ring;
f69061be 1332 unsigned reset_counter;
3236f57a
CW
1333 u32 seqno;
1334 int ret;
1335
1336 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1337 BUG_ON(!dev_priv->mm.interruptible);
1338
1339 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1340 if (seqno == 0)
1341 return 0;
1342
33196ded 1343 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1344 if (ret)
1345 return ret;
1346
1347 ret = i915_gem_check_olr(ring, seqno);
1348 if (ret)
1349 return ret;
1350
f69061be 1351 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1352 mutex_unlock(&dev->struct_mutex);
6e4930f6 1353 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1354 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1355 if (ret)
1356 return ret;
3236f57a 1357
d26e3af8 1358 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1359}
1360
673a394b 1361/**
2ef7eeaa
EA
1362 * Called when user space prepares to use an object with the CPU, either
1363 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1364 */
1365int
1366i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1367 struct drm_file *file)
673a394b
EA
1368{
1369 struct drm_i915_gem_set_domain *args = data;
05394f39 1370 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1371 uint32_t read_domains = args->read_domains;
1372 uint32_t write_domain = args->write_domain;
673a394b
EA
1373 int ret;
1374
2ef7eeaa 1375 /* Only handle setting domains to types used by the CPU. */
21d509e3 1376 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1377 return -EINVAL;
1378
21d509e3 1379 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1380 return -EINVAL;
1381
1382 /* Having something in the write domain implies it's in the read
1383 * domain, and only that read domain. Enforce that in the request.
1384 */
1385 if (write_domain != 0 && read_domains != write_domain)
1386 return -EINVAL;
1387
76c1dec1 1388 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1389 if (ret)
76c1dec1 1390 return ret;
1d7cfea1 1391
05394f39 1392 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1393 if (&obj->base == NULL) {
1d7cfea1
CW
1394 ret = -ENOENT;
1395 goto unlock;
76c1dec1 1396 }
673a394b 1397
7c8f8a70
RV
1398 intel_edp_psr_exit(dev, true);
1399
3236f57a
CW
1400 /* Try to flush the object off the GPU without holding the lock.
1401 * We will repeat the flush holding the lock in the normal manner
1402 * to catch cases where we are gazumped.
1403 */
6e4930f6
CW
1404 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1405 file->driver_priv,
1406 !write_domain);
3236f57a
CW
1407 if (ret)
1408 goto unref;
1409
2ef7eeaa
EA
1410 if (read_domains & I915_GEM_DOMAIN_GTT) {
1411 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1412
1413 /* Silently promote "you're not bound, there was nothing to do"
1414 * to success, since the client was just asking us to
1415 * make sure everything was done.
1416 */
1417 if (ret == -EINVAL)
1418 ret = 0;
2ef7eeaa 1419 } else {
e47c68e9 1420 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1421 }
1422
3236f57a 1423unref:
05394f39 1424 drm_gem_object_unreference(&obj->base);
1d7cfea1 1425unlock:
673a394b
EA
1426 mutex_unlock(&dev->struct_mutex);
1427 return ret;
1428}
1429
1430/**
1431 * Called when user space has done writes to this buffer
1432 */
1433int
1434i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1435 struct drm_file *file)
673a394b
EA
1436{
1437 struct drm_i915_gem_sw_finish *args = data;
05394f39 1438 struct drm_i915_gem_object *obj;
673a394b
EA
1439 int ret = 0;
1440
76c1dec1 1441 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1442 if (ret)
76c1dec1 1443 return ret;
1d7cfea1 1444
7c8f8a70
RV
1445 intel_edp_psr_exit(dev, true);
1446
05394f39 1447 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1448 if (&obj->base == NULL) {
1d7cfea1
CW
1449 ret = -ENOENT;
1450 goto unlock;
673a394b
EA
1451 }
1452
673a394b 1453 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1454 if (obj->pin_display)
1455 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1456
05394f39 1457 drm_gem_object_unreference(&obj->base);
1d7cfea1 1458unlock:
673a394b
EA
1459 mutex_unlock(&dev->struct_mutex);
1460 return ret;
1461}
1462
1463/**
1464 * Maps the contents of an object, returning the address it is mapped
1465 * into.
1466 *
1467 * While the mapping holds a reference on the contents of the object, it doesn't
1468 * imply a ref on the object itself.
1469 */
1470int
1471i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1472 struct drm_file *file)
673a394b
EA
1473{
1474 struct drm_i915_gem_mmap *args = data;
1475 struct drm_gem_object *obj;
673a394b
EA
1476 unsigned long addr;
1477
05394f39 1478 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1479 if (obj == NULL)
bf79cb91 1480 return -ENOENT;
673a394b 1481
1286ff73
DV
1482 /* prime objects have no backing filp to GEM mmap
1483 * pages from.
1484 */
1485 if (!obj->filp) {
1486 drm_gem_object_unreference_unlocked(obj);
1487 return -EINVAL;
1488 }
1489
6be5ceb0 1490 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1491 PROT_READ | PROT_WRITE, MAP_SHARED,
1492 args->offset);
bc9025bd 1493 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1494 if (IS_ERR((void *)addr))
1495 return addr;
1496
1497 args->addr_ptr = (uint64_t) addr;
1498
1499 return 0;
1500}
1501
de151cf6
JB
1502/**
1503 * i915_gem_fault - fault a page into the GTT
1504 * vma: VMA in question
1505 * vmf: fault info
1506 *
1507 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1508 * from userspace. The fault handler takes care of binding the object to
1509 * the GTT (if needed), allocating and programming a fence register (again,
1510 * only if needed based on whether the old reg is still valid or the object
1511 * is tiled) and inserting a new PTE into the faulting process.
1512 *
1513 * Note that the faulting process may involve evicting existing objects
1514 * from the GTT and/or fence registers to make room. So performance may
1515 * suffer if the GTT working set is large or there are few fence registers
1516 * left.
1517 */
1518int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1519{
05394f39
CW
1520 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1521 struct drm_device *dev = obj->base.dev;
3e31c6c0 1522 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1523 pgoff_t page_offset;
1524 unsigned long pfn;
1525 int ret = 0;
0f973f27 1526 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1527
f65c9168
PZ
1528 intel_runtime_pm_get(dev_priv);
1529
de151cf6
JB
1530 /* We don't use vmf->pgoff since that has the fake offset */
1531 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1532 PAGE_SHIFT;
1533
d9bc7e9f
CW
1534 ret = i915_mutex_lock_interruptible(dev);
1535 if (ret)
1536 goto out;
a00b10c3 1537
db53a302
CW
1538 trace_i915_gem_object_fault(obj, page_offset, true, write);
1539
6e4930f6
CW
1540 /* Try to flush the object off the GPU first without holding the lock.
1541 * Upon reacquiring the lock, we will perform our sanity checks and then
1542 * repeat the flush holding the lock in the normal manner to catch cases
1543 * where we are gazumped.
1544 */
1545 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1546 if (ret)
1547 goto unlock;
1548
eb119bd6
CW
1549 /* Access to snoopable pages through the GTT is incoherent. */
1550 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1551 ret = -EFAULT;
eb119bd6
CW
1552 goto unlock;
1553 }
1554
d9bc7e9f 1555 /* Now bind it into the GTT if needed */
1ec9e26d 1556 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1557 if (ret)
1558 goto unlock;
4a684a41 1559
c9839303
CW
1560 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1561 if (ret)
1562 goto unpin;
74898d7e 1563
06d98131 1564 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1565 if (ret)
c9839303 1566 goto unpin;
7d1c4804 1567
b90b91d8 1568 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1569 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1570 pfn >>= PAGE_SHIFT;
de151cf6 1571
b90b91d8
CW
1572 if (!obj->fault_mappable) {
1573 int i;
1574
1575 for (i = 0; i < obj->base.size >> PAGE_SHIFT; i++) {
1576 ret = vm_insert_pfn(vma,
1577 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1578 pfn + i);
1579 if (ret)
1580 break;
1581 }
1582
1583 obj->fault_mappable = true;
1584 } else
1585 ret = vm_insert_pfn(vma,
1586 (unsigned long)vmf->virtual_address,
1587 pfn + page_offset);
c9839303 1588unpin:
d7f46fc4 1589 i915_gem_object_ggtt_unpin(obj);
c715089f 1590unlock:
de151cf6 1591 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1592out:
de151cf6 1593 switch (ret) {
d9bc7e9f 1594 case -EIO:
a9340cca
DV
1595 /* If this -EIO is due to a gpu hang, give the reset code a
1596 * chance to clean up the mess. Otherwise return the proper
1597 * SIGBUS. */
f65c9168
PZ
1598 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1599 ret = VM_FAULT_SIGBUS;
1600 break;
1601 }
045e769a 1602 case -EAGAIN:
571c608d
DV
1603 /*
1604 * EAGAIN means the gpu is hung and we'll wait for the error
1605 * handler to reset everything when re-faulting in
1606 * i915_mutex_lock_interruptible.
d9bc7e9f 1607 */
c715089f
CW
1608 case 0:
1609 case -ERESTARTSYS:
bed636ab 1610 case -EINTR:
e79e0fe3
DR
1611 case -EBUSY:
1612 /*
1613 * EBUSY is ok: this just means that another thread
1614 * already did the job.
1615 */
f65c9168
PZ
1616 ret = VM_FAULT_NOPAGE;
1617 break;
de151cf6 1618 case -ENOMEM:
f65c9168
PZ
1619 ret = VM_FAULT_OOM;
1620 break;
a7c2e1aa 1621 case -ENOSPC:
45d67817 1622 case -EFAULT:
f65c9168
PZ
1623 ret = VM_FAULT_SIGBUS;
1624 break;
de151cf6 1625 default:
a7c2e1aa 1626 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1627 ret = VM_FAULT_SIGBUS;
1628 break;
de151cf6 1629 }
f65c9168
PZ
1630
1631 intel_runtime_pm_put(dev_priv);
1632 return ret;
de151cf6
JB
1633}
1634
901782b2
CW
1635/**
1636 * i915_gem_release_mmap - remove physical page mappings
1637 * @obj: obj in question
1638 *
af901ca1 1639 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1640 * relinquish ownership of the pages back to the system.
1641 *
1642 * It is vital that we remove the page mapping if we have mapped a tiled
1643 * object through the GTT and then lose the fence register due to
1644 * resource pressure. Similarly if the object has been moved out of the
1645 * aperture, than pages mapped into userspace must be revoked. Removing the
1646 * mapping will then trigger a page fault on the next user access, allowing
1647 * fixup by i915_gem_fault().
1648 */
d05ca301 1649void
05394f39 1650i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1651{
6299f992
CW
1652 if (!obj->fault_mappable)
1653 return;
901782b2 1654
6796cb16
DH
1655 drm_vma_node_unmap(&obj->base.vma_node,
1656 obj->base.dev->anon_inode->i_mapping);
6299f992 1657 obj->fault_mappable = false;
901782b2
CW
1658}
1659
6254b204
CW
1660void
1661i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1662{
1663 struct drm_i915_gem_object *obj;
1664
1665 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1666 i915_gem_release_mmap(obj);
1667}
1668
0fa87796 1669uint32_t
e28f8711 1670i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1671{
e28f8711 1672 uint32_t gtt_size;
92b88aeb
CW
1673
1674 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1675 tiling_mode == I915_TILING_NONE)
1676 return size;
92b88aeb
CW
1677
1678 /* Previous chips need a power-of-two fence region when tiling */
1679 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1680 gtt_size = 1024*1024;
92b88aeb 1681 else
e28f8711 1682 gtt_size = 512*1024;
92b88aeb 1683
e28f8711
CW
1684 while (gtt_size < size)
1685 gtt_size <<= 1;
92b88aeb 1686
e28f8711 1687 return gtt_size;
92b88aeb
CW
1688}
1689
de151cf6
JB
1690/**
1691 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1692 * @obj: object to check
1693 *
1694 * Return the required GTT alignment for an object, taking into account
5e783301 1695 * potential fence register mapping.
de151cf6 1696 */
d865110c
ID
1697uint32_t
1698i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1699 int tiling_mode, bool fenced)
de151cf6 1700{
de151cf6
JB
1701 /*
1702 * Minimum alignment is 4k (GTT page size), but might be greater
1703 * if a fence register is needed for the object.
1704 */
d865110c 1705 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1706 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1707 return 4096;
1708
a00b10c3
CW
1709 /*
1710 * Previous chips need to be aligned to the size of the smallest
1711 * fence register that can contain the object.
1712 */
e28f8711 1713 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1714}
1715
d8cb5086
CW
1716static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1717{
1718 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1719 int ret;
1720
0de23977 1721 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1722 return 0;
1723
da494d7c
DV
1724 dev_priv->mm.shrinker_no_lock_stealing = true;
1725
d8cb5086
CW
1726 ret = drm_gem_create_mmap_offset(&obj->base);
1727 if (ret != -ENOSPC)
da494d7c 1728 goto out;
d8cb5086
CW
1729
1730 /* Badly fragmented mmap space? The only way we can recover
1731 * space is by destroying unwanted objects. We can't randomly release
1732 * mmap_offsets as userspace expects them to be persistent for the
1733 * lifetime of the objects. The closest we can is to release the
1734 * offsets on purgeable objects by truncating it and marking it purged,
1735 * which prevents userspace from ever using that object again.
1736 */
1737 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1738 ret = drm_gem_create_mmap_offset(&obj->base);
1739 if (ret != -ENOSPC)
da494d7c 1740 goto out;
d8cb5086
CW
1741
1742 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1743 ret = drm_gem_create_mmap_offset(&obj->base);
1744out:
1745 dev_priv->mm.shrinker_no_lock_stealing = false;
1746
1747 return ret;
d8cb5086
CW
1748}
1749
1750static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1751{
d8cb5086
CW
1752 drm_gem_free_mmap_offset(&obj->base);
1753}
1754
de151cf6 1755int
ff72145b
DA
1756i915_gem_mmap_gtt(struct drm_file *file,
1757 struct drm_device *dev,
1758 uint32_t handle,
1759 uint64_t *offset)
de151cf6 1760{
da761a6e 1761 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1762 struct drm_i915_gem_object *obj;
de151cf6
JB
1763 int ret;
1764
76c1dec1 1765 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1766 if (ret)
76c1dec1 1767 return ret;
de151cf6 1768
ff72145b 1769 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1770 if (&obj->base == NULL) {
1d7cfea1
CW
1771 ret = -ENOENT;
1772 goto unlock;
1773 }
de151cf6 1774
5d4545ae 1775 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1776 ret = -E2BIG;
ff56b0bc 1777 goto out;
da761a6e
CW
1778 }
1779
05394f39 1780 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1781 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1782 ret = -EFAULT;
1d7cfea1 1783 goto out;
ab18282d
CW
1784 }
1785
d8cb5086
CW
1786 ret = i915_gem_object_create_mmap_offset(obj);
1787 if (ret)
1788 goto out;
de151cf6 1789
0de23977 1790 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1791
1d7cfea1 1792out:
05394f39 1793 drm_gem_object_unreference(&obj->base);
1d7cfea1 1794unlock:
de151cf6 1795 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1796 return ret;
de151cf6
JB
1797}
1798
ff72145b
DA
1799/**
1800 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1801 * @dev: DRM device
1802 * @data: GTT mapping ioctl data
1803 * @file: GEM object info
1804 *
1805 * Simply returns the fake offset to userspace so it can mmap it.
1806 * The mmap call will end up in drm_gem_mmap(), which will set things
1807 * up so we can get faults in the handler above.
1808 *
1809 * The fault handler will take care of binding the object into the GTT
1810 * (since it may have been evicted to make room for something), allocating
1811 * a fence register, and mapping the appropriate aperture address into
1812 * userspace.
1813 */
1814int
1815i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1816 struct drm_file *file)
1817{
1818 struct drm_i915_gem_mmap_gtt *args = data;
1819
ff72145b
DA
1820 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1821}
1822
5537252b
CW
1823static inline int
1824i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1825{
1826 return obj->madv == I915_MADV_DONTNEED;
1827}
1828
225067ee
DV
1829/* Immediately discard the backing storage */
1830static void
1831i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1832{
4d6294bf 1833 i915_gem_object_free_mmap_offset(obj);
1286ff73 1834
4d6294bf
CW
1835 if (obj->base.filp == NULL)
1836 return;
e5281ccd 1837
225067ee
DV
1838 /* Our goal here is to return as much of the memory as
1839 * is possible back to the system as we are called from OOM.
1840 * To do this we must instruct the shmfs to drop all of its
1841 * backing pages, *now*.
1842 */
5537252b 1843 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1844 obj->madv = __I915_MADV_PURGED;
1845}
e5281ccd 1846
5537252b
CW
1847/* Try to discard unwanted pages */
1848static void
1849i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1850{
5537252b
CW
1851 struct address_space *mapping;
1852
1853 switch (obj->madv) {
1854 case I915_MADV_DONTNEED:
1855 i915_gem_object_truncate(obj);
1856 case __I915_MADV_PURGED:
1857 return;
1858 }
1859
1860 if (obj->base.filp == NULL)
1861 return;
1862
1863 mapping = file_inode(obj->base.filp)->i_mapping,
1864 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1865}
1866
5cdf5881 1867static void
05394f39 1868i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1869{
90797e6d
ID
1870 struct sg_page_iter sg_iter;
1871 int ret;
1286ff73 1872
05394f39 1873 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1874
6c085a72
CW
1875 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1876 if (ret) {
1877 /* In the event of a disaster, abandon all caches and
1878 * hope for the best.
1879 */
1880 WARN_ON(ret != -EIO);
2c22569b 1881 i915_gem_clflush_object(obj, true);
6c085a72
CW
1882 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1883 }
1884
6dacfd2f 1885 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1886 i915_gem_object_save_bit_17_swizzle(obj);
1887
05394f39
CW
1888 if (obj->madv == I915_MADV_DONTNEED)
1889 obj->dirty = 0;
3ef94daa 1890
90797e6d 1891 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1892 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1893
05394f39 1894 if (obj->dirty)
9da3da66 1895 set_page_dirty(page);
3ef94daa 1896
05394f39 1897 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1898 mark_page_accessed(page);
3ef94daa 1899
9da3da66 1900 page_cache_release(page);
3ef94daa 1901 }
05394f39 1902 obj->dirty = 0;
673a394b 1903
9da3da66
CW
1904 sg_free_table(obj->pages);
1905 kfree(obj->pages);
37e680a1 1906}
6c085a72 1907
dd624afd 1908int
37e680a1
CW
1909i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1910{
1911 const struct drm_i915_gem_object_ops *ops = obj->ops;
1912
2f745ad3 1913 if (obj->pages == NULL)
37e680a1
CW
1914 return 0;
1915
a5570178
CW
1916 if (obj->pages_pin_count)
1917 return -EBUSY;
1918
9843877d 1919 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1920
a2165e31
CW
1921 /* ->put_pages might need to allocate memory for the bit17 swizzle
1922 * array, hence protect them from being reaped by removing them from gtt
1923 * lists early. */
35c20a60 1924 list_del(&obj->global_list);
a2165e31 1925
37e680a1 1926 ops->put_pages(obj);
05394f39 1927 obj->pages = NULL;
37e680a1 1928
5537252b 1929 i915_gem_object_invalidate(obj);
6c085a72
CW
1930
1931 return 0;
1932}
1933
d9973b43 1934static unsigned long
93927ca5
DV
1935__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1936 bool purgeable_only)
6c085a72 1937{
c8725f3d
CW
1938 struct list_head still_in_list;
1939 struct drm_i915_gem_object *obj;
d9973b43 1940 unsigned long count = 0;
6c085a72 1941
57094f82 1942 /*
c8725f3d 1943 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
1944 * (due to retiring requests) we have to strictly process only
1945 * one element of the list at the time, and recheck the list
1946 * on every iteration.
c8725f3d
CW
1947 *
1948 * In particular, we must hold a reference whilst removing the
1949 * object as we may end up waiting for and/or retiring the objects.
1950 * This might release the final reference (held by the active list)
1951 * and result in the object being freed from under us. This is
1952 * similar to the precautions the eviction code must take whilst
1953 * removing objects.
1954 *
1955 * Also note that although these lists do not hold a reference to
1956 * the object we can safely grab one here: The final object
1957 * unreferencing and the bound_list are both protected by the
1958 * dev->struct_mutex and so we won't ever be able to observe an
1959 * object on the bound_list with a reference count equals 0.
57094f82 1960 */
c8725f3d
CW
1961 INIT_LIST_HEAD(&still_in_list);
1962 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1963 obj = list_first_entry(&dev_priv->mm.unbound_list,
1964 typeof(*obj), global_list);
1965 list_move_tail(&obj->global_list, &still_in_list);
1966
1967 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1968 continue;
1969
1970 drm_gem_object_reference(&obj->base);
1971
1972 if (i915_gem_object_put_pages(obj) == 0)
1973 count += obj->base.size >> PAGE_SHIFT;
1974
1975 drm_gem_object_unreference(&obj->base);
1976 }
1977 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1978
1979 INIT_LIST_HEAD(&still_in_list);
57094f82 1980 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1981 struct i915_vma *vma, *v;
80dcfdbd 1982
57094f82
CW
1983 obj = list_first_entry(&dev_priv->mm.bound_list,
1984 typeof(*obj), global_list);
c8725f3d 1985 list_move_tail(&obj->global_list, &still_in_list);
57094f82 1986
80dcfdbd
BW
1987 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1988 continue;
1989
57094f82
CW
1990 drm_gem_object_reference(&obj->base);
1991
07fe0b12
BW
1992 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1993 if (i915_vma_unbind(vma))
1994 break;
80dcfdbd 1995
57094f82 1996 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1997 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1998
1999 drm_gem_object_unreference(&obj->base);
6c085a72 2000 }
c8725f3d 2001 list_splice(&still_in_list, &dev_priv->mm.bound_list);
6c085a72
CW
2002
2003 return count;
2004}
2005
d9973b43 2006static unsigned long
93927ca5
DV
2007i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2008{
2009 return __i915_gem_shrink(dev_priv, target, true);
2010}
2011
d9973b43 2012static unsigned long
6c085a72
CW
2013i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2014{
6c085a72 2015 i915_gem_evict_everything(dev_priv->dev);
c8725f3d 2016 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
225067ee
DV
2017}
2018
37e680a1 2019static int
6c085a72 2020i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2021{
6c085a72 2022 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2023 int page_count, i;
2024 struct address_space *mapping;
9da3da66
CW
2025 struct sg_table *st;
2026 struct scatterlist *sg;
90797e6d 2027 struct sg_page_iter sg_iter;
e5281ccd 2028 struct page *page;
90797e6d 2029 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2030 gfp_t gfp;
e5281ccd 2031
6c085a72
CW
2032 /* Assert that the object is not currently in any GPU domain. As it
2033 * wasn't in the GTT, there shouldn't be any way it could have been in
2034 * a GPU cache
2035 */
2036 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2037 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2038
9da3da66
CW
2039 st = kmalloc(sizeof(*st), GFP_KERNEL);
2040 if (st == NULL)
2041 return -ENOMEM;
2042
05394f39 2043 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2044 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2045 kfree(st);
e5281ccd 2046 return -ENOMEM;
9da3da66 2047 }
e5281ccd 2048
9da3da66
CW
2049 /* Get the list of pages out of our struct file. They'll be pinned
2050 * at this point until we release them.
2051 *
2052 * Fail silently without starting the shrinker
2053 */
496ad9aa 2054 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2055 gfp = mapping_gfp_mask(mapping);
caf49191 2056 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2057 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2058 sg = st->sgl;
2059 st->nents = 0;
2060 for (i = 0; i < page_count; i++) {
6c085a72
CW
2061 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2062 if (IS_ERR(page)) {
2063 i915_gem_purge(dev_priv, page_count);
2064 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2065 }
2066 if (IS_ERR(page)) {
2067 /* We've tried hard to allocate the memory by reaping
2068 * our own buffer, now let the real VM do its job and
2069 * go down in flames if truly OOM.
2070 */
6c085a72 2071 i915_gem_shrink_all(dev_priv);
f461d1be 2072 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2073 if (IS_ERR(page))
2074 goto err_pages;
6c085a72 2075 }
426729dc
KRW
2076#ifdef CONFIG_SWIOTLB
2077 if (swiotlb_nr_tbl()) {
2078 st->nents++;
2079 sg_set_page(sg, page, PAGE_SIZE, 0);
2080 sg = sg_next(sg);
2081 continue;
2082 }
2083#endif
90797e6d
ID
2084 if (!i || page_to_pfn(page) != last_pfn + 1) {
2085 if (i)
2086 sg = sg_next(sg);
2087 st->nents++;
2088 sg_set_page(sg, page, PAGE_SIZE, 0);
2089 } else {
2090 sg->length += PAGE_SIZE;
2091 }
2092 last_pfn = page_to_pfn(page);
3bbbe706
DV
2093
2094 /* Check that the i965g/gm workaround works. */
2095 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2096 }
426729dc
KRW
2097#ifdef CONFIG_SWIOTLB
2098 if (!swiotlb_nr_tbl())
2099#endif
2100 sg_mark_end(sg);
74ce6b6c
CW
2101 obj->pages = st;
2102
6dacfd2f 2103 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2104 i915_gem_object_do_bit_17_swizzle(obj);
2105
2106 return 0;
2107
2108err_pages:
90797e6d
ID
2109 sg_mark_end(sg);
2110 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2111 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2112 sg_free_table(st);
2113 kfree(st);
0820baf3
CW
2114
2115 /* shmemfs first checks if there is enough memory to allocate the page
2116 * and reports ENOSPC should there be insufficient, along with the usual
2117 * ENOMEM for a genuine allocation failure.
2118 *
2119 * We use ENOSPC in our driver to mean that we have run out of aperture
2120 * space and so want to translate the error from shmemfs back to our
2121 * usual understanding of ENOMEM.
2122 */
2123 if (PTR_ERR(page) == -ENOSPC)
2124 return -ENOMEM;
2125 else
2126 return PTR_ERR(page);
673a394b
EA
2127}
2128
37e680a1
CW
2129/* Ensure that the associated pages are gathered from the backing storage
2130 * and pinned into our object. i915_gem_object_get_pages() may be called
2131 * multiple times before they are released by a single call to
2132 * i915_gem_object_put_pages() - once the pages are no longer referenced
2133 * either as a result of memory pressure (reaping pages under the shrinker)
2134 * or as the object is itself released.
2135 */
2136int
2137i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2138{
2139 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2140 const struct drm_i915_gem_object_ops *ops = obj->ops;
2141 int ret;
2142
2f745ad3 2143 if (obj->pages)
37e680a1
CW
2144 return 0;
2145
43e28f09 2146 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2147 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2148 return -EFAULT;
43e28f09
CW
2149 }
2150
a5570178
CW
2151 BUG_ON(obj->pages_pin_count);
2152
37e680a1
CW
2153 ret = ops->get_pages(obj);
2154 if (ret)
2155 return ret;
2156
35c20a60 2157 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2158 return 0;
673a394b
EA
2159}
2160
e2d05a8b 2161static void
05394f39 2162i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2163 struct intel_engine_cs *ring)
673a394b 2164{
05394f39 2165 struct drm_device *dev = obj->base.dev;
69dc4987 2166 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 2167 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2168
852835f3 2169 BUG_ON(ring == NULL);
02978ff5
CW
2170 if (obj->ring != ring && obj->last_write_seqno) {
2171 /* Keep the seqno relative to the current ring */
2172 obj->last_write_seqno = seqno;
2173 }
05394f39 2174 obj->ring = ring;
673a394b
EA
2175
2176 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2177 if (!obj->active) {
2178 drm_gem_object_reference(&obj->base);
2179 obj->active = 1;
673a394b 2180 }
e35a41de 2181
05394f39 2182 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2183
0201f1ec 2184 obj->last_read_seqno = seqno;
caea7476 2185
7dd49065 2186 if (obj->fenced_gpu_access) {
caea7476 2187 obj->last_fenced_seqno = seqno;
caea7476 2188
7dd49065
CW
2189 /* Bump MRU to take account of the delayed flush */
2190 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2191 struct drm_i915_fence_reg *reg;
2192
2193 reg = &dev_priv->fence_regs[obj->fence_reg];
2194 list_move_tail(&reg->lru_list,
2195 &dev_priv->mm.fence_list);
2196 }
caea7476
CW
2197 }
2198}
2199
e2d05a8b 2200void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2201 struct intel_engine_cs *ring)
e2d05a8b
BW
2202{
2203 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2204 return i915_gem_object_move_to_active(vma->obj, ring);
2205}
2206
caea7476 2207static void
caea7476 2208i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2209{
ca191b13 2210 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2211 struct i915_address_space *vm;
2212 struct i915_vma *vma;
ce44b0ea 2213
65ce3027 2214 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2215 BUG_ON(!obj->active);
caea7476 2216
feb822cf
BW
2217 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2218 vma = i915_gem_obj_to_vma(obj, vm);
2219 if (vma && !list_empty(&vma->mm_list))
2220 list_move_tail(&vma->mm_list, &vm->inactive_list);
2221 }
caea7476 2222
65ce3027 2223 list_del_init(&obj->ring_list);
caea7476
CW
2224 obj->ring = NULL;
2225
65ce3027
CW
2226 obj->last_read_seqno = 0;
2227 obj->last_write_seqno = 0;
2228 obj->base.write_domain = 0;
2229
2230 obj->last_fenced_seqno = 0;
caea7476 2231 obj->fenced_gpu_access = false;
caea7476
CW
2232
2233 obj->active = 0;
2234 drm_gem_object_unreference(&obj->base);
2235
2236 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2237}
673a394b 2238
c8725f3d
CW
2239static void
2240i915_gem_object_retire(struct drm_i915_gem_object *obj)
2241{
a4872ba6 2242 struct intel_engine_cs *ring = obj->ring;
c8725f3d
CW
2243
2244 if (ring == NULL)
2245 return;
2246
2247 if (i915_seqno_passed(ring->get_seqno(ring, true),
2248 obj->last_read_seqno))
2249 i915_gem_object_move_to_inactive(obj);
2250}
2251
9d773091 2252static int
fca26bb4 2253i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2254{
9d773091 2255 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2256 struct intel_engine_cs *ring;
9d773091 2257 int ret, i, j;
53d227f2 2258
107f27a5 2259 /* Carefully retire all requests without writing to the rings */
9d773091 2260 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2261 ret = intel_ring_idle(ring);
2262 if (ret)
2263 return ret;
9d773091 2264 }
9d773091 2265 i915_gem_retire_requests(dev);
107f27a5
CW
2266
2267 /* Finally reset hw state */
9d773091 2268 for_each_ring(ring, dev_priv, i) {
fca26bb4 2269 intel_ring_init_seqno(ring, seqno);
498d2ac1 2270
ebc348b2
BW
2271 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2272 ring->semaphore.sync_seqno[j] = 0;
9d773091 2273 }
53d227f2 2274
9d773091 2275 return 0;
53d227f2
DV
2276}
2277
fca26bb4
MK
2278int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2279{
2280 struct drm_i915_private *dev_priv = dev->dev_private;
2281 int ret;
2282
2283 if (seqno == 0)
2284 return -EINVAL;
2285
2286 /* HWS page needs to be set less than what we
2287 * will inject to ring
2288 */
2289 ret = i915_gem_init_seqno(dev, seqno - 1);
2290 if (ret)
2291 return ret;
2292
2293 /* Carefully set the last_seqno value so that wrap
2294 * detection still works
2295 */
2296 dev_priv->next_seqno = seqno;
2297 dev_priv->last_seqno = seqno - 1;
2298 if (dev_priv->last_seqno == 0)
2299 dev_priv->last_seqno--;
2300
2301 return 0;
2302}
2303
9d773091
CW
2304int
2305i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2306{
9d773091
CW
2307 struct drm_i915_private *dev_priv = dev->dev_private;
2308
2309 /* reserve 0 for non-seqno */
2310 if (dev_priv->next_seqno == 0) {
fca26bb4 2311 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2312 if (ret)
2313 return ret;
53d227f2 2314
9d773091
CW
2315 dev_priv->next_seqno = 1;
2316 }
53d227f2 2317
f72b3435 2318 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2319 return 0;
53d227f2
DV
2320}
2321
a4872ba6 2322int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2323 struct drm_file *file,
7d736f4f 2324 struct drm_i915_gem_object *obj,
0025c077 2325 u32 *out_seqno)
673a394b 2326{
3e31c6c0 2327 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2328 struct drm_i915_gem_request *request;
7d736f4f 2329 u32 request_ring_position, request_start;
3cce469c
CW
2330 int ret;
2331
7d736f4f 2332 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2333 /*
2334 * Emit any outstanding flushes - execbuf can fail to emit the flush
2335 * after having emitted the batchbuffer command. Hence we need to fix
2336 * things up similar to emitting the lazy request. The difference here
2337 * is that the flush _must_ happen before the next request, no matter
2338 * what.
2339 */
a7b9761d
CW
2340 ret = intel_ring_flush_all_caches(ring);
2341 if (ret)
2342 return ret;
cc889e0f 2343
3c0e234c
CW
2344 request = ring->preallocated_lazy_request;
2345 if (WARN_ON(request == NULL))
acb868d3 2346 return -ENOMEM;
cc889e0f 2347
a71d8d94
CW
2348 /* Record the position of the start of the request so that
2349 * should we detect the updated seqno part-way through the
2350 * GPU processing the request, we never over-estimate the
2351 * position of the head.
2352 */
2353 request_ring_position = intel_ring_get_tail(ring);
2354
9d773091 2355 ret = ring->add_request(ring);
3c0e234c 2356 if (ret)
3bb73aba 2357 return ret;
673a394b 2358
9d773091 2359 request->seqno = intel_ring_get_seqno(ring);
852835f3 2360 request->ring = ring;
7d736f4f 2361 request->head = request_start;
a71d8d94 2362 request->tail = request_ring_position;
7d736f4f
MK
2363
2364 /* Whilst this request exists, batch_obj will be on the
2365 * active_list, and so will hold the active reference. Only when this
2366 * request is retired will the the batch_obj be moved onto the
2367 * inactive_list and lose its active reference. Hence we do not need
2368 * to explicitly hold another reference here.
2369 */
9a7e0c2a 2370 request->batch_obj = obj;
0e50e96b 2371
9a7e0c2a
CW
2372 /* Hold a reference to the current context so that we can inspect
2373 * it later in case a hangcheck error event fires.
2374 */
2375 request->ctx = ring->last_context;
0e50e96b
MK
2376 if (request->ctx)
2377 i915_gem_context_reference(request->ctx);
2378
673a394b 2379 request->emitted_jiffies = jiffies;
852835f3 2380 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2381 request->file_priv = NULL;
852835f3 2382
db53a302
CW
2383 if (file) {
2384 struct drm_i915_file_private *file_priv = file->driver_priv;
2385
1c25595f 2386 spin_lock(&file_priv->mm.lock);
f787a5f5 2387 request->file_priv = file_priv;
b962442e 2388 list_add_tail(&request->client_list,
f787a5f5 2389 &file_priv->mm.request_list);
1c25595f 2390 spin_unlock(&file_priv->mm.lock);
b962442e 2391 }
673a394b 2392
9d773091 2393 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2394 ring->outstanding_lazy_seqno = 0;
3c0e234c 2395 ring->preallocated_lazy_request = NULL;
db53a302 2396
db1b76ca 2397 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2398 i915_queue_hangcheck(ring->dev);
2399
f62a0076
CW
2400 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2401 queue_delayed_work(dev_priv->wq,
2402 &dev_priv->mm.retire_work,
2403 round_jiffies_up_relative(HZ));
2404 intel_mark_busy(dev_priv->dev);
f65d9421 2405 }
cc889e0f 2406
acb868d3 2407 if (out_seqno)
9d773091 2408 *out_seqno = request->seqno;
3cce469c 2409 return 0;
673a394b
EA
2410}
2411
f787a5f5
CW
2412static inline void
2413i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2414{
1c25595f 2415 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2416
1c25595f
CW
2417 if (!file_priv)
2418 return;
1c5d22f7 2419
1c25595f 2420 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2421 list_del(&request->client_list);
2422 request->file_priv = NULL;
1c25595f 2423 spin_unlock(&file_priv->mm.lock);
673a394b 2424}
673a394b 2425
939fd762 2426static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2427 const struct intel_context *ctx)
be62acb4 2428{
44e2c070 2429 unsigned long elapsed;
be62acb4 2430
44e2c070
MK
2431 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2432
2433 if (ctx->hang_stats.banned)
be62acb4
MK
2434 return true;
2435
2436 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2437 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2438 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2439 return true;
88b4aa87
MK
2440 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2441 if (i915_stop_ring_allow_warn(dev_priv))
2442 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2443 return true;
3fac8978 2444 }
be62acb4
MK
2445 }
2446
2447 return false;
2448}
2449
939fd762 2450static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2451 struct intel_context *ctx,
b6b0fac0 2452 const bool guilty)
aa60c664 2453{
44e2c070
MK
2454 struct i915_ctx_hang_stats *hs;
2455
2456 if (WARN_ON(!ctx))
2457 return;
aa60c664 2458
44e2c070
MK
2459 hs = &ctx->hang_stats;
2460
2461 if (guilty) {
939fd762 2462 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2463 hs->batch_active++;
2464 hs->guilty_ts = get_seconds();
2465 } else {
2466 hs->batch_pending++;
aa60c664
MK
2467 }
2468}
2469
0e50e96b
MK
2470static void i915_gem_free_request(struct drm_i915_gem_request *request)
2471{
2472 list_del(&request->list);
2473 i915_gem_request_remove_from_client(request);
2474
2475 if (request->ctx)
2476 i915_gem_context_unreference(request->ctx);
2477
2478 kfree(request);
2479}
2480
8d9fc7fd 2481struct drm_i915_gem_request *
a4872ba6 2482i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2483{
4db080f9 2484 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2485 u32 completed_seqno;
2486
2487 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2488
2489 list_for_each_entry(request, &ring->request_list, list) {
2490 if (i915_seqno_passed(completed_seqno, request->seqno))
2491 continue;
aa60c664 2492
b6b0fac0 2493 return request;
4db080f9 2494 }
b6b0fac0
MK
2495
2496 return NULL;
2497}
2498
2499static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2500 struct intel_engine_cs *ring)
b6b0fac0
MK
2501{
2502 struct drm_i915_gem_request *request;
2503 bool ring_hung;
2504
8d9fc7fd 2505 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2506
2507 if (request == NULL)
2508 return;
2509
2510 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2511
939fd762 2512 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2513
2514 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2515 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2516}
aa60c664 2517
4db080f9 2518static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2519 struct intel_engine_cs *ring)
4db080f9 2520{
dfaae392 2521 while (!list_empty(&ring->active_list)) {
05394f39 2522 struct drm_i915_gem_object *obj;
9375e446 2523
05394f39
CW
2524 obj = list_first_entry(&ring->active_list,
2525 struct drm_i915_gem_object,
2526 ring_list);
9375e446 2527
05394f39 2528 i915_gem_object_move_to_inactive(obj);
673a394b 2529 }
1d62beea
BW
2530
2531 /*
2532 * We must free the requests after all the corresponding objects have
2533 * been moved off active lists. Which is the same order as the normal
2534 * retire_requests function does. This is important if object hold
2535 * implicit references on things like e.g. ppgtt address spaces through
2536 * the request.
2537 */
2538 while (!list_empty(&ring->request_list)) {
2539 struct drm_i915_gem_request *request;
2540
2541 request = list_first_entry(&ring->request_list,
2542 struct drm_i915_gem_request,
2543 list);
2544
2545 i915_gem_free_request(request);
2546 }
e3efda49
CW
2547
2548 /* These may not have been flush before the reset, do so now */
2549 kfree(ring->preallocated_lazy_request);
2550 ring->preallocated_lazy_request = NULL;
2551 ring->outstanding_lazy_seqno = 0;
673a394b
EA
2552}
2553
19b2dbde 2554void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2555{
2556 struct drm_i915_private *dev_priv = dev->dev_private;
2557 int i;
2558
4b9de737 2559 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2560 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2561
94a335db
DV
2562 /*
2563 * Commit delayed tiling changes if we have an object still
2564 * attached to the fence, otherwise just clear the fence.
2565 */
2566 if (reg->obj) {
2567 i915_gem_object_update_fence(reg->obj, reg,
2568 reg->obj->tiling_mode);
2569 } else {
2570 i915_gem_write_fence(dev, i, NULL);
2571 }
312817a3
CW
2572 }
2573}
2574
069efc1d 2575void i915_gem_reset(struct drm_device *dev)
673a394b 2576{
77f01230 2577 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2578 struct intel_engine_cs *ring;
1ec14ad3 2579 int i;
673a394b 2580
4db080f9
CW
2581 /*
2582 * Before we free the objects from the requests, we need to inspect
2583 * them for finding the guilty party. As the requests only borrow
2584 * their reference to the objects, the inspection must be done first.
2585 */
2586 for_each_ring(ring, dev_priv, i)
2587 i915_gem_reset_ring_status(dev_priv, ring);
2588
b4519513 2589 for_each_ring(ring, dev_priv, i)
4db080f9 2590 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2591
acce9ffa
BW
2592 i915_gem_context_reset(dev);
2593
19b2dbde 2594 i915_gem_restore_fences(dev);
673a394b
EA
2595}
2596
2597/**
2598 * This function clears the request list as sequence numbers are passed.
2599 */
1cf0ba14 2600void
a4872ba6 2601i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2602{
673a394b
EA
2603 uint32_t seqno;
2604
db53a302 2605 if (list_empty(&ring->request_list))
6c0594a3
KW
2606 return;
2607
db53a302 2608 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2609
b2eadbc8 2610 seqno = ring->get_seqno(ring, true);
1ec14ad3 2611
e9103038
CW
2612 /* Move any buffers on the active list that are no longer referenced
2613 * by the ringbuffer to the flushing/inactive lists as appropriate,
2614 * before we free the context associated with the requests.
2615 */
2616 while (!list_empty(&ring->active_list)) {
2617 struct drm_i915_gem_object *obj;
2618
2619 obj = list_first_entry(&ring->active_list,
2620 struct drm_i915_gem_object,
2621 ring_list);
2622
2623 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2624 break;
2625
2626 i915_gem_object_move_to_inactive(obj);
2627 }
2628
2629
852835f3 2630 while (!list_empty(&ring->request_list)) {
673a394b 2631 struct drm_i915_gem_request *request;
673a394b 2632
852835f3 2633 request = list_first_entry(&ring->request_list,
673a394b
EA
2634 struct drm_i915_gem_request,
2635 list);
673a394b 2636
dfaae392 2637 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2638 break;
2639
db53a302 2640 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2641 /* We know the GPU must have read the request to have
2642 * sent us the seqno + interrupt, so use the position
2643 * of tail of the request to update the last known position
2644 * of the GPU head.
2645 */
ee1b1e5e 2646 ring->buffer->last_retired_head = request->tail;
b84d5f0c 2647
0e50e96b 2648 i915_gem_free_request(request);
b84d5f0c 2649 }
673a394b 2650
db53a302
CW
2651 if (unlikely(ring->trace_irq_seqno &&
2652 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2653 ring->irq_put(ring);
db53a302 2654 ring->trace_irq_seqno = 0;
9d34e5db 2655 }
23bc5982 2656
db53a302 2657 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2658}
2659
b29c19b6 2660bool
b09a1fec
CW
2661i915_gem_retire_requests(struct drm_device *dev)
2662{
3e31c6c0 2663 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2664 struct intel_engine_cs *ring;
b29c19b6 2665 bool idle = true;
1ec14ad3 2666 int i;
b09a1fec 2667
b29c19b6 2668 for_each_ring(ring, dev_priv, i) {
b4519513 2669 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2670 idle &= list_empty(&ring->request_list);
2671 }
2672
2673 if (idle)
2674 mod_delayed_work(dev_priv->wq,
2675 &dev_priv->mm.idle_work,
2676 msecs_to_jiffies(100));
2677
2678 return idle;
b09a1fec
CW
2679}
2680
75ef9da2 2681static void
673a394b
EA
2682i915_gem_retire_work_handler(struct work_struct *work)
2683{
b29c19b6
CW
2684 struct drm_i915_private *dev_priv =
2685 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2686 struct drm_device *dev = dev_priv->dev;
0a58705b 2687 bool idle;
673a394b 2688
891b48cf 2689 /* Come back later if the device is busy... */
b29c19b6
CW
2690 idle = false;
2691 if (mutex_trylock(&dev->struct_mutex)) {
2692 idle = i915_gem_retire_requests(dev);
2693 mutex_unlock(&dev->struct_mutex);
673a394b 2694 }
b29c19b6 2695 if (!idle)
bcb45086
CW
2696 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2697 round_jiffies_up_relative(HZ));
b29c19b6 2698}
0a58705b 2699
b29c19b6
CW
2700static void
2701i915_gem_idle_work_handler(struct work_struct *work)
2702{
2703 struct drm_i915_private *dev_priv =
2704 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2705
2706 intel_mark_idle(dev_priv->dev);
673a394b
EA
2707}
2708
30dfebf3
DV
2709/**
2710 * Ensures that an object will eventually get non-busy by flushing any required
2711 * write domains, emitting any outstanding lazy request and retiring and
2712 * completed requests.
2713 */
2714static int
2715i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2716{
2717 int ret;
2718
2719 if (obj->active) {
0201f1ec 2720 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2721 if (ret)
2722 return ret;
2723
30dfebf3
DV
2724 i915_gem_retire_requests_ring(obj->ring);
2725 }
2726
2727 return 0;
2728}
2729
23ba4fd0
BW
2730/**
2731 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2732 * @DRM_IOCTL_ARGS: standard ioctl arguments
2733 *
2734 * Returns 0 if successful, else an error is returned with the remaining time in
2735 * the timeout parameter.
2736 * -ETIME: object is still busy after timeout
2737 * -ERESTARTSYS: signal interrupted the wait
2738 * -ENONENT: object doesn't exist
2739 * Also possible, but rare:
2740 * -EAGAIN: GPU wedged
2741 * -ENOMEM: damn
2742 * -ENODEV: Internal IRQ fail
2743 * -E?: The add request failed
2744 *
2745 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2746 * non-zero timeout parameter the wait ioctl will wait for the given number of
2747 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2748 * without holding struct_mutex the object may become re-busied before this
2749 * function completes. A similar but shorter * race condition exists in the busy
2750 * ioctl
2751 */
2752int
2753i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2754{
3e31c6c0 2755 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2756 struct drm_i915_gem_wait *args = data;
2757 struct drm_i915_gem_object *obj;
a4872ba6 2758 struct intel_engine_cs *ring = NULL;
eac1f14f 2759 struct timespec timeout_stack, *timeout = NULL;
f69061be 2760 unsigned reset_counter;
23ba4fd0
BW
2761 u32 seqno = 0;
2762 int ret = 0;
2763
eac1f14f
BW
2764 if (args->timeout_ns >= 0) {
2765 timeout_stack = ns_to_timespec(args->timeout_ns);
2766 timeout = &timeout_stack;
2767 }
23ba4fd0
BW
2768
2769 ret = i915_mutex_lock_interruptible(dev);
2770 if (ret)
2771 return ret;
2772
2773 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2774 if (&obj->base == NULL) {
2775 mutex_unlock(&dev->struct_mutex);
2776 return -ENOENT;
2777 }
2778
30dfebf3
DV
2779 /* Need to make sure the object gets inactive eventually. */
2780 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2781 if (ret)
2782 goto out;
2783
2784 if (obj->active) {
0201f1ec 2785 seqno = obj->last_read_seqno;
23ba4fd0
BW
2786 ring = obj->ring;
2787 }
2788
2789 if (seqno == 0)
2790 goto out;
2791
23ba4fd0
BW
2792 /* Do this after OLR check to make sure we make forward progress polling
2793 * on this IOCTL with a 0 timeout (like busy ioctl)
2794 */
2795 if (!args->timeout_ns) {
2796 ret = -ETIME;
2797 goto out;
2798 }
2799
2800 drm_gem_object_unreference(&obj->base);
f69061be 2801 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2802 mutex_unlock(&dev->struct_mutex);
2803
b29c19b6 2804 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2805 if (timeout)
eac1f14f 2806 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2807 return ret;
2808
2809out:
2810 drm_gem_object_unreference(&obj->base);
2811 mutex_unlock(&dev->struct_mutex);
2812 return ret;
2813}
2814
5816d648
BW
2815/**
2816 * i915_gem_object_sync - sync an object to a ring.
2817 *
2818 * @obj: object which may be in use on another ring.
2819 * @to: ring we wish to use the object on. May be NULL.
2820 *
2821 * This code is meant to abstract object synchronization with the GPU.
2822 * Calling with NULL implies synchronizing the object with the CPU
2823 * rather than a particular GPU ring.
2824 *
2825 * Returns 0 if successful, else propagates up the lower layer error.
2826 */
2911a35b
BW
2827int
2828i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2829 struct intel_engine_cs *to)
2911a35b 2830{
a4872ba6 2831 struct intel_engine_cs *from = obj->ring;
2911a35b
BW
2832 u32 seqno;
2833 int ret, idx;
2834
2835 if (from == NULL || to == from)
2836 return 0;
2837
5816d648 2838 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2839 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2840
2841 idx = intel_ring_sync_index(from, to);
2842
0201f1ec 2843 seqno = obj->last_read_seqno;
ebc348b2 2844 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2845 return 0;
2846
b4aca010
BW
2847 ret = i915_gem_check_olr(obj->ring, seqno);
2848 if (ret)
2849 return ret;
2911a35b 2850
b52b89da 2851 trace_i915_gem_ring_sync_to(from, to, seqno);
ebc348b2 2852 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2853 if (!ret)
7b01e260
MK
2854 /* We use last_read_seqno because sync_to()
2855 * might have just caused seqno wrap under
2856 * the radar.
2857 */
ebc348b2 2858 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2859
e3a5a225 2860 return ret;
2911a35b
BW
2861}
2862
b5ffc9bc
CW
2863static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2864{
2865 u32 old_write_domain, old_read_domains;
2866
b5ffc9bc
CW
2867 /* Force a pagefault for domain tracking on next user access */
2868 i915_gem_release_mmap(obj);
2869
b97c3d9c
KP
2870 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2871 return;
2872
97c809fd
CW
2873 /* Wait for any direct GTT access to complete */
2874 mb();
2875
b5ffc9bc
CW
2876 old_read_domains = obj->base.read_domains;
2877 old_write_domain = obj->base.write_domain;
2878
2879 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2880 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2881
2882 trace_i915_gem_object_change_domain(obj,
2883 old_read_domains,
2884 old_write_domain);
2885}
2886
07fe0b12 2887int i915_vma_unbind(struct i915_vma *vma)
673a394b 2888{
07fe0b12 2889 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 2890 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 2891 int ret;
673a394b 2892
07fe0b12 2893 if (list_empty(&vma->vma_link))
673a394b
EA
2894 return 0;
2895
0ff501cb
DV
2896 if (!drm_mm_node_allocated(&vma->node)) {
2897 i915_gem_vma_destroy(vma);
0ff501cb
DV
2898 return 0;
2899 }
433544bd 2900
d7f46fc4 2901 if (vma->pin_count)
31d8d651 2902 return -EBUSY;
673a394b 2903
c4670ad0
CW
2904 BUG_ON(obj->pages == NULL);
2905
a8198eea 2906 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2907 if (ret)
a8198eea
CW
2908 return ret;
2909 /* Continue on if we fail due to EIO, the GPU is hung so we
2910 * should be safe and we need to cleanup or else we might
2911 * cause memory corruption through use-after-free.
2912 */
2913
8b1bc9b4
DV
2914 if (i915_is_ggtt(vma->vm)) {
2915 i915_gem_object_finish_gtt(obj);
5323fd04 2916
8b1bc9b4
DV
2917 /* release the fence reg _after_ flushing */
2918 ret = i915_gem_object_put_fence(obj);
2919 if (ret)
2920 return ret;
2921 }
96b47b65 2922
07fe0b12 2923 trace_i915_vma_unbind(vma);
db53a302 2924
6f65e29a
BW
2925 vma->unbind_vma(vma);
2926
74163907 2927 i915_gem_gtt_finish_object(obj);
7bddb01f 2928
64bf9303 2929 list_del_init(&vma->mm_list);
75e9e915 2930 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2931 if (i915_is_ggtt(vma->vm))
2932 obj->map_and_fenceable = true;
673a394b 2933
2f633156
BW
2934 drm_mm_remove_node(&vma->node);
2935 i915_gem_vma_destroy(vma);
2936
2937 /* Since the unbound list is global, only move to that list if
b93dab6e 2938 * no more VMAs exist. */
2f633156
BW
2939 if (list_empty(&obj->vma_list))
2940 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2941
70903c3b
CW
2942 /* And finally now the object is completely decoupled from this vma,
2943 * we can drop its hold on the backing storage and allow it to be
2944 * reaped by the shrinker.
2945 */
2946 i915_gem_object_unpin_pages(obj);
2947
88241785 2948 return 0;
54cf91dc
CW
2949}
2950
b2da9fe5 2951int i915_gpu_idle(struct drm_device *dev)
4df2faf4 2952{
3e31c6c0 2953 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2954 struct intel_engine_cs *ring;
1ec14ad3 2955 int ret, i;
4df2faf4 2956
4df2faf4 2957 /* Flush everything onto the inactive list. */
b4519513 2958 for_each_ring(ring, dev_priv, i) {
691e6415 2959 ret = i915_switch_context(ring, ring->default_context);
b6c7488d
BW
2960 if (ret)
2961 return ret;
2962
3e960501 2963 ret = intel_ring_idle(ring);
1ec14ad3
CW
2964 if (ret)
2965 return ret;
2966 }
4df2faf4 2967
8a1a49f9 2968 return 0;
4df2faf4
DV
2969}
2970
9ce079e4
CW
2971static void i965_write_fence_reg(struct drm_device *dev, int reg,
2972 struct drm_i915_gem_object *obj)
de151cf6 2973{
3e31c6c0 2974 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
2975 int fence_reg;
2976 int fence_pitch_shift;
de151cf6 2977
56c844e5
ID
2978 if (INTEL_INFO(dev)->gen >= 6) {
2979 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2980 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2981 } else {
2982 fence_reg = FENCE_REG_965_0;
2983 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2984 }
2985
d18b9619
CW
2986 fence_reg += reg * 8;
2987
2988 /* To w/a incoherency with non-atomic 64-bit register updates,
2989 * we split the 64-bit update into two 32-bit writes. In order
2990 * for a partial fence not to be evaluated between writes, we
2991 * precede the update with write to turn off the fence register,
2992 * and only enable the fence as the last step.
2993 *
2994 * For extra levels of paranoia, we make sure each step lands
2995 * before applying the next step.
2996 */
2997 I915_WRITE(fence_reg, 0);
2998 POSTING_READ(fence_reg);
2999
9ce079e4 3000 if (obj) {
f343c5f6 3001 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3002 uint64_t val;
de151cf6 3003
f343c5f6 3004 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3005 0xfffff000) << 32;
f343c5f6 3006 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3007 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3008 if (obj->tiling_mode == I915_TILING_Y)
3009 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3010 val |= I965_FENCE_REG_VALID;
c6642782 3011
d18b9619
CW
3012 I915_WRITE(fence_reg + 4, val >> 32);
3013 POSTING_READ(fence_reg + 4);
3014
3015 I915_WRITE(fence_reg + 0, val);
3016 POSTING_READ(fence_reg);
3017 } else {
3018 I915_WRITE(fence_reg + 4, 0);
3019 POSTING_READ(fence_reg + 4);
3020 }
de151cf6
JB
3021}
3022
9ce079e4
CW
3023static void i915_write_fence_reg(struct drm_device *dev, int reg,
3024 struct drm_i915_gem_object *obj)
de151cf6 3025{
3e31c6c0 3026 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3027 u32 val;
de151cf6 3028
9ce079e4 3029 if (obj) {
f343c5f6 3030 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3031 int pitch_val;
3032 int tile_width;
c6642782 3033
f343c5f6 3034 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3035 (size & -size) != size ||
f343c5f6
BW
3036 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3037 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3038 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3039
9ce079e4
CW
3040 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3041 tile_width = 128;
3042 else
3043 tile_width = 512;
3044
3045 /* Note: pitch better be a power of two tile widths */
3046 pitch_val = obj->stride / tile_width;
3047 pitch_val = ffs(pitch_val) - 1;
3048
f343c5f6 3049 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3050 if (obj->tiling_mode == I915_TILING_Y)
3051 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3052 val |= I915_FENCE_SIZE_BITS(size);
3053 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3054 val |= I830_FENCE_REG_VALID;
3055 } else
3056 val = 0;
3057
3058 if (reg < 8)
3059 reg = FENCE_REG_830_0 + reg * 4;
3060 else
3061 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3062
3063 I915_WRITE(reg, val);
3064 POSTING_READ(reg);
de151cf6
JB
3065}
3066
9ce079e4
CW
3067static void i830_write_fence_reg(struct drm_device *dev, int reg,
3068 struct drm_i915_gem_object *obj)
de151cf6 3069{
3e31c6c0 3070 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3071 uint32_t val;
de151cf6 3072
9ce079e4 3073 if (obj) {
f343c5f6 3074 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3075 uint32_t pitch_val;
de151cf6 3076
f343c5f6 3077 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3078 (size & -size) != size ||
f343c5f6
BW
3079 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3080 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3081 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3082
9ce079e4
CW
3083 pitch_val = obj->stride / 128;
3084 pitch_val = ffs(pitch_val) - 1;
de151cf6 3085
f343c5f6 3086 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3087 if (obj->tiling_mode == I915_TILING_Y)
3088 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3089 val |= I830_FENCE_SIZE_BITS(size);
3090 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3091 val |= I830_FENCE_REG_VALID;
3092 } else
3093 val = 0;
c6642782 3094
9ce079e4
CW
3095 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3096 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3097}
3098
d0a57789
CW
3099inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3100{
3101 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3102}
3103
9ce079e4
CW
3104static void i915_gem_write_fence(struct drm_device *dev, int reg,
3105 struct drm_i915_gem_object *obj)
3106{
d0a57789
CW
3107 struct drm_i915_private *dev_priv = dev->dev_private;
3108
3109 /* Ensure that all CPU reads are completed before installing a fence
3110 * and all writes before removing the fence.
3111 */
3112 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3113 mb();
3114
94a335db
DV
3115 WARN(obj && (!obj->stride || !obj->tiling_mode),
3116 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3117 obj->stride, obj->tiling_mode);
3118
9ce079e4 3119 switch (INTEL_INFO(dev)->gen) {
5ab31333 3120 case 8:
9ce079e4 3121 case 7:
56c844e5 3122 case 6:
9ce079e4
CW
3123 case 5:
3124 case 4: i965_write_fence_reg(dev, reg, obj); break;
3125 case 3: i915_write_fence_reg(dev, reg, obj); break;
3126 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3127 default: BUG();
9ce079e4 3128 }
d0a57789
CW
3129
3130 /* And similarly be paranoid that no direct access to this region
3131 * is reordered to before the fence is installed.
3132 */
3133 if (i915_gem_object_needs_mb(obj))
3134 mb();
de151cf6
JB
3135}
3136
61050808
CW
3137static inline int fence_number(struct drm_i915_private *dev_priv,
3138 struct drm_i915_fence_reg *fence)
3139{
3140 return fence - dev_priv->fence_regs;
3141}
3142
3143static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3144 struct drm_i915_fence_reg *fence,
3145 bool enable)
3146{
2dc8aae0 3147 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3148 int reg = fence_number(dev_priv, fence);
3149
3150 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3151
3152 if (enable) {
46a0b638 3153 obj->fence_reg = reg;
61050808
CW
3154 fence->obj = obj;
3155 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3156 } else {
3157 obj->fence_reg = I915_FENCE_REG_NONE;
3158 fence->obj = NULL;
3159 list_del_init(&fence->lru_list);
3160 }
94a335db 3161 obj->fence_dirty = false;
61050808
CW
3162}
3163
d9e86c0e 3164static int
d0a57789 3165i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3166{
1c293ea3 3167 if (obj->last_fenced_seqno) {
86d5bc37 3168 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3169 if (ret)
3170 return ret;
d9e86c0e
CW
3171
3172 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3173 }
3174
86d5bc37 3175 obj->fenced_gpu_access = false;
d9e86c0e
CW
3176 return 0;
3177}
3178
3179int
3180i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3181{
61050808 3182 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3183 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3184 int ret;
3185
d0a57789 3186 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3187 if (ret)
3188 return ret;
3189
61050808
CW
3190 if (obj->fence_reg == I915_FENCE_REG_NONE)
3191 return 0;
d9e86c0e 3192
f9c513e9
CW
3193 fence = &dev_priv->fence_regs[obj->fence_reg];
3194
aff10b30
DV
3195 if (WARN_ON(fence->pin_count))
3196 return -EBUSY;
3197
61050808 3198 i915_gem_object_fence_lost(obj);
f9c513e9 3199 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3200
3201 return 0;
3202}
3203
3204static struct drm_i915_fence_reg *
a360bb1a 3205i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3206{
ae3db24a 3207 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3208 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3209 int i;
ae3db24a
DV
3210
3211 /* First try to find a free reg */
d9e86c0e 3212 avail = NULL;
ae3db24a
DV
3213 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3214 reg = &dev_priv->fence_regs[i];
3215 if (!reg->obj)
d9e86c0e 3216 return reg;
ae3db24a 3217
1690e1eb 3218 if (!reg->pin_count)
d9e86c0e 3219 avail = reg;
ae3db24a
DV
3220 }
3221
d9e86c0e 3222 if (avail == NULL)
5dce5b93 3223 goto deadlock;
ae3db24a
DV
3224
3225 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3226 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3227 if (reg->pin_count)
ae3db24a
DV
3228 continue;
3229
8fe301ad 3230 return reg;
ae3db24a
DV
3231 }
3232
5dce5b93
CW
3233deadlock:
3234 /* Wait for completion of pending flips which consume fences */
3235 if (intel_has_pending_fb_unpin(dev))
3236 return ERR_PTR(-EAGAIN);
3237
3238 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3239}
3240
de151cf6 3241/**
9a5a53b3 3242 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3243 * @obj: object to map through a fence reg
3244 *
3245 * When mapping objects through the GTT, userspace wants to be able to write
3246 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3247 * This function walks the fence regs looking for a free one for @obj,
3248 * stealing one if it can't find any.
3249 *
3250 * It then sets up the reg based on the object's properties: address, pitch
3251 * and tiling format.
9a5a53b3
CW
3252 *
3253 * For an untiled surface, this removes any existing fence.
de151cf6 3254 */
8c4b8c3f 3255int
06d98131 3256i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3257{
05394f39 3258 struct drm_device *dev = obj->base.dev;
79e53945 3259 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3260 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3261 struct drm_i915_fence_reg *reg;
ae3db24a 3262 int ret;
de151cf6 3263
14415745
CW
3264 /* Have we updated the tiling parameters upon the object and so
3265 * will need to serialise the write to the associated fence register?
3266 */
5d82e3e6 3267 if (obj->fence_dirty) {
d0a57789 3268 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3269 if (ret)
3270 return ret;
3271 }
9a5a53b3 3272
d9e86c0e 3273 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3274 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3275 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3276 if (!obj->fence_dirty) {
14415745
CW
3277 list_move_tail(&reg->lru_list,
3278 &dev_priv->mm.fence_list);
3279 return 0;
3280 }
3281 } else if (enable) {
3282 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3283 if (IS_ERR(reg))
3284 return PTR_ERR(reg);
d9e86c0e 3285
14415745
CW
3286 if (reg->obj) {
3287 struct drm_i915_gem_object *old = reg->obj;
3288
d0a57789 3289 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3290 if (ret)
3291 return ret;
3292
14415745 3293 i915_gem_object_fence_lost(old);
29c5a587 3294 }
14415745 3295 } else
a09ba7fa 3296 return 0;
a09ba7fa 3297
14415745 3298 i915_gem_object_update_fence(obj, reg, enable);
14415745 3299
9ce079e4 3300 return 0;
de151cf6
JB
3301}
3302
42d6ab48
CW
3303static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3304 struct drm_mm_node *gtt_space,
3305 unsigned long cache_level)
3306{
3307 struct drm_mm_node *other;
3308
3309 /* On non-LLC machines we have to be careful when putting differing
3310 * types of snoopable memory together to avoid the prefetcher
4239ca77 3311 * crossing memory domains and dying.
42d6ab48
CW
3312 */
3313 if (HAS_LLC(dev))
3314 return true;
3315
c6cfb325 3316 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3317 return true;
3318
3319 if (list_empty(&gtt_space->node_list))
3320 return true;
3321
3322 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3323 if (other->allocated && !other->hole_follows && other->color != cache_level)
3324 return false;
3325
3326 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3327 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3328 return false;
3329
3330 return true;
3331}
3332
3333static void i915_gem_verify_gtt(struct drm_device *dev)
3334{
3335#if WATCH_GTT
3336 struct drm_i915_private *dev_priv = dev->dev_private;
3337 struct drm_i915_gem_object *obj;
3338 int err = 0;
3339
35c20a60 3340 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3341 if (obj->gtt_space == NULL) {
3342 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3343 err++;
3344 continue;
3345 }
3346
3347 if (obj->cache_level != obj->gtt_space->color) {
3348 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3349 i915_gem_obj_ggtt_offset(obj),
3350 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3351 obj->cache_level,
3352 obj->gtt_space->color);
3353 err++;
3354 continue;
3355 }
3356
3357 if (!i915_gem_valid_gtt_space(dev,
3358 obj->gtt_space,
3359 obj->cache_level)) {
3360 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3361 i915_gem_obj_ggtt_offset(obj),
3362 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3363 obj->cache_level);
3364 err++;
3365 continue;
3366 }
3367 }
3368
3369 WARN_ON(err);
3370#endif
3371}
3372
673a394b
EA
3373/**
3374 * Finds free space in the GTT aperture and binds the object there.
3375 */
262de145 3376static struct i915_vma *
07fe0b12
BW
3377i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3378 struct i915_address_space *vm,
3379 unsigned alignment,
d23db88c 3380 uint64_t flags)
673a394b 3381{
05394f39 3382 struct drm_device *dev = obj->base.dev;
3e31c6c0 3383 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3384 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3385 unsigned long start =
3386 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3387 unsigned long end =
1ec9e26d 3388 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3389 struct i915_vma *vma;
07f73f69 3390 int ret;
673a394b 3391
e28f8711
CW
3392 fence_size = i915_gem_get_gtt_size(dev,
3393 obj->base.size,
3394 obj->tiling_mode);
3395 fence_alignment = i915_gem_get_gtt_alignment(dev,
3396 obj->base.size,
d865110c 3397 obj->tiling_mode, true);
e28f8711 3398 unfenced_alignment =
d865110c 3399 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3400 obj->base.size,
3401 obj->tiling_mode, false);
a00b10c3 3402
673a394b 3403 if (alignment == 0)
1ec9e26d 3404 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3405 unfenced_alignment;
1ec9e26d 3406 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3407 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3408 return ERR_PTR(-EINVAL);
673a394b
EA
3409 }
3410
1ec9e26d 3411 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3412
654fc607
CW
3413 /* If the object is bigger than the entire aperture, reject it early
3414 * before evicting everything in a vain attempt to find space.
3415 */
d23db88c
CW
3416 if (obj->base.size > end) {
3417 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3418 obj->base.size,
1ec9e26d 3419 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3420 end);
262de145 3421 return ERR_PTR(-E2BIG);
654fc607
CW
3422 }
3423
37e680a1 3424 ret = i915_gem_object_get_pages(obj);
6c085a72 3425 if (ret)
262de145 3426 return ERR_PTR(ret);
6c085a72 3427
fbdda6fb
CW
3428 i915_gem_object_pin_pages(obj);
3429
accfef2e 3430 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3431 if (IS_ERR(vma))
bc6bc15b 3432 goto err_unpin;
2f633156 3433
0a9ae0d7 3434search_free:
07fe0b12 3435 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3436 size, alignment,
d23db88c
CW
3437 obj->cache_level,
3438 start, end,
62347f9e
LK
3439 DRM_MM_SEARCH_DEFAULT,
3440 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3441 if (ret) {
f6cd1f15 3442 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3443 obj->cache_level,
3444 start, end,
3445 flags);
dc9dd7a2
CW
3446 if (ret == 0)
3447 goto search_free;
9731129c 3448
bc6bc15b 3449 goto err_free_vma;
673a394b 3450 }
2f633156 3451 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3452 obj->cache_level))) {
2f633156 3453 ret = -EINVAL;
bc6bc15b 3454 goto err_remove_node;
673a394b
EA
3455 }
3456
74163907 3457 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3458 if (ret)
bc6bc15b 3459 goto err_remove_node;
673a394b 3460
35c20a60 3461 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3462 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3463
4bd561b3
BW
3464 if (i915_is_ggtt(vm)) {
3465 bool mappable, fenceable;
a00b10c3 3466
49987099
DV
3467 fenceable = (vma->node.size == fence_size &&
3468 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3469
49987099
DV
3470 mappable = (vma->node.start + obj->base.size <=
3471 dev_priv->gtt.mappable_end);
a00b10c3 3472
5cacaac7 3473 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3474 }
75e9e915 3475
1ec9e26d 3476 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3477
1ec9e26d 3478 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3479 vma->bind_vma(vma, obj->cache_level,
3480 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3481
42d6ab48 3482 i915_gem_verify_gtt(dev);
262de145 3483 return vma;
2f633156 3484
bc6bc15b 3485err_remove_node:
6286ef9b 3486 drm_mm_remove_node(&vma->node);
bc6bc15b 3487err_free_vma:
2f633156 3488 i915_gem_vma_destroy(vma);
262de145 3489 vma = ERR_PTR(ret);
bc6bc15b 3490err_unpin:
2f633156 3491 i915_gem_object_unpin_pages(obj);
262de145 3492 return vma;
673a394b
EA
3493}
3494
000433b6 3495bool
2c22569b
CW
3496i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3497 bool force)
673a394b 3498{
673a394b
EA
3499 /* If we don't have a page list set up, then we're not pinned
3500 * to GPU, and we can ignore the cache flush because it'll happen
3501 * again at bind time.
3502 */
05394f39 3503 if (obj->pages == NULL)
000433b6 3504 return false;
673a394b 3505
769ce464
ID
3506 /*
3507 * Stolen memory is always coherent with the GPU as it is explicitly
3508 * marked as wc by the system, or the system is cache-coherent.
3509 */
3510 if (obj->stolen)
000433b6 3511 return false;
769ce464 3512
9c23f7fc
CW
3513 /* If the GPU is snooping the contents of the CPU cache,
3514 * we do not need to manually clear the CPU cache lines. However,
3515 * the caches are only snooped when the render cache is
3516 * flushed/invalidated. As we always have to emit invalidations
3517 * and flushes when moving into and out of the RENDER domain, correct
3518 * snooping behaviour occurs naturally as the result of our domain
3519 * tracking.
3520 */
2c22569b 3521 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3522 return false;
9c23f7fc 3523
1c5d22f7 3524 trace_i915_gem_object_clflush(obj);
9da3da66 3525 drm_clflush_sg(obj->pages);
000433b6
CW
3526
3527 return true;
e47c68e9
EA
3528}
3529
3530/** Flushes the GTT write domain for the object if it's dirty. */
3531static void
05394f39 3532i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3533{
1c5d22f7
CW
3534 uint32_t old_write_domain;
3535
05394f39 3536 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3537 return;
3538
63256ec5 3539 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3540 * to it immediately go to main memory as far as we know, so there's
3541 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3542 *
3543 * However, we do have to enforce the order so that all writes through
3544 * the GTT land before any writes to the device, such as updates to
3545 * the GATT itself.
e47c68e9 3546 */
63256ec5
CW
3547 wmb();
3548
05394f39
CW
3549 old_write_domain = obj->base.write_domain;
3550 obj->base.write_domain = 0;
1c5d22f7
CW
3551
3552 trace_i915_gem_object_change_domain(obj,
05394f39 3553 obj->base.read_domains,
1c5d22f7 3554 old_write_domain);
e47c68e9
EA
3555}
3556
3557/** Flushes the CPU write domain for the object if it's dirty. */
3558static void
2c22569b
CW
3559i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3560 bool force)
e47c68e9 3561{
1c5d22f7 3562 uint32_t old_write_domain;
e47c68e9 3563
05394f39 3564 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3565 return;
3566
000433b6
CW
3567 if (i915_gem_clflush_object(obj, force))
3568 i915_gem_chipset_flush(obj->base.dev);
3569
05394f39
CW
3570 old_write_domain = obj->base.write_domain;
3571 obj->base.write_domain = 0;
1c5d22f7
CW
3572
3573 trace_i915_gem_object_change_domain(obj,
05394f39 3574 obj->base.read_domains,
1c5d22f7 3575 old_write_domain);
e47c68e9
EA
3576}
3577
2ef7eeaa
EA
3578/**
3579 * Moves a single object to the GTT read, and possibly write domain.
3580 *
3581 * This function returns when the move is complete, including waiting on
3582 * flushes to occur.
3583 */
79e53945 3584int
2021746e 3585i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3586{
3e31c6c0 3587 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3588 uint32_t old_write_domain, old_read_domains;
e47c68e9 3589 int ret;
2ef7eeaa 3590
02354392 3591 /* Not valid to be called on unbound objects. */
9843877d 3592 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3593 return -EINVAL;
3594
8d7e3de1
CW
3595 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3596 return 0;
3597
0201f1ec 3598 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3599 if (ret)
3600 return ret;
3601
c8725f3d 3602 i915_gem_object_retire(obj);
2c22569b 3603 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3604
d0a57789
CW
3605 /* Serialise direct access to this object with the barriers for
3606 * coherent writes from the GPU, by effectively invalidating the
3607 * GTT domain upon first access.
3608 */
3609 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3610 mb();
3611
05394f39
CW
3612 old_write_domain = obj->base.write_domain;
3613 old_read_domains = obj->base.read_domains;
1c5d22f7 3614
e47c68e9
EA
3615 /* It should now be out of any other write domains, and we can update
3616 * the domain values for our changes.
3617 */
05394f39
CW
3618 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3619 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3620 if (write) {
05394f39
CW
3621 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3622 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3623 obj->dirty = 1;
2ef7eeaa
EA
3624 }
3625
1c5d22f7
CW
3626 trace_i915_gem_object_change_domain(obj,
3627 old_read_domains,
3628 old_write_domain);
3629
8325a09d 3630 /* And bump the LRU for this access */
ca191b13 3631 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3632 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3633 if (vma)
3634 list_move_tail(&vma->mm_list,
3635 &dev_priv->gtt.base.inactive_list);
3636
3637 }
8325a09d 3638
e47c68e9
EA
3639 return 0;
3640}
3641
e4ffd173
CW
3642int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3643 enum i915_cache_level cache_level)
3644{
7bddb01f 3645 struct drm_device *dev = obj->base.dev;
df6f783a 3646 struct i915_vma *vma, *next;
e4ffd173
CW
3647 int ret;
3648
3649 if (obj->cache_level == cache_level)
3650 return 0;
3651
d7f46fc4 3652 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3653 DRM_DEBUG("can not change the cache level of pinned objects\n");
3654 return -EBUSY;
3655 }
3656
df6f783a 3657 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3089c6f2 3658 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3659 ret = i915_vma_unbind(vma);
3089c6f2
BW
3660 if (ret)
3661 return ret;
3089c6f2 3662 }
42d6ab48
CW
3663 }
3664
3089c6f2 3665 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3666 ret = i915_gem_object_finish_gpu(obj);
3667 if (ret)
3668 return ret;
3669
3670 i915_gem_object_finish_gtt(obj);
3671
3672 /* Before SandyBridge, you could not use tiling or fence
3673 * registers with snooped memory, so relinquish any fences
3674 * currently pointing to our region in the aperture.
3675 */
42d6ab48 3676 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3677 ret = i915_gem_object_put_fence(obj);
3678 if (ret)
3679 return ret;
3680 }
3681
6f65e29a 3682 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3683 if (drm_mm_node_allocated(&vma->node))
3684 vma->bind_vma(vma, cache_level,
3685 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
e4ffd173
CW
3686 }
3687
2c22569b
CW
3688 list_for_each_entry(vma, &obj->vma_list, vma_link)
3689 vma->node.color = cache_level;
3690 obj->cache_level = cache_level;
3691
3692 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3693 u32 old_read_domains, old_write_domain;
3694
3695 /* If we're coming from LLC cached, then we haven't
3696 * actually been tracking whether the data is in the
3697 * CPU cache or not, since we only allow one bit set
3698 * in obj->write_domain and have been skipping the clflushes.
3699 * Just set it to the CPU cache for now.
3700 */
c8725f3d 3701 i915_gem_object_retire(obj);
e4ffd173 3702 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3703
3704 old_read_domains = obj->base.read_domains;
3705 old_write_domain = obj->base.write_domain;
3706
3707 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3708 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3709
3710 trace_i915_gem_object_change_domain(obj,
3711 old_read_domains,
3712 old_write_domain);
3713 }
3714
42d6ab48 3715 i915_gem_verify_gtt(dev);
e4ffd173
CW
3716 return 0;
3717}
3718
199adf40
BW
3719int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3720 struct drm_file *file)
e6994aee 3721{
199adf40 3722 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3723 struct drm_i915_gem_object *obj;
3724 int ret;
3725
3726 ret = i915_mutex_lock_interruptible(dev);
3727 if (ret)
3728 return ret;
3729
3730 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3731 if (&obj->base == NULL) {
3732 ret = -ENOENT;
3733 goto unlock;
3734 }
3735
651d794f
CW
3736 switch (obj->cache_level) {
3737 case I915_CACHE_LLC:
3738 case I915_CACHE_L3_LLC:
3739 args->caching = I915_CACHING_CACHED;
3740 break;
3741
4257d3ba
CW
3742 case I915_CACHE_WT:
3743 args->caching = I915_CACHING_DISPLAY;
3744 break;
3745
651d794f
CW
3746 default:
3747 args->caching = I915_CACHING_NONE;
3748 break;
3749 }
e6994aee
CW
3750
3751 drm_gem_object_unreference(&obj->base);
3752unlock:
3753 mutex_unlock(&dev->struct_mutex);
3754 return ret;
3755}
3756
199adf40
BW
3757int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3758 struct drm_file *file)
e6994aee 3759{
199adf40 3760 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3761 struct drm_i915_gem_object *obj;
3762 enum i915_cache_level level;
3763 int ret;
3764
199adf40
BW
3765 switch (args->caching) {
3766 case I915_CACHING_NONE:
e6994aee
CW
3767 level = I915_CACHE_NONE;
3768 break;
199adf40 3769 case I915_CACHING_CACHED:
e6994aee
CW
3770 level = I915_CACHE_LLC;
3771 break;
4257d3ba
CW
3772 case I915_CACHING_DISPLAY:
3773 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3774 break;
e6994aee
CW
3775 default:
3776 return -EINVAL;
3777 }
3778
3bc2913e
BW
3779 ret = i915_mutex_lock_interruptible(dev);
3780 if (ret)
3781 return ret;
3782
e6994aee
CW
3783 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3784 if (&obj->base == NULL) {
3785 ret = -ENOENT;
3786 goto unlock;
3787 }
3788
3789 ret = i915_gem_object_set_cache_level(obj, level);
3790
3791 drm_gem_object_unreference(&obj->base);
3792unlock:
3793 mutex_unlock(&dev->struct_mutex);
3794 return ret;
3795}
3796
cc98b413
CW
3797static bool is_pin_display(struct drm_i915_gem_object *obj)
3798{
19656430
OM
3799 struct i915_vma *vma;
3800
3801 if (list_empty(&obj->vma_list))
3802 return false;
3803
3804 vma = i915_gem_obj_to_ggtt(obj);
3805 if (!vma)
3806 return false;
3807
cc98b413
CW
3808 /* There are 3 sources that pin objects:
3809 * 1. The display engine (scanouts, sprites, cursors);
3810 * 2. Reservations for execbuffer;
3811 * 3. The user.
3812 *
3813 * We can ignore reservations as we hold the struct_mutex and
3814 * are only called outside of the reservation path. The user
3815 * can only increment pin_count once, and so if after
3816 * subtracting the potential reference by the user, any pin_count
3817 * remains, it must be due to another use by the display engine.
3818 */
19656430 3819 return vma->pin_count - !!obj->user_pin_count;
cc98b413
CW
3820}
3821
b9241ea3 3822/*
2da3b9b9
CW
3823 * Prepare buffer for display plane (scanout, cursors, etc).
3824 * Can be called from an uninterruptible phase (modesetting) and allows
3825 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3826 */
3827int
2da3b9b9
CW
3828i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3829 u32 alignment,
a4872ba6 3830 struct intel_engine_cs *pipelined)
b9241ea3 3831{
2da3b9b9 3832 u32 old_read_domains, old_write_domain;
19656430 3833 bool was_pin_display;
b9241ea3
ZW
3834 int ret;
3835
0be73284 3836 if (pipelined != obj->ring) {
2911a35b
BW
3837 ret = i915_gem_object_sync(obj, pipelined);
3838 if (ret)
b9241ea3
ZW
3839 return ret;
3840 }
3841
cc98b413
CW
3842 /* Mark the pin_display early so that we account for the
3843 * display coherency whilst setting up the cache domains.
3844 */
19656430 3845 was_pin_display = obj->pin_display;
cc98b413
CW
3846 obj->pin_display = true;
3847
a7ef0640
EA
3848 /* The display engine is not coherent with the LLC cache on gen6. As
3849 * a result, we make sure that the pinning that is about to occur is
3850 * done with uncached PTEs. This is lowest common denominator for all
3851 * chipsets.
3852 *
3853 * However for gen6+, we could do better by using the GFDT bit instead
3854 * of uncaching, which would allow us to flush all the LLC-cached data
3855 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3856 */
651d794f
CW
3857 ret = i915_gem_object_set_cache_level(obj,
3858 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3859 if (ret)
cc98b413 3860 goto err_unpin_display;
a7ef0640 3861
2da3b9b9
CW
3862 /* As the user may map the buffer once pinned in the display plane
3863 * (e.g. libkms for the bootup splash), we have to ensure that we
3864 * always use map_and_fenceable for all scanout buffers.
3865 */
1ec9e26d 3866 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3867 if (ret)
cc98b413 3868 goto err_unpin_display;
2da3b9b9 3869
2c22569b 3870 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3871
2da3b9b9 3872 old_write_domain = obj->base.write_domain;
05394f39 3873 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3874
3875 /* It should now be out of any other write domains, and we can update
3876 * the domain values for our changes.
3877 */
e5f1d962 3878 obj->base.write_domain = 0;
05394f39 3879 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3880
3881 trace_i915_gem_object_change_domain(obj,
3882 old_read_domains,
2da3b9b9 3883 old_write_domain);
b9241ea3
ZW
3884
3885 return 0;
cc98b413
CW
3886
3887err_unpin_display:
19656430
OM
3888 WARN_ON(was_pin_display != is_pin_display(obj));
3889 obj->pin_display = was_pin_display;
cc98b413
CW
3890 return ret;
3891}
3892
3893void
3894i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3895{
d7f46fc4 3896 i915_gem_object_ggtt_unpin(obj);
cc98b413 3897 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3898}
3899
85345517 3900int
a8198eea 3901i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3902{
88241785
CW
3903 int ret;
3904
a8198eea 3905 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3906 return 0;
3907
0201f1ec 3908 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3909 if (ret)
3910 return ret;
3911
a8198eea
CW
3912 /* Ensure that we invalidate the GPU's caches and TLBs. */
3913 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3914 return 0;
85345517
CW
3915}
3916
e47c68e9
EA
3917/**
3918 * Moves a single object to the CPU read, and possibly write domain.
3919 *
3920 * This function returns when the move is complete, including waiting on
3921 * flushes to occur.
3922 */
dabdfe02 3923int
919926ae 3924i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3925{
1c5d22f7 3926 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3927 int ret;
3928
8d7e3de1
CW
3929 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3930 return 0;
3931
0201f1ec 3932 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3933 if (ret)
3934 return ret;
3935
c8725f3d 3936 i915_gem_object_retire(obj);
e47c68e9 3937 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3938
05394f39
CW
3939 old_write_domain = obj->base.write_domain;
3940 old_read_domains = obj->base.read_domains;
1c5d22f7 3941
e47c68e9 3942 /* Flush the CPU cache if it's still invalid. */
05394f39 3943 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3944 i915_gem_clflush_object(obj, false);
2ef7eeaa 3945
05394f39 3946 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3947 }
3948
3949 /* It should now be out of any other write domains, and we can update
3950 * the domain values for our changes.
3951 */
05394f39 3952 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3953
3954 /* If we're writing through the CPU, then the GPU read domains will
3955 * need to be invalidated at next use.
3956 */
3957 if (write) {
05394f39
CW
3958 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3959 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3960 }
2ef7eeaa 3961
1c5d22f7
CW
3962 trace_i915_gem_object_change_domain(obj,
3963 old_read_domains,
3964 old_write_domain);
3965
2ef7eeaa
EA
3966 return 0;
3967}
3968
673a394b
EA
3969/* Throttle our rendering by waiting until the ring has completed our requests
3970 * emitted over 20 msec ago.
3971 *
b962442e
EA
3972 * Note that if we were to use the current jiffies each time around the loop,
3973 * we wouldn't escape the function with any frames outstanding if the time to
3974 * render a frame was over 20ms.
3975 *
673a394b
EA
3976 * This should get us reasonable parallelism between CPU and GPU but also
3977 * relatively low latency when blocking on a particular request to finish.
3978 */
40a5f0de 3979static int
f787a5f5 3980i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3981{
f787a5f5
CW
3982 struct drm_i915_private *dev_priv = dev->dev_private;
3983 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3984 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5 3985 struct drm_i915_gem_request *request;
a4872ba6 3986 struct intel_engine_cs *ring = NULL;
f69061be 3987 unsigned reset_counter;
f787a5f5
CW
3988 u32 seqno = 0;
3989 int ret;
93533c29 3990
308887aa
DV
3991 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3992 if (ret)
3993 return ret;
3994
3995 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3996 if (ret)
3997 return ret;
e110e8d6 3998
1c25595f 3999 spin_lock(&file_priv->mm.lock);
f787a5f5 4000 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4001 if (time_after_eq(request->emitted_jiffies, recent_enough))
4002 break;
40a5f0de 4003
f787a5f5
CW
4004 ring = request->ring;
4005 seqno = request->seqno;
b962442e 4006 }
f69061be 4007 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 4008 spin_unlock(&file_priv->mm.lock);
40a5f0de 4009
f787a5f5
CW
4010 if (seqno == 0)
4011 return 0;
2bc43b5c 4012
b29c19b6 4013 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
4014 if (ret == 0)
4015 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
4016
4017 return ret;
4018}
4019
d23db88c
CW
4020static bool
4021i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4022{
4023 struct drm_i915_gem_object *obj = vma->obj;
4024
4025 if (alignment &&
4026 vma->node.start & (alignment - 1))
4027 return true;
4028
4029 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4030 return true;
4031
4032 if (flags & PIN_OFFSET_BIAS &&
4033 vma->node.start < (flags & PIN_OFFSET_MASK))
4034 return true;
4035
4036 return false;
4037}
4038
673a394b 4039int
05394f39 4040i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 4041 struct i915_address_space *vm,
05394f39 4042 uint32_t alignment,
d23db88c 4043 uint64_t flags)
673a394b 4044{
6e7186af 4045 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4046 struct i915_vma *vma;
673a394b
EA
4047 int ret;
4048
6e7186af
BW
4049 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4050 return -ENODEV;
4051
bf3d149b 4052 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4053 return -EINVAL;
07fe0b12
BW
4054
4055 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 4056 if (vma) {
d7f46fc4
BW
4057 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4058 return -EBUSY;
4059
d23db88c 4060 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4061 WARN(vma->pin_count,
ae7d49d8 4062 "bo is already pinned with incorrect alignment:"
f343c5f6 4063 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4064 " obj->map_and_fenceable=%d\n",
07fe0b12 4065 i915_gem_obj_offset(obj, vm), alignment,
d23db88c 4066 !!(flags & PIN_MAPPABLE),
05394f39 4067 obj->map_and_fenceable);
07fe0b12 4068 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4069 if (ret)
4070 return ret;
8ea99c92
DV
4071
4072 vma = NULL;
ac0c6b5a
CW
4073 }
4074 }
4075
8ea99c92 4076 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
4077 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4078 if (IS_ERR(vma))
4079 return PTR_ERR(vma);
22c344e9 4080 }
76446cac 4081
8ea99c92
DV
4082 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4083 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 4084
8ea99c92 4085 vma->pin_count++;
1ec9e26d
DV
4086 if (flags & PIN_MAPPABLE)
4087 obj->pin_mappable |= true;
673a394b
EA
4088
4089 return 0;
4090}
4091
4092void
d7f46fc4 4093i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4094{
d7f46fc4 4095 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4096
d7f46fc4
BW
4097 BUG_ON(!vma);
4098 BUG_ON(vma->pin_count == 0);
4099 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4100
4101 if (--vma->pin_count == 0)
6299f992 4102 obj->pin_mappable = false;
673a394b
EA
4103}
4104
d8ffa60b
DV
4105bool
4106i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4107{
4108 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4109 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4110 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4111
4112 WARN_ON(!ggtt_vma ||
4113 dev_priv->fence_regs[obj->fence_reg].pin_count >
4114 ggtt_vma->pin_count);
4115 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4116 return true;
4117 } else
4118 return false;
4119}
4120
4121void
4122i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4123{
4124 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4125 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4126 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4127 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4128 }
4129}
4130
673a394b
EA
4131int
4132i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 4133 struct drm_file *file)
673a394b
EA
4134{
4135 struct drm_i915_gem_pin *args = data;
05394f39 4136 struct drm_i915_gem_object *obj;
673a394b
EA
4137 int ret;
4138
02f6bccc
DV
4139 if (INTEL_INFO(dev)->gen >= 6)
4140 return -ENODEV;
4141
1d7cfea1
CW
4142 ret = i915_mutex_lock_interruptible(dev);
4143 if (ret)
4144 return ret;
673a394b 4145
05394f39 4146 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4147 if (&obj->base == NULL) {
1d7cfea1
CW
4148 ret = -ENOENT;
4149 goto unlock;
673a394b 4150 }
673a394b 4151
05394f39 4152 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 4153 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 4154 ret = -EFAULT;
1d7cfea1 4155 goto out;
3ef94daa
CW
4156 }
4157
05394f39 4158 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 4159 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 4160 args->handle);
1d7cfea1
CW
4161 ret = -EINVAL;
4162 goto out;
79e53945
JB
4163 }
4164
aa5f8021
DV
4165 if (obj->user_pin_count == ULONG_MAX) {
4166 ret = -EBUSY;
4167 goto out;
4168 }
4169
93be8788 4170 if (obj->user_pin_count == 0) {
1ec9e26d 4171 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
4172 if (ret)
4173 goto out;
673a394b
EA
4174 }
4175
93be8788
CW
4176 obj->user_pin_count++;
4177 obj->pin_filp = file;
4178
f343c5f6 4179 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 4180out:
05394f39 4181 drm_gem_object_unreference(&obj->base);
1d7cfea1 4182unlock:
673a394b 4183 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4184 return ret;
673a394b
EA
4185}
4186
4187int
4188i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4189 struct drm_file *file)
673a394b
EA
4190{
4191 struct drm_i915_gem_pin *args = data;
05394f39 4192 struct drm_i915_gem_object *obj;
76c1dec1 4193 int ret;
673a394b 4194
1d7cfea1
CW
4195 ret = i915_mutex_lock_interruptible(dev);
4196 if (ret)
4197 return ret;
673a394b 4198
05394f39 4199 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4200 if (&obj->base == NULL) {
1d7cfea1
CW
4201 ret = -ENOENT;
4202 goto unlock;
673a394b 4203 }
76c1dec1 4204
05394f39 4205 if (obj->pin_filp != file) {
bd9b6a4e 4206 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 4207 args->handle);
1d7cfea1
CW
4208 ret = -EINVAL;
4209 goto out;
79e53945 4210 }
05394f39
CW
4211 obj->user_pin_count--;
4212 if (obj->user_pin_count == 0) {
4213 obj->pin_filp = NULL;
d7f46fc4 4214 i915_gem_object_ggtt_unpin(obj);
79e53945 4215 }
673a394b 4216
1d7cfea1 4217out:
05394f39 4218 drm_gem_object_unreference(&obj->base);
1d7cfea1 4219unlock:
673a394b 4220 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4221 return ret;
673a394b
EA
4222}
4223
4224int
4225i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4226 struct drm_file *file)
673a394b
EA
4227{
4228 struct drm_i915_gem_busy *args = data;
05394f39 4229 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4230 int ret;
4231
76c1dec1 4232 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4233 if (ret)
76c1dec1 4234 return ret;
673a394b 4235
7c8f8a70
RV
4236 intel_edp_psr_exit(dev, true);
4237
05394f39 4238 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4239 if (&obj->base == NULL) {
1d7cfea1
CW
4240 ret = -ENOENT;
4241 goto unlock;
673a394b 4242 }
d1b851fc 4243
0be555b6
CW
4244 /* Count all active objects as busy, even if they are currently not used
4245 * by the gpu. Users of this interface expect objects to eventually
4246 * become non-busy without any further actions, therefore emit any
4247 * necessary flushes here.
c4de0a5d 4248 */
30dfebf3 4249 ret = i915_gem_object_flush_active(obj);
0be555b6 4250
30dfebf3 4251 args->busy = obj->active;
e9808edd
CW
4252 if (obj->ring) {
4253 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4254 args->busy |= intel_ring_flag(obj->ring) << 16;
4255 }
673a394b 4256
05394f39 4257 drm_gem_object_unreference(&obj->base);
1d7cfea1 4258unlock:
673a394b 4259 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4260 return ret;
673a394b
EA
4261}
4262
4263int
4264i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4265 struct drm_file *file_priv)
4266{
0206e353 4267 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4268}
4269
3ef94daa
CW
4270int
4271i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4272 struct drm_file *file_priv)
4273{
4274 struct drm_i915_gem_madvise *args = data;
05394f39 4275 struct drm_i915_gem_object *obj;
76c1dec1 4276 int ret;
3ef94daa
CW
4277
4278 switch (args->madv) {
4279 case I915_MADV_DONTNEED:
4280 case I915_MADV_WILLNEED:
4281 break;
4282 default:
4283 return -EINVAL;
4284 }
4285
1d7cfea1
CW
4286 ret = i915_mutex_lock_interruptible(dev);
4287 if (ret)
4288 return ret;
4289
05394f39 4290 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4291 if (&obj->base == NULL) {
1d7cfea1
CW
4292 ret = -ENOENT;
4293 goto unlock;
3ef94daa 4294 }
3ef94daa 4295
d7f46fc4 4296 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4297 ret = -EINVAL;
4298 goto out;
3ef94daa
CW
4299 }
4300
05394f39
CW
4301 if (obj->madv != __I915_MADV_PURGED)
4302 obj->madv = args->madv;
3ef94daa 4303
6c085a72
CW
4304 /* if the object is no longer attached, discard its backing storage */
4305 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4306 i915_gem_object_truncate(obj);
4307
05394f39 4308 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4309
1d7cfea1 4310out:
05394f39 4311 drm_gem_object_unreference(&obj->base);
1d7cfea1 4312unlock:
3ef94daa 4313 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4314 return ret;
3ef94daa
CW
4315}
4316
37e680a1
CW
4317void i915_gem_object_init(struct drm_i915_gem_object *obj,
4318 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4319{
35c20a60 4320 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4321 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4322 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4323 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4324
37e680a1
CW
4325 obj->ops = ops;
4326
0327d6ba
CW
4327 obj->fence_reg = I915_FENCE_REG_NONE;
4328 obj->madv = I915_MADV_WILLNEED;
4329 /* Avoid an unnecessary call to unbind on the first bind. */
4330 obj->map_and_fenceable = true;
4331
4332 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4333}
4334
37e680a1
CW
4335static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4336 .get_pages = i915_gem_object_get_pages_gtt,
4337 .put_pages = i915_gem_object_put_pages_gtt,
4338};
4339
05394f39
CW
4340struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4341 size_t size)
ac52bc56 4342{
c397b908 4343 struct drm_i915_gem_object *obj;
5949eac4 4344 struct address_space *mapping;
1a240d4d 4345 gfp_t mask;
ac52bc56 4346
42dcedd4 4347 obj = i915_gem_object_alloc(dev);
c397b908
DV
4348 if (obj == NULL)
4349 return NULL;
673a394b 4350
c397b908 4351 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4352 i915_gem_object_free(obj);
c397b908
DV
4353 return NULL;
4354 }
673a394b 4355
bed1ea95
CW
4356 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4357 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4358 /* 965gm cannot relocate objects above 4GiB. */
4359 mask &= ~__GFP_HIGHMEM;
4360 mask |= __GFP_DMA32;
4361 }
4362
496ad9aa 4363 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4364 mapping_set_gfp_mask(mapping, mask);
5949eac4 4365
37e680a1 4366 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4367
c397b908
DV
4368 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4369 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4370
3d29b842
ED
4371 if (HAS_LLC(dev)) {
4372 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4373 * cache) for about a 10% performance improvement
4374 * compared to uncached. Graphics requests other than
4375 * display scanout are coherent with the CPU in
4376 * accessing this cache. This means in this mode we
4377 * don't need to clflush on the CPU side, and on the
4378 * GPU side we only need to flush internal caches to
4379 * get data visible to the CPU.
4380 *
4381 * However, we maintain the display planes as UC, and so
4382 * need to rebind when first used as such.
4383 */
4384 obj->cache_level = I915_CACHE_LLC;
4385 } else
4386 obj->cache_level = I915_CACHE_NONE;
4387
d861e338
DV
4388 trace_i915_gem_object_create(obj);
4389
05394f39 4390 return obj;
c397b908
DV
4391}
4392
340fbd8c
CW
4393static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4394{
4395 /* If we are the last user of the backing storage (be it shmemfs
4396 * pages or stolen etc), we know that the pages are going to be
4397 * immediately released. In this case, we can then skip copying
4398 * back the contents from the GPU.
4399 */
4400
4401 if (obj->madv != I915_MADV_WILLNEED)
4402 return false;
4403
4404 if (obj->base.filp == NULL)
4405 return true;
4406
4407 /* At first glance, this looks racy, but then again so would be
4408 * userspace racing mmap against close. However, the first external
4409 * reference to the filp can only be obtained through the
4410 * i915_gem_mmap_ioctl() which safeguards us against the user
4411 * acquiring such a reference whilst we are in the middle of
4412 * freeing the object.
4413 */
4414 return atomic_long_read(&obj->base.filp->f_count) == 1;
4415}
4416
1488fc08 4417void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4418{
1488fc08 4419 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4420 struct drm_device *dev = obj->base.dev;
3e31c6c0 4421 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4422 struct i915_vma *vma, *next;
673a394b 4423
f65c9168
PZ
4424 intel_runtime_pm_get(dev_priv);
4425
26e12f89
CW
4426 trace_i915_gem_object_destroy(obj);
4427
07fe0b12 4428 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4429 int ret;
4430
4431 vma->pin_count = 0;
4432 ret = i915_vma_unbind(vma);
07fe0b12
BW
4433 if (WARN_ON(ret == -ERESTARTSYS)) {
4434 bool was_interruptible;
1488fc08 4435
07fe0b12
BW
4436 was_interruptible = dev_priv->mm.interruptible;
4437 dev_priv->mm.interruptible = false;
1488fc08 4438
07fe0b12 4439 WARN_ON(i915_vma_unbind(vma));
1488fc08 4440
07fe0b12
BW
4441 dev_priv->mm.interruptible = was_interruptible;
4442 }
1488fc08
CW
4443 }
4444
00731155
CW
4445 i915_gem_object_detach_phys(obj);
4446
1d64ae71
BW
4447 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4448 * before progressing. */
4449 if (obj->stolen)
4450 i915_gem_object_unpin_pages(obj);
4451
401c29f6
BW
4452 if (WARN_ON(obj->pages_pin_count))
4453 obj->pages_pin_count = 0;
340fbd8c 4454 if (discard_backing_storage(obj))
5537252b 4455 obj->madv = I915_MADV_DONTNEED;
37e680a1 4456 i915_gem_object_put_pages(obj);
d8cb5086 4457 i915_gem_object_free_mmap_offset(obj);
de151cf6 4458
9da3da66
CW
4459 BUG_ON(obj->pages);
4460
2f745ad3
CW
4461 if (obj->base.import_attach)
4462 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4463
5cc9ed4b
CW
4464 if (obj->ops->release)
4465 obj->ops->release(obj);
4466
05394f39
CW
4467 drm_gem_object_release(&obj->base);
4468 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4469
05394f39 4470 kfree(obj->bit_17);
42dcedd4 4471 i915_gem_object_free(obj);
f65c9168
PZ
4472
4473 intel_runtime_pm_put(dev_priv);
673a394b
EA
4474}
4475
e656a6cb 4476struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4477 struct i915_address_space *vm)
e656a6cb
DV
4478{
4479 struct i915_vma *vma;
4480 list_for_each_entry(vma, &obj->vma_list, vma_link)
4481 if (vma->vm == vm)
4482 return vma;
4483
4484 return NULL;
4485}
4486
2f633156
BW
4487void i915_gem_vma_destroy(struct i915_vma *vma)
4488{
4489 WARN_ON(vma->node.allocated);
aaa05667
CW
4490
4491 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4492 if (!list_empty(&vma->exec_list))
4493 return;
4494
8b9c2b94 4495 list_del(&vma->vma_link);
b93dab6e 4496
2f633156
BW
4497 kfree(vma);
4498}
4499
e3efda49
CW
4500static void
4501i915_gem_stop_ringbuffers(struct drm_device *dev)
4502{
4503 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4504 struct intel_engine_cs *ring;
e3efda49
CW
4505 int i;
4506
4507 for_each_ring(ring, dev_priv, i)
4508 intel_stop_ring_buffer(ring);
4509}
4510
29105ccc 4511int
45c5f202 4512i915_gem_suspend(struct drm_device *dev)
29105ccc 4513{
3e31c6c0 4514 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4515 int ret = 0;
28dfe52a 4516
45c5f202 4517 mutex_lock(&dev->struct_mutex);
f7403347 4518 if (dev_priv->ums.mm_suspended)
45c5f202 4519 goto err;
28dfe52a 4520
b2da9fe5 4521 ret = i915_gpu_idle(dev);
f7403347 4522 if (ret)
45c5f202 4523 goto err;
f7403347 4524
b2da9fe5 4525 i915_gem_retire_requests(dev);
673a394b 4526
29105ccc 4527 /* Under UMS, be paranoid and evict. */
a39d7efc 4528 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4529 i915_gem_evict_everything(dev);
29105ccc 4530
29105ccc 4531 i915_kernel_lost_context(dev);
e3efda49 4532 i915_gem_stop_ringbuffers(dev);
29105ccc 4533
45c5f202
CW
4534 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4535 * We need to replace this with a semaphore, or something.
4536 * And not confound ums.mm_suspended!
4537 */
4538 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4539 DRIVER_MODESET);
4540 mutex_unlock(&dev->struct_mutex);
4541
4542 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4543 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4544 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4545
673a394b 4546 return 0;
45c5f202
CW
4547
4548err:
4549 mutex_unlock(&dev->struct_mutex);
4550 return ret;
673a394b
EA
4551}
4552
a4872ba6 4553int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4554{
c3787e2e 4555 struct drm_device *dev = ring->dev;
3e31c6c0 4556 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4557 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4558 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4559 int i, ret;
b9524a1e 4560
040d2baa 4561 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4562 return 0;
b9524a1e 4563
c3787e2e
BW
4564 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4565 if (ret)
4566 return ret;
b9524a1e 4567
c3787e2e
BW
4568 /*
4569 * Note: We do not worry about the concurrent register cacheline hang
4570 * here because no other code should access these registers other than
4571 * at initialization time.
4572 */
b9524a1e 4573 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4574 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4575 intel_ring_emit(ring, reg_base + i);
4576 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4577 }
4578
c3787e2e 4579 intel_ring_advance(ring);
b9524a1e 4580
c3787e2e 4581 return ret;
b9524a1e
BW
4582}
4583
f691e2f4
DV
4584void i915_gem_init_swizzling(struct drm_device *dev)
4585{
3e31c6c0 4586 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4587
11782b02 4588 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4589 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4590 return;
4591
4592 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4593 DISP_TILE_SURFACE_SWIZZLING);
4594
11782b02
DV
4595 if (IS_GEN5(dev))
4596 return;
4597
f691e2f4
DV
4598 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4599 if (IS_GEN6(dev))
6b26c86d 4600 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4601 else if (IS_GEN7(dev))
6b26c86d 4602 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4603 else if (IS_GEN8(dev))
4604 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4605 else
4606 BUG();
f691e2f4 4607}
e21af88d 4608
67b1b571
CW
4609static bool
4610intel_enable_blt(struct drm_device *dev)
4611{
4612 if (!HAS_BLT(dev))
4613 return false;
4614
4615 /* The blitter was dysfunctional on early prototypes */
4616 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4617 DRM_INFO("BLT not supported on this pre-production hardware;"
4618 " graphics performance will be degraded.\n");
4619 return false;
4620 }
4621
4622 return true;
4623}
4624
4fc7c971 4625static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4626{
4fc7c971 4627 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4628 int ret;
68f95ba9 4629
5c1143bb 4630 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4631 if (ret)
b6913e4b 4632 return ret;
68f95ba9
CW
4633
4634 if (HAS_BSD(dev)) {
5c1143bb 4635 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4636 if (ret)
4637 goto cleanup_render_ring;
d1b851fc 4638 }
68f95ba9 4639
67b1b571 4640 if (intel_enable_blt(dev)) {
549f7365
CW
4641 ret = intel_init_blt_ring_buffer(dev);
4642 if (ret)
4643 goto cleanup_bsd_ring;
4644 }
4645
9a8a2213
BW
4646 if (HAS_VEBOX(dev)) {
4647 ret = intel_init_vebox_ring_buffer(dev);
4648 if (ret)
4649 goto cleanup_blt_ring;
4650 }
4651
845f74a7
ZY
4652 if (HAS_BSD2(dev)) {
4653 ret = intel_init_bsd2_ring_buffer(dev);
4654 if (ret)
4655 goto cleanup_vebox_ring;
4656 }
9a8a2213 4657
99433931 4658 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4659 if (ret)
845f74a7 4660 goto cleanup_bsd2_ring;
4fc7c971
BW
4661
4662 return 0;
4663
845f74a7
ZY
4664cleanup_bsd2_ring:
4665 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4666cleanup_vebox_ring:
4667 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4668cleanup_blt_ring:
4669 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4670cleanup_bsd_ring:
4671 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4672cleanup_render_ring:
4673 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4674
4675 return ret;
4676}
4677
4678int
4679i915_gem_init_hw(struct drm_device *dev)
4680{
3e31c6c0 4681 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4682 int ret, i;
4fc7c971
BW
4683
4684 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4685 return -EIO;
4686
59124506 4687 if (dev_priv->ellc_size)
05e21cc4 4688 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4689
0bf21347
VS
4690 if (IS_HASWELL(dev))
4691 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4692 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4693
88a2b2a3 4694 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4695 if (IS_IVYBRIDGE(dev)) {
4696 u32 temp = I915_READ(GEN7_MSG_CTL);
4697 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4698 I915_WRITE(GEN7_MSG_CTL, temp);
4699 } else if (INTEL_INFO(dev)->gen >= 7) {
4700 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4701 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4702 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4703 }
88a2b2a3
BW
4704 }
4705
4fc7c971
BW
4706 i915_gem_init_swizzling(dev);
4707
4708 ret = i915_gem_init_rings(dev);
99433931
MK
4709 if (ret)
4710 return ret;
4711
c3787e2e
BW
4712 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4713 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4714
254f965c 4715 /*
2fa48d8d
BW
4716 * XXX: Contexts should only be initialized once. Doing a switch to the
4717 * default context switch however is something we'd like to do after
4718 * reset or thaw (the latter may not actually be necessary for HW, but
4719 * goes with our code better). Context switching requires rings (for
4720 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4721 */
2fa48d8d 4722 ret = i915_gem_context_enable(dev_priv);
60990320 4723 if (ret && ret != -EIO) {
2fa48d8d 4724 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4725 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4726 }
e21af88d 4727
2fa48d8d 4728 return ret;
8187a2b7
ZN
4729}
4730
1070a42b
CW
4731int i915_gem_init(struct drm_device *dev)
4732{
4733 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4734 int ret;
4735
1070a42b 4736 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4737
4738 if (IS_VALLEYVIEW(dev)) {
4739 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4740 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4741 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4742 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4743 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4744 }
4745
5cc9ed4b 4746 i915_gem_init_userptr(dev);
d7e5008f 4747 i915_gem_init_global_gtt(dev);
d62b4892 4748
2fa48d8d 4749 ret = i915_gem_context_init(dev);
e3848694
MK
4750 if (ret) {
4751 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4752 return ret;
e3848694 4753 }
2fa48d8d 4754
1070a42b 4755 ret = i915_gem_init_hw(dev);
60990320
CW
4756 if (ret == -EIO) {
4757 /* Allow ring initialisation to fail by marking the GPU as
4758 * wedged. But we only want to do this where the GPU is angry,
4759 * for all other failure, such as an allocation failure, bail.
4760 */
4761 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4762 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4763 ret = 0;
1070a42b 4764 }
60990320 4765 mutex_unlock(&dev->struct_mutex);
1070a42b 4766
53ca26ca
DV
4767 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4768 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4769 dev_priv->dri1.allow_batchbuffer = 1;
60990320 4770 return ret;
1070a42b
CW
4771}
4772
8187a2b7
ZN
4773void
4774i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4775{
3e31c6c0 4776 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4777 struct intel_engine_cs *ring;
1ec14ad3 4778 int i;
8187a2b7 4779
b4519513
CW
4780 for_each_ring(ring, dev_priv, i)
4781 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4782}
4783
673a394b
EA
4784int
4785i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4786 struct drm_file *file_priv)
4787{
db1b76ca 4788 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4789 int ret;
673a394b 4790
79e53945
JB
4791 if (drm_core_check_feature(dev, DRIVER_MODESET))
4792 return 0;
4793
1f83fee0 4794 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4795 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4796 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4797 }
4798
673a394b 4799 mutex_lock(&dev->struct_mutex);
db1b76ca 4800 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4801
f691e2f4 4802 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4803 if (ret != 0) {
4804 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4805 return ret;
d816f6ac 4806 }
9bb2d6f9 4807
5cef07e1 4808 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
dbb19d30 4809
bb0f1b5c 4810 ret = drm_irq_install(dev, dev->pdev->irq);
5f35308b
CW
4811 if (ret)
4812 goto cleanup_ringbuffer;
e090c53b 4813 mutex_unlock(&dev->struct_mutex);
dbb19d30 4814
673a394b 4815 return 0;
5f35308b
CW
4816
4817cleanup_ringbuffer:
5f35308b 4818 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4819 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4820 mutex_unlock(&dev->struct_mutex);
4821
4822 return ret;
673a394b
EA
4823}
4824
4825int
4826i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4827 struct drm_file *file_priv)
4828{
79e53945
JB
4829 if (drm_core_check_feature(dev, DRIVER_MODESET))
4830 return 0;
4831
e090c53b 4832 mutex_lock(&dev->struct_mutex);
dbb19d30 4833 drm_irq_uninstall(dev);
e090c53b 4834 mutex_unlock(&dev->struct_mutex);
db1b76ca 4835
45c5f202 4836 return i915_gem_suspend(dev);
673a394b
EA
4837}
4838
4839void
4840i915_gem_lastclose(struct drm_device *dev)
4841{
4842 int ret;
673a394b 4843
e806b495
EA
4844 if (drm_core_check_feature(dev, DRIVER_MODESET))
4845 return;
4846
45c5f202 4847 ret = i915_gem_suspend(dev);
6dbe2772
KP
4848 if (ret)
4849 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4850}
4851
64193406 4852static void
a4872ba6 4853init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4854{
4855 INIT_LIST_HEAD(&ring->active_list);
4856 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4857}
4858
7e0d96bc
BW
4859void i915_init_vm(struct drm_i915_private *dev_priv,
4860 struct i915_address_space *vm)
fc8c067e 4861{
7e0d96bc
BW
4862 if (!i915_is_ggtt(vm))
4863 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4864 vm->dev = dev_priv->dev;
4865 INIT_LIST_HEAD(&vm->active_list);
4866 INIT_LIST_HEAD(&vm->inactive_list);
4867 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4868 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4869}
4870
673a394b
EA
4871void
4872i915_gem_load(struct drm_device *dev)
4873{
3e31c6c0 4874 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4875 int i;
4876
4877 dev_priv->slab =
4878 kmem_cache_create("i915_gem_object",
4879 sizeof(struct drm_i915_gem_object), 0,
4880 SLAB_HWCACHE_ALIGN,
4881 NULL);
673a394b 4882
fc8c067e
BW
4883 INIT_LIST_HEAD(&dev_priv->vm_list);
4884 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4885
a33afea5 4886 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4887 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4888 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4889 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4890 for (i = 0; i < I915_NUM_RINGS; i++)
4891 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4892 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4893 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4894 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4895 i915_gem_retire_work_handler);
b29c19b6
CW
4896 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4897 i915_gem_idle_work_handler);
1f83fee0 4898 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4899
94400120 4900 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4901 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4902 I915_WRITE(MI_ARB_STATE,
4903 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4904 }
4905
72bfa19c
CW
4906 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4907
de151cf6 4908 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4909 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4910 dev_priv->fence_reg_start = 3;
de151cf6 4911
42b5aeab
VS
4912 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4913 dev_priv->num_fence_regs = 32;
4914 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4915 dev_priv->num_fence_regs = 16;
4916 else
4917 dev_priv->num_fence_regs = 8;
4918
b5aa8a0f 4919 /* Initialize fence registers to zero */
19b2dbde
CW
4920 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4921 i915_gem_restore_fences(dev);
10ed13e4 4922
673a394b 4923 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4924 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4925
ce453d81
CW
4926 dev_priv->mm.interruptible = true;
4927
ceabbba5
CW
4928 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4929 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4930 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4931 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
4932
4933 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4934 register_oom_notifier(&dev_priv->mm.oom_notifier);
673a394b 4935}
71acb5eb 4936
f787a5f5 4937void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4938{
f787a5f5 4939 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4940
b29c19b6
CW
4941 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4942
b962442e
EA
4943 /* Clean up our request list when the client is going away, so that
4944 * later retire_requests won't dereference our soon-to-be-gone
4945 * file_priv.
4946 */
1c25595f 4947 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4948 while (!list_empty(&file_priv->mm.request_list)) {
4949 struct drm_i915_gem_request *request;
4950
4951 request = list_first_entry(&file_priv->mm.request_list,
4952 struct drm_i915_gem_request,
4953 client_list);
4954 list_del(&request->client_list);
4955 request->file_priv = NULL;
4956 }
1c25595f 4957 spin_unlock(&file_priv->mm.lock);
b962442e 4958}
31169714 4959
b29c19b6
CW
4960static void
4961i915_gem_file_idle_work_handler(struct work_struct *work)
4962{
4963 struct drm_i915_file_private *file_priv =
4964 container_of(work, typeof(*file_priv), mm.idle_work.work);
4965
4966 atomic_set(&file_priv->rps_wait_boost, false);
4967}
4968
4969int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4970{
4971 struct drm_i915_file_private *file_priv;
e422b888 4972 int ret;
b29c19b6
CW
4973
4974 DRM_DEBUG_DRIVER("\n");
4975
4976 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4977 if (!file_priv)
4978 return -ENOMEM;
4979
4980 file->driver_priv = file_priv;
4981 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 4982 file_priv->file = file;
b29c19b6
CW
4983
4984 spin_lock_init(&file_priv->mm.lock);
4985 INIT_LIST_HEAD(&file_priv->mm.request_list);
4986 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4987 i915_gem_file_idle_work_handler);
4988
e422b888
BW
4989 ret = i915_gem_context_open(dev, file);
4990 if (ret)
4991 kfree(file_priv);
b29c19b6 4992
e422b888 4993 return ret;
b29c19b6
CW
4994}
4995
5774506f
CW
4996static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4997{
4998 if (!mutex_is_locked(mutex))
4999 return false;
5000
5001#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5002 return mutex->owner == task;
5003#else
5004 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5005 return false;
5006#endif
5007}
5008
b453c4db
CW
5009static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5010{
5011 if (!mutex_trylock(&dev->struct_mutex)) {
5012 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5013 return false;
5014
5015 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5016 return false;
5017
5018 *unlock = false;
5019 } else
5020 *unlock = true;
5021
5022 return true;
5023}
5024
ceabbba5
CW
5025static int num_vma_bound(struct drm_i915_gem_object *obj)
5026{
5027 struct i915_vma *vma;
5028 int count = 0;
5029
5030 list_for_each_entry(vma, &obj->vma_list, vma_link)
5031 if (drm_mm_node_allocated(&vma->node))
5032 count++;
5033
5034 return count;
5035}
5036
7dc19d5a 5037static unsigned long
ceabbba5 5038i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5039{
17250b71 5040 struct drm_i915_private *dev_priv =
ceabbba5 5041 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5042 struct drm_device *dev = dev_priv->dev;
6c085a72 5043 struct drm_i915_gem_object *obj;
7dc19d5a 5044 unsigned long count;
b453c4db 5045 bool unlock;
17250b71 5046
b453c4db
CW
5047 if (!i915_gem_shrinker_lock(dev, &unlock))
5048 return 0;
31169714 5049
7dc19d5a 5050 count = 0;
35c20a60 5051 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5052 if (obj->pages_pin_count == 0)
7dc19d5a 5053 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5054
5055 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5056 if (!i915_gem_obj_is_pinned(obj) &&
5057 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5058 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5059 }
17250b71 5060
5774506f
CW
5061 if (unlock)
5062 mutex_unlock(&dev->struct_mutex);
d9973b43 5063
7dc19d5a 5064 return count;
31169714 5065}
a70a3148
BW
5066
5067/* All the new VM stuff */
5068unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5069 struct i915_address_space *vm)
5070{
5071 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5072 struct i915_vma *vma;
5073
6f425321
BW
5074 if (!dev_priv->mm.aliasing_ppgtt ||
5075 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5076 vm = &dev_priv->gtt.base;
5077
5078 BUG_ON(list_empty(&o->vma_list));
5079 list_for_each_entry(vma, &o->vma_list, vma_link) {
5080 if (vma->vm == vm)
5081 return vma->node.start;
5082
5083 }
5084 return -1;
5085}
5086
5087bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5088 struct i915_address_space *vm)
5089{
5090 struct i915_vma *vma;
5091
5092 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5093 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5094 return true;
5095
5096 return false;
5097}
5098
5099bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5100{
5a1d5eb0 5101 struct i915_vma *vma;
a70a3148 5102
5a1d5eb0
CW
5103 list_for_each_entry(vma, &o->vma_list, vma_link)
5104 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5105 return true;
5106
5107 return false;
5108}
5109
5110unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5111 struct i915_address_space *vm)
5112{
5113 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5114 struct i915_vma *vma;
5115
6f425321
BW
5116 if (!dev_priv->mm.aliasing_ppgtt ||
5117 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5118 vm = &dev_priv->gtt.base;
5119
5120 BUG_ON(list_empty(&o->vma_list));
5121
5122 list_for_each_entry(vma, &o->vma_list, vma_link)
5123 if (vma->vm == vm)
5124 return vma->node.size;
5125
5126 return 0;
5127}
5128
7dc19d5a 5129static unsigned long
ceabbba5 5130i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5131{
5132 struct drm_i915_private *dev_priv =
ceabbba5 5133 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5134 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5135 unsigned long freed;
b453c4db 5136 bool unlock;
7dc19d5a 5137
b453c4db
CW
5138 if (!i915_gem_shrinker_lock(dev, &unlock))
5139 return SHRINK_STOP;
7dc19d5a 5140
d9973b43
CW
5141 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5142 if (freed < sc->nr_to_scan)
5143 freed += __i915_gem_shrink(dev_priv,
5144 sc->nr_to_scan - freed,
5145 false);
7dc19d5a
DC
5146 if (unlock)
5147 mutex_unlock(&dev->struct_mutex);
d9973b43 5148
7dc19d5a
DC
5149 return freed;
5150}
5c2abbea 5151
2cfcd32a
CW
5152static int
5153i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5154{
5155 struct drm_i915_private *dev_priv =
5156 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5157 struct drm_device *dev = dev_priv->dev;
5158 struct drm_i915_gem_object *obj;
5159 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5160 unsigned long pinned, bound, unbound, freed;
5161 bool was_interruptible;
5162 bool unlock;
5163
5164 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout)
5165 schedule_timeout_killable(1);
5166 if (timeout == 0) {
5167 pr_err("Unable to purge GPU memory due lock contention.\n");
5168 return NOTIFY_DONE;
5169 }
5170
5171 was_interruptible = dev_priv->mm.interruptible;
5172 dev_priv->mm.interruptible = false;
5173
5174 freed = i915_gem_shrink_all(dev_priv);
5175
5176 dev_priv->mm.interruptible = was_interruptible;
5177
5178 /* Because we may be allocating inside our own driver, we cannot
5179 * assert that there are no objects with pinned pages that are not
5180 * being pointed to by hardware.
5181 */
5182 unbound = bound = pinned = 0;
5183 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5184 if (!obj->base.filp) /* not backed by a freeable object */
5185 continue;
5186
5187 if (obj->pages_pin_count)
5188 pinned += obj->base.size;
5189 else
5190 unbound += obj->base.size;
5191 }
5192 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5193 if (!obj->base.filp)
5194 continue;
5195
5196 if (obj->pages_pin_count)
5197 pinned += obj->base.size;
5198 else
5199 bound += obj->base.size;
5200 }
5201
5202 if (unlock)
5203 mutex_unlock(&dev->struct_mutex);
5204
5205 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5206 freed, pinned);
5207 if (unbound || bound)
5208 pr_err("%lu and %lu bytes still available in the "
5209 "bound and unbound GPU page lists.\n",
5210 bound, unbound);
5211
5212 *(unsigned long *)ptr += freed;
5213 return NOTIFY_DONE;
5214}
5215
5c2abbea
BW
5216struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5217{
5218 struct i915_vma *vma;
5219
19656430
OM
5220 /* This WARN has probably outlived its usefulness (callers already
5221 * WARN if they don't find the GGTT vma they expect). When removing,
5222 * remember to remove the pre-check in is_pin_display() as well */
5c2abbea
BW
5223 if (WARN_ON(list_empty(&obj->vma_list)))
5224 return NULL;
5225
5226 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5227 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5228 return NULL;
5229
5230 return vma;
5231}