]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Expand DPF support to Haswell
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
8c59967c 58static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 59
61050808
CW
60static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
61{
62 if (obj->tiling_mode)
63 i915_gem_release_mmap(obj);
64
65 /* As we do not have an associated fence register, we will force
66 * a tiling change if we ever need to acquire one.
67 */
5d82e3e6 68 obj->fence_dirty = false;
61050808
CW
69 obj->fence_reg = I915_FENCE_REG_NONE;
70}
71
73aa808f
CW
72/* some bookkeeping */
73static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75{
76 dev_priv->mm.object_count++;
77 dev_priv->mm.object_memory += size;
78}
79
80static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
81 size_t size)
82{
83 dev_priv->mm.object_count--;
84 dev_priv->mm.object_memory -= size;
85}
86
21dd3734
CW
87static int
88i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
89{
90 struct drm_i915_private *dev_priv = dev->dev_private;
91 struct completion *x = &dev_priv->error_completion;
92 unsigned long flags;
93 int ret;
94
95 if (!atomic_read(&dev_priv->mm.wedged))
96 return 0;
97
0a6759c6
DV
98 /*
99 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
100 * userspace. If it takes that long something really bad is going on and
101 * we should simply try to bail out and fail as gracefully as possible.
102 */
103 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
104 if (ret == 0) {
105 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
106 return -EIO;
107 } else if (ret < 0) {
30dbf0c0 108 return ret;
0a6759c6 109 }
30dbf0c0 110
21dd3734
CW
111 if (atomic_read(&dev_priv->mm.wedged)) {
112 /* GPU is hung, bump the completion count to account for
113 * the token we just consumed so that we never hit zero and
114 * end up waiting upon a subsequent completion event that
115 * will never happen.
116 */
117 spin_lock_irqsave(&x->wait.lock, flags);
118 x->done++;
119 spin_unlock_irqrestore(&x->wait.lock, flags);
120 }
121 return 0;
30dbf0c0
CW
122}
123
54cf91dc 124int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 125{
76c1dec1
CW
126 int ret;
127
21dd3734 128 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
129 if (ret)
130 return ret;
131
132 ret = mutex_lock_interruptible(&dev->struct_mutex);
133 if (ret)
134 return ret;
135
23bc5982 136 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
137 return 0;
138}
30dbf0c0 139
7d1c4804 140static inline bool
05394f39 141i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 142{
1b50247a 143 return !obj->active;
7d1c4804
CW
144}
145
79e53945
JB
146int
147i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
79e53945
JB
149{
150 struct drm_i915_gem_init *args = data;
2021746e 151
7bb6fb8d
DV
152 if (drm_core_check_feature(dev, DRIVER_MODESET))
153 return -ENODEV;
154
2021746e
CW
155 if (args->gtt_start >= args->gtt_end ||
156 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
157 return -EINVAL;
79e53945 158
f534bc0b
DV
159 /* GEM with user mode setting was never supported on ilk and later. */
160 if (INTEL_INFO(dev)->gen >= 5)
161 return -ENODEV;
162
79e53945 163 mutex_lock(&dev->struct_mutex);
644ec02b
DV
164 i915_gem_init_global_gtt(dev, args->gtt_start,
165 args->gtt_end, args->gtt_end);
673a394b
EA
166 mutex_unlock(&dev->struct_mutex);
167
2021746e 168 return 0;
673a394b
EA
169}
170
5a125c3c
EA
171int
172i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 173 struct drm_file *file)
5a125c3c 174{
73aa808f 175 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 176 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
177 struct drm_i915_gem_object *obj;
178 size_t pinned;
5a125c3c 179
6299f992 180 pinned = 0;
73aa808f 181 mutex_lock(&dev->struct_mutex);
1b50247a
CW
182 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
183 if (obj->pin_count)
184 pinned += obj->gtt_space->size;
73aa808f 185 mutex_unlock(&dev->struct_mutex);
5a125c3c 186
6299f992 187 args->aper_size = dev_priv->mm.gtt_total;
0206e353 188 args->aper_available_size = args->aper_size - pinned;
6299f992 189
5a125c3c
EA
190 return 0;
191}
192
ff72145b
DA
193static int
194i915_gem_create(struct drm_file *file,
195 struct drm_device *dev,
196 uint64_t size,
197 uint32_t *handle_p)
673a394b 198{
05394f39 199 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
200 int ret;
201 u32 handle;
673a394b 202
ff72145b 203 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
204 if (size == 0)
205 return -EINVAL;
673a394b
EA
206
207 /* Allocate the new object */
ff72145b 208 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
209 if (obj == NULL)
210 return -ENOMEM;
211
05394f39 212 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 213 if (ret) {
05394f39
CW
214 drm_gem_object_release(&obj->base);
215 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 216 kfree(obj);
673a394b 217 return ret;
1dfd9754 218 }
673a394b 219
202f2fef 220 /* drop reference from allocate - handle holds it now */
05394f39 221 drm_gem_object_unreference(&obj->base);
202f2fef
CW
222 trace_i915_gem_object_create(obj);
223
ff72145b 224 *handle_p = handle;
673a394b
EA
225 return 0;
226}
227
ff72145b
DA
228int
229i915_gem_dumb_create(struct drm_file *file,
230 struct drm_device *dev,
231 struct drm_mode_create_dumb *args)
232{
233 /* have to work out size/pitch and return them */
ed0291fd 234 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
235 args->size = args->pitch * args->height;
236 return i915_gem_create(file, dev,
237 args->size, &args->handle);
238}
239
240int i915_gem_dumb_destroy(struct drm_file *file,
241 struct drm_device *dev,
242 uint32_t handle)
243{
244 return drm_gem_handle_delete(file, handle);
245}
246
247/**
248 * Creates a new mm object and returns a handle to it.
249 */
250int
251i915_gem_create_ioctl(struct drm_device *dev, void *data,
252 struct drm_file *file)
253{
254 struct drm_i915_gem_create *args = data;
63ed2cb2 255
ff72145b
DA
256 return i915_gem_create(file, dev,
257 args->size, &args->handle);
258}
259
05394f39 260static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 261{
05394f39 262 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
263
264 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 265 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
266}
267
8461d226
DV
268static inline int
269__copy_to_user_swizzled(char __user *cpu_vaddr,
270 const char *gpu_vaddr, int gpu_offset,
271 int length)
272{
273 int ret, cpu_offset = 0;
274
275 while (length > 0) {
276 int cacheline_end = ALIGN(gpu_offset + 1, 64);
277 int this_length = min(cacheline_end - gpu_offset, length);
278 int swizzled_gpu_offset = gpu_offset ^ 64;
279
280 ret = __copy_to_user(cpu_vaddr + cpu_offset,
281 gpu_vaddr + swizzled_gpu_offset,
282 this_length);
283 if (ret)
284 return ret + length;
285
286 cpu_offset += this_length;
287 gpu_offset += this_length;
288 length -= this_length;
289 }
290
291 return 0;
292}
293
8c59967c 294static inline int
4f0c7cfb
BW
295__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
296 const char __user *cpu_vaddr,
8c59967c
DV
297 int length)
298{
299 int ret, cpu_offset = 0;
300
301 while (length > 0) {
302 int cacheline_end = ALIGN(gpu_offset + 1, 64);
303 int this_length = min(cacheline_end - gpu_offset, length);
304 int swizzled_gpu_offset = gpu_offset ^ 64;
305
306 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
307 cpu_vaddr + cpu_offset,
308 this_length);
309 if (ret)
310 return ret + length;
311
312 cpu_offset += this_length;
313 gpu_offset += this_length;
314 length -= this_length;
315 }
316
317 return 0;
318}
319
d174bd64
DV
320/* Per-page copy function for the shmem pread fastpath.
321 * Flushes invalid cachelines before reading the target if
322 * needs_clflush is set. */
eb01459f 323static int
d174bd64
DV
324shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
325 char __user *user_data,
326 bool page_do_bit17_swizzling, bool needs_clflush)
327{
328 char *vaddr;
329 int ret;
330
e7e58eb5 331 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
332 return -EINVAL;
333
334 vaddr = kmap_atomic(page);
335 if (needs_clflush)
336 drm_clflush_virt_range(vaddr + shmem_page_offset,
337 page_length);
338 ret = __copy_to_user_inatomic(user_data,
339 vaddr + shmem_page_offset,
340 page_length);
341 kunmap_atomic(vaddr);
342
343 return ret;
344}
345
23c18c71
DV
346static void
347shmem_clflush_swizzled_range(char *addr, unsigned long length,
348 bool swizzled)
349{
e7e58eb5 350 if (unlikely(swizzled)) {
23c18c71
DV
351 unsigned long start = (unsigned long) addr;
352 unsigned long end = (unsigned long) addr + length;
353
354 /* For swizzling simply ensure that we always flush both
355 * channels. Lame, but simple and it works. Swizzled
356 * pwrite/pread is far from a hotpath - current userspace
357 * doesn't use it at all. */
358 start = round_down(start, 128);
359 end = round_up(end, 128);
360
361 drm_clflush_virt_range((void *)start, end - start);
362 } else {
363 drm_clflush_virt_range(addr, length);
364 }
365
366}
367
d174bd64
DV
368/* Only difference to the fast-path function is that this can handle bit17
369 * and uses non-atomic copy and kmap functions. */
370static int
371shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
372 char __user *user_data,
373 bool page_do_bit17_swizzling, bool needs_clflush)
374{
375 char *vaddr;
376 int ret;
377
378 vaddr = kmap(page);
379 if (needs_clflush)
23c18c71
DV
380 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
381 page_length,
382 page_do_bit17_swizzling);
d174bd64
DV
383
384 if (page_do_bit17_swizzling)
385 ret = __copy_to_user_swizzled(user_data,
386 vaddr, shmem_page_offset,
387 page_length);
388 else
389 ret = __copy_to_user(user_data,
390 vaddr + shmem_page_offset,
391 page_length);
392 kunmap(page);
393
394 return ret;
395}
396
eb01459f 397static int
dbf7bff0
DV
398i915_gem_shmem_pread(struct drm_device *dev,
399 struct drm_i915_gem_object *obj,
400 struct drm_i915_gem_pread *args,
401 struct drm_file *file)
eb01459f 402{
05394f39 403 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 404 char __user *user_data;
eb01459f 405 ssize_t remain;
8461d226 406 loff_t offset;
eb2c0c81 407 int shmem_page_offset, page_length, ret = 0;
8461d226 408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 409 int hit_slowpath = 0;
96d79b52 410 int prefaulted = 0;
8489731c 411 int needs_clflush = 0;
692a576b 412 int release_page;
eb01459f 413
8461d226 414 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
415 remain = args->size;
416
8461d226 417 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 418
8489731c
DV
419 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
420 /* If we're not in the cpu read domain, set ourself into the gtt
421 * read domain and manually flush cachelines (if required). This
422 * optimizes for the case when the gpu will dirty the data
423 * anyway again before the next pread happens. */
424 if (obj->cache_level == I915_CACHE_NONE)
425 needs_clflush = 1;
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
eb01459f 430
8461d226 431 offset = args->offset;
eb01459f
EA
432
433 while (remain > 0) {
e5281ccd
CW
434 struct page *page;
435
eb01459f
EA
436 /* Operation in this page
437 *
eb01459f 438 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
439 * page_length = bytes to copy for this page
440 */
c8cbbb8b 441 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
442 page_length = remain;
443 if ((shmem_page_offset + page_length) > PAGE_SIZE)
444 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 445
692a576b
DV
446 if (obj->pages) {
447 page = obj->pages[offset >> PAGE_SHIFT];
448 release_page = 0;
449 } else {
450 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
451 if (IS_ERR(page)) {
452 ret = PTR_ERR(page);
453 goto out;
454 }
455 release_page = 1;
b65552f0 456 }
e5281ccd 457
8461d226
DV
458 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
459 (page_to_phys(page) & (1 << 17)) != 0;
460
d174bd64
DV
461 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
462 user_data, page_do_bit17_swizzling,
463 needs_clflush);
464 if (ret == 0)
465 goto next_page;
dbf7bff0
DV
466
467 hit_slowpath = 1;
692a576b 468 page_cache_get(page);
dbf7bff0
DV
469 mutex_unlock(&dev->struct_mutex);
470
96d79b52 471 if (!prefaulted) {
f56f821f 472 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
473 /* Userspace is tricking us, but we've already clobbered
474 * its pages with the prefault and promised to write the
475 * data up to the first fault. Hence ignore any errors
476 * and just continue. */
477 (void)ret;
478 prefaulted = 1;
479 }
eb01459f 480
d174bd64
DV
481 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
482 user_data, page_do_bit17_swizzling,
483 needs_clflush);
eb01459f 484
dbf7bff0 485 mutex_lock(&dev->struct_mutex);
e5281ccd 486 page_cache_release(page);
dbf7bff0 487next_page:
e5281ccd 488 mark_page_accessed(page);
692a576b
DV
489 if (release_page)
490 page_cache_release(page);
e5281ccd 491
8461d226
DV
492 if (ret) {
493 ret = -EFAULT;
494 goto out;
495 }
496
eb01459f 497 remain -= page_length;
8461d226 498 user_data += page_length;
eb01459f
EA
499 offset += page_length;
500 }
501
4f27b75d 502out:
dbf7bff0
DV
503 if (hit_slowpath) {
504 /* Fixup: Kill any reinstated backing storage pages */
505 if (obj->madv == __I915_MADV_PURGED)
506 i915_gem_object_truncate(obj);
507 }
eb01459f
EA
508
509 return ret;
510}
511
673a394b
EA
512/**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517int
518i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 519 struct drm_file *file)
673a394b
EA
520{
521 struct drm_i915_gem_pread *args = data;
05394f39 522 struct drm_i915_gem_object *obj;
35b62a89 523 int ret = 0;
673a394b 524
51311d0a
CW
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
529 (char __user *)(uintptr_t)args->data_ptr,
530 args->size))
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
1286ff73
DV
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
db53a302
CW
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
dbf7bff0 560 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 561
35b62a89 562out:
05394f39 563 drm_gem_object_unreference(&obj->base);
1d7cfea1 564unlock:
4f27b75d 565 mutex_unlock(&dev->struct_mutex);
eb01459f 566 return ret;
673a394b
EA
567}
568
0839ccb8
KP
569/* This is the fast write path which cannot handle
570 * page faults in the source data
9b7530cc 571 */
0839ccb8
KP
572
573static inline int
574fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
9b7530cc 578{
4f0c7cfb
BW
579 void __iomem *vaddr_atomic;
580 void *vaddr;
0839ccb8 581 unsigned long unwritten;
9b7530cc 582
3e4d3af5 583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 587 user_data, length);
3e4d3af5 588 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 589 return unwritten;
0839ccb8
KP
590}
591
3de09aa3
EA
592/**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
673a394b 596static int
05394f39
CW
597i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
3de09aa3 599 struct drm_i915_gem_pwrite *args,
05394f39 600 struct drm_file *file)
673a394b 601{
0839ccb8 602 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 603 ssize_t remain;
0839ccb8 604 loff_t offset, page_base;
673a394b 605 char __user *user_data;
935aaa69
DV
606 int page_offset, page_length, ret;
607
608 ret = i915_gem_object_pin(obj, 0, true);
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
673a394b
EA
619
620 user_data = (char __user *) (uintptr_t) args->data_ptr;
621 remain = args->size;
673a394b 622
05394f39 623 offset = obj->gtt_offset + args->offset;
673a394b
EA
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
0839ccb8
KP
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
673a394b 631 */
c8cbbb8b
CW
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
0839ccb8
KP
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
0839ccb8 638 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
0839ccb8 641 */
fbd5a26d 642 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
673a394b 647
0839ccb8
KP
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
673a394b 651 }
673a394b 652
935aaa69
DV
653out_unpin:
654 i915_gem_object_unpin(obj);
655out:
3de09aa3 656 return ret;
673a394b
EA
657}
658
d174bd64
DV
659/* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
3043c60c 663static int
d174bd64
DV
664shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
673a394b 669{
d174bd64 670 char *vaddr;
673a394b 671 int ret;
3de09aa3 672
e7e58eb5 673 if (unlikely(page_do_bit17_swizzling))
d174bd64 674 return -EINVAL;
3de09aa3 675
d174bd64
DV
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
3de09aa3
EA
687
688 return ret;
689}
690
d174bd64
DV
691/* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
3043c60c 693static int
d174bd64
DV
694shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
673a394b 699{
d174bd64
DV
700 char *vaddr;
701 int ret;
e5281ccd 702
d174bd64 703 vaddr = kmap(page);
e7e58eb5 704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
d174bd64
DV
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
710 user_data,
711 page_length);
d174bd64
DV
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
23c18c71
DV
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
d174bd64 720 kunmap(page);
40123c1f 721
d174bd64 722 return ret;
40123c1f
EA
723}
724
40123c1f 725static int
e244a443
DV
726i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
40123c1f 730{
05394f39 731 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 732 ssize_t remain;
8c59967c
DV
733 loff_t offset;
734 char __user *user_data;
eb2c0c81 735 int shmem_page_offset, page_length, ret = 0;
8c59967c 736 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 737 int hit_slowpath = 0;
58642885
DV
738 int needs_clflush_after = 0;
739 int needs_clflush_before = 0;
692a576b 740 int release_page;
40123c1f 741
8c59967c 742 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
743 remain = args->size;
744
8c59967c 745 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 746
58642885
DV
747 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
748 /* If we're not in the cpu write domain, set ourself into the gtt
749 * write domain and manually flush cachelines (if required). This
750 * optimizes for the case when the gpu will use the data
751 * right away and we therefore have to clflush anyway. */
752 if (obj->cache_level == I915_CACHE_NONE)
753 needs_clflush_after = 1;
754 ret = i915_gem_object_set_to_gtt_domain(obj, true);
755 if (ret)
756 return ret;
757 }
758 /* Same trick applies for invalidate partially written cachelines before
759 * writing. */
760 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
761 && obj->cache_level == I915_CACHE_NONE)
762 needs_clflush_before = 1;
763
673a394b 764 offset = args->offset;
05394f39 765 obj->dirty = 1;
673a394b 766
40123c1f 767 while (remain > 0) {
e5281ccd 768 struct page *page;
58642885 769 int partial_cacheline_write;
e5281ccd 770
40123c1f
EA
771 /* Operation in this page
772 *
40123c1f 773 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
774 * page_length = bytes to copy for this page
775 */
c8cbbb8b 776 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 781
58642885
DV
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
692a576b
DV
789 if (obj->pages) {
790 page = obj->pages[offset >> PAGE_SHIFT];
791 release_page = 0;
792 } else {
793 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
794 if (IS_ERR(page)) {
795 ret = PTR_ERR(page);
796 goto out;
797 }
798 release_page = 1;
e5281ccd
CW
799 }
800
8c59967c
DV
801 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
802 (page_to_phys(page) & (1 << 17)) != 0;
803
d174bd64
DV
804 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
805 user_data, page_do_bit17_swizzling,
806 partial_cacheline_write,
807 needs_clflush_after);
808 if (ret == 0)
809 goto next_page;
e244a443
DV
810
811 hit_slowpath = 1;
692a576b 812 page_cache_get(page);
e244a443
DV
813 mutex_unlock(&dev->struct_mutex);
814
d174bd64
DV
815 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 partial_cacheline_write,
818 needs_clflush_after);
40123c1f 819
e244a443 820 mutex_lock(&dev->struct_mutex);
692a576b 821 page_cache_release(page);
e244a443 822next_page:
e5281ccd
CW
823 set_page_dirty(page);
824 mark_page_accessed(page);
692a576b
DV
825 if (release_page)
826 page_cache_release(page);
e5281ccd 827
8c59967c
DV
828 if (ret) {
829 ret = -EFAULT;
830 goto out;
831 }
832
40123c1f 833 remain -= page_length;
8c59967c 834 user_data += page_length;
40123c1f 835 offset += page_length;
673a394b
EA
836 }
837
fbd5a26d 838out:
e244a443
DV
839 if (hit_slowpath) {
840 /* Fixup: Kill any reinstated backing storage pages */
841 if (obj->madv == __I915_MADV_PURGED)
842 i915_gem_object_truncate(obj);
843 /* and flush dirty cachelines in case the object isn't in the cpu write
844 * domain anymore. */
845 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
846 i915_gem_clflush_object(obj);
847 intel_gtt_chipset_flush();
848 }
8c59967c 849 }
673a394b 850
58642885
DV
851 if (needs_clflush_after)
852 intel_gtt_chipset_flush();
853
40123c1f 854 return ret;
673a394b
EA
855}
856
857/**
858 * Writes data to the object referenced by handle.
859 *
860 * On error, the contents of the buffer that were to be modified are undefined.
861 */
862int
863i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 864 struct drm_file *file)
673a394b
EA
865{
866 struct drm_i915_gem_pwrite *args = data;
05394f39 867 struct drm_i915_gem_object *obj;
51311d0a
CW
868 int ret;
869
870 if (args->size == 0)
871 return 0;
872
873 if (!access_ok(VERIFY_READ,
874 (char __user *)(uintptr_t)args->data_ptr,
875 args->size))
876 return -EFAULT;
877
f56f821f
DV
878 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
879 args->size);
51311d0a
CW
880 if (ret)
881 return -EFAULT;
673a394b 882
fbd5a26d 883 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 884 if (ret)
fbd5a26d 885 return ret;
1d7cfea1 886
05394f39 887 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 888 if (&obj->base == NULL) {
1d7cfea1
CW
889 ret = -ENOENT;
890 goto unlock;
fbd5a26d 891 }
673a394b 892
7dcd2499 893 /* Bounds check destination. */
05394f39
CW
894 if (args->offset > obj->base.size ||
895 args->size > obj->base.size - args->offset) {
ce9d419d 896 ret = -EINVAL;
35b62a89 897 goto out;
ce9d419d
CW
898 }
899
1286ff73
DV
900 /* prime objects have no backing filp to GEM pread/pwrite
901 * pages from.
902 */
903 if (!obj->base.filp) {
904 ret = -EINVAL;
905 goto out;
906 }
907
db53a302
CW
908 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
909
935aaa69 910 ret = -EFAULT;
673a394b
EA
911 /* We can only do the GTT pwrite on untiled buffers, as otherwise
912 * it would end up going through the fenced access, and we'll get
913 * different detiling behavior between reading and writing.
914 * pread/pwrite currently are reading and writing from the CPU
915 * perspective, requiring manual detiling by the client.
916 */
5c0480f2 917 if (obj->phys_obj) {
fbd5a26d 918 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
919 goto out;
920 }
921
922 if (obj->gtt_space &&
3ae53783 923 obj->cache_level == I915_CACHE_NONE &&
c07496fa 924 obj->tiling_mode == I915_TILING_NONE &&
ffc62976 925 obj->map_and_fenceable &&
5c0480f2 926 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 927 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
928 /* Note that the gtt paths might fail with non-page-backed user
929 * pointers (e.g. gtt mappings when moving data between
930 * textures). Fallback to the shmem path in that case. */
fbd5a26d 931 }
673a394b 932
5c0480f2 933 if (ret == -EFAULT)
935aaa69 934 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 935
35b62a89 936out:
05394f39 937 drm_gem_object_unreference(&obj->base);
1d7cfea1 938unlock:
fbd5a26d 939 mutex_unlock(&dev->struct_mutex);
673a394b
EA
940 return ret;
941}
942
943/**
2ef7eeaa
EA
944 * Called when user space prepares to use an object with the CPU, either
945 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
946 */
947int
948i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 949 struct drm_file *file)
673a394b
EA
950{
951 struct drm_i915_gem_set_domain *args = data;
05394f39 952 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
953 uint32_t read_domains = args->read_domains;
954 uint32_t write_domain = args->write_domain;
673a394b
EA
955 int ret;
956
2ef7eeaa 957 /* Only handle setting domains to types used by the CPU. */
21d509e3 958 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
959 return -EINVAL;
960
21d509e3 961 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
962 return -EINVAL;
963
964 /* Having something in the write domain implies it's in the read
965 * domain, and only that read domain. Enforce that in the request.
966 */
967 if (write_domain != 0 && read_domains != write_domain)
968 return -EINVAL;
969
76c1dec1 970 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 971 if (ret)
76c1dec1 972 return ret;
1d7cfea1 973
05394f39 974 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 975 if (&obj->base == NULL) {
1d7cfea1
CW
976 ret = -ENOENT;
977 goto unlock;
76c1dec1 978 }
673a394b 979
2ef7eeaa
EA
980 if (read_domains & I915_GEM_DOMAIN_GTT) {
981 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
982
983 /* Silently promote "you're not bound, there was nothing to do"
984 * to success, since the client was just asking us to
985 * make sure everything was done.
986 */
987 if (ret == -EINVAL)
988 ret = 0;
2ef7eeaa 989 } else {
e47c68e9 990 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
991 }
992
05394f39 993 drm_gem_object_unreference(&obj->base);
1d7cfea1 994unlock:
673a394b
EA
995 mutex_unlock(&dev->struct_mutex);
996 return ret;
997}
998
999/**
1000 * Called when user space has done writes to this buffer
1001 */
1002int
1003i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1004 struct drm_file *file)
673a394b
EA
1005{
1006 struct drm_i915_gem_sw_finish *args = data;
05394f39 1007 struct drm_i915_gem_object *obj;
673a394b
EA
1008 int ret = 0;
1009
76c1dec1 1010 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1011 if (ret)
76c1dec1 1012 return ret;
1d7cfea1 1013
05394f39 1014 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1015 if (&obj->base == NULL) {
1d7cfea1
CW
1016 ret = -ENOENT;
1017 goto unlock;
673a394b
EA
1018 }
1019
673a394b 1020 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1021 if (obj->pin_count)
e47c68e9
EA
1022 i915_gem_object_flush_cpu_write_domain(obj);
1023
05394f39 1024 drm_gem_object_unreference(&obj->base);
1d7cfea1 1025unlock:
673a394b
EA
1026 mutex_unlock(&dev->struct_mutex);
1027 return ret;
1028}
1029
1030/**
1031 * Maps the contents of an object, returning the address it is mapped
1032 * into.
1033 *
1034 * While the mapping holds a reference on the contents of the object, it doesn't
1035 * imply a ref on the object itself.
1036 */
1037int
1038i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1039 struct drm_file *file)
673a394b
EA
1040{
1041 struct drm_i915_gem_mmap *args = data;
1042 struct drm_gem_object *obj;
673a394b
EA
1043 unsigned long addr;
1044
05394f39 1045 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1046 if (obj == NULL)
bf79cb91 1047 return -ENOENT;
673a394b 1048
1286ff73
DV
1049 /* prime objects have no backing filp to GEM mmap
1050 * pages from.
1051 */
1052 if (!obj->filp) {
1053 drm_gem_object_unreference_unlocked(obj);
1054 return -EINVAL;
1055 }
1056
6be5ceb0 1057 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1058 PROT_READ | PROT_WRITE, MAP_SHARED,
1059 args->offset);
bc9025bd 1060 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1061 if (IS_ERR((void *)addr))
1062 return addr;
1063
1064 args->addr_ptr = (uint64_t) addr;
1065
1066 return 0;
1067}
1068
de151cf6
JB
1069/**
1070 * i915_gem_fault - fault a page into the GTT
1071 * vma: VMA in question
1072 * vmf: fault info
1073 *
1074 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1075 * from userspace. The fault handler takes care of binding the object to
1076 * the GTT (if needed), allocating and programming a fence register (again,
1077 * only if needed based on whether the old reg is still valid or the object
1078 * is tiled) and inserting a new PTE into the faulting process.
1079 *
1080 * Note that the faulting process may involve evicting existing objects
1081 * from the GTT and/or fence registers to make room. So performance may
1082 * suffer if the GTT working set is large or there are few fence registers
1083 * left.
1084 */
1085int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1086{
05394f39
CW
1087 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1088 struct drm_device *dev = obj->base.dev;
7d1c4804 1089 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1090 pgoff_t page_offset;
1091 unsigned long pfn;
1092 int ret = 0;
0f973f27 1093 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1094
1095 /* We don't use vmf->pgoff since that has the fake offset */
1096 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1097 PAGE_SHIFT;
1098
d9bc7e9f
CW
1099 ret = i915_mutex_lock_interruptible(dev);
1100 if (ret)
1101 goto out;
a00b10c3 1102
db53a302
CW
1103 trace_i915_gem_object_fault(obj, page_offset, true, write);
1104
d9bc7e9f 1105 /* Now bind it into the GTT if needed */
919926ae
CW
1106 if (!obj->map_and_fenceable) {
1107 ret = i915_gem_object_unbind(obj);
1108 if (ret)
1109 goto unlock;
a00b10c3 1110 }
05394f39 1111 if (!obj->gtt_space) {
75e9e915 1112 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1113 if (ret)
1114 goto unlock;
de151cf6 1115
e92d03bf
EA
1116 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1117 if (ret)
1118 goto unlock;
1119 }
4a684a41 1120
74898d7e
DV
1121 if (!obj->has_global_gtt_mapping)
1122 i915_gem_gtt_bind_object(obj, obj->cache_level);
1123
06d98131 1124 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1125 if (ret)
1126 goto unlock;
de151cf6 1127
05394f39
CW
1128 if (i915_gem_object_is_inactive(obj))
1129 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1130
6299f992
CW
1131 obj->fault_mappable = true;
1132
dd2757f8 1133 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1134 page_offset;
1135
1136 /* Finally, remap it using the new GTT offset */
1137 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1138unlock:
de151cf6 1139 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1140out:
de151cf6 1141 switch (ret) {
d9bc7e9f 1142 case -EIO:
a9340cca
DV
1143 /* If this -EIO is due to a gpu hang, give the reset code a
1144 * chance to clean up the mess. Otherwise return the proper
1145 * SIGBUS. */
1146 if (!atomic_read(&dev_priv->mm.wedged))
1147 return VM_FAULT_SIGBUS;
045e769a 1148 case -EAGAIN:
d9bc7e9f
CW
1149 /* Give the error handler a chance to run and move the
1150 * objects off the GPU active list. Next time we service the
1151 * fault, we should be able to transition the page into the
1152 * GTT without touching the GPU (and so avoid further
1153 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1154 * with coherency, just lost writes.
1155 */
045e769a 1156 set_need_resched();
c715089f
CW
1157 case 0:
1158 case -ERESTARTSYS:
bed636ab 1159 case -EINTR:
c715089f 1160 return VM_FAULT_NOPAGE;
de151cf6 1161 case -ENOMEM:
de151cf6 1162 return VM_FAULT_OOM;
de151cf6 1163 default:
c715089f 1164 return VM_FAULT_SIGBUS;
de151cf6
JB
1165 }
1166}
1167
901782b2
CW
1168/**
1169 * i915_gem_release_mmap - remove physical page mappings
1170 * @obj: obj in question
1171 *
af901ca1 1172 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1173 * relinquish ownership of the pages back to the system.
1174 *
1175 * It is vital that we remove the page mapping if we have mapped a tiled
1176 * object through the GTT and then lose the fence register due to
1177 * resource pressure. Similarly if the object has been moved out of the
1178 * aperture, than pages mapped into userspace must be revoked. Removing the
1179 * mapping will then trigger a page fault on the next user access, allowing
1180 * fixup by i915_gem_fault().
1181 */
d05ca301 1182void
05394f39 1183i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1184{
6299f992
CW
1185 if (!obj->fault_mappable)
1186 return;
901782b2 1187
f6e47884
CW
1188 if (obj->base.dev->dev_mapping)
1189 unmap_mapping_range(obj->base.dev->dev_mapping,
1190 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1191 obj->base.size, 1);
fb7d516a 1192
6299f992 1193 obj->fault_mappable = false;
901782b2
CW
1194}
1195
92b88aeb 1196static uint32_t
e28f8711 1197i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1198{
e28f8711 1199 uint32_t gtt_size;
92b88aeb
CW
1200
1201 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1202 tiling_mode == I915_TILING_NONE)
1203 return size;
92b88aeb
CW
1204
1205 /* Previous chips need a power-of-two fence region when tiling */
1206 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1207 gtt_size = 1024*1024;
92b88aeb 1208 else
e28f8711 1209 gtt_size = 512*1024;
92b88aeb 1210
e28f8711
CW
1211 while (gtt_size < size)
1212 gtt_size <<= 1;
92b88aeb 1213
e28f8711 1214 return gtt_size;
92b88aeb
CW
1215}
1216
de151cf6
JB
1217/**
1218 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1219 * @obj: object to check
1220 *
1221 * Return the required GTT alignment for an object, taking into account
5e783301 1222 * potential fence register mapping.
de151cf6
JB
1223 */
1224static uint32_t
e28f8711
CW
1225i915_gem_get_gtt_alignment(struct drm_device *dev,
1226 uint32_t size,
1227 int tiling_mode)
de151cf6 1228{
de151cf6
JB
1229 /*
1230 * Minimum alignment is 4k (GTT page size), but might be greater
1231 * if a fence register is needed for the object.
1232 */
a00b10c3 1233 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1234 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1235 return 4096;
1236
a00b10c3
CW
1237 /*
1238 * Previous chips need to be aligned to the size of the smallest
1239 * fence register that can contain the object.
1240 */
e28f8711 1241 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1242}
1243
5e783301
DV
1244/**
1245 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1246 * unfenced object
e28f8711
CW
1247 * @dev: the device
1248 * @size: size of the object
1249 * @tiling_mode: tiling mode of the object
5e783301
DV
1250 *
1251 * Return the required GTT alignment for an object, only taking into account
1252 * unfenced tiled surface requirements.
1253 */
467cffba 1254uint32_t
e28f8711
CW
1255i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1256 uint32_t size,
1257 int tiling_mode)
5e783301 1258{
5e783301
DV
1259 /*
1260 * Minimum alignment is 4k (GTT page size) for sane hw.
1261 */
1262 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1263 tiling_mode == I915_TILING_NONE)
5e783301
DV
1264 return 4096;
1265
e28f8711
CW
1266 /* Previous hardware however needs to be aligned to a power-of-two
1267 * tile height. The simplest method for determining this is to reuse
1268 * the power-of-tile object size.
5e783301 1269 */
e28f8711 1270 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1271}
1272
de151cf6 1273int
ff72145b
DA
1274i915_gem_mmap_gtt(struct drm_file *file,
1275 struct drm_device *dev,
1276 uint32_t handle,
1277 uint64_t *offset)
de151cf6 1278{
da761a6e 1279 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1280 struct drm_i915_gem_object *obj;
de151cf6
JB
1281 int ret;
1282
76c1dec1 1283 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1284 if (ret)
76c1dec1 1285 return ret;
de151cf6 1286
ff72145b 1287 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1288 if (&obj->base == NULL) {
1d7cfea1
CW
1289 ret = -ENOENT;
1290 goto unlock;
1291 }
de151cf6 1292
05394f39 1293 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1294 ret = -E2BIG;
ff56b0bc 1295 goto out;
da761a6e
CW
1296 }
1297
05394f39 1298 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1299 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1300 ret = -EINVAL;
1301 goto out;
ab18282d
CW
1302 }
1303
05394f39 1304 if (!obj->base.map_list.map) {
b464e9a2 1305 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1306 if (ret)
1307 goto out;
de151cf6
JB
1308 }
1309
ff72145b 1310 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1311
1d7cfea1 1312out:
05394f39 1313 drm_gem_object_unreference(&obj->base);
1d7cfea1 1314unlock:
de151cf6 1315 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1316 return ret;
de151cf6
JB
1317}
1318
ff72145b
DA
1319/**
1320 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1321 * @dev: DRM device
1322 * @data: GTT mapping ioctl data
1323 * @file: GEM object info
1324 *
1325 * Simply returns the fake offset to userspace so it can mmap it.
1326 * The mmap call will end up in drm_gem_mmap(), which will set things
1327 * up so we can get faults in the handler above.
1328 *
1329 * The fault handler will take care of binding the object into the GTT
1330 * (since it may have been evicted to make room for something), allocating
1331 * a fence register, and mapping the appropriate aperture address into
1332 * userspace.
1333 */
1334int
1335i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1336 struct drm_file *file)
1337{
1338 struct drm_i915_gem_mmap_gtt *args = data;
1339
ff72145b
DA
1340 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1341}
1342
1286ff73 1343int
05394f39 1344i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1345 gfp_t gfpmask)
1346{
e5281ccd
CW
1347 int page_count, i;
1348 struct address_space *mapping;
1349 struct inode *inode;
1350 struct page *page;
1351
1286ff73
DV
1352 if (obj->pages || obj->sg_table)
1353 return 0;
1354
e5281ccd
CW
1355 /* Get the list of pages out of our struct file. They'll be pinned
1356 * at this point until we release them.
1357 */
05394f39
CW
1358 page_count = obj->base.size / PAGE_SIZE;
1359 BUG_ON(obj->pages != NULL);
1360 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1361 if (obj->pages == NULL)
e5281ccd
CW
1362 return -ENOMEM;
1363
05394f39 1364 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1365 mapping = inode->i_mapping;
5949eac4
HD
1366 gfpmask |= mapping_gfp_mask(mapping);
1367
e5281ccd 1368 for (i = 0; i < page_count; i++) {
5949eac4 1369 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1370 if (IS_ERR(page))
1371 goto err_pages;
1372
05394f39 1373 obj->pages[i] = page;
e5281ccd
CW
1374 }
1375
6dacfd2f 1376 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1377 i915_gem_object_do_bit_17_swizzle(obj);
1378
1379 return 0;
1380
1381err_pages:
1382 while (i--)
05394f39 1383 page_cache_release(obj->pages[i]);
e5281ccd 1384
05394f39
CW
1385 drm_free_large(obj->pages);
1386 obj->pages = NULL;
e5281ccd
CW
1387 return PTR_ERR(page);
1388}
1389
5cdf5881 1390static void
05394f39 1391i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1392{
05394f39 1393 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1394 int i;
1395
1286ff73
DV
1396 if (!obj->pages)
1397 return;
1398
05394f39 1399 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1400
6dacfd2f 1401 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1402 i915_gem_object_save_bit_17_swizzle(obj);
1403
05394f39
CW
1404 if (obj->madv == I915_MADV_DONTNEED)
1405 obj->dirty = 0;
3ef94daa
CW
1406
1407 for (i = 0; i < page_count; i++) {
05394f39
CW
1408 if (obj->dirty)
1409 set_page_dirty(obj->pages[i]);
3ef94daa 1410
05394f39
CW
1411 if (obj->madv == I915_MADV_WILLNEED)
1412 mark_page_accessed(obj->pages[i]);
3ef94daa 1413
05394f39 1414 page_cache_release(obj->pages[i]);
3ef94daa 1415 }
05394f39 1416 obj->dirty = 0;
673a394b 1417
05394f39
CW
1418 drm_free_large(obj->pages);
1419 obj->pages = NULL;
673a394b
EA
1420}
1421
54cf91dc 1422void
05394f39 1423i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1424 struct intel_ring_buffer *ring,
1425 u32 seqno)
673a394b 1426{
05394f39 1427 struct drm_device *dev = obj->base.dev;
69dc4987 1428 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1429
852835f3 1430 BUG_ON(ring == NULL);
05394f39 1431 obj->ring = ring;
673a394b
EA
1432
1433 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1434 if (!obj->active) {
1435 drm_gem_object_reference(&obj->base);
1436 obj->active = 1;
673a394b 1437 }
e35a41de 1438
673a394b 1439 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1440 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1441 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1442
0201f1ec 1443 obj->last_read_seqno = seqno;
caea7476 1444
7dd49065 1445 if (obj->fenced_gpu_access) {
caea7476 1446 obj->last_fenced_seqno = seqno;
caea7476 1447
7dd49065
CW
1448 /* Bump MRU to take account of the delayed flush */
1449 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1450 struct drm_i915_fence_reg *reg;
1451
1452 reg = &dev_priv->fence_regs[obj->fence_reg];
1453 list_move_tail(&reg->lru_list,
1454 &dev_priv->mm.fence_list);
1455 }
caea7476
CW
1456 }
1457}
1458
caea7476
CW
1459static void
1460i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1461{
1462 struct drm_device *dev = obj->base.dev;
1463 struct drm_i915_private *dev_priv = dev->dev_private;
1464
65ce3027 1465 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
caea7476 1466 BUG_ON(!obj->active);
65ce3027 1467
f047e395
CW
1468 if (obj->pin_count) /* are we a framebuffer? */
1469 intel_mark_fb_idle(obj);
1470
1471 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1472
65ce3027 1473 list_del_init(&obj->ring_list);
caea7476
CW
1474 obj->ring = NULL;
1475
65ce3027
CW
1476 obj->last_read_seqno = 0;
1477 obj->last_write_seqno = 0;
1478 obj->base.write_domain = 0;
1479
1480 obj->last_fenced_seqno = 0;
caea7476 1481 obj->fenced_gpu_access = false;
caea7476
CW
1482
1483 obj->active = 0;
1484 drm_gem_object_unreference(&obj->base);
1485
1486 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1487}
673a394b 1488
963b4836
CW
1489/* Immediately discard the backing storage */
1490static void
05394f39 1491i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1492{
bb6baf76 1493 struct inode *inode;
963b4836 1494
ae9fed6b
CW
1495 /* Our goal here is to return as much of the memory as
1496 * is possible back to the system as we are called from OOM.
1497 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1498 * backing pages, *now*.
ae9fed6b 1499 */
05394f39 1500 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1501 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1502
a14917ee
CW
1503 if (obj->base.map_list.map)
1504 drm_gem_free_mmap_offset(&obj->base);
1505
05394f39 1506 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1507}
1508
1509static inline int
05394f39 1510i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1511{
05394f39 1512 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1513}
1514
53d227f2
DV
1515static u32
1516i915_gem_get_seqno(struct drm_device *dev)
1517{
1518 drm_i915_private_t *dev_priv = dev->dev_private;
1519 u32 seqno = dev_priv->next_seqno;
1520
1521 /* reserve 0 for non-seqno */
1522 if (++dev_priv->next_seqno == 0)
1523 dev_priv->next_seqno = 1;
1524
1525 return seqno;
1526}
1527
1528u32
1529i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1530{
1531 if (ring->outstanding_lazy_request == 0)
1532 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1533
1534 return ring->outstanding_lazy_request;
1535}
1536
3cce469c 1537int
db53a302 1538i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1539 struct drm_file *file,
db53a302 1540 struct drm_i915_gem_request *request)
673a394b 1541{
db53a302 1542 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b 1543 uint32_t seqno;
a71d8d94 1544 u32 request_ring_position;
673a394b 1545 int was_empty;
3cce469c
CW
1546 int ret;
1547
cc889e0f
DV
1548 /*
1549 * Emit any outstanding flushes - execbuf can fail to emit the flush
1550 * after having emitted the batchbuffer command. Hence we need to fix
1551 * things up similar to emitting the lazy request. The difference here
1552 * is that the flush _must_ happen before the next request, no matter
1553 * what.
1554 */
a7b9761d
CW
1555 ret = intel_ring_flush_all_caches(ring);
1556 if (ret)
1557 return ret;
cc889e0f 1558
3bb73aba
CW
1559 if (request == NULL) {
1560 request = kmalloc(sizeof(*request), GFP_KERNEL);
1561 if (request == NULL)
1562 return -ENOMEM;
1563 }
1564
53d227f2 1565 seqno = i915_gem_next_request_seqno(ring);
673a394b 1566
a71d8d94
CW
1567 /* Record the position of the start of the request so that
1568 * should we detect the updated seqno part-way through the
1569 * GPU processing the request, we never over-estimate the
1570 * position of the head.
1571 */
1572 request_ring_position = intel_ring_get_tail(ring);
1573
3cce469c 1574 ret = ring->add_request(ring, &seqno);
3bb73aba
CW
1575 if (ret) {
1576 kfree(request);
1577 return ret;
1578 }
673a394b 1579
db53a302 1580 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1581
1582 request->seqno = seqno;
852835f3 1583 request->ring = ring;
a71d8d94 1584 request->tail = request_ring_position;
673a394b 1585 request->emitted_jiffies = jiffies;
852835f3
ZN
1586 was_empty = list_empty(&ring->request_list);
1587 list_add_tail(&request->list, &ring->request_list);
3bb73aba 1588 request->file_priv = NULL;
852835f3 1589
db53a302
CW
1590 if (file) {
1591 struct drm_i915_file_private *file_priv = file->driver_priv;
1592
1c25595f 1593 spin_lock(&file_priv->mm.lock);
f787a5f5 1594 request->file_priv = file_priv;
b962442e 1595 list_add_tail(&request->client_list,
f787a5f5 1596 &file_priv->mm.request_list);
1c25595f 1597 spin_unlock(&file_priv->mm.lock);
b962442e 1598 }
673a394b 1599
5391d0cf 1600 ring->outstanding_lazy_request = 0;
db53a302 1601
f65d9421 1602 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1603 if (i915_enable_hangcheck) {
1604 mod_timer(&dev_priv->hangcheck_timer,
1605 jiffies +
1606 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1607 }
f047e395 1608 if (was_empty) {
b3b079db
CW
1609 queue_delayed_work(dev_priv->wq,
1610 &dev_priv->mm.retire_work, HZ);
f047e395
CW
1611 intel_mark_busy(dev_priv->dev);
1612 }
f65d9421 1613 }
cc889e0f 1614
3cce469c 1615 return 0;
673a394b
EA
1616}
1617
f787a5f5
CW
1618static inline void
1619i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1620{
1c25595f 1621 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1622
1c25595f
CW
1623 if (!file_priv)
1624 return;
1c5d22f7 1625
1c25595f 1626 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1627 if (request->file_priv) {
1628 list_del(&request->client_list);
1629 request->file_priv = NULL;
1630 }
1c25595f 1631 spin_unlock(&file_priv->mm.lock);
673a394b 1632}
673a394b 1633
dfaae392
CW
1634static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1635 struct intel_ring_buffer *ring)
9375e446 1636{
dfaae392
CW
1637 while (!list_empty(&ring->request_list)) {
1638 struct drm_i915_gem_request *request;
673a394b 1639
dfaae392
CW
1640 request = list_first_entry(&ring->request_list,
1641 struct drm_i915_gem_request,
1642 list);
de151cf6 1643
dfaae392 1644 list_del(&request->list);
f787a5f5 1645 i915_gem_request_remove_from_client(request);
dfaae392
CW
1646 kfree(request);
1647 }
673a394b 1648
dfaae392 1649 while (!list_empty(&ring->active_list)) {
05394f39 1650 struct drm_i915_gem_object *obj;
9375e446 1651
05394f39
CW
1652 obj = list_first_entry(&ring->active_list,
1653 struct drm_i915_gem_object,
1654 ring_list);
9375e446 1655
05394f39 1656 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1657 }
1658}
1659
312817a3
CW
1660static void i915_gem_reset_fences(struct drm_device *dev)
1661{
1662 struct drm_i915_private *dev_priv = dev->dev_private;
1663 int i;
1664
4b9de737 1665 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1666 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 1667
ada726c7 1668 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 1669
ada726c7
CW
1670 if (reg->obj)
1671 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 1672
ada726c7
CW
1673 reg->pin_count = 0;
1674 reg->obj = NULL;
1675 INIT_LIST_HEAD(&reg->lru_list);
312817a3 1676 }
ada726c7
CW
1677
1678 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
1679}
1680
069efc1d 1681void i915_gem_reset(struct drm_device *dev)
673a394b 1682{
77f01230 1683 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1684 struct drm_i915_gem_object *obj;
b4519513 1685 struct intel_ring_buffer *ring;
1ec14ad3 1686 int i;
673a394b 1687
b4519513
CW
1688 for_each_ring(ring, dev_priv, i)
1689 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 1690
dfaae392
CW
1691 /* Move everything out of the GPU domains to ensure we do any
1692 * necessary invalidation upon reuse.
1693 */
05394f39 1694 list_for_each_entry(obj,
77f01230 1695 &dev_priv->mm.inactive_list,
69dc4987 1696 mm_list)
77f01230 1697 {
05394f39 1698 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1699 }
069efc1d
CW
1700
1701 /* The fence registers are invalidated so clear them out */
312817a3 1702 i915_gem_reset_fences(dev);
673a394b
EA
1703}
1704
1705/**
1706 * This function clears the request list as sequence numbers are passed.
1707 */
a71d8d94 1708void
db53a302 1709i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1710{
673a394b 1711 uint32_t seqno;
1ec14ad3 1712 int i;
673a394b 1713
db53a302 1714 if (list_empty(&ring->request_list))
6c0594a3
KW
1715 return;
1716
db53a302 1717 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1718
78501eac 1719 seqno = ring->get_seqno(ring);
1ec14ad3 1720
076e2c0e 1721 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1722 if (seqno >= ring->sync_seqno[i])
1723 ring->sync_seqno[i] = 0;
1724
852835f3 1725 while (!list_empty(&ring->request_list)) {
673a394b 1726 struct drm_i915_gem_request *request;
673a394b 1727
852835f3 1728 request = list_first_entry(&ring->request_list,
673a394b
EA
1729 struct drm_i915_gem_request,
1730 list);
673a394b 1731
dfaae392 1732 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1733 break;
1734
db53a302 1735 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
1736 /* We know the GPU must have read the request to have
1737 * sent us the seqno + interrupt, so use the position
1738 * of tail of the request to update the last known position
1739 * of the GPU head.
1740 */
1741 ring->last_retired_head = request->tail;
b84d5f0c
CW
1742
1743 list_del(&request->list);
f787a5f5 1744 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1745 kfree(request);
1746 }
673a394b 1747
b84d5f0c
CW
1748 /* Move any buffers on the active list that are no longer referenced
1749 * by the ringbuffer to the flushing/inactive lists as appropriate.
1750 */
1751 while (!list_empty(&ring->active_list)) {
05394f39 1752 struct drm_i915_gem_object *obj;
b84d5f0c 1753
0206e353 1754 obj = list_first_entry(&ring->active_list,
05394f39
CW
1755 struct drm_i915_gem_object,
1756 ring_list);
673a394b 1757
0201f1ec 1758 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 1759 break;
b84d5f0c 1760
65ce3027 1761 i915_gem_object_move_to_inactive(obj);
673a394b 1762 }
9d34e5db 1763
db53a302
CW
1764 if (unlikely(ring->trace_irq_seqno &&
1765 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1766 ring->irq_put(ring);
db53a302 1767 ring->trace_irq_seqno = 0;
9d34e5db 1768 }
23bc5982 1769
db53a302 1770 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1771}
1772
b09a1fec
CW
1773void
1774i915_gem_retire_requests(struct drm_device *dev)
1775{
1776 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 1777 struct intel_ring_buffer *ring;
1ec14ad3 1778 int i;
b09a1fec 1779
b4519513
CW
1780 for_each_ring(ring, dev_priv, i)
1781 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
1782}
1783
75ef9da2 1784static void
673a394b
EA
1785i915_gem_retire_work_handler(struct work_struct *work)
1786{
1787 drm_i915_private_t *dev_priv;
1788 struct drm_device *dev;
b4519513 1789 struct intel_ring_buffer *ring;
0a58705b
CW
1790 bool idle;
1791 int i;
673a394b
EA
1792
1793 dev_priv = container_of(work, drm_i915_private_t,
1794 mm.retire_work.work);
1795 dev = dev_priv->dev;
1796
891b48cf
CW
1797 /* Come back later if the device is busy... */
1798 if (!mutex_trylock(&dev->struct_mutex)) {
1799 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1800 return;
1801 }
1802
b09a1fec 1803 i915_gem_retire_requests(dev);
d1b851fc 1804
0a58705b
CW
1805 /* Send a periodic flush down the ring so we don't hold onto GEM
1806 * objects indefinitely.
1807 */
1808 idle = true;
b4519513 1809 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
1810 if (ring->gpu_caches_dirty)
1811 i915_add_request(ring, NULL, NULL);
0a58705b
CW
1812
1813 idle &= list_empty(&ring->request_list);
1814 }
1815
1816 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1817 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
f047e395
CW
1818 if (idle)
1819 intel_mark_idle(dev);
0a58705b 1820
673a394b
EA
1821 mutex_unlock(&dev->struct_mutex);
1822}
1823
d6b2c790
DV
1824int
1825i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1826 bool interruptible)
b4aca010 1827{
b4aca010
BW
1828 if (atomic_read(&dev_priv->mm.wedged)) {
1829 struct completion *x = &dev_priv->error_completion;
1830 bool recovery_complete;
1831 unsigned long flags;
1832
1833 /* Give the error handler a chance to run. */
1834 spin_lock_irqsave(&x->wait.lock, flags);
1835 recovery_complete = x->done > 0;
1836 spin_unlock_irqrestore(&x->wait.lock, flags);
1837
d6b2c790
DV
1838 /* Non-interruptible callers can't handle -EAGAIN, hence return
1839 * -EIO unconditionally for these. */
1840 if (!interruptible)
1841 return -EIO;
1842
1843 /* Recovery complete, but still wedged means reset failure. */
1844 if (recovery_complete)
1845 return -EIO;
1846
1847 return -EAGAIN;
b4aca010
BW
1848 }
1849
1850 return 0;
1851}
1852
1853/*
1854 * Compare seqno against outstanding lazy request. Emit a request if they are
1855 * equal.
1856 */
1857static int
1858i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1859{
3bb73aba 1860 int ret;
b4aca010
BW
1861
1862 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1863
3bb73aba
CW
1864 ret = 0;
1865 if (seqno == ring->outstanding_lazy_request)
1866 ret = i915_add_request(ring, NULL, NULL);
b4aca010
BW
1867
1868 return ret;
1869}
1870
5c81fe85
BW
1871/**
1872 * __wait_seqno - wait until execution of seqno has finished
1873 * @ring: the ring expected to report seqno
1874 * @seqno: duh!
1875 * @interruptible: do an interruptible wait (normally yes)
1876 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1877 *
1878 * Returns 0 if the seqno was found within the alloted time. Else returns the
1879 * errno with remaining time filled in timeout argument.
1880 */
604dd3ec 1881static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
5c81fe85 1882 bool interruptible, struct timespec *timeout)
604dd3ec
BW
1883{
1884 drm_i915_private_t *dev_priv = ring->dev->dev_private;
5c81fe85
BW
1885 struct timespec before, now, wait_time={1,0};
1886 unsigned long timeout_jiffies;
1887 long end;
1888 bool wait_forever = true;
d6b2c790 1889 int ret;
604dd3ec
BW
1890
1891 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1892 return 0;
1893
1894 trace_i915_gem_request_wait_begin(ring, seqno);
5c81fe85
BW
1895
1896 if (timeout != NULL) {
1897 wait_time = *timeout;
1898 wait_forever = false;
1899 }
1900
1901 timeout_jiffies = timespec_to_jiffies(&wait_time);
1902
604dd3ec
BW
1903 if (WARN_ON(!ring->irq_get(ring)))
1904 return -ENODEV;
1905
5c81fe85
BW
1906 /* Record current time in case interrupted by signal, or wedged * */
1907 getrawmonotonic(&before);
1908
604dd3ec
BW
1909#define EXIT_COND \
1910 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1911 atomic_read(&dev_priv->mm.wedged))
5c81fe85
BW
1912 do {
1913 if (interruptible)
1914 end = wait_event_interruptible_timeout(ring->irq_queue,
1915 EXIT_COND,
1916 timeout_jiffies);
1917 else
1918 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1919 timeout_jiffies);
604dd3ec 1920
d6b2c790
DV
1921 ret = i915_gem_check_wedge(dev_priv, interruptible);
1922 if (ret)
1923 end = ret;
5c81fe85
BW
1924 } while (end == 0 && wait_forever);
1925
1926 getrawmonotonic(&now);
604dd3ec
BW
1927
1928 ring->irq_put(ring);
1929 trace_i915_gem_request_wait_end(ring, seqno);
1930#undef EXIT_COND
1931
5c81fe85
BW
1932 if (timeout) {
1933 struct timespec sleep_time = timespec_sub(now, before);
1934 *timeout = timespec_sub(*timeout, sleep_time);
1935 }
1936
1937 switch (end) {
eeef9b38 1938 case -EIO:
5c81fe85
BW
1939 case -EAGAIN: /* Wedged */
1940 case -ERESTARTSYS: /* Signal */
1941 return (int)end;
1942 case 0: /* Timeout */
1943 if (timeout)
1944 set_normalized_timespec(timeout, 0, 0);
1945 return -ETIME;
1946 default: /* Completed */
1947 WARN_ON(end < 0); /* We're not aware of other errors */
1948 return 0;
1949 }
604dd3ec
BW
1950}
1951
db53a302
CW
1952/**
1953 * Waits for a sequence number to be signaled, and cleans up the
1954 * request and object lists appropriately for that event.
1955 */
5a5a0c64 1956int
199b2bc2 1957i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
673a394b 1958{
db53a302 1959 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
1960 int ret = 0;
1961
1962 BUG_ON(seqno == 0);
1963
d6b2c790 1964 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
b4aca010
BW
1965 if (ret)
1966 return ret;
3cce469c 1967
b4aca010
BW
1968 ret = i915_gem_check_olr(ring, seqno);
1969 if (ret)
1970 return ret;
ffed1d09 1971
5c81fe85 1972 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
673a394b 1973
673a394b
EA
1974 return ret;
1975}
1976
673a394b
EA
1977/**
1978 * Ensures that all rendering to the object has completed and the object is
1979 * safe to unbind from the GTT or access from the CPU.
1980 */
0201f1ec
CW
1981static __must_check int
1982i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1983 bool readonly)
673a394b 1984{
0201f1ec 1985 u32 seqno;
673a394b
EA
1986 int ret;
1987
673a394b
EA
1988 /* If there is rendering queued on the buffer being evicted, wait for
1989 * it.
1990 */
0201f1ec
CW
1991 if (readonly)
1992 seqno = obj->last_write_seqno;
1993 else
1994 seqno = obj->last_read_seqno;
1995 if (seqno == 0)
1996 return 0;
1997
1998 ret = i915_wait_seqno(obj->ring, seqno);
1999 if (ret)
2000 return ret;
2001
2002 /* Manually manage the write flush as we may have not yet retired
2003 * the buffer.
2004 */
2005 if (obj->last_write_seqno &&
2006 i915_seqno_passed(seqno, obj->last_write_seqno)) {
2007 obj->last_write_seqno = 0;
2008 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
673a394b
EA
2009 }
2010
0201f1ec 2011 i915_gem_retire_requests_ring(obj->ring);
673a394b
EA
2012 return 0;
2013}
2014
30dfebf3
DV
2015/**
2016 * Ensures that an object will eventually get non-busy by flushing any required
2017 * write domains, emitting any outstanding lazy request and retiring and
2018 * completed requests.
2019 */
2020static int
2021i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2022{
2023 int ret;
2024
2025 if (obj->active) {
0201f1ec 2026 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2027 if (ret)
2028 return ret;
0201f1ec 2029
30dfebf3
DV
2030 i915_gem_retire_requests_ring(obj->ring);
2031 }
2032
2033 return 0;
2034}
2035
23ba4fd0
BW
2036/**
2037 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2038 * @DRM_IOCTL_ARGS: standard ioctl arguments
2039 *
2040 * Returns 0 if successful, else an error is returned with the remaining time in
2041 * the timeout parameter.
2042 * -ETIME: object is still busy after timeout
2043 * -ERESTARTSYS: signal interrupted the wait
2044 * -ENONENT: object doesn't exist
2045 * Also possible, but rare:
2046 * -EAGAIN: GPU wedged
2047 * -ENOMEM: damn
2048 * -ENODEV: Internal IRQ fail
2049 * -E?: The add request failed
2050 *
2051 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2052 * non-zero timeout parameter the wait ioctl will wait for the given number of
2053 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2054 * without holding struct_mutex the object may become re-busied before this
2055 * function completes. A similar but shorter * race condition exists in the busy
2056 * ioctl
2057 */
2058int
2059i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2060{
2061 struct drm_i915_gem_wait *args = data;
2062 struct drm_i915_gem_object *obj;
2063 struct intel_ring_buffer *ring = NULL;
eac1f14f 2064 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2065 u32 seqno = 0;
2066 int ret = 0;
2067
eac1f14f
BW
2068 if (args->timeout_ns >= 0) {
2069 timeout_stack = ns_to_timespec(args->timeout_ns);
2070 timeout = &timeout_stack;
2071 }
23ba4fd0
BW
2072
2073 ret = i915_mutex_lock_interruptible(dev);
2074 if (ret)
2075 return ret;
2076
2077 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2078 if (&obj->base == NULL) {
2079 mutex_unlock(&dev->struct_mutex);
2080 return -ENOENT;
2081 }
2082
30dfebf3
DV
2083 /* Need to make sure the object gets inactive eventually. */
2084 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2085 if (ret)
2086 goto out;
2087
2088 if (obj->active) {
0201f1ec 2089 seqno = obj->last_read_seqno;
23ba4fd0
BW
2090 ring = obj->ring;
2091 }
2092
2093 if (seqno == 0)
2094 goto out;
2095
23ba4fd0
BW
2096 /* Do this after OLR check to make sure we make forward progress polling
2097 * on this IOCTL with a 0 timeout (like busy ioctl)
2098 */
2099 if (!args->timeout_ns) {
2100 ret = -ETIME;
2101 goto out;
2102 }
2103
2104 drm_gem_object_unreference(&obj->base);
2105 mutex_unlock(&dev->struct_mutex);
2106
eac1f14f
BW
2107 ret = __wait_seqno(ring, seqno, true, timeout);
2108 if (timeout) {
2109 WARN_ON(!timespec_valid(timeout));
2110 args->timeout_ns = timespec_to_ns(timeout);
2111 }
23ba4fd0
BW
2112 return ret;
2113
2114out:
2115 drm_gem_object_unreference(&obj->base);
2116 mutex_unlock(&dev->struct_mutex);
2117 return ret;
2118}
2119
5816d648
BW
2120/**
2121 * i915_gem_object_sync - sync an object to a ring.
2122 *
2123 * @obj: object which may be in use on another ring.
2124 * @to: ring we wish to use the object on. May be NULL.
2125 *
2126 * This code is meant to abstract object synchronization with the GPU.
2127 * Calling with NULL implies synchronizing the object with the CPU
2128 * rather than a particular GPU ring.
2129 *
2130 * Returns 0 if successful, else propagates up the lower layer error.
2131 */
2911a35b
BW
2132int
2133i915_gem_object_sync(struct drm_i915_gem_object *obj,
2134 struct intel_ring_buffer *to)
2135{
2136 struct intel_ring_buffer *from = obj->ring;
2137 u32 seqno;
2138 int ret, idx;
2139
2140 if (from == NULL || to == from)
2141 return 0;
2142
5816d648 2143 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2144 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2145
2146 idx = intel_ring_sync_index(from, to);
2147
0201f1ec 2148 seqno = obj->last_read_seqno;
2911a35b
BW
2149 if (seqno <= from->sync_seqno[idx])
2150 return 0;
2151
b4aca010
BW
2152 ret = i915_gem_check_olr(obj->ring, seqno);
2153 if (ret)
2154 return ret;
2911a35b 2155
1500f7ea 2156 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2157 if (!ret)
2158 from->sync_seqno[idx] = seqno;
2911a35b 2159
e3a5a225 2160 return ret;
2911a35b
BW
2161}
2162
b5ffc9bc
CW
2163static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2164{
2165 u32 old_write_domain, old_read_domains;
2166
b5ffc9bc
CW
2167 /* Act a barrier for all accesses through the GTT */
2168 mb();
2169
2170 /* Force a pagefault for domain tracking on next user access */
2171 i915_gem_release_mmap(obj);
2172
b97c3d9c
KP
2173 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2174 return;
2175
b5ffc9bc
CW
2176 old_read_domains = obj->base.read_domains;
2177 old_write_domain = obj->base.write_domain;
2178
2179 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2180 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2181
2182 trace_i915_gem_object_change_domain(obj,
2183 old_read_domains,
2184 old_write_domain);
2185}
2186
673a394b
EA
2187/**
2188 * Unbinds an object from the GTT aperture.
2189 */
0f973f27 2190int
05394f39 2191i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2192{
7bddb01f 2193 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2194 int ret = 0;
2195
05394f39 2196 if (obj->gtt_space == NULL)
673a394b
EA
2197 return 0;
2198
31d8d651
CW
2199 if (obj->pin_count)
2200 return -EBUSY;
673a394b 2201
a8198eea 2202 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2203 if (ret)
a8198eea
CW
2204 return ret;
2205 /* Continue on if we fail due to EIO, the GPU is hung so we
2206 * should be safe and we need to cleanup or else we might
2207 * cause memory corruption through use-after-free.
2208 */
2209
b5ffc9bc 2210 i915_gem_object_finish_gtt(obj);
5323fd04 2211
673a394b
EA
2212 /* Move the object to the CPU domain to ensure that
2213 * any possible CPU writes while it's not in the GTT
a8198eea 2214 * are flushed when we go to remap it.
673a394b 2215 */
a8198eea
CW
2216 if (ret == 0)
2217 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2218 if (ret == -ERESTARTSYS)
673a394b 2219 return ret;
812ed492 2220 if (ret) {
a8198eea
CW
2221 /* In the event of a disaster, abandon all caches and
2222 * hope for the best.
2223 */
812ed492 2224 i915_gem_clflush_object(obj);
05394f39 2225 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2226 }
673a394b 2227
96b47b65 2228 /* release the fence reg _after_ flushing */
d9e86c0e 2229 ret = i915_gem_object_put_fence(obj);
1488fc08 2230 if (ret)
d9e86c0e 2231 return ret;
96b47b65 2232
db53a302
CW
2233 trace_i915_gem_object_unbind(obj);
2234
74898d7e
DV
2235 if (obj->has_global_gtt_mapping)
2236 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2237 if (obj->has_aliasing_ppgtt_mapping) {
2238 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2239 obj->has_aliasing_ppgtt_mapping = 0;
2240 }
74163907 2241 i915_gem_gtt_finish_object(obj);
7bddb01f 2242
e5281ccd 2243 i915_gem_object_put_pages_gtt(obj);
673a394b 2244
6299f992 2245 list_del_init(&obj->gtt_list);
05394f39 2246 list_del_init(&obj->mm_list);
75e9e915 2247 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2248 obj->map_and_fenceable = true;
673a394b 2249
05394f39
CW
2250 drm_mm_put_block(obj->gtt_space);
2251 obj->gtt_space = NULL;
2252 obj->gtt_offset = 0;
673a394b 2253
05394f39 2254 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2255 i915_gem_object_truncate(obj);
2256
8dc1775d 2257 return ret;
673a394b
EA
2258}
2259
b2da9fe5 2260static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2261{
69c2fc89 2262 if (list_empty(&ring->active_list))
64193406
CW
2263 return 0;
2264
199b2bc2 2265 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2266}
2267
b2da9fe5 2268int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2269{
2270 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2271 struct intel_ring_buffer *ring;
1ec14ad3 2272 int ret, i;
4df2faf4 2273
4df2faf4 2274 /* Flush everything onto the inactive list. */
b4519513
CW
2275 for_each_ring(ring, dev_priv, i) {
2276 ret = i915_ring_idle(ring);
1ec14ad3
CW
2277 if (ret)
2278 return ret;
b4519513 2279
f2ef6eb1
BW
2280 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2281 if (ret)
2282 return ret;
1ec14ad3 2283 }
4df2faf4 2284
8a1a49f9 2285 return 0;
4df2faf4
DV
2286}
2287
9ce079e4
CW
2288static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2289 struct drm_i915_gem_object *obj)
4e901fdc 2290{
4e901fdc 2291 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2292 uint64_t val;
2293
9ce079e4
CW
2294 if (obj) {
2295 u32 size = obj->gtt_space->size;
4e901fdc 2296
9ce079e4
CW
2297 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2298 0xfffff000) << 32;
2299 val |= obj->gtt_offset & 0xfffff000;
2300 val |= (uint64_t)((obj->stride / 128) - 1) <<
2301 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2302
9ce079e4
CW
2303 if (obj->tiling_mode == I915_TILING_Y)
2304 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2305 val |= I965_FENCE_REG_VALID;
2306 } else
2307 val = 0;
c6642782 2308
9ce079e4
CW
2309 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2310 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2311}
2312
9ce079e4
CW
2313static void i965_write_fence_reg(struct drm_device *dev, int reg,
2314 struct drm_i915_gem_object *obj)
de151cf6 2315{
de151cf6 2316 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2317 uint64_t val;
2318
9ce079e4
CW
2319 if (obj) {
2320 u32 size = obj->gtt_space->size;
de151cf6 2321
9ce079e4
CW
2322 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2323 0xfffff000) << 32;
2324 val |= obj->gtt_offset & 0xfffff000;
2325 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2326 if (obj->tiling_mode == I915_TILING_Y)
2327 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2328 val |= I965_FENCE_REG_VALID;
2329 } else
2330 val = 0;
c6642782 2331
9ce079e4
CW
2332 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2333 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2334}
2335
9ce079e4
CW
2336static void i915_write_fence_reg(struct drm_device *dev, int reg,
2337 struct drm_i915_gem_object *obj)
de151cf6 2338{
de151cf6 2339 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2340 u32 val;
de151cf6 2341
9ce079e4
CW
2342 if (obj) {
2343 u32 size = obj->gtt_space->size;
2344 int pitch_val;
2345 int tile_width;
c6642782 2346
9ce079e4
CW
2347 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2348 (size & -size) != size ||
2349 (obj->gtt_offset & (size - 1)),
2350 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2351 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2352
9ce079e4
CW
2353 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2354 tile_width = 128;
2355 else
2356 tile_width = 512;
2357
2358 /* Note: pitch better be a power of two tile widths */
2359 pitch_val = obj->stride / tile_width;
2360 pitch_val = ffs(pitch_val) - 1;
2361
2362 val = obj->gtt_offset;
2363 if (obj->tiling_mode == I915_TILING_Y)
2364 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2365 val |= I915_FENCE_SIZE_BITS(size);
2366 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2367 val |= I830_FENCE_REG_VALID;
2368 } else
2369 val = 0;
2370
2371 if (reg < 8)
2372 reg = FENCE_REG_830_0 + reg * 4;
2373 else
2374 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2375
2376 I915_WRITE(reg, val);
2377 POSTING_READ(reg);
de151cf6
JB
2378}
2379
9ce079e4
CW
2380static void i830_write_fence_reg(struct drm_device *dev, int reg,
2381 struct drm_i915_gem_object *obj)
de151cf6 2382{
de151cf6 2383 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2384 uint32_t val;
de151cf6 2385
9ce079e4
CW
2386 if (obj) {
2387 u32 size = obj->gtt_space->size;
2388 uint32_t pitch_val;
de151cf6 2389
9ce079e4
CW
2390 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2391 (size & -size) != size ||
2392 (obj->gtt_offset & (size - 1)),
2393 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2394 obj->gtt_offset, size);
e76a16de 2395
9ce079e4
CW
2396 pitch_val = obj->stride / 128;
2397 pitch_val = ffs(pitch_val) - 1;
de151cf6 2398
9ce079e4
CW
2399 val = obj->gtt_offset;
2400 if (obj->tiling_mode == I915_TILING_Y)
2401 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2402 val |= I830_FENCE_SIZE_BITS(size);
2403 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2404 val |= I830_FENCE_REG_VALID;
2405 } else
2406 val = 0;
c6642782 2407
9ce079e4
CW
2408 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2409 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2410}
2411
2412static void i915_gem_write_fence(struct drm_device *dev, int reg,
2413 struct drm_i915_gem_object *obj)
2414{
2415 switch (INTEL_INFO(dev)->gen) {
2416 case 7:
2417 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2418 case 5:
2419 case 4: i965_write_fence_reg(dev, reg, obj); break;
2420 case 3: i915_write_fence_reg(dev, reg, obj); break;
2421 case 2: i830_write_fence_reg(dev, reg, obj); break;
2422 default: break;
2423 }
de151cf6
JB
2424}
2425
61050808
CW
2426static inline int fence_number(struct drm_i915_private *dev_priv,
2427 struct drm_i915_fence_reg *fence)
2428{
2429 return fence - dev_priv->fence_regs;
2430}
2431
2432static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2433 struct drm_i915_fence_reg *fence,
2434 bool enable)
2435{
2436 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2437 int reg = fence_number(dev_priv, fence);
2438
2439 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2440
2441 if (enable) {
2442 obj->fence_reg = reg;
2443 fence->obj = obj;
2444 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2445 } else {
2446 obj->fence_reg = I915_FENCE_REG_NONE;
2447 fence->obj = NULL;
2448 list_del_init(&fence->lru_list);
2449 }
2450}
2451
d9e86c0e 2452static int
a360bb1a 2453i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2454{
1c293ea3 2455 if (obj->last_fenced_seqno) {
86d5bc37 2456 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2457 if (ret)
2458 return ret;
d9e86c0e
CW
2459
2460 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2461 }
2462
63256ec5
CW
2463 /* Ensure that all CPU reads are completed before installing a fence
2464 * and all writes before removing the fence.
2465 */
2466 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2467 mb();
2468
86d5bc37 2469 obj->fenced_gpu_access = false;
d9e86c0e
CW
2470 return 0;
2471}
2472
2473int
2474i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2475{
61050808 2476 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2477 int ret;
2478
a360bb1a 2479 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2480 if (ret)
2481 return ret;
2482
61050808
CW
2483 if (obj->fence_reg == I915_FENCE_REG_NONE)
2484 return 0;
d9e86c0e 2485
61050808
CW
2486 i915_gem_object_update_fence(obj,
2487 &dev_priv->fence_regs[obj->fence_reg],
2488 false);
2489 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2490
2491 return 0;
2492}
2493
2494static struct drm_i915_fence_reg *
a360bb1a 2495i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2496{
ae3db24a 2497 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2498 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2499 int i;
ae3db24a
DV
2500
2501 /* First try to find a free reg */
d9e86c0e 2502 avail = NULL;
ae3db24a
DV
2503 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2504 reg = &dev_priv->fence_regs[i];
2505 if (!reg->obj)
d9e86c0e 2506 return reg;
ae3db24a 2507
1690e1eb 2508 if (!reg->pin_count)
d9e86c0e 2509 avail = reg;
ae3db24a
DV
2510 }
2511
d9e86c0e
CW
2512 if (avail == NULL)
2513 return NULL;
ae3db24a
DV
2514
2515 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2516 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2517 if (reg->pin_count)
ae3db24a
DV
2518 continue;
2519
8fe301ad 2520 return reg;
ae3db24a
DV
2521 }
2522
8fe301ad 2523 return NULL;
ae3db24a
DV
2524}
2525
de151cf6 2526/**
9a5a53b3 2527 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2528 * @obj: object to map through a fence reg
2529 *
2530 * When mapping objects through the GTT, userspace wants to be able to write
2531 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2532 * This function walks the fence regs looking for a free one for @obj,
2533 * stealing one if it can't find any.
2534 *
2535 * It then sets up the reg based on the object's properties: address, pitch
2536 * and tiling format.
9a5a53b3
CW
2537 *
2538 * For an untiled surface, this removes any existing fence.
de151cf6 2539 */
8c4b8c3f 2540int
06d98131 2541i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2542{
05394f39 2543 struct drm_device *dev = obj->base.dev;
79e53945 2544 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2545 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2546 struct drm_i915_fence_reg *reg;
ae3db24a 2547 int ret;
de151cf6 2548
14415745
CW
2549 /* Have we updated the tiling parameters upon the object and so
2550 * will need to serialise the write to the associated fence register?
2551 */
5d82e3e6 2552 if (obj->fence_dirty) {
14415745
CW
2553 ret = i915_gem_object_flush_fence(obj);
2554 if (ret)
2555 return ret;
2556 }
9a5a53b3 2557
d9e86c0e 2558 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2559 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2560 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2561 if (!obj->fence_dirty) {
14415745
CW
2562 list_move_tail(&reg->lru_list,
2563 &dev_priv->mm.fence_list);
2564 return 0;
2565 }
2566 } else if (enable) {
2567 reg = i915_find_fence_reg(dev);
2568 if (reg == NULL)
2569 return -EDEADLK;
d9e86c0e 2570
14415745
CW
2571 if (reg->obj) {
2572 struct drm_i915_gem_object *old = reg->obj;
2573
2574 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2575 if (ret)
2576 return ret;
2577
14415745 2578 i915_gem_object_fence_lost(old);
29c5a587 2579 }
14415745 2580 } else
a09ba7fa 2581 return 0;
a09ba7fa 2582
14415745 2583 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2584 obj->fence_dirty = false;
14415745 2585
9ce079e4 2586 return 0;
de151cf6
JB
2587}
2588
673a394b
EA
2589/**
2590 * Finds free space in the GTT aperture and binds the object there.
2591 */
2592static int
05394f39 2593i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2594 unsigned alignment,
75e9e915 2595 bool map_and_fenceable)
673a394b 2596{
05394f39 2597 struct drm_device *dev = obj->base.dev;
673a394b 2598 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2599 struct drm_mm_node *free_space;
a00b10c3 2600 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2601 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2602 bool mappable, fenceable;
07f73f69 2603 int ret;
673a394b 2604
05394f39 2605 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2606 DRM_ERROR("Attempting to bind a purgeable object\n");
2607 return -EINVAL;
2608 }
2609
e28f8711
CW
2610 fence_size = i915_gem_get_gtt_size(dev,
2611 obj->base.size,
2612 obj->tiling_mode);
2613 fence_alignment = i915_gem_get_gtt_alignment(dev,
2614 obj->base.size,
2615 obj->tiling_mode);
2616 unfenced_alignment =
2617 i915_gem_get_unfenced_gtt_alignment(dev,
2618 obj->base.size,
2619 obj->tiling_mode);
a00b10c3 2620
673a394b 2621 if (alignment == 0)
5e783301
DV
2622 alignment = map_and_fenceable ? fence_alignment :
2623 unfenced_alignment;
75e9e915 2624 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2625 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2626 return -EINVAL;
2627 }
2628
05394f39 2629 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2630
654fc607
CW
2631 /* If the object is bigger than the entire aperture, reject it early
2632 * before evicting everything in a vain attempt to find space.
2633 */
05394f39 2634 if (obj->base.size >
75e9e915 2635 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2636 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2637 return -E2BIG;
2638 }
2639
673a394b 2640 search_free:
75e9e915 2641 if (map_and_fenceable)
920afa77
DV
2642 free_space =
2643 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
6b9d89b4
CW
2644 size, alignment,
2645 0, dev_priv->mm.gtt_mappable_end,
920afa77
DV
2646 0);
2647 else
2648 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2649 size, alignment, 0);
920afa77
DV
2650
2651 if (free_space != NULL) {
75e9e915 2652 if (map_and_fenceable)
05394f39 2653 obj->gtt_space =
920afa77 2654 drm_mm_get_block_range_generic(free_space,
a00b10c3 2655 size, alignment, 0,
6b9d89b4 2656 0, dev_priv->mm.gtt_mappable_end,
920afa77
DV
2657 0);
2658 else
05394f39 2659 obj->gtt_space =
a00b10c3 2660 drm_mm_get_block(free_space, size, alignment);
920afa77 2661 }
05394f39 2662 if (obj->gtt_space == NULL) {
673a394b
EA
2663 /* If the gtt is empty and we're still having trouble
2664 * fitting our object in, we're out of memory.
2665 */
75e9e915
DV
2666 ret = i915_gem_evict_something(dev, size, alignment,
2667 map_and_fenceable);
9731129c 2668 if (ret)
673a394b 2669 return ret;
9731129c 2670
673a394b
EA
2671 goto search_free;
2672 }
2673
e5281ccd 2674 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2675 if (ret) {
05394f39
CW
2676 drm_mm_put_block(obj->gtt_space);
2677 obj->gtt_space = NULL;
07f73f69
CW
2678
2679 if (ret == -ENOMEM) {
809b6334
CW
2680 /* first try to reclaim some memory by clearing the GTT */
2681 ret = i915_gem_evict_everything(dev, false);
07f73f69 2682 if (ret) {
07f73f69 2683 /* now try to shrink everyone else */
4bdadb97
CW
2684 if (gfpmask) {
2685 gfpmask = 0;
2686 goto search_free;
07f73f69
CW
2687 }
2688
809b6334 2689 return -ENOMEM;
07f73f69
CW
2690 }
2691
2692 goto search_free;
2693 }
2694
673a394b
EA
2695 return ret;
2696 }
2697
74163907 2698 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2699 if (ret) {
e5281ccd 2700 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2701 drm_mm_put_block(obj->gtt_space);
2702 obj->gtt_space = NULL;
07f73f69 2703
809b6334 2704 if (i915_gem_evict_everything(dev, false))
07f73f69 2705 return ret;
07f73f69
CW
2706
2707 goto search_free;
673a394b 2708 }
673a394b 2709
0ebb9829
DV
2710 if (!dev_priv->mm.aliasing_ppgtt)
2711 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2712
6299f992 2713 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2714 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2715
673a394b
EA
2716 /* Assert that the object is not currently in any GPU domain. As it
2717 * wasn't in the GTT, there shouldn't be any way it could have been in
2718 * a GPU cache
2719 */
05394f39
CW
2720 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2721 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2722
6299f992 2723 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2724
75e9e915 2725 fenceable =
05394f39 2726 obj->gtt_space->size == fence_size &&
0206e353 2727 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2728
75e9e915 2729 mappable =
05394f39 2730 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2731
05394f39 2732 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2733
db53a302 2734 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2735 return 0;
2736}
2737
2738void
05394f39 2739i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2740{
673a394b
EA
2741 /* If we don't have a page list set up, then we're not pinned
2742 * to GPU, and we can ignore the cache flush because it'll happen
2743 * again at bind time.
2744 */
05394f39 2745 if (obj->pages == NULL)
673a394b
EA
2746 return;
2747
9c23f7fc
CW
2748 /* If the GPU is snooping the contents of the CPU cache,
2749 * we do not need to manually clear the CPU cache lines. However,
2750 * the caches are only snooped when the render cache is
2751 * flushed/invalidated. As we always have to emit invalidations
2752 * and flushes when moving into and out of the RENDER domain, correct
2753 * snooping behaviour occurs naturally as the result of our domain
2754 * tracking.
2755 */
2756 if (obj->cache_level != I915_CACHE_NONE)
2757 return;
2758
1c5d22f7 2759 trace_i915_gem_object_clflush(obj);
cfa16a0d 2760
05394f39 2761 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2762}
2763
e47c68e9
EA
2764/** Flushes the GTT write domain for the object if it's dirty. */
2765static void
05394f39 2766i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2767{
1c5d22f7
CW
2768 uint32_t old_write_domain;
2769
05394f39 2770 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2771 return;
2772
63256ec5 2773 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2774 * to it immediately go to main memory as far as we know, so there's
2775 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2776 *
2777 * However, we do have to enforce the order so that all writes through
2778 * the GTT land before any writes to the device, such as updates to
2779 * the GATT itself.
e47c68e9 2780 */
63256ec5
CW
2781 wmb();
2782
05394f39
CW
2783 old_write_domain = obj->base.write_domain;
2784 obj->base.write_domain = 0;
1c5d22f7
CW
2785
2786 trace_i915_gem_object_change_domain(obj,
05394f39 2787 obj->base.read_domains,
1c5d22f7 2788 old_write_domain);
e47c68e9
EA
2789}
2790
2791/** Flushes the CPU write domain for the object if it's dirty. */
2792static void
05394f39 2793i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2794{
1c5d22f7 2795 uint32_t old_write_domain;
e47c68e9 2796
05394f39 2797 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2798 return;
2799
2800 i915_gem_clflush_object(obj);
40ce6575 2801 intel_gtt_chipset_flush();
05394f39
CW
2802 old_write_domain = obj->base.write_domain;
2803 obj->base.write_domain = 0;
1c5d22f7
CW
2804
2805 trace_i915_gem_object_change_domain(obj,
05394f39 2806 obj->base.read_domains,
1c5d22f7 2807 old_write_domain);
e47c68e9
EA
2808}
2809
2ef7eeaa
EA
2810/**
2811 * Moves a single object to the GTT read, and possibly write domain.
2812 *
2813 * This function returns when the move is complete, including waiting on
2814 * flushes to occur.
2815 */
79e53945 2816int
2021746e 2817i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2818{
8325a09d 2819 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 2820 uint32_t old_write_domain, old_read_domains;
e47c68e9 2821 int ret;
2ef7eeaa 2822
02354392 2823 /* Not valid to be called on unbound objects. */
05394f39 2824 if (obj->gtt_space == NULL)
02354392
EA
2825 return -EINVAL;
2826
8d7e3de1
CW
2827 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2828 return 0;
2829
0201f1ec
CW
2830 ret = i915_gem_object_wait_rendering(obj, !write);
2831 if (ret)
2832 return ret;
2dafb1e0 2833
7213342d 2834 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2835
05394f39
CW
2836 old_write_domain = obj->base.write_domain;
2837 old_read_domains = obj->base.read_domains;
1c5d22f7 2838
e47c68e9
EA
2839 /* It should now be out of any other write domains, and we can update
2840 * the domain values for our changes.
2841 */
05394f39
CW
2842 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2843 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2844 if (write) {
05394f39
CW
2845 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2846 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2847 obj->dirty = 1;
2ef7eeaa
EA
2848 }
2849
1c5d22f7
CW
2850 trace_i915_gem_object_change_domain(obj,
2851 old_read_domains,
2852 old_write_domain);
2853
8325a09d
CW
2854 /* And bump the LRU for this access */
2855 if (i915_gem_object_is_inactive(obj))
2856 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2857
e47c68e9
EA
2858 return 0;
2859}
2860
e4ffd173
CW
2861int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2862 enum i915_cache_level cache_level)
2863{
7bddb01f
DV
2864 struct drm_device *dev = obj->base.dev;
2865 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2866 int ret;
2867
2868 if (obj->cache_level == cache_level)
2869 return 0;
2870
2871 if (obj->pin_count) {
2872 DRM_DEBUG("can not change the cache level of pinned objects\n");
2873 return -EBUSY;
2874 }
2875
2876 if (obj->gtt_space) {
2877 ret = i915_gem_object_finish_gpu(obj);
2878 if (ret)
2879 return ret;
2880
2881 i915_gem_object_finish_gtt(obj);
2882
2883 /* Before SandyBridge, you could not use tiling or fence
2884 * registers with snooped memory, so relinquish any fences
2885 * currently pointing to our region in the aperture.
2886 */
2887 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2888 ret = i915_gem_object_put_fence(obj);
2889 if (ret)
2890 return ret;
2891 }
2892
74898d7e
DV
2893 if (obj->has_global_gtt_mapping)
2894 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
2895 if (obj->has_aliasing_ppgtt_mapping)
2896 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2897 obj, cache_level);
e4ffd173
CW
2898 }
2899
2900 if (cache_level == I915_CACHE_NONE) {
2901 u32 old_read_domains, old_write_domain;
2902
2903 /* If we're coming from LLC cached, then we haven't
2904 * actually been tracking whether the data is in the
2905 * CPU cache or not, since we only allow one bit set
2906 * in obj->write_domain and have been skipping the clflushes.
2907 * Just set it to the CPU cache for now.
2908 */
2909 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2910 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2911
2912 old_read_domains = obj->base.read_domains;
2913 old_write_domain = obj->base.write_domain;
2914
2915 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2916 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2917
2918 trace_i915_gem_object_change_domain(obj,
2919 old_read_domains,
2920 old_write_domain);
2921 }
2922
2923 obj->cache_level = cache_level;
2924 return 0;
2925}
2926
b9241ea3 2927/*
2da3b9b9
CW
2928 * Prepare buffer for display plane (scanout, cursors, etc).
2929 * Can be called from an uninterruptible phase (modesetting) and allows
2930 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
2931 */
2932int
2da3b9b9
CW
2933i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2934 u32 alignment,
919926ae 2935 struct intel_ring_buffer *pipelined)
b9241ea3 2936{
2da3b9b9 2937 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2938 int ret;
2939
0be73284 2940 if (pipelined != obj->ring) {
2911a35b
BW
2941 ret = i915_gem_object_sync(obj, pipelined);
2942 if (ret)
b9241ea3
ZW
2943 return ret;
2944 }
2945
a7ef0640
EA
2946 /* The display engine is not coherent with the LLC cache on gen6. As
2947 * a result, we make sure that the pinning that is about to occur is
2948 * done with uncached PTEs. This is lowest common denominator for all
2949 * chipsets.
2950 *
2951 * However for gen6+, we could do better by using the GFDT bit instead
2952 * of uncaching, which would allow us to flush all the LLC-cached data
2953 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2954 */
2955 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2956 if (ret)
2957 return ret;
2958
2da3b9b9
CW
2959 /* As the user may map the buffer once pinned in the display plane
2960 * (e.g. libkms for the bootup splash), we have to ensure that we
2961 * always use map_and_fenceable for all scanout buffers.
2962 */
2963 ret = i915_gem_object_pin(obj, alignment, true);
2964 if (ret)
2965 return ret;
2966
b118c1e3
CW
2967 i915_gem_object_flush_cpu_write_domain(obj);
2968
2da3b9b9 2969 old_write_domain = obj->base.write_domain;
05394f39 2970 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
2971
2972 /* It should now be out of any other write domains, and we can update
2973 * the domain values for our changes.
2974 */
e5f1d962 2975 obj->base.write_domain = 0;
05394f39 2976 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2977
2978 trace_i915_gem_object_change_domain(obj,
2979 old_read_domains,
2da3b9b9 2980 old_write_domain);
b9241ea3
ZW
2981
2982 return 0;
2983}
2984
85345517 2985int
a8198eea 2986i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 2987{
88241785
CW
2988 int ret;
2989
a8198eea 2990 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
2991 return 0;
2992
0201f1ec 2993 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
2994 if (ret)
2995 return ret;
2996
a8198eea
CW
2997 /* Ensure that we invalidate the GPU's caches and TLBs. */
2998 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 2999 return 0;
85345517
CW
3000}
3001
e47c68e9
EA
3002/**
3003 * Moves a single object to the CPU read, and possibly write domain.
3004 *
3005 * This function returns when the move is complete, including waiting on
3006 * flushes to occur.
3007 */
dabdfe02 3008int
919926ae 3009i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3010{
1c5d22f7 3011 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3012 int ret;
3013
8d7e3de1
CW
3014 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3015 return 0;
3016
0201f1ec
CW
3017 ret = i915_gem_object_wait_rendering(obj, !write);
3018 if (ret)
3019 return ret;
2ef7eeaa 3020
e47c68e9 3021 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3022
05394f39
CW
3023 old_write_domain = obj->base.write_domain;
3024 old_read_domains = obj->base.read_domains;
1c5d22f7 3025
e47c68e9 3026 /* Flush the CPU cache if it's still invalid. */
05394f39 3027 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3028 i915_gem_clflush_object(obj);
2ef7eeaa 3029
05394f39 3030 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3031 }
3032
3033 /* It should now be out of any other write domains, and we can update
3034 * the domain values for our changes.
3035 */
05394f39 3036 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3037
3038 /* If we're writing through the CPU, then the GPU read domains will
3039 * need to be invalidated at next use.
3040 */
3041 if (write) {
05394f39
CW
3042 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3043 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3044 }
2ef7eeaa 3045
1c5d22f7
CW
3046 trace_i915_gem_object_change_domain(obj,
3047 old_read_domains,
3048 old_write_domain);
3049
2ef7eeaa
EA
3050 return 0;
3051}
3052
673a394b
EA
3053/* Throttle our rendering by waiting until the ring has completed our requests
3054 * emitted over 20 msec ago.
3055 *
b962442e
EA
3056 * Note that if we were to use the current jiffies each time around the loop,
3057 * we wouldn't escape the function with any frames outstanding if the time to
3058 * render a frame was over 20ms.
3059 *
673a394b
EA
3060 * This should get us reasonable parallelism between CPU and GPU but also
3061 * relatively low latency when blocking on a particular request to finish.
3062 */
40a5f0de 3063static int
f787a5f5 3064i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3065{
f787a5f5
CW
3066 struct drm_i915_private *dev_priv = dev->dev_private;
3067 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3068 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3069 struct drm_i915_gem_request *request;
3070 struct intel_ring_buffer *ring = NULL;
3071 u32 seqno = 0;
3072 int ret;
93533c29 3073
e110e8d6
CW
3074 if (atomic_read(&dev_priv->mm.wedged))
3075 return -EIO;
3076
1c25595f 3077 spin_lock(&file_priv->mm.lock);
f787a5f5 3078 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3079 if (time_after_eq(request->emitted_jiffies, recent_enough))
3080 break;
40a5f0de 3081
f787a5f5
CW
3082 ring = request->ring;
3083 seqno = request->seqno;
b962442e 3084 }
1c25595f 3085 spin_unlock(&file_priv->mm.lock);
40a5f0de 3086
f787a5f5
CW
3087 if (seqno == 0)
3088 return 0;
2bc43b5c 3089
5c81fe85 3090 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3091 if (ret == 0)
3092 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3093
3094 return ret;
3095}
3096
673a394b 3097int
05394f39
CW
3098i915_gem_object_pin(struct drm_i915_gem_object *obj,
3099 uint32_t alignment,
75e9e915 3100 bool map_and_fenceable)
673a394b 3101{
673a394b
EA
3102 int ret;
3103
05394f39 3104 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
ac0c6b5a 3105
05394f39
CW
3106 if (obj->gtt_space != NULL) {
3107 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3108 (map_and_fenceable && !obj->map_and_fenceable)) {
3109 WARN(obj->pin_count,
ae7d49d8 3110 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3111 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3112 " obj->map_and_fenceable=%d\n",
05394f39 3113 obj->gtt_offset, alignment,
75e9e915 3114 map_and_fenceable,
05394f39 3115 obj->map_and_fenceable);
ac0c6b5a
CW
3116 ret = i915_gem_object_unbind(obj);
3117 if (ret)
3118 return ret;
3119 }
3120 }
3121
05394f39 3122 if (obj->gtt_space == NULL) {
a00b10c3 3123 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3124 map_and_fenceable);
9731129c 3125 if (ret)
673a394b 3126 return ret;
22c344e9 3127 }
76446cac 3128
74898d7e
DV
3129 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3130 i915_gem_gtt_bind_object(obj, obj->cache_level);
3131
1b50247a 3132 obj->pin_count++;
6299f992 3133 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3134
3135 return 0;
3136}
3137
3138void
05394f39 3139i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3140{
05394f39
CW
3141 BUG_ON(obj->pin_count == 0);
3142 BUG_ON(obj->gtt_space == NULL);
673a394b 3143
1b50247a 3144 if (--obj->pin_count == 0)
6299f992 3145 obj->pin_mappable = false;
673a394b
EA
3146}
3147
3148int
3149i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3150 struct drm_file *file)
673a394b
EA
3151{
3152 struct drm_i915_gem_pin *args = data;
05394f39 3153 struct drm_i915_gem_object *obj;
673a394b
EA
3154 int ret;
3155
1d7cfea1
CW
3156 ret = i915_mutex_lock_interruptible(dev);
3157 if (ret)
3158 return ret;
673a394b 3159
05394f39 3160 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3161 if (&obj->base == NULL) {
1d7cfea1
CW
3162 ret = -ENOENT;
3163 goto unlock;
673a394b 3164 }
673a394b 3165
05394f39 3166 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3167 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3168 ret = -EINVAL;
3169 goto out;
3ef94daa
CW
3170 }
3171
05394f39 3172 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3173 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3174 args->handle);
1d7cfea1
CW
3175 ret = -EINVAL;
3176 goto out;
79e53945
JB
3177 }
3178
05394f39
CW
3179 obj->user_pin_count++;
3180 obj->pin_filp = file;
3181 if (obj->user_pin_count == 1) {
75e9e915 3182 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3183 if (ret)
3184 goto out;
673a394b
EA
3185 }
3186
3187 /* XXX - flush the CPU caches for pinned objects
3188 * as the X server doesn't manage domains yet
3189 */
e47c68e9 3190 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3191 args->offset = obj->gtt_offset;
1d7cfea1 3192out:
05394f39 3193 drm_gem_object_unreference(&obj->base);
1d7cfea1 3194unlock:
673a394b 3195 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3196 return ret;
673a394b
EA
3197}
3198
3199int
3200i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3201 struct drm_file *file)
673a394b
EA
3202{
3203 struct drm_i915_gem_pin *args = data;
05394f39 3204 struct drm_i915_gem_object *obj;
76c1dec1 3205 int ret;
673a394b 3206
1d7cfea1
CW
3207 ret = i915_mutex_lock_interruptible(dev);
3208 if (ret)
3209 return ret;
673a394b 3210
05394f39 3211 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3212 if (&obj->base == NULL) {
1d7cfea1
CW
3213 ret = -ENOENT;
3214 goto unlock;
673a394b 3215 }
76c1dec1 3216
05394f39 3217 if (obj->pin_filp != file) {
79e53945
JB
3218 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3219 args->handle);
1d7cfea1
CW
3220 ret = -EINVAL;
3221 goto out;
79e53945 3222 }
05394f39
CW
3223 obj->user_pin_count--;
3224 if (obj->user_pin_count == 0) {
3225 obj->pin_filp = NULL;
79e53945
JB
3226 i915_gem_object_unpin(obj);
3227 }
673a394b 3228
1d7cfea1 3229out:
05394f39 3230 drm_gem_object_unreference(&obj->base);
1d7cfea1 3231unlock:
673a394b 3232 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3233 return ret;
673a394b
EA
3234}
3235
3236int
3237i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3238 struct drm_file *file)
673a394b
EA
3239{
3240 struct drm_i915_gem_busy *args = data;
05394f39 3241 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3242 int ret;
3243
76c1dec1 3244 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3245 if (ret)
76c1dec1 3246 return ret;
673a394b 3247
05394f39 3248 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3249 if (&obj->base == NULL) {
1d7cfea1
CW
3250 ret = -ENOENT;
3251 goto unlock;
673a394b 3252 }
d1b851fc 3253
0be555b6
CW
3254 /* Count all active objects as busy, even if they are currently not used
3255 * by the gpu. Users of this interface expect objects to eventually
3256 * become non-busy without any further actions, therefore emit any
3257 * necessary flushes here.
c4de0a5d 3258 */
30dfebf3 3259 ret = i915_gem_object_flush_active(obj);
0be555b6 3260
30dfebf3 3261 args->busy = obj->active;
e9808edd
CW
3262 if (obj->ring) {
3263 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3264 args->busy |= intel_ring_flag(obj->ring) << 16;
3265 }
673a394b 3266
05394f39 3267 drm_gem_object_unreference(&obj->base);
1d7cfea1 3268unlock:
673a394b 3269 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3270 return ret;
673a394b
EA
3271}
3272
3273int
3274i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3275 struct drm_file *file_priv)
3276{
0206e353 3277 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3278}
3279
3ef94daa
CW
3280int
3281i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3282 struct drm_file *file_priv)
3283{
3284 struct drm_i915_gem_madvise *args = data;
05394f39 3285 struct drm_i915_gem_object *obj;
76c1dec1 3286 int ret;
3ef94daa
CW
3287
3288 switch (args->madv) {
3289 case I915_MADV_DONTNEED:
3290 case I915_MADV_WILLNEED:
3291 break;
3292 default:
3293 return -EINVAL;
3294 }
3295
1d7cfea1
CW
3296 ret = i915_mutex_lock_interruptible(dev);
3297 if (ret)
3298 return ret;
3299
05394f39 3300 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3301 if (&obj->base == NULL) {
1d7cfea1
CW
3302 ret = -ENOENT;
3303 goto unlock;
3ef94daa 3304 }
3ef94daa 3305
05394f39 3306 if (obj->pin_count) {
1d7cfea1
CW
3307 ret = -EINVAL;
3308 goto out;
3ef94daa
CW
3309 }
3310
05394f39
CW
3311 if (obj->madv != __I915_MADV_PURGED)
3312 obj->madv = args->madv;
3ef94daa 3313
2d7ef395 3314 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3315 if (i915_gem_object_is_purgeable(obj) &&
3316 obj->gtt_space == NULL)
2d7ef395
CW
3317 i915_gem_object_truncate(obj);
3318
05394f39 3319 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3320
1d7cfea1 3321out:
05394f39 3322 drm_gem_object_unreference(&obj->base);
1d7cfea1 3323unlock:
3ef94daa 3324 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3325 return ret;
3ef94daa
CW
3326}
3327
05394f39
CW
3328struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3329 size_t size)
ac52bc56 3330{
73aa808f 3331 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3332 struct drm_i915_gem_object *obj;
5949eac4 3333 struct address_space *mapping;
bed1ea95 3334 u32 mask;
ac52bc56 3335
c397b908
DV
3336 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3337 if (obj == NULL)
3338 return NULL;
673a394b 3339
c397b908
DV
3340 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3341 kfree(obj);
3342 return NULL;
3343 }
673a394b 3344
bed1ea95
CW
3345 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3346 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3347 /* 965gm cannot relocate objects above 4GiB. */
3348 mask &= ~__GFP_HIGHMEM;
3349 mask |= __GFP_DMA32;
3350 }
3351
5949eac4 3352 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3353 mapping_set_gfp_mask(mapping, mask);
5949eac4 3354
73aa808f
CW
3355 i915_gem_info_add_obj(dev_priv, size);
3356
c397b908
DV
3357 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3358 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3359
3d29b842
ED
3360 if (HAS_LLC(dev)) {
3361 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3362 * cache) for about a 10% performance improvement
3363 * compared to uncached. Graphics requests other than
3364 * display scanout are coherent with the CPU in
3365 * accessing this cache. This means in this mode we
3366 * don't need to clflush on the CPU side, and on the
3367 * GPU side we only need to flush internal caches to
3368 * get data visible to the CPU.
3369 *
3370 * However, we maintain the display planes as UC, and so
3371 * need to rebind when first used as such.
3372 */
3373 obj->cache_level = I915_CACHE_LLC;
3374 } else
3375 obj->cache_level = I915_CACHE_NONE;
3376
62b8b215 3377 obj->base.driver_private = NULL;
c397b908 3378 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3379 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3380 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3381 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3382 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3383 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3384 /* Avoid an unnecessary call to unbind on the first bind. */
3385 obj->map_and_fenceable = true;
de151cf6 3386
05394f39 3387 return obj;
c397b908
DV
3388}
3389
3390int i915_gem_init_object(struct drm_gem_object *obj)
3391{
3392 BUG();
de151cf6 3393
673a394b
EA
3394 return 0;
3395}
3396
1488fc08 3397void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3398{
1488fc08 3399 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3400 struct drm_device *dev = obj->base.dev;
be72615b 3401 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3402
26e12f89
CW
3403 trace_i915_gem_object_destroy(obj);
3404
1286ff73
DV
3405 if (gem_obj->import_attach)
3406 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3407
1488fc08
CW
3408 if (obj->phys_obj)
3409 i915_gem_detach_phys_object(dev, obj);
3410
3411 obj->pin_count = 0;
3412 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3413 bool was_interruptible;
3414
3415 was_interruptible = dev_priv->mm.interruptible;
3416 dev_priv->mm.interruptible = false;
3417
3418 WARN_ON(i915_gem_object_unbind(obj));
3419
3420 dev_priv->mm.interruptible = was_interruptible;
3421 }
3422
05394f39 3423 if (obj->base.map_list.map)
b464e9a2 3424 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3425
05394f39
CW
3426 drm_gem_object_release(&obj->base);
3427 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3428
05394f39
CW
3429 kfree(obj->bit_17);
3430 kfree(obj);
673a394b
EA
3431}
3432
29105ccc
CW
3433int
3434i915_gem_idle(struct drm_device *dev)
3435{
3436 drm_i915_private_t *dev_priv = dev->dev_private;
3437 int ret;
28dfe52a 3438
29105ccc 3439 mutex_lock(&dev->struct_mutex);
1c5d22f7 3440
87acb0a5 3441 if (dev_priv->mm.suspended) {
29105ccc
CW
3442 mutex_unlock(&dev->struct_mutex);
3443 return 0;
28dfe52a
EA
3444 }
3445
b2da9fe5 3446 ret = i915_gpu_idle(dev);
6dbe2772
KP
3447 if (ret) {
3448 mutex_unlock(&dev->struct_mutex);
673a394b 3449 return ret;
6dbe2772 3450 }
b2da9fe5 3451 i915_gem_retire_requests(dev);
673a394b 3452
29105ccc 3453 /* Under UMS, be paranoid and evict. */
a39d7efc
CW
3454 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3455 i915_gem_evict_everything(dev, false);
29105ccc 3456
312817a3
CW
3457 i915_gem_reset_fences(dev);
3458
29105ccc
CW
3459 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3460 * We need to replace this with a semaphore, or something.
3461 * And not confound mm.suspended!
3462 */
3463 dev_priv->mm.suspended = 1;
bc0c7f14 3464 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3465
3466 i915_kernel_lost_context(dev);
6dbe2772 3467 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3468
6dbe2772
KP
3469 mutex_unlock(&dev->struct_mutex);
3470
29105ccc
CW
3471 /* Cancel the retire work handler, which should be idle now. */
3472 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3473
673a394b
EA
3474 return 0;
3475}
3476
b9524a1e
BW
3477void i915_gem_l3_remap(struct drm_device *dev)
3478{
3479 drm_i915_private_t *dev_priv = dev->dev_private;
3480 u32 misccpctl;
3481 int i;
3482
3483 if (!IS_IVYBRIDGE(dev))
3484 return;
3485
3486 if (!dev_priv->mm.l3_remap_info)
3487 return;
3488
3489 misccpctl = I915_READ(GEN7_MISCCPCTL);
3490 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3491 POSTING_READ(GEN7_MISCCPCTL);
3492
3493 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3494 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3495 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3496 DRM_DEBUG("0x%x was already programmed to %x\n",
3497 GEN7_L3LOG_BASE + i, remap);
3498 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3499 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3500 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3501 }
3502
3503 /* Make sure all the writes land before disabling dop clock gating */
3504 POSTING_READ(GEN7_L3LOG_BASE);
3505
3506 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3507}
3508
f691e2f4
DV
3509void i915_gem_init_swizzling(struct drm_device *dev)
3510{
3511 drm_i915_private_t *dev_priv = dev->dev_private;
3512
11782b02 3513 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3514 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3515 return;
3516
3517 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3518 DISP_TILE_SURFACE_SWIZZLING);
3519
11782b02
DV
3520 if (IS_GEN5(dev))
3521 return;
3522
f691e2f4
DV
3523 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3524 if (IS_GEN6(dev))
6b26c86d 3525 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3526 else
6b26c86d 3527 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3528}
e21af88d
DV
3529
3530void i915_gem_init_ppgtt(struct drm_device *dev)
3531{
3532 drm_i915_private_t *dev_priv = dev->dev_private;
3533 uint32_t pd_offset;
3534 struct intel_ring_buffer *ring;
55a254ac
DV
3535 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3536 uint32_t __iomem *pd_addr;
3537 uint32_t pd_entry;
e21af88d
DV
3538 int i;
3539
3540 if (!dev_priv->mm.aliasing_ppgtt)
3541 return;
3542
55a254ac
DV
3543
3544 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3545 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3546 dma_addr_t pt_addr;
3547
3548 if (dev_priv->mm.gtt->needs_dmar)
3549 pt_addr = ppgtt->pt_dma_addr[i];
3550 else
3551 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3552
3553 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3554 pd_entry |= GEN6_PDE_VALID;
3555
3556 writel(pd_entry, pd_addr + i);
3557 }
3558 readl(pd_addr);
3559
3560 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3561 pd_offset /= 64; /* in cachelines, */
3562 pd_offset <<= 16;
3563
3564 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3565 uint32_t ecochk, gab_ctl, ecobits;
3566
3567 ecobits = I915_READ(GAC_ECO_BITS);
3568 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3569
3570 gab_ctl = I915_READ(GAB_CTL);
3571 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3572
3573 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3574 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3575 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3576 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3577 } else if (INTEL_INFO(dev)->gen >= 7) {
3578 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3579 /* GFX_MODE is per-ring on gen7+ */
3580 }
3581
b4519513 3582 for_each_ring(ring, dev_priv, i) {
e21af88d
DV
3583 if (INTEL_INFO(dev)->gen >= 7)
3584 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3585 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3586
3587 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3588 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3589 }
3590}
3591
67b1b571
CW
3592static bool
3593intel_enable_blt(struct drm_device *dev)
3594{
3595 if (!HAS_BLT(dev))
3596 return false;
3597
3598 /* The blitter was dysfunctional on early prototypes */
3599 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3600 DRM_INFO("BLT not supported on this pre-production hardware;"
3601 " graphics performance will be degraded.\n");
3602 return false;
3603 }
3604
3605 return true;
3606}
3607
8187a2b7 3608int
f691e2f4 3609i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3610{
3611 drm_i915_private_t *dev_priv = dev->dev_private;
3612 int ret;
68f95ba9 3613
8ecd1a66
DV
3614 if (!intel_enable_gtt())
3615 return -EIO;
3616
b9524a1e
BW
3617 i915_gem_l3_remap(dev);
3618
f691e2f4
DV
3619 i915_gem_init_swizzling(dev);
3620
5c1143bb 3621 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3622 if (ret)
b6913e4b 3623 return ret;
68f95ba9
CW
3624
3625 if (HAS_BSD(dev)) {
5c1143bb 3626 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3627 if (ret)
3628 goto cleanup_render_ring;
d1b851fc 3629 }
68f95ba9 3630
67b1b571 3631 if (intel_enable_blt(dev)) {
549f7365
CW
3632 ret = intel_init_blt_ring_buffer(dev);
3633 if (ret)
3634 goto cleanup_bsd_ring;
3635 }
3636
6f392d54
CW
3637 dev_priv->next_seqno = 1;
3638
254f965c
BW
3639 /*
3640 * XXX: There was some w/a described somewhere suggesting loading
3641 * contexts before PPGTT.
3642 */
3643 i915_gem_context_init(dev);
e21af88d
DV
3644 i915_gem_init_ppgtt(dev);
3645
68f95ba9
CW
3646 return 0;
3647
549f7365 3648cleanup_bsd_ring:
1ec14ad3 3649 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3650cleanup_render_ring:
1ec14ad3 3651 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3652 return ret;
3653}
3654
1070a42b
CW
3655static bool
3656intel_enable_ppgtt(struct drm_device *dev)
3657{
3658 if (i915_enable_ppgtt >= 0)
3659 return i915_enable_ppgtt;
3660
3661#ifdef CONFIG_INTEL_IOMMU
3662 /* Disable ppgtt on SNB if VT-d is on. */
3663 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3664 return false;
3665#endif
3666
3667 return true;
3668}
3669
3670int i915_gem_init(struct drm_device *dev)
3671{
3672 struct drm_i915_private *dev_priv = dev->dev_private;
3673 unsigned long gtt_size, mappable_size;
3674 int ret;
3675
3676 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3677 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3678
3679 mutex_lock(&dev->struct_mutex);
3680 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3681 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3682 * aperture accordingly when using aliasing ppgtt. */
3683 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3684
3685 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3686
3687 ret = i915_gem_init_aliasing_ppgtt(dev);
3688 if (ret) {
3689 mutex_unlock(&dev->struct_mutex);
3690 return ret;
3691 }
3692 } else {
3693 /* Let GEM Manage all of the aperture.
3694 *
3695 * However, leave one page at the end still bound to the scratch
3696 * page. There are a number of places where the hardware
3697 * apparently prefetches past the end of the object, and we've
3698 * seen multiple hangs with the GPU head pointer stuck in a
3699 * batchbuffer bound at the last page of the aperture. One page
3700 * should be enough to keep any prefetching inside of the
3701 * aperture.
3702 */
3703 i915_gem_init_global_gtt(dev, 0, mappable_size,
3704 gtt_size);
3705 }
3706
3707 ret = i915_gem_init_hw(dev);
3708 mutex_unlock(&dev->struct_mutex);
3709 if (ret) {
3710 i915_gem_cleanup_aliasing_ppgtt(dev);
3711 return ret;
3712 }
3713
53ca26ca
DV
3714 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3715 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3716 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
3717 return 0;
3718}
3719
8187a2b7
ZN
3720void
3721i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3722{
3723 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3724 struct intel_ring_buffer *ring;
1ec14ad3 3725 int i;
8187a2b7 3726
b4519513
CW
3727 for_each_ring(ring, dev_priv, i)
3728 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
3729}
3730
673a394b
EA
3731int
3732i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3733 struct drm_file *file_priv)
3734{
3735 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 3736 int ret;
673a394b 3737
79e53945
JB
3738 if (drm_core_check_feature(dev, DRIVER_MODESET))
3739 return 0;
3740
ba1234d1 3741 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3742 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3743 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3744 }
3745
673a394b 3746 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3747 dev_priv->mm.suspended = 0;
3748
f691e2f4 3749 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3750 if (ret != 0) {
3751 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3752 return ret;
d816f6ac 3753 }
9bb2d6f9 3754
69dc4987 3755 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 3756 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
673a394b 3757 mutex_unlock(&dev->struct_mutex);
dbb19d30 3758
5f35308b
CW
3759 ret = drm_irq_install(dev);
3760 if (ret)
3761 goto cleanup_ringbuffer;
dbb19d30 3762
673a394b 3763 return 0;
5f35308b
CW
3764
3765cleanup_ringbuffer:
3766 mutex_lock(&dev->struct_mutex);
3767 i915_gem_cleanup_ringbuffer(dev);
3768 dev_priv->mm.suspended = 1;
3769 mutex_unlock(&dev->struct_mutex);
3770
3771 return ret;
673a394b
EA
3772}
3773
3774int
3775i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3776 struct drm_file *file_priv)
3777{
79e53945
JB
3778 if (drm_core_check_feature(dev, DRIVER_MODESET))
3779 return 0;
3780
dbb19d30 3781 drm_irq_uninstall(dev);
e6890f6f 3782 return i915_gem_idle(dev);
673a394b
EA
3783}
3784
3785void
3786i915_gem_lastclose(struct drm_device *dev)
3787{
3788 int ret;
673a394b 3789
e806b495
EA
3790 if (drm_core_check_feature(dev, DRIVER_MODESET))
3791 return;
3792
6dbe2772
KP
3793 ret = i915_gem_idle(dev);
3794 if (ret)
3795 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3796}
3797
64193406
CW
3798static void
3799init_ring_lists(struct intel_ring_buffer *ring)
3800{
3801 INIT_LIST_HEAD(&ring->active_list);
3802 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
3803}
3804
673a394b
EA
3805void
3806i915_gem_load(struct drm_device *dev)
3807{
b5aa8a0f 3808 int i;
673a394b
EA
3809 drm_i915_private_t *dev_priv = dev->dev_private;
3810
69dc4987 3811 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 3812 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 3813 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
93a37f20 3814 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3815 for (i = 0; i < I915_NUM_RINGS; i++)
3816 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3817 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3818 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3819 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3820 i915_gem_retire_work_handler);
30dbf0c0 3821 init_completion(&dev_priv->error_completion);
31169714 3822
94400120
DA
3823 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3824 if (IS_GEN3(dev)) {
50743298
DV
3825 I915_WRITE(MI_ARB_STATE,
3826 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
3827 }
3828
72bfa19c
CW
3829 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3830
de151cf6 3831 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3832 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3833 dev_priv->fence_reg_start = 3;
de151cf6 3834
a6c45cf0 3835 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3836 dev_priv->num_fence_regs = 16;
3837 else
3838 dev_priv->num_fence_regs = 8;
3839
b5aa8a0f 3840 /* Initialize fence registers to zero */
ada726c7 3841 i915_gem_reset_fences(dev);
10ed13e4 3842
673a394b 3843 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3844 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3845
ce453d81
CW
3846 dev_priv->mm.interruptible = true;
3847
17250b71
CW
3848 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3849 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3850 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3851}
71acb5eb
DA
3852
3853/*
3854 * Create a physically contiguous memory object for this object
3855 * e.g. for cursor + overlay regs
3856 */
995b6762
CW
3857static int i915_gem_init_phys_object(struct drm_device *dev,
3858 int id, int size, int align)
71acb5eb
DA
3859{
3860 drm_i915_private_t *dev_priv = dev->dev_private;
3861 struct drm_i915_gem_phys_object *phys_obj;
3862 int ret;
3863
3864 if (dev_priv->mm.phys_objs[id - 1] || !size)
3865 return 0;
3866
9a298b2a 3867 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3868 if (!phys_obj)
3869 return -ENOMEM;
3870
3871 phys_obj->id = id;
3872
6eeefaf3 3873 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3874 if (!phys_obj->handle) {
3875 ret = -ENOMEM;
3876 goto kfree_obj;
3877 }
3878#ifdef CONFIG_X86
3879 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3880#endif
3881
3882 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3883
3884 return 0;
3885kfree_obj:
9a298b2a 3886 kfree(phys_obj);
71acb5eb
DA
3887 return ret;
3888}
3889
995b6762 3890static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3891{
3892 drm_i915_private_t *dev_priv = dev->dev_private;
3893 struct drm_i915_gem_phys_object *phys_obj;
3894
3895 if (!dev_priv->mm.phys_objs[id - 1])
3896 return;
3897
3898 phys_obj = dev_priv->mm.phys_objs[id - 1];
3899 if (phys_obj->cur_obj) {
3900 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3901 }
3902
3903#ifdef CONFIG_X86
3904 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3905#endif
3906 drm_pci_free(dev, phys_obj->handle);
3907 kfree(phys_obj);
3908 dev_priv->mm.phys_objs[id - 1] = NULL;
3909}
3910
3911void i915_gem_free_all_phys_object(struct drm_device *dev)
3912{
3913 int i;
3914
260883c8 3915 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3916 i915_gem_free_phys_object(dev, i);
3917}
3918
3919void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3920 struct drm_i915_gem_object *obj)
71acb5eb 3921{
05394f39 3922 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3923 char *vaddr;
71acb5eb 3924 int i;
71acb5eb
DA
3925 int page_count;
3926
05394f39 3927 if (!obj->phys_obj)
71acb5eb 3928 return;
05394f39 3929 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3930
05394f39 3931 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3932 for (i = 0; i < page_count; i++) {
5949eac4 3933 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3934 if (!IS_ERR(page)) {
3935 char *dst = kmap_atomic(page);
3936 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3937 kunmap_atomic(dst);
3938
3939 drm_clflush_pages(&page, 1);
3940
3941 set_page_dirty(page);
3942 mark_page_accessed(page);
3943 page_cache_release(page);
3944 }
71acb5eb 3945 }
40ce6575 3946 intel_gtt_chipset_flush();
d78b47b9 3947
05394f39
CW
3948 obj->phys_obj->cur_obj = NULL;
3949 obj->phys_obj = NULL;
71acb5eb
DA
3950}
3951
3952int
3953i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3954 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3955 int id,
3956 int align)
71acb5eb 3957{
05394f39 3958 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3959 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3960 int ret = 0;
3961 int page_count;
3962 int i;
3963
3964 if (id > I915_MAX_PHYS_OBJECT)
3965 return -EINVAL;
3966
05394f39
CW
3967 if (obj->phys_obj) {
3968 if (obj->phys_obj->id == id)
71acb5eb
DA
3969 return 0;
3970 i915_gem_detach_phys_object(dev, obj);
3971 }
3972
71acb5eb
DA
3973 /* create a new object */
3974 if (!dev_priv->mm.phys_objs[id - 1]) {
3975 ret = i915_gem_init_phys_object(dev, id,
05394f39 3976 obj->base.size, align);
71acb5eb 3977 if (ret) {
05394f39
CW
3978 DRM_ERROR("failed to init phys object %d size: %zu\n",
3979 id, obj->base.size);
e5281ccd 3980 return ret;
71acb5eb
DA
3981 }
3982 }
3983
3984 /* bind to the object */
05394f39
CW
3985 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3986 obj->phys_obj->cur_obj = obj;
71acb5eb 3987
05394f39 3988 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
3989
3990 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3991 struct page *page;
3992 char *dst, *src;
3993
5949eac4 3994 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3995 if (IS_ERR(page))
3996 return PTR_ERR(page);
71acb5eb 3997
ff75b9bc 3998 src = kmap_atomic(page);
05394f39 3999 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4000 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4001 kunmap_atomic(src);
71acb5eb 4002
e5281ccd
CW
4003 mark_page_accessed(page);
4004 page_cache_release(page);
4005 }
d78b47b9 4006
71acb5eb 4007 return 0;
71acb5eb
DA
4008}
4009
4010static int
05394f39
CW
4011i915_gem_phys_pwrite(struct drm_device *dev,
4012 struct drm_i915_gem_object *obj,
71acb5eb
DA
4013 struct drm_i915_gem_pwrite *args,
4014 struct drm_file *file_priv)
4015{
05394f39 4016 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4017 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4018
b47b30cc
CW
4019 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4020 unsigned long unwritten;
4021
4022 /* The physical object once assigned is fixed for the lifetime
4023 * of the obj, so we can safely drop the lock and continue
4024 * to access vaddr.
4025 */
4026 mutex_unlock(&dev->struct_mutex);
4027 unwritten = copy_from_user(vaddr, user_data, args->size);
4028 mutex_lock(&dev->struct_mutex);
4029 if (unwritten)
4030 return -EFAULT;
4031 }
71acb5eb 4032
40ce6575 4033 intel_gtt_chipset_flush();
71acb5eb
DA
4034 return 0;
4035}
b962442e 4036
f787a5f5 4037void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4038{
f787a5f5 4039 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4040
4041 /* Clean up our request list when the client is going away, so that
4042 * later retire_requests won't dereference our soon-to-be-gone
4043 * file_priv.
4044 */
1c25595f 4045 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4046 while (!list_empty(&file_priv->mm.request_list)) {
4047 struct drm_i915_gem_request *request;
4048
4049 request = list_first_entry(&file_priv->mm.request_list,
4050 struct drm_i915_gem_request,
4051 client_list);
4052 list_del(&request->client_list);
4053 request->file_priv = NULL;
4054 }
1c25595f 4055 spin_unlock(&file_priv->mm.lock);
b962442e 4056}
31169714 4057
1637ef41
CW
4058static int
4059i915_gpu_is_active(struct drm_device *dev)
4060{
4061 drm_i915_private_t *dev_priv = dev->dev_private;
65ce3027 4062 return !list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4063}
4064
31169714 4065static int
1495f230 4066i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4067{
17250b71
CW
4068 struct drm_i915_private *dev_priv =
4069 container_of(shrinker,
4070 struct drm_i915_private,
4071 mm.inactive_shrinker);
4072 struct drm_device *dev = dev_priv->dev;
4073 struct drm_i915_gem_object *obj, *next;
1495f230 4074 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4075 int cnt;
4076
4077 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4078 return 0;
31169714
CW
4079
4080 /* "fast-path" to count number of available objects */
4081 if (nr_to_scan == 0) {
17250b71
CW
4082 cnt = 0;
4083 list_for_each_entry(obj,
4084 &dev_priv->mm.inactive_list,
4085 mm_list)
4086 cnt++;
4087 mutex_unlock(&dev->struct_mutex);
4088 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4089 }
4090
1637ef41 4091rescan:
31169714 4092 /* first scan for clean buffers */
17250b71 4093 i915_gem_retire_requests(dev);
31169714 4094
17250b71
CW
4095 list_for_each_entry_safe(obj, next,
4096 &dev_priv->mm.inactive_list,
4097 mm_list) {
4098 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4099 if (i915_gem_object_unbind(obj) == 0 &&
4100 --nr_to_scan == 0)
17250b71 4101 break;
31169714 4102 }
31169714
CW
4103 }
4104
4105 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4106 cnt = 0;
4107 list_for_each_entry_safe(obj, next,
4108 &dev_priv->mm.inactive_list,
4109 mm_list) {
2021746e
CW
4110 if (nr_to_scan &&
4111 i915_gem_object_unbind(obj) == 0)
17250b71 4112 nr_to_scan--;
2021746e 4113 else
17250b71
CW
4114 cnt++;
4115 }
4116
4117 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4118 /*
4119 * We are desperate for pages, so as a last resort, wait
4120 * for the GPU to finish and discard whatever we can.
4121 * This has a dramatic impact to reduce the number of
4122 * OOM-killer events whilst running the GPU aggressively.
4123 */
b2da9fe5 4124 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4125 goto rescan;
4126 }
17250b71
CW
4127 mutex_unlock(&dev->struct_mutex);
4128 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4129}