]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Use new bind/unbind in eviction code
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
07fe0b12
BW
41static __must_check int
42i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
43 struct i915_address_space *vm,
44 unsigned alignment,
45 bool map_and_fenceable,
46 bool nonblocking);
05394f39
CW
47static int i915_gem_phys_pwrite(struct drm_device *dev,
48 struct drm_i915_gem_object *obj,
71acb5eb 49 struct drm_i915_gem_pwrite *args,
05394f39 50 struct drm_file *file);
673a394b 51
61050808
CW
52static void i915_gem_write_fence(struct drm_device *dev, int reg,
53 struct drm_i915_gem_object *obj);
54static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
55 struct drm_i915_fence_reg *fence,
56 bool enable);
57
17250b71 58static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 59 struct shrink_control *sc);
6c085a72
CW
60static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
61static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 62static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 63
61050808
CW
64static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
65{
66 if (obj->tiling_mode)
67 i915_gem_release_mmap(obj);
68
69 /* As we do not have an associated fence register, we will force
70 * a tiling change if we ever need to acquire one.
71 */
5d82e3e6 72 obj->fence_dirty = false;
61050808
CW
73 obj->fence_reg = I915_FENCE_REG_NONE;
74}
75
73aa808f
CW
76/* some bookkeeping */
77static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
78 size_t size)
79{
c20e8355 80 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
81 dev_priv->mm.object_count++;
82 dev_priv->mm.object_memory += size;
c20e8355 83 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
84}
85
86static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
87 size_t size)
88{
c20e8355 89 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
90 dev_priv->mm.object_count--;
91 dev_priv->mm.object_memory -= size;
c20e8355 92 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
93}
94
21dd3734 95static int
33196ded 96i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 97{
30dbf0c0
CW
98 int ret;
99
7abb690a
DV
100#define EXIT_COND (!i915_reset_in_progress(error) || \
101 i915_terminally_wedged(error))
1f83fee0 102 if (EXIT_COND)
30dbf0c0
CW
103 return 0;
104
0a6759c6
DV
105 /*
106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 * userspace. If it takes that long something really bad is going on and
108 * we should simply try to bail out and fail as gracefully as possible.
109 */
1f83fee0
DV
110 ret = wait_event_interruptible_timeout(error->reset_queue,
111 EXIT_COND,
112 10*HZ);
0a6759c6
DV
113 if (ret == 0) {
114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115 return -EIO;
116 } else if (ret < 0) {
30dbf0c0 117 return ret;
0a6759c6 118 }
1f83fee0 119#undef EXIT_COND
30dbf0c0 120
21dd3734 121 return 0;
30dbf0c0
CW
122}
123
54cf91dc 124int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 125{
33196ded 126 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
127 int ret;
128
33196ded 129 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
130 if (ret)
131 return ret;
132
133 ret = mutex_lock_interruptible(&dev->struct_mutex);
134 if (ret)
135 return ret;
136
23bc5982 137 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
138 return 0;
139}
30dbf0c0 140
7d1c4804 141static inline bool
05394f39 142i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 143{
f343c5f6 144 return i915_gem_obj_ggtt_bound(obj) && !obj->active;
7d1c4804
CW
145}
146
79e53945
JB
147int
148i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 149 struct drm_file *file)
79e53945 150{
93d18799 151 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 152 struct drm_i915_gem_init *args = data;
2021746e 153
7bb6fb8d
DV
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
2021746e
CW
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
79e53945 160
f534bc0b
DV
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
79e53945 165 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
166 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
167 args->gtt_end);
93d18799 168 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
169 mutex_unlock(&dev->struct_mutex);
170
2021746e 171 return 0;
673a394b
EA
172}
173
5a125c3c
EA
174int
175i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 176 struct drm_file *file)
5a125c3c 177{
73aa808f 178 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 179 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
180 struct drm_i915_gem_object *obj;
181 size_t pinned;
5a125c3c 182
6299f992 183 pinned = 0;
73aa808f 184 mutex_lock(&dev->struct_mutex);
35c20a60 185 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1b50247a 186 if (obj->pin_count)
f343c5f6 187 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 188 mutex_unlock(&dev->struct_mutex);
5a125c3c 189
853ba5d2 190 args->aper_size = dev_priv->gtt.base.total;
0206e353 191 args->aper_available_size = args->aper_size - pinned;
6299f992 192
5a125c3c
EA
193 return 0;
194}
195
42dcedd4
CW
196void *i915_gem_object_alloc(struct drm_device *dev)
197{
198 struct drm_i915_private *dev_priv = dev->dev_private;
199 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
200}
201
202void i915_gem_object_free(struct drm_i915_gem_object *obj)
203{
204 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
205 kmem_cache_free(dev_priv->slab, obj);
206}
207
ff72145b
DA
208static int
209i915_gem_create(struct drm_file *file,
210 struct drm_device *dev,
211 uint64_t size,
212 uint32_t *handle_p)
673a394b 213{
05394f39 214 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
215 int ret;
216 u32 handle;
673a394b 217
ff72145b 218 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
219 if (size == 0)
220 return -EINVAL;
673a394b
EA
221
222 /* Allocate the new object */
ff72145b 223 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
224 if (obj == NULL)
225 return -ENOMEM;
226
05394f39 227 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 228 /* drop reference from allocate - handle holds it now */
d861e338
DV
229 drm_gem_object_unreference_unlocked(&obj->base);
230 if (ret)
231 return ret;
202f2fef 232
ff72145b 233 *handle_p = handle;
673a394b
EA
234 return 0;
235}
236
ff72145b
DA
237int
238i915_gem_dumb_create(struct drm_file *file,
239 struct drm_device *dev,
240 struct drm_mode_create_dumb *args)
241{
242 /* have to work out size/pitch and return them */
ed0291fd 243 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
244 args->size = args->pitch * args->height;
245 return i915_gem_create(file, dev,
246 args->size, &args->handle);
247}
248
249int i915_gem_dumb_destroy(struct drm_file *file,
250 struct drm_device *dev,
251 uint32_t handle)
252{
253 return drm_gem_handle_delete(file, handle);
254}
255
256/**
257 * Creates a new mm object and returns a handle to it.
258 */
259int
260i915_gem_create_ioctl(struct drm_device *dev, void *data,
261 struct drm_file *file)
262{
263 struct drm_i915_gem_create *args = data;
63ed2cb2 264
ff72145b
DA
265 return i915_gem_create(file, dev,
266 args->size, &args->handle);
267}
268
8461d226
DV
269static inline int
270__copy_to_user_swizzled(char __user *cpu_vaddr,
271 const char *gpu_vaddr, int gpu_offset,
272 int length)
273{
274 int ret, cpu_offset = 0;
275
276 while (length > 0) {
277 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278 int this_length = min(cacheline_end - gpu_offset, length);
279 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282 gpu_vaddr + swizzled_gpu_offset,
283 this_length);
284 if (ret)
285 return ret + length;
286
287 cpu_offset += this_length;
288 gpu_offset += this_length;
289 length -= this_length;
290 }
291
292 return 0;
293}
294
8c59967c 295static inline int
4f0c7cfb
BW
296__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297 const char __user *cpu_vaddr,
8c59967c
DV
298 int length)
299{
300 int ret, cpu_offset = 0;
301
302 while (length > 0) {
303 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304 int this_length = min(cacheline_end - gpu_offset, length);
305 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308 cpu_vaddr + cpu_offset,
309 this_length);
310 if (ret)
311 return ret + length;
312
313 cpu_offset += this_length;
314 gpu_offset += this_length;
315 length -= this_length;
316 }
317
318 return 0;
319}
320
d174bd64
DV
321/* Per-page copy function for the shmem pread fastpath.
322 * Flushes invalid cachelines before reading the target if
323 * needs_clflush is set. */
eb01459f 324static int
d174bd64
DV
325shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326 char __user *user_data,
327 bool page_do_bit17_swizzling, bool needs_clflush)
328{
329 char *vaddr;
330 int ret;
331
e7e58eb5 332 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
333 return -EINVAL;
334
335 vaddr = kmap_atomic(page);
336 if (needs_clflush)
337 drm_clflush_virt_range(vaddr + shmem_page_offset,
338 page_length);
339 ret = __copy_to_user_inatomic(user_data,
340 vaddr + shmem_page_offset,
341 page_length);
342 kunmap_atomic(vaddr);
343
f60d7f0c 344 return ret ? -EFAULT : 0;
d174bd64
DV
345}
346
23c18c71
DV
347static void
348shmem_clflush_swizzled_range(char *addr, unsigned long length,
349 bool swizzled)
350{
e7e58eb5 351 if (unlikely(swizzled)) {
23c18c71
DV
352 unsigned long start = (unsigned long) addr;
353 unsigned long end = (unsigned long) addr + length;
354
355 /* For swizzling simply ensure that we always flush both
356 * channels. Lame, but simple and it works. Swizzled
357 * pwrite/pread is far from a hotpath - current userspace
358 * doesn't use it at all. */
359 start = round_down(start, 128);
360 end = round_up(end, 128);
361
362 drm_clflush_virt_range((void *)start, end - start);
363 } else {
364 drm_clflush_virt_range(addr, length);
365 }
366
367}
368
d174bd64
DV
369/* Only difference to the fast-path function is that this can handle bit17
370 * and uses non-atomic copy and kmap functions. */
371static int
372shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373 char __user *user_data,
374 bool page_do_bit17_swizzling, bool needs_clflush)
375{
376 char *vaddr;
377 int ret;
378
379 vaddr = kmap(page);
380 if (needs_clflush)
23c18c71
DV
381 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382 page_length,
383 page_do_bit17_swizzling);
d174bd64
DV
384
385 if (page_do_bit17_swizzling)
386 ret = __copy_to_user_swizzled(user_data,
387 vaddr, shmem_page_offset,
388 page_length);
389 else
390 ret = __copy_to_user(user_data,
391 vaddr + shmem_page_offset,
392 page_length);
393 kunmap(page);
394
f60d7f0c 395 return ret ? - EFAULT : 0;
d174bd64
DV
396}
397
eb01459f 398static int
dbf7bff0
DV
399i915_gem_shmem_pread(struct drm_device *dev,
400 struct drm_i915_gem_object *obj,
401 struct drm_i915_gem_pread *args,
402 struct drm_file *file)
eb01459f 403{
8461d226 404 char __user *user_data;
eb01459f 405 ssize_t remain;
8461d226 406 loff_t offset;
eb2c0c81 407 int shmem_page_offset, page_length, ret = 0;
8461d226 408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 409 int prefaulted = 0;
8489731c 410 int needs_clflush = 0;
67d5a50c 411 struct sg_page_iter sg_iter;
eb01459f 412
2bb4629a 413 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
414 remain = args->size;
415
8461d226 416 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 417
8489731c
DV
418 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419 /* If we're not in the cpu read domain, set ourself into the gtt
420 * read domain and manually flush cachelines (if required). This
421 * optimizes for the case when the gpu will dirty the data
422 * anyway again before the next pread happens. */
423 if (obj->cache_level == I915_CACHE_NONE)
424 needs_clflush = 1;
f343c5f6 425 if (i915_gem_obj_ggtt_bound(obj)) {
6c085a72
CW
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
8489731c 430 }
eb01459f 431
f60d7f0c
CW
432 ret = i915_gem_object_get_pages(obj);
433 if (ret)
434 return ret;
435
436 i915_gem_object_pin_pages(obj);
437
8461d226 438 offset = args->offset;
eb01459f 439
67d5a50c
ID
440 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441 offset >> PAGE_SHIFT) {
2db76d7c 442 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
443
444 if (remain <= 0)
445 break;
446
eb01459f
EA
447 /* Operation in this page
448 *
eb01459f 449 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
450 * page_length = bytes to copy for this page
451 */
c8cbbb8b 452 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
453 page_length = remain;
454 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 456
8461d226
DV
457 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458 (page_to_phys(page) & (1 << 17)) != 0;
459
d174bd64
DV
460 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461 user_data, page_do_bit17_swizzling,
462 needs_clflush);
463 if (ret == 0)
464 goto next_page;
dbf7bff0 465
dbf7bff0
DV
466 mutex_unlock(&dev->struct_mutex);
467
0b74b508 468 if (likely(!i915_prefault_disable) && !prefaulted) {
f56f821f 469 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
470 /* Userspace is tricking us, but we've already clobbered
471 * its pages with the prefault and promised to write the
472 * data up to the first fault. Hence ignore any errors
473 * and just continue. */
474 (void)ret;
475 prefaulted = 1;
476 }
eb01459f 477
d174bd64
DV
478 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479 user_data, page_do_bit17_swizzling,
480 needs_clflush);
eb01459f 481
dbf7bff0 482 mutex_lock(&dev->struct_mutex);
f60d7f0c 483
dbf7bff0 484next_page:
e5281ccd 485 mark_page_accessed(page);
e5281ccd 486
f60d7f0c 487 if (ret)
8461d226 488 goto out;
8461d226 489
eb01459f 490 remain -= page_length;
8461d226 491 user_data += page_length;
eb01459f
EA
492 offset += page_length;
493 }
494
4f27b75d 495out:
f60d7f0c
CW
496 i915_gem_object_unpin_pages(obj);
497
eb01459f
EA
498 return ret;
499}
500
673a394b
EA
501/**
502 * Reads data from the object referenced by handle.
503 *
504 * On error, the contents of *data are undefined.
505 */
506int
507i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 508 struct drm_file *file)
673a394b
EA
509{
510 struct drm_i915_gem_pread *args = data;
05394f39 511 struct drm_i915_gem_object *obj;
35b62a89 512 int ret = 0;
673a394b 513
51311d0a
CW
514 if (args->size == 0)
515 return 0;
516
517 if (!access_ok(VERIFY_WRITE,
2bb4629a 518 to_user_ptr(args->data_ptr),
51311d0a
CW
519 args->size))
520 return -EFAULT;
521
4f27b75d 522 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 523 if (ret)
4f27b75d 524 return ret;
673a394b 525
05394f39 526 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 527 if (&obj->base == NULL) {
1d7cfea1
CW
528 ret = -ENOENT;
529 goto unlock;
4f27b75d 530 }
673a394b 531
7dcd2499 532 /* Bounds check source. */
05394f39
CW
533 if (args->offset > obj->base.size ||
534 args->size > obj->base.size - args->offset) {
ce9d419d 535 ret = -EINVAL;
35b62a89 536 goto out;
ce9d419d
CW
537 }
538
1286ff73
DV
539 /* prime objects have no backing filp to GEM pread/pwrite
540 * pages from.
541 */
542 if (!obj->base.filp) {
543 ret = -EINVAL;
544 goto out;
545 }
546
db53a302
CW
547 trace_i915_gem_object_pread(obj, args->offset, args->size);
548
dbf7bff0 549 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 550
35b62a89 551out:
05394f39 552 drm_gem_object_unreference(&obj->base);
1d7cfea1 553unlock:
4f27b75d 554 mutex_unlock(&dev->struct_mutex);
eb01459f 555 return ret;
673a394b
EA
556}
557
0839ccb8
KP
558/* This is the fast write path which cannot handle
559 * page faults in the source data
9b7530cc 560 */
0839ccb8
KP
561
562static inline int
563fast_user_write(struct io_mapping *mapping,
564 loff_t page_base, int page_offset,
565 char __user *user_data,
566 int length)
9b7530cc 567{
4f0c7cfb
BW
568 void __iomem *vaddr_atomic;
569 void *vaddr;
0839ccb8 570 unsigned long unwritten;
9b7530cc 571
3e4d3af5 572 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
573 /* We can use the cpu mem copy function because this is X86. */
574 vaddr = (void __force*)vaddr_atomic + page_offset;
575 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 576 user_data, length);
3e4d3af5 577 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 578 return unwritten;
0839ccb8
KP
579}
580
3de09aa3
EA
581/**
582 * This is the fast pwrite path, where we copy the data directly from the
583 * user into the GTT, uncached.
584 */
673a394b 585static int
05394f39
CW
586i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587 struct drm_i915_gem_object *obj,
3de09aa3 588 struct drm_i915_gem_pwrite *args,
05394f39 589 struct drm_file *file)
673a394b 590{
0839ccb8 591 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 592 ssize_t remain;
0839ccb8 593 loff_t offset, page_base;
673a394b 594 char __user *user_data;
935aaa69
DV
595 int page_offset, page_length, ret;
596
c37e2204 597 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
935aaa69
DV
598 if (ret)
599 goto out;
600
601 ret = i915_gem_object_set_to_gtt_domain(obj, true);
602 if (ret)
603 goto out_unpin;
604
605 ret = i915_gem_object_put_fence(obj);
606 if (ret)
607 goto out_unpin;
673a394b 608
2bb4629a 609 user_data = to_user_ptr(args->data_ptr);
673a394b 610 remain = args->size;
673a394b 611
f343c5f6 612 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
613
614 while (remain > 0) {
615 /* Operation in this page
616 *
0839ccb8
KP
617 * page_base = page offset within aperture
618 * page_offset = offset within page
619 * page_length = bytes to copy for this page
673a394b 620 */
c8cbbb8b
CW
621 page_base = offset & PAGE_MASK;
622 page_offset = offset_in_page(offset);
0839ccb8
KP
623 page_length = remain;
624 if ((page_offset + remain) > PAGE_SIZE)
625 page_length = PAGE_SIZE - page_offset;
626
0839ccb8 627 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
628 * source page isn't available. Return the error and we'll
629 * retry in the slow path.
0839ccb8 630 */
5d4545ae 631 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
632 page_offset, user_data, page_length)) {
633 ret = -EFAULT;
634 goto out_unpin;
635 }
673a394b 636
0839ccb8
KP
637 remain -= page_length;
638 user_data += page_length;
639 offset += page_length;
673a394b 640 }
673a394b 641
935aaa69
DV
642out_unpin:
643 i915_gem_object_unpin(obj);
644out:
3de09aa3 645 return ret;
673a394b
EA
646}
647
d174bd64
DV
648/* Per-page copy function for the shmem pwrite fastpath.
649 * Flushes invalid cachelines before writing to the target if
650 * needs_clflush_before is set and flushes out any written cachelines after
651 * writing if needs_clflush is set. */
3043c60c 652static int
d174bd64
DV
653shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654 char __user *user_data,
655 bool page_do_bit17_swizzling,
656 bool needs_clflush_before,
657 bool needs_clflush_after)
673a394b 658{
d174bd64 659 char *vaddr;
673a394b 660 int ret;
3de09aa3 661
e7e58eb5 662 if (unlikely(page_do_bit17_swizzling))
d174bd64 663 return -EINVAL;
3de09aa3 664
d174bd64
DV
665 vaddr = kmap_atomic(page);
666 if (needs_clflush_before)
667 drm_clflush_virt_range(vaddr + shmem_page_offset,
668 page_length);
669 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670 user_data,
671 page_length);
672 if (needs_clflush_after)
673 drm_clflush_virt_range(vaddr + shmem_page_offset,
674 page_length);
675 kunmap_atomic(vaddr);
3de09aa3 676
755d2218 677 return ret ? -EFAULT : 0;
3de09aa3
EA
678}
679
d174bd64
DV
680/* Only difference to the fast-path function is that this can handle bit17
681 * and uses non-atomic copy and kmap functions. */
3043c60c 682static int
d174bd64
DV
683shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684 char __user *user_data,
685 bool page_do_bit17_swizzling,
686 bool needs_clflush_before,
687 bool needs_clflush_after)
673a394b 688{
d174bd64
DV
689 char *vaddr;
690 int ret;
e5281ccd 691
d174bd64 692 vaddr = kmap(page);
e7e58eb5 693 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
694 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695 page_length,
696 page_do_bit17_swizzling);
d174bd64
DV
697 if (page_do_bit17_swizzling)
698 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
699 user_data,
700 page_length);
d174bd64
DV
701 else
702 ret = __copy_from_user(vaddr + shmem_page_offset,
703 user_data,
704 page_length);
705 if (needs_clflush_after)
23c18c71
DV
706 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707 page_length,
708 page_do_bit17_swizzling);
d174bd64 709 kunmap(page);
40123c1f 710
755d2218 711 return ret ? -EFAULT : 0;
40123c1f
EA
712}
713
40123c1f 714static int
e244a443
DV
715i915_gem_shmem_pwrite(struct drm_device *dev,
716 struct drm_i915_gem_object *obj,
717 struct drm_i915_gem_pwrite *args,
718 struct drm_file *file)
40123c1f 719{
40123c1f 720 ssize_t remain;
8c59967c
DV
721 loff_t offset;
722 char __user *user_data;
eb2c0c81 723 int shmem_page_offset, page_length, ret = 0;
8c59967c 724 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 725 int hit_slowpath = 0;
58642885
DV
726 int needs_clflush_after = 0;
727 int needs_clflush_before = 0;
67d5a50c 728 struct sg_page_iter sg_iter;
40123c1f 729
2bb4629a 730 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
731 remain = args->size;
732
8c59967c 733 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 734
58642885
DV
735 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736 /* If we're not in the cpu write domain, set ourself into the gtt
737 * write domain and manually flush cachelines (if required). This
738 * optimizes for the case when the gpu will use the data
739 * right away and we therefore have to clflush anyway. */
740 if (obj->cache_level == I915_CACHE_NONE)
741 needs_clflush_after = 1;
f343c5f6 742 if (i915_gem_obj_ggtt_bound(obj)) {
6c085a72
CW
743 ret = i915_gem_object_set_to_gtt_domain(obj, true);
744 if (ret)
745 return ret;
746 }
58642885
DV
747 }
748 /* Same trick applies for invalidate partially written cachelines before
749 * writing. */
750 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751 && obj->cache_level == I915_CACHE_NONE)
752 needs_clflush_before = 1;
753
755d2218
CW
754 ret = i915_gem_object_get_pages(obj);
755 if (ret)
756 return ret;
757
758 i915_gem_object_pin_pages(obj);
759
673a394b 760 offset = args->offset;
05394f39 761 obj->dirty = 1;
673a394b 762
67d5a50c
ID
763 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764 offset >> PAGE_SHIFT) {
2db76d7c 765 struct page *page = sg_page_iter_page(&sg_iter);
58642885 766 int partial_cacheline_write;
e5281ccd 767
9da3da66
CW
768 if (remain <= 0)
769 break;
770
40123c1f
EA
771 /* Operation in this page
772 *
40123c1f 773 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
774 * page_length = bytes to copy for this page
775 */
c8cbbb8b 776 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 781
58642885
DV
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
8c59967c
DV
789 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790 (page_to_phys(page) & (1 << 17)) != 0;
791
d174bd64
DV
792 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793 user_data, page_do_bit17_swizzling,
794 partial_cacheline_write,
795 needs_clflush_after);
796 if (ret == 0)
797 goto next_page;
e244a443
DV
798
799 hit_slowpath = 1;
e244a443 800 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
801 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
40123c1f 805
e244a443 806 mutex_lock(&dev->struct_mutex);
755d2218 807
e244a443 808next_page:
e5281ccd
CW
809 set_page_dirty(page);
810 mark_page_accessed(page);
e5281ccd 811
755d2218 812 if (ret)
8c59967c 813 goto out;
8c59967c 814
40123c1f 815 remain -= page_length;
8c59967c 816 user_data += page_length;
40123c1f 817 offset += page_length;
673a394b
EA
818 }
819
fbd5a26d 820out:
755d2218
CW
821 i915_gem_object_unpin_pages(obj);
822
e244a443 823 if (hit_slowpath) {
8dcf015e
DV
824 /*
825 * Fixup: Flush cpu caches in case we didn't flush the dirty
826 * cachelines in-line while writing and the object moved
827 * out of the cpu write domain while we've dropped the lock.
828 */
829 if (!needs_clflush_after &&
830 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
e244a443 831 i915_gem_clflush_object(obj);
e76e9aeb 832 i915_gem_chipset_flush(dev);
e244a443 833 }
8c59967c 834 }
673a394b 835
58642885 836 if (needs_clflush_after)
e76e9aeb 837 i915_gem_chipset_flush(dev);
58642885 838
40123c1f 839 return ret;
673a394b
EA
840}
841
842/**
843 * Writes data to the object referenced by handle.
844 *
845 * On error, the contents of the buffer that were to be modified are undefined.
846 */
847int
848i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 849 struct drm_file *file)
673a394b
EA
850{
851 struct drm_i915_gem_pwrite *args = data;
05394f39 852 struct drm_i915_gem_object *obj;
51311d0a
CW
853 int ret;
854
855 if (args->size == 0)
856 return 0;
857
858 if (!access_ok(VERIFY_READ,
2bb4629a 859 to_user_ptr(args->data_ptr),
51311d0a
CW
860 args->size))
861 return -EFAULT;
862
0b74b508
XZ
863 if (likely(!i915_prefault_disable)) {
864 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
865 args->size);
866 if (ret)
867 return -EFAULT;
868 }
673a394b 869
fbd5a26d 870 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 871 if (ret)
fbd5a26d 872 return ret;
1d7cfea1 873
05394f39 874 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 875 if (&obj->base == NULL) {
1d7cfea1
CW
876 ret = -ENOENT;
877 goto unlock;
fbd5a26d 878 }
673a394b 879
7dcd2499 880 /* Bounds check destination. */
05394f39
CW
881 if (args->offset > obj->base.size ||
882 args->size > obj->base.size - args->offset) {
ce9d419d 883 ret = -EINVAL;
35b62a89 884 goto out;
ce9d419d
CW
885 }
886
1286ff73
DV
887 /* prime objects have no backing filp to GEM pread/pwrite
888 * pages from.
889 */
890 if (!obj->base.filp) {
891 ret = -EINVAL;
892 goto out;
893 }
894
db53a302
CW
895 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
896
935aaa69 897 ret = -EFAULT;
673a394b
EA
898 /* We can only do the GTT pwrite on untiled buffers, as otherwise
899 * it would end up going through the fenced access, and we'll get
900 * different detiling behavior between reading and writing.
901 * pread/pwrite currently are reading and writing from the CPU
902 * perspective, requiring manual detiling by the client.
903 */
5c0480f2 904 if (obj->phys_obj) {
fbd5a26d 905 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
906 goto out;
907 }
908
86a1ee26 909 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 910 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 911 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 912 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
913 /* Note that the gtt paths might fail with non-page-backed user
914 * pointers (e.g. gtt mappings when moving data between
915 * textures). Fallback to the shmem path in that case. */
fbd5a26d 916 }
673a394b 917
86a1ee26 918 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 919 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 920
35b62a89 921out:
05394f39 922 drm_gem_object_unreference(&obj->base);
1d7cfea1 923unlock:
fbd5a26d 924 mutex_unlock(&dev->struct_mutex);
673a394b
EA
925 return ret;
926}
927
b361237b 928int
33196ded 929i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
930 bool interruptible)
931{
1f83fee0 932 if (i915_reset_in_progress(error)) {
b361237b
CW
933 /* Non-interruptible callers can't handle -EAGAIN, hence return
934 * -EIO unconditionally for these. */
935 if (!interruptible)
936 return -EIO;
937
1f83fee0
DV
938 /* Recovery complete, but the reset failed ... */
939 if (i915_terminally_wedged(error))
b361237b
CW
940 return -EIO;
941
942 return -EAGAIN;
943 }
944
945 return 0;
946}
947
948/*
949 * Compare seqno against outstanding lazy request. Emit a request if they are
950 * equal.
951 */
952static int
953i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
954{
955 int ret;
956
957 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
958
959 ret = 0;
960 if (seqno == ring->outstanding_lazy_request)
0025c077 961 ret = i915_add_request(ring, NULL);
b361237b
CW
962
963 return ret;
964}
965
966/**
967 * __wait_seqno - wait until execution of seqno has finished
968 * @ring: the ring expected to report seqno
969 * @seqno: duh!
f69061be 970 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
971 * @interruptible: do an interruptible wait (normally yes)
972 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
973 *
f69061be
DV
974 * Note: It is of utmost importance that the passed in seqno and reset_counter
975 * values have been read by the caller in an smp safe manner. Where read-side
976 * locks are involved, it is sufficient to read the reset_counter before
977 * unlocking the lock that protects the seqno. For lockless tricks, the
978 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
979 * inserted.
980 *
b361237b
CW
981 * Returns 0 if the seqno was found within the alloted time. Else returns the
982 * errno with remaining time filled in timeout argument.
983 */
984static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 985 unsigned reset_counter,
b361237b
CW
986 bool interruptible, struct timespec *timeout)
987{
988 drm_i915_private_t *dev_priv = ring->dev->dev_private;
989 struct timespec before, now, wait_time={1,0};
990 unsigned long timeout_jiffies;
991 long end;
992 bool wait_forever = true;
993 int ret;
994
995 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
996 return 0;
997
998 trace_i915_gem_request_wait_begin(ring, seqno);
999
1000 if (timeout != NULL) {
1001 wait_time = *timeout;
1002 wait_forever = false;
1003 }
1004
e054cc39 1005 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
b361237b
CW
1006
1007 if (WARN_ON(!ring->irq_get(ring)))
1008 return -ENODEV;
1009
1010 /* Record current time in case interrupted by signal, or wedged * */
1011 getrawmonotonic(&before);
1012
1013#define EXIT_COND \
1014 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
f69061be
DV
1015 i915_reset_in_progress(&dev_priv->gpu_error) || \
1016 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
b361237b
CW
1017 do {
1018 if (interruptible)
1019 end = wait_event_interruptible_timeout(ring->irq_queue,
1020 EXIT_COND,
1021 timeout_jiffies);
1022 else
1023 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1024 timeout_jiffies);
1025
f69061be
DV
1026 /* We need to check whether any gpu reset happened in between
1027 * the caller grabbing the seqno and now ... */
1028 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1029 end = -EAGAIN;
1030
1031 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1032 * gone. */
33196ded 1033 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1034 if (ret)
1035 end = ret;
1036 } while (end == 0 && wait_forever);
1037
1038 getrawmonotonic(&now);
1039
1040 ring->irq_put(ring);
1041 trace_i915_gem_request_wait_end(ring, seqno);
1042#undef EXIT_COND
1043
1044 if (timeout) {
1045 struct timespec sleep_time = timespec_sub(now, before);
1046 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1047 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1048 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1049 }
1050
1051 switch (end) {
1052 case -EIO:
1053 case -EAGAIN: /* Wedged */
1054 case -ERESTARTSYS: /* Signal */
1055 return (int)end;
1056 case 0: /* Timeout */
b361237b
CW
1057 return -ETIME;
1058 default: /* Completed */
1059 WARN_ON(end < 0); /* We're not aware of other errors */
1060 return 0;
1061 }
1062}
1063
1064/**
1065 * Waits for a sequence number to be signaled, and cleans up the
1066 * request and object lists appropriately for that event.
1067 */
1068int
1069i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1070{
1071 struct drm_device *dev = ring->dev;
1072 struct drm_i915_private *dev_priv = dev->dev_private;
1073 bool interruptible = dev_priv->mm.interruptible;
1074 int ret;
1075
1076 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1077 BUG_ON(seqno == 0);
1078
33196ded 1079 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1080 if (ret)
1081 return ret;
1082
1083 ret = i915_gem_check_olr(ring, seqno);
1084 if (ret)
1085 return ret;
1086
f69061be
DV
1087 return __wait_seqno(ring, seqno,
1088 atomic_read(&dev_priv->gpu_error.reset_counter),
1089 interruptible, NULL);
b361237b
CW
1090}
1091
d26e3af8
CW
1092static int
1093i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1094 struct intel_ring_buffer *ring)
1095{
1096 i915_gem_retire_requests_ring(ring);
1097
1098 /* Manually manage the write flush as we may have not yet
1099 * retired the buffer.
1100 *
1101 * Note that the last_write_seqno is always the earlier of
1102 * the two (read/write) seqno, so if we haved successfully waited,
1103 * we know we have passed the last write.
1104 */
1105 obj->last_write_seqno = 0;
1106 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1107
1108 return 0;
1109}
1110
b361237b
CW
1111/**
1112 * Ensures that all rendering to the object has completed and the object is
1113 * safe to unbind from the GTT or access from the CPU.
1114 */
1115static __must_check int
1116i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1117 bool readonly)
1118{
1119 struct intel_ring_buffer *ring = obj->ring;
1120 u32 seqno;
1121 int ret;
1122
1123 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1124 if (seqno == 0)
1125 return 0;
1126
1127 ret = i915_wait_seqno(ring, seqno);
1128 if (ret)
1129 return ret;
1130
d26e3af8 1131 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1132}
1133
3236f57a
CW
1134/* A nonblocking variant of the above wait. This is a highly dangerous routine
1135 * as the object state may change during this call.
1136 */
1137static __must_check int
1138i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1139 bool readonly)
1140{
1141 struct drm_device *dev = obj->base.dev;
1142 struct drm_i915_private *dev_priv = dev->dev_private;
1143 struct intel_ring_buffer *ring = obj->ring;
f69061be 1144 unsigned reset_counter;
3236f57a
CW
1145 u32 seqno;
1146 int ret;
1147
1148 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1149 BUG_ON(!dev_priv->mm.interruptible);
1150
1151 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1152 if (seqno == 0)
1153 return 0;
1154
33196ded 1155 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1156 if (ret)
1157 return ret;
1158
1159 ret = i915_gem_check_olr(ring, seqno);
1160 if (ret)
1161 return ret;
1162
f69061be 1163 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1164 mutex_unlock(&dev->struct_mutex);
f69061be 1165 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3236f57a 1166 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1167 if (ret)
1168 return ret;
3236f57a 1169
d26e3af8 1170 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1171}
1172
673a394b 1173/**
2ef7eeaa
EA
1174 * Called when user space prepares to use an object with the CPU, either
1175 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1176 */
1177int
1178i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1179 struct drm_file *file)
673a394b
EA
1180{
1181 struct drm_i915_gem_set_domain *args = data;
05394f39 1182 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1183 uint32_t read_domains = args->read_domains;
1184 uint32_t write_domain = args->write_domain;
673a394b
EA
1185 int ret;
1186
2ef7eeaa 1187 /* Only handle setting domains to types used by the CPU. */
21d509e3 1188 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1189 return -EINVAL;
1190
21d509e3 1191 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1192 return -EINVAL;
1193
1194 /* Having something in the write domain implies it's in the read
1195 * domain, and only that read domain. Enforce that in the request.
1196 */
1197 if (write_domain != 0 && read_domains != write_domain)
1198 return -EINVAL;
1199
76c1dec1 1200 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1201 if (ret)
76c1dec1 1202 return ret;
1d7cfea1 1203
05394f39 1204 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1205 if (&obj->base == NULL) {
1d7cfea1
CW
1206 ret = -ENOENT;
1207 goto unlock;
76c1dec1 1208 }
673a394b 1209
3236f57a
CW
1210 /* Try to flush the object off the GPU without holding the lock.
1211 * We will repeat the flush holding the lock in the normal manner
1212 * to catch cases where we are gazumped.
1213 */
1214 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1215 if (ret)
1216 goto unref;
1217
2ef7eeaa
EA
1218 if (read_domains & I915_GEM_DOMAIN_GTT) {
1219 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1220
1221 /* Silently promote "you're not bound, there was nothing to do"
1222 * to success, since the client was just asking us to
1223 * make sure everything was done.
1224 */
1225 if (ret == -EINVAL)
1226 ret = 0;
2ef7eeaa 1227 } else {
e47c68e9 1228 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1229 }
1230
3236f57a 1231unref:
05394f39 1232 drm_gem_object_unreference(&obj->base);
1d7cfea1 1233unlock:
673a394b
EA
1234 mutex_unlock(&dev->struct_mutex);
1235 return ret;
1236}
1237
1238/**
1239 * Called when user space has done writes to this buffer
1240 */
1241int
1242i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1243 struct drm_file *file)
673a394b
EA
1244{
1245 struct drm_i915_gem_sw_finish *args = data;
05394f39 1246 struct drm_i915_gem_object *obj;
673a394b
EA
1247 int ret = 0;
1248
76c1dec1 1249 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1250 if (ret)
76c1dec1 1251 return ret;
1d7cfea1 1252
05394f39 1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1254 if (&obj->base == NULL) {
1d7cfea1
CW
1255 ret = -ENOENT;
1256 goto unlock;
673a394b
EA
1257 }
1258
673a394b 1259 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1260 if (obj->pin_count)
e47c68e9
EA
1261 i915_gem_object_flush_cpu_write_domain(obj);
1262
05394f39 1263 drm_gem_object_unreference(&obj->base);
1d7cfea1 1264unlock:
673a394b
EA
1265 mutex_unlock(&dev->struct_mutex);
1266 return ret;
1267}
1268
1269/**
1270 * Maps the contents of an object, returning the address it is mapped
1271 * into.
1272 *
1273 * While the mapping holds a reference on the contents of the object, it doesn't
1274 * imply a ref on the object itself.
1275 */
1276int
1277i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1278 struct drm_file *file)
673a394b
EA
1279{
1280 struct drm_i915_gem_mmap *args = data;
1281 struct drm_gem_object *obj;
673a394b
EA
1282 unsigned long addr;
1283
05394f39 1284 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1285 if (obj == NULL)
bf79cb91 1286 return -ENOENT;
673a394b 1287
1286ff73
DV
1288 /* prime objects have no backing filp to GEM mmap
1289 * pages from.
1290 */
1291 if (!obj->filp) {
1292 drm_gem_object_unreference_unlocked(obj);
1293 return -EINVAL;
1294 }
1295
6be5ceb0 1296 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1297 PROT_READ | PROT_WRITE, MAP_SHARED,
1298 args->offset);
bc9025bd 1299 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1300 if (IS_ERR((void *)addr))
1301 return addr;
1302
1303 args->addr_ptr = (uint64_t) addr;
1304
1305 return 0;
1306}
1307
de151cf6
JB
1308/**
1309 * i915_gem_fault - fault a page into the GTT
1310 * vma: VMA in question
1311 * vmf: fault info
1312 *
1313 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1314 * from userspace. The fault handler takes care of binding the object to
1315 * the GTT (if needed), allocating and programming a fence register (again,
1316 * only if needed based on whether the old reg is still valid or the object
1317 * is tiled) and inserting a new PTE into the faulting process.
1318 *
1319 * Note that the faulting process may involve evicting existing objects
1320 * from the GTT and/or fence registers to make room. So performance may
1321 * suffer if the GTT working set is large or there are few fence registers
1322 * left.
1323 */
1324int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1325{
05394f39
CW
1326 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1327 struct drm_device *dev = obj->base.dev;
7d1c4804 1328 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1329 pgoff_t page_offset;
1330 unsigned long pfn;
1331 int ret = 0;
0f973f27 1332 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1333
1334 /* We don't use vmf->pgoff since that has the fake offset */
1335 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1336 PAGE_SHIFT;
1337
d9bc7e9f
CW
1338 ret = i915_mutex_lock_interruptible(dev);
1339 if (ret)
1340 goto out;
a00b10c3 1341
db53a302
CW
1342 trace_i915_gem_object_fault(obj, page_offset, true, write);
1343
eb119bd6
CW
1344 /* Access to snoopable pages through the GTT is incoherent. */
1345 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1346 ret = -EINVAL;
1347 goto unlock;
1348 }
1349
d9bc7e9f 1350 /* Now bind it into the GTT if needed */
c37e2204 1351 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
c9839303
CW
1352 if (ret)
1353 goto unlock;
4a684a41 1354
c9839303
CW
1355 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1356 if (ret)
1357 goto unpin;
74898d7e 1358
06d98131 1359 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1360 if (ret)
c9839303 1361 goto unpin;
7d1c4804 1362
6299f992
CW
1363 obj->fault_mappable = true;
1364
f343c5f6
BW
1365 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1366 pfn >>= PAGE_SHIFT;
1367 pfn += page_offset;
de151cf6
JB
1368
1369 /* Finally, remap it using the new GTT offset */
1370 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1371unpin:
1372 i915_gem_object_unpin(obj);
c715089f 1373unlock:
de151cf6 1374 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1375out:
de151cf6 1376 switch (ret) {
d9bc7e9f 1377 case -EIO:
a9340cca
DV
1378 /* If this -EIO is due to a gpu hang, give the reset code a
1379 * chance to clean up the mess. Otherwise return the proper
1380 * SIGBUS. */
1f83fee0 1381 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1382 return VM_FAULT_SIGBUS;
045e769a 1383 case -EAGAIN:
d9bc7e9f
CW
1384 /* Give the error handler a chance to run and move the
1385 * objects off the GPU active list. Next time we service the
1386 * fault, we should be able to transition the page into the
1387 * GTT without touching the GPU (and so avoid further
1388 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1389 * with coherency, just lost writes.
1390 */
045e769a 1391 set_need_resched();
c715089f
CW
1392 case 0:
1393 case -ERESTARTSYS:
bed636ab 1394 case -EINTR:
e79e0fe3
DR
1395 case -EBUSY:
1396 /*
1397 * EBUSY is ok: this just means that another thread
1398 * already did the job.
1399 */
c715089f 1400 return VM_FAULT_NOPAGE;
de151cf6 1401 case -ENOMEM:
de151cf6 1402 return VM_FAULT_OOM;
a7c2e1aa
DV
1403 case -ENOSPC:
1404 return VM_FAULT_SIGBUS;
de151cf6 1405 default:
a7c2e1aa 1406 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1407 return VM_FAULT_SIGBUS;
de151cf6
JB
1408 }
1409}
1410
901782b2
CW
1411/**
1412 * i915_gem_release_mmap - remove physical page mappings
1413 * @obj: obj in question
1414 *
af901ca1 1415 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1416 * relinquish ownership of the pages back to the system.
1417 *
1418 * It is vital that we remove the page mapping if we have mapped a tiled
1419 * object through the GTT and then lose the fence register due to
1420 * resource pressure. Similarly if the object has been moved out of the
1421 * aperture, than pages mapped into userspace must be revoked. Removing the
1422 * mapping will then trigger a page fault on the next user access, allowing
1423 * fixup by i915_gem_fault().
1424 */
d05ca301 1425void
05394f39 1426i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1427{
6299f992
CW
1428 if (!obj->fault_mappable)
1429 return;
901782b2 1430
f6e47884
CW
1431 if (obj->base.dev->dev_mapping)
1432 unmap_mapping_range(obj->base.dev->dev_mapping,
1433 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1434 obj->base.size, 1);
fb7d516a 1435
6299f992 1436 obj->fault_mappable = false;
901782b2
CW
1437}
1438
0fa87796 1439uint32_t
e28f8711 1440i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1441{
e28f8711 1442 uint32_t gtt_size;
92b88aeb
CW
1443
1444 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1445 tiling_mode == I915_TILING_NONE)
1446 return size;
92b88aeb
CW
1447
1448 /* Previous chips need a power-of-two fence region when tiling */
1449 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1450 gtt_size = 1024*1024;
92b88aeb 1451 else
e28f8711 1452 gtt_size = 512*1024;
92b88aeb 1453
e28f8711
CW
1454 while (gtt_size < size)
1455 gtt_size <<= 1;
92b88aeb 1456
e28f8711 1457 return gtt_size;
92b88aeb
CW
1458}
1459
de151cf6
JB
1460/**
1461 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1462 * @obj: object to check
1463 *
1464 * Return the required GTT alignment for an object, taking into account
5e783301 1465 * potential fence register mapping.
de151cf6 1466 */
d865110c
ID
1467uint32_t
1468i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1469 int tiling_mode, bool fenced)
de151cf6 1470{
de151cf6
JB
1471 /*
1472 * Minimum alignment is 4k (GTT page size), but might be greater
1473 * if a fence register is needed for the object.
1474 */
d865110c 1475 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1476 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1477 return 4096;
1478
a00b10c3
CW
1479 /*
1480 * Previous chips need to be aligned to the size of the smallest
1481 * fence register that can contain the object.
1482 */
e28f8711 1483 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1484}
1485
d8cb5086
CW
1486static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1487{
1488 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1489 int ret;
1490
1491 if (obj->base.map_list.map)
1492 return 0;
1493
da494d7c
DV
1494 dev_priv->mm.shrinker_no_lock_stealing = true;
1495
d8cb5086
CW
1496 ret = drm_gem_create_mmap_offset(&obj->base);
1497 if (ret != -ENOSPC)
da494d7c 1498 goto out;
d8cb5086
CW
1499
1500 /* Badly fragmented mmap space? The only way we can recover
1501 * space is by destroying unwanted objects. We can't randomly release
1502 * mmap_offsets as userspace expects them to be persistent for the
1503 * lifetime of the objects. The closest we can is to release the
1504 * offsets on purgeable objects by truncating it and marking it purged,
1505 * which prevents userspace from ever using that object again.
1506 */
1507 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1508 ret = drm_gem_create_mmap_offset(&obj->base);
1509 if (ret != -ENOSPC)
da494d7c 1510 goto out;
d8cb5086
CW
1511
1512 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1513 ret = drm_gem_create_mmap_offset(&obj->base);
1514out:
1515 dev_priv->mm.shrinker_no_lock_stealing = false;
1516
1517 return ret;
d8cb5086
CW
1518}
1519
1520static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1521{
1522 if (!obj->base.map_list.map)
1523 return;
1524
1525 drm_gem_free_mmap_offset(&obj->base);
1526}
1527
de151cf6 1528int
ff72145b
DA
1529i915_gem_mmap_gtt(struct drm_file *file,
1530 struct drm_device *dev,
1531 uint32_t handle,
1532 uint64_t *offset)
de151cf6 1533{
da761a6e 1534 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1535 struct drm_i915_gem_object *obj;
de151cf6
JB
1536 int ret;
1537
76c1dec1 1538 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1539 if (ret)
76c1dec1 1540 return ret;
de151cf6 1541
ff72145b 1542 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1543 if (&obj->base == NULL) {
1d7cfea1
CW
1544 ret = -ENOENT;
1545 goto unlock;
1546 }
de151cf6 1547
5d4545ae 1548 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1549 ret = -E2BIG;
ff56b0bc 1550 goto out;
da761a6e
CW
1551 }
1552
05394f39 1553 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1554 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1555 ret = -EINVAL;
1556 goto out;
ab18282d
CW
1557 }
1558
d8cb5086
CW
1559 ret = i915_gem_object_create_mmap_offset(obj);
1560 if (ret)
1561 goto out;
de151cf6 1562
ff72145b 1563 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1564
1d7cfea1 1565out:
05394f39 1566 drm_gem_object_unreference(&obj->base);
1d7cfea1 1567unlock:
de151cf6 1568 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1569 return ret;
de151cf6
JB
1570}
1571
ff72145b
DA
1572/**
1573 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1574 * @dev: DRM device
1575 * @data: GTT mapping ioctl data
1576 * @file: GEM object info
1577 *
1578 * Simply returns the fake offset to userspace so it can mmap it.
1579 * The mmap call will end up in drm_gem_mmap(), which will set things
1580 * up so we can get faults in the handler above.
1581 *
1582 * The fault handler will take care of binding the object into the GTT
1583 * (since it may have been evicted to make room for something), allocating
1584 * a fence register, and mapping the appropriate aperture address into
1585 * userspace.
1586 */
1587int
1588i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1589 struct drm_file *file)
1590{
1591 struct drm_i915_gem_mmap_gtt *args = data;
1592
ff72145b
DA
1593 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1594}
1595
225067ee
DV
1596/* Immediately discard the backing storage */
1597static void
1598i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1599{
e5281ccd 1600 struct inode *inode;
e5281ccd 1601
4d6294bf 1602 i915_gem_object_free_mmap_offset(obj);
1286ff73 1603
4d6294bf
CW
1604 if (obj->base.filp == NULL)
1605 return;
e5281ccd 1606
225067ee
DV
1607 /* Our goal here is to return as much of the memory as
1608 * is possible back to the system as we are called from OOM.
1609 * To do this we must instruct the shmfs to drop all of its
1610 * backing pages, *now*.
1611 */
496ad9aa 1612 inode = file_inode(obj->base.filp);
225067ee 1613 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1614
225067ee
DV
1615 obj->madv = __I915_MADV_PURGED;
1616}
e5281ccd 1617
225067ee
DV
1618static inline int
1619i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1620{
1621 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1622}
1623
5cdf5881 1624static void
05394f39 1625i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1626{
90797e6d
ID
1627 struct sg_page_iter sg_iter;
1628 int ret;
1286ff73 1629
05394f39 1630 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1631
6c085a72
CW
1632 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1633 if (ret) {
1634 /* In the event of a disaster, abandon all caches and
1635 * hope for the best.
1636 */
1637 WARN_ON(ret != -EIO);
1638 i915_gem_clflush_object(obj);
1639 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1640 }
1641
6dacfd2f 1642 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1643 i915_gem_object_save_bit_17_swizzle(obj);
1644
05394f39
CW
1645 if (obj->madv == I915_MADV_DONTNEED)
1646 obj->dirty = 0;
3ef94daa 1647
90797e6d 1648 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1649 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1650
05394f39 1651 if (obj->dirty)
9da3da66 1652 set_page_dirty(page);
3ef94daa 1653
05394f39 1654 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1655 mark_page_accessed(page);
3ef94daa 1656
9da3da66 1657 page_cache_release(page);
3ef94daa 1658 }
05394f39 1659 obj->dirty = 0;
673a394b 1660
9da3da66
CW
1661 sg_free_table(obj->pages);
1662 kfree(obj->pages);
37e680a1 1663}
6c085a72 1664
dd624afd 1665int
37e680a1
CW
1666i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1667{
1668 const struct drm_i915_gem_object_ops *ops = obj->ops;
1669
2f745ad3 1670 if (obj->pages == NULL)
37e680a1
CW
1671 return 0;
1672
a5570178
CW
1673 if (obj->pages_pin_count)
1674 return -EBUSY;
1675
3e123027
BW
1676 BUG_ON(i915_gem_obj_ggtt_bound(obj));
1677
a2165e31
CW
1678 /* ->put_pages might need to allocate memory for the bit17 swizzle
1679 * array, hence protect them from being reaped by removing them from gtt
1680 * lists early. */
35c20a60 1681 list_del(&obj->global_list);
a2165e31 1682
37e680a1 1683 ops->put_pages(obj);
05394f39 1684 obj->pages = NULL;
37e680a1 1685
6c085a72
CW
1686 if (i915_gem_object_is_purgeable(obj))
1687 i915_gem_object_truncate(obj);
1688
1689 return 0;
1690}
1691
1692static long
93927ca5
DV
1693__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1694 bool purgeable_only)
6c085a72
CW
1695{
1696 struct drm_i915_gem_object *obj, *next;
1697 long count = 0;
1698
1699 list_for_each_entry_safe(obj, next,
1700 &dev_priv->mm.unbound_list,
35c20a60 1701 global_list) {
93927ca5 1702 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1703 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1704 count += obj->base.size >> PAGE_SHIFT;
1705 if (count >= target)
1706 return count;
1707 }
1708 }
1709
07fe0b12
BW
1710 list_for_each_entry_safe(obj, next, &dev_priv->mm.bound_list,
1711 global_list) {
1712 struct i915_vma *vma, *v;
80dcfdbd
BW
1713
1714 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1715 continue;
1716
07fe0b12
BW
1717 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1718 if (i915_vma_unbind(vma))
1719 break;
80dcfdbd
BW
1720
1721 if (!i915_gem_object_put_pages(obj)) {
6c085a72
CW
1722 count += obj->base.size >> PAGE_SHIFT;
1723 if (count >= target)
1724 return count;
1725 }
1726 }
1727
1728 return count;
1729}
1730
93927ca5
DV
1731static long
1732i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1733{
1734 return __i915_gem_shrink(dev_priv, target, true);
1735}
1736
6c085a72
CW
1737static void
1738i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1739{
1740 struct drm_i915_gem_object *obj, *next;
1741
1742 i915_gem_evict_everything(dev_priv->dev);
1743
35c20a60
BW
1744 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1745 global_list)
37e680a1 1746 i915_gem_object_put_pages(obj);
225067ee
DV
1747}
1748
37e680a1 1749static int
6c085a72 1750i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1751{
6c085a72 1752 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1753 int page_count, i;
1754 struct address_space *mapping;
9da3da66
CW
1755 struct sg_table *st;
1756 struct scatterlist *sg;
90797e6d 1757 struct sg_page_iter sg_iter;
e5281ccd 1758 struct page *page;
90797e6d 1759 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1760 gfp_t gfp;
e5281ccd 1761
6c085a72
CW
1762 /* Assert that the object is not currently in any GPU domain. As it
1763 * wasn't in the GTT, there shouldn't be any way it could have been in
1764 * a GPU cache
1765 */
1766 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1767 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1768
9da3da66
CW
1769 st = kmalloc(sizeof(*st), GFP_KERNEL);
1770 if (st == NULL)
1771 return -ENOMEM;
1772
05394f39 1773 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1774 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1775 sg_free_table(st);
1776 kfree(st);
e5281ccd 1777 return -ENOMEM;
9da3da66 1778 }
e5281ccd 1779
9da3da66
CW
1780 /* Get the list of pages out of our struct file. They'll be pinned
1781 * at this point until we release them.
1782 *
1783 * Fail silently without starting the shrinker
1784 */
496ad9aa 1785 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1786 gfp = mapping_gfp_mask(mapping);
caf49191 1787 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1788 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1789 sg = st->sgl;
1790 st->nents = 0;
1791 for (i = 0; i < page_count; i++) {
6c085a72
CW
1792 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1793 if (IS_ERR(page)) {
1794 i915_gem_purge(dev_priv, page_count);
1795 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1796 }
1797 if (IS_ERR(page)) {
1798 /* We've tried hard to allocate the memory by reaping
1799 * our own buffer, now let the real VM do its job and
1800 * go down in flames if truly OOM.
1801 */
caf49191 1802 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1803 gfp |= __GFP_IO | __GFP_WAIT;
1804
1805 i915_gem_shrink_all(dev_priv);
1806 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1807 if (IS_ERR(page))
1808 goto err_pages;
1809
caf49191 1810 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1811 gfp &= ~(__GFP_IO | __GFP_WAIT);
1812 }
1625e7e5
KRW
1813#ifdef CONFIG_SWIOTLB
1814 if (swiotlb_nr_tbl()) {
1815 st->nents++;
1816 sg_set_page(sg, page, PAGE_SIZE, 0);
1817 sg = sg_next(sg);
1818 continue;
1819 }
1820#endif
90797e6d
ID
1821 if (!i || page_to_pfn(page) != last_pfn + 1) {
1822 if (i)
1823 sg = sg_next(sg);
1824 st->nents++;
1825 sg_set_page(sg, page, PAGE_SIZE, 0);
1826 } else {
1827 sg->length += PAGE_SIZE;
1828 }
1829 last_pfn = page_to_pfn(page);
e5281ccd 1830 }
1625e7e5
KRW
1831#ifdef CONFIG_SWIOTLB
1832 if (!swiotlb_nr_tbl())
1833#endif
1834 sg_mark_end(sg);
74ce6b6c
CW
1835 obj->pages = st;
1836
6dacfd2f 1837 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1838 i915_gem_object_do_bit_17_swizzle(obj);
1839
1840 return 0;
1841
1842err_pages:
90797e6d
ID
1843 sg_mark_end(sg);
1844 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1845 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1846 sg_free_table(st);
1847 kfree(st);
e5281ccd 1848 return PTR_ERR(page);
673a394b
EA
1849}
1850
37e680a1
CW
1851/* Ensure that the associated pages are gathered from the backing storage
1852 * and pinned into our object. i915_gem_object_get_pages() may be called
1853 * multiple times before they are released by a single call to
1854 * i915_gem_object_put_pages() - once the pages are no longer referenced
1855 * either as a result of memory pressure (reaping pages under the shrinker)
1856 * or as the object is itself released.
1857 */
1858int
1859i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1860{
1861 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1862 const struct drm_i915_gem_object_ops *ops = obj->ops;
1863 int ret;
1864
2f745ad3 1865 if (obj->pages)
37e680a1
CW
1866 return 0;
1867
43e28f09
CW
1868 if (obj->madv != I915_MADV_WILLNEED) {
1869 DRM_ERROR("Attempting to obtain a purgeable object\n");
1870 return -EINVAL;
1871 }
1872
a5570178
CW
1873 BUG_ON(obj->pages_pin_count);
1874
37e680a1
CW
1875 ret = ops->get_pages(obj);
1876 if (ret)
1877 return ret;
1878
35c20a60 1879 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1880 return 0;
673a394b
EA
1881}
1882
54cf91dc 1883void
05394f39 1884i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1885 struct intel_ring_buffer *ring)
673a394b 1886{
05394f39 1887 struct drm_device *dev = obj->base.dev;
69dc4987 1888 struct drm_i915_private *dev_priv = dev->dev_private;
5cef07e1 1889 struct i915_address_space *vm = &dev_priv->gtt.base;
9d773091 1890 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1891
852835f3 1892 BUG_ON(ring == NULL);
02978ff5
CW
1893 if (obj->ring != ring && obj->last_write_seqno) {
1894 /* Keep the seqno relative to the current ring */
1895 obj->last_write_seqno = seqno;
1896 }
05394f39 1897 obj->ring = ring;
673a394b
EA
1898
1899 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1900 if (!obj->active) {
1901 drm_gem_object_reference(&obj->base);
1902 obj->active = 1;
673a394b 1903 }
e35a41de 1904
673a394b 1905 /* Move from whatever list we were on to the tail of execution. */
5cef07e1 1906 list_move_tail(&obj->mm_list, &vm->active_list);
05394f39 1907 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1908
0201f1ec 1909 obj->last_read_seqno = seqno;
caea7476 1910
7dd49065 1911 if (obj->fenced_gpu_access) {
caea7476 1912 obj->last_fenced_seqno = seqno;
caea7476 1913
7dd49065
CW
1914 /* Bump MRU to take account of the delayed flush */
1915 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1916 struct drm_i915_fence_reg *reg;
1917
1918 reg = &dev_priv->fence_regs[obj->fence_reg];
1919 list_move_tail(&reg->lru_list,
1920 &dev_priv->mm.fence_list);
1921 }
caea7476
CW
1922 }
1923}
1924
1925static void
caea7476 1926i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1927{
05394f39 1928 struct drm_device *dev = obj->base.dev;
caea7476 1929 struct drm_i915_private *dev_priv = dev->dev_private;
5cef07e1 1930 struct i915_address_space *vm = &dev_priv->gtt.base;
ce44b0ea 1931
65ce3027 1932 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1933 BUG_ON(!obj->active);
caea7476 1934
5cef07e1 1935 list_move_tail(&obj->mm_list, &vm->inactive_list);
caea7476 1936
65ce3027 1937 list_del_init(&obj->ring_list);
caea7476
CW
1938 obj->ring = NULL;
1939
65ce3027
CW
1940 obj->last_read_seqno = 0;
1941 obj->last_write_seqno = 0;
1942 obj->base.write_domain = 0;
1943
1944 obj->last_fenced_seqno = 0;
caea7476 1945 obj->fenced_gpu_access = false;
caea7476
CW
1946
1947 obj->active = 0;
1948 drm_gem_object_unreference(&obj->base);
1949
1950 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1951}
673a394b 1952
9d773091 1953static int
fca26bb4 1954i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1955{
9d773091
CW
1956 struct drm_i915_private *dev_priv = dev->dev_private;
1957 struct intel_ring_buffer *ring;
1958 int ret, i, j;
53d227f2 1959
107f27a5 1960 /* Carefully retire all requests without writing to the rings */
9d773091 1961 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1962 ret = intel_ring_idle(ring);
1963 if (ret)
1964 return ret;
9d773091 1965 }
9d773091 1966 i915_gem_retire_requests(dev);
107f27a5
CW
1967
1968 /* Finally reset hw state */
9d773091 1969 for_each_ring(ring, dev_priv, i) {
fca26bb4 1970 intel_ring_init_seqno(ring, seqno);
498d2ac1 1971
9d773091
CW
1972 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1973 ring->sync_seqno[j] = 0;
1974 }
53d227f2 1975
9d773091 1976 return 0;
53d227f2
DV
1977}
1978
fca26bb4
MK
1979int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1980{
1981 struct drm_i915_private *dev_priv = dev->dev_private;
1982 int ret;
1983
1984 if (seqno == 0)
1985 return -EINVAL;
1986
1987 /* HWS page needs to be set less than what we
1988 * will inject to ring
1989 */
1990 ret = i915_gem_init_seqno(dev, seqno - 1);
1991 if (ret)
1992 return ret;
1993
1994 /* Carefully set the last_seqno value so that wrap
1995 * detection still works
1996 */
1997 dev_priv->next_seqno = seqno;
1998 dev_priv->last_seqno = seqno - 1;
1999 if (dev_priv->last_seqno == 0)
2000 dev_priv->last_seqno--;
2001
2002 return 0;
2003}
2004
9d773091
CW
2005int
2006i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2007{
9d773091
CW
2008 struct drm_i915_private *dev_priv = dev->dev_private;
2009
2010 /* reserve 0 for non-seqno */
2011 if (dev_priv->next_seqno == 0) {
fca26bb4 2012 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2013 if (ret)
2014 return ret;
53d227f2 2015
9d773091
CW
2016 dev_priv->next_seqno = 1;
2017 }
53d227f2 2018
f72b3435 2019 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2020 return 0;
53d227f2
DV
2021}
2022
0025c077
MK
2023int __i915_add_request(struct intel_ring_buffer *ring,
2024 struct drm_file *file,
7d736f4f 2025 struct drm_i915_gem_object *obj,
0025c077 2026 u32 *out_seqno)
673a394b 2027{
db53a302 2028 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2029 struct drm_i915_gem_request *request;
7d736f4f 2030 u32 request_ring_position, request_start;
673a394b 2031 int was_empty;
3cce469c
CW
2032 int ret;
2033
7d736f4f 2034 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2035 /*
2036 * Emit any outstanding flushes - execbuf can fail to emit the flush
2037 * after having emitted the batchbuffer command. Hence we need to fix
2038 * things up similar to emitting the lazy request. The difference here
2039 * is that the flush _must_ happen before the next request, no matter
2040 * what.
2041 */
a7b9761d
CW
2042 ret = intel_ring_flush_all_caches(ring);
2043 if (ret)
2044 return ret;
cc889e0f 2045
acb868d3
CW
2046 request = kmalloc(sizeof(*request), GFP_KERNEL);
2047 if (request == NULL)
2048 return -ENOMEM;
cc889e0f 2049
673a394b 2050
a71d8d94
CW
2051 /* Record the position of the start of the request so that
2052 * should we detect the updated seqno part-way through the
2053 * GPU processing the request, we never over-estimate the
2054 * position of the head.
2055 */
2056 request_ring_position = intel_ring_get_tail(ring);
2057
9d773091 2058 ret = ring->add_request(ring);
3bb73aba
CW
2059 if (ret) {
2060 kfree(request);
2061 return ret;
2062 }
673a394b 2063
9d773091 2064 request->seqno = intel_ring_get_seqno(ring);
852835f3 2065 request->ring = ring;
7d736f4f 2066 request->head = request_start;
a71d8d94 2067 request->tail = request_ring_position;
0e50e96b 2068 request->ctx = ring->last_context;
7d736f4f
MK
2069 request->batch_obj = obj;
2070
2071 /* Whilst this request exists, batch_obj will be on the
2072 * active_list, and so will hold the active reference. Only when this
2073 * request is retired will the the batch_obj be moved onto the
2074 * inactive_list and lose its active reference. Hence we do not need
2075 * to explicitly hold another reference here.
2076 */
0e50e96b
MK
2077
2078 if (request->ctx)
2079 i915_gem_context_reference(request->ctx);
2080
673a394b 2081 request->emitted_jiffies = jiffies;
852835f3
ZN
2082 was_empty = list_empty(&ring->request_list);
2083 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2084 request->file_priv = NULL;
852835f3 2085
db53a302
CW
2086 if (file) {
2087 struct drm_i915_file_private *file_priv = file->driver_priv;
2088
1c25595f 2089 spin_lock(&file_priv->mm.lock);
f787a5f5 2090 request->file_priv = file_priv;
b962442e 2091 list_add_tail(&request->client_list,
f787a5f5 2092 &file_priv->mm.request_list);
1c25595f 2093 spin_unlock(&file_priv->mm.lock);
b962442e 2094 }
673a394b 2095
9d773091 2096 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2097 ring->outstanding_lazy_request = 0;
db53a302 2098
db1b76ca 2099 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2100 i915_queue_hangcheck(ring->dev);
2101
f047e395 2102 if (was_empty) {
b3b079db 2103 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2104 &dev_priv->mm.retire_work,
2105 round_jiffies_up_relative(HZ));
f047e395
CW
2106 intel_mark_busy(dev_priv->dev);
2107 }
f65d9421 2108 }
cc889e0f 2109
acb868d3 2110 if (out_seqno)
9d773091 2111 *out_seqno = request->seqno;
3cce469c 2112 return 0;
673a394b
EA
2113}
2114
f787a5f5
CW
2115static inline void
2116i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2117{
1c25595f 2118 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2119
1c25595f
CW
2120 if (!file_priv)
2121 return;
1c5d22f7 2122
1c25595f 2123 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2124 if (request->file_priv) {
2125 list_del(&request->client_list);
2126 request->file_priv = NULL;
2127 }
1c25595f 2128 spin_unlock(&file_priv->mm.lock);
673a394b 2129}
673a394b 2130
d1ccbb5d
BW
2131static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2132 struct i915_address_space *vm)
aa60c664 2133{
d1ccbb5d
BW
2134 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2135 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
aa60c664
MK
2136 return true;
2137
2138 return false;
2139}
2140
2141static bool i915_head_inside_request(const u32 acthd_unmasked,
2142 const u32 request_start,
2143 const u32 request_end)
2144{
2145 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2146
2147 if (request_start < request_end) {
2148 if (acthd >= request_start && acthd < request_end)
2149 return true;
2150 } else if (request_start > request_end) {
2151 if (acthd >= request_start || acthd < request_end)
2152 return true;
2153 }
2154
2155 return false;
2156}
2157
d1ccbb5d
BW
2158static struct i915_address_space *
2159request_to_vm(struct drm_i915_gem_request *request)
2160{
2161 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2162 struct i915_address_space *vm;
2163
2164 vm = &dev_priv->gtt.base;
2165
2166 return vm;
2167}
2168
aa60c664
MK
2169static bool i915_request_guilty(struct drm_i915_gem_request *request,
2170 const u32 acthd, bool *inside)
2171{
2172 /* There is a possibility that unmasked head address
2173 * pointing inside the ring, matches the batch_obj address range.
2174 * However this is extremely unlikely.
2175 */
aa60c664 2176 if (request->batch_obj) {
d1ccbb5d
BW
2177 if (i915_head_inside_object(acthd, request->batch_obj,
2178 request_to_vm(request))) {
aa60c664
MK
2179 *inside = true;
2180 return true;
2181 }
2182 }
2183
2184 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2185 *inside = false;
2186 return true;
2187 }
2188
2189 return false;
2190}
2191
2192static void i915_set_reset_status(struct intel_ring_buffer *ring,
2193 struct drm_i915_gem_request *request,
2194 u32 acthd)
2195{
2196 struct i915_ctx_hang_stats *hs = NULL;
2197 bool inside, guilty;
d1ccbb5d 2198 unsigned long offset = 0;
aa60c664
MK
2199
2200 /* Innocent until proven guilty */
2201 guilty = false;
2202
d1ccbb5d
BW
2203 if (request->batch_obj)
2204 offset = i915_gem_obj_offset(request->batch_obj,
2205 request_to_vm(request));
2206
aa60c664
MK
2207 if (ring->hangcheck.action != wait &&
2208 i915_request_guilty(request, acthd, &inside)) {
f343c5f6 2209 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
aa60c664
MK
2210 ring->name,
2211 inside ? "inside" : "flushing",
d1ccbb5d 2212 offset,
aa60c664
MK
2213 request->ctx ? request->ctx->id : 0,
2214 acthd);
2215
2216 guilty = true;
2217 }
2218
2219 /* If contexts are disabled or this is the default context, use
2220 * file_priv->reset_state
2221 */
2222 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2223 hs = &request->ctx->hang_stats;
2224 else if (request->file_priv)
2225 hs = &request->file_priv->hang_stats;
2226
2227 if (hs) {
2228 if (guilty)
2229 hs->batch_active++;
2230 else
2231 hs->batch_pending++;
2232 }
2233}
2234
0e50e96b
MK
2235static void i915_gem_free_request(struct drm_i915_gem_request *request)
2236{
2237 list_del(&request->list);
2238 i915_gem_request_remove_from_client(request);
2239
2240 if (request->ctx)
2241 i915_gem_context_unreference(request->ctx);
2242
2243 kfree(request);
2244}
2245
dfaae392
CW
2246static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2247 struct intel_ring_buffer *ring)
9375e446 2248{
aa60c664
MK
2249 u32 completed_seqno;
2250 u32 acthd;
2251
2252 acthd = intel_ring_get_active_head(ring);
2253 completed_seqno = ring->get_seqno(ring, false);
2254
dfaae392
CW
2255 while (!list_empty(&ring->request_list)) {
2256 struct drm_i915_gem_request *request;
673a394b 2257
dfaae392
CW
2258 request = list_first_entry(&ring->request_list,
2259 struct drm_i915_gem_request,
2260 list);
de151cf6 2261
aa60c664
MK
2262 if (request->seqno > completed_seqno)
2263 i915_set_reset_status(ring, request, acthd);
2264
0e50e96b 2265 i915_gem_free_request(request);
dfaae392 2266 }
673a394b 2267
dfaae392 2268 while (!list_empty(&ring->active_list)) {
05394f39 2269 struct drm_i915_gem_object *obj;
9375e446 2270
05394f39
CW
2271 obj = list_first_entry(&ring->active_list,
2272 struct drm_i915_gem_object,
2273 ring_list);
9375e446 2274
05394f39 2275 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2276 }
2277}
2278
19b2dbde 2279void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2280{
2281 struct drm_i915_private *dev_priv = dev->dev_private;
2282 int i;
2283
4b9de737 2284 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2285 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2286
94a335db
DV
2287 /*
2288 * Commit delayed tiling changes if we have an object still
2289 * attached to the fence, otherwise just clear the fence.
2290 */
2291 if (reg->obj) {
2292 i915_gem_object_update_fence(reg->obj, reg,
2293 reg->obj->tiling_mode);
2294 } else {
2295 i915_gem_write_fence(dev, i, NULL);
2296 }
312817a3
CW
2297 }
2298}
2299
069efc1d 2300void i915_gem_reset(struct drm_device *dev)
673a394b 2301{
77f01230 2302 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2303 struct intel_ring_buffer *ring;
1ec14ad3 2304 int i;
673a394b 2305
b4519513
CW
2306 for_each_ring(ring, dev_priv, i)
2307 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2308
19b2dbde 2309 i915_gem_restore_fences(dev);
673a394b
EA
2310}
2311
2312/**
2313 * This function clears the request list as sequence numbers are passed.
2314 */
a71d8d94 2315void
db53a302 2316i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2317{
673a394b
EA
2318 uint32_t seqno;
2319
db53a302 2320 if (list_empty(&ring->request_list))
6c0594a3
KW
2321 return;
2322
db53a302 2323 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2324
b2eadbc8 2325 seqno = ring->get_seqno(ring, true);
1ec14ad3 2326
852835f3 2327 while (!list_empty(&ring->request_list)) {
673a394b 2328 struct drm_i915_gem_request *request;
673a394b 2329
852835f3 2330 request = list_first_entry(&ring->request_list,
673a394b
EA
2331 struct drm_i915_gem_request,
2332 list);
673a394b 2333
dfaae392 2334 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2335 break;
2336
db53a302 2337 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2338 /* We know the GPU must have read the request to have
2339 * sent us the seqno + interrupt, so use the position
2340 * of tail of the request to update the last known position
2341 * of the GPU head.
2342 */
2343 ring->last_retired_head = request->tail;
b84d5f0c 2344
0e50e96b 2345 i915_gem_free_request(request);
b84d5f0c 2346 }
673a394b 2347
b84d5f0c
CW
2348 /* Move any buffers on the active list that are no longer referenced
2349 * by the ringbuffer to the flushing/inactive lists as appropriate.
2350 */
2351 while (!list_empty(&ring->active_list)) {
05394f39 2352 struct drm_i915_gem_object *obj;
b84d5f0c 2353
0206e353 2354 obj = list_first_entry(&ring->active_list,
05394f39
CW
2355 struct drm_i915_gem_object,
2356 ring_list);
673a394b 2357
0201f1ec 2358 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2359 break;
b84d5f0c 2360
65ce3027 2361 i915_gem_object_move_to_inactive(obj);
673a394b 2362 }
9d34e5db 2363
db53a302
CW
2364 if (unlikely(ring->trace_irq_seqno &&
2365 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2366 ring->irq_put(ring);
db53a302 2367 ring->trace_irq_seqno = 0;
9d34e5db 2368 }
23bc5982 2369
db53a302 2370 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2371}
2372
b09a1fec
CW
2373void
2374i915_gem_retire_requests(struct drm_device *dev)
2375{
2376 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2377 struct intel_ring_buffer *ring;
1ec14ad3 2378 int i;
b09a1fec 2379
b4519513
CW
2380 for_each_ring(ring, dev_priv, i)
2381 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2382}
2383
75ef9da2 2384static void
673a394b
EA
2385i915_gem_retire_work_handler(struct work_struct *work)
2386{
2387 drm_i915_private_t *dev_priv;
2388 struct drm_device *dev;
b4519513 2389 struct intel_ring_buffer *ring;
0a58705b
CW
2390 bool idle;
2391 int i;
673a394b
EA
2392
2393 dev_priv = container_of(work, drm_i915_private_t,
2394 mm.retire_work.work);
2395 dev = dev_priv->dev;
2396
891b48cf
CW
2397 /* Come back later if the device is busy... */
2398 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2399 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2400 round_jiffies_up_relative(HZ));
891b48cf
CW
2401 return;
2402 }
673a394b 2403
b09a1fec 2404 i915_gem_retire_requests(dev);
673a394b 2405
0a58705b
CW
2406 /* Send a periodic flush down the ring so we don't hold onto GEM
2407 * objects indefinitely.
673a394b 2408 */
0a58705b 2409 idle = true;
b4519513 2410 for_each_ring(ring, dev_priv, i) {
3bb73aba 2411 if (ring->gpu_caches_dirty)
0025c077 2412 i915_add_request(ring, NULL);
0a58705b
CW
2413
2414 idle &= list_empty(&ring->request_list);
673a394b
EA
2415 }
2416
db1b76ca 2417 if (!dev_priv->ums.mm_suspended && !idle)
bcb45086
CW
2418 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2419 round_jiffies_up_relative(HZ));
f047e395
CW
2420 if (idle)
2421 intel_mark_idle(dev);
0a58705b 2422
673a394b 2423 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2424}
2425
30dfebf3
DV
2426/**
2427 * Ensures that an object will eventually get non-busy by flushing any required
2428 * write domains, emitting any outstanding lazy request and retiring and
2429 * completed requests.
2430 */
2431static int
2432i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2433{
2434 int ret;
2435
2436 if (obj->active) {
0201f1ec 2437 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2438 if (ret)
2439 return ret;
2440
30dfebf3
DV
2441 i915_gem_retire_requests_ring(obj->ring);
2442 }
2443
2444 return 0;
2445}
2446
23ba4fd0
BW
2447/**
2448 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2449 * @DRM_IOCTL_ARGS: standard ioctl arguments
2450 *
2451 * Returns 0 if successful, else an error is returned with the remaining time in
2452 * the timeout parameter.
2453 * -ETIME: object is still busy after timeout
2454 * -ERESTARTSYS: signal interrupted the wait
2455 * -ENONENT: object doesn't exist
2456 * Also possible, but rare:
2457 * -EAGAIN: GPU wedged
2458 * -ENOMEM: damn
2459 * -ENODEV: Internal IRQ fail
2460 * -E?: The add request failed
2461 *
2462 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2463 * non-zero timeout parameter the wait ioctl will wait for the given number of
2464 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2465 * without holding struct_mutex the object may become re-busied before this
2466 * function completes. A similar but shorter * race condition exists in the busy
2467 * ioctl
2468 */
2469int
2470i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2471{
f69061be 2472 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2473 struct drm_i915_gem_wait *args = data;
2474 struct drm_i915_gem_object *obj;
2475 struct intel_ring_buffer *ring = NULL;
eac1f14f 2476 struct timespec timeout_stack, *timeout = NULL;
f69061be 2477 unsigned reset_counter;
23ba4fd0
BW
2478 u32 seqno = 0;
2479 int ret = 0;
2480
eac1f14f
BW
2481 if (args->timeout_ns >= 0) {
2482 timeout_stack = ns_to_timespec(args->timeout_ns);
2483 timeout = &timeout_stack;
2484 }
23ba4fd0
BW
2485
2486 ret = i915_mutex_lock_interruptible(dev);
2487 if (ret)
2488 return ret;
2489
2490 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2491 if (&obj->base == NULL) {
2492 mutex_unlock(&dev->struct_mutex);
2493 return -ENOENT;
2494 }
2495
30dfebf3
DV
2496 /* Need to make sure the object gets inactive eventually. */
2497 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2498 if (ret)
2499 goto out;
2500
2501 if (obj->active) {
0201f1ec 2502 seqno = obj->last_read_seqno;
23ba4fd0
BW
2503 ring = obj->ring;
2504 }
2505
2506 if (seqno == 0)
2507 goto out;
2508
23ba4fd0
BW
2509 /* Do this after OLR check to make sure we make forward progress polling
2510 * on this IOCTL with a 0 timeout (like busy ioctl)
2511 */
2512 if (!args->timeout_ns) {
2513 ret = -ETIME;
2514 goto out;
2515 }
2516
2517 drm_gem_object_unreference(&obj->base);
f69061be 2518 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2519 mutex_unlock(&dev->struct_mutex);
2520
f69061be 2521 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
4f42f4ef 2522 if (timeout)
eac1f14f 2523 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2524 return ret;
2525
2526out:
2527 drm_gem_object_unreference(&obj->base);
2528 mutex_unlock(&dev->struct_mutex);
2529 return ret;
2530}
2531
5816d648
BW
2532/**
2533 * i915_gem_object_sync - sync an object to a ring.
2534 *
2535 * @obj: object which may be in use on another ring.
2536 * @to: ring we wish to use the object on. May be NULL.
2537 *
2538 * This code is meant to abstract object synchronization with the GPU.
2539 * Calling with NULL implies synchronizing the object with the CPU
2540 * rather than a particular GPU ring.
2541 *
2542 * Returns 0 if successful, else propagates up the lower layer error.
2543 */
2911a35b
BW
2544int
2545i915_gem_object_sync(struct drm_i915_gem_object *obj,
2546 struct intel_ring_buffer *to)
2547{
2548 struct intel_ring_buffer *from = obj->ring;
2549 u32 seqno;
2550 int ret, idx;
2551
2552 if (from == NULL || to == from)
2553 return 0;
2554
5816d648 2555 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2556 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2557
2558 idx = intel_ring_sync_index(from, to);
2559
0201f1ec 2560 seqno = obj->last_read_seqno;
2911a35b
BW
2561 if (seqno <= from->sync_seqno[idx])
2562 return 0;
2563
b4aca010
BW
2564 ret = i915_gem_check_olr(obj->ring, seqno);
2565 if (ret)
2566 return ret;
2911a35b 2567
1500f7ea 2568 ret = to->sync_to(to, from, seqno);
e3a5a225 2569 if (!ret)
7b01e260
MK
2570 /* We use last_read_seqno because sync_to()
2571 * might have just caused seqno wrap under
2572 * the radar.
2573 */
2574 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2575
e3a5a225 2576 return ret;
2911a35b
BW
2577}
2578
b5ffc9bc
CW
2579static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2580{
2581 u32 old_write_domain, old_read_domains;
2582
b5ffc9bc
CW
2583 /* Force a pagefault for domain tracking on next user access */
2584 i915_gem_release_mmap(obj);
2585
b97c3d9c
KP
2586 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2587 return;
2588
97c809fd
CW
2589 /* Wait for any direct GTT access to complete */
2590 mb();
2591
b5ffc9bc
CW
2592 old_read_domains = obj->base.read_domains;
2593 old_write_domain = obj->base.write_domain;
2594
2595 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2596 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2597
2598 trace_i915_gem_object_change_domain(obj,
2599 old_read_domains,
2600 old_write_domain);
2601}
2602
07fe0b12 2603int i915_vma_unbind(struct i915_vma *vma)
673a394b 2604{
07fe0b12 2605 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2606 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2607 int ret;
673a394b 2608
07fe0b12 2609 if (list_empty(&vma->vma_link))
673a394b
EA
2610 return 0;
2611
31d8d651
CW
2612 if (obj->pin_count)
2613 return -EBUSY;
673a394b 2614
c4670ad0
CW
2615 BUG_ON(obj->pages == NULL);
2616
a8198eea 2617 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2618 if (ret)
a8198eea
CW
2619 return ret;
2620 /* Continue on if we fail due to EIO, the GPU is hung so we
2621 * should be safe and we need to cleanup or else we might
2622 * cause memory corruption through use-after-free.
2623 */
2624
b5ffc9bc 2625 i915_gem_object_finish_gtt(obj);
5323fd04 2626
96b47b65 2627 /* release the fence reg _after_ flushing */
d9e86c0e 2628 ret = i915_gem_object_put_fence(obj);
1488fc08 2629 if (ret)
d9e86c0e 2630 return ret;
96b47b65 2631
07fe0b12 2632 trace_i915_vma_unbind(vma);
db53a302 2633
74898d7e
DV
2634 if (obj->has_global_gtt_mapping)
2635 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2636 if (obj->has_aliasing_ppgtt_mapping) {
2637 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2638 obj->has_aliasing_ppgtt_mapping = 0;
2639 }
74163907 2640 i915_gem_gtt_finish_object(obj);
401c29f6 2641 i915_gem_object_unpin_pages(obj);
7bddb01f 2642
6c085a72 2643 list_del(&obj->mm_list);
75e9e915 2644 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2645 obj->map_and_fenceable = true;
673a394b 2646
2f633156
BW
2647 list_del(&vma->vma_link);
2648 drm_mm_remove_node(&vma->node);
2649 i915_gem_vma_destroy(vma);
2650
2651 /* Since the unbound list is global, only move to that list if
2652 * no more VMAs exist.
2653 * NB: Until we have real VMAs there will only ever be one */
2654 WARN_ON(!list_empty(&obj->vma_list));
2655 if (list_empty(&obj->vma_list))
2656 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2657
88241785 2658 return 0;
54cf91dc
CW
2659}
2660
07fe0b12
BW
2661/**
2662 * Unbinds an object from the global GTT aperture.
2663 */
2664int
2665i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2666{
2667 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2668 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2669
2670 if (!i915_gem_obj_ggtt_bound(obj));
2671 return 0;
2672
2673 if (obj->pin_count)
2674 return -EBUSY;
2675
2676 BUG_ON(obj->pages == NULL);
2677
2678 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2679}
2680
b2da9fe5 2681int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2682{
2683 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2684 struct intel_ring_buffer *ring;
1ec14ad3 2685 int ret, i;
4df2faf4 2686
4df2faf4 2687 /* Flush everything onto the inactive list. */
b4519513 2688 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2689 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2690 if (ret)
2691 return ret;
2692
3e960501 2693 ret = intel_ring_idle(ring);
1ec14ad3
CW
2694 if (ret)
2695 return ret;
2696 }
4df2faf4 2697
8a1a49f9 2698 return 0;
4df2faf4
DV
2699}
2700
9ce079e4
CW
2701static void i965_write_fence_reg(struct drm_device *dev, int reg,
2702 struct drm_i915_gem_object *obj)
de151cf6 2703{
de151cf6 2704 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2705 int fence_reg;
2706 int fence_pitch_shift;
de151cf6 2707
56c844e5
ID
2708 if (INTEL_INFO(dev)->gen >= 6) {
2709 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2710 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2711 } else {
2712 fence_reg = FENCE_REG_965_0;
2713 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2714 }
2715
d18b9619
CW
2716 fence_reg += reg * 8;
2717
2718 /* To w/a incoherency with non-atomic 64-bit register updates,
2719 * we split the 64-bit update into two 32-bit writes. In order
2720 * for a partial fence not to be evaluated between writes, we
2721 * precede the update with write to turn off the fence register,
2722 * and only enable the fence as the last step.
2723 *
2724 * For extra levels of paranoia, we make sure each step lands
2725 * before applying the next step.
2726 */
2727 I915_WRITE(fence_reg, 0);
2728 POSTING_READ(fence_reg);
2729
9ce079e4 2730 if (obj) {
f343c5f6 2731 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2732 uint64_t val;
de151cf6 2733
f343c5f6 2734 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2735 0xfffff000) << 32;
f343c5f6 2736 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2737 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2738 if (obj->tiling_mode == I915_TILING_Y)
2739 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2740 val |= I965_FENCE_REG_VALID;
c6642782 2741
d18b9619
CW
2742 I915_WRITE(fence_reg + 4, val >> 32);
2743 POSTING_READ(fence_reg + 4);
2744
2745 I915_WRITE(fence_reg + 0, val);
2746 POSTING_READ(fence_reg);
2747 } else {
2748 I915_WRITE(fence_reg + 4, 0);
2749 POSTING_READ(fence_reg + 4);
2750 }
de151cf6
JB
2751}
2752
9ce079e4
CW
2753static void i915_write_fence_reg(struct drm_device *dev, int reg,
2754 struct drm_i915_gem_object *obj)
de151cf6 2755{
de151cf6 2756 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2757 u32 val;
de151cf6 2758
9ce079e4 2759 if (obj) {
f343c5f6 2760 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2761 int pitch_val;
2762 int tile_width;
c6642782 2763
f343c5f6 2764 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2765 (size & -size) != size ||
f343c5f6
BW
2766 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2767 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2768 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2769
9ce079e4
CW
2770 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2771 tile_width = 128;
2772 else
2773 tile_width = 512;
2774
2775 /* Note: pitch better be a power of two tile widths */
2776 pitch_val = obj->stride / tile_width;
2777 pitch_val = ffs(pitch_val) - 1;
2778
f343c5f6 2779 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2780 if (obj->tiling_mode == I915_TILING_Y)
2781 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2782 val |= I915_FENCE_SIZE_BITS(size);
2783 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2784 val |= I830_FENCE_REG_VALID;
2785 } else
2786 val = 0;
2787
2788 if (reg < 8)
2789 reg = FENCE_REG_830_0 + reg * 4;
2790 else
2791 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2792
2793 I915_WRITE(reg, val);
2794 POSTING_READ(reg);
de151cf6
JB
2795}
2796
9ce079e4
CW
2797static void i830_write_fence_reg(struct drm_device *dev, int reg,
2798 struct drm_i915_gem_object *obj)
de151cf6 2799{
de151cf6 2800 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2801 uint32_t val;
de151cf6 2802
9ce079e4 2803 if (obj) {
f343c5f6 2804 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2805 uint32_t pitch_val;
de151cf6 2806
f343c5f6 2807 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2808 (size & -size) != size ||
f343c5f6
BW
2809 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2810 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2811 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2812
9ce079e4
CW
2813 pitch_val = obj->stride / 128;
2814 pitch_val = ffs(pitch_val) - 1;
de151cf6 2815
f343c5f6 2816 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2817 if (obj->tiling_mode == I915_TILING_Y)
2818 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2819 val |= I830_FENCE_SIZE_BITS(size);
2820 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2821 val |= I830_FENCE_REG_VALID;
2822 } else
2823 val = 0;
c6642782 2824
9ce079e4
CW
2825 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2826 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2827}
2828
d0a57789
CW
2829inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2830{
2831 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2832}
2833
9ce079e4
CW
2834static void i915_gem_write_fence(struct drm_device *dev, int reg,
2835 struct drm_i915_gem_object *obj)
2836{
d0a57789
CW
2837 struct drm_i915_private *dev_priv = dev->dev_private;
2838
2839 /* Ensure that all CPU reads are completed before installing a fence
2840 * and all writes before removing the fence.
2841 */
2842 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2843 mb();
2844
94a335db
DV
2845 WARN(obj && (!obj->stride || !obj->tiling_mode),
2846 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2847 obj->stride, obj->tiling_mode);
2848
9ce079e4
CW
2849 switch (INTEL_INFO(dev)->gen) {
2850 case 7:
56c844e5 2851 case 6:
9ce079e4
CW
2852 case 5:
2853 case 4: i965_write_fence_reg(dev, reg, obj); break;
2854 case 3: i915_write_fence_reg(dev, reg, obj); break;
2855 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2856 default: BUG();
9ce079e4 2857 }
d0a57789
CW
2858
2859 /* And similarly be paranoid that no direct access to this region
2860 * is reordered to before the fence is installed.
2861 */
2862 if (i915_gem_object_needs_mb(obj))
2863 mb();
de151cf6
JB
2864}
2865
61050808
CW
2866static inline int fence_number(struct drm_i915_private *dev_priv,
2867 struct drm_i915_fence_reg *fence)
2868{
2869 return fence - dev_priv->fence_regs;
2870}
2871
2872static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2873 struct drm_i915_fence_reg *fence,
2874 bool enable)
2875{
2dc8aae0 2876 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2877 int reg = fence_number(dev_priv, fence);
2878
2879 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2880
2881 if (enable) {
46a0b638 2882 obj->fence_reg = reg;
61050808
CW
2883 fence->obj = obj;
2884 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2885 } else {
2886 obj->fence_reg = I915_FENCE_REG_NONE;
2887 fence->obj = NULL;
2888 list_del_init(&fence->lru_list);
2889 }
94a335db 2890 obj->fence_dirty = false;
61050808
CW
2891}
2892
d9e86c0e 2893static int
d0a57789 2894i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2895{
1c293ea3 2896 if (obj->last_fenced_seqno) {
86d5bc37 2897 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2898 if (ret)
2899 return ret;
d9e86c0e
CW
2900
2901 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2902 }
2903
86d5bc37 2904 obj->fenced_gpu_access = false;
d9e86c0e
CW
2905 return 0;
2906}
2907
2908int
2909i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2910{
61050808 2911 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 2912 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
2913 int ret;
2914
d0a57789 2915 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
2916 if (ret)
2917 return ret;
2918
61050808
CW
2919 if (obj->fence_reg == I915_FENCE_REG_NONE)
2920 return 0;
d9e86c0e 2921
f9c513e9
CW
2922 fence = &dev_priv->fence_regs[obj->fence_reg];
2923
61050808 2924 i915_gem_object_fence_lost(obj);
f9c513e9 2925 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
2926
2927 return 0;
2928}
2929
2930static struct drm_i915_fence_reg *
a360bb1a 2931i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2932{
ae3db24a 2933 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2934 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2935 int i;
ae3db24a
DV
2936
2937 /* First try to find a free reg */
d9e86c0e 2938 avail = NULL;
ae3db24a
DV
2939 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2940 reg = &dev_priv->fence_regs[i];
2941 if (!reg->obj)
d9e86c0e 2942 return reg;
ae3db24a 2943
1690e1eb 2944 if (!reg->pin_count)
d9e86c0e 2945 avail = reg;
ae3db24a
DV
2946 }
2947
d9e86c0e
CW
2948 if (avail == NULL)
2949 return NULL;
ae3db24a
DV
2950
2951 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2952 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2953 if (reg->pin_count)
ae3db24a
DV
2954 continue;
2955
8fe301ad 2956 return reg;
ae3db24a
DV
2957 }
2958
8fe301ad 2959 return NULL;
ae3db24a
DV
2960}
2961
de151cf6 2962/**
9a5a53b3 2963 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2964 * @obj: object to map through a fence reg
2965 *
2966 * When mapping objects through the GTT, userspace wants to be able to write
2967 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2968 * This function walks the fence regs looking for a free one for @obj,
2969 * stealing one if it can't find any.
2970 *
2971 * It then sets up the reg based on the object's properties: address, pitch
2972 * and tiling format.
9a5a53b3
CW
2973 *
2974 * For an untiled surface, this removes any existing fence.
de151cf6 2975 */
8c4b8c3f 2976int
06d98131 2977i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2978{
05394f39 2979 struct drm_device *dev = obj->base.dev;
79e53945 2980 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2981 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2982 struct drm_i915_fence_reg *reg;
ae3db24a 2983 int ret;
de151cf6 2984
14415745
CW
2985 /* Have we updated the tiling parameters upon the object and so
2986 * will need to serialise the write to the associated fence register?
2987 */
5d82e3e6 2988 if (obj->fence_dirty) {
d0a57789 2989 ret = i915_gem_object_wait_fence(obj);
14415745
CW
2990 if (ret)
2991 return ret;
2992 }
9a5a53b3 2993
d9e86c0e 2994 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2995 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2996 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2997 if (!obj->fence_dirty) {
14415745
CW
2998 list_move_tail(&reg->lru_list,
2999 &dev_priv->mm.fence_list);
3000 return 0;
3001 }
3002 } else if (enable) {
3003 reg = i915_find_fence_reg(dev);
3004 if (reg == NULL)
3005 return -EDEADLK;
d9e86c0e 3006
14415745
CW
3007 if (reg->obj) {
3008 struct drm_i915_gem_object *old = reg->obj;
3009
d0a57789 3010 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3011 if (ret)
3012 return ret;
3013
14415745 3014 i915_gem_object_fence_lost(old);
29c5a587 3015 }
14415745 3016 } else
a09ba7fa 3017 return 0;
a09ba7fa 3018
14415745 3019 i915_gem_object_update_fence(obj, reg, enable);
14415745 3020
9ce079e4 3021 return 0;
de151cf6
JB
3022}
3023
42d6ab48
CW
3024static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3025 struct drm_mm_node *gtt_space,
3026 unsigned long cache_level)
3027{
3028 struct drm_mm_node *other;
3029
3030 /* On non-LLC machines we have to be careful when putting differing
3031 * types of snoopable memory together to avoid the prefetcher
4239ca77 3032 * crossing memory domains and dying.
42d6ab48
CW
3033 */
3034 if (HAS_LLC(dev))
3035 return true;
3036
c6cfb325 3037 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3038 return true;
3039
3040 if (list_empty(&gtt_space->node_list))
3041 return true;
3042
3043 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3044 if (other->allocated && !other->hole_follows && other->color != cache_level)
3045 return false;
3046
3047 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3048 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3049 return false;
3050
3051 return true;
3052}
3053
3054static void i915_gem_verify_gtt(struct drm_device *dev)
3055{
3056#if WATCH_GTT
3057 struct drm_i915_private *dev_priv = dev->dev_private;
3058 struct drm_i915_gem_object *obj;
3059 int err = 0;
3060
35c20a60 3061 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3062 if (obj->gtt_space == NULL) {
3063 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3064 err++;
3065 continue;
3066 }
3067
3068 if (obj->cache_level != obj->gtt_space->color) {
3069 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3070 i915_gem_obj_ggtt_offset(obj),
3071 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3072 obj->cache_level,
3073 obj->gtt_space->color);
3074 err++;
3075 continue;
3076 }
3077
3078 if (!i915_gem_valid_gtt_space(dev,
3079 obj->gtt_space,
3080 obj->cache_level)) {
3081 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3082 i915_gem_obj_ggtt_offset(obj),
3083 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3084 obj->cache_level);
3085 err++;
3086 continue;
3087 }
3088 }
3089
3090 WARN_ON(err);
3091#endif
3092}
3093
673a394b
EA
3094/**
3095 * Finds free space in the GTT aperture and binds the object there.
3096 */
3097static int
07fe0b12
BW
3098i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3099 struct i915_address_space *vm,
3100 unsigned alignment,
3101 bool map_and_fenceable,
3102 bool nonblocking)
673a394b 3103{
05394f39 3104 struct drm_device *dev = obj->base.dev;
673a394b 3105 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3106 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 3107 bool mappable, fenceable;
07fe0b12
BW
3108 size_t gtt_max =
3109 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3110 struct i915_vma *vma;
07f73f69 3111 int ret;
673a394b 3112
2f633156
BW
3113 if (WARN_ON(!list_empty(&obj->vma_list)))
3114 return -EBUSY;
3115
e28f8711
CW
3116 fence_size = i915_gem_get_gtt_size(dev,
3117 obj->base.size,
3118 obj->tiling_mode);
3119 fence_alignment = i915_gem_get_gtt_alignment(dev,
3120 obj->base.size,
d865110c 3121 obj->tiling_mode, true);
e28f8711 3122 unfenced_alignment =
d865110c 3123 i915_gem_get_gtt_alignment(dev,
e28f8711 3124 obj->base.size,
d865110c 3125 obj->tiling_mode, false);
a00b10c3 3126
673a394b 3127 if (alignment == 0)
5e783301
DV
3128 alignment = map_and_fenceable ? fence_alignment :
3129 unfenced_alignment;
75e9e915 3130 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3131 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3132 return -EINVAL;
3133 }
3134
05394f39 3135 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3136
654fc607
CW
3137 /* If the object is bigger than the entire aperture, reject it early
3138 * before evicting everything in a vain attempt to find space.
3139 */
0a9ae0d7 3140 if (obj->base.size > gtt_max) {
3765f304 3141 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3142 obj->base.size,
3143 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3144 gtt_max);
654fc607
CW
3145 return -E2BIG;
3146 }
3147
37e680a1 3148 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3149 if (ret)
3150 return ret;
3151
fbdda6fb
CW
3152 i915_gem_object_pin_pages(obj);
3153
07fe0b12
BW
3154 /* FIXME: For now we only ever use 1 VMA per object */
3155 BUG_ON(!i915_is_ggtt(vm));
3156 WARN_ON(!list_empty(&obj->vma_list));
3157
3158 vma = i915_gem_vma_create(obj, vm);
db473b36 3159 if (IS_ERR(vma)) {
bc6bc15b
DV
3160 ret = PTR_ERR(vma);
3161 goto err_unpin;
2f633156
BW
3162 }
3163
0a9ae0d7 3164search_free:
07fe0b12 3165 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7
BW
3166 size, alignment,
3167 obj->cache_level, 0, gtt_max);
dc9dd7a2 3168 if (ret) {
f6cd1f15 3169 ret = i915_gem_evict_something(dev, vm, size, alignment,
42d6ab48 3170 obj->cache_level,
86a1ee26
CW
3171 map_and_fenceable,
3172 nonblocking);
dc9dd7a2
CW
3173 if (ret == 0)
3174 goto search_free;
9731129c 3175
bc6bc15b 3176 goto err_free_vma;
673a394b 3177 }
2f633156 3178 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3179 obj->cache_level))) {
2f633156 3180 ret = -EINVAL;
bc6bc15b 3181 goto err_remove_node;
673a394b
EA
3182 }
3183
74163907 3184 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3185 if (ret)
bc6bc15b 3186 goto err_remove_node;
673a394b 3187
35c20a60 3188 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
5cef07e1 3189 list_add_tail(&obj->mm_list, &vm->inactive_list);
07fe0b12
BW
3190
3191 /* Keep GGTT vmas first to make debug easier */
3192 if (i915_is_ggtt(vm))
3193 list_add(&vma->vma_link, &obj->vma_list);
3194 else
3195 list_add_tail(&vma->vma_link, &obj->vma_list);
bf1a1092 3196
75e9e915 3197 fenceable =
07fe0b12 3198 i915_is_ggtt(vm) &&
c6cfb325
BW
3199 i915_gem_obj_ggtt_size(obj) == fence_size &&
3200 (i915_gem_obj_ggtt_offset(obj) & (fence_alignment - 1)) == 0;
a00b10c3 3201
07fe0b12
BW
3202 mappable =
3203 i915_is_ggtt(vm) &&
3204 vma->node.start + obj->base.size <= dev_priv->gtt.mappable_end;
a00b10c3 3205
05394f39 3206 obj->map_and_fenceable = mappable && fenceable;
75e9e915 3207
07fe0b12 3208 trace_i915_vma_bind(vma, map_and_fenceable);
42d6ab48 3209 i915_gem_verify_gtt(dev);
673a394b 3210 return 0;
2f633156 3211
bc6bc15b 3212err_remove_node:
6286ef9b 3213 drm_mm_remove_node(&vma->node);
bc6bc15b 3214err_free_vma:
2f633156 3215 i915_gem_vma_destroy(vma);
bc6bc15b 3216err_unpin:
2f633156 3217 i915_gem_object_unpin_pages(obj);
2f633156 3218 return ret;
673a394b
EA
3219}
3220
3221void
05394f39 3222i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3223{
673a394b
EA
3224 /* If we don't have a page list set up, then we're not pinned
3225 * to GPU, and we can ignore the cache flush because it'll happen
3226 * again at bind time.
3227 */
05394f39 3228 if (obj->pages == NULL)
673a394b
EA
3229 return;
3230
769ce464
ID
3231 /*
3232 * Stolen memory is always coherent with the GPU as it is explicitly
3233 * marked as wc by the system, or the system is cache-coherent.
3234 */
3235 if (obj->stolen)
3236 return;
3237
9c23f7fc
CW
3238 /* If the GPU is snooping the contents of the CPU cache,
3239 * we do not need to manually clear the CPU cache lines. However,
3240 * the caches are only snooped when the render cache is
3241 * flushed/invalidated. As we always have to emit invalidations
3242 * and flushes when moving into and out of the RENDER domain, correct
3243 * snooping behaviour occurs naturally as the result of our domain
3244 * tracking.
3245 */
3246 if (obj->cache_level != I915_CACHE_NONE)
3247 return;
3248
1c5d22f7 3249 trace_i915_gem_object_clflush(obj);
cfa16a0d 3250
9da3da66 3251 drm_clflush_sg(obj->pages);
e47c68e9
EA
3252}
3253
3254/** Flushes the GTT write domain for the object if it's dirty. */
3255static void
05394f39 3256i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3257{
1c5d22f7
CW
3258 uint32_t old_write_domain;
3259
05394f39 3260 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3261 return;
3262
63256ec5 3263 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3264 * to it immediately go to main memory as far as we know, so there's
3265 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3266 *
3267 * However, we do have to enforce the order so that all writes through
3268 * the GTT land before any writes to the device, such as updates to
3269 * the GATT itself.
e47c68e9 3270 */
63256ec5
CW
3271 wmb();
3272
05394f39
CW
3273 old_write_domain = obj->base.write_domain;
3274 obj->base.write_domain = 0;
1c5d22f7
CW
3275
3276 trace_i915_gem_object_change_domain(obj,
05394f39 3277 obj->base.read_domains,
1c5d22f7 3278 old_write_domain);
e47c68e9
EA
3279}
3280
3281/** Flushes the CPU write domain for the object if it's dirty. */
3282static void
05394f39 3283i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3284{
1c5d22f7 3285 uint32_t old_write_domain;
e47c68e9 3286
05394f39 3287 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3288 return;
3289
3290 i915_gem_clflush_object(obj);
e76e9aeb 3291 i915_gem_chipset_flush(obj->base.dev);
05394f39
CW
3292 old_write_domain = obj->base.write_domain;
3293 obj->base.write_domain = 0;
1c5d22f7
CW
3294
3295 trace_i915_gem_object_change_domain(obj,
05394f39 3296 obj->base.read_domains,
1c5d22f7 3297 old_write_domain);
e47c68e9
EA
3298}
3299
2ef7eeaa
EA
3300/**
3301 * Moves a single object to the GTT read, and possibly write domain.
3302 *
3303 * This function returns when the move is complete, including waiting on
3304 * flushes to occur.
3305 */
79e53945 3306int
2021746e 3307i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3308{
8325a09d 3309 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3310 uint32_t old_write_domain, old_read_domains;
e47c68e9 3311 int ret;
2ef7eeaa 3312
02354392 3313 /* Not valid to be called on unbound objects. */
f343c5f6 3314 if (!i915_gem_obj_ggtt_bound(obj))
02354392
EA
3315 return -EINVAL;
3316
8d7e3de1
CW
3317 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3318 return 0;
3319
0201f1ec 3320 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3321 if (ret)
3322 return ret;
3323
7213342d 3324 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3325
d0a57789
CW
3326 /* Serialise direct access to this object with the barriers for
3327 * coherent writes from the GPU, by effectively invalidating the
3328 * GTT domain upon first access.
3329 */
3330 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3331 mb();
3332
05394f39
CW
3333 old_write_domain = obj->base.write_domain;
3334 old_read_domains = obj->base.read_domains;
1c5d22f7 3335
e47c68e9
EA
3336 /* It should now be out of any other write domains, and we can update
3337 * the domain values for our changes.
3338 */
05394f39
CW
3339 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3340 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3341 if (write) {
05394f39
CW
3342 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3343 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3344 obj->dirty = 1;
2ef7eeaa
EA
3345 }
3346
1c5d22f7
CW
3347 trace_i915_gem_object_change_domain(obj,
3348 old_read_domains,
3349 old_write_domain);
3350
8325a09d
CW
3351 /* And bump the LRU for this access */
3352 if (i915_gem_object_is_inactive(obj))
5cef07e1
BW
3353 list_move_tail(&obj->mm_list,
3354 &dev_priv->gtt.base.inactive_list);
8325a09d 3355
e47c68e9
EA
3356 return 0;
3357}
3358
e4ffd173
CW
3359int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3360 enum i915_cache_level cache_level)
3361{
7bddb01f
DV
3362 struct drm_device *dev = obj->base.dev;
3363 drm_i915_private_t *dev_priv = dev->dev_private;
3089c6f2 3364 struct i915_vma *vma;
e4ffd173
CW
3365 int ret;
3366
3367 if (obj->cache_level == cache_level)
3368 return 0;
3369
3370 if (obj->pin_count) {
3371 DRM_DEBUG("can not change the cache level of pinned objects\n");
3372 return -EBUSY;
3373 }
3374
3089c6f2
BW
3375 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3376 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3377 ret = i915_vma_unbind(vma);
3089c6f2
BW
3378 if (ret)
3379 return ret;
3380
3381 break;
3382 }
42d6ab48
CW
3383 }
3384
3089c6f2 3385 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3386 ret = i915_gem_object_finish_gpu(obj);
3387 if (ret)
3388 return ret;
3389
3390 i915_gem_object_finish_gtt(obj);
3391
3392 /* Before SandyBridge, you could not use tiling or fence
3393 * registers with snooped memory, so relinquish any fences
3394 * currently pointing to our region in the aperture.
3395 */
42d6ab48 3396 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3397 ret = i915_gem_object_put_fence(obj);
3398 if (ret)
3399 return ret;
3400 }
3401
74898d7e
DV
3402 if (obj->has_global_gtt_mapping)
3403 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3404 if (obj->has_aliasing_ppgtt_mapping)
3405 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3406 obj, cache_level);
e4ffd173
CW
3407 }
3408
3409 if (cache_level == I915_CACHE_NONE) {
3410 u32 old_read_domains, old_write_domain;
3411
3412 /* If we're coming from LLC cached, then we haven't
3413 * actually been tracking whether the data is in the
3414 * CPU cache or not, since we only allow one bit set
3415 * in obj->write_domain and have been skipping the clflushes.
3416 * Just set it to the CPU cache for now.
3417 */
3418 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3419 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3420
3421 old_read_domains = obj->base.read_domains;
3422 old_write_domain = obj->base.write_domain;
3423
3424 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3425 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3426
3427 trace_i915_gem_object_change_domain(obj,
3428 old_read_domains,
3429 old_write_domain);
3430 }
3431
3089c6f2
BW
3432 list_for_each_entry(vma, &obj->vma_list, vma_link)
3433 vma->node.color = cache_level;
e4ffd173 3434 obj->cache_level = cache_level;
42d6ab48 3435 i915_gem_verify_gtt(dev);
e4ffd173
CW
3436 return 0;
3437}
3438
199adf40
BW
3439int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3440 struct drm_file *file)
e6994aee 3441{
199adf40 3442 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3443 struct drm_i915_gem_object *obj;
3444 int ret;
3445
3446 ret = i915_mutex_lock_interruptible(dev);
3447 if (ret)
3448 return ret;
3449
3450 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3451 if (&obj->base == NULL) {
3452 ret = -ENOENT;
3453 goto unlock;
3454 }
3455
199adf40 3456 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3457
3458 drm_gem_object_unreference(&obj->base);
3459unlock:
3460 mutex_unlock(&dev->struct_mutex);
3461 return ret;
3462}
3463
199adf40
BW
3464int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3465 struct drm_file *file)
e6994aee 3466{
199adf40 3467 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3468 struct drm_i915_gem_object *obj;
3469 enum i915_cache_level level;
3470 int ret;
3471
199adf40
BW
3472 switch (args->caching) {
3473 case I915_CACHING_NONE:
e6994aee
CW
3474 level = I915_CACHE_NONE;
3475 break;
199adf40 3476 case I915_CACHING_CACHED:
e6994aee
CW
3477 level = I915_CACHE_LLC;
3478 break;
3479 default:
3480 return -EINVAL;
3481 }
3482
3bc2913e
BW
3483 ret = i915_mutex_lock_interruptible(dev);
3484 if (ret)
3485 return ret;
3486
e6994aee
CW
3487 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3488 if (&obj->base == NULL) {
3489 ret = -ENOENT;
3490 goto unlock;
3491 }
3492
3493 ret = i915_gem_object_set_cache_level(obj, level);
3494
3495 drm_gem_object_unreference(&obj->base);
3496unlock:
3497 mutex_unlock(&dev->struct_mutex);
3498 return ret;
3499}
3500
b9241ea3 3501/*
2da3b9b9
CW
3502 * Prepare buffer for display plane (scanout, cursors, etc).
3503 * Can be called from an uninterruptible phase (modesetting) and allows
3504 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3505 */
3506int
2da3b9b9
CW
3507i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3508 u32 alignment,
919926ae 3509 struct intel_ring_buffer *pipelined)
b9241ea3 3510{
2da3b9b9 3511 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3512 int ret;
3513
0be73284 3514 if (pipelined != obj->ring) {
2911a35b
BW
3515 ret = i915_gem_object_sync(obj, pipelined);
3516 if (ret)
b9241ea3
ZW
3517 return ret;
3518 }
3519
a7ef0640
EA
3520 /* The display engine is not coherent with the LLC cache on gen6. As
3521 * a result, we make sure that the pinning that is about to occur is
3522 * done with uncached PTEs. This is lowest common denominator for all
3523 * chipsets.
3524 *
3525 * However for gen6+, we could do better by using the GFDT bit instead
3526 * of uncaching, which would allow us to flush all the LLC-cached data
3527 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3528 */
3529 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3530 if (ret)
3531 return ret;
3532
2da3b9b9
CW
3533 /* As the user may map the buffer once pinned in the display plane
3534 * (e.g. libkms for the bootup splash), we have to ensure that we
3535 * always use map_and_fenceable for all scanout buffers.
3536 */
c37e2204 3537 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2da3b9b9
CW
3538 if (ret)
3539 return ret;
3540
b118c1e3
CW
3541 i915_gem_object_flush_cpu_write_domain(obj);
3542
2da3b9b9 3543 old_write_domain = obj->base.write_domain;
05394f39 3544 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3545
3546 /* It should now be out of any other write domains, and we can update
3547 * the domain values for our changes.
3548 */
e5f1d962 3549 obj->base.write_domain = 0;
05394f39 3550 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3551
3552 trace_i915_gem_object_change_domain(obj,
3553 old_read_domains,
2da3b9b9 3554 old_write_domain);
b9241ea3
ZW
3555
3556 return 0;
3557}
3558
85345517 3559int
a8198eea 3560i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3561{
88241785
CW
3562 int ret;
3563
a8198eea 3564 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3565 return 0;
3566
0201f1ec 3567 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3568 if (ret)
3569 return ret;
3570
a8198eea
CW
3571 /* Ensure that we invalidate the GPU's caches and TLBs. */
3572 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3573 return 0;
85345517
CW
3574}
3575
e47c68e9
EA
3576/**
3577 * Moves a single object to the CPU read, and possibly write domain.
3578 *
3579 * This function returns when the move is complete, including waiting on
3580 * flushes to occur.
3581 */
dabdfe02 3582int
919926ae 3583i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3584{
1c5d22f7 3585 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3586 int ret;
3587
8d7e3de1
CW
3588 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3589 return 0;
3590
0201f1ec 3591 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3592 if (ret)
3593 return ret;
3594
e47c68e9 3595 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3596
05394f39
CW
3597 old_write_domain = obj->base.write_domain;
3598 old_read_domains = obj->base.read_domains;
1c5d22f7 3599
e47c68e9 3600 /* Flush the CPU cache if it's still invalid. */
05394f39 3601 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3602 i915_gem_clflush_object(obj);
2ef7eeaa 3603
05394f39 3604 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3605 }
3606
3607 /* It should now be out of any other write domains, and we can update
3608 * the domain values for our changes.
3609 */
05394f39 3610 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3611
3612 /* If we're writing through the CPU, then the GPU read domains will
3613 * need to be invalidated at next use.
3614 */
3615 if (write) {
05394f39
CW
3616 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3617 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3618 }
2ef7eeaa 3619
1c5d22f7
CW
3620 trace_i915_gem_object_change_domain(obj,
3621 old_read_domains,
3622 old_write_domain);
3623
2ef7eeaa
EA
3624 return 0;
3625}
3626
673a394b
EA
3627/* Throttle our rendering by waiting until the ring has completed our requests
3628 * emitted over 20 msec ago.
3629 *
b962442e
EA
3630 * Note that if we were to use the current jiffies each time around the loop,
3631 * we wouldn't escape the function with any frames outstanding if the time to
3632 * render a frame was over 20ms.
3633 *
673a394b
EA
3634 * This should get us reasonable parallelism between CPU and GPU but also
3635 * relatively low latency when blocking on a particular request to finish.
3636 */
40a5f0de 3637static int
f787a5f5 3638i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3639{
f787a5f5
CW
3640 struct drm_i915_private *dev_priv = dev->dev_private;
3641 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3642 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3643 struct drm_i915_gem_request *request;
3644 struct intel_ring_buffer *ring = NULL;
f69061be 3645 unsigned reset_counter;
f787a5f5
CW
3646 u32 seqno = 0;
3647 int ret;
93533c29 3648
308887aa
DV
3649 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3650 if (ret)
3651 return ret;
3652
3653 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3654 if (ret)
3655 return ret;
e110e8d6 3656
1c25595f 3657 spin_lock(&file_priv->mm.lock);
f787a5f5 3658 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3659 if (time_after_eq(request->emitted_jiffies, recent_enough))
3660 break;
40a5f0de 3661
f787a5f5
CW
3662 ring = request->ring;
3663 seqno = request->seqno;
b962442e 3664 }
f69061be 3665 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3666 spin_unlock(&file_priv->mm.lock);
40a5f0de 3667
f787a5f5
CW
3668 if (seqno == 0)
3669 return 0;
2bc43b5c 3670
f69061be 3671 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
f787a5f5
CW
3672 if (ret == 0)
3673 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3674
3675 return ret;
3676}
3677
673a394b 3678int
05394f39 3679i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3680 struct i915_address_space *vm,
05394f39 3681 uint32_t alignment,
86a1ee26
CW
3682 bool map_and_fenceable,
3683 bool nonblocking)
673a394b 3684{
07fe0b12 3685 struct i915_vma *vma;
673a394b
EA
3686 int ret;
3687
7e81a42e
CW
3688 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3689 return -EBUSY;
ac0c6b5a 3690
07fe0b12
BW
3691 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3692
3693 vma = i915_gem_obj_to_vma(obj, vm);
3694
3695 if (vma) {
3696 if ((alignment &&
3697 vma->node.start & (alignment - 1)) ||
05394f39
CW
3698 (map_and_fenceable && !obj->map_and_fenceable)) {
3699 WARN(obj->pin_count,
ae7d49d8 3700 "bo is already pinned with incorrect alignment:"
f343c5f6 3701 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3702 " obj->map_and_fenceable=%d\n",
07fe0b12 3703 i915_gem_obj_offset(obj, vm), alignment,
75e9e915 3704 map_and_fenceable,
05394f39 3705 obj->map_and_fenceable);
07fe0b12 3706 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3707 if (ret)
3708 return ret;
3709 }
3710 }
3711
07fe0b12 3712 if (!i915_gem_obj_bound(obj, vm)) {
8742267a
CW
3713 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3714
07fe0b12
BW
3715 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3716 map_and_fenceable,
3717 nonblocking);
9731129c 3718 if (ret)
673a394b 3719 return ret;
8742267a
CW
3720
3721 if (!dev_priv->mm.aliasing_ppgtt)
3722 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3723 }
76446cac 3724
74898d7e
DV
3725 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3726 i915_gem_gtt_bind_object(obj, obj->cache_level);
3727
1b50247a 3728 obj->pin_count++;
6299f992 3729 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3730
3731 return 0;
3732}
3733
3734void
05394f39 3735i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3736{
05394f39 3737 BUG_ON(obj->pin_count == 0);
f343c5f6 3738 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
673a394b 3739
1b50247a 3740 if (--obj->pin_count == 0)
6299f992 3741 obj->pin_mappable = false;
673a394b
EA
3742}
3743
3744int
3745i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3746 struct drm_file *file)
673a394b
EA
3747{
3748 struct drm_i915_gem_pin *args = data;
05394f39 3749 struct drm_i915_gem_object *obj;
673a394b
EA
3750 int ret;
3751
1d7cfea1
CW
3752 ret = i915_mutex_lock_interruptible(dev);
3753 if (ret)
3754 return ret;
673a394b 3755
05394f39 3756 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3757 if (&obj->base == NULL) {
1d7cfea1
CW
3758 ret = -ENOENT;
3759 goto unlock;
673a394b 3760 }
673a394b 3761
05394f39 3762 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3763 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3764 ret = -EINVAL;
3765 goto out;
3ef94daa
CW
3766 }
3767
05394f39 3768 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3769 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3770 args->handle);
1d7cfea1
CW
3771 ret = -EINVAL;
3772 goto out;
79e53945
JB
3773 }
3774
93be8788 3775 if (obj->user_pin_count == 0) {
c37e2204 3776 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3777 if (ret)
3778 goto out;
673a394b
EA
3779 }
3780
93be8788
CW
3781 obj->user_pin_count++;
3782 obj->pin_filp = file;
3783
673a394b
EA
3784 /* XXX - flush the CPU caches for pinned objects
3785 * as the X server doesn't manage domains yet
3786 */
e47c68e9 3787 i915_gem_object_flush_cpu_write_domain(obj);
f343c5f6 3788 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3789out:
05394f39 3790 drm_gem_object_unreference(&obj->base);
1d7cfea1 3791unlock:
673a394b 3792 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3793 return ret;
673a394b
EA
3794}
3795
3796int
3797i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3798 struct drm_file *file)
673a394b
EA
3799{
3800 struct drm_i915_gem_pin *args = data;
05394f39 3801 struct drm_i915_gem_object *obj;
76c1dec1 3802 int ret;
673a394b 3803
1d7cfea1
CW
3804 ret = i915_mutex_lock_interruptible(dev);
3805 if (ret)
3806 return ret;
673a394b 3807
05394f39 3808 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3809 if (&obj->base == NULL) {
1d7cfea1
CW
3810 ret = -ENOENT;
3811 goto unlock;
673a394b 3812 }
76c1dec1 3813
05394f39 3814 if (obj->pin_filp != file) {
79e53945
JB
3815 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3816 args->handle);
1d7cfea1
CW
3817 ret = -EINVAL;
3818 goto out;
79e53945 3819 }
05394f39
CW
3820 obj->user_pin_count--;
3821 if (obj->user_pin_count == 0) {
3822 obj->pin_filp = NULL;
79e53945
JB
3823 i915_gem_object_unpin(obj);
3824 }
673a394b 3825
1d7cfea1 3826out:
05394f39 3827 drm_gem_object_unreference(&obj->base);
1d7cfea1 3828unlock:
673a394b 3829 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3830 return ret;
673a394b
EA
3831}
3832
3833int
3834i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3835 struct drm_file *file)
673a394b
EA
3836{
3837 struct drm_i915_gem_busy *args = data;
05394f39 3838 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3839 int ret;
3840
76c1dec1 3841 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3842 if (ret)
76c1dec1 3843 return ret;
673a394b 3844
05394f39 3845 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3846 if (&obj->base == NULL) {
1d7cfea1
CW
3847 ret = -ENOENT;
3848 goto unlock;
673a394b 3849 }
d1b851fc 3850
0be555b6
CW
3851 /* Count all active objects as busy, even if they are currently not used
3852 * by the gpu. Users of this interface expect objects to eventually
3853 * become non-busy without any further actions, therefore emit any
3854 * necessary flushes here.
c4de0a5d 3855 */
30dfebf3 3856 ret = i915_gem_object_flush_active(obj);
0be555b6 3857
30dfebf3 3858 args->busy = obj->active;
e9808edd
CW
3859 if (obj->ring) {
3860 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3861 args->busy |= intel_ring_flag(obj->ring) << 16;
3862 }
673a394b 3863
05394f39 3864 drm_gem_object_unreference(&obj->base);
1d7cfea1 3865unlock:
673a394b 3866 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3867 return ret;
673a394b
EA
3868}
3869
3870int
3871i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3872 struct drm_file *file_priv)
3873{
0206e353 3874 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3875}
3876
3ef94daa
CW
3877int
3878i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3879 struct drm_file *file_priv)
3880{
3881 struct drm_i915_gem_madvise *args = data;
05394f39 3882 struct drm_i915_gem_object *obj;
76c1dec1 3883 int ret;
3ef94daa
CW
3884
3885 switch (args->madv) {
3886 case I915_MADV_DONTNEED:
3887 case I915_MADV_WILLNEED:
3888 break;
3889 default:
3890 return -EINVAL;
3891 }
3892
1d7cfea1
CW
3893 ret = i915_mutex_lock_interruptible(dev);
3894 if (ret)
3895 return ret;
3896
05394f39 3897 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3898 if (&obj->base == NULL) {
1d7cfea1
CW
3899 ret = -ENOENT;
3900 goto unlock;
3ef94daa 3901 }
3ef94daa 3902
05394f39 3903 if (obj->pin_count) {
1d7cfea1
CW
3904 ret = -EINVAL;
3905 goto out;
3ef94daa
CW
3906 }
3907
05394f39
CW
3908 if (obj->madv != __I915_MADV_PURGED)
3909 obj->madv = args->madv;
3ef94daa 3910
6c085a72
CW
3911 /* if the object is no longer attached, discard its backing storage */
3912 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3913 i915_gem_object_truncate(obj);
3914
05394f39 3915 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3916
1d7cfea1 3917out:
05394f39 3918 drm_gem_object_unreference(&obj->base);
1d7cfea1 3919unlock:
3ef94daa 3920 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3921 return ret;
3ef94daa
CW
3922}
3923
37e680a1
CW
3924void i915_gem_object_init(struct drm_i915_gem_object *obj,
3925 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3926{
0327d6ba 3927 INIT_LIST_HEAD(&obj->mm_list);
35c20a60 3928 INIT_LIST_HEAD(&obj->global_list);
0327d6ba
CW
3929 INIT_LIST_HEAD(&obj->ring_list);
3930 INIT_LIST_HEAD(&obj->exec_list);
2f633156 3931 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 3932
37e680a1
CW
3933 obj->ops = ops;
3934
0327d6ba
CW
3935 obj->fence_reg = I915_FENCE_REG_NONE;
3936 obj->madv = I915_MADV_WILLNEED;
3937 /* Avoid an unnecessary call to unbind on the first bind. */
3938 obj->map_and_fenceable = true;
3939
3940 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3941}
3942
37e680a1
CW
3943static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3944 .get_pages = i915_gem_object_get_pages_gtt,
3945 .put_pages = i915_gem_object_put_pages_gtt,
3946};
3947
05394f39
CW
3948struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3949 size_t size)
ac52bc56 3950{
c397b908 3951 struct drm_i915_gem_object *obj;
5949eac4 3952 struct address_space *mapping;
1a240d4d 3953 gfp_t mask;
ac52bc56 3954
42dcedd4 3955 obj = i915_gem_object_alloc(dev);
c397b908
DV
3956 if (obj == NULL)
3957 return NULL;
673a394b 3958
c397b908 3959 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 3960 i915_gem_object_free(obj);
c397b908
DV
3961 return NULL;
3962 }
673a394b 3963
bed1ea95
CW
3964 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3965 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3966 /* 965gm cannot relocate objects above 4GiB. */
3967 mask &= ~__GFP_HIGHMEM;
3968 mask |= __GFP_DMA32;
3969 }
3970
496ad9aa 3971 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 3972 mapping_set_gfp_mask(mapping, mask);
5949eac4 3973
37e680a1 3974 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3975
c397b908
DV
3976 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3977 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3978
3d29b842
ED
3979 if (HAS_LLC(dev)) {
3980 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3981 * cache) for about a 10% performance improvement
3982 * compared to uncached. Graphics requests other than
3983 * display scanout are coherent with the CPU in
3984 * accessing this cache. This means in this mode we
3985 * don't need to clflush on the CPU side, and on the
3986 * GPU side we only need to flush internal caches to
3987 * get data visible to the CPU.
3988 *
3989 * However, we maintain the display planes as UC, and so
3990 * need to rebind when first used as such.
3991 */
3992 obj->cache_level = I915_CACHE_LLC;
3993 } else
3994 obj->cache_level = I915_CACHE_NONE;
3995
d861e338
DV
3996 trace_i915_gem_object_create(obj);
3997
05394f39 3998 return obj;
c397b908
DV
3999}
4000
4001int i915_gem_init_object(struct drm_gem_object *obj)
4002{
4003 BUG();
de151cf6 4004
673a394b
EA
4005 return 0;
4006}
4007
1488fc08 4008void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4009{
1488fc08 4010 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4011 struct drm_device *dev = obj->base.dev;
be72615b 4012 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4013 struct i915_vma *vma, *next;
673a394b 4014
26e12f89
CW
4015 trace_i915_gem_object_destroy(obj);
4016
1488fc08
CW
4017 if (obj->phys_obj)
4018 i915_gem_detach_phys_object(dev, obj);
4019
4020 obj->pin_count = 0;
07fe0b12
BW
4021 /* NB: 0 or 1 elements */
4022 WARN_ON(!list_empty(&obj->vma_list) &&
4023 !list_is_singular(&obj->vma_list));
4024 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4025 int ret = i915_vma_unbind(vma);
4026 if (WARN_ON(ret == -ERESTARTSYS)) {
4027 bool was_interruptible;
1488fc08 4028
07fe0b12
BW
4029 was_interruptible = dev_priv->mm.interruptible;
4030 dev_priv->mm.interruptible = false;
1488fc08 4031
07fe0b12 4032 WARN_ON(i915_vma_unbind(vma));
1488fc08 4033
07fe0b12
BW
4034 dev_priv->mm.interruptible = was_interruptible;
4035 }
1488fc08
CW
4036 }
4037
1d64ae71
BW
4038 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4039 * before progressing. */
4040 if (obj->stolen)
4041 i915_gem_object_unpin_pages(obj);
4042
401c29f6
BW
4043 if (WARN_ON(obj->pages_pin_count))
4044 obj->pages_pin_count = 0;
37e680a1 4045 i915_gem_object_put_pages(obj);
d8cb5086 4046 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4047 i915_gem_object_release_stolen(obj);
de151cf6 4048
9da3da66
CW
4049 BUG_ON(obj->pages);
4050
2f745ad3
CW
4051 if (obj->base.import_attach)
4052 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4053
05394f39
CW
4054 drm_gem_object_release(&obj->base);
4055 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4056
05394f39 4057 kfree(obj->bit_17);
42dcedd4 4058 i915_gem_object_free(obj);
673a394b
EA
4059}
4060
2f633156
BW
4061struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4062 struct i915_address_space *vm)
4063{
4064 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4065 if (vma == NULL)
4066 return ERR_PTR(-ENOMEM);
4067
4068 INIT_LIST_HEAD(&vma->vma_link);
4069 vma->vm = vm;
4070 vma->obj = obj;
4071
4072 return vma;
4073}
4074
4075void i915_gem_vma_destroy(struct i915_vma *vma)
4076{
4077 WARN_ON(vma->node.allocated);
4078 kfree(vma);
4079}
4080
29105ccc
CW
4081int
4082i915_gem_idle(struct drm_device *dev)
4083{
4084 drm_i915_private_t *dev_priv = dev->dev_private;
4085 int ret;
28dfe52a 4086
db1b76ca 4087 if (dev_priv->ums.mm_suspended) {
29105ccc
CW
4088 mutex_unlock(&dev->struct_mutex);
4089 return 0;
28dfe52a
EA
4090 }
4091
b2da9fe5 4092 ret = i915_gpu_idle(dev);
6dbe2772
KP
4093 if (ret) {
4094 mutex_unlock(&dev->struct_mutex);
673a394b 4095 return ret;
6dbe2772 4096 }
b2da9fe5 4097 i915_gem_retire_requests(dev);
673a394b 4098
29105ccc 4099 /* Under UMS, be paranoid and evict. */
a39d7efc 4100 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4101 i915_gem_evict_everything(dev);
29105ccc 4102
99584db3 4103 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc
CW
4104
4105 i915_kernel_lost_context(dev);
6dbe2772 4106 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4107
29105ccc
CW
4108 /* Cancel the retire work handler, which should be idle now. */
4109 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4110
673a394b
EA
4111 return 0;
4112}
4113
b9524a1e
BW
4114void i915_gem_l3_remap(struct drm_device *dev)
4115{
4116 drm_i915_private_t *dev_priv = dev->dev_private;
4117 u32 misccpctl;
4118 int i;
4119
eb32e458 4120 if (!HAS_L3_GPU_CACHE(dev))
b9524a1e
BW
4121 return;
4122
a4da4fa4 4123 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
4124 return;
4125
4126 misccpctl = I915_READ(GEN7_MISCCPCTL);
4127 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4128 POSTING_READ(GEN7_MISCCPCTL);
4129
4130 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4131 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 4132 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
4133 DRM_DEBUG("0x%x was already programmed to %x\n",
4134 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 4135 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 4136 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 4137 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
4138 }
4139
4140 /* Make sure all the writes land before disabling dop clock gating */
4141 POSTING_READ(GEN7_L3LOG_BASE);
4142
4143 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4144}
4145
f691e2f4
DV
4146void i915_gem_init_swizzling(struct drm_device *dev)
4147{
4148 drm_i915_private_t *dev_priv = dev->dev_private;
4149
11782b02 4150 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4151 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4152 return;
4153
4154 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4155 DISP_TILE_SURFACE_SWIZZLING);
4156
11782b02
DV
4157 if (IS_GEN5(dev))
4158 return;
4159
f691e2f4
DV
4160 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4161 if (IS_GEN6(dev))
6b26c86d 4162 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4163 else if (IS_GEN7(dev))
6b26c86d 4164 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
4165 else
4166 BUG();
f691e2f4 4167}
e21af88d 4168
67b1b571
CW
4169static bool
4170intel_enable_blt(struct drm_device *dev)
4171{
4172 if (!HAS_BLT(dev))
4173 return false;
4174
4175 /* The blitter was dysfunctional on early prototypes */
4176 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4177 DRM_INFO("BLT not supported on this pre-production hardware;"
4178 " graphics performance will be degraded.\n");
4179 return false;
4180 }
4181
4182 return true;
4183}
4184
4fc7c971 4185static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4186{
4fc7c971 4187 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4188 int ret;
68f95ba9 4189
5c1143bb 4190 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4191 if (ret)
b6913e4b 4192 return ret;
68f95ba9
CW
4193
4194 if (HAS_BSD(dev)) {
5c1143bb 4195 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4196 if (ret)
4197 goto cleanup_render_ring;
d1b851fc 4198 }
68f95ba9 4199
67b1b571 4200 if (intel_enable_blt(dev)) {
549f7365
CW
4201 ret = intel_init_blt_ring_buffer(dev);
4202 if (ret)
4203 goto cleanup_bsd_ring;
4204 }
4205
9a8a2213
BW
4206 if (HAS_VEBOX(dev)) {
4207 ret = intel_init_vebox_ring_buffer(dev);
4208 if (ret)
4209 goto cleanup_blt_ring;
4210 }
4211
4212
99433931 4213 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4214 if (ret)
9a8a2213 4215 goto cleanup_vebox_ring;
4fc7c971
BW
4216
4217 return 0;
4218
9a8a2213
BW
4219cleanup_vebox_ring:
4220 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4221cleanup_blt_ring:
4222 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4223cleanup_bsd_ring:
4224 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4225cleanup_render_ring:
4226 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4227
4228 return ret;
4229}
4230
4231int
4232i915_gem_init_hw(struct drm_device *dev)
4233{
4234 drm_i915_private_t *dev_priv = dev->dev_private;
4235 int ret;
4236
4237 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4238 return -EIO;
4239
59124506 4240 if (dev_priv->ellc_size)
05e21cc4 4241 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4242
88a2b2a3
BW
4243 if (HAS_PCH_NOP(dev)) {
4244 u32 temp = I915_READ(GEN7_MSG_CTL);
4245 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4246 I915_WRITE(GEN7_MSG_CTL, temp);
4247 }
4248
4fc7c971
BW
4249 i915_gem_l3_remap(dev);
4250
4251 i915_gem_init_swizzling(dev);
4252
4253 ret = i915_gem_init_rings(dev);
99433931
MK
4254 if (ret)
4255 return ret;
4256
254f965c
BW
4257 /*
4258 * XXX: There was some w/a described somewhere suggesting loading
4259 * contexts before PPGTT.
4260 */
4261 i915_gem_context_init(dev);
b7c36d25
BW
4262 if (dev_priv->mm.aliasing_ppgtt) {
4263 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4264 if (ret) {
4265 i915_gem_cleanup_aliasing_ppgtt(dev);
4266 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4267 }
4268 }
e21af88d 4269
68f95ba9 4270 return 0;
8187a2b7
ZN
4271}
4272
1070a42b
CW
4273int i915_gem_init(struct drm_device *dev)
4274{
4275 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4276 int ret;
4277
1070a42b 4278 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4279
4280 if (IS_VALLEYVIEW(dev)) {
4281 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4282 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4283 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4284 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4285 }
4286
d7e5008f 4287 i915_gem_init_global_gtt(dev);
d62b4892 4288
1070a42b
CW
4289 ret = i915_gem_init_hw(dev);
4290 mutex_unlock(&dev->struct_mutex);
4291 if (ret) {
4292 i915_gem_cleanup_aliasing_ppgtt(dev);
4293 return ret;
4294 }
4295
53ca26ca
DV
4296 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4297 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4298 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4299 return 0;
4300}
4301
8187a2b7
ZN
4302void
4303i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4304{
4305 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4306 struct intel_ring_buffer *ring;
1ec14ad3 4307 int i;
8187a2b7 4308
b4519513
CW
4309 for_each_ring(ring, dev_priv, i)
4310 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4311}
4312
673a394b
EA
4313int
4314i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4315 struct drm_file *file_priv)
4316{
db1b76ca 4317 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4318 int ret;
673a394b 4319
79e53945
JB
4320 if (drm_core_check_feature(dev, DRIVER_MODESET))
4321 return 0;
4322
1f83fee0 4323 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4324 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4325 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4326 }
4327
673a394b 4328 mutex_lock(&dev->struct_mutex);
db1b76ca 4329 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4330
f691e2f4 4331 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4332 if (ret != 0) {
4333 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4334 return ret;
d816f6ac 4335 }
9bb2d6f9 4336
5cef07e1 4337 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4338 mutex_unlock(&dev->struct_mutex);
dbb19d30 4339
5f35308b
CW
4340 ret = drm_irq_install(dev);
4341 if (ret)
4342 goto cleanup_ringbuffer;
dbb19d30 4343
673a394b 4344 return 0;
5f35308b
CW
4345
4346cleanup_ringbuffer:
4347 mutex_lock(&dev->struct_mutex);
4348 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4349 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4350 mutex_unlock(&dev->struct_mutex);
4351
4352 return ret;
673a394b
EA
4353}
4354
4355int
4356i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4357 struct drm_file *file_priv)
4358{
db1b76ca
DV
4359 struct drm_i915_private *dev_priv = dev->dev_private;
4360 int ret;
4361
79e53945
JB
4362 if (drm_core_check_feature(dev, DRIVER_MODESET))
4363 return 0;
4364
dbb19d30 4365 drm_irq_uninstall(dev);
db1b76ca
DV
4366
4367 mutex_lock(&dev->struct_mutex);
4368 ret = i915_gem_idle(dev);
4369
4370 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4371 * We need to replace this with a semaphore, or something.
4372 * And not confound ums.mm_suspended!
4373 */
4374 if (ret != 0)
4375 dev_priv->ums.mm_suspended = 1;
4376 mutex_unlock(&dev->struct_mutex);
4377
4378 return ret;
673a394b
EA
4379}
4380
4381void
4382i915_gem_lastclose(struct drm_device *dev)
4383{
4384 int ret;
673a394b 4385
e806b495
EA
4386 if (drm_core_check_feature(dev, DRIVER_MODESET))
4387 return;
4388
db1b76ca 4389 mutex_lock(&dev->struct_mutex);
6dbe2772
KP
4390 ret = i915_gem_idle(dev);
4391 if (ret)
4392 DRM_ERROR("failed to idle hardware: %d\n", ret);
db1b76ca 4393 mutex_unlock(&dev->struct_mutex);
673a394b
EA
4394}
4395
64193406
CW
4396static void
4397init_ring_lists(struct intel_ring_buffer *ring)
4398{
4399 INIT_LIST_HEAD(&ring->active_list);
4400 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4401}
4402
fc8c067e
BW
4403static void i915_init_vm(struct drm_i915_private *dev_priv,
4404 struct i915_address_space *vm)
4405{
4406 vm->dev = dev_priv->dev;
4407 INIT_LIST_HEAD(&vm->active_list);
4408 INIT_LIST_HEAD(&vm->inactive_list);
4409 INIT_LIST_HEAD(&vm->global_link);
4410 list_add(&vm->global_link, &dev_priv->vm_list);
4411}
4412
673a394b
EA
4413void
4414i915_gem_load(struct drm_device *dev)
4415{
4416 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4417 int i;
4418
4419 dev_priv->slab =
4420 kmem_cache_create("i915_gem_object",
4421 sizeof(struct drm_i915_gem_object), 0,
4422 SLAB_HWCACHE_ALIGN,
4423 NULL);
673a394b 4424
fc8c067e
BW
4425 INIT_LIST_HEAD(&dev_priv->vm_list);
4426 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4427
6c085a72
CW
4428 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4429 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4430 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4431 for (i = 0; i < I915_NUM_RINGS; i++)
4432 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4433 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4434 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4435 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4436 i915_gem_retire_work_handler);
1f83fee0 4437 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4438
94400120
DA
4439 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4440 if (IS_GEN3(dev)) {
50743298
DV
4441 I915_WRITE(MI_ARB_STATE,
4442 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4443 }
4444
72bfa19c
CW
4445 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4446
de151cf6 4447 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4448 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4449 dev_priv->fence_reg_start = 3;
de151cf6 4450
42b5aeab
VS
4451 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4452 dev_priv->num_fence_regs = 32;
4453 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4454 dev_priv->num_fence_regs = 16;
4455 else
4456 dev_priv->num_fence_regs = 8;
4457
b5aa8a0f 4458 /* Initialize fence registers to zero */
19b2dbde
CW
4459 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4460 i915_gem_restore_fences(dev);
10ed13e4 4461
673a394b 4462 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4463 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4464
ce453d81
CW
4465 dev_priv->mm.interruptible = true;
4466
17250b71
CW
4467 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4468 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4469 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4470}
71acb5eb
DA
4471
4472/*
4473 * Create a physically contiguous memory object for this object
4474 * e.g. for cursor + overlay regs
4475 */
995b6762
CW
4476static int i915_gem_init_phys_object(struct drm_device *dev,
4477 int id, int size, int align)
71acb5eb
DA
4478{
4479 drm_i915_private_t *dev_priv = dev->dev_private;
4480 struct drm_i915_gem_phys_object *phys_obj;
4481 int ret;
4482
4483 if (dev_priv->mm.phys_objs[id - 1] || !size)
4484 return 0;
4485
9a298b2a 4486 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4487 if (!phys_obj)
4488 return -ENOMEM;
4489
4490 phys_obj->id = id;
4491
6eeefaf3 4492 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4493 if (!phys_obj->handle) {
4494 ret = -ENOMEM;
4495 goto kfree_obj;
4496 }
4497#ifdef CONFIG_X86
4498 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4499#endif
4500
4501 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4502
4503 return 0;
4504kfree_obj:
9a298b2a 4505 kfree(phys_obj);
71acb5eb
DA
4506 return ret;
4507}
4508
995b6762 4509static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4510{
4511 drm_i915_private_t *dev_priv = dev->dev_private;
4512 struct drm_i915_gem_phys_object *phys_obj;
4513
4514 if (!dev_priv->mm.phys_objs[id - 1])
4515 return;
4516
4517 phys_obj = dev_priv->mm.phys_objs[id - 1];
4518 if (phys_obj->cur_obj) {
4519 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4520 }
4521
4522#ifdef CONFIG_X86
4523 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4524#endif
4525 drm_pci_free(dev, phys_obj->handle);
4526 kfree(phys_obj);
4527 dev_priv->mm.phys_objs[id - 1] = NULL;
4528}
4529
4530void i915_gem_free_all_phys_object(struct drm_device *dev)
4531{
4532 int i;
4533
260883c8 4534 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4535 i915_gem_free_phys_object(dev, i);
4536}
4537
4538void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4539 struct drm_i915_gem_object *obj)
71acb5eb 4540{
496ad9aa 4541 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4542 char *vaddr;
71acb5eb 4543 int i;
71acb5eb
DA
4544 int page_count;
4545
05394f39 4546 if (!obj->phys_obj)
71acb5eb 4547 return;
05394f39 4548 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4549
05394f39 4550 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4551 for (i = 0; i < page_count; i++) {
5949eac4 4552 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4553 if (!IS_ERR(page)) {
4554 char *dst = kmap_atomic(page);
4555 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4556 kunmap_atomic(dst);
4557
4558 drm_clflush_pages(&page, 1);
4559
4560 set_page_dirty(page);
4561 mark_page_accessed(page);
4562 page_cache_release(page);
4563 }
71acb5eb 4564 }
e76e9aeb 4565 i915_gem_chipset_flush(dev);
d78b47b9 4566
05394f39
CW
4567 obj->phys_obj->cur_obj = NULL;
4568 obj->phys_obj = NULL;
71acb5eb
DA
4569}
4570
4571int
4572i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4573 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4574 int id,
4575 int align)
71acb5eb 4576{
496ad9aa 4577 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4578 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4579 int ret = 0;
4580 int page_count;
4581 int i;
4582
4583 if (id > I915_MAX_PHYS_OBJECT)
4584 return -EINVAL;
4585
05394f39
CW
4586 if (obj->phys_obj) {
4587 if (obj->phys_obj->id == id)
71acb5eb
DA
4588 return 0;
4589 i915_gem_detach_phys_object(dev, obj);
4590 }
4591
71acb5eb
DA
4592 /* create a new object */
4593 if (!dev_priv->mm.phys_objs[id - 1]) {
4594 ret = i915_gem_init_phys_object(dev, id,
05394f39 4595 obj->base.size, align);
71acb5eb 4596 if (ret) {
05394f39
CW
4597 DRM_ERROR("failed to init phys object %d size: %zu\n",
4598 id, obj->base.size);
e5281ccd 4599 return ret;
71acb5eb
DA
4600 }
4601 }
4602
4603 /* bind to the object */
05394f39
CW
4604 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4605 obj->phys_obj->cur_obj = obj;
71acb5eb 4606
05394f39 4607 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4608
4609 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4610 struct page *page;
4611 char *dst, *src;
4612
5949eac4 4613 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4614 if (IS_ERR(page))
4615 return PTR_ERR(page);
71acb5eb 4616
ff75b9bc 4617 src = kmap_atomic(page);
05394f39 4618 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4619 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4620 kunmap_atomic(src);
71acb5eb 4621
e5281ccd
CW
4622 mark_page_accessed(page);
4623 page_cache_release(page);
4624 }
d78b47b9 4625
71acb5eb 4626 return 0;
71acb5eb
DA
4627}
4628
4629static int
05394f39
CW
4630i915_gem_phys_pwrite(struct drm_device *dev,
4631 struct drm_i915_gem_object *obj,
71acb5eb
DA
4632 struct drm_i915_gem_pwrite *args,
4633 struct drm_file *file_priv)
4634{
05394f39 4635 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4636 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4637
b47b30cc
CW
4638 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4639 unsigned long unwritten;
4640
4641 /* The physical object once assigned is fixed for the lifetime
4642 * of the obj, so we can safely drop the lock and continue
4643 * to access vaddr.
4644 */
4645 mutex_unlock(&dev->struct_mutex);
4646 unwritten = copy_from_user(vaddr, user_data, args->size);
4647 mutex_lock(&dev->struct_mutex);
4648 if (unwritten)
4649 return -EFAULT;
4650 }
71acb5eb 4651
e76e9aeb 4652 i915_gem_chipset_flush(dev);
71acb5eb
DA
4653 return 0;
4654}
b962442e 4655
f787a5f5 4656void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4657{
f787a5f5 4658 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4659
4660 /* Clean up our request list when the client is going away, so that
4661 * later retire_requests won't dereference our soon-to-be-gone
4662 * file_priv.
4663 */
1c25595f 4664 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4665 while (!list_empty(&file_priv->mm.request_list)) {
4666 struct drm_i915_gem_request *request;
4667
4668 request = list_first_entry(&file_priv->mm.request_list,
4669 struct drm_i915_gem_request,
4670 client_list);
4671 list_del(&request->client_list);
4672 request->file_priv = NULL;
4673 }
1c25595f 4674 spin_unlock(&file_priv->mm.lock);
b962442e 4675}
31169714 4676
5774506f
CW
4677static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4678{
4679 if (!mutex_is_locked(mutex))
4680 return false;
4681
4682#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4683 return mutex->owner == task;
4684#else
4685 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4686 return false;
4687#endif
4688}
4689
31169714 4690static int
1495f230 4691i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4692{
17250b71
CW
4693 struct drm_i915_private *dev_priv =
4694 container_of(shrinker,
4695 struct drm_i915_private,
4696 mm.inactive_shrinker);
4697 struct drm_device *dev = dev_priv->dev;
6c085a72 4698 struct drm_i915_gem_object *obj;
1495f230 4699 int nr_to_scan = sc->nr_to_scan;
5774506f 4700 bool unlock = true;
17250b71
CW
4701 int cnt;
4702
5774506f
CW
4703 if (!mutex_trylock(&dev->struct_mutex)) {
4704 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4705 return 0;
4706
677feac2
DV
4707 if (dev_priv->mm.shrinker_no_lock_stealing)
4708 return 0;
4709
5774506f
CW
4710 unlock = false;
4711 }
31169714 4712
6c085a72
CW
4713 if (nr_to_scan) {
4714 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
93927ca5
DV
4715 if (nr_to_scan > 0)
4716 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4717 false);
6c085a72
CW
4718 if (nr_to_scan > 0)
4719 i915_gem_shrink_all(dev_priv);
31169714
CW
4720 }
4721
17250b71 4722 cnt = 0;
35c20a60 4723 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178
CW
4724 if (obj->pages_pin_count == 0)
4725 cnt += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4726
4727 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4728 if (obj->active)
4729 continue;
4730
a5570178 4731 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4732 cnt += obj->base.size >> PAGE_SHIFT;
fcb4a578 4733 }
17250b71 4734
5774506f
CW
4735 if (unlock)
4736 mutex_unlock(&dev->struct_mutex);
6c085a72 4737 return cnt;
31169714 4738}
a70a3148
BW
4739
4740/* All the new VM stuff */
4741unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4742 struct i915_address_space *vm)
4743{
4744 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4745 struct i915_vma *vma;
4746
4747 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4748 vm = &dev_priv->gtt.base;
4749
4750 BUG_ON(list_empty(&o->vma_list));
4751 list_for_each_entry(vma, &o->vma_list, vma_link) {
4752 if (vma->vm == vm)
4753 return vma->node.start;
4754
4755 }
4756 return -1;
4757}
4758
4759bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4760 struct i915_address_space *vm)
4761{
4762 struct i915_vma *vma;
4763
4764 list_for_each_entry(vma, &o->vma_list, vma_link)
4765 if (vma->vm == vm)
4766 return true;
4767
4768 return false;
4769}
4770
4771bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4772{
4773 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4774 struct i915_address_space *vm;
4775
4776 list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4777 if (i915_gem_obj_bound(o, vm))
4778 return true;
4779
4780 return false;
4781}
4782
4783unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4784 struct i915_address_space *vm)
4785{
4786 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4787 struct i915_vma *vma;
4788
4789 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4790 vm = &dev_priv->gtt.base;
4791
4792 BUG_ON(list_empty(&o->vma_list));
4793
4794 list_for_each_entry(vma, &o->vma_list, vma_link)
4795 if (vma->vm == vm)
4796 return vma->node.size;
4797
4798 return 0;
4799}
4800
4801struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4802 struct i915_address_space *vm)
4803{
4804 struct i915_vma *vma;
4805 list_for_each_entry(vma, &obj->vma_list, vma_link)
4806 if (vma->vm == vm)
4807 return vma;
4808
4809 return NULL;
4810}