]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Refactor testing obj->mm.pages
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
57822dc6 32#include "i915_gem_clflush.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
5d723d7a 36#include "intel_frontbuffer.h"
0ccdacf6 37#include "intel_mocs.h"
465c403c 38#include "i915_gemfs.h"
6b5e90f5 39#include <linux/dma-fence-array.h>
fe3288b5 40#include <linux/kthread.h>
c13d87ea 41#include <linux/reservation.h>
5949eac4 42#include <linux/shmem_fs.h>
5a0e3ad6 43#include <linux/slab.h>
20e4933c 44#include <linux/stop_machine.h>
673a394b 45#include <linux/swap.h>
79e53945 46#include <linux/pci.h>
1286ff73 47#include <linux/dma-buf.h>
673a394b 48
fbbd37b3 49static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
61050808 50
2c22569b
CW
51static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
52{
e27ab73d 53 if (obj->cache_dirty)
b50a5371
AS
54 return false;
55
b8f55be6 56 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
2c22569b
CW
57 return true;
58
59 return obj->pin_display;
60}
61
4f1959ee 62static int
bb6dc8d9 63insert_mappable_node(struct i915_ggtt *ggtt,
4f1959ee
AS
64 struct drm_mm_node *node, u32 size)
65{
66 memset(node, 0, sizeof(*node));
4e64e553
CW
67 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
68 size, 0, I915_COLOR_UNEVICTABLE,
69 0, ggtt->mappable_end,
70 DRM_MM_INSERT_LOW);
4f1959ee
AS
71}
72
73static void
74remove_mappable_node(struct drm_mm_node *node)
75{
76 drm_mm_remove_node(node);
77}
78
73aa808f
CW
79/* some bookkeeping */
80static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
3ef7f228 81 u64 size)
73aa808f 82{
c20e8355 83 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
84 dev_priv->mm.object_count++;
85 dev_priv->mm.object_memory += size;
c20e8355 86 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
87}
88
89static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
3ef7f228 90 u64 size)
73aa808f 91{
c20e8355 92 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
93 dev_priv->mm.object_count--;
94 dev_priv->mm.object_memory -= size;
c20e8355 95 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96}
97
21dd3734 98static int
33196ded 99i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 100{
30dbf0c0
CW
101 int ret;
102
4c7d62c6
CW
103 might_sleep();
104
0a6759c6
DV
105 /*
106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 * userspace. If it takes that long something really bad is going on and
108 * we should simply try to bail out and fail as gracefully as possible.
109 */
1f83fee0 110 ret = wait_event_interruptible_timeout(error->reset_queue,
8c185eca 111 !i915_reset_backoff(error),
b52992c0 112 I915_RESET_TIMEOUT);
0a6759c6
DV
113 if (ret == 0) {
114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115 return -EIO;
116 } else if (ret < 0) {
30dbf0c0 117 return ret;
d98c52cf
CW
118 } else {
119 return 0;
0a6759c6 120 }
30dbf0c0
CW
121}
122
54cf91dc 123int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 124{
fac5e23e 125 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
126 int ret;
127
33196ded 128 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
129 if (ret)
130 return ret;
131
132 ret = mutex_lock_interruptible(&dev->struct_mutex);
133 if (ret)
134 return ret;
135
76c1dec1
CW
136 return 0;
137}
30dbf0c0 138
5a125c3c
EA
139int
140i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 141 struct drm_file *file)
5a125c3c 142{
72e96d64 143 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 144 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 145 struct drm_i915_gem_get_aperture *args = data;
ca1543be 146 struct i915_vma *vma;
ff8f7975 147 u64 pinned;
5a125c3c 148
ff8f7975 149 pinned = ggtt->base.reserved;
73aa808f 150 mutex_lock(&dev->struct_mutex);
1c7f4bca 151 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 152 if (i915_vma_is_pinned(vma))
ca1543be 153 pinned += vma->node.size;
1c7f4bca 154 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 155 if (i915_vma_is_pinned(vma))
ca1543be 156 pinned += vma->node.size;
73aa808f 157 mutex_unlock(&dev->struct_mutex);
5a125c3c 158
72e96d64 159 args->aper_size = ggtt->base.total;
0206e353 160 args->aper_available_size = args->aper_size - pinned;
6299f992 161
5a125c3c
EA
162 return 0;
163}
164
b91b09ee 165static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 166{
93c76a3d 167 struct address_space *mapping = obj->base.filp->f_mapping;
dbb4351b 168 drm_dma_handle_t *phys;
6a2c4232
CW
169 struct sg_table *st;
170 struct scatterlist *sg;
dbb4351b 171 char *vaddr;
6a2c4232 172 int i;
b91b09ee 173 int err;
00731155 174
6a2c4232 175 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
b91b09ee 176 return -EINVAL;
6a2c4232 177
dbb4351b
CW
178 /* Always aligning to the object size, allows a single allocation
179 * to handle all possible callers, and given typical object sizes,
180 * the alignment of the buddy allocation will naturally match.
181 */
182 phys = drm_pci_alloc(obj->base.dev,
750fae23 183 roundup_pow_of_two(obj->base.size),
dbb4351b
CW
184 roundup_pow_of_two(obj->base.size));
185 if (!phys)
b91b09ee 186 return -ENOMEM;
dbb4351b
CW
187
188 vaddr = phys->vaddr;
6a2c4232
CW
189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190 struct page *page;
191 char *src;
192
193 page = shmem_read_mapping_page(mapping, i);
dbb4351b 194 if (IS_ERR(page)) {
b91b09ee 195 err = PTR_ERR(page);
dbb4351b
CW
196 goto err_phys;
197 }
6a2c4232
CW
198
199 src = kmap_atomic(page);
200 memcpy(vaddr, src, PAGE_SIZE);
201 drm_clflush_virt_range(vaddr, PAGE_SIZE);
202 kunmap_atomic(src);
203
09cbfeaf 204 put_page(page);
6a2c4232
CW
205 vaddr += PAGE_SIZE;
206 }
207
c033666a 208 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
209
210 st = kmalloc(sizeof(*st), GFP_KERNEL);
dbb4351b 211 if (!st) {
b91b09ee 212 err = -ENOMEM;
dbb4351b
CW
213 goto err_phys;
214 }
6a2c4232
CW
215
216 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
217 kfree(st);
b91b09ee 218 err = -ENOMEM;
dbb4351b 219 goto err_phys;
6a2c4232
CW
220 }
221
222 sg = st->sgl;
223 sg->offset = 0;
224 sg->length = obj->base.size;
00731155 225
dbb4351b 226 sg_dma_address(sg) = phys->busaddr;
6a2c4232
CW
227 sg_dma_len(sg) = obj->base.size;
228
dbb4351b 229 obj->phys_handle = phys;
b91b09ee 230
a5c08166 231 __i915_gem_object_set_pages(obj, st, sg->length);
b91b09ee
MA
232
233 return 0;
dbb4351b
CW
234
235err_phys:
236 drm_pci_free(obj->base.dev, phys);
b91b09ee
MA
237
238 return err;
6a2c4232
CW
239}
240
e27ab73d
CW
241static void __start_cpu_write(struct drm_i915_gem_object *obj)
242{
243 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
244 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
245 if (cpu_write_needs_clflush(obj))
246 obj->cache_dirty = true;
247}
248
6a2c4232 249static void
2b3c8317 250__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
e5facdf9
CW
251 struct sg_table *pages,
252 bool needs_clflush)
6a2c4232 253{
a4f5ea64 254 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
00731155 255
a4f5ea64
CW
256 if (obj->mm.madv == I915_MADV_DONTNEED)
257 obj->mm.dirty = false;
6a2c4232 258
e5facdf9
CW
259 if (needs_clflush &&
260 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
b8f55be6 261 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
2b3c8317 262 drm_clflush_sg(pages);
03ac84f1 263
e27ab73d 264 __start_cpu_write(obj);
03ac84f1
CW
265}
266
267static void
268i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
269 struct sg_table *pages)
270{
e5facdf9 271 __i915_gem_object_release_shmem(obj, pages, false);
03ac84f1 272
a4f5ea64 273 if (obj->mm.dirty) {
93c76a3d 274 struct address_space *mapping = obj->base.filp->f_mapping;
6a2c4232 275 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
276 int i;
277
278 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
279 struct page *page;
280 char *dst;
281
282 page = shmem_read_mapping_page(mapping, i);
283 if (IS_ERR(page))
284 continue;
285
286 dst = kmap_atomic(page);
287 drm_clflush_virt_range(vaddr, PAGE_SIZE);
288 memcpy(dst, vaddr, PAGE_SIZE);
289 kunmap_atomic(dst);
290
291 set_page_dirty(page);
a4f5ea64 292 if (obj->mm.madv == I915_MADV_WILLNEED)
00731155 293 mark_page_accessed(page);
09cbfeaf 294 put_page(page);
00731155
CW
295 vaddr += PAGE_SIZE;
296 }
a4f5ea64 297 obj->mm.dirty = false;
00731155
CW
298 }
299
03ac84f1
CW
300 sg_free_table(pages);
301 kfree(pages);
dbb4351b
CW
302
303 drm_pci_free(obj->base.dev, obj->phys_handle);
6a2c4232
CW
304}
305
306static void
307i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
308{
a4f5ea64 309 i915_gem_object_unpin_pages(obj);
6a2c4232
CW
310}
311
312static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
313 .get_pages = i915_gem_object_get_pages_phys,
314 .put_pages = i915_gem_object_put_pages_phys,
315 .release = i915_gem_object_release_phys,
316};
317
581ab1fe
CW
318static const struct drm_i915_gem_object_ops i915_gem_object_ops;
319
35a9611c 320int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
aa653a68
CW
321{
322 struct i915_vma *vma;
323 LIST_HEAD(still_in_list);
02bef8f9
CW
324 int ret;
325
326 lockdep_assert_held(&obj->base.dev->struct_mutex);
aa653a68 327
02bef8f9
CW
328 /* Closed vma are removed from the obj->vma_list - but they may
329 * still have an active binding on the object. To remove those we
330 * must wait for all rendering to complete to the object (as unbinding
331 * must anyway), and retire the requests.
aa653a68 332 */
e95433c7
CW
333 ret = i915_gem_object_wait(obj,
334 I915_WAIT_INTERRUPTIBLE |
335 I915_WAIT_LOCKED |
336 I915_WAIT_ALL,
337 MAX_SCHEDULE_TIMEOUT,
338 NULL);
02bef8f9
CW
339 if (ret)
340 return ret;
341
342 i915_gem_retire_requests(to_i915(obj->base.dev));
343
aa653a68
CW
344 while ((vma = list_first_entry_or_null(&obj->vma_list,
345 struct i915_vma,
346 obj_link))) {
347 list_move_tail(&vma->obj_link, &still_in_list);
348 ret = i915_vma_unbind(vma);
349 if (ret)
350 break;
351 }
352 list_splice(&still_in_list, &obj->vma_list);
353
354 return ret;
355}
356
e95433c7
CW
357static long
358i915_gem_object_wait_fence(struct dma_fence *fence,
359 unsigned int flags,
360 long timeout,
562d9bae 361 struct intel_rps_client *rps_client)
00e60f26 362{
e95433c7 363 struct drm_i915_gem_request *rq;
00e60f26 364
e95433c7 365 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
00e60f26 366
e95433c7
CW
367 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
368 return timeout;
369
370 if (!dma_fence_is_i915(fence))
371 return dma_fence_wait_timeout(fence,
372 flags & I915_WAIT_INTERRUPTIBLE,
373 timeout);
374
375 rq = to_request(fence);
376 if (i915_gem_request_completed(rq))
377 goto out;
378
379 /* This client is about to stall waiting for the GPU. In many cases
380 * this is undesirable and limits the throughput of the system, as
381 * many clients cannot continue processing user input/output whilst
382 * blocked. RPS autotuning may take tens of milliseconds to respond
383 * to the GPU load and thus incurs additional latency for the client.
384 * We can circumvent that by promoting the GPU frequency to maximum
385 * before we wait. This makes the GPU throttle up much more quickly
386 * (good for benchmarks and user experience, e.g. window animations),
387 * but at a cost of spending more power processing the workload
388 * (bad for battery). Not all clients even want their results
389 * immediately and for them we should just let the GPU select its own
390 * frequency to maximise efficiency. To prevent a single client from
391 * forcing the clocks too high for the whole system, we only allow
392 * each client to waitboost once in a busy period.
393 */
562d9bae 394 if (rps_client) {
e95433c7 395 if (INTEL_GEN(rq->i915) >= 6)
562d9bae 396 gen6_rps_boost(rq, rps_client);
e95433c7 397 else
562d9bae 398 rps_client = NULL;
00e60f26
CW
399 }
400
e95433c7
CW
401 timeout = i915_wait_request(rq, flags, timeout);
402
403out:
404 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
405 i915_gem_request_retire_upto(rq);
406
e95433c7
CW
407 return timeout;
408}
409
410static long
411i915_gem_object_wait_reservation(struct reservation_object *resv,
412 unsigned int flags,
413 long timeout,
562d9bae 414 struct intel_rps_client *rps_client)
e95433c7 415{
e54ca977 416 unsigned int seq = __read_seqcount_begin(&resv->seq);
e95433c7 417 struct dma_fence *excl;
e54ca977 418 bool prune_fences = false;
e95433c7
CW
419
420 if (flags & I915_WAIT_ALL) {
421 struct dma_fence **shared;
422 unsigned int count, i;
00e60f26
CW
423 int ret;
424
e95433c7
CW
425 ret = reservation_object_get_fences_rcu(resv,
426 &excl, &count, &shared);
00e60f26
CW
427 if (ret)
428 return ret;
00e60f26 429
e95433c7
CW
430 for (i = 0; i < count; i++) {
431 timeout = i915_gem_object_wait_fence(shared[i],
432 flags, timeout,
562d9bae 433 rps_client);
d892e939 434 if (timeout < 0)
e95433c7 435 break;
00e60f26 436
e95433c7
CW
437 dma_fence_put(shared[i]);
438 }
439
440 for (; i < count; i++)
441 dma_fence_put(shared[i]);
442 kfree(shared);
e54ca977
CW
443
444 prune_fences = count && timeout >= 0;
e95433c7
CW
445 } else {
446 excl = reservation_object_get_excl_rcu(resv);
00e60f26
CW
447 }
448
e54ca977 449 if (excl && timeout >= 0) {
562d9bae
SAK
450 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
451 rps_client);
e54ca977
CW
452 prune_fences = timeout >= 0;
453 }
e95433c7
CW
454
455 dma_fence_put(excl);
456
03d1cac6
CW
457 /* Oportunistically prune the fences iff we know they have *all* been
458 * signaled and that the reservation object has not been changed (i.e.
459 * no new fences have been added).
460 */
e54ca977 461 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
03d1cac6
CW
462 if (reservation_object_trylock(resv)) {
463 if (!__read_seqcount_retry(&resv->seq, seq))
464 reservation_object_add_excl_fence(resv, NULL);
465 reservation_object_unlock(resv);
466 }
e54ca977
CW
467 }
468
e95433c7 469 return timeout;
00e60f26
CW
470}
471
6b5e90f5
CW
472static void __fence_set_priority(struct dma_fence *fence, int prio)
473{
474 struct drm_i915_gem_request *rq;
475 struct intel_engine_cs *engine;
476
477 if (!dma_fence_is_i915(fence))
478 return;
479
480 rq = to_request(fence);
481 engine = rq->engine;
482 if (!engine->schedule)
483 return;
484
485 engine->schedule(rq, prio);
486}
487
488static void fence_set_priority(struct dma_fence *fence, int prio)
489{
490 /* Recurse once into a fence-array */
491 if (dma_fence_is_array(fence)) {
492 struct dma_fence_array *array = to_dma_fence_array(fence);
493 int i;
494
495 for (i = 0; i < array->num_fences; i++)
496 __fence_set_priority(array->fences[i], prio);
497 } else {
498 __fence_set_priority(fence, prio);
499 }
500}
501
502int
503i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
504 unsigned int flags,
505 int prio)
506{
507 struct dma_fence *excl;
508
509 if (flags & I915_WAIT_ALL) {
510 struct dma_fence **shared;
511 unsigned int count, i;
512 int ret;
513
514 ret = reservation_object_get_fences_rcu(obj->resv,
515 &excl, &count, &shared);
516 if (ret)
517 return ret;
518
519 for (i = 0; i < count; i++) {
520 fence_set_priority(shared[i], prio);
521 dma_fence_put(shared[i]);
522 }
523
524 kfree(shared);
525 } else {
526 excl = reservation_object_get_excl_rcu(obj->resv);
527 }
528
529 if (excl) {
530 fence_set_priority(excl, prio);
531 dma_fence_put(excl);
532 }
533 return 0;
534}
535
e95433c7
CW
536/**
537 * Waits for rendering to the object to be completed
538 * @obj: i915 gem object
539 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
540 * @timeout: how long to wait
541 * @rps: client (user process) to charge for any waitboosting
00e60f26 542 */
e95433c7
CW
543int
544i915_gem_object_wait(struct drm_i915_gem_object *obj,
545 unsigned int flags,
546 long timeout,
562d9bae 547 struct intel_rps_client *rps_client)
00e60f26 548{
e95433c7
CW
549 might_sleep();
550#if IS_ENABLED(CONFIG_LOCKDEP)
551 GEM_BUG_ON(debug_locks &&
552 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
553 !!(flags & I915_WAIT_LOCKED));
554#endif
555 GEM_BUG_ON(timeout < 0);
00e60f26 556
d07f0e59
CW
557 timeout = i915_gem_object_wait_reservation(obj->resv,
558 flags, timeout,
562d9bae 559 rps_client);
e95433c7 560 return timeout < 0 ? timeout : 0;
00e60f26
CW
561}
562
563static struct intel_rps_client *to_rps_client(struct drm_file *file)
564{
565 struct drm_i915_file_private *fpriv = file->driver_priv;
566
562d9bae 567 return &fpriv->rps_client;
00e60f26
CW
568}
569
00731155
CW
570static int
571i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
572 struct drm_i915_gem_pwrite *args,
03ac84f1 573 struct drm_file *file)
00731155 574{
00731155 575 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 576 char __user *user_data = u64_to_user_ptr(args->data_ptr);
6a2c4232
CW
577
578 /* We manually control the domain here and pretend that it
579 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
580 */
77a0d1ca 581 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
10466d2a
CW
582 if (copy_from_user(vaddr, user_data, args->size))
583 return -EFAULT;
00731155 584
6a2c4232 585 drm_clflush_virt_range(vaddr, args->size);
10466d2a 586 i915_gem_chipset_flush(to_i915(obj->base.dev));
063e4e6b 587
d59b21ec 588 intel_fb_obj_flush(obj, ORIGIN_CPU);
10466d2a 589 return 0;
00731155
CW
590}
591
187685cb 592void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
42dcedd4 593{
efab6d8d 594 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
595}
596
597void i915_gem_object_free(struct drm_i915_gem_object *obj)
598{
fac5e23e 599 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 600 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
601}
602
ff72145b
DA
603static int
604i915_gem_create(struct drm_file *file,
12d79d78 605 struct drm_i915_private *dev_priv,
ff72145b
DA
606 uint64_t size,
607 uint32_t *handle_p)
673a394b 608{
05394f39 609 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
610 int ret;
611 u32 handle;
673a394b 612
ff72145b 613 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
614 if (size == 0)
615 return -EINVAL;
673a394b
EA
616
617 /* Allocate the new object */
12d79d78 618 obj = i915_gem_object_create(dev_priv, size);
fe3db79b
CW
619 if (IS_ERR(obj))
620 return PTR_ERR(obj);
673a394b 621
05394f39 622 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 623 /* drop reference from allocate - handle holds it now */
f0cd5182 624 i915_gem_object_put(obj);
d861e338
DV
625 if (ret)
626 return ret;
202f2fef 627
ff72145b 628 *handle_p = handle;
673a394b
EA
629 return 0;
630}
631
ff72145b
DA
632int
633i915_gem_dumb_create(struct drm_file *file,
634 struct drm_device *dev,
635 struct drm_mode_create_dumb *args)
636{
637 /* have to work out size/pitch and return them */
de45eaf7 638 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b 639 args->size = args->pitch * args->height;
12d79d78 640 return i915_gem_create(file, to_i915(dev),
da6b51d0 641 args->size, &args->handle);
ff72145b
DA
642}
643
e27ab73d
CW
644static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
645{
646 return !(obj->cache_level == I915_CACHE_NONE ||
647 obj->cache_level == I915_CACHE_WT);
648}
649
ff72145b
DA
650/**
651 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
652 * @dev: drm device pointer
653 * @data: ioctl data blob
654 * @file: drm file pointer
ff72145b
DA
655 */
656int
657i915_gem_create_ioctl(struct drm_device *dev, void *data,
658 struct drm_file *file)
659{
12d79d78 660 struct drm_i915_private *dev_priv = to_i915(dev);
ff72145b 661 struct drm_i915_gem_create *args = data;
63ed2cb2 662
12d79d78 663 i915_gem_flush_free_objects(dev_priv);
fbbd37b3 664
12d79d78 665 return i915_gem_create(file, dev_priv,
da6b51d0 666 args->size, &args->handle);
ff72145b
DA
667}
668
ef74921b
CW
669static inline enum fb_op_origin
670fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
671{
672 return (domain == I915_GEM_DOMAIN_GTT ?
673 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
674}
675
676static void
677flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
678{
679 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
680
681 if (!(obj->base.write_domain & flush_domains))
682 return;
683
684 /* No actual flushing is required for the GTT write domain. Writes
685 * to it "immediately" go to main memory as far as we know, so there's
686 * no chipset flush. It also doesn't land in render cache.
687 *
688 * However, we do have to enforce the order so that all writes through
689 * the GTT land before any writes to the device, such as updates to
690 * the GATT itself.
691 *
692 * We also have to wait a bit for the writes to land from the GTT.
693 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
694 * timing. This issue has only been observed when switching quickly
695 * between GTT writes and CPU reads from inside the kernel on recent hw,
696 * and it appears to only affect discrete GTT blocks (i.e. on LLC
697 * system agents we cannot reproduce this behaviour).
698 */
699 wmb();
700
701 switch (obj->base.write_domain) {
702 case I915_GEM_DOMAIN_GTT:
c5ba5b24 703 if (!HAS_LLC(dev_priv)) {
b69a784f
CW
704 intel_runtime_pm_get(dev_priv);
705 spin_lock_irq(&dev_priv->uncore.lock);
c5ba5b24 706 POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base));
b69a784f
CW
707 spin_unlock_irq(&dev_priv->uncore.lock);
708 intel_runtime_pm_put(dev_priv);
ef74921b
CW
709 }
710
711 intel_fb_obj_flush(obj,
712 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
713 break;
714
715 case I915_GEM_DOMAIN_CPU:
716 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
717 break;
e27ab73d
CW
718
719 case I915_GEM_DOMAIN_RENDER:
720 if (gpu_write_needs_clflush(obj))
721 obj->cache_dirty = true;
722 break;
ef74921b
CW
723 }
724
725 obj->base.write_domain = 0;
726}
727
8461d226
DV
728static inline int
729__copy_to_user_swizzled(char __user *cpu_vaddr,
730 const char *gpu_vaddr, int gpu_offset,
731 int length)
732{
733 int ret, cpu_offset = 0;
734
735 while (length > 0) {
736 int cacheline_end = ALIGN(gpu_offset + 1, 64);
737 int this_length = min(cacheline_end - gpu_offset, length);
738 int swizzled_gpu_offset = gpu_offset ^ 64;
739
740 ret = __copy_to_user(cpu_vaddr + cpu_offset,
741 gpu_vaddr + swizzled_gpu_offset,
742 this_length);
743 if (ret)
744 return ret + length;
745
746 cpu_offset += this_length;
747 gpu_offset += this_length;
748 length -= this_length;
749 }
750
751 return 0;
752}
753
8c59967c 754static inline int
4f0c7cfb
BW
755__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
756 const char __user *cpu_vaddr,
8c59967c
DV
757 int length)
758{
759 int ret, cpu_offset = 0;
760
761 while (length > 0) {
762 int cacheline_end = ALIGN(gpu_offset + 1, 64);
763 int this_length = min(cacheline_end - gpu_offset, length);
764 int swizzled_gpu_offset = gpu_offset ^ 64;
765
766 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
767 cpu_vaddr + cpu_offset,
768 this_length);
769 if (ret)
770 return ret + length;
771
772 cpu_offset += this_length;
773 gpu_offset += this_length;
774 length -= this_length;
775 }
776
777 return 0;
778}
779
4c914c0c
BV
780/*
781 * Pins the specified object's pages and synchronizes the object with
782 * GPU accesses. Sets needs_clflush to non-zero if the caller should
783 * flush the object from the CPU cache.
784 */
785int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
43394c7d 786 unsigned int *needs_clflush)
4c914c0c
BV
787{
788 int ret;
789
e95433c7 790 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c914c0c 791
e95433c7 792 *needs_clflush = 0;
43394c7d
CW
793 if (!i915_gem_object_has_struct_page(obj))
794 return -ENODEV;
4c914c0c 795
e95433c7
CW
796 ret = i915_gem_object_wait(obj,
797 I915_WAIT_INTERRUPTIBLE |
798 I915_WAIT_LOCKED,
799 MAX_SCHEDULE_TIMEOUT,
800 NULL);
c13d87ea
CW
801 if (ret)
802 return ret;
803
a4f5ea64 804 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
805 if (ret)
806 return ret;
807
b8f55be6
CW
808 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
809 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
810 ret = i915_gem_object_set_to_cpu_domain(obj, false);
811 if (ret)
812 goto err_unpin;
813 else
814 goto out;
815 }
816
ef74921b 817 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 818
43394c7d
CW
819 /* If we're not in the cpu read domain, set ourself into the gtt
820 * read domain and manually flush cachelines (if required). This
821 * optimizes for the case when the gpu will dirty the data
822 * anyway again before the next pread happens.
823 */
e27ab73d
CW
824 if (!obj->cache_dirty &&
825 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
7f5f95d8 826 *needs_clflush = CLFLUSH_BEFORE;
4c914c0c 827
7f5f95d8 828out:
9764951e 829 /* return with the pages pinned */
43394c7d 830 return 0;
9764951e
CW
831
832err_unpin:
833 i915_gem_object_unpin_pages(obj);
834 return ret;
43394c7d
CW
835}
836
837int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
838 unsigned int *needs_clflush)
839{
840 int ret;
841
e95433c7
CW
842 lockdep_assert_held(&obj->base.dev->struct_mutex);
843
43394c7d
CW
844 *needs_clflush = 0;
845 if (!i915_gem_object_has_struct_page(obj))
846 return -ENODEV;
847
e95433c7
CW
848 ret = i915_gem_object_wait(obj,
849 I915_WAIT_INTERRUPTIBLE |
850 I915_WAIT_LOCKED |
851 I915_WAIT_ALL,
852 MAX_SCHEDULE_TIMEOUT,
853 NULL);
43394c7d
CW
854 if (ret)
855 return ret;
856
a4f5ea64 857 ret = i915_gem_object_pin_pages(obj);
9764951e
CW
858 if (ret)
859 return ret;
860
b8f55be6
CW
861 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
862 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
7f5f95d8
CW
863 ret = i915_gem_object_set_to_cpu_domain(obj, true);
864 if (ret)
865 goto err_unpin;
866 else
867 goto out;
868 }
869
ef74921b 870 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
a314d5cb 871
43394c7d
CW
872 /* If we're not in the cpu write domain, set ourself into the
873 * gtt write domain and manually flush cachelines (as required).
874 * This optimizes for the case when the gpu will use the data
875 * right away and we therefore have to clflush anyway.
876 */
e27ab73d 877 if (!obj->cache_dirty) {
7f5f95d8 878 *needs_clflush |= CLFLUSH_AFTER;
43394c7d 879
e27ab73d
CW
880 /*
881 * Same trick applies to invalidate partially written
882 * cachelines read before writing.
883 */
884 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
885 *needs_clflush |= CLFLUSH_BEFORE;
886 }
43394c7d 887
7f5f95d8 888out:
43394c7d 889 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
a4f5ea64 890 obj->mm.dirty = true;
9764951e 891 /* return with the pages pinned */
43394c7d 892 return 0;
9764951e
CW
893
894err_unpin:
895 i915_gem_object_unpin_pages(obj);
896 return ret;
4c914c0c
BV
897}
898
23c18c71
DV
899static void
900shmem_clflush_swizzled_range(char *addr, unsigned long length,
901 bool swizzled)
902{
e7e58eb5 903 if (unlikely(swizzled)) {
23c18c71
DV
904 unsigned long start = (unsigned long) addr;
905 unsigned long end = (unsigned long) addr + length;
906
907 /* For swizzling simply ensure that we always flush both
908 * channels. Lame, but simple and it works. Swizzled
909 * pwrite/pread is far from a hotpath - current userspace
910 * doesn't use it at all. */
911 start = round_down(start, 128);
912 end = round_up(end, 128);
913
914 drm_clflush_virt_range((void *)start, end - start);
915 } else {
916 drm_clflush_virt_range(addr, length);
917 }
918
919}
920
d174bd64
DV
921/* Only difference to the fast-path function is that this can handle bit17
922 * and uses non-atomic copy and kmap functions. */
923static int
bb6dc8d9 924shmem_pread_slow(struct page *page, int offset, int length,
d174bd64
DV
925 char __user *user_data,
926 bool page_do_bit17_swizzling, bool needs_clflush)
927{
928 char *vaddr;
929 int ret;
930
931 vaddr = kmap(page);
932 if (needs_clflush)
bb6dc8d9 933 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 934 page_do_bit17_swizzling);
d174bd64
DV
935
936 if (page_do_bit17_swizzling)
bb6dc8d9 937 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
d174bd64 938 else
bb6dc8d9 939 ret = __copy_to_user(user_data, vaddr + offset, length);
d174bd64
DV
940 kunmap(page);
941
f60d7f0c 942 return ret ? - EFAULT : 0;
d174bd64
DV
943}
944
bb6dc8d9
CW
945static int
946shmem_pread(struct page *page, int offset, int length, char __user *user_data,
947 bool page_do_bit17_swizzling, bool needs_clflush)
948{
949 int ret;
950
951 ret = -ENODEV;
952 if (!page_do_bit17_swizzling) {
953 char *vaddr = kmap_atomic(page);
954
955 if (needs_clflush)
956 drm_clflush_virt_range(vaddr + offset, length);
957 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
958 kunmap_atomic(vaddr);
959 }
960 if (ret == 0)
961 return 0;
962
963 return shmem_pread_slow(page, offset, length, user_data,
964 page_do_bit17_swizzling, needs_clflush);
965}
966
967static int
968i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
969 struct drm_i915_gem_pread *args)
970{
971 char __user *user_data;
972 u64 remain;
973 unsigned int obj_do_bit17_swizzling;
974 unsigned int needs_clflush;
975 unsigned int idx, offset;
976 int ret;
977
978 obj_do_bit17_swizzling = 0;
979 if (i915_gem_object_needs_bit17_swizzle(obj))
980 obj_do_bit17_swizzling = BIT(17);
981
982 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
983 if (ret)
984 return ret;
985
986 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
987 mutex_unlock(&obj->base.dev->struct_mutex);
988 if (ret)
989 return ret;
990
991 remain = args->size;
992 user_data = u64_to_user_ptr(args->data_ptr);
993 offset = offset_in_page(args->offset);
994 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
995 struct page *page = i915_gem_object_get_page(obj, idx);
996 int length;
997
998 length = remain;
999 if (offset + length > PAGE_SIZE)
1000 length = PAGE_SIZE - offset;
1001
1002 ret = shmem_pread(page, offset, length, user_data,
1003 page_to_phys(page) & obj_do_bit17_swizzling,
1004 needs_clflush);
1005 if (ret)
1006 break;
1007
1008 remain -= length;
1009 user_data += length;
1010 offset = 0;
1011 }
1012
1013 i915_gem_obj_finish_shmem_access(obj);
1014 return ret;
1015}
1016
1017static inline bool
1018gtt_user_read(struct io_mapping *mapping,
1019 loff_t base, int offset,
1020 char __user *user_data, int length)
b50a5371 1021{
afe722be 1022 void __iomem *vaddr;
bb6dc8d9 1023 unsigned long unwritten;
b50a5371 1024
b50a5371 1025 /* We can use the cpu mem copy function because this is X86. */
afe722be
VS
1026 vaddr = io_mapping_map_atomic_wc(mapping, base);
1027 unwritten = __copy_to_user_inatomic(user_data,
1028 (void __force *)vaddr + offset,
1029 length);
bb6dc8d9
CW
1030 io_mapping_unmap_atomic(vaddr);
1031 if (unwritten) {
afe722be
VS
1032 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1033 unwritten = copy_to_user(user_data,
1034 (void __force *)vaddr + offset,
1035 length);
bb6dc8d9
CW
1036 io_mapping_unmap(vaddr);
1037 }
b50a5371
AS
1038 return unwritten;
1039}
1040
1041static int
bb6dc8d9
CW
1042i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1043 const struct drm_i915_gem_pread *args)
b50a5371 1044{
bb6dc8d9
CW
1045 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1046 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 1047 struct drm_mm_node node;
bb6dc8d9
CW
1048 struct i915_vma *vma;
1049 void __user *user_data;
1050 u64 remain, offset;
b50a5371
AS
1051 int ret;
1052
bb6dc8d9
CW
1053 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1054 if (ret)
1055 return ret;
1056
1057 intel_runtime_pm_get(i915);
1058 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
a3259ca9
CW
1059 PIN_MAPPABLE |
1060 PIN_NONFAULT |
1061 PIN_NONBLOCK);
18034584
CW
1062 if (!IS_ERR(vma)) {
1063 node.start = i915_ggtt_offset(vma);
1064 node.allocated = false;
49ef5294 1065 ret = i915_vma_put_fence(vma);
18034584
CW
1066 if (ret) {
1067 i915_vma_unpin(vma);
1068 vma = ERR_PTR(ret);
1069 }
1070 }
058d88c4 1071 if (IS_ERR(vma)) {
bb6dc8d9 1072 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
b50a5371 1073 if (ret)
bb6dc8d9
CW
1074 goto out_unlock;
1075 GEM_BUG_ON(!node.allocated);
b50a5371
AS
1076 }
1077
1078 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1079 if (ret)
1080 goto out_unpin;
1081
bb6dc8d9 1082 mutex_unlock(&i915->drm.struct_mutex);
b50a5371 1083
bb6dc8d9
CW
1084 user_data = u64_to_user_ptr(args->data_ptr);
1085 remain = args->size;
1086 offset = args->offset;
b50a5371
AS
1087
1088 while (remain > 0) {
1089 /* Operation in this page
1090 *
1091 * page_base = page offset within aperture
1092 * page_offset = offset within page
1093 * page_length = bytes to copy for this page
1094 */
1095 u32 page_base = node.start;
1096 unsigned page_offset = offset_in_page(offset);
1097 unsigned page_length = PAGE_SIZE - page_offset;
1098 page_length = remain < page_length ? remain : page_length;
1099 if (node.allocated) {
1100 wmb();
1101 ggtt->base.insert_page(&ggtt->base,
1102 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
bb6dc8d9 1103 node.start, I915_CACHE_NONE, 0);
b50a5371
AS
1104 wmb();
1105 } else {
1106 page_base += offset & PAGE_MASK;
1107 }
bb6dc8d9
CW
1108
1109 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1110 user_data, page_length)) {
b50a5371
AS
1111 ret = -EFAULT;
1112 break;
1113 }
1114
1115 remain -= page_length;
1116 user_data += page_length;
1117 offset += page_length;
1118 }
1119
bb6dc8d9 1120 mutex_lock(&i915->drm.struct_mutex);
b50a5371
AS
1121out_unpin:
1122 if (node.allocated) {
1123 wmb();
1124 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1125 node.start, node.size);
b50a5371
AS
1126 remove_mappable_node(&node);
1127 } else {
058d88c4 1128 i915_vma_unpin(vma);
b50a5371 1129 }
bb6dc8d9
CW
1130out_unlock:
1131 intel_runtime_pm_put(i915);
1132 mutex_unlock(&i915->drm.struct_mutex);
f60d7f0c 1133
eb01459f
EA
1134 return ret;
1135}
1136
673a394b
EA
1137/**
1138 * Reads data from the object referenced by handle.
14bb2c11
TU
1139 * @dev: drm device pointer
1140 * @data: ioctl data blob
1141 * @file: drm file pointer
673a394b
EA
1142 *
1143 * On error, the contents of *data are undefined.
1144 */
1145int
1146i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 1147 struct drm_file *file)
673a394b
EA
1148{
1149 struct drm_i915_gem_pread *args = data;
05394f39 1150 struct drm_i915_gem_object *obj;
bb6dc8d9 1151 int ret;
673a394b 1152
51311d0a
CW
1153 if (args->size == 0)
1154 return 0;
1155
1156 if (!access_ok(VERIFY_WRITE,
3ed605bc 1157 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1158 args->size))
1159 return -EFAULT;
1160
03ac0642 1161 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1162 if (!obj)
1163 return -ENOENT;
673a394b 1164
7dcd2499 1165 /* Bounds check source. */
966d5bf5 1166 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1167 ret = -EINVAL;
bb6dc8d9 1168 goto out;
ce9d419d
CW
1169 }
1170
db53a302
CW
1171 trace_i915_gem_object_pread(obj, args->offset, args->size);
1172
e95433c7
CW
1173 ret = i915_gem_object_wait(obj,
1174 I915_WAIT_INTERRUPTIBLE,
1175 MAX_SCHEDULE_TIMEOUT,
1176 to_rps_client(file));
258a5ede 1177 if (ret)
bb6dc8d9 1178 goto out;
258a5ede 1179
bb6dc8d9 1180 ret = i915_gem_object_pin_pages(obj);
258a5ede 1181 if (ret)
bb6dc8d9 1182 goto out;
673a394b 1183
bb6dc8d9 1184 ret = i915_gem_shmem_pread(obj, args);
9c870d03 1185 if (ret == -EFAULT || ret == -ENODEV)
bb6dc8d9 1186 ret = i915_gem_gtt_pread(obj, args);
b50a5371 1187
bb6dc8d9
CW
1188 i915_gem_object_unpin_pages(obj);
1189out:
f0cd5182 1190 i915_gem_object_put(obj);
eb01459f 1191 return ret;
673a394b
EA
1192}
1193
0839ccb8
KP
1194/* This is the fast write path which cannot handle
1195 * page faults in the source data
9b7530cc 1196 */
0839ccb8 1197
fe115628
CW
1198static inline bool
1199ggtt_write(struct io_mapping *mapping,
1200 loff_t base, int offset,
1201 char __user *user_data, int length)
9b7530cc 1202{
afe722be 1203 void __iomem *vaddr;
0839ccb8 1204 unsigned long unwritten;
9b7530cc 1205
4f0c7cfb 1206 /* We can use the cpu mem copy function because this is X86. */
afe722be
VS
1207 vaddr = io_mapping_map_atomic_wc(mapping, base);
1208 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
0839ccb8 1209 user_data, length);
fe115628
CW
1210 io_mapping_unmap_atomic(vaddr);
1211 if (unwritten) {
afe722be
VS
1212 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1213 unwritten = copy_from_user((void __force *)vaddr + offset,
1214 user_data, length);
fe115628
CW
1215 io_mapping_unmap(vaddr);
1216 }
bb6dc8d9 1217
bb6dc8d9
CW
1218 return unwritten;
1219}
1220
3de09aa3
EA
1221/**
1222 * This is the fast pwrite path, where we copy the data directly from the
1223 * user into the GTT, uncached.
fe115628 1224 * @obj: i915 GEM object
14bb2c11 1225 * @args: pwrite arguments structure
3de09aa3 1226 */
673a394b 1227static int
fe115628
CW
1228i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1229 const struct drm_i915_gem_pwrite *args)
673a394b 1230{
fe115628 1231 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4f1959ee
AS
1232 struct i915_ggtt *ggtt = &i915->ggtt;
1233 struct drm_mm_node node;
fe115628
CW
1234 struct i915_vma *vma;
1235 u64 remain, offset;
1236 void __user *user_data;
4f1959ee 1237 int ret;
b50a5371 1238
fe115628
CW
1239 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1240 if (ret)
1241 return ret;
935aaa69 1242
9c870d03 1243 intel_runtime_pm_get(i915);
058d88c4 1244 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
a3259ca9
CW
1245 PIN_MAPPABLE |
1246 PIN_NONFAULT |
1247 PIN_NONBLOCK);
18034584
CW
1248 if (!IS_ERR(vma)) {
1249 node.start = i915_ggtt_offset(vma);
1250 node.allocated = false;
49ef5294 1251 ret = i915_vma_put_fence(vma);
18034584
CW
1252 if (ret) {
1253 i915_vma_unpin(vma);
1254 vma = ERR_PTR(ret);
1255 }
1256 }
058d88c4 1257 if (IS_ERR(vma)) {
bb6dc8d9 1258 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
4f1959ee 1259 if (ret)
fe115628
CW
1260 goto out_unlock;
1261 GEM_BUG_ON(!node.allocated);
4f1959ee 1262 }
935aaa69
DV
1263
1264 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1265 if (ret)
1266 goto out_unpin;
1267
fe115628
CW
1268 mutex_unlock(&i915->drm.struct_mutex);
1269
b19482d7 1270 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1271
4f1959ee
AS
1272 user_data = u64_to_user_ptr(args->data_ptr);
1273 offset = args->offset;
1274 remain = args->size;
1275 while (remain) {
673a394b
EA
1276 /* Operation in this page
1277 *
0839ccb8
KP
1278 * page_base = page offset within aperture
1279 * page_offset = offset within page
1280 * page_length = bytes to copy for this page
673a394b 1281 */
4f1959ee 1282 u32 page_base = node.start;
bb6dc8d9
CW
1283 unsigned int page_offset = offset_in_page(offset);
1284 unsigned int page_length = PAGE_SIZE - page_offset;
4f1959ee
AS
1285 page_length = remain < page_length ? remain : page_length;
1286 if (node.allocated) {
1287 wmb(); /* flush the write before we modify the GGTT */
1288 ggtt->base.insert_page(&ggtt->base,
1289 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1290 node.start, I915_CACHE_NONE, 0);
1291 wmb(); /* flush modifications to the GGTT (insert_page) */
1292 } else {
1293 page_base += offset & PAGE_MASK;
1294 }
0839ccb8 1295 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1296 * source page isn't available. Return the error and we'll
1297 * retry in the slow path.
b50a5371
AS
1298 * If the object is non-shmem backed, we retry again with the
1299 * path that handles page fault.
0839ccb8 1300 */
fe115628
CW
1301 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1302 user_data, page_length)) {
1303 ret = -EFAULT;
1304 break;
935aaa69 1305 }
673a394b 1306
0839ccb8
KP
1307 remain -= page_length;
1308 user_data += page_length;
1309 offset += page_length;
673a394b 1310 }
d59b21ec 1311 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628
CW
1312
1313 mutex_lock(&i915->drm.struct_mutex);
935aaa69 1314out_unpin:
4f1959ee
AS
1315 if (node.allocated) {
1316 wmb();
1317 ggtt->base.clear_range(&ggtt->base,
4fb84d99 1318 node.start, node.size);
4f1959ee
AS
1319 remove_mappable_node(&node);
1320 } else {
058d88c4 1321 i915_vma_unpin(vma);
4f1959ee 1322 }
fe115628 1323out_unlock:
9c870d03 1324 intel_runtime_pm_put(i915);
fe115628 1325 mutex_unlock(&i915->drm.struct_mutex);
3de09aa3 1326 return ret;
673a394b
EA
1327}
1328
3043c60c 1329static int
fe115628 1330shmem_pwrite_slow(struct page *page, int offset, int length,
d174bd64
DV
1331 char __user *user_data,
1332 bool page_do_bit17_swizzling,
1333 bool needs_clflush_before,
1334 bool needs_clflush_after)
673a394b 1335{
d174bd64
DV
1336 char *vaddr;
1337 int ret;
e5281ccd 1338
d174bd64 1339 vaddr = kmap(page);
e7e58eb5 1340 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
fe115628 1341 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1342 page_do_bit17_swizzling);
d174bd64 1343 if (page_do_bit17_swizzling)
fe115628
CW
1344 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1345 length);
d174bd64 1346 else
fe115628 1347 ret = __copy_from_user(vaddr + offset, user_data, length);
d174bd64 1348 if (needs_clflush_after)
fe115628 1349 shmem_clflush_swizzled_range(vaddr + offset, length,
23c18c71 1350 page_do_bit17_swizzling);
d174bd64 1351 kunmap(page);
40123c1f 1352
755d2218 1353 return ret ? -EFAULT : 0;
40123c1f
EA
1354}
1355
fe115628
CW
1356/* Per-page copy function for the shmem pwrite fastpath.
1357 * Flushes invalid cachelines before writing to the target if
1358 * needs_clflush_before is set and flushes out any written cachelines after
1359 * writing if needs_clflush is set.
1360 */
40123c1f 1361static int
fe115628
CW
1362shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1363 bool page_do_bit17_swizzling,
1364 bool needs_clflush_before,
1365 bool needs_clflush_after)
40123c1f 1366{
fe115628
CW
1367 int ret;
1368
1369 ret = -ENODEV;
1370 if (!page_do_bit17_swizzling) {
1371 char *vaddr = kmap_atomic(page);
1372
1373 if (needs_clflush_before)
1374 drm_clflush_virt_range(vaddr + offset, len);
1375 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1376 if (needs_clflush_after)
1377 drm_clflush_virt_range(vaddr + offset, len);
1378
1379 kunmap_atomic(vaddr);
1380 }
1381 if (ret == 0)
1382 return ret;
1383
1384 return shmem_pwrite_slow(page, offset, len, user_data,
1385 page_do_bit17_swizzling,
1386 needs_clflush_before,
1387 needs_clflush_after);
1388}
1389
1390static int
1391i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1392 const struct drm_i915_gem_pwrite *args)
1393{
1394 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1395 void __user *user_data;
1396 u64 remain;
1397 unsigned int obj_do_bit17_swizzling;
1398 unsigned int partial_cacheline_write;
43394c7d 1399 unsigned int needs_clflush;
fe115628
CW
1400 unsigned int offset, idx;
1401 int ret;
40123c1f 1402
fe115628 1403 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
755d2218
CW
1404 if (ret)
1405 return ret;
1406
fe115628
CW
1407 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1408 mutex_unlock(&i915->drm.struct_mutex);
1409 if (ret)
1410 return ret;
673a394b 1411
fe115628
CW
1412 obj_do_bit17_swizzling = 0;
1413 if (i915_gem_object_needs_bit17_swizzle(obj))
1414 obj_do_bit17_swizzling = BIT(17);
e5281ccd 1415
fe115628
CW
1416 /* If we don't overwrite a cacheline completely we need to be
1417 * careful to have up-to-date data by first clflushing. Don't
1418 * overcomplicate things and flush the entire patch.
1419 */
1420 partial_cacheline_write = 0;
1421 if (needs_clflush & CLFLUSH_BEFORE)
1422 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
9da3da66 1423
fe115628
CW
1424 user_data = u64_to_user_ptr(args->data_ptr);
1425 remain = args->size;
1426 offset = offset_in_page(args->offset);
1427 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1428 struct page *page = i915_gem_object_get_page(obj, idx);
1429 int length;
40123c1f 1430
fe115628
CW
1431 length = remain;
1432 if (offset + length > PAGE_SIZE)
1433 length = PAGE_SIZE - offset;
755d2218 1434
fe115628
CW
1435 ret = shmem_pwrite(page, offset, length, user_data,
1436 page_to_phys(page) & obj_do_bit17_swizzling,
1437 (offset | length) & partial_cacheline_write,
1438 needs_clflush & CLFLUSH_AFTER);
755d2218 1439 if (ret)
fe115628 1440 break;
755d2218 1441
fe115628
CW
1442 remain -= length;
1443 user_data += length;
1444 offset = 0;
8c59967c 1445 }
673a394b 1446
d59b21ec 1447 intel_fb_obj_flush(obj, ORIGIN_CPU);
fe115628 1448 i915_gem_obj_finish_shmem_access(obj);
40123c1f 1449 return ret;
673a394b
EA
1450}
1451
1452/**
1453 * Writes data to the object referenced by handle.
14bb2c11
TU
1454 * @dev: drm device
1455 * @data: ioctl data blob
1456 * @file: drm file
673a394b
EA
1457 *
1458 * On error, the contents of the buffer that were to be modified are undefined.
1459 */
1460int
1461i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1462 struct drm_file *file)
673a394b
EA
1463{
1464 struct drm_i915_gem_pwrite *args = data;
05394f39 1465 struct drm_i915_gem_object *obj;
51311d0a
CW
1466 int ret;
1467
1468 if (args->size == 0)
1469 return 0;
1470
1471 if (!access_ok(VERIFY_READ,
3ed605bc 1472 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1473 args->size))
1474 return -EFAULT;
1475
03ac0642 1476 obj = i915_gem_object_lookup(file, args->handle);
258a5ede
CW
1477 if (!obj)
1478 return -ENOENT;
673a394b 1479
7dcd2499 1480 /* Bounds check destination. */
966d5bf5 1481 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
ce9d419d 1482 ret = -EINVAL;
258a5ede 1483 goto err;
ce9d419d
CW
1484 }
1485
db53a302
CW
1486 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1487
7c55e2c5
CW
1488 ret = -ENODEV;
1489 if (obj->ops->pwrite)
1490 ret = obj->ops->pwrite(obj, args);
1491 if (ret != -ENODEV)
1492 goto err;
1493
e95433c7
CW
1494 ret = i915_gem_object_wait(obj,
1495 I915_WAIT_INTERRUPTIBLE |
1496 I915_WAIT_ALL,
1497 MAX_SCHEDULE_TIMEOUT,
1498 to_rps_client(file));
258a5ede
CW
1499 if (ret)
1500 goto err;
1501
fe115628 1502 ret = i915_gem_object_pin_pages(obj);
258a5ede 1503 if (ret)
fe115628 1504 goto err;
258a5ede 1505
935aaa69 1506 ret = -EFAULT;
673a394b
EA
1507 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1508 * it would end up going through the fenced access, and we'll get
1509 * different detiling behavior between reading and writing.
1510 * pread/pwrite currently are reading and writing from the CPU
1511 * perspective, requiring manual detiling by the client.
1512 */
6eae0059 1513 if (!i915_gem_object_has_struct_page(obj) ||
9c870d03 1514 cpu_write_needs_clflush(obj))
935aaa69
DV
1515 /* Note that the gtt paths might fail with non-page-backed user
1516 * pointers (e.g. gtt mappings when moving data between
9c870d03
CW
1517 * textures). Fallback to the shmem path in that case.
1518 */
fe115628 1519 ret = i915_gem_gtt_pwrite_fast(obj, args);
673a394b 1520
d1054ee4 1521 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1522 if (obj->phys_handle)
1523 ret = i915_gem_phys_pwrite(obj, args, file);
b50a5371 1524 else
fe115628 1525 ret = i915_gem_shmem_pwrite(obj, args);
6a2c4232 1526 }
5c0480f2 1527
fe115628 1528 i915_gem_object_unpin_pages(obj);
258a5ede 1529err:
f0cd5182 1530 i915_gem_object_put(obj);
258a5ede 1531 return ret;
673a394b
EA
1532}
1533
40e62d5d
CW
1534static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1535{
1536 struct drm_i915_private *i915;
1537 struct list_head *list;
1538 struct i915_vma *vma;
1539
1540 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1541 if (!i915_vma_is_ggtt(vma))
28f412e0 1542 break;
40e62d5d
CW
1543
1544 if (i915_vma_is_active(vma))
1545 continue;
1546
1547 if (!drm_mm_node_allocated(&vma->node))
1548 continue;
1549
1550 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1551 }
1552
1553 i915 = to_i915(obj->base.dev);
1554 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
56cea323 1555 list_move_tail(&obj->global_link, list);
40e62d5d
CW
1556}
1557
673a394b 1558/**
2ef7eeaa
EA
1559 * Called when user space prepares to use an object with the CPU, either
1560 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1561 * @dev: drm device
1562 * @data: ioctl data blob
1563 * @file: drm file
673a394b
EA
1564 */
1565int
1566i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1567 struct drm_file *file)
673a394b
EA
1568{
1569 struct drm_i915_gem_set_domain *args = data;
05394f39 1570 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1571 uint32_t read_domains = args->read_domains;
1572 uint32_t write_domain = args->write_domain;
40e62d5d 1573 int err;
673a394b 1574
2ef7eeaa 1575 /* Only handle setting domains to types used by the CPU. */
b8f9096d 1576 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1577 return -EINVAL;
1578
1579 /* Having something in the write domain implies it's in the read
1580 * domain, and only that read domain. Enforce that in the request.
1581 */
1582 if (write_domain != 0 && read_domains != write_domain)
1583 return -EINVAL;
1584
03ac0642 1585 obj = i915_gem_object_lookup(file, args->handle);
b8f9096d
CW
1586 if (!obj)
1587 return -ENOENT;
673a394b 1588
3236f57a
CW
1589 /* Try to flush the object off the GPU without holding the lock.
1590 * We will repeat the flush holding the lock in the normal manner
1591 * to catch cases where we are gazumped.
1592 */
40e62d5d 1593 err = i915_gem_object_wait(obj,
e95433c7
CW
1594 I915_WAIT_INTERRUPTIBLE |
1595 (write_domain ? I915_WAIT_ALL : 0),
1596 MAX_SCHEDULE_TIMEOUT,
1597 to_rps_client(file));
40e62d5d 1598 if (err)
f0cd5182 1599 goto out;
b8f9096d 1600
40e62d5d
CW
1601 /* Flush and acquire obj->pages so that we are coherent through
1602 * direct access in memory with previous cached writes through
1603 * shmemfs and that our cache domain tracking remains valid.
1604 * For example, if the obj->filp was moved to swap without us
1605 * being notified and releasing the pages, we would mistakenly
1606 * continue to assume that the obj remained out of the CPU cached
1607 * domain.
1608 */
1609 err = i915_gem_object_pin_pages(obj);
1610 if (err)
f0cd5182 1611 goto out;
40e62d5d
CW
1612
1613 err = i915_mutex_lock_interruptible(dev);
1614 if (err)
f0cd5182 1615 goto out_unpin;
3236f57a 1616
e22d8e3c
CW
1617 if (read_domains & I915_GEM_DOMAIN_WC)
1618 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1619 else if (read_domains & I915_GEM_DOMAIN_GTT)
1620 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
43566ded 1621 else
e22d8e3c 1622 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
2ef7eeaa 1623
40e62d5d
CW
1624 /* And bump the LRU for this access */
1625 i915_gem_object_bump_inactive_ggtt(obj);
031b698a 1626
673a394b 1627 mutex_unlock(&dev->struct_mutex);
b8f9096d 1628
40e62d5d 1629 if (write_domain != 0)
ef74921b
CW
1630 intel_fb_obj_invalidate(obj,
1631 fb_write_origin(obj, write_domain));
40e62d5d 1632
f0cd5182 1633out_unpin:
40e62d5d 1634 i915_gem_object_unpin_pages(obj);
f0cd5182
CW
1635out:
1636 i915_gem_object_put(obj);
40e62d5d 1637 return err;
673a394b
EA
1638}
1639
1640/**
1641 * Called when user space has done writes to this buffer
14bb2c11
TU
1642 * @dev: drm device
1643 * @data: ioctl data blob
1644 * @file: drm file
673a394b
EA
1645 */
1646int
1647i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1648 struct drm_file *file)
673a394b
EA
1649{
1650 struct drm_i915_gem_sw_finish *args = data;
05394f39 1651 struct drm_i915_gem_object *obj;
1d7cfea1 1652
03ac0642 1653 obj = i915_gem_object_lookup(file, args->handle);
c21724cc
CW
1654 if (!obj)
1655 return -ENOENT;
673a394b 1656
673a394b 1657 /* Pinned buffers may be scanout, so flush the cache */
5a97bcc6 1658 i915_gem_object_flush_if_display(obj);
f0cd5182 1659 i915_gem_object_put(obj);
5a97bcc6
CW
1660
1661 return 0;
673a394b
EA
1662}
1663
1664/**
14bb2c11
TU
1665 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1666 * it is mapped to.
1667 * @dev: drm device
1668 * @data: ioctl data blob
1669 * @file: drm file
673a394b
EA
1670 *
1671 * While the mapping holds a reference on the contents of the object, it doesn't
1672 * imply a ref on the object itself.
34367381
DV
1673 *
1674 * IMPORTANT:
1675 *
1676 * DRM driver writers who look a this function as an example for how to do GEM
1677 * mmap support, please don't implement mmap support like here. The modern way
1678 * to implement DRM mmap support is with an mmap offset ioctl (like
1679 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1680 * That way debug tooling like valgrind will understand what's going on, hiding
1681 * the mmap call in a driver private ioctl will break that. The i915 driver only
1682 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1683 */
1684int
1685i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1686 struct drm_file *file)
673a394b
EA
1687{
1688 struct drm_i915_gem_mmap *args = data;
03ac0642 1689 struct drm_i915_gem_object *obj;
673a394b
EA
1690 unsigned long addr;
1691
1816f923
AG
1692 if (args->flags & ~(I915_MMAP_WC))
1693 return -EINVAL;
1694
568a58e5 1695 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1696 return -ENODEV;
1697
03ac0642
CW
1698 obj = i915_gem_object_lookup(file, args->handle);
1699 if (!obj)
bf79cb91 1700 return -ENOENT;
673a394b 1701
1286ff73
DV
1702 /* prime objects have no backing filp to GEM mmap
1703 * pages from.
1704 */
03ac0642 1705 if (!obj->base.filp) {
f0cd5182 1706 i915_gem_object_put(obj);
1286ff73
DV
1707 return -EINVAL;
1708 }
1709
03ac0642 1710 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1711 PROT_READ | PROT_WRITE, MAP_SHARED,
1712 args->offset);
1816f923
AG
1713 if (args->flags & I915_MMAP_WC) {
1714 struct mm_struct *mm = current->mm;
1715 struct vm_area_struct *vma;
1716
80a89a5e 1717 if (down_write_killable(&mm->mmap_sem)) {
f0cd5182 1718 i915_gem_object_put(obj);
80a89a5e
MH
1719 return -EINTR;
1720 }
1816f923
AG
1721 vma = find_vma(mm, addr);
1722 if (vma)
1723 vma->vm_page_prot =
1724 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1725 else
1726 addr = -ENOMEM;
1727 up_write(&mm->mmap_sem);
aeecc969
CW
1728
1729 /* This may race, but that's ok, it only gets set */
50349247 1730 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1816f923 1731 }
f0cd5182 1732 i915_gem_object_put(obj);
673a394b
EA
1733 if (IS_ERR((void *)addr))
1734 return addr;
1735
1736 args->addr_ptr = (uint64_t) addr;
1737
1738 return 0;
1739}
1740
03af84fe
CW
1741static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1742{
6649a0b6 1743 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
03af84fe
CW
1744}
1745
4cc69075
CW
1746/**
1747 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1748 *
1749 * A history of the GTT mmap interface:
1750 *
1751 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1752 * aligned and suitable for fencing, and still fit into the available
1753 * mappable space left by the pinned display objects. A classic problem
1754 * we called the page-fault-of-doom where we would ping-pong between
1755 * two objects that could not fit inside the GTT and so the memcpy
1756 * would page one object in at the expense of the other between every
1757 * single byte.
1758 *
1759 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1760 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1761 * object is too large for the available space (or simply too large
1762 * for the mappable aperture!), a view is created instead and faulted
1763 * into userspace. (This view is aligned and sized appropriately for
1764 * fenced access.)
1765 *
e22d8e3c
CW
1766 * 2 - Recognise WC as a separate cache domain so that we can flush the
1767 * delayed writes via GTT before performing direct access via WC.
1768 *
4cc69075
CW
1769 * Restrictions:
1770 *
1771 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1772 * hangs on some architectures, corruption on others. An attempt to service
1773 * a GTT page fault from a snoopable object will generate a SIGBUS.
1774 *
1775 * * the object must be able to fit into RAM (physical memory, though no
1776 * limited to the mappable aperture).
1777 *
1778 *
1779 * Caveats:
1780 *
1781 * * a new GTT page fault will synchronize rendering from the GPU and flush
1782 * all data to system memory. Subsequent access will not be synchronized.
1783 *
1784 * * all mappings are revoked on runtime device suspend.
1785 *
1786 * * there are only 8, 16 or 32 fence registers to share between all users
1787 * (older machines require fence register for display and blitter access
1788 * as well). Contention of the fence registers will cause the previous users
1789 * to be unmapped and any new access will generate new page faults.
1790 *
1791 * * running out of memory while servicing a fault may generate a SIGBUS,
1792 * rather than the expected SIGSEGV.
1793 */
1794int i915_gem_mmap_gtt_version(void)
1795{
e22d8e3c 1796 return 2;
4cc69075
CW
1797}
1798
2d4281bb
CW
1799static inline struct i915_ggtt_view
1800compute_partial_view(struct drm_i915_gem_object *obj,
2d4281bb
CW
1801 pgoff_t page_offset,
1802 unsigned int chunk)
1803{
1804 struct i915_ggtt_view view;
1805
1806 if (i915_gem_object_is_tiled(obj))
1807 chunk = roundup(chunk, tile_row_pages(obj));
1808
2d4281bb 1809 view.type = I915_GGTT_VIEW_PARTIAL;
8bab1193
CW
1810 view.partial.offset = rounddown(page_offset, chunk);
1811 view.partial.size =
2d4281bb 1812 min_t(unsigned int, chunk,
8bab1193 1813 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
2d4281bb
CW
1814
1815 /* If the partial covers the entire object, just create a normal VMA. */
1816 if (chunk >= obj->base.size >> PAGE_SHIFT)
1817 view.type = I915_GGTT_VIEW_NORMAL;
1818
1819 return view;
1820}
1821
de151cf6
JB
1822/**
1823 * i915_gem_fault - fault a page into the GTT
d9072a3e 1824 * @vmf: fault info
de151cf6
JB
1825 *
1826 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1827 * from userspace. The fault handler takes care of binding the object to
1828 * the GTT (if needed), allocating and programming a fence register (again,
1829 * only if needed based on whether the old reg is still valid or the object
1830 * is tiled) and inserting a new PTE into the faulting process.
1831 *
1832 * Note that the faulting process may involve evicting existing objects
1833 * from the GTT and/or fence registers to make room. So performance may
1834 * suffer if the GTT working set is large or there are few fence registers
1835 * left.
4cc69075
CW
1836 *
1837 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1838 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
de151cf6 1839 */
11bac800 1840int i915_gem_fault(struct vm_fault *vmf)
de151cf6 1841{
03af84fe 1842#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
11bac800 1843 struct vm_area_struct *area = vmf->vma;
058d88c4 1844 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
05394f39 1845 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1846 struct drm_i915_private *dev_priv = to_i915(dev);
1847 struct i915_ggtt *ggtt = &dev_priv->ggtt;
b8f9096d 1848 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
058d88c4 1849 struct i915_vma *vma;
de151cf6 1850 pgoff_t page_offset;
82118877 1851 unsigned int flags;
b8f9096d 1852 int ret;
f65c9168 1853
de151cf6 1854 /* We don't use vmf->pgoff since that has the fake offset */
1a29d85e 1855 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
de151cf6 1856
db53a302
CW
1857 trace_i915_gem_object_fault(obj, page_offset, true, write);
1858
6e4930f6 1859 /* Try to flush the object off the GPU first without holding the lock.
b8f9096d 1860 * Upon acquiring the lock, we will perform our sanity checks and then
6e4930f6
CW
1861 * repeat the flush holding the lock in the normal manner to catch cases
1862 * where we are gazumped.
1863 */
e95433c7
CW
1864 ret = i915_gem_object_wait(obj,
1865 I915_WAIT_INTERRUPTIBLE,
1866 MAX_SCHEDULE_TIMEOUT,
1867 NULL);
6e4930f6 1868 if (ret)
b8f9096d
CW
1869 goto err;
1870
40e62d5d
CW
1871 ret = i915_gem_object_pin_pages(obj);
1872 if (ret)
1873 goto err;
1874
b8f9096d
CW
1875 intel_runtime_pm_get(dev_priv);
1876
1877 ret = i915_mutex_lock_interruptible(dev);
1878 if (ret)
1879 goto err_rpm;
6e4930f6 1880
eb119bd6 1881 /* Access to snoopable pages through the GTT is incoherent. */
0031fb96 1882 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
ddeff6ee 1883 ret = -EFAULT;
b8f9096d 1884 goto err_unlock;
eb119bd6
CW
1885 }
1886
82118877
CW
1887 /* If the object is smaller than a couple of partial vma, it is
1888 * not worth only creating a single partial vma - we may as well
1889 * clear enough space for the full object.
1890 */
1891 flags = PIN_MAPPABLE;
1892 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1893 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1894
a61007a8 1895 /* Now pin it into the GTT as needed */
82118877 1896 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
a61007a8 1897 if (IS_ERR(vma)) {
a61007a8 1898 /* Use a partial view if it is bigger than available space */
2d4281bb 1899 struct i915_ggtt_view view =
8201c1fa 1900 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
aa136d9d 1901
50349247
CW
1902 /* Userspace is now writing through an untracked VMA, abandon
1903 * all hope that the hardware is able to track future writes.
1904 */
1905 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1906
a61007a8
CW
1907 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1908 }
058d88c4
CW
1909 if (IS_ERR(vma)) {
1910 ret = PTR_ERR(vma);
b8f9096d 1911 goto err_unlock;
058d88c4 1912 }
4a684a41 1913
c9839303
CW
1914 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1915 if (ret)
b8f9096d 1916 goto err_unpin;
74898d7e 1917
3bd40735 1918 ret = i915_vma_pin_fence(vma);
d9e86c0e 1919 if (ret)
b8f9096d 1920 goto err_unpin;
7d1c4804 1921
b90b91d8 1922 /* Finally, remap it using the new GTT offset */
c58305af 1923 ret = remap_io_mapping(area,
8bab1193 1924 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
c58305af
CW
1925 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1926 min_t(u64, vma->size, area->vm_end - area->vm_start),
1927 &ggtt->mappable);
a65adaf8
CW
1928 if (ret)
1929 goto err_fence;
a61007a8 1930
a65adaf8
CW
1931 /* Mark as being mmapped into userspace for later revocation */
1932 assert_rpm_wakelock_held(dev_priv);
1933 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1934 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1935 GEM_BUG_ON(!obj->userfault_count);
1936
1937err_fence:
3bd40735 1938 i915_vma_unpin_fence(vma);
b8f9096d 1939err_unpin:
058d88c4 1940 __i915_vma_unpin(vma);
b8f9096d 1941err_unlock:
de151cf6 1942 mutex_unlock(&dev->struct_mutex);
b8f9096d
CW
1943err_rpm:
1944 intel_runtime_pm_put(dev_priv);
40e62d5d 1945 i915_gem_object_unpin_pages(obj);
b8f9096d 1946err:
de151cf6 1947 switch (ret) {
d9bc7e9f 1948 case -EIO:
2232f031
DV
1949 /*
1950 * We eat errors when the gpu is terminally wedged to avoid
1951 * userspace unduly crashing (gl has no provisions for mmaps to
1952 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1953 * and so needs to be reported.
1954 */
1955 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1956 ret = VM_FAULT_SIGBUS;
1957 break;
1958 }
045e769a 1959 case -EAGAIN:
571c608d
DV
1960 /*
1961 * EAGAIN means the gpu is hung and we'll wait for the error
1962 * handler to reset everything when re-faulting in
1963 * i915_mutex_lock_interruptible.
d9bc7e9f 1964 */
c715089f
CW
1965 case 0:
1966 case -ERESTARTSYS:
bed636ab 1967 case -EINTR:
e79e0fe3
DR
1968 case -EBUSY:
1969 /*
1970 * EBUSY is ok: this just means that another thread
1971 * already did the job.
1972 */
f65c9168
PZ
1973 ret = VM_FAULT_NOPAGE;
1974 break;
de151cf6 1975 case -ENOMEM:
f65c9168
PZ
1976 ret = VM_FAULT_OOM;
1977 break;
a7c2e1aa 1978 case -ENOSPC:
45d67817 1979 case -EFAULT:
f65c9168
PZ
1980 ret = VM_FAULT_SIGBUS;
1981 break;
de151cf6 1982 default:
a7c2e1aa 1983 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1984 ret = VM_FAULT_SIGBUS;
1985 break;
de151cf6 1986 }
f65c9168 1987 return ret;
de151cf6
JB
1988}
1989
a65adaf8
CW
1990static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
1991{
1992 struct i915_vma *vma;
1993
1994 GEM_BUG_ON(!obj->userfault_count);
1995
1996 obj->userfault_count = 0;
1997 list_del(&obj->userfault_link);
1998 drm_vma_node_unmap(&obj->base.vma_node,
1999 obj->base.dev->anon_inode->i_mapping);
2000
2001 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2002 if (!i915_vma_is_ggtt(vma))
2003 break;
2004
2005 i915_vma_unset_userfault(vma);
2006 }
2007}
2008
901782b2
CW
2009/**
2010 * i915_gem_release_mmap - remove physical page mappings
2011 * @obj: obj in question
2012 *
af901ca1 2013 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
2014 * relinquish ownership of the pages back to the system.
2015 *
2016 * It is vital that we remove the page mapping if we have mapped a tiled
2017 * object through the GTT and then lose the fence register due to
2018 * resource pressure. Similarly if the object has been moved out of the
2019 * aperture, than pages mapped into userspace must be revoked. Removing the
2020 * mapping will then trigger a page fault on the next user access, allowing
2021 * fixup by i915_gem_fault().
2022 */
d05ca301 2023void
05394f39 2024i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 2025{
275f039d 2026 struct drm_i915_private *i915 = to_i915(obj->base.dev);
275f039d 2027
349f2ccf
CW
2028 /* Serialisation between user GTT access and our code depends upon
2029 * revoking the CPU's PTE whilst the mutex is held. The next user
2030 * pagefault then has to wait until we release the mutex.
9c870d03
CW
2031 *
2032 * Note that RPM complicates somewhat by adding an additional
2033 * requirement that operations to the GGTT be made holding the RPM
2034 * wakeref.
349f2ccf 2035 */
275f039d 2036 lockdep_assert_held(&i915->drm.struct_mutex);
9c870d03 2037 intel_runtime_pm_get(i915);
349f2ccf 2038
a65adaf8 2039 if (!obj->userfault_count)
9c870d03 2040 goto out;
901782b2 2041
a65adaf8 2042 __i915_gem_object_release_mmap(obj);
349f2ccf
CW
2043
2044 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2045 * memory transactions from userspace before we return. The TLB
2046 * flushing implied above by changing the PTE above *should* be
2047 * sufficient, an extra barrier here just provides us with a bit
2048 * of paranoid documentation about our requirement to serialise
2049 * memory writes before touching registers / GSM.
2050 */
2051 wmb();
9c870d03
CW
2052
2053out:
2054 intel_runtime_pm_put(i915);
901782b2
CW
2055}
2056
7c108fd8 2057void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
eedd10f4 2058{
3594a3e2 2059 struct drm_i915_gem_object *obj, *on;
7c108fd8 2060 int i;
eedd10f4 2061
3594a3e2
CW
2062 /*
2063 * Only called during RPM suspend. All users of the userfault_list
2064 * must be holding an RPM wakeref to ensure that this can not
2065 * run concurrently with themselves (and use the struct_mutex for
2066 * protection between themselves).
2067 */
275f039d 2068
3594a3e2 2069 list_for_each_entry_safe(obj, on,
a65adaf8
CW
2070 &dev_priv->mm.userfault_list, userfault_link)
2071 __i915_gem_object_release_mmap(obj);
7c108fd8
CW
2072
2073 /* The fence will be lost when the device powers down. If any were
2074 * in use by hardware (i.e. they are pinned), we should not be powering
2075 * down! All other fences will be reacquired by the user upon waking.
2076 */
2077 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2078 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2079
e0ec3ec6
CW
2080 /* Ideally we want to assert that the fence register is not
2081 * live at this point (i.e. that no piece of code will be
2082 * trying to write through fence + GTT, as that both violates
2083 * our tracking of activity and associated locking/barriers,
2084 * but also is illegal given that the hw is powered down).
2085 *
2086 * Previously we used reg->pin_count as a "liveness" indicator.
2087 * That is not sufficient, and we need a more fine-grained
2088 * tool if we want to have a sanity check here.
2089 */
7c108fd8
CW
2090
2091 if (!reg->vma)
2092 continue;
2093
a65adaf8 2094 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
7c108fd8
CW
2095 reg->dirty = true;
2096 }
eedd10f4
CW
2097}
2098
d8cb5086
CW
2099static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2100{
fac5e23e 2101 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
f3f6184c 2102 int err;
da494d7c 2103
f3f6184c 2104 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9 2105 if (likely(!err))
f3f6184c 2106 return 0;
d8cb5086 2107
b42a13d9
CW
2108 /* Attempt to reap some mmap space from dead objects */
2109 do {
2110 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2111 if (err)
2112 break;
f3f6184c 2113
b42a13d9 2114 i915_gem_drain_freed_objects(dev_priv);
f3f6184c 2115 err = drm_gem_create_mmap_offset(&obj->base);
b42a13d9
CW
2116 if (!err)
2117 break;
2118
2119 } while (flush_delayed_work(&dev_priv->gt.retire_work));
da494d7c 2120
f3f6184c 2121 return err;
d8cb5086
CW
2122}
2123
2124static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2125{
d8cb5086
CW
2126 drm_gem_free_mmap_offset(&obj->base);
2127}
2128
da6b51d0 2129int
ff72145b
DA
2130i915_gem_mmap_gtt(struct drm_file *file,
2131 struct drm_device *dev,
da6b51d0 2132 uint32_t handle,
ff72145b 2133 uint64_t *offset)
de151cf6 2134{
05394f39 2135 struct drm_i915_gem_object *obj;
de151cf6
JB
2136 int ret;
2137
03ac0642 2138 obj = i915_gem_object_lookup(file, handle);
f3f6184c
CW
2139 if (!obj)
2140 return -ENOENT;
ab18282d 2141
d8cb5086 2142 ret = i915_gem_object_create_mmap_offset(obj);
f3f6184c
CW
2143 if (ret == 0)
2144 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2145
f0cd5182 2146 i915_gem_object_put(obj);
1d7cfea1 2147 return ret;
de151cf6
JB
2148}
2149
ff72145b
DA
2150/**
2151 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2152 * @dev: DRM device
2153 * @data: GTT mapping ioctl data
2154 * @file: GEM object info
2155 *
2156 * Simply returns the fake offset to userspace so it can mmap it.
2157 * The mmap call will end up in drm_gem_mmap(), which will set things
2158 * up so we can get faults in the handler above.
2159 *
2160 * The fault handler will take care of binding the object into the GTT
2161 * (since it may have been evicted to make room for something), allocating
2162 * a fence register, and mapping the appropriate aperture address into
2163 * userspace.
2164 */
2165int
2166i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2167 struct drm_file *file)
2168{
2169 struct drm_i915_gem_mmap_gtt *args = data;
2170
da6b51d0 2171 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2172}
2173
225067ee
DV
2174/* Immediately discard the backing storage */
2175static void
2176i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2177{
4d6294bf 2178 i915_gem_object_free_mmap_offset(obj);
1286ff73 2179
4d6294bf
CW
2180 if (obj->base.filp == NULL)
2181 return;
e5281ccd 2182
225067ee
DV
2183 /* Our goal here is to return as much of the memory as
2184 * is possible back to the system as we are called from OOM.
2185 * To do this we must instruct the shmfs to drop all of its
2186 * backing pages, *now*.
2187 */
5537252b 2188 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
a4f5ea64 2189 obj->mm.madv = __I915_MADV_PURGED;
4e5462ee 2190 obj->mm.pages = ERR_PTR(-EFAULT);
225067ee 2191}
e5281ccd 2192
5537252b 2193/* Try to discard unwanted pages */
03ac84f1 2194void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2195{
5537252b
CW
2196 struct address_space *mapping;
2197
1233e2db 2198 lockdep_assert_held(&obj->mm.lock);
f1fa4f44 2199 GEM_BUG_ON(i915_gem_object_has_pages(obj));
1233e2db 2200
a4f5ea64 2201 switch (obj->mm.madv) {
5537252b
CW
2202 case I915_MADV_DONTNEED:
2203 i915_gem_object_truncate(obj);
2204 case __I915_MADV_PURGED:
2205 return;
2206 }
2207
2208 if (obj->base.filp == NULL)
2209 return;
2210
93c76a3d 2211 mapping = obj->base.filp->f_mapping,
5537252b 2212 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2213}
2214
5cdf5881 2215static void
03ac84f1
CW
2216i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2217 struct sg_table *pages)
673a394b 2218{
85d1225e
DG
2219 struct sgt_iter sgt_iter;
2220 struct page *page;
1286ff73 2221
e5facdf9 2222 __i915_gem_object_release_shmem(obj, pages, true);
673a394b 2223
03ac84f1 2224 i915_gem_gtt_finish_pages(obj, pages);
e2273302 2225
6dacfd2f 2226 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2227 i915_gem_object_save_bit_17_swizzle(obj, pages);
280b713b 2228
03ac84f1 2229 for_each_sgt_page(page, sgt_iter, pages) {
a4f5ea64 2230 if (obj->mm.dirty)
9da3da66 2231 set_page_dirty(page);
3ef94daa 2232
a4f5ea64 2233 if (obj->mm.madv == I915_MADV_WILLNEED)
9da3da66 2234 mark_page_accessed(page);
3ef94daa 2235
09cbfeaf 2236 put_page(page);
3ef94daa 2237 }
a4f5ea64 2238 obj->mm.dirty = false;
673a394b 2239
03ac84f1
CW
2240 sg_free_table(pages);
2241 kfree(pages);
37e680a1 2242}
6c085a72 2243
96d77634
CW
2244static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2245{
2246 struct radix_tree_iter iter;
c23aa71b 2247 void __rcu **slot;
96d77634 2248
a4f5ea64
CW
2249 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2250 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
96d77634
CW
2251}
2252
548625ee
CW
2253void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2254 enum i915_mm_subclass subclass)
37e680a1 2255{
03ac84f1 2256 struct sg_table *pages;
37e680a1 2257
a4f5ea64 2258 if (i915_gem_object_has_pinned_pages(obj))
03ac84f1 2259 return;
a5570178 2260
15717de2 2261 GEM_BUG_ON(obj->bind_count);
f1fa4f44 2262 if (!i915_gem_object_has_pages(obj))
1233e2db
CW
2263 return;
2264
2265 /* May be called by shrinker from within get_pages() (on another bo) */
548625ee 2266 mutex_lock_nested(&obj->mm.lock, subclass);
1233e2db
CW
2267 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2268 goto unlock;
3e123027 2269
a2165e31
CW
2270 /* ->put_pages might need to allocate memory for the bit17 swizzle
2271 * array, hence protect them from being reaped by removing them from gtt
2272 * lists early. */
03ac84f1
CW
2273 pages = fetch_and_zero(&obj->mm.pages);
2274 GEM_BUG_ON(!pages);
a2165e31 2275
a4f5ea64 2276 if (obj->mm.mapping) {
4b30cb23
CW
2277 void *ptr;
2278
0ce81788 2279 ptr = page_mask_bits(obj->mm.mapping);
4b30cb23
CW
2280 if (is_vmalloc_addr(ptr))
2281 vunmap(ptr);
fb8621d3 2282 else
4b30cb23
CW
2283 kunmap(kmap_to_page(ptr));
2284
a4f5ea64 2285 obj->mm.mapping = NULL;
0a798eb9
CW
2286 }
2287
96d77634
CW
2288 __i915_gem_object_reset_page_iter(obj);
2289
4e5462ee
CW
2290 if (!IS_ERR(pages))
2291 obj->ops->put_pages(obj, pages);
2292
a5c08166
MA
2293 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2294
1233e2db
CW
2295unlock:
2296 mutex_unlock(&obj->mm.lock);
6c085a72
CW
2297}
2298
935a2f77 2299static bool i915_sg_trim(struct sg_table *orig_st)
0c40ce13
TU
2300{
2301 struct sg_table new_st;
2302 struct scatterlist *sg, *new_sg;
2303 unsigned int i;
2304
2305 if (orig_st->nents == orig_st->orig_nents)
935a2f77 2306 return false;
0c40ce13 2307
8bfc478f 2308 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
935a2f77 2309 return false;
0c40ce13
TU
2310
2311 new_sg = new_st.sgl;
2312 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2313 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2314 /* called before being DMA mapped, no need to copy sg->dma_* */
2315 new_sg = sg_next(new_sg);
2316 }
c2dc6cc9 2317 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
0c40ce13
TU
2318
2319 sg_free_table(orig_st);
2320
2321 *orig_st = new_st;
935a2f77 2322 return true;
0c40ce13
TU
2323}
2324
b91b09ee 2325static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2326{
fac5e23e 2327 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d766ef53
CW
2328 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2329 unsigned long i;
e5281ccd 2330 struct address_space *mapping;
9da3da66
CW
2331 struct sg_table *st;
2332 struct scatterlist *sg;
85d1225e 2333 struct sgt_iter sgt_iter;
e5281ccd 2334 struct page *page;
90797e6d 2335 unsigned long last_pfn = 0; /* suppress gcc warning */
5602452e 2336 unsigned int max_segment = i915_sg_segment_size();
84e8978e 2337 unsigned int sg_page_sizes;
4846bf0c 2338 gfp_t noreclaim;
e2273302 2339 int ret;
e5281ccd 2340
6c085a72
CW
2341 /* Assert that the object is not currently in any GPU domain. As it
2342 * wasn't in the GTT, there shouldn't be any way it could have been in
2343 * a GPU cache
2344 */
03ac84f1
CW
2345 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2346 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
6c085a72 2347
9da3da66
CW
2348 st = kmalloc(sizeof(*st), GFP_KERNEL);
2349 if (st == NULL)
b91b09ee 2350 return -ENOMEM;
9da3da66 2351
d766ef53 2352rebuild_st:
9da3da66 2353 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2354 kfree(st);
b91b09ee 2355 return -ENOMEM;
9da3da66 2356 }
e5281ccd 2357
9da3da66
CW
2358 /* Get the list of pages out of our struct file. They'll be pinned
2359 * at this point until we release them.
2360 *
2361 * Fail silently without starting the shrinker
2362 */
93c76a3d 2363 mapping = obj->base.filp->f_mapping;
0f6ab55d 2364 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
4846bf0c
CW
2365 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2366
90797e6d
ID
2367 sg = st->sgl;
2368 st->nents = 0;
84e8978e 2369 sg_page_sizes = 0;
90797e6d 2370 for (i = 0; i < page_count; i++) {
4846bf0c
CW
2371 const unsigned int shrink[] = {
2372 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2373 0,
2374 }, *s = shrink;
2375 gfp_t gfp = noreclaim;
2376
2377 do {
6c085a72 2378 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
4846bf0c
CW
2379 if (likely(!IS_ERR(page)))
2380 break;
2381
2382 if (!*s) {
2383 ret = PTR_ERR(page);
2384 goto err_sg;
2385 }
2386
912d572d 2387 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
4846bf0c 2388 cond_resched();
24f8e00a 2389
6c085a72
CW
2390 /* We've tried hard to allocate the memory by reaping
2391 * our own buffer, now let the real VM do its job and
2392 * go down in flames if truly OOM.
24f8e00a
CW
2393 *
2394 * However, since graphics tend to be disposable,
2395 * defer the oom here by reporting the ENOMEM back
2396 * to userspace.
6c085a72 2397 */
4846bf0c
CW
2398 if (!*s) {
2399 /* reclaim and warn, but no oom */
2400 gfp = mapping_gfp_mask(mapping);
eaf41801
CW
2401
2402 /* Our bo are always dirty and so we require
2403 * kswapd to reclaim our pages (direct reclaim
2404 * does not effectively begin pageout of our
2405 * buffers on its own). However, direct reclaim
2406 * only waits for kswapd when under allocation
2407 * congestion. So as a result __GFP_RECLAIM is
2408 * unreliable and fails to actually reclaim our
2409 * dirty pages -- unless you try over and over
2410 * again with !__GFP_NORETRY. However, we still
2411 * want to fail this allocation rather than
2412 * trigger the out-of-memory killer and for
dbb32956 2413 * this we want __GFP_RETRY_MAYFAIL.
eaf41801 2414 */
dbb32956 2415 gfp |= __GFP_RETRY_MAYFAIL;
e2273302 2416 }
4846bf0c
CW
2417 } while (1);
2418
871dfbd6
CW
2419 if (!i ||
2420 sg->length >= max_segment ||
2421 page_to_pfn(page) != last_pfn + 1) {
a5c08166 2422 if (i) {
84e8978e 2423 sg_page_sizes |= sg->length;
90797e6d 2424 sg = sg_next(sg);
a5c08166 2425 }
90797e6d
ID
2426 st->nents++;
2427 sg_set_page(sg, page, PAGE_SIZE, 0);
2428 } else {
2429 sg->length += PAGE_SIZE;
2430 }
2431 last_pfn = page_to_pfn(page);
3bbbe706
DV
2432
2433 /* Check that the i965g/gm workaround works. */
2434 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2435 }
a5c08166 2436 if (sg) { /* loop terminated early; short sg table */
84e8978e 2437 sg_page_sizes |= sg->length;
426729dc 2438 sg_mark_end(sg);
a5c08166 2439 }
74ce6b6c 2440
0c40ce13
TU
2441 /* Trim unused sg entries to avoid wasting memory. */
2442 i915_sg_trim(st);
2443
03ac84f1 2444 ret = i915_gem_gtt_prepare_pages(obj, st);
d766ef53
CW
2445 if (ret) {
2446 /* DMA remapping failed? One possible cause is that
2447 * it could not reserve enough large entries, asking
2448 * for PAGE_SIZE chunks instead may be helpful.
2449 */
2450 if (max_segment > PAGE_SIZE) {
2451 for_each_sgt_page(page, sgt_iter, st)
2452 put_page(page);
2453 sg_free_table(st);
2454
2455 max_segment = PAGE_SIZE;
2456 goto rebuild_st;
2457 } else {
2458 dev_warn(&dev_priv->drm.pdev->dev,
2459 "Failed to DMA remap %lu pages\n",
2460 page_count);
2461 goto err_pages;
2462 }
2463 }
e2273302 2464
6dacfd2f 2465 if (i915_gem_object_needs_bit17_swizzle(obj))
03ac84f1 2466 i915_gem_object_do_bit_17_swizzle(obj, st);
e5281ccd 2467
84e8978e 2468 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
b91b09ee
MA
2469
2470 return 0;
e5281ccd 2471
b17993b7 2472err_sg:
90797e6d 2473 sg_mark_end(sg);
b17993b7 2474err_pages:
85d1225e
DG
2475 for_each_sgt_page(page, sgt_iter, st)
2476 put_page(page);
9da3da66
CW
2477 sg_free_table(st);
2478 kfree(st);
0820baf3
CW
2479
2480 /* shmemfs first checks if there is enough memory to allocate the page
2481 * and reports ENOSPC should there be insufficient, along with the usual
2482 * ENOMEM for a genuine allocation failure.
2483 *
2484 * We use ENOSPC in our driver to mean that we have run out of aperture
2485 * space and so want to translate the error from shmemfs back to our
2486 * usual understanding of ENOMEM.
2487 */
e2273302
ID
2488 if (ret == -ENOSPC)
2489 ret = -ENOMEM;
2490
b91b09ee 2491 return ret;
03ac84f1
CW
2492}
2493
2494void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
a5c08166 2495 struct sg_table *pages,
84e8978e 2496 unsigned int sg_page_sizes)
03ac84f1 2497{
a5c08166
MA
2498 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2499 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2500 int i;
2501
1233e2db 2502 lockdep_assert_held(&obj->mm.lock);
03ac84f1
CW
2503
2504 obj->mm.get_page.sg_pos = pages->sgl;
2505 obj->mm.get_page.sg_idx = 0;
2506
2507 obj->mm.pages = pages;
2c3a3f44
CW
2508
2509 if (i915_gem_object_is_tiled(obj) &&
2510 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2511 GEM_BUG_ON(obj->mm.quirked);
2512 __i915_gem_object_pin_pages(obj);
2513 obj->mm.quirked = true;
2514 }
a5c08166 2515
84e8978e
MA
2516 GEM_BUG_ON(!sg_page_sizes);
2517 obj->mm.page_sizes.phys = sg_page_sizes;
a5c08166
MA
2518
2519 /*
84e8978e
MA
2520 * Calculate the supported page-sizes which fit into the given
2521 * sg_page_sizes. This will give us the page-sizes which we may be able
2522 * to use opportunistically when later inserting into the GTT. For
2523 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2524 * 64K or 4K pages, although in practice this will depend on a number of
2525 * other factors.
a5c08166
MA
2526 */
2527 obj->mm.page_sizes.sg = 0;
2528 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2529 if (obj->mm.page_sizes.phys & ~0u << i)
2530 obj->mm.page_sizes.sg |= BIT(i);
2531 }
2532
2533 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
03ac84f1
CW
2534}
2535
2536static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2537{
b91b09ee 2538 int err;
03ac84f1
CW
2539
2540 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2541 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2542 return -EFAULT;
2543 }
2544
b91b09ee
MA
2545 err = obj->ops->get_pages(obj);
2546 GEM_BUG_ON(!err && IS_ERR_OR_NULL(obj->mm.pages));
03ac84f1 2547
b91b09ee 2548 return err;
673a394b
EA
2549}
2550
37e680a1 2551/* Ensure that the associated pages are gathered from the backing storage
1233e2db 2552 * and pinned into our object. i915_gem_object_pin_pages() may be called
37e680a1 2553 * multiple times before they are released by a single call to
1233e2db 2554 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
37e680a1
CW
2555 * either as a result of memory pressure (reaping pages under the shrinker)
2556 * or as the object is itself released.
2557 */
a4f5ea64 2558int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
37e680a1 2559{
03ac84f1 2560 int err;
37e680a1 2561
1233e2db
CW
2562 err = mutex_lock_interruptible(&obj->mm.lock);
2563 if (err)
2564 return err;
4c7d62c6 2565
f1fa4f44 2566 if (unlikely(!i915_gem_object_has_pages(obj))) {
88c880bb
CW
2567 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2568
2c3a3f44
CW
2569 err = ____i915_gem_object_get_pages(obj);
2570 if (err)
2571 goto unlock;
37e680a1 2572
2c3a3f44
CW
2573 smp_mb__before_atomic();
2574 }
2575 atomic_inc(&obj->mm.pages_pin_count);
ee286370 2576
1233e2db
CW
2577unlock:
2578 mutex_unlock(&obj->mm.lock);
03ac84f1 2579 return err;
673a394b
EA
2580}
2581
dd6034c6 2582/* The 'mapping' part of i915_gem_object_pin_map() below */
d31d7cb1
CW
2583static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2584 enum i915_map_type type)
dd6034c6
DG
2585{
2586 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
a4f5ea64 2587 struct sg_table *sgt = obj->mm.pages;
85d1225e
DG
2588 struct sgt_iter sgt_iter;
2589 struct page *page;
b338fa47
DG
2590 struct page *stack_pages[32];
2591 struct page **pages = stack_pages;
dd6034c6 2592 unsigned long i = 0;
d31d7cb1 2593 pgprot_t pgprot;
dd6034c6
DG
2594 void *addr;
2595
2596 /* A single page can always be kmapped */
d31d7cb1 2597 if (n_pages == 1 && type == I915_MAP_WB)
dd6034c6
DG
2598 return kmap(sg_page(sgt->sgl));
2599
b338fa47
DG
2600 if (n_pages > ARRAY_SIZE(stack_pages)) {
2601 /* Too big for stack -- allocate temporary array instead */
0ee931c4 2602 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
b338fa47
DG
2603 if (!pages)
2604 return NULL;
2605 }
dd6034c6 2606
85d1225e
DG
2607 for_each_sgt_page(page, sgt_iter, sgt)
2608 pages[i++] = page;
dd6034c6
DG
2609
2610 /* Check that we have the expected number of pages */
2611 GEM_BUG_ON(i != n_pages);
2612
d31d7cb1 2613 switch (type) {
a575c676
CW
2614 default:
2615 MISSING_CASE(type);
2616 /* fallthrough to use PAGE_KERNEL anyway */
d31d7cb1
CW
2617 case I915_MAP_WB:
2618 pgprot = PAGE_KERNEL;
2619 break;
2620 case I915_MAP_WC:
2621 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2622 break;
2623 }
2624 addr = vmap(pages, n_pages, 0, pgprot);
dd6034c6 2625
b338fa47 2626 if (pages != stack_pages)
2098105e 2627 kvfree(pages);
dd6034c6
DG
2628
2629 return addr;
2630}
2631
2632/* get, pin, and map the pages of the object into kernel space */
d31d7cb1
CW
2633void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2634 enum i915_map_type type)
0a798eb9 2635{
d31d7cb1
CW
2636 enum i915_map_type has_type;
2637 bool pinned;
2638 void *ptr;
0a798eb9
CW
2639 int ret;
2640
d31d7cb1 2641 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
0a798eb9 2642
1233e2db 2643 ret = mutex_lock_interruptible(&obj->mm.lock);
0a798eb9
CW
2644 if (ret)
2645 return ERR_PTR(ret);
2646
a575c676
CW
2647 pinned = !(type & I915_MAP_OVERRIDE);
2648 type &= ~I915_MAP_OVERRIDE;
2649
1233e2db 2650 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
f1fa4f44 2651 if (unlikely(!i915_gem_object_has_pages(obj))) {
88c880bb
CW
2652 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2653
2c3a3f44
CW
2654 ret = ____i915_gem_object_get_pages(obj);
2655 if (ret)
2656 goto err_unlock;
1233e2db 2657
2c3a3f44
CW
2658 smp_mb__before_atomic();
2659 }
2660 atomic_inc(&obj->mm.pages_pin_count);
1233e2db
CW
2661 pinned = false;
2662 }
f1fa4f44 2663 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
0a798eb9 2664
0ce81788 2665 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
d31d7cb1
CW
2666 if (ptr && has_type != type) {
2667 if (pinned) {
2668 ret = -EBUSY;
1233e2db 2669 goto err_unpin;
0a798eb9 2670 }
d31d7cb1
CW
2671
2672 if (is_vmalloc_addr(ptr))
2673 vunmap(ptr);
2674 else
2675 kunmap(kmap_to_page(ptr));
2676
a4f5ea64 2677 ptr = obj->mm.mapping = NULL;
0a798eb9
CW
2678 }
2679
d31d7cb1
CW
2680 if (!ptr) {
2681 ptr = i915_gem_object_map(obj, type);
2682 if (!ptr) {
2683 ret = -ENOMEM;
1233e2db 2684 goto err_unpin;
d31d7cb1
CW
2685 }
2686
0ce81788 2687 obj->mm.mapping = page_pack_bits(ptr, type);
d31d7cb1
CW
2688 }
2689
1233e2db
CW
2690out_unlock:
2691 mutex_unlock(&obj->mm.lock);
d31d7cb1
CW
2692 return ptr;
2693
1233e2db
CW
2694err_unpin:
2695 atomic_dec(&obj->mm.pages_pin_count);
2696err_unlock:
2697 ptr = ERR_PTR(ret);
2698 goto out_unlock;
0a798eb9
CW
2699}
2700
7c55e2c5
CW
2701static int
2702i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2703 const struct drm_i915_gem_pwrite *arg)
2704{
2705 struct address_space *mapping = obj->base.filp->f_mapping;
2706 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2707 u64 remain, offset;
2708 unsigned int pg;
2709
2710 /* Before we instantiate/pin the backing store for our use, we
2711 * can prepopulate the shmemfs filp efficiently using a write into
2712 * the pagecache. We avoid the penalty of instantiating all the
2713 * pages, important if the user is just writing to a few and never
2714 * uses the object on the GPU, and using a direct write into shmemfs
2715 * allows it to avoid the cost of retrieving a page (either swapin
2716 * or clearing-before-use) before it is overwritten.
2717 */
f1fa4f44 2718 if (i915_gem_object_has_pages(obj))
7c55e2c5
CW
2719 return -ENODEV;
2720
2721 /* Before the pages are instantiated the object is treated as being
2722 * in the CPU domain. The pages will be clflushed as required before
2723 * use, and we can freely write into the pages directly. If userspace
2724 * races pwrite with any other operation; corruption will ensue -
2725 * that is userspace's prerogative!
2726 */
2727
2728 remain = arg->size;
2729 offset = arg->offset;
2730 pg = offset_in_page(offset);
2731
2732 do {
2733 unsigned int len, unwritten;
2734 struct page *page;
2735 void *data, *vaddr;
2736 int err;
2737
2738 len = PAGE_SIZE - pg;
2739 if (len > remain)
2740 len = remain;
2741
2742 err = pagecache_write_begin(obj->base.filp, mapping,
2743 offset, len, 0,
2744 &page, &data);
2745 if (err < 0)
2746 return err;
2747
2748 vaddr = kmap(page);
2749 unwritten = copy_from_user(vaddr + pg, user_data, len);
2750 kunmap(page);
2751
2752 err = pagecache_write_end(obj->base.filp, mapping,
2753 offset, len, len - unwritten,
2754 page, data);
2755 if (err < 0)
2756 return err;
2757
2758 if (unwritten)
2759 return -EFAULT;
2760
2761 remain -= len;
2762 user_data += len;
2763 offset += len;
2764 pg = 0;
2765 } while (remain);
2766
2767 return 0;
2768}
2769
77b25a97
CW
2770static bool ban_context(const struct i915_gem_context *ctx,
2771 unsigned int score)
be62acb4 2772{
6095868a 2773 return (i915_gem_context_is_bannable(ctx) &&
77b25a97 2774 score >= CONTEXT_SCORE_BAN_THRESHOLD);
be62acb4
MK
2775}
2776
e5e1fc47 2777static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
aa60c664 2778{
77b25a97
CW
2779 unsigned int score;
2780 bool banned;
b083a087 2781
77b25a97 2782 atomic_inc(&ctx->guilty_count);
b083a087 2783
77b25a97
CW
2784 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2785 banned = ban_context(ctx, score);
2786 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2787 ctx->name, score, yesno(banned));
2788 if (!banned)
b083a087
MK
2789 return;
2790
77b25a97
CW
2791 i915_gem_context_set_banned(ctx);
2792 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2793 atomic_inc(&ctx->file_priv->context_bans);
2794 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2795 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2796 }
e5e1fc47
MK
2797}
2798
2799static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2800{
77b25a97 2801 atomic_inc(&ctx->active_count);
aa60c664
MK
2802}
2803
8d9fc7fd 2804struct drm_i915_gem_request *
0bc40be8 2805i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2806{
754c9fd5
CW
2807 struct drm_i915_gem_request *request, *active = NULL;
2808 unsigned long flags;
4db080f9 2809
f69a02c9
CW
2810 /* We are called by the error capture and reset at a random
2811 * point in time. In particular, note that neither is crucially
2812 * ordered with an interrupt. After a hang, the GPU is dead and we
2813 * assume that no more writes can happen (we waited long enough for
2814 * all writes that were in transaction to be flushed) - adding an
2815 * extra delay for a recent interrupt is pointless. Hence, we do
2816 * not need an engine->irq_seqno_barrier() before the seqno reads.
2817 */
754c9fd5 2818 spin_lock_irqsave(&engine->timeline->lock, flags);
73cb9701 2819 list_for_each_entry(request, &engine->timeline->requests, link) {
754c9fd5
CW
2820 if (__i915_gem_request_completed(request,
2821 request->global_seqno))
4db080f9 2822 continue;
aa60c664 2823
36193acd 2824 GEM_BUG_ON(request->engine != engine);
c00122f3
CW
2825 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2826 &request->fence.flags));
754c9fd5
CW
2827
2828 active = request;
2829 break;
4db080f9 2830 }
754c9fd5 2831 spin_unlock_irqrestore(&engine->timeline->lock, flags);
b6b0fac0 2832
754c9fd5 2833 return active;
b6b0fac0
MK
2834}
2835
bf2f0436
MK
2836static bool engine_stalled(struct intel_engine_cs *engine)
2837{
2838 if (!engine->hangcheck.stalled)
2839 return false;
2840
2841 /* Check for possible seqno movement after hang declaration */
2842 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2843 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2844 return false;
2845 }
2846
2847 return true;
2848}
2849
a1ef70e1
MT
2850/*
2851 * Ensure irq handler finishes, and not run again.
2852 * Also return the active request so that we only search for it once.
2853 */
2854struct drm_i915_gem_request *
2855i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2856{
2857 struct drm_i915_gem_request *request = NULL;
2858
1749d90f
CW
2859 /*
2860 * During the reset sequence, we must prevent the engine from
2861 * entering RC6. As the context state is undefined until we restart
2862 * the engine, if it does enter RC6 during the reset, the state
2863 * written to the powercontext is undefined and so we may lose
2864 * GPU state upon resume, i.e. fail to restart after a reset.
2865 */
2866 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2867
2868 /*
2869 * Prevent the signaler thread from updating the request
a1ef70e1
MT
2870 * state (by calling dma_fence_signal) as we are processing
2871 * the reset. The write from the GPU of the seqno is
2872 * asynchronous and the signaler thread may see a different
2873 * value to us and declare the request complete, even though
2874 * the reset routine have picked that request as the active
2875 * (incomplete) request. This conflict is not handled
2876 * gracefully!
2877 */
2878 kthread_park(engine->breadcrumbs.signaler);
2879
1749d90f
CW
2880 /*
2881 * Prevent request submission to the hardware until we have
a1ef70e1
MT
2882 * completed the reset in i915_gem_reset_finish(). If a request
2883 * is completed by one engine, it may then queue a request
2884 * to a second via its engine->irq_tasklet *just* as we are
2885 * calling engine->init_hw() and also writing the ELSP.
2886 * Turning off the engine->irq_tasklet until the reset is over
2887 * prevents the race.
2888 */
b620e870
MK
2889 tasklet_kill(&engine->execlists.irq_tasklet);
2890 tasklet_disable(&engine->execlists.irq_tasklet);
a1ef70e1
MT
2891
2892 if (engine->irq_seqno_barrier)
2893 engine->irq_seqno_barrier(engine);
2894
d1d1ebf4
CW
2895 request = i915_gem_find_active_request(engine);
2896 if (request && request->fence.error == -EIO)
2897 request = ERR_PTR(-EIO); /* Previous reset failed! */
a1ef70e1
MT
2898
2899 return request;
2900}
2901
0e178aef 2902int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
4c965543
CW
2903{
2904 struct intel_engine_cs *engine;
a1ef70e1 2905 struct drm_i915_gem_request *request;
4c965543 2906 enum intel_engine_id id;
0e178aef 2907 int err = 0;
4c965543 2908
0e178aef 2909 for_each_engine(engine, dev_priv, id) {
a1ef70e1
MT
2910 request = i915_gem_reset_prepare_engine(engine);
2911 if (IS_ERR(request)) {
2912 err = PTR_ERR(request);
2913 continue;
0e178aef 2914 }
c64992e0
MT
2915
2916 engine->hangcheck.active_request = request;
0e178aef
CW
2917 }
2918
4c965543 2919 i915_gem_revoke_fences(dev_priv);
0e178aef
CW
2920
2921 return err;
4c965543
CW
2922}
2923
36193acd 2924static void skip_request(struct drm_i915_gem_request *request)
821ed7df
CW
2925{
2926 void *vaddr = request->ring->vaddr;
2927 u32 head;
2928
2929 /* As this request likely depends on state from the lost
2930 * context, clear out all the user operations leaving the
2931 * breadcrumb at the end (so we get the fence notifications).
2932 */
2933 head = request->head;
2934 if (request->postfix < head) {
2935 memset(vaddr + head, 0, request->ring->size - head);
2936 head = 0;
2937 }
2938 memset(vaddr + head, 0, request->postfix - head);
c0d5f32c
CW
2939
2940 dma_fence_set_error(&request->fence, -EIO);
821ed7df
CW
2941}
2942
36193acd
MK
2943static void engine_skip_context(struct drm_i915_gem_request *request)
2944{
2945 struct intel_engine_cs *engine = request->engine;
2946 struct i915_gem_context *hung_ctx = request->ctx;
2947 struct intel_timeline *timeline;
2948 unsigned long flags;
2949
2950 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2951
2952 spin_lock_irqsave(&engine->timeline->lock, flags);
2953 spin_lock(&timeline->lock);
2954
2955 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2956 if (request->ctx == hung_ctx)
2957 skip_request(request);
2958
2959 list_for_each_entry(request, &timeline->requests, link)
2960 skip_request(request);
2961
2962 spin_unlock(&timeline->lock);
2963 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2964}
2965
d1d1ebf4
CW
2966/* Returns the request if it was guilty of the hang */
2967static struct drm_i915_gem_request *
2968i915_gem_reset_request(struct intel_engine_cs *engine,
2969 struct drm_i915_gem_request *request)
61da5362 2970{
71895a08
MK
2971 /* The guilty request will get skipped on a hung engine.
2972 *
2973 * Users of client default contexts do not rely on logical
2974 * state preserved between batches so it is safe to execute
2975 * queued requests following the hang. Non default contexts
2976 * rely on preserved state, so skipping a batch loses the
2977 * evolution of the state and it needs to be considered corrupted.
2978 * Executing more queued batches on top of corrupted state is
2979 * risky. But we take the risk by trying to advance through
2980 * the queued requests in order to make the client behaviour
2981 * more predictable around resets, by not throwing away random
2982 * amount of batches it has prepared for execution. Sophisticated
2983 * clients can use gem_reset_stats_ioctl and dma fence status
2984 * (exported via sync_file info ioctl on explicit fences) to observe
2985 * when it loses the context state and should rebuild accordingly.
2986 *
2987 * The context ban, and ultimately the client ban, mechanism are safety
2988 * valves if client submission ends up resulting in nothing more than
2989 * subsequent hangs.
2990 */
2991
d1d1ebf4 2992 if (engine_stalled(engine)) {
61da5362
MK
2993 i915_gem_context_mark_guilty(request->ctx);
2994 skip_request(request);
d1d1ebf4
CW
2995
2996 /* If this context is now banned, skip all pending requests. */
2997 if (i915_gem_context_is_banned(request->ctx))
2998 engine_skip_context(request);
61da5362 2999 } else {
d1d1ebf4
CW
3000 /*
3001 * Since this is not the hung engine, it may have advanced
3002 * since the hang declaration. Double check by refinding
3003 * the active request at the time of the reset.
3004 */
3005 request = i915_gem_find_active_request(engine);
3006 if (request) {
3007 i915_gem_context_mark_innocent(request->ctx);
3008 dma_fence_set_error(&request->fence, -EAGAIN);
3009
3010 /* Rewind the engine to replay the incomplete rq */
3011 spin_lock_irq(&engine->timeline->lock);
3012 request = list_prev_entry(request, link);
3013 if (&request->link == &engine->timeline->requests)
3014 request = NULL;
3015 spin_unlock_irq(&engine->timeline->lock);
3016 }
61da5362
MK
3017 }
3018
d1d1ebf4 3019 return request;
61da5362
MK
3020}
3021
a1ef70e1
MT
3022void i915_gem_reset_engine(struct intel_engine_cs *engine,
3023 struct drm_i915_gem_request *request)
b6b0fac0 3024{
ed454f2c
CW
3025 engine->irq_posted = 0;
3026
d1d1ebf4
CW
3027 if (request)
3028 request = i915_gem_reset_request(engine, request);
3029
3030 if (request) {
c0dcb203
CW
3031 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3032 engine->name, request->global_seqno);
c0dcb203 3033 }
821ed7df
CW
3034
3035 /* Setup the CS to resume from the breadcrumb of the hung request */
3036 engine->reset_hw(engine, request);
4db080f9 3037}
aa60c664 3038
d8027093 3039void i915_gem_reset(struct drm_i915_private *dev_priv)
4db080f9 3040{
821ed7df 3041 struct intel_engine_cs *engine;
3b3f1650 3042 enum intel_engine_id id;
608c1a52 3043
4c7d62c6
CW
3044 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3045
821ed7df
CW
3046 i915_gem_retire_requests(dev_priv);
3047
2ae55738
CW
3048 for_each_engine(engine, dev_priv, id) {
3049 struct i915_gem_context *ctx;
3050
c64992e0 3051 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2ae55738
CW
3052 ctx = fetch_and_zero(&engine->last_retired_context);
3053 if (ctx)
3054 engine->context_unpin(engine, ctx);
3055 }
821ed7df 3056
4362f4f6 3057 i915_gem_restore_fences(dev_priv);
f2a91d1a
CW
3058
3059 if (dev_priv->gt.awake) {
3060 intel_sanitize_gt_powersave(dev_priv);
3061 intel_enable_gt_powersave(dev_priv);
3062 if (INTEL_GEN(dev_priv) >= 6)
3063 gen6_rps_busy(dev_priv);
3064 }
821ed7df
CW
3065}
3066
a1ef70e1
MT
3067void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3068{
b620e870 3069 tasklet_enable(&engine->execlists.irq_tasklet);
a1ef70e1 3070 kthread_unpark(engine->breadcrumbs.signaler);
1749d90f
CW
3071
3072 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
a1ef70e1
MT
3073}
3074
d8027093
CW
3075void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3076{
1f7b847d
CW
3077 struct intel_engine_cs *engine;
3078 enum intel_engine_id id;
3079
d8027093 3080 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1f7b847d 3081
fe3288b5 3082 for_each_engine(engine, dev_priv, id) {
c64992e0 3083 engine->hangcheck.active_request = NULL;
a1ef70e1 3084 i915_gem_reset_finish_engine(engine);
fe3288b5 3085 }
d8027093
CW
3086}
3087
821ed7df 3088static void nop_submit_request(struct drm_i915_gem_request *request)
af7a8ffa 3089{
af7a8ffa
DV
3090 dma_fence_set_error(&request->fence, -EIO);
3091
3092 i915_gem_request_submit(request);
3093}
3094
3095static void nop_complete_submit_request(struct drm_i915_gem_request *request)
821ed7df 3096{
8d550824
CW
3097 unsigned long flags;
3098
3cd9442f 3099 dma_fence_set_error(&request->fence, -EIO);
8d550824
CW
3100
3101 spin_lock_irqsave(&request->engine->timeline->lock, flags);
3102 __i915_gem_request_submit(request);
3dcf93f7 3103 intel_engine_init_global_seqno(request->engine, request->global_seqno);
8d550824 3104 spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
821ed7df
CW
3105}
3106
af7a8ffa 3107void i915_gem_set_wedged(struct drm_i915_private *i915)
821ed7df 3108{
af7a8ffa
DV
3109 struct intel_engine_cs *engine;
3110 enum intel_engine_id id;
3111
3112 /*
3113 * First, stop submission to hw, but do not yet complete requests by
3114 * rolling the global seqno forward (since this would complete requests
3115 * for which we haven't set the fence error to EIO yet).
3116 */
3117 for_each_engine(engine, i915, id)
3118 engine->submit_request = nop_submit_request;
3119
3120 /*
3121 * Make sure no one is running the old callback before we proceed with
3122 * cancelling requests and resetting the completion tracking. Otherwise
3123 * we might submit a request to the hardware which never completes.
20e4933c 3124 */
af7a8ffa 3125 synchronize_rcu();
70c2a24d 3126
af7a8ffa
DV
3127 for_each_engine(engine, i915, id) {
3128 /* Mark all executing requests as skipped */
3129 engine->cancel_requests(engine);
5e32d748 3130
af7a8ffa
DV
3131 /*
3132 * Only once we've force-cancelled all in-flight requests can we
3133 * start to complete all requests.
3134 */
3135 engine->submit_request = nop_complete_submit_request;
3136 }
3137
3138 /*
3139 * Make sure no request can slip through without getting completed by
3140 * either this call here to intel_engine_init_global_seqno, or the one
3141 * in nop_complete_submit_request.
5e32d748 3142 */
af7a8ffa 3143 synchronize_rcu();
673a394b 3144
af7a8ffa
DV
3145 for_each_engine(engine, i915, id) {
3146 unsigned long flags;
673a394b 3147
af7a8ffa
DV
3148 /* Mark all pending requests as complete so that any concurrent
3149 * (lockless) lookup doesn't try and wait upon the request as we
3150 * reset it.
3151 */
3152 spin_lock_irqsave(&engine->timeline->lock, flags);
3153 intel_engine_init_global_seqno(engine,
3154 intel_engine_last_submit(engine));
3155 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3156 }
20e4933c 3157
3d7adbbf
CW
3158 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3159 wake_up_all(&i915->gpu_error.reset_queue);
673a394b
EA
3160}
3161
2e8f9d32
CW
3162bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3163{
3164 struct i915_gem_timeline *tl;
3165 int i;
3166
3167 lockdep_assert_held(&i915->drm.struct_mutex);
3168 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3169 return true;
3170
3171 /* Before unwedging, make sure that all pending operations
3172 * are flushed and errored out - we may have requests waiting upon
3173 * third party fences. We marked all inflight requests as EIO, and
3174 * every execbuf since returned EIO, for consistency we want all
3175 * the currently pending requests to also be marked as EIO, which
3176 * is done inside our nop_submit_request - and so we must wait.
3177 *
3178 * No more can be submitted until we reset the wedged bit.
3179 */
3180 list_for_each_entry(tl, &i915->gt.timelines, link) {
3181 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3182 struct drm_i915_gem_request *rq;
3183
3184 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3185 &i915->drm.struct_mutex);
3186 if (!rq)
3187 continue;
3188
3189 /* We can't use our normal waiter as we want to
3190 * avoid recursively trying to handle the current
3191 * reset. The basic dma_fence_default_wait() installs
3192 * a callback for dma_fence_signal(), which is
3193 * triggered by our nop handler (indirectly, the
3194 * callback enables the signaler thread which is
3195 * woken by the nop_submit_request() advancing the seqno
3196 * and when the seqno passes the fence, the signaler
3197 * then signals the fence waking us up).
3198 */
3199 if (dma_fence_default_wait(&rq->fence, true,
3200 MAX_SCHEDULE_TIMEOUT) < 0)
3201 return false;
3202 }
3203 }
3204
3205 /* Undo nop_submit_request. We prevent all new i915 requests from
3206 * being queued (by disallowing execbuf whilst wedged) so having
3207 * waited for all active requests above, we know the system is idle
3208 * and do not have to worry about a thread being inside
3209 * engine->submit_request() as we swap over. So unlike installing
3210 * the nop_submit_request on reset, we can do this from normal
3211 * context and do not require stop_machine().
3212 */
3213 intel_engines_reset_default_submission(i915);
36703e79 3214 i915_gem_contexts_lost(i915);
2e8f9d32
CW
3215
3216 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3217 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3218
3219 return true;
3220}
3221
75ef9da2 3222static void
673a394b
EA
3223i915_gem_retire_work_handler(struct work_struct *work)
3224{
b29c19b6 3225 struct drm_i915_private *dev_priv =
67d97da3 3226 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 3227 struct drm_device *dev = &dev_priv->drm;
673a394b 3228
891b48cf 3229 /* Come back later if the device is busy... */
b29c19b6 3230 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 3231 i915_gem_retire_requests(dev_priv);
b29c19b6 3232 mutex_unlock(&dev->struct_mutex);
673a394b 3233 }
67d97da3
CW
3234
3235 /* Keep the retire handler running until we are finally idle.
3236 * We do not need to do this test under locking as in the worst-case
3237 * we queue the retire worker once too often.
3238 */
c9615613
CW
3239 if (READ_ONCE(dev_priv->gt.awake)) {
3240 i915_queue_hangcheck(dev_priv);
67d97da3
CW
3241 queue_delayed_work(dev_priv->wq,
3242 &dev_priv->gt.retire_work,
bcb45086 3243 round_jiffies_up_relative(HZ));
c9615613 3244 }
b29c19b6 3245}
0a58705b 3246
b29c19b6
CW
3247static void
3248i915_gem_idle_work_handler(struct work_struct *work)
3249{
3250 struct drm_i915_private *dev_priv =
67d97da3 3251 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 3252 struct drm_device *dev = &dev_priv->drm;
67d97da3
CW
3253 bool rearm_hangcheck;
3254
3255 if (!READ_ONCE(dev_priv->gt.awake))
3256 return;
3257
0cb5670b
ID
3258 /*
3259 * Wait for last execlists context complete, but bail out in case a
3260 * new request is submitted.
3261 */
8490ae20 3262 wait_for(intel_engines_are_idle(dev_priv), 10);
28176ef4 3263 if (READ_ONCE(dev_priv->gt.active_requests))
67d97da3
CW
3264 return;
3265
3266 rearm_hangcheck =
3267 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3268
3269 if (!mutex_trylock(&dev->struct_mutex)) {
3270 /* Currently busy, come back later */
3271 mod_delayed_work(dev_priv->wq,
3272 &dev_priv->gt.idle_work,
3273 msecs_to_jiffies(50));
3274 goto out_rearm;
3275 }
3276
93c97dc1
ID
3277 /*
3278 * New request retired after this work handler started, extend active
3279 * period until next instance of the work.
3280 */
3281 if (work_pending(work))
3282 goto out_unlock;
3283
28176ef4 3284 if (dev_priv->gt.active_requests)
67d97da3 3285 goto out_unlock;
b29c19b6 3286
05425249 3287 if (wait_for(intel_engines_are_idle(dev_priv), 10))
0cb5670b
ID
3288 DRM_ERROR("Timeout waiting for engines to idle\n");
3289
6c067579 3290 intel_engines_mark_idle(dev_priv);
47979480 3291 i915_gem_timelines_mark_idle(dev_priv);
35c94185 3292
67d97da3
CW
3293 GEM_BUG_ON(!dev_priv->gt.awake);
3294 dev_priv->gt.awake = false;
3295 rearm_hangcheck = false;
30ecad77 3296
67d97da3
CW
3297 if (INTEL_GEN(dev_priv) >= 6)
3298 gen6_rps_idle(dev_priv);
3299 intel_runtime_pm_put(dev_priv);
3300out_unlock:
3301 mutex_unlock(&dev->struct_mutex);
b29c19b6 3302
67d97da3
CW
3303out_rearm:
3304 if (rearm_hangcheck) {
3305 GEM_BUG_ON(!dev_priv->gt.awake);
3306 i915_queue_hangcheck(dev_priv);
35c94185 3307 }
673a394b
EA
3308}
3309
b1f788c6
CW
3310void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3311{
d1b48c1e 3312 struct drm_i915_private *i915 = to_i915(gem->dev);
b1f788c6
CW
3313 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3314 struct drm_i915_file_private *fpriv = file->driver_priv;
d1b48c1e 3315 struct i915_lut_handle *lut, *ln;
b1f788c6 3316
d1b48c1e
CW
3317 mutex_lock(&i915->drm.struct_mutex);
3318
3319 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3320 struct i915_gem_context *ctx = lut->ctx;
3321 struct i915_vma *vma;
3322
432295d7 3323 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
d1b48c1e
CW
3324 if (ctx->file_priv != fpriv)
3325 continue;
3326
3327 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3ffff017
CW
3328 GEM_BUG_ON(vma->obj != obj);
3329
3330 /* We allow the process to have multiple handles to the same
3331 * vma, in the same fd namespace, by virtue of flink/open.
3332 */
3333 GEM_BUG_ON(!vma->open_count);
3334 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
b1f788c6 3335 i915_vma_close(vma);
f8a7fde4 3336
d1b48c1e
CW
3337 list_del(&lut->obj_link);
3338 list_del(&lut->ctx_link);
4ff4b44c 3339
d1b48c1e
CW
3340 kmem_cache_free(i915->luts, lut);
3341 __i915_gem_object_release_unless_active(obj);
f8a7fde4 3342 }
d1b48c1e
CW
3343
3344 mutex_unlock(&i915->drm.struct_mutex);
b1f788c6
CW
3345}
3346
e95433c7
CW
3347static unsigned long to_wait_timeout(s64 timeout_ns)
3348{
3349 if (timeout_ns < 0)
3350 return MAX_SCHEDULE_TIMEOUT;
3351
3352 if (timeout_ns == 0)
3353 return 0;
3354
3355 return nsecs_to_jiffies_timeout(timeout_ns);
3356}
3357
23ba4fd0
BW
3358/**
3359 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
3360 * @dev: drm device pointer
3361 * @data: ioctl data blob
3362 * @file: drm file pointer
23ba4fd0
BW
3363 *
3364 * Returns 0 if successful, else an error is returned with the remaining time in
3365 * the timeout parameter.
3366 * -ETIME: object is still busy after timeout
3367 * -ERESTARTSYS: signal interrupted the wait
3368 * -ENONENT: object doesn't exist
3369 * Also possible, but rare:
b8050148 3370 * -EAGAIN: incomplete, restart syscall
23ba4fd0
BW
3371 * -ENOMEM: damn
3372 * -ENODEV: Internal IRQ fail
3373 * -E?: The add request failed
3374 *
3375 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3376 * non-zero timeout parameter the wait ioctl will wait for the given number of
3377 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3378 * without holding struct_mutex the object may become re-busied before this
3379 * function completes. A similar but shorter * race condition exists in the busy
3380 * ioctl
3381 */
3382int
3383i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3384{
3385 struct drm_i915_gem_wait *args = data;
3386 struct drm_i915_gem_object *obj;
e95433c7
CW
3387 ktime_t start;
3388 long ret;
23ba4fd0 3389
11b5d511
DV
3390 if (args->flags != 0)
3391 return -EINVAL;
3392
03ac0642 3393 obj = i915_gem_object_lookup(file, args->bo_handle);
033d549b 3394 if (!obj)
23ba4fd0 3395 return -ENOENT;
23ba4fd0 3396
e95433c7
CW
3397 start = ktime_get();
3398
3399 ret = i915_gem_object_wait(obj,
3400 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3401 to_wait_timeout(args->timeout_ns),
3402 to_rps_client(file));
3403
3404 if (args->timeout_ns > 0) {
3405 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3406 if (args->timeout_ns < 0)
3407 args->timeout_ns = 0;
c1d2061b
CW
3408
3409 /*
3410 * Apparently ktime isn't accurate enough and occasionally has a
3411 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3412 * things up to make the test happy. We allow up to 1 jiffy.
3413 *
3414 * This is a regression from the timespec->ktime conversion.
3415 */
3416 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3417 args->timeout_ns = 0;
b8050148
CW
3418
3419 /* Asked to wait beyond the jiffie/scheduler precision? */
3420 if (ret == -ETIME && args->timeout_ns)
3421 ret = -EAGAIN;
b4716185
CW
3422 }
3423
f0cd5182 3424 i915_gem_object_put(obj);
ff865885 3425 return ret;
23ba4fd0
BW
3426}
3427
73cb9701 3428static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
4df2faf4 3429{
73cb9701 3430 int ret, i;
4df2faf4 3431
73cb9701
CW
3432 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3433 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3434 if (ret)
3435 return ret;
3436 }
62e63007 3437
73cb9701
CW
3438 return 0;
3439}
3440
25112b64
CW
3441static int wait_for_engines(struct drm_i915_private *i915)
3442{
cad9946c
CW
3443 if (wait_for(intel_engines_are_idle(i915), 50)) {
3444 DRM_ERROR("Failed to idle engines, declaring wedged!\n");
3445 i915_gem_set_wedged(i915);
3446 return -EIO;
25112b64
CW
3447 }
3448
3449 return 0;
3450}
3451
73cb9701
CW
3452int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3453{
73cb9701
CW
3454 int ret;
3455
863e9fde
CW
3456 /* If the device is asleep, we have no requests outstanding */
3457 if (!READ_ONCE(i915->gt.awake))
3458 return 0;
3459
9caa34aa
CW
3460 if (flags & I915_WAIT_LOCKED) {
3461 struct i915_gem_timeline *tl;
3462
3463 lockdep_assert_held(&i915->drm.struct_mutex);
3464
3465 list_for_each_entry(tl, &i915->gt.timelines, link) {
3466 ret = wait_for_timeline(tl, flags);
3467 if (ret)
3468 return ret;
3469 }
72022a70
CW
3470
3471 i915_gem_retire_requests(i915);
3472 GEM_BUG_ON(i915->gt.active_requests);
25112b64
CW
3473
3474 ret = wait_for_engines(i915);
9caa34aa
CW
3475 } else {
3476 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
1ec14ad3 3477 }
4df2faf4 3478
25112b64 3479 return ret;
4df2faf4
DV
3480}
3481
5a97bcc6
CW
3482static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3483{
e27ab73d
CW
3484 /*
3485 * We manually flush the CPU domain so that we can override and
3486 * force the flush for the display, and perform it asyncrhonously.
3487 */
3488 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3489 if (obj->cache_dirty)
3490 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
5a97bcc6
CW
3491 obj->base.write_domain = 0;
3492}
3493
3494void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3495{
3496 if (!READ_ONCE(obj->pin_display))
3497 return;
3498
3499 mutex_lock(&obj->base.dev->struct_mutex);
3500 __i915_gem_object_flush_for_display(obj);
3501 mutex_unlock(&obj->base.dev->struct_mutex);
3502}
3503
e22d8e3c
CW
3504/**
3505 * Moves a single object to the WC read, and possibly write domain.
3506 * @obj: object to act on
3507 * @write: ask for write access or read only
3508 *
3509 * This function returns when the move is complete, including waiting on
3510 * flushes to occur.
3511 */
3512int
3513i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3514{
3515 int ret;
3516
3517 lockdep_assert_held(&obj->base.dev->struct_mutex);
3518
3519 ret = i915_gem_object_wait(obj,
3520 I915_WAIT_INTERRUPTIBLE |
3521 I915_WAIT_LOCKED |
3522 (write ? I915_WAIT_ALL : 0),
3523 MAX_SCHEDULE_TIMEOUT,
3524 NULL);
3525 if (ret)
3526 return ret;
3527
3528 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3529 return 0;
3530
3531 /* Flush and acquire obj->pages so that we are coherent through
3532 * direct access in memory with previous cached writes through
3533 * shmemfs and that our cache domain tracking remains valid.
3534 * For example, if the obj->filp was moved to swap without us
3535 * being notified and releasing the pages, we would mistakenly
3536 * continue to assume that the obj remained out of the CPU cached
3537 * domain.
3538 */
3539 ret = i915_gem_object_pin_pages(obj);
3540 if (ret)
3541 return ret;
3542
3543 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3544
3545 /* Serialise direct access to this object with the barriers for
3546 * coherent writes from the GPU, by effectively invalidating the
3547 * WC domain upon first access.
3548 */
3549 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3550 mb();
3551
3552 /* It should now be out of any other write domains, and we can update
3553 * the domain values for our changes.
3554 */
3555 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3556 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3557 if (write) {
3558 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3559 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3560 obj->mm.dirty = true;
3561 }
3562
3563 i915_gem_object_unpin_pages(obj);
3564 return 0;
3565}
3566
2ef7eeaa
EA
3567/**
3568 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3569 * @obj: object to act on
3570 * @write: ask for write access or read only
2ef7eeaa
EA
3571 *
3572 * This function returns when the move is complete, including waiting on
3573 * flushes to occur.
3574 */
79e53945 3575int
2021746e 3576i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3577{
e47c68e9 3578 int ret;
2ef7eeaa 3579
e95433c7 3580 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3581
e95433c7
CW
3582 ret = i915_gem_object_wait(obj,
3583 I915_WAIT_INTERRUPTIBLE |
3584 I915_WAIT_LOCKED |
3585 (write ? I915_WAIT_ALL : 0),
3586 MAX_SCHEDULE_TIMEOUT,
3587 NULL);
88241785
CW
3588 if (ret)
3589 return ret;
3590
c13d87ea
CW
3591 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3592 return 0;
3593
43566ded
CW
3594 /* Flush and acquire obj->pages so that we are coherent through
3595 * direct access in memory with previous cached writes through
3596 * shmemfs and that our cache domain tracking remains valid.
3597 * For example, if the obj->filp was moved to swap without us
3598 * being notified and releasing the pages, we would mistakenly
3599 * continue to assume that the obj remained out of the CPU cached
3600 * domain.
3601 */
a4f5ea64 3602 ret = i915_gem_object_pin_pages(obj);
43566ded
CW
3603 if (ret)
3604 return ret;
3605
ef74921b 3606 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
1c5d22f7 3607
d0a57789
CW
3608 /* Serialise direct access to this object with the barriers for
3609 * coherent writes from the GPU, by effectively invalidating the
3610 * GTT domain upon first access.
3611 */
3612 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3613 mb();
3614
e47c68e9
EA
3615 /* It should now be out of any other write domains, and we can update
3616 * the domain values for our changes.
3617 */
40e62d5d 3618 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3619 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3620 if (write) {
05394f39
CW
3621 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3622 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
a4f5ea64 3623 obj->mm.dirty = true;
2ef7eeaa
EA
3624 }
3625
a4f5ea64 3626 i915_gem_object_unpin_pages(obj);
e47c68e9
EA
3627 return 0;
3628}
3629
ef55f92a
CW
3630/**
3631 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3632 * @obj: object to act on
3633 * @cache_level: new cache level to set for the object
ef55f92a
CW
3634 *
3635 * After this function returns, the object will be in the new cache-level
3636 * across all GTT and the contents of the backing storage will be coherent,
3637 * with respect to the new cache-level. In order to keep the backing storage
3638 * coherent for all users, we only allow a single cache level to be set
3639 * globally on the object and prevent it from being changed whilst the
3640 * hardware is reading from the object. That is if the object is currently
3641 * on the scanout it will be set to uncached (or equivalent display
3642 * cache coherency) and all non-MOCS GPU access will also be uncached so
3643 * that all direct access to the scanout remains coherent.
3644 */
e4ffd173
CW
3645int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3646 enum i915_cache_level cache_level)
3647{
aa653a68 3648 struct i915_vma *vma;
a6a7cc4b 3649 int ret;
e4ffd173 3650
4c7d62c6
CW
3651 lockdep_assert_held(&obj->base.dev->struct_mutex);
3652
e4ffd173 3653 if (obj->cache_level == cache_level)
a6a7cc4b 3654 return 0;
e4ffd173 3655
ef55f92a
CW
3656 /* Inspect the list of currently bound VMA and unbind any that would
3657 * be invalid given the new cache-level. This is principally to
3658 * catch the issue of the CS prefetch crossing page boundaries and
3659 * reading an invalid PTE on older architectures.
3660 */
aa653a68
CW
3661restart:
3662 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3663 if (!drm_mm_node_allocated(&vma->node))
3664 continue;
3665
20dfbde4 3666 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3667 DRM_DEBUG("can not change the cache level of pinned objects\n");
3668 return -EBUSY;
3669 }
3670
aa653a68
CW
3671 if (i915_gem_valid_gtt_space(vma, cache_level))
3672 continue;
3673
3674 ret = i915_vma_unbind(vma);
3675 if (ret)
3676 return ret;
3677
3678 /* As unbinding may affect other elements in the
3679 * obj->vma_list (due to side-effects from retiring
3680 * an active vma), play safe and restart the iterator.
3681 */
3682 goto restart;
42d6ab48
CW
3683 }
3684
ef55f92a
CW
3685 /* We can reuse the existing drm_mm nodes but need to change the
3686 * cache-level on the PTE. We could simply unbind them all and
3687 * rebind with the correct cache-level on next use. However since
3688 * we already have a valid slot, dma mapping, pages etc, we may as
3689 * rewrite the PTE in the belief that doing so tramples upon less
3690 * state and so involves less work.
3691 */
15717de2 3692 if (obj->bind_count) {
ef55f92a
CW
3693 /* Before we change the PTE, the GPU must not be accessing it.
3694 * If we wait upon the object, we know that all the bound
3695 * VMA are no longer active.
3696 */
e95433c7
CW
3697 ret = i915_gem_object_wait(obj,
3698 I915_WAIT_INTERRUPTIBLE |
3699 I915_WAIT_LOCKED |
3700 I915_WAIT_ALL,
3701 MAX_SCHEDULE_TIMEOUT,
3702 NULL);
e4ffd173
CW
3703 if (ret)
3704 return ret;
3705
0031fb96
TU
3706 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3707 cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3708 /* Access to snoopable pages through the GTT is
3709 * incoherent and on some machines causes a hard
3710 * lockup. Relinquish the CPU mmaping to force
3711 * userspace to refault in the pages and we can
3712 * then double check if the GTT mapping is still
3713 * valid for that pointer access.
3714 */
3715 i915_gem_release_mmap(obj);
3716
3717 /* As we no longer need a fence for GTT access,
3718 * we can relinquish it now (and so prevent having
3719 * to steal a fence from someone else on the next
3720 * fence request). Note GPU activity would have
3721 * dropped the fence as all snoopable access is
3722 * supposed to be linear.
3723 */
49ef5294
CW
3724 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3725 ret = i915_vma_put_fence(vma);
3726 if (ret)
3727 return ret;
3728 }
ef55f92a
CW
3729 } else {
3730 /* We either have incoherent backing store and
3731 * so no GTT access or the architecture is fully
3732 * coherent. In such cases, existing GTT mmaps
3733 * ignore the cache bit in the PTE and we can
3734 * rewrite it without confusing the GPU or having
3735 * to force userspace to fault back in its mmaps.
3736 */
e4ffd173
CW
3737 }
3738
1c7f4bca 3739 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3740 if (!drm_mm_node_allocated(&vma->node))
3741 continue;
3742
3743 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3744 if (ret)
3745 return ret;
3746 }
e4ffd173
CW
3747 }
3748
1c7f4bca 3749 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b 3750 vma->node.color = cache_level;
b8f55be6 3751 i915_gem_object_set_cache_coherency(obj, cache_level);
e27ab73d 3752 obj->cache_dirty = true; /* Always invalidate stale cachelines */
2c22569b 3753
e4ffd173
CW
3754 return 0;
3755}
3756
199adf40
BW
3757int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3758 struct drm_file *file)
e6994aee 3759{
199adf40 3760 struct drm_i915_gem_caching *args = data;
e6994aee 3761 struct drm_i915_gem_object *obj;
fbbd37b3 3762 int err = 0;
e6994aee 3763
fbbd37b3
CW
3764 rcu_read_lock();
3765 obj = i915_gem_object_lookup_rcu(file, args->handle);
3766 if (!obj) {
3767 err = -ENOENT;
3768 goto out;
3769 }
e6994aee 3770
651d794f
CW
3771 switch (obj->cache_level) {
3772 case I915_CACHE_LLC:
3773 case I915_CACHE_L3_LLC:
3774 args->caching = I915_CACHING_CACHED;
3775 break;
3776
4257d3ba
CW
3777 case I915_CACHE_WT:
3778 args->caching = I915_CACHING_DISPLAY;
3779 break;
3780
651d794f
CW
3781 default:
3782 args->caching = I915_CACHING_NONE;
3783 break;
3784 }
fbbd37b3
CW
3785out:
3786 rcu_read_unlock();
3787 return err;
e6994aee
CW
3788}
3789
199adf40
BW
3790int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3791 struct drm_file *file)
e6994aee 3792{
9c870d03 3793 struct drm_i915_private *i915 = to_i915(dev);
199adf40 3794 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3795 struct drm_i915_gem_object *obj;
3796 enum i915_cache_level level;
d65415df 3797 int ret = 0;
e6994aee 3798
199adf40
BW
3799 switch (args->caching) {
3800 case I915_CACHING_NONE:
e6994aee
CW
3801 level = I915_CACHE_NONE;
3802 break;
199adf40 3803 case I915_CACHING_CACHED:
e5756c10
ID
3804 /*
3805 * Due to a HW issue on BXT A stepping, GPU stores via a
3806 * snooped mapping may leave stale data in a corresponding CPU
3807 * cacheline, whereas normally such cachelines would get
3808 * invalidated.
3809 */
9c870d03 3810 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
e5756c10
ID
3811 return -ENODEV;
3812
e6994aee
CW
3813 level = I915_CACHE_LLC;
3814 break;
4257d3ba 3815 case I915_CACHING_DISPLAY:
9c870d03 3816 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4257d3ba 3817 break;
e6994aee
CW
3818 default:
3819 return -EINVAL;
3820 }
3821
d65415df
CW
3822 obj = i915_gem_object_lookup(file, args->handle);
3823 if (!obj)
3824 return -ENOENT;
3825
3826 if (obj->cache_level == level)
3827 goto out;
3828
3829 ret = i915_gem_object_wait(obj,
3830 I915_WAIT_INTERRUPTIBLE,
3831 MAX_SCHEDULE_TIMEOUT,
3832 to_rps_client(file));
3bc2913e 3833 if (ret)
d65415df 3834 goto out;
3bc2913e 3835
d65415df
CW
3836 ret = i915_mutex_lock_interruptible(dev);
3837 if (ret)
3838 goto out;
e6994aee
CW
3839
3840 ret = i915_gem_object_set_cache_level(obj, level);
e6994aee 3841 mutex_unlock(&dev->struct_mutex);
d65415df
CW
3842
3843out:
3844 i915_gem_object_put(obj);
e6994aee
CW
3845 return ret;
3846}
3847
b9241ea3 3848/*
2da3b9b9
CW
3849 * Prepare buffer for display plane (scanout, cursors, etc).
3850 * Can be called from an uninterruptible phase (modesetting) and allows
3851 * any flushes to be pipelined (for pageflips).
b9241ea3 3852 */
058d88c4 3853struct i915_vma *
2da3b9b9
CW
3854i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3855 u32 alignment,
e6617330 3856 const struct i915_ggtt_view *view)
b9241ea3 3857{
058d88c4 3858 struct i915_vma *vma;
b9241ea3
ZW
3859 int ret;
3860
4c7d62c6
CW
3861 lockdep_assert_held(&obj->base.dev->struct_mutex);
3862
cc98b413
CW
3863 /* Mark the pin_display early so that we account for the
3864 * display coherency whilst setting up the cache domains.
3865 */
8a0c39b1 3866 obj->pin_display++;
cc98b413 3867
a7ef0640
EA
3868 /* The display engine is not coherent with the LLC cache on gen6. As
3869 * a result, we make sure that the pinning that is about to occur is
3870 * done with uncached PTEs. This is lowest common denominator for all
3871 * chipsets.
3872 *
3873 * However for gen6+, we could do better by using the GFDT bit instead
3874 * of uncaching, which would allow us to flush all the LLC-cached data
3875 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3876 */
651d794f 3877 ret = i915_gem_object_set_cache_level(obj,
8652744b
TU
3878 HAS_WT(to_i915(obj->base.dev)) ?
3879 I915_CACHE_WT : I915_CACHE_NONE);
058d88c4
CW
3880 if (ret) {
3881 vma = ERR_PTR(ret);
cc98b413 3882 goto err_unpin_display;
058d88c4 3883 }
a7ef0640 3884
2da3b9b9
CW
3885 /* As the user may map the buffer once pinned in the display plane
3886 * (e.g. libkms for the bootup splash), we have to ensure that we
2efb813d
CW
3887 * always use map_and_fenceable for all scanout buffers. However,
3888 * it may simply be too big to fit into mappable, in which case
3889 * put it anyway and hope that userspace can cope (but always first
3890 * try to preserve the existing ABI).
2da3b9b9 3891 */
2efb813d 3892 vma = ERR_PTR(-ENOSPC);
47a8e3f6 3893 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
2efb813d
CW
3894 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3895 PIN_MAPPABLE | PIN_NONBLOCK);
767a222e
CW
3896 if (IS_ERR(vma)) {
3897 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3898 unsigned int flags;
3899
3900 /* Valleyview is definitely limited to scanning out the first
3901 * 512MiB. Lets presume this behaviour was inherited from the
3902 * g4x display engine and that all earlier gen are similarly
3903 * limited. Testing suggests that it is a little more
3904 * complicated than this. For example, Cherryview appears quite
3905 * happy to scanout from anywhere within its global aperture.
3906 */
3907 flags = 0;
3908 if (HAS_GMCH_DISPLAY(i915))
3909 flags = PIN_MAPPABLE;
3910 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3911 }
058d88c4 3912 if (IS_ERR(vma))
cc98b413 3913 goto err_unpin_display;
2da3b9b9 3914
d8923dcf
CW
3915 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3916
a6a7cc4b 3917 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
5a97bcc6 3918 __i915_gem_object_flush_for_display(obj);
d59b21ec 3919 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
b118c1e3 3920
2da3b9b9
CW
3921 /* It should now be out of any other write domains, and we can update
3922 * the domain values for our changes.
3923 */
05394f39 3924 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3 3925
058d88c4 3926 return vma;
cc98b413
CW
3927
3928err_unpin_display:
8a0c39b1 3929 obj->pin_display--;
058d88c4 3930 return vma;
cc98b413
CW
3931}
3932
3933void
058d88c4 3934i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
cc98b413 3935{
49d73912 3936 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4c7d62c6 3937
058d88c4 3938 if (WARN_ON(vma->obj->pin_display == 0))
8a0c39b1
TU
3939 return;
3940
d8923dcf 3941 if (--vma->obj->pin_display == 0)
f51455d4 3942 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
e6617330 3943
383d5823 3944 /* Bump the LRU to try and avoid premature eviction whilst flipping */
befedbb7 3945 i915_gem_object_bump_inactive_ggtt(vma->obj);
383d5823 3946
058d88c4 3947 i915_vma_unpin(vma);
b9241ea3
ZW
3948}
3949
e47c68e9
EA
3950/**
3951 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3952 * @obj: object to act on
3953 * @write: requesting write or read-only access
e47c68e9
EA
3954 *
3955 * This function returns when the move is complete, including waiting on
3956 * flushes to occur.
3957 */
dabdfe02 3958int
919926ae 3959i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3960{
e47c68e9
EA
3961 int ret;
3962
e95433c7 3963 lockdep_assert_held(&obj->base.dev->struct_mutex);
4c7d62c6 3964
e95433c7
CW
3965 ret = i915_gem_object_wait(obj,
3966 I915_WAIT_INTERRUPTIBLE |
3967 I915_WAIT_LOCKED |
3968 (write ? I915_WAIT_ALL : 0),
3969 MAX_SCHEDULE_TIMEOUT,
3970 NULL);
88241785
CW
3971 if (ret)
3972 return ret;
3973
ef74921b 3974 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
2ef7eeaa 3975
e47c68e9 3976 /* Flush the CPU cache if it's still invalid. */
05394f39 3977 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
57822dc6 3978 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
05394f39 3979 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3980 }
3981
3982 /* It should now be out of any other write domains, and we can update
3983 * the domain values for our changes.
3984 */
e27ab73d 3985 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e47c68e9
EA
3986
3987 /* If we're writing through the CPU, then the GPU read domains will
3988 * need to be invalidated at next use.
3989 */
e27ab73d
CW
3990 if (write)
3991 __start_cpu_write(obj);
2ef7eeaa
EA
3992
3993 return 0;
3994}
3995
673a394b
EA
3996/* Throttle our rendering by waiting until the ring has completed our requests
3997 * emitted over 20 msec ago.
3998 *
b962442e
EA
3999 * Note that if we were to use the current jiffies each time around the loop,
4000 * we wouldn't escape the function with any frames outstanding if the time to
4001 * render a frame was over 20ms.
4002 *
673a394b
EA
4003 * This should get us reasonable parallelism between CPU and GPU but also
4004 * relatively low latency when blocking on a particular request to finish.
4005 */
40a5f0de 4006static int
f787a5f5 4007i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4008{
fac5e23e 4009 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 4010 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4011 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4012 struct drm_i915_gem_request *request, *target = NULL;
e95433c7 4013 long ret;
93533c29 4014
f4457ae7
CW
4015 /* ABI: return -EIO if already wedged */
4016 if (i915_terminally_wedged(&dev_priv->gpu_error))
4017 return -EIO;
e110e8d6 4018
1c25595f 4019 spin_lock(&file_priv->mm.lock);
c8659efa 4020 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
b962442e
EA
4021 if (time_after_eq(request->emitted_jiffies, recent_enough))
4022 break;
40a5f0de 4023
c8659efa
CW
4024 if (target) {
4025 list_del(&target->client_link);
4026 target->file_priv = NULL;
4027 }
fcfa423c 4028
54fb2411 4029 target = request;
b962442e 4030 }
ff865885 4031 if (target)
e8a261ea 4032 i915_gem_request_get(target);
1c25595f 4033 spin_unlock(&file_priv->mm.lock);
40a5f0de 4034
54fb2411 4035 if (target == NULL)
f787a5f5 4036 return 0;
2bc43b5c 4037
e95433c7
CW
4038 ret = i915_wait_request(target,
4039 I915_WAIT_INTERRUPTIBLE,
4040 MAX_SCHEDULE_TIMEOUT);
e8a261ea 4041 i915_gem_request_put(target);
ff865885 4042
e95433c7 4043 return ret < 0 ? ret : 0;
40a5f0de
EA
4044}
4045
058d88c4 4046struct i915_vma *
ec7adb6e
JL
4047i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4048 const struct i915_ggtt_view *view,
91b2db6f 4049 u64 size,
2ffffd0f
CW
4050 u64 alignment,
4051 u64 flags)
ec7adb6e 4052{
ad16d2ed
CW
4053 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4054 struct i915_address_space *vm = &dev_priv->ggtt.base;
59bfa124
CW
4055 struct i915_vma *vma;
4056 int ret;
72e96d64 4057
4c7d62c6
CW
4058 lockdep_assert_held(&obj->base.dev->struct_mutex);
4059
43ae70d9
CW
4060 if (!view && flags & PIN_MAPPABLE) {
4061 /* If the required space is larger than the available
4062 * aperture, we will not able to find a slot for the
4063 * object and unbinding the object now will be in
4064 * vain. Worse, doing so may cause us to ping-pong
4065 * the object in and out of the Global GTT and
4066 * waste a lot of cycles under the mutex.
4067 */
4068 if (obj->base.size > dev_priv->ggtt.mappable_end)
4069 return ERR_PTR(-E2BIG);
4070
4071 /* If NONBLOCK is set the caller is optimistically
4072 * trying to cache the full object within the mappable
4073 * aperture, and *must* have a fallback in place for
4074 * situations where we cannot bind the object. We
4075 * can be a little more lax here and use the fallback
4076 * more often to avoid costly migrations of ourselves
4077 * and other objects within the aperture.
4078 *
4079 * Half-the-aperture is used as a simple heuristic.
4080 * More interesting would to do search for a free
4081 * block prior to making the commitment to unbind.
4082 * That caters for the self-harm case, and with a
4083 * little more heuristics (e.g. NOFAULT, NOEVICT)
4084 * we could try to minimise harm to others.
4085 */
4086 if (flags & PIN_NONBLOCK &&
4087 obj->base.size > dev_priv->ggtt.mappable_end / 2)
4088 return ERR_PTR(-ENOSPC);
4089 }
4090
718659a6 4091 vma = i915_vma_instance(obj, vm, view);
e0216b76 4092 if (unlikely(IS_ERR(vma)))
058d88c4 4093 return vma;
59bfa124
CW
4094
4095 if (i915_vma_misplaced(vma, size, alignment, flags)) {
43ae70d9
CW
4096 if (flags & PIN_NONBLOCK) {
4097 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4098 return ERR_PTR(-ENOSPC);
59bfa124 4099
43ae70d9 4100 if (flags & PIN_MAPPABLE &&
944397f0 4101 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
ad16d2ed
CW
4102 return ERR_PTR(-ENOSPC);
4103 }
4104
59bfa124
CW
4105 WARN(i915_vma_is_pinned(vma),
4106 "bo is already pinned in ggtt with incorrect alignment:"
05a20d09
CW
4107 " offset=%08x, req.alignment=%llx,"
4108 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4109 i915_ggtt_offset(vma), alignment,
59bfa124 4110 !!(flags & PIN_MAPPABLE),
05a20d09 4111 i915_vma_is_map_and_fenceable(vma));
59bfa124
CW
4112 ret = i915_vma_unbind(vma);
4113 if (ret)
058d88c4 4114 return ERR_PTR(ret);
59bfa124
CW
4115 }
4116
058d88c4
CW
4117 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4118 if (ret)
4119 return ERR_PTR(ret);
ec7adb6e 4120
058d88c4 4121 return vma;
673a394b
EA
4122}
4123
edf6b76f 4124static __always_inline unsigned int __busy_read_flag(unsigned int id)
3fdc13c7
CW
4125{
4126 /* Note that we could alias engines in the execbuf API, but
4127 * that would be very unwise as it prevents userspace from
4128 * fine control over engine selection. Ahem.
4129 *
4130 * This should be something like EXEC_MAX_ENGINE instead of
4131 * I915_NUM_ENGINES.
4132 */
4133 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4134 return 0x10000 << id;
4135}
4136
4137static __always_inline unsigned int __busy_write_id(unsigned int id)
4138{
70cb472c
CW
4139 /* The uABI guarantees an active writer is also amongst the read
4140 * engines. This would be true if we accessed the activity tracking
4141 * under the lock, but as we perform the lookup of the object and
4142 * its activity locklessly we can not guarantee that the last_write
4143 * being active implies that we have set the same engine flag from
4144 * last_read - hence we always set both read and write busy for
4145 * last_write.
4146 */
4147 return id | __busy_read_flag(id);
3fdc13c7
CW
4148}
4149
edf6b76f 4150static __always_inline unsigned int
d07f0e59 4151__busy_set_if_active(const struct dma_fence *fence,
3fdc13c7
CW
4152 unsigned int (*flag)(unsigned int id))
4153{
d07f0e59 4154 struct drm_i915_gem_request *rq;
3fdc13c7 4155
d07f0e59
CW
4156 /* We have to check the current hw status of the fence as the uABI
4157 * guarantees forward progress. We could rely on the idle worker
4158 * to eventually flush us, but to minimise latency just ask the
4159 * hardware.
1255501d 4160 *
d07f0e59 4161 * Note we only report on the status of native fences.
1255501d 4162 */
d07f0e59
CW
4163 if (!dma_fence_is_i915(fence))
4164 return 0;
4165
4166 /* opencode to_request() in order to avoid const warnings */
4167 rq = container_of(fence, struct drm_i915_gem_request, fence);
4168 if (i915_gem_request_completed(rq))
4169 return 0;
4170
1d39f281 4171 return flag(rq->engine->uabi_id);
3fdc13c7
CW
4172}
4173
edf6b76f 4174static __always_inline unsigned int
d07f0e59 4175busy_check_reader(const struct dma_fence *fence)
3fdc13c7 4176{
d07f0e59 4177 return __busy_set_if_active(fence, __busy_read_flag);
3fdc13c7
CW
4178}
4179
edf6b76f 4180static __always_inline unsigned int
d07f0e59 4181busy_check_writer(const struct dma_fence *fence)
3fdc13c7 4182{
d07f0e59
CW
4183 if (!fence)
4184 return 0;
4185
4186 return __busy_set_if_active(fence, __busy_write_id);
3fdc13c7
CW
4187}
4188
673a394b
EA
4189int
4190i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4191 struct drm_file *file)
673a394b
EA
4192{
4193 struct drm_i915_gem_busy *args = data;
05394f39 4194 struct drm_i915_gem_object *obj;
d07f0e59
CW
4195 struct reservation_object_list *list;
4196 unsigned int seq;
fbbd37b3 4197 int err;
673a394b 4198
d07f0e59 4199 err = -ENOENT;
fbbd37b3
CW
4200 rcu_read_lock();
4201 obj = i915_gem_object_lookup_rcu(file, args->handle);
d07f0e59 4202 if (!obj)
fbbd37b3 4203 goto out;
d1b851fc 4204
d07f0e59
CW
4205 /* A discrepancy here is that we do not report the status of
4206 * non-i915 fences, i.e. even though we may report the object as idle,
4207 * a call to set-domain may still stall waiting for foreign rendering.
4208 * This also means that wait-ioctl may report an object as busy,
4209 * where busy-ioctl considers it idle.
4210 *
4211 * We trade the ability to warn of foreign fences to report on which
4212 * i915 engines are active for the object.
4213 *
4214 * Alternatively, we can trade that extra information on read/write
4215 * activity with
4216 * args->busy =
4217 * !reservation_object_test_signaled_rcu(obj->resv, true);
4218 * to report the overall busyness. This is what the wait-ioctl does.
4219 *
4220 */
4221retry:
4222 seq = raw_read_seqcount(&obj->resv->seq);
426960be 4223
d07f0e59
CW
4224 /* Translate the exclusive fence to the READ *and* WRITE engine */
4225 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3fdc13c7 4226
d07f0e59
CW
4227 /* Translate shared fences to READ set of engines */
4228 list = rcu_dereference(obj->resv->fence);
4229 if (list) {
4230 unsigned int shared_count = list->shared_count, i;
3fdc13c7 4231
d07f0e59
CW
4232 for (i = 0; i < shared_count; ++i) {
4233 struct dma_fence *fence =
4234 rcu_dereference(list->shared[i]);
4235
4236 args->busy |= busy_check_reader(fence);
4237 }
426960be 4238 }
673a394b 4239
d07f0e59
CW
4240 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4241 goto retry;
4242
4243 err = 0;
fbbd37b3
CW
4244out:
4245 rcu_read_unlock();
4246 return err;
673a394b
EA
4247}
4248
4249int
4250i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4251 struct drm_file *file_priv)
4252{
0206e353 4253 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4254}
4255
3ef94daa
CW
4256int
4257i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4258 struct drm_file *file_priv)
4259{
fac5e23e 4260 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 4261 struct drm_i915_gem_madvise *args = data;
05394f39 4262 struct drm_i915_gem_object *obj;
1233e2db 4263 int err;
3ef94daa
CW
4264
4265 switch (args->madv) {
4266 case I915_MADV_DONTNEED:
4267 case I915_MADV_WILLNEED:
4268 break;
4269 default:
4270 return -EINVAL;
4271 }
4272
03ac0642 4273 obj = i915_gem_object_lookup(file_priv, args->handle);
1233e2db
CW
4274 if (!obj)
4275 return -ENOENT;
4276
4277 err = mutex_lock_interruptible(&obj->mm.lock);
4278 if (err)
4279 goto out;
3ef94daa 4280
f1fa4f44 4281 if (i915_gem_object_has_pages(obj) &&
3e510a8e 4282 i915_gem_object_is_tiled(obj) &&
656bfa3a 4283 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
bc0629a7
CW
4284 if (obj->mm.madv == I915_MADV_WILLNEED) {
4285 GEM_BUG_ON(!obj->mm.quirked);
a4f5ea64 4286 __i915_gem_object_unpin_pages(obj);
bc0629a7
CW
4287 obj->mm.quirked = false;
4288 }
4289 if (args->madv == I915_MADV_WILLNEED) {
2c3a3f44 4290 GEM_BUG_ON(obj->mm.quirked);
a4f5ea64 4291 __i915_gem_object_pin_pages(obj);
bc0629a7
CW
4292 obj->mm.quirked = true;
4293 }
656bfa3a
DV
4294 }
4295
a4f5ea64
CW
4296 if (obj->mm.madv != __I915_MADV_PURGED)
4297 obj->mm.madv = args->madv;
3ef94daa 4298
6c085a72 4299 /* if the object is no longer attached, discard its backing storage */
f1fa4f44
CW
4300 if (obj->mm.madv == I915_MADV_DONTNEED &&
4301 !i915_gem_object_has_pages(obj))
2d7ef395
CW
4302 i915_gem_object_truncate(obj);
4303
a4f5ea64 4304 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1233e2db 4305 mutex_unlock(&obj->mm.lock);
bb6baf76 4306
1233e2db 4307out:
f8c417cd 4308 i915_gem_object_put(obj);
1233e2db 4309 return err;
3ef94daa
CW
4310}
4311
5b8c8aec
CW
4312static void
4313frontbuffer_retire(struct i915_gem_active *active,
4314 struct drm_i915_gem_request *request)
4315{
4316 struct drm_i915_gem_object *obj =
4317 container_of(active, typeof(*obj), frontbuffer_write);
4318
d59b21ec 4319 intel_fb_obj_flush(obj, ORIGIN_CS);
5b8c8aec
CW
4320}
4321
37e680a1
CW
4322void i915_gem_object_init(struct drm_i915_gem_object *obj,
4323 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4324{
1233e2db
CW
4325 mutex_init(&obj->mm.lock);
4326
56cea323 4327 INIT_LIST_HEAD(&obj->global_link);
2f633156 4328 INIT_LIST_HEAD(&obj->vma_list);
d1b48c1e 4329 INIT_LIST_HEAD(&obj->lut_list);
8d9d5744 4330 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4331
37e680a1
CW
4332 obj->ops = ops;
4333
d07f0e59
CW
4334 reservation_object_init(&obj->__builtin_resv);
4335 obj->resv = &obj->__builtin_resv;
4336
50349247 4337 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
5b8c8aec 4338 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
a4f5ea64
CW
4339
4340 obj->mm.madv = I915_MADV_WILLNEED;
4341 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4342 mutex_init(&obj->mm.get_page.lock);
0327d6ba 4343
f19ec8cb 4344 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
4345}
4346
37e680a1 4347static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3599a91c
TU
4348 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4349 I915_GEM_OBJECT_IS_SHRINKABLE,
7c55e2c5 4350
37e680a1
CW
4351 .get_pages = i915_gem_object_get_pages_gtt,
4352 .put_pages = i915_gem_object_put_pages_gtt,
7c55e2c5
CW
4353
4354 .pwrite = i915_gem_object_pwrite_gtt,
37e680a1
CW
4355};
4356
465c403c
MA
4357static int i915_gem_object_create_shmem(struct drm_device *dev,
4358 struct drm_gem_object *obj,
4359 size_t size)
4360{
4361 struct drm_i915_private *i915 = to_i915(dev);
4362 unsigned long flags = VM_NORESERVE;
4363 struct file *filp;
4364
4365 drm_gem_private_object_init(dev, obj, size);
4366
4367 if (i915->mm.gemfs)
4368 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4369 flags);
4370 else
4371 filp = shmem_file_setup("i915", size, flags);
4372
4373 if (IS_ERR(filp))
4374 return PTR_ERR(filp);
4375
4376 obj->filp = filp;
4377
4378 return 0;
4379}
4380
b4bcbe2a 4381struct drm_i915_gem_object *
12d79d78 4382i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
ac52bc56 4383{
c397b908 4384 struct drm_i915_gem_object *obj;
5949eac4 4385 struct address_space *mapping;
b8f55be6 4386 unsigned int cache_level;
1a240d4d 4387 gfp_t mask;
fe3db79b 4388 int ret;
ac52bc56 4389
b4bcbe2a
CW
4390 /* There is a prevalence of the assumption that we fit the object's
4391 * page count inside a 32bit _signed_ variable. Let's document this and
4392 * catch if we ever need to fix it. In the meantime, if you do spot
4393 * such a local variable, please consider fixing!
4394 */
7a3ee5de 4395 if (size >> PAGE_SHIFT > INT_MAX)
b4bcbe2a
CW
4396 return ERR_PTR(-E2BIG);
4397
4398 if (overflows_type(size, obj->base.size))
4399 return ERR_PTR(-E2BIG);
4400
187685cb 4401 obj = i915_gem_object_alloc(dev_priv);
c397b908 4402 if (obj == NULL)
fe3db79b 4403 return ERR_PTR(-ENOMEM);
673a394b 4404
465c403c 4405 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
fe3db79b
CW
4406 if (ret)
4407 goto fail;
673a394b 4408
bed1ea95 4409 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
c0f86832 4410 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
bed1ea95
CW
4411 /* 965gm cannot relocate objects above 4GiB. */
4412 mask &= ~__GFP_HIGHMEM;
4413 mask |= __GFP_DMA32;
4414 }
4415
93c76a3d 4416 mapping = obj->base.filp->f_mapping;
bed1ea95 4417 mapping_set_gfp_mask(mapping, mask);
4846bf0c 4418 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
5949eac4 4419
37e680a1 4420 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4421
c397b908
DV
4422 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4423 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4424
b8f55be6 4425 if (HAS_LLC(dev_priv))
3d29b842 4426 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4427 * cache) for about a 10% performance improvement
4428 * compared to uncached. Graphics requests other than
4429 * display scanout are coherent with the CPU in
4430 * accessing this cache. This means in this mode we
4431 * don't need to clflush on the CPU side, and on the
4432 * GPU side we only need to flush internal caches to
4433 * get data visible to the CPU.
4434 *
4435 * However, we maintain the display planes as UC, and so
4436 * need to rebind when first used as such.
4437 */
b8f55be6
CW
4438 cache_level = I915_CACHE_LLC;
4439 else
4440 cache_level = I915_CACHE_NONE;
a1871112 4441
b8f55be6 4442 i915_gem_object_set_cache_coherency(obj, cache_level);
e27ab73d 4443
d861e338
DV
4444 trace_i915_gem_object_create(obj);
4445
05394f39 4446 return obj;
fe3db79b
CW
4447
4448fail:
4449 i915_gem_object_free(obj);
fe3db79b 4450 return ERR_PTR(ret);
c397b908
DV
4451}
4452
340fbd8c
CW
4453static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4454{
4455 /* If we are the last user of the backing storage (be it shmemfs
4456 * pages or stolen etc), we know that the pages are going to be
4457 * immediately released. In this case, we can then skip copying
4458 * back the contents from the GPU.
4459 */
4460
a4f5ea64 4461 if (obj->mm.madv != I915_MADV_WILLNEED)
340fbd8c
CW
4462 return false;
4463
4464 if (obj->base.filp == NULL)
4465 return true;
4466
4467 /* At first glance, this looks racy, but then again so would be
4468 * userspace racing mmap against close. However, the first external
4469 * reference to the filp can only be obtained through the
4470 * i915_gem_mmap_ioctl() which safeguards us against the user
4471 * acquiring such a reference whilst we are in the middle of
4472 * freeing the object.
4473 */
4474 return atomic_long_read(&obj->base.filp->f_count) == 1;
4475}
4476
fbbd37b3
CW
4477static void __i915_gem_free_objects(struct drm_i915_private *i915,
4478 struct llist_node *freed)
673a394b 4479{
fbbd37b3 4480 struct drm_i915_gem_object *obj, *on;
673a394b 4481
fbbd37b3
CW
4482 mutex_lock(&i915->drm.struct_mutex);
4483 intel_runtime_pm_get(i915);
4484 llist_for_each_entry(obj, freed, freed) {
4485 struct i915_vma *vma, *vn;
4486
4487 trace_i915_gem_object_destroy(obj);
4488
4489 GEM_BUG_ON(i915_gem_object_is_active(obj));
4490 list_for_each_entry_safe(vma, vn,
4491 &obj->vma_list, obj_link) {
fbbd37b3
CW
4492 GEM_BUG_ON(i915_vma_is_active(vma));
4493 vma->flags &= ~I915_VMA_PIN_MASK;
4494 i915_vma_close(vma);
4495 }
db6c2b41
CW
4496 GEM_BUG_ON(!list_empty(&obj->vma_list));
4497 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
fbbd37b3 4498
56cea323 4499 list_del(&obj->global_link);
fbbd37b3
CW
4500 }
4501 intel_runtime_pm_put(i915);
4502 mutex_unlock(&i915->drm.struct_mutex);
4503
f2be9d68
CW
4504 cond_resched();
4505
fbbd37b3
CW
4506 llist_for_each_entry_safe(obj, on, freed, freed) {
4507 GEM_BUG_ON(obj->bind_count);
a65adaf8 4508 GEM_BUG_ON(obj->userfault_count);
fbbd37b3 4509 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
67b48040 4510 GEM_BUG_ON(!list_empty(&obj->lut_list));
fbbd37b3
CW
4511
4512 if (obj->ops->release)
4513 obj->ops->release(obj);
f65c9168 4514
fbbd37b3
CW
4515 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4516 atomic_set(&obj->mm.pages_pin_count, 0);
548625ee 4517 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
f1fa4f44 4518 GEM_BUG_ON(i915_gem_object_has_pages(obj));
fbbd37b3
CW
4519
4520 if (obj->base.import_attach)
4521 drm_prime_gem_destroy(&obj->base, NULL);
4522
d07f0e59 4523 reservation_object_fini(&obj->__builtin_resv);
fbbd37b3
CW
4524 drm_gem_object_release(&obj->base);
4525 i915_gem_info_remove_obj(i915, obj->base.size);
4526
4527 kfree(obj->bit_17);
4528 i915_gem_object_free(obj);
4529 }
4530}
4531
4532static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4533{
4534 struct llist_node *freed;
4535
4536 freed = llist_del_all(&i915->mm.free_list);
4537 if (unlikely(freed))
4538 __i915_gem_free_objects(i915, freed);
4539}
4540
4541static void __i915_gem_free_work(struct work_struct *work)
4542{
4543 struct drm_i915_private *i915 =
4544 container_of(work, struct drm_i915_private, mm.free_work);
4545 struct llist_node *freed;
26e12f89 4546
b1f788c6
CW
4547 /* All file-owned VMA should have been released by this point through
4548 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4549 * However, the object may also be bound into the global GTT (e.g.
4550 * older GPUs without per-process support, or for direct access through
4551 * the GTT either for the user or for scanout). Those VMA still need to
4552 * unbound now.
4553 */
1488fc08 4554
5ad08be7 4555 while ((freed = llist_del_all(&i915->mm.free_list))) {
fbbd37b3 4556 __i915_gem_free_objects(i915, freed);
5ad08be7
CW
4557 if (need_resched())
4558 break;
4559 }
fbbd37b3 4560}
a071fa00 4561
fbbd37b3
CW
4562static void __i915_gem_free_object_rcu(struct rcu_head *head)
4563{
4564 struct drm_i915_gem_object *obj =
4565 container_of(head, typeof(*obj), rcu);
4566 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4567
4568 /* We can't simply use call_rcu() from i915_gem_free_object()
4569 * as we need to block whilst unbinding, and the call_rcu
4570 * task may be called from softirq context. So we take a
4571 * detour through a worker.
4572 */
4573 if (llist_add(&obj->freed, &i915->mm.free_list))
4574 schedule_work(&i915->mm.free_work);
4575}
656bfa3a 4576
fbbd37b3
CW
4577void i915_gem_free_object(struct drm_gem_object *gem_obj)
4578{
4579 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
a4f5ea64 4580
bc0629a7
CW
4581 if (obj->mm.quirked)
4582 __i915_gem_object_unpin_pages(obj);
4583
340fbd8c 4584 if (discard_backing_storage(obj))
a4f5ea64 4585 obj->mm.madv = I915_MADV_DONTNEED;
de151cf6 4586
fbbd37b3
CW
4587 /* Before we free the object, make sure any pure RCU-only
4588 * read-side critical sections are complete, e.g.
4589 * i915_gem_busy_ioctl(). For the corresponding synchronized
4590 * lookup see i915_gem_object_lookup_rcu().
4591 */
4592 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
673a394b
EA
4593}
4594
f8a7fde4
CW
4595void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4596{
4597 lockdep_assert_held(&obj->base.dev->struct_mutex);
4598
d1b48c1e
CW
4599 if (!i915_gem_object_has_active_reference(obj) &&
4600 i915_gem_object_is_active(obj))
f8a7fde4
CW
4601 i915_gem_object_set_active_reference(obj);
4602 else
4603 i915_gem_object_put(obj);
4604}
4605
3033acab
CW
4606static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4607{
4608 struct intel_engine_cs *engine;
4609 enum intel_engine_id id;
4610
4611 for_each_engine(engine, dev_priv, id)
f131e356
CW
4612 GEM_BUG_ON(engine->last_retired_context &&
4613 !i915_gem_context_is_kernel(engine->last_retired_context));
3033acab
CW
4614}
4615
24145517
CW
4616void i915_gem_sanitize(struct drm_i915_private *i915)
4617{
f36325f3
CW
4618 if (i915_terminally_wedged(&i915->gpu_error)) {
4619 mutex_lock(&i915->drm.struct_mutex);
4620 i915_gem_unset_wedged(i915);
4621 mutex_unlock(&i915->drm.struct_mutex);
4622 }
4623
24145517
CW
4624 /*
4625 * If we inherit context state from the BIOS or earlier occupants
4626 * of the GPU, the GPU may be in an inconsistent state when we
4627 * try to take over. The only way to remove the earlier state
4628 * is by resetting. However, resetting on earlier gen is tricky as
4629 * it may impact the display and we are uncertain about the stability
ea117b8d 4630 * of the reset, so this could be applied to even earlier gen.
24145517 4631 */
ea117b8d 4632 if (INTEL_GEN(i915) >= 5) {
24145517
CW
4633 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4634 WARN_ON(reset && reset != -ENODEV);
4635 }
4636}
4637
bf9e8429 4638int i915_gem_suspend(struct drm_i915_private *dev_priv)
29105ccc 4639{
bf9e8429 4640 struct drm_device *dev = &dev_priv->drm;
dcff85c8 4641 int ret;
28dfe52a 4642
c998e8a0 4643 intel_runtime_pm_get(dev_priv);
54b4f68f
CW
4644 intel_suspend_gt_powersave(dev_priv);
4645
45c5f202 4646 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4647
4648 /* We have to flush all the executing contexts to main memory so
4649 * that they can saved in the hibernation image. To ensure the last
4650 * context image is coherent, we have to switch away from it. That
4651 * leaves the dev_priv->kernel_context still active when
4652 * we actually suspend, and its image in memory may not match the GPU
4653 * state. Fortunately, the kernel_context is disposable and we do
4654 * not rely on its state.
4655 */
4656 ret = i915_gem_switch_to_kernel_context(dev_priv);
4657 if (ret)
c998e8a0 4658 goto err_unlock;
5ab57c70 4659
22dd3bb9
CW
4660 ret = i915_gem_wait_for_idle(dev_priv,
4661 I915_WAIT_INTERRUPTIBLE |
4662 I915_WAIT_LOCKED);
cad9946c 4663 if (ret && ret != -EIO)
c998e8a0 4664 goto err_unlock;
f7403347 4665
3033acab 4666 assert_kernel_context_is_current(dev_priv);
829a0af2 4667 i915_gem_contexts_lost(dev_priv);
45c5f202
CW
4668 mutex_unlock(&dev->struct_mutex);
4669
63987bfe
SAK
4670 intel_guc_suspend(dev_priv);
4671
737b1506 4672 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3 4673 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
bdeb9785
CW
4674
4675 /* As the idle_work is rearming if it detects a race, play safe and
4676 * repeat the flush until it is definitely idle.
4677 */
7c26240e 4678 drain_delayed_work(&dev_priv->gt.idle_work);
bdeb9785 4679
bdcf120b
CW
4680 /* Assert that we sucessfully flushed all the work and
4681 * reset the GPU back to its idle, low power state.
4682 */
67d97da3 4683 WARN_ON(dev_priv->gt.awake);
fc692bd3
CW
4684 if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4685 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
bdcf120b 4686
1c777c5d
ID
4687 /*
4688 * Neither the BIOS, ourselves or any other kernel
4689 * expects the system to be in execlists mode on startup,
4690 * so we need to reset the GPU back to legacy mode. And the only
4691 * known way to disable logical contexts is through a GPU reset.
4692 *
4693 * So in order to leave the system in a known default configuration,
4694 * always reset the GPU upon unload and suspend. Afterwards we then
4695 * clean up the GEM state tracking, flushing off the requests and
4696 * leaving the system in a known idle state.
4697 *
4698 * Note that is of the upmost importance that the GPU is idle and
4699 * all stray writes are flushed *before* we dismantle the backing
4700 * storage for the pinned objects.
4701 *
4702 * However, since we are uncertain that resetting the GPU on older
4703 * machines is a good idea, we don't - just in case it leaves the
4704 * machine in an unusable condition.
4705 */
24145517 4706 i915_gem_sanitize(dev_priv);
cad9946c
CW
4707
4708 intel_runtime_pm_put(dev_priv);
4709 return 0;
1c777c5d 4710
c998e8a0 4711err_unlock:
45c5f202 4712 mutex_unlock(&dev->struct_mutex);
c998e8a0 4713 intel_runtime_pm_put(dev_priv);
45c5f202 4714 return ret;
673a394b
EA
4715}
4716
bf9e8429 4717void i915_gem_resume(struct drm_i915_private *dev_priv)
5ab57c70 4718{
bf9e8429 4719 struct drm_device *dev = &dev_priv->drm;
5ab57c70 4720
31ab49ab
ID
4721 WARN_ON(dev_priv->gt.awake);
4722
5ab57c70 4723 mutex_lock(&dev->struct_mutex);
275a991c 4724 i915_gem_restore_gtt_mappings(dev_priv);
269e6ea9 4725 i915_gem_restore_fences(dev_priv);
5ab57c70
CW
4726
4727 /* As we didn't flush the kernel context before suspend, we cannot
4728 * guarantee that the context image is complete. So let's just reset
4729 * it and start again.
4730 */
821ed7df 4731 dev_priv->gt.resume(dev_priv);
5ab57c70
CW
4732
4733 mutex_unlock(&dev->struct_mutex);
4734}
4735
c6be607a 4736void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
f691e2f4 4737{
c6be607a 4738 if (INTEL_GEN(dev_priv) < 5 ||
f691e2f4
DV
4739 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4740 return;
4741
4742 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4743 DISP_TILE_SURFACE_SWIZZLING);
4744
5db94019 4745 if (IS_GEN5(dev_priv))
11782b02
DV
4746 return;
4747
f691e2f4 4748 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5db94019 4749 if (IS_GEN6(dev_priv))
6b26c86d 4750 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5db94019 4751 else if (IS_GEN7(dev_priv))
6b26c86d 4752 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5db94019 4753 else if (IS_GEN8(dev_priv))
31a5336e 4754 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4755 else
4756 BUG();
f691e2f4 4757}
e21af88d 4758
50a0bc90 4759static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
81e7f200 4760{
81e7f200
VS
4761 I915_WRITE(RING_CTL(base), 0);
4762 I915_WRITE(RING_HEAD(base), 0);
4763 I915_WRITE(RING_TAIL(base), 0);
4764 I915_WRITE(RING_START(base), 0);
4765}
4766
50a0bc90 4767static void init_unused_rings(struct drm_i915_private *dev_priv)
81e7f200 4768{
50a0bc90
TU
4769 if (IS_I830(dev_priv)) {
4770 init_unused_ring(dev_priv, PRB1_BASE);
4771 init_unused_ring(dev_priv, SRB0_BASE);
4772 init_unused_ring(dev_priv, SRB1_BASE);
4773 init_unused_ring(dev_priv, SRB2_BASE);
4774 init_unused_ring(dev_priv, SRB3_BASE);
4775 } else if (IS_GEN2(dev_priv)) {
4776 init_unused_ring(dev_priv, SRB0_BASE);
4777 init_unused_ring(dev_priv, SRB1_BASE);
4778 } else if (IS_GEN3(dev_priv)) {
4779 init_unused_ring(dev_priv, PRB1_BASE);
4780 init_unused_ring(dev_priv, PRB2_BASE);
81e7f200
VS
4781 }
4782}
4783
20a8a74a 4784static int __i915_gem_restart_engines(void *data)
4fc7c971 4785{
20a8a74a 4786 struct drm_i915_private *i915 = data;
e2f80391 4787 struct intel_engine_cs *engine;
3b3f1650 4788 enum intel_engine_id id;
20a8a74a
CW
4789 int err;
4790
4791 for_each_engine(engine, i915, id) {
4792 err = engine->init_hw(engine);
4793 if (err)
4794 return err;
4795 }
4796
4797 return 0;
4798}
4799
4800int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4801{
d200cda6 4802 int ret;
4fc7c971 4803
de867c20
CW
4804 dev_priv->gt.last_init_time = ktime_get();
4805
5e4f5189
CW
4806 /* Double layer security blanket, see i915_gem_init() */
4807 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4808
0031fb96 4809 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4810 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4811
772c2a51 4812 if (IS_HASWELL(dev_priv))
50a0bc90 4813 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
0bf21347 4814 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4815
6e266956 4816 if (HAS_PCH_NOP(dev_priv)) {
fd6b8f43 4817 if (IS_IVYBRIDGE(dev_priv)) {
6ba844b0
DV
4818 u32 temp = I915_READ(GEN7_MSG_CTL);
4819 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4820 I915_WRITE(GEN7_MSG_CTL, temp);
c6be607a 4821 } else if (INTEL_GEN(dev_priv) >= 7) {
6ba844b0
DV
4822 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4823 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4824 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4825 }
88a2b2a3
BW
4826 }
4827
c6be607a 4828 i915_gem_init_swizzling(dev_priv);
4fc7c971 4829
d5abdfda
DV
4830 /*
4831 * At least 830 can leave some of the unused rings
4832 * "active" (ie. head != tail) after resume which
4833 * will prevent c3 entry. Makes sure all unused rings
4834 * are totally idle.
4835 */
50a0bc90 4836 init_unused_rings(dev_priv);
d5abdfda 4837
ed54c1a1 4838 BUG_ON(!dev_priv->kernel_context);
90638cc1 4839
c6be607a 4840 ret = i915_ppgtt_init_hw(dev_priv);
4ad2fd88
JH
4841 if (ret) {
4842 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4843 goto out;
4844 }
4845
4846 /* Need to do basic initialisation of all rings first: */
20a8a74a
CW
4847 ret = __i915_gem_restart_engines(dev_priv);
4848 if (ret)
4849 goto out;
99433931 4850
bf9e8429 4851 intel_mocs_init_l3cc_table(dev_priv);
0ccdacf6 4852
b8991403
OM
4853 /* We can't enable contexts until all firmware is loaded */
4854 ret = intel_uc_init_hw(dev_priv);
4855 if (ret)
4856 goto out;
33a732f4 4857
5e4f5189
CW
4858out:
4859 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4860 return ret;
8187a2b7
ZN
4861}
4862
39df9190
CW
4863bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4864{
4865 if (INTEL_INFO(dev_priv)->gen < 6)
4866 return false;
4867
4868 /* TODO: make semaphores and Execlists play nicely together */
4f044a88 4869 if (i915_modparams.enable_execlists)
39df9190
CW
4870 return false;
4871
4872 if (value >= 0)
4873 return value;
4874
39df9190 4875 /* Enable semaphores on SNB when IO remapping is off */
80debff8 4876 if (IS_GEN6(dev_priv) && intel_vtd_active())
39df9190 4877 return false;
39df9190
CW
4878
4879 return true;
4880}
4881
bf9e8429 4882int i915_gem_init(struct drm_i915_private *dev_priv)
1070a42b 4883{
1070a42b
CW
4884 int ret;
4885
bf9e8429 4886 mutex_lock(&dev_priv->drm.struct_mutex);
d62b4892 4887
da9fe3f3
MA
4888 /*
4889 * We need to fallback to 4K pages since gvt gtt handling doesn't
4890 * support huge page entries - we will need to check either hypervisor
4891 * mm can support huge guest page or just do emulation in gvt.
4892 */
4893 if (intel_vgpu_active(dev_priv))
4894 mkwrite_device_info(dev_priv)->page_sizes =
4895 I915_GTT_PAGE_SIZE_4K;
4896
94312828 4897 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
57822dc6 4898
4f044a88 4899 if (!i915_modparams.enable_execlists) {
821ed7df 4900 dev_priv->gt.resume = intel_legacy_submission_resume;
7e37f889 4901 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
454afebd 4902 } else {
821ed7df 4903 dev_priv->gt.resume = intel_lr_context_resume;
117897f4 4904 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
a83014d3
OM
4905 }
4906
5e4f5189
CW
4907 /* This is just a security blanket to placate dragons.
4908 * On some systems, we very sporadically observe that the first TLBs
4909 * used by the CS may be stale, despite us poking the TLB reset. If
4910 * we hold the forcewake during initialisation these problems
4911 * just magically go away.
4912 */
4913 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4914
8a2421bd
CW
4915 ret = i915_gem_init_userptr(dev_priv);
4916 if (ret)
4917 goto out_unlock;
f6b9d5ca
CW
4918
4919 ret = i915_gem_init_ggtt(dev_priv);
4920 if (ret)
4921 goto out_unlock;
d62b4892 4922
829a0af2 4923 ret = i915_gem_contexts_init(dev_priv);
7bcc3777
JN
4924 if (ret)
4925 goto out_unlock;
2fa48d8d 4926
bf9e8429 4927 ret = intel_engines_init(dev_priv);
35a57ffb 4928 if (ret)
7bcc3777 4929 goto out_unlock;
2fa48d8d 4930
bf9e8429 4931 ret = i915_gem_init_hw(dev_priv);
60990320 4932 if (ret == -EIO) {
7e21d648 4933 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4934 * wedged. But we only want to do this where the GPU is angry,
4935 * for all other failure, such as an allocation failure, bail.
4936 */
4937 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
821ed7df 4938 i915_gem_set_wedged(dev_priv);
60990320 4939 ret = 0;
1070a42b 4940 }
7bcc3777
JN
4941
4942out_unlock:
5e4f5189 4943 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
bf9e8429 4944 mutex_unlock(&dev_priv->drm.struct_mutex);
1070a42b 4945
60990320 4946 return ret;
1070a42b
CW
4947}
4948
24145517
CW
4949void i915_gem_init_mmio(struct drm_i915_private *i915)
4950{
4951 i915_gem_sanitize(i915);
4952}
4953
8187a2b7 4954void
cb15d9f8 4955i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
8187a2b7 4956{
e2f80391 4957 struct intel_engine_cs *engine;
3b3f1650 4958 enum intel_engine_id id;
8187a2b7 4959
3b3f1650 4960 for_each_engine(engine, dev_priv, id)
117897f4 4961 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4962}
4963
40ae4e16
ID
4964void
4965i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4966{
49ef5294 4967 int i;
40ae4e16
ID
4968
4969 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4970 !IS_CHERRYVIEW(dev_priv))
4971 dev_priv->num_fence_regs = 32;
73f67aa8
JN
4972 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4973 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4974 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
40ae4e16
ID
4975 dev_priv->num_fence_regs = 16;
4976 else
4977 dev_priv->num_fence_regs = 8;
4978
c033666a 4979 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4980 dev_priv->num_fence_regs =
4981 I915_READ(vgtif_reg(avail_rs.fence_num));
4982
4983 /* Initialize fence registers to zero */
49ef5294
CW
4984 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4985 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4986
4987 fence->i915 = dev_priv;
4988 fence->id = i;
4989 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4990 }
4362f4f6 4991 i915_gem_restore_fences(dev_priv);
40ae4e16 4992
4362f4f6 4993 i915_gem_detect_bit_6_swizzle(dev_priv);
40ae4e16
ID
4994}
4995
73cb9701 4996int
cb15d9f8 4997i915_gem_load_init(struct drm_i915_private *dev_priv)
673a394b 4998{
a933568e 4999 int err = -ENOMEM;
42dcedd4 5000
a933568e
TU
5001 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5002 if (!dev_priv->objects)
73cb9701 5003 goto err_out;
73cb9701 5004
a933568e
TU
5005 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5006 if (!dev_priv->vmas)
73cb9701 5007 goto err_objects;
73cb9701 5008
d1b48c1e
CW
5009 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5010 if (!dev_priv->luts)
5011 goto err_vmas;
5012
a933568e
TU
5013 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
5014 SLAB_HWCACHE_ALIGN |
5015 SLAB_RECLAIM_ACCOUNT |
5f0d5a3a 5016 SLAB_TYPESAFE_BY_RCU);
a933568e 5017 if (!dev_priv->requests)
d1b48c1e 5018 goto err_luts;
73cb9701 5019
52e54209
CW
5020 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5021 SLAB_HWCACHE_ALIGN |
5022 SLAB_RECLAIM_ACCOUNT);
5023 if (!dev_priv->dependencies)
5024 goto err_requests;
5025
c5cf9a91
CW
5026 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5027 if (!dev_priv->priorities)
5028 goto err_dependencies;
5029
73cb9701
CW
5030 mutex_lock(&dev_priv->drm.struct_mutex);
5031 INIT_LIST_HEAD(&dev_priv->gt.timelines);
bb89485e 5032 err = i915_gem_timeline_init__global(dev_priv);
73cb9701
CW
5033 mutex_unlock(&dev_priv->drm.struct_mutex);
5034 if (err)
c5cf9a91 5035 goto err_priorities;
673a394b 5036
fbbd37b3
CW
5037 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
5038 init_llist_head(&dev_priv->mm.free_list);
6c085a72
CW
5039 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5040 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5041 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
275f039d 5042 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
67d97da3 5043 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 5044 i915_gem_retire_work_handler);
67d97da3 5045 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 5046 i915_gem_idle_work_handler);
1f15b76f 5047 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 5048 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5049
6f633402
JL
5050 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5051
b5add959 5052 spin_lock_init(&dev_priv->fb_tracking.lock);
73cb9701 5053
465c403c
MA
5054 err = i915_gemfs_init(dev_priv);
5055 if (err)
5056 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5057
73cb9701
CW
5058 return 0;
5059
c5cf9a91
CW
5060err_priorities:
5061 kmem_cache_destroy(dev_priv->priorities);
52e54209
CW
5062err_dependencies:
5063 kmem_cache_destroy(dev_priv->dependencies);
73cb9701
CW
5064err_requests:
5065 kmem_cache_destroy(dev_priv->requests);
d1b48c1e
CW
5066err_luts:
5067 kmem_cache_destroy(dev_priv->luts);
73cb9701
CW
5068err_vmas:
5069 kmem_cache_destroy(dev_priv->vmas);
5070err_objects:
5071 kmem_cache_destroy(dev_priv->objects);
5072err_out:
5073 return err;
673a394b 5074}
71acb5eb 5075
cb15d9f8 5076void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
d64aa096 5077{
c4d4c1c6 5078 i915_gem_drain_freed_objects(dev_priv);
7d5d59e5 5079 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
c4d4c1c6 5080 WARN_ON(dev_priv->mm.object_count);
7d5d59e5 5081
ea84aa77
MA
5082 mutex_lock(&dev_priv->drm.struct_mutex);
5083 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5084 WARN_ON(!list_empty(&dev_priv->gt.timelines));
5085 mutex_unlock(&dev_priv->drm.struct_mutex);
5086
c5cf9a91 5087 kmem_cache_destroy(dev_priv->priorities);
52e54209 5088 kmem_cache_destroy(dev_priv->dependencies);
d64aa096 5089 kmem_cache_destroy(dev_priv->requests);
d1b48c1e 5090 kmem_cache_destroy(dev_priv->luts);
d64aa096
ID
5091 kmem_cache_destroy(dev_priv->vmas);
5092 kmem_cache_destroy(dev_priv->objects);
0eafec6d
CW
5093
5094 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5095 rcu_barrier();
465c403c
MA
5096
5097 i915_gemfs_fini(dev_priv);
d64aa096
ID
5098}
5099
6a800eab
CW
5100int i915_gem_freeze(struct drm_i915_private *dev_priv)
5101{
d0aa301a
CW
5102 /* Discard all purgeable objects, let userspace recover those as
5103 * required after resuming.
5104 */
6a800eab 5105 i915_gem_shrink_all(dev_priv);
6a800eab 5106
6a800eab
CW
5107 return 0;
5108}
5109
461fb99c
CW
5110int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5111{
5112 struct drm_i915_gem_object *obj;
7aab2d53
CW
5113 struct list_head *phases[] = {
5114 &dev_priv->mm.unbound_list,
5115 &dev_priv->mm.bound_list,
5116 NULL
5117 }, **p;
461fb99c
CW
5118
5119 /* Called just before we write the hibernation image.
5120 *
5121 * We need to update the domain tracking to reflect that the CPU
5122 * will be accessing all the pages to create and restore from the
5123 * hibernation, and so upon restoration those pages will be in the
5124 * CPU domain.
5125 *
5126 * To make sure the hibernation image contains the latest state,
5127 * we update that state just before writing out the image.
7aab2d53
CW
5128 *
5129 * To try and reduce the hibernation image, we manually shrink
d0aa301a 5130 * the objects as well, see i915_gem_freeze()
461fb99c
CW
5131 */
5132
912d572d 5133 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
17b93c40 5134 i915_gem_drain_freed_objects(dev_priv);
461fb99c 5135
d0aa301a 5136 mutex_lock(&dev_priv->drm.struct_mutex);
7aab2d53 5137 for (p = phases; *p; p++) {
e27ab73d
CW
5138 list_for_each_entry(obj, *p, global_link)
5139 __start_cpu_write(obj);
461fb99c 5140 }
6a800eab 5141 mutex_unlock(&dev_priv->drm.struct_mutex);
461fb99c
CW
5142
5143 return 0;
5144}
5145
f787a5f5 5146void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5147{
f787a5f5 5148 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 5149 struct drm_i915_gem_request *request;
b962442e
EA
5150
5151 /* Clean up our request list when the client is going away, so that
5152 * later retire_requests won't dereference our soon-to-be-gone
5153 * file_priv.
5154 */
1c25595f 5155 spin_lock(&file_priv->mm.lock);
c8659efa 5156 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
f787a5f5 5157 request->file_priv = NULL;
1c25595f 5158 spin_unlock(&file_priv->mm.lock);
b29c19b6
CW
5159}
5160
829a0af2 5161int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
b29c19b6
CW
5162{
5163 struct drm_i915_file_private *file_priv;
e422b888 5164 int ret;
b29c19b6 5165
c4c29d7b 5166 DRM_DEBUG("\n");
b29c19b6
CW
5167
5168 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5169 if (!file_priv)
5170 return -ENOMEM;
5171
5172 file->driver_priv = file_priv;
829a0af2 5173 file_priv->dev_priv = i915;
ab0e7ff9 5174 file_priv->file = file;
b29c19b6
CW
5175
5176 spin_lock_init(&file_priv->mm.lock);
5177 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5178
c80ff16e 5179 file_priv->bsd_engine = -1;
de1add36 5180
829a0af2 5181 ret = i915_gem_context_open(i915, file);
e422b888
BW
5182 if (ret)
5183 kfree(file_priv);
b29c19b6 5184
e422b888 5185 return ret;
b29c19b6
CW
5186}
5187
b680c37a
DV
5188/**
5189 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5190 * @old: current GEM buffer for the frontbuffer slots
5191 * @new: new GEM buffer for the frontbuffer slots
5192 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5193 *
5194 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5195 * from @old and setting them in @new. Both @old and @new can be NULL.
5196 */
a071fa00
DV
5197void i915_gem_track_fb(struct drm_i915_gem_object *old,
5198 struct drm_i915_gem_object *new,
5199 unsigned frontbuffer_bits)
5200{
faf5bf0a
CW
5201 /* Control of individual bits within the mask are guarded by
5202 * the owning plane->mutex, i.e. we can never see concurrent
5203 * manipulation of individual bits. But since the bitfield as a whole
5204 * is updated using RMW, we need to use atomics in order to update
5205 * the bits.
5206 */
5207 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5208 sizeof(atomic_t) * BITS_PER_BYTE);
5209
a071fa00 5210 if (old) {
faf5bf0a
CW
5211 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5212 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
a071fa00
DV
5213 }
5214
5215 if (new) {
faf5bf0a
CW
5216 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5217 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
a071fa00
DV
5218 }
5219}
5220
ea70299d
DG
5221/* Allocate a new GEM object and fill it with the supplied data */
5222struct drm_i915_gem_object *
12d79d78 5223i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
ea70299d
DG
5224 const void *data, size_t size)
5225{
5226 struct drm_i915_gem_object *obj;
be062fa4
CW
5227 struct file *file;
5228 size_t offset;
5229 int err;
ea70299d 5230
12d79d78 5231 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
fe3db79b 5232 if (IS_ERR(obj))
ea70299d
DG
5233 return obj;
5234
ce8ff099 5235 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
ea70299d 5236
be062fa4
CW
5237 file = obj->base.filp;
5238 offset = 0;
5239 do {
5240 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5241 struct page *page;
5242 void *pgdata, *vaddr;
ea70299d 5243
be062fa4
CW
5244 err = pagecache_write_begin(file, file->f_mapping,
5245 offset, len, 0,
5246 &page, &pgdata);
5247 if (err < 0)
5248 goto fail;
ea70299d 5249
be062fa4
CW
5250 vaddr = kmap(page);
5251 memcpy(vaddr, data, len);
5252 kunmap(page);
5253
5254 err = pagecache_write_end(file, file->f_mapping,
5255 offset, len, len,
5256 page, pgdata);
5257 if (err < 0)
5258 goto fail;
5259
5260 size -= len;
5261 data += len;
5262 offset += len;
5263 } while (size);
ea70299d
DG
5264
5265 return obj;
5266
5267fail:
f8c417cd 5268 i915_gem_object_put(obj);
be062fa4 5269 return ERR_PTR(err);
ea70299d 5270}
96d77634
CW
5271
5272struct scatterlist *
5273i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5274 unsigned int n,
5275 unsigned int *offset)
5276{
a4f5ea64 5277 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
96d77634
CW
5278 struct scatterlist *sg;
5279 unsigned int idx, count;
5280
5281 might_sleep();
5282 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
a4f5ea64 5283 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
96d77634
CW
5284
5285 /* As we iterate forward through the sg, we record each entry in a
5286 * radixtree for quick repeated (backwards) lookups. If we have seen
5287 * this index previously, we will have an entry for it.
5288 *
5289 * Initial lookup is O(N), but this is amortized to O(1) for
5290 * sequential page access (where each new request is consecutive
5291 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5292 * i.e. O(1) with a large constant!
5293 */
5294 if (n < READ_ONCE(iter->sg_idx))
5295 goto lookup;
5296
5297 mutex_lock(&iter->lock);
5298
5299 /* We prefer to reuse the last sg so that repeated lookup of this
5300 * (or the subsequent) sg are fast - comparing against the last
5301 * sg is faster than going through the radixtree.
5302 */
5303
5304 sg = iter->sg_pos;
5305 idx = iter->sg_idx;
5306 count = __sg_page_count(sg);
5307
5308 while (idx + count <= n) {
5309 unsigned long exception, i;
5310 int ret;
5311
5312 /* If we cannot allocate and insert this entry, or the
5313 * individual pages from this range, cancel updating the
5314 * sg_idx so that on this lookup we are forced to linearly
5315 * scan onwards, but on future lookups we will try the
5316 * insertion again (in which case we need to be careful of
5317 * the error return reporting that we have already inserted
5318 * this index).
5319 */
5320 ret = radix_tree_insert(&iter->radix, idx, sg);
5321 if (ret && ret != -EEXIST)
5322 goto scan;
5323
5324 exception =
5325 RADIX_TREE_EXCEPTIONAL_ENTRY |
5326 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5327 for (i = 1; i < count; i++) {
5328 ret = radix_tree_insert(&iter->radix, idx + i,
5329 (void *)exception);
5330 if (ret && ret != -EEXIST)
5331 goto scan;
5332 }
5333
5334 idx += count;
5335 sg = ____sg_next(sg);
5336 count = __sg_page_count(sg);
5337 }
5338
5339scan:
5340 iter->sg_pos = sg;
5341 iter->sg_idx = idx;
5342
5343 mutex_unlock(&iter->lock);
5344
5345 if (unlikely(n < idx)) /* insertion completed by another thread */
5346 goto lookup;
5347
5348 /* In case we failed to insert the entry into the radixtree, we need
5349 * to look beyond the current sg.
5350 */
5351 while (idx + count <= n) {
5352 idx += count;
5353 sg = ____sg_next(sg);
5354 count = __sg_page_count(sg);
5355 }
5356
5357 *offset = n - idx;
5358 return sg;
5359
5360lookup:
5361 rcu_read_lock();
5362
5363 sg = radix_tree_lookup(&iter->radix, n);
5364 GEM_BUG_ON(!sg);
5365
5366 /* If this index is in the middle of multi-page sg entry,
5367 * the radixtree will contain an exceptional entry that points
5368 * to the start of that range. We will return the pointer to
5369 * the base page and the offset of this page within the
5370 * sg entry's range.
5371 */
5372 *offset = 0;
5373 if (unlikely(radix_tree_exception(sg))) {
5374 unsigned long base =
5375 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5376
5377 sg = radix_tree_lookup(&iter->radix, base);
5378 GEM_BUG_ON(!sg);
5379
5380 *offset = n - base;
5381 }
5382
5383 rcu_read_unlock();
5384
5385 return sg;
5386}
5387
5388struct page *
5389i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5390{
5391 struct scatterlist *sg;
5392 unsigned int offset;
5393
5394 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5395
5396 sg = i915_gem_object_get_sg(obj, n, &offset);
5397 return nth_page(sg_page(sg), offset);
5398}
5399
5400/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5401struct page *
5402i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5403 unsigned int n)
5404{
5405 struct page *page;
5406
5407 page = i915_gem_object_get_page(obj, n);
a4f5ea64 5408 if (!obj->mm.dirty)
96d77634
CW
5409 set_page_dirty(page);
5410
5411 return page;
5412}
5413
5414dma_addr_t
5415i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5416 unsigned long n)
5417{
5418 struct scatterlist *sg;
5419 unsigned int offset;
5420
5421 sg = i915_gem_object_get_sg(obj, n, &offset);
5422 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5423}
935a2f77 5424
8eeb7906
CW
5425int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5426{
5427 struct sg_table *pages;
5428 int err;
5429
5430 if (align > obj->base.size)
5431 return -EINVAL;
5432
5433 if (obj->ops == &i915_gem_phys_ops)
5434 return 0;
5435
5436 if (obj->ops != &i915_gem_object_ops)
5437 return -EINVAL;
5438
5439 err = i915_gem_object_unbind(obj);
5440 if (err)
5441 return err;
5442
5443 mutex_lock(&obj->mm.lock);
5444
5445 if (obj->mm.madv != I915_MADV_WILLNEED) {
5446 err = -EFAULT;
5447 goto err_unlock;
5448 }
5449
5450 if (obj->mm.quirked) {
5451 err = -EFAULT;
5452 goto err_unlock;
5453 }
5454
5455 if (obj->mm.mapping) {
5456 err = -EBUSY;
5457 goto err_unlock;
5458 }
5459
5460 pages = obj->mm.pages;
5461 obj->ops = &i915_gem_phys_ops;
5462
8fb6a5df 5463 err = ____i915_gem_object_get_pages(obj);
8eeb7906
CW
5464 if (err)
5465 goto err_xfer;
5466
5467 /* Perma-pin (until release) the physical set of pages */
5468 __i915_gem_object_pin_pages(obj);
5469
5470 if (!IS_ERR_OR_NULL(pages))
5471 i915_gem_object_ops.put_pages(obj, pages);
5472 mutex_unlock(&obj->mm.lock);
5473 return 0;
5474
5475err_xfer:
5476 obj->ops = &i915_gem_object_ops;
5477 obj->mm.pages = pages;
5478err_unlock:
5479 mutex_unlock(&obj->mm.lock);
5480 return err;
5481}
5482
935a2f77
CW
5483#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5484#include "selftests/scatterlist.c"
66d9cb5d 5485#include "selftests/mock_gem_device.c"
44653988 5486#include "selftests/huge_gem_object.c"
4049866f 5487#include "selftests/huge_pages.c"
8335fd65 5488#include "selftests/i915_gem_object.c"
17059450 5489#include "selftests/i915_gem_coherency.c"
935a2f77 5490#endif