]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/gpu/drm/i915/i915_gem.c
fix WARN() for PPC
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32#include <linux/swap.h>
33
34static int
35i915_gem_object_set_domain(struct drm_gem_object *obj,
36 uint32_t read_domains,
37 uint32_t write_domain);
38static int
39i915_gem_object_set_domain_range(struct drm_gem_object *obj,
40 uint64_t offset,
41 uint64_t size,
42 uint32_t read_domains,
43 uint32_t write_domain);
44static int
45i915_gem_set_domain(struct drm_gem_object *obj,
46 struct drm_file *file_priv,
47 uint32_t read_domains,
48 uint32_t write_domain);
49static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
50static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
52
6dbe2772
KP
53static void
54i915_gem_cleanup_ringbuffer(struct drm_device *dev);
55
673a394b
EA
56int
57i915_gem_init_ioctl(struct drm_device *dev, void *data,
58 struct drm_file *file_priv)
59{
60 drm_i915_private_t *dev_priv = dev->dev_private;
61 struct drm_i915_gem_init *args = data;
62
63 mutex_lock(&dev->struct_mutex);
64
65 if (args->gtt_start >= args->gtt_end ||
66 (args->gtt_start & (PAGE_SIZE - 1)) != 0 ||
67 (args->gtt_end & (PAGE_SIZE - 1)) != 0) {
68 mutex_unlock(&dev->struct_mutex);
69 return -EINVAL;
70 }
71
72 drm_mm_init(&dev_priv->mm.gtt_space, args->gtt_start,
73 args->gtt_end - args->gtt_start);
74
75 dev->gtt_total = (uint32_t) (args->gtt_end - args->gtt_start);
76
77 mutex_unlock(&dev->struct_mutex);
78
79 return 0;
80}
81
82
83/**
84 * Creates a new mm object and returns a handle to it.
85 */
86int
87i915_gem_create_ioctl(struct drm_device *dev, void *data,
88 struct drm_file *file_priv)
89{
90 struct drm_i915_gem_create *args = data;
91 struct drm_gem_object *obj;
92 int handle, ret;
93
94 args->size = roundup(args->size, PAGE_SIZE);
95
96 /* Allocate the new object */
97 obj = drm_gem_object_alloc(dev, args->size);
98 if (obj == NULL)
99 return -ENOMEM;
100
101 ret = drm_gem_handle_create(file_priv, obj, &handle);
102 mutex_lock(&dev->struct_mutex);
103 drm_gem_object_handle_unreference(obj);
104 mutex_unlock(&dev->struct_mutex);
105
106 if (ret)
107 return ret;
108
109 args->handle = handle;
110
111 return 0;
112}
113
114/**
115 * Reads data from the object referenced by handle.
116 *
117 * On error, the contents of *data are undefined.
118 */
119int
120i915_gem_pread_ioctl(struct drm_device *dev, void *data,
121 struct drm_file *file_priv)
122{
123 struct drm_i915_gem_pread *args = data;
124 struct drm_gem_object *obj;
125 struct drm_i915_gem_object *obj_priv;
126 ssize_t read;
127 loff_t offset;
128 int ret;
129
130 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
131 if (obj == NULL)
132 return -EBADF;
133 obj_priv = obj->driver_private;
134
135 /* Bounds check source.
136 *
137 * XXX: This could use review for overflow issues...
138 */
139 if (args->offset > obj->size || args->size > obj->size ||
140 args->offset + args->size > obj->size) {
141 drm_gem_object_unreference(obj);
142 return -EINVAL;
143 }
144
145 mutex_lock(&dev->struct_mutex);
146
147 ret = i915_gem_object_set_domain_range(obj, args->offset, args->size,
148 I915_GEM_DOMAIN_CPU, 0);
149 if (ret != 0) {
150 drm_gem_object_unreference(obj);
151 mutex_unlock(&dev->struct_mutex);
e7d22bc3 152 return ret;
673a394b
EA
153 }
154
155 offset = args->offset;
156
157 read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
158 args->size, &offset);
159 if (read != args->size) {
160 drm_gem_object_unreference(obj);
161 mutex_unlock(&dev->struct_mutex);
162 if (read < 0)
163 return read;
164 else
165 return -EINVAL;
166 }
167
168 drm_gem_object_unreference(obj);
169 mutex_unlock(&dev->struct_mutex);
170
171 return 0;
172}
173
9b7530cc
LT
174/*
175 * Try to write quickly with an atomic kmap. Return true on success.
176 *
177 * If this fails (which includes a partial write), we'll redo the whole
178 * thing with the slow version.
179 *
180 * This is a workaround for the low performance of iounmap (approximate
181 * 10% cpu cost on normal 3D workloads). kmap_atomic on HIGHMEM kernels
182 * happens to let us map card memory without taking IPIs. When the vmap
183 * rework lands we should be able to dump this hack.
184 */
185static inline int fast_user_write(unsigned long pfn, char __user *user_data, int l)
186{
187#ifdef CONFIG_HIGHMEM
188 unsigned long unwritten;
189 char *vaddr_atomic;
190
191 vaddr_atomic = kmap_atomic_pfn(pfn, KM_USER0);
192#if WATCH_PWRITE
193 DRM_INFO("pwrite i %d o %d l %d pfn %ld vaddr %p\n",
194 i, o, l, pfn, vaddr_atomic);
195#endif
196 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + o, user_data, l);
197 kunmap_atomic(vaddr_atomic, KM_USER0);
198 return !unwritten;
199#else
200 return 0;
201#endif
202}
203
673a394b
EA
204static int
205i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
206 struct drm_i915_gem_pwrite *args,
207 struct drm_file *file_priv)
208{
209 struct drm_i915_gem_object *obj_priv = obj->driver_private;
210 ssize_t remain;
211 loff_t offset;
212 char __user *user_data;
673a394b 213 int ret = 0;
673a394b
EA
214
215 user_data = (char __user *) (uintptr_t) args->data_ptr;
216 remain = args->size;
217 if (!access_ok(VERIFY_READ, user_data, remain))
218 return -EFAULT;
219
220
221 mutex_lock(&dev->struct_mutex);
222 ret = i915_gem_object_pin(obj, 0);
223 if (ret) {
224 mutex_unlock(&dev->struct_mutex);
225 return ret;
226 }
227 ret = i915_gem_set_domain(obj, file_priv,
228 I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
229 if (ret)
230 goto fail;
231
232 obj_priv = obj->driver_private;
233 offset = obj_priv->gtt_offset + args->offset;
234 obj_priv->dirty = 1;
235
236 while (remain > 0) {
9b7530cc
LT
237 unsigned long pfn;
238 int i, o, l;
239
673a394b
EA
240 /* Operation in this page
241 *
242 * i = page number
243 * o = offset within page
244 * l = bytes to copy
245 */
246 i = offset >> PAGE_SHIFT;
247 o = offset & (PAGE_SIZE-1);
248 l = remain;
249 if ((o + l) > PAGE_SIZE)
250 l = PAGE_SIZE - o;
251
252 pfn = (dev->agp->base >> PAGE_SHIFT) + i;
253
9b7530cc
LT
254 if (!fast_user_write(pfn, user_data, l)) {
255 unsigned long unwritten;
256 char __iomem *vaddr;
673a394b 257
bd88ee4c 258 vaddr = ioremap_wc(pfn << PAGE_SHIFT, PAGE_SIZE);
673a394b
EA
259#if WATCH_PWRITE
260 DRM_INFO("pwrite slow i %d o %d l %d "
261 "pfn %ld vaddr %p\n",
262 i, o, l, pfn, vaddr);
263#endif
264 if (vaddr == NULL) {
265 ret = -EFAULT;
266 goto fail;
267 }
268 unwritten = __copy_from_user(vaddr + o, user_data, l);
269#if WATCH_PWRITE
270 DRM_INFO("unwritten %ld\n", unwritten);
271#endif
272 iounmap(vaddr);
273 if (unwritten) {
274 ret = -EFAULT;
275 goto fail;
276 }
277 }
278
279 remain -= l;
280 user_data += l;
281 offset += l;
282 }
283#if WATCH_PWRITE && 1
284 i915_gem_clflush_object(obj);
285 i915_gem_dump_object(obj, args->offset + args->size, __func__, ~0);
286 i915_gem_clflush_object(obj);
287#endif
288
289fail:
290 i915_gem_object_unpin(obj);
291 mutex_unlock(&dev->struct_mutex);
292
293 return ret;
294}
295
3043c60c 296static int
673a394b
EA
297i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
298 struct drm_i915_gem_pwrite *args,
299 struct drm_file *file_priv)
300{
301 int ret;
302 loff_t offset;
303 ssize_t written;
304
305 mutex_lock(&dev->struct_mutex);
306
307 ret = i915_gem_set_domain(obj, file_priv,
308 I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU);
309 if (ret) {
310 mutex_unlock(&dev->struct_mutex);
311 return ret;
312 }
313
314 offset = args->offset;
315
316 written = vfs_write(obj->filp,
317 (char __user *)(uintptr_t) args->data_ptr,
318 args->size, &offset);
319 if (written != args->size) {
320 mutex_unlock(&dev->struct_mutex);
321 if (written < 0)
322 return written;
323 else
324 return -EINVAL;
325 }
326
327 mutex_unlock(&dev->struct_mutex);
328
329 return 0;
330}
331
332/**
333 * Writes data to the object referenced by handle.
334 *
335 * On error, the contents of the buffer that were to be modified are undefined.
336 */
337int
338i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
339 struct drm_file *file_priv)
340{
341 struct drm_i915_gem_pwrite *args = data;
342 struct drm_gem_object *obj;
343 struct drm_i915_gem_object *obj_priv;
344 int ret = 0;
345
346 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
347 if (obj == NULL)
348 return -EBADF;
349 obj_priv = obj->driver_private;
350
351 /* Bounds check destination.
352 *
353 * XXX: This could use review for overflow issues...
354 */
355 if (args->offset > obj->size || args->size > obj->size ||
356 args->offset + args->size > obj->size) {
357 drm_gem_object_unreference(obj);
358 return -EINVAL;
359 }
360
361 /* We can only do the GTT pwrite on untiled buffers, as otherwise
362 * it would end up going through the fenced access, and we'll get
363 * different detiling behavior between reading and writing.
364 * pread/pwrite currently are reading and writing from the CPU
365 * perspective, requiring manual detiling by the client.
366 */
367 if (obj_priv->tiling_mode == I915_TILING_NONE &&
368 dev->gtt_total != 0)
369 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
370 else
371 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
372
373#if WATCH_PWRITE
374 if (ret)
375 DRM_INFO("pwrite failed %d\n", ret);
376#endif
377
378 drm_gem_object_unreference(obj);
379
380 return ret;
381}
382
383/**
384 * Called when user space prepares to use an object
385 */
386int
387i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
388 struct drm_file *file_priv)
389{
390 struct drm_i915_gem_set_domain *args = data;
391 struct drm_gem_object *obj;
392 int ret;
393
394 if (!(dev->driver->driver_features & DRIVER_GEM))
395 return -ENODEV;
396
397 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
398 if (obj == NULL)
399 return -EBADF;
400
401 mutex_lock(&dev->struct_mutex);
402#if WATCH_BUF
403 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
404 obj, obj->size, args->read_domains, args->write_domain);
405#endif
406 ret = i915_gem_set_domain(obj, file_priv,
407 args->read_domains, args->write_domain);
408 drm_gem_object_unreference(obj);
409 mutex_unlock(&dev->struct_mutex);
410 return ret;
411}
412
413/**
414 * Called when user space has done writes to this buffer
415 */
416int
417i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
418 struct drm_file *file_priv)
419{
420 struct drm_i915_gem_sw_finish *args = data;
421 struct drm_gem_object *obj;
422 struct drm_i915_gem_object *obj_priv;
423 int ret = 0;
424
425 if (!(dev->driver->driver_features & DRIVER_GEM))
426 return -ENODEV;
427
428 mutex_lock(&dev->struct_mutex);
429 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
430 if (obj == NULL) {
431 mutex_unlock(&dev->struct_mutex);
432 return -EBADF;
433 }
434
435#if WATCH_BUF
436 DRM_INFO("%s: sw_finish %d (%p %d)\n",
437 __func__, args->handle, obj, obj->size);
438#endif
439 obj_priv = obj->driver_private;
440
441 /* Pinned buffers may be scanout, so flush the cache */
442 if ((obj->write_domain & I915_GEM_DOMAIN_CPU) && obj_priv->pin_count) {
443 i915_gem_clflush_object(obj);
444 drm_agp_chipset_flush(dev);
445 }
446 drm_gem_object_unreference(obj);
447 mutex_unlock(&dev->struct_mutex);
448 return ret;
449}
450
451/**
452 * Maps the contents of an object, returning the address it is mapped
453 * into.
454 *
455 * While the mapping holds a reference on the contents of the object, it doesn't
456 * imply a ref on the object itself.
457 */
458int
459i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
460 struct drm_file *file_priv)
461{
462 struct drm_i915_gem_mmap *args = data;
463 struct drm_gem_object *obj;
464 loff_t offset;
465 unsigned long addr;
466
467 if (!(dev->driver->driver_features & DRIVER_GEM))
468 return -ENODEV;
469
470 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
471 if (obj == NULL)
472 return -EBADF;
473
474 offset = args->offset;
475
476 down_write(&current->mm->mmap_sem);
477 addr = do_mmap(obj->filp, 0, args->size,
478 PROT_READ | PROT_WRITE, MAP_SHARED,
479 args->offset);
480 up_write(&current->mm->mmap_sem);
481 mutex_lock(&dev->struct_mutex);
482 drm_gem_object_unreference(obj);
483 mutex_unlock(&dev->struct_mutex);
484 if (IS_ERR((void *)addr))
485 return addr;
486
487 args->addr_ptr = (uint64_t) addr;
488
489 return 0;
490}
491
492static void
493i915_gem_object_free_page_list(struct drm_gem_object *obj)
494{
495 struct drm_i915_gem_object *obj_priv = obj->driver_private;
496 int page_count = obj->size / PAGE_SIZE;
497 int i;
498
499 if (obj_priv->page_list == NULL)
500 return;
501
502
503 for (i = 0; i < page_count; i++)
504 if (obj_priv->page_list[i] != NULL) {
505 if (obj_priv->dirty)
506 set_page_dirty(obj_priv->page_list[i]);
507 mark_page_accessed(obj_priv->page_list[i]);
508 page_cache_release(obj_priv->page_list[i]);
509 }
510 obj_priv->dirty = 0;
511
512 drm_free(obj_priv->page_list,
513 page_count * sizeof(struct page *),
514 DRM_MEM_DRIVER);
515 obj_priv->page_list = NULL;
516}
517
518static void
519i915_gem_object_move_to_active(struct drm_gem_object *obj)
520{
521 struct drm_device *dev = obj->dev;
522 drm_i915_private_t *dev_priv = dev->dev_private;
523 struct drm_i915_gem_object *obj_priv = obj->driver_private;
524
525 /* Add a reference if we're newly entering the active list. */
526 if (!obj_priv->active) {
527 drm_gem_object_reference(obj);
528 obj_priv->active = 1;
529 }
530 /* Move from whatever list we were on to the tail of execution. */
531 list_move_tail(&obj_priv->list,
532 &dev_priv->mm.active_list);
533}
534
535
536static void
537i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
538{
539 struct drm_device *dev = obj->dev;
540 drm_i915_private_t *dev_priv = dev->dev_private;
541 struct drm_i915_gem_object *obj_priv = obj->driver_private;
542
543 i915_verify_inactive(dev, __FILE__, __LINE__);
544 if (obj_priv->pin_count != 0)
545 list_del_init(&obj_priv->list);
546 else
547 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
548
549 if (obj_priv->active) {
550 obj_priv->active = 0;
551 drm_gem_object_unreference(obj);
552 }
553 i915_verify_inactive(dev, __FILE__, __LINE__);
554}
555
556/**
557 * Creates a new sequence number, emitting a write of it to the status page
558 * plus an interrupt, which will trigger i915_user_interrupt_handler.
559 *
560 * Must be called with struct_lock held.
561 *
562 * Returned sequence numbers are nonzero on success.
563 */
564static uint32_t
565i915_add_request(struct drm_device *dev, uint32_t flush_domains)
566{
567 drm_i915_private_t *dev_priv = dev->dev_private;
568 struct drm_i915_gem_request *request;
569 uint32_t seqno;
570 int was_empty;
571 RING_LOCALS;
572
573 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
574 if (request == NULL)
575 return 0;
576
577 /* Grab the seqno we're going to make this request be, and bump the
578 * next (skipping 0 so it can be the reserved no-seqno value).
579 */
580 seqno = dev_priv->mm.next_gem_seqno;
581 dev_priv->mm.next_gem_seqno++;
582 if (dev_priv->mm.next_gem_seqno == 0)
583 dev_priv->mm.next_gem_seqno++;
584
585 BEGIN_LP_RING(4);
586 OUT_RING(MI_STORE_DWORD_INDEX);
587 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
588 OUT_RING(seqno);
589
590 OUT_RING(MI_USER_INTERRUPT);
591 ADVANCE_LP_RING();
592
593 DRM_DEBUG("%d\n", seqno);
594
595 request->seqno = seqno;
596 request->emitted_jiffies = jiffies;
597 request->flush_domains = flush_domains;
598 was_empty = list_empty(&dev_priv->mm.request_list);
599 list_add_tail(&request->list, &dev_priv->mm.request_list);
600
6dbe2772 601 if (was_empty && !dev_priv->mm.suspended)
673a394b
EA
602 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
603 return seqno;
604}
605
606/**
607 * Command execution barrier
608 *
609 * Ensures that all commands in the ring are finished
610 * before signalling the CPU
611 */
3043c60c 612static uint32_t
673a394b
EA
613i915_retire_commands(struct drm_device *dev)
614{
615 drm_i915_private_t *dev_priv = dev->dev_private;
616 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
617 uint32_t flush_domains = 0;
618 RING_LOCALS;
619
620 /* The sampler always gets flushed on i965 (sigh) */
621 if (IS_I965G(dev))
622 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
623 BEGIN_LP_RING(2);
624 OUT_RING(cmd);
625 OUT_RING(0); /* noop */
626 ADVANCE_LP_RING();
627 return flush_domains;
628}
629
630/**
631 * Moves buffers associated only with the given active seqno from the active
632 * to inactive list, potentially freeing them.
633 */
634static void
635i915_gem_retire_request(struct drm_device *dev,
636 struct drm_i915_gem_request *request)
637{
638 drm_i915_private_t *dev_priv = dev->dev_private;
639
640 /* Move any buffers on the active list that are no longer referenced
641 * by the ringbuffer to the flushing/inactive lists as appropriate.
642 */
643 while (!list_empty(&dev_priv->mm.active_list)) {
644 struct drm_gem_object *obj;
645 struct drm_i915_gem_object *obj_priv;
646
647 obj_priv = list_first_entry(&dev_priv->mm.active_list,
648 struct drm_i915_gem_object,
649 list);
650 obj = obj_priv->obj;
651
652 /* If the seqno being retired doesn't match the oldest in the
653 * list, then the oldest in the list must still be newer than
654 * this seqno.
655 */
656 if (obj_priv->last_rendering_seqno != request->seqno)
657 return;
658#if WATCH_LRU
659 DRM_INFO("%s: retire %d moves to inactive list %p\n",
660 __func__, request->seqno, obj);
661#endif
662
663 if (obj->write_domain != 0) {
664 list_move_tail(&obj_priv->list,
665 &dev_priv->mm.flushing_list);
666 } else {
667 i915_gem_object_move_to_inactive(obj);
668 }
669 }
670
671 if (request->flush_domains != 0) {
672 struct drm_i915_gem_object *obj_priv, *next;
673
674 /* Clear the write domain and activity from any buffers
675 * that are just waiting for a flush matching the one retired.
676 */
677 list_for_each_entry_safe(obj_priv, next,
678 &dev_priv->mm.flushing_list, list) {
679 struct drm_gem_object *obj = obj_priv->obj;
680
681 if (obj->write_domain & request->flush_domains) {
682 obj->write_domain = 0;
683 i915_gem_object_move_to_inactive(obj);
684 }
685 }
686
687 }
688}
689
690/**
691 * Returns true if seq1 is later than seq2.
692 */
693static int
694i915_seqno_passed(uint32_t seq1, uint32_t seq2)
695{
696 return (int32_t)(seq1 - seq2) >= 0;
697}
698
699uint32_t
700i915_get_gem_seqno(struct drm_device *dev)
701{
702 drm_i915_private_t *dev_priv = dev->dev_private;
703
704 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
705}
706
707/**
708 * This function clears the request list as sequence numbers are passed.
709 */
710void
711i915_gem_retire_requests(struct drm_device *dev)
712{
713 drm_i915_private_t *dev_priv = dev->dev_private;
714 uint32_t seqno;
715
716 seqno = i915_get_gem_seqno(dev);
717
718 while (!list_empty(&dev_priv->mm.request_list)) {
719 struct drm_i915_gem_request *request;
720 uint32_t retiring_seqno;
721
722 request = list_first_entry(&dev_priv->mm.request_list,
723 struct drm_i915_gem_request,
724 list);
725 retiring_seqno = request->seqno;
726
727 if (i915_seqno_passed(seqno, retiring_seqno) ||
728 dev_priv->mm.wedged) {
729 i915_gem_retire_request(dev, request);
730
731 list_del(&request->list);
732 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
733 } else
734 break;
735 }
736}
737
738void
739i915_gem_retire_work_handler(struct work_struct *work)
740{
741 drm_i915_private_t *dev_priv;
742 struct drm_device *dev;
743
744 dev_priv = container_of(work, drm_i915_private_t,
745 mm.retire_work.work);
746 dev = dev_priv->dev;
747
748 mutex_lock(&dev->struct_mutex);
749 i915_gem_retire_requests(dev);
6dbe2772
KP
750 if (!dev_priv->mm.suspended &&
751 !list_empty(&dev_priv->mm.request_list))
673a394b
EA
752 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
753 mutex_unlock(&dev->struct_mutex);
754}
755
756/**
757 * Waits for a sequence number to be signaled, and cleans up the
758 * request and object lists appropriately for that event.
759 */
3043c60c 760static int
673a394b
EA
761i915_wait_request(struct drm_device *dev, uint32_t seqno)
762{
763 drm_i915_private_t *dev_priv = dev->dev_private;
764 int ret = 0;
765
766 BUG_ON(seqno == 0);
767
768 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
769 dev_priv->mm.waiting_gem_seqno = seqno;
770 i915_user_irq_get(dev);
771 ret = wait_event_interruptible(dev_priv->irq_queue,
772 i915_seqno_passed(i915_get_gem_seqno(dev),
773 seqno) ||
774 dev_priv->mm.wedged);
775 i915_user_irq_put(dev);
776 dev_priv->mm.waiting_gem_seqno = 0;
777 }
778 if (dev_priv->mm.wedged)
779 ret = -EIO;
780
781 if (ret && ret != -ERESTARTSYS)
782 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
783 __func__, ret, seqno, i915_get_gem_seqno(dev));
784
785 /* Directly dispatch request retiring. While we have the work queue
786 * to handle this, the waiter on a request often wants an associated
787 * buffer to have made it to the inactive list, and we would need
788 * a separate wait queue to handle that.
789 */
790 if (ret == 0)
791 i915_gem_retire_requests(dev);
792
793 return ret;
794}
795
796static void
797i915_gem_flush(struct drm_device *dev,
798 uint32_t invalidate_domains,
799 uint32_t flush_domains)
800{
801 drm_i915_private_t *dev_priv = dev->dev_private;
802 uint32_t cmd;
803 RING_LOCALS;
804
805#if WATCH_EXEC
806 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
807 invalidate_domains, flush_domains);
808#endif
809
810 if (flush_domains & I915_GEM_DOMAIN_CPU)
811 drm_agp_chipset_flush(dev);
812
813 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
814 I915_GEM_DOMAIN_GTT)) {
815 /*
816 * read/write caches:
817 *
818 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
819 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
820 * also flushed at 2d versus 3d pipeline switches.
821 *
822 * read-only caches:
823 *
824 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
825 * MI_READ_FLUSH is set, and is always flushed on 965.
826 *
827 * I915_GEM_DOMAIN_COMMAND may not exist?
828 *
829 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
830 * invalidated when MI_EXE_FLUSH is set.
831 *
832 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
833 * invalidated with every MI_FLUSH.
834 *
835 * TLBs:
836 *
837 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
838 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
839 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
840 * are flushed at any MI_FLUSH.
841 */
842
843 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
844 if ((invalidate_domains|flush_domains) &
845 I915_GEM_DOMAIN_RENDER)
846 cmd &= ~MI_NO_WRITE_FLUSH;
847 if (!IS_I965G(dev)) {
848 /*
849 * On the 965, the sampler cache always gets flushed
850 * and this bit is reserved.
851 */
852 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
853 cmd |= MI_READ_FLUSH;
854 }
855 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
856 cmd |= MI_EXE_FLUSH;
857
858#if WATCH_EXEC
859 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
860#endif
861 BEGIN_LP_RING(2);
862 OUT_RING(cmd);
863 OUT_RING(0); /* noop */
864 ADVANCE_LP_RING();
865 }
866}
867
868/**
869 * Ensures that all rendering to the object has completed and the object is
870 * safe to unbind from the GTT or access from the CPU.
871 */
872static int
873i915_gem_object_wait_rendering(struct drm_gem_object *obj)
874{
875 struct drm_device *dev = obj->dev;
876 struct drm_i915_gem_object *obj_priv = obj->driver_private;
877 int ret;
878
879 /* If there are writes queued to the buffer, flush and
880 * create a new seqno to wait for.
881 */
882 if (obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT)) {
883 uint32_t write_domain = obj->write_domain;
884#if WATCH_BUF
885 DRM_INFO("%s: flushing object %p from write domain %08x\n",
886 __func__, obj, write_domain);
887#endif
888 i915_gem_flush(dev, 0, write_domain);
889
890 i915_gem_object_move_to_active(obj);
891 obj_priv->last_rendering_seqno = i915_add_request(dev,
892 write_domain);
893 BUG_ON(obj_priv->last_rendering_seqno == 0);
894#if WATCH_LRU
895 DRM_INFO("%s: flush moves to exec list %p\n", __func__, obj);
896#endif
897 }
898
899 /* If there is rendering queued on the buffer being evicted, wait for
900 * it.
901 */
902 if (obj_priv->active) {
903#if WATCH_BUF
904 DRM_INFO("%s: object %p wait for seqno %08x\n",
905 __func__, obj, obj_priv->last_rendering_seqno);
906#endif
907 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
908 if (ret != 0)
909 return ret;
910 }
911
912 return 0;
913}
914
915/**
916 * Unbinds an object from the GTT aperture.
917 */
918static int
919i915_gem_object_unbind(struct drm_gem_object *obj)
920{
921 struct drm_device *dev = obj->dev;
922 struct drm_i915_gem_object *obj_priv = obj->driver_private;
923 int ret = 0;
924
925#if WATCH_BUF
926 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
927 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
928#endif
929 if (obj_priv->gtt_space == NULL)
930 return 0;
931
932 if (obj_priv->pin_count != 0) {
933 DRM_ERROR("Attempting to unbind pinned buffer\n");
934 return -EINVAL;
935 }
936
937 /* Wait for any rendering to complete
938 */
939 ret = i915_gem_object_wait_rendering(obj);
940 if (ret) {
941 DRM_ERROR("wait_rendering failed: %d\n", ret);
942 return ret;
943 }
944
945 /* Move the object to the CPU domain to ensure that
946 * any possible CPU writes while it's not in the GTT
947 * are flushed when we go to remap it. This will
948 * also ensure that all pending GPU writes are finished
949 * before we unbind.
950 */
951 ret = i915_gem_object_set_domain(obj, I915_GEM_DOMAIN_CPU,
952 I915_GEM_DOMAIN_CPU);
953 if (ret) {
954 DRM_ERROR("set_domain failed: %d\n", ret);
955 return ret;
956 }
957
958 if (obj_priv->agp_mem != NULL) {
959 drm_unbind_agp(obj_priv->agp_mem);
960 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
961 obj_priv->agp_mem = NULL;
962 }
963
964 BUG_ON(obj_priv->active);
965
966 i915_gem_object_free_page_list(obj);
967
968 if (obj_priv->gtt_space) {
969 atomic_dec(&dev->gtt_count);
970 atomic_sub(obj->size, &dev->gtt_memory);
971
972 drm_mm_put_block(obj_priv->gtt_space);
973 obj_priv->gtt_space = NULL;
974 }
975
976 /* Remove ourselves from the LRU list if present. */
977 if (!list_empty(&obj_priv->list))
978 list_del_init(&obj_priv->list);
979
980 return 0;
981}
982
983static int
984i915_gem_evict_something(struct drm_device *dev)
985{
986 drm_i915_private_t *dev_priv = dev->dev_private;
987 struct drm_gem_object *obj;
988 struct drm_i915_gem_object *obj_priv;
989 int ret = 0;
990
991 for (;;) {
992 /* If there's an inactive buffer available now, grab it
993 * and be done.
994 */
995 if (!list_empty(&dev_priv->mm.inactive_list)) {
996 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
997 struct drm_i915_gem_object,
998 list);
999 obj = obj_priv->obj;
1000 BUG_ON(obj_priv->pin_count != 0);
1001#if WATCH_LRU
1002 DRM_INFO("%s: evicting %p\n", __func__, obj);
1003#endif
1004 BUG_ON(obj_priv->active);
1005
1006 /* Wait on the rendering and unbind the buffer. */
1007 ret = i915_gem_object_unbind(obj);
1008 break;
1009 }
1010
1011 /* If we didn't get anything, but the ring is still processing
1012 * things, wait for one of those things to finish and hopefully
1013 * leave us a buffer to evict.
1014 */
1015 if (!list_empty(&dev_priv->mm.request_list)) {
1016 struct drm_i915_gem_request *request;
1017
1018 request = list_first_entry(&dev_priv->mm.request_list,
1019 struct drm_i915_gem_request,
1020 list);
1021
1022 ret = i915_wait_request(dev, request->seqno);
1023 if (ret)
1024 break;
1025
1026 /* if waiting caused an object to become inactive,
1027 * then loop around and wait for it. Otherwise, we
1028 * assume that waiting freed and unbound something,
1029 * so there should now be some space in the GTT
1030 */
1031 if (!list_empty(&dev_priv->mm.inactive_list))
1032 continue;
1033 break;
1034 }
1035
1036 /* If we didn't have anything on the request list but there
1037 * are buffers awaiting a flush, emit one and try again.
1038 * When we wait on it, those buffers waiting for that flush
1039 * will get moved to inactive.
1040 */
1041 if (!list_empty(&dev_priv->mm.flushing_list)) {
1042 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1043 struct drm_i915_gem_object,
1044 list);
1045 obj = obj_priv->obj;
1046
1047 i915_gem_flush(dev,
1048 obj->write_domain,
1049 obj->write_domain);
1050 i915_add_request(dev, obj->write_domain);
1051
1052 obj = NULL;
1053 continue;
1054 }
1055
1056 DRM_ERROR("inactive empty %d request empty %d "
1057 "flushing empty %d\n",
1058 list_empty(&dev_priv->mm.inactive_list),
1059 list_empty(&dev_priv->mm.request_list),
1060 list_empty(&dev_priv->mm.flushing_list));
1061 /* If we didn't do any of the above, there's nothing to be done
1062 * and we just can't fit it in.
1063 */
1064 return -ENOMEM;
1065 }
1066 return ret;
1067}
1068
1069static int
1070i915_gem_object_get_page_list(struct drm_gem_object *obj)
1071{
1072 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1073 int page_count, i;
1074 struct address_space *mapping;
1075 struct inode *inode;
1076 struct page *page;
1077 int ret;
1078
1079 if (obj_priv->page_list)
1080 return 0;
1081
1082 /* Get the list of pages out of our struct file. They'll be pinned
1083 * at this point until we release them.
1084 */
1085 page_count = obj->size / PAGE_SIZE;
1086 BUG_ON(obj_priv->page_list != NULL);
1087 obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1088 DRM_MEM_DRIVER);
1089 if (obj_priv->page_list == NULL) {
1090 DRM_ERROR("Faled to allocate page list\n");
1091 return -ENOMEM;
1092 }
1093
1094 inode = obj->filp->f_path.dentry->d_inode;
1095 mapping = inode->i_mapping;
1096 for (i = 0; i < page_count; i++) {
1097 page = read_mapping_page(mapping, i, NULL);
1098 if (IS_ERR(page)) {
1099 ret = PTR_ERR(page);
1100 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1101 i915_gem_object_free_page_list(obj);
1102 return ret;
1103 }
1104 obj_priv->page_list[i] = page;
1105 }
1106 return 0;
1107}
1108
1109/**
1110 * Finds free space in the GTT aperture and binds the object there.
1111 */
1112static int
1113i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1114{
1115 struct drm_device *dev = obj->dev;
1116 drm_i915_private_t *dev_priv = dev->dev_private;
1117 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1118 struct drm_mm_node *free_space;
1119 int page_count, ret;
1120
1121 if (alignment == 0)
1122 alignment = PAGE_SIZE;
1123 if (alignment & (PAGE_SIZE - 1)) {
1124 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1125 return -EINVAL;
1126 }
1127
1128 search_free:
1129 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1130 obj->size, alignment, 0);
1131 if (free_space != NULL) {
1132 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1133 alignment);
1134 if (obj_priv->gtt_space != NULL) {
1135 obj_priv->gtt_space->private = obj;
1136 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1137 }
1138 }
1139 if (obj_priv->gtt_space == NULL) {
1140 /* If the gtt is empty and we're still having trouble
1141 * fitting our object in, we're out of memory.
1142 */
1143#if WATCH_LRU
1144 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1145#endif
1146 if (list_empty(&dev_priv->mm.inactive_list) &&
1147 list_empty(&dev_priv->mm.flushing_list) &&
1148 list_empty(&dev_priv->mm.active_list)) {
1149 DRM_ERROR("GTT full, but LRU list empty\n");
1150 return -ENOMEM;
1151 }
1152
1153 ret = i915_gem_evict_something(dev);
1154 if (ret != 0) {
1155 DRM_ERROR("Failed to evict a buffer %d\n", ret);
1156 return ret;
1157 }
1158 goto search_free;
1159 }
1160
1161#if WATCH_BUF
1162 DRM_INFO("Binding object of size %d at 0x%08x\n",
1163 obj->size, obj_priv->gtt_offset);
1164#endif
1165 ret = i915_gem_object_get_page_list(obj);
1166 if (ret) {
1167 drm_mm_put_block(obj_priv->gtt_space);
1168 obj_priv->gtt_space = NULL;
1169 return ret;
1170 }
1171
1172 page_count = obj->size / PAGE_SIZE;
1173 /* Create an AGP memory structure pointing at our pages, and bind it
1174 * into the GTT.
1175 */
1176 obj_priv->agp_mem = drm_agp_bind_pages(dev,
1177 obj_priv->page_list,
1178 page_count,
ba1eb1d8
KP
1179 obj_priv->gtt_offset,
1180 obj_priv->agp_type);
673a394b
EA
1181 if (obj_priv->agp_mem == NULL) {
1182 i915_gem_object_free_page_list(obj);
1183 drm_mm_put_block(obj_priv->gtt_space);
1184 obj_priv->gtt_space = NULL;
1185 return -ENOMEM;
1186 }
1187 atomic_inc(&dev->gtt_count);
1188 atomic_add(obj->size, &dev->gtt_memory);
1189
1190 /* Assert that the object is not currently in any GPU domain. As it
1191 * wasn't in the GTT, there shouldn't be any way it could have been in
1192 * a GPU cache
1193 */
1194 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1195 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1196
1197 return 0;
1198}
1199
1200void
1201i915_gem_clflush_object(struct drm_gem_object *obj)
1202{
1203 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1204
1205 /* If we don't have a page list set up, then we're not pinned
1206 * to GPU, and we can ignore the cache flush because it'll happen
1207 * again at bind time.
1208 */
1209 if (obj_priv->page_list == NULL)
1210 return;
1211
1212 drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1213}
1214
1215/*
1216 * Set the next domain for the specified object. This
1217 * may not actually perform the necessary flushing/invaliding though,
1218 * as that may want to be batched with other set_domain operations
1219 *
1220 * This is (we hope) the only really tricky part of gem. The goal
1221 * is fairly simple -- track which caches hold bits of the object
1222 * and make sure they remain coherent. A few concrete examples may
1223 * help to explain how it works. For shorthand, we use the notation
1224 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1225 * a pair of read and write domain masks.
1226 *
1227 * Case 1: the batch buffer
1228 *
1229 * 1. Allocated
1230 * 2. Written by CPU
1231 * 3. Mapped to GTT
1232 * 4. Read by GPU
1233 * 5. Unmapped from GTT
1234 * 6. Freed
1235 *
1236 * Let's take these a step at a time
1237 *
1238 * 1. Allocated
1239 * Pages allocated from the kernel may still have
1240 * cache contents, so we set them to (CPU, CPU) always.
1241 * 2. Written by CPU (using pwrite)
1242 * The pwrite function calls set_domain (CPU, CPU) and
1243 * this function does nothing (as nothing changes)
1244 * 3. Mapped by GTT
1245 * This function asserts that the object is not
1246 * currently in any GPU-based read or write domains
1247 * 4. Read by GPU
1248 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
1249 * As write_domain is zero, this function adds in the
1250 * current read domains (CPU+COMMAND, 0).
1251 * flush_domains is set to CPU.
1252 * invalidate_domains is set to COMMAND
1253 * clflush is run to get data out of the CPU caches
1254 * then i915_dev_set_domain calls i915_gem_flush to
1255 * emit an MI_FLUSH and drm_agp_chipset_flush
1256 * 5. Unmapped from GTT
1257 * i915_gem_object_unbind calls set_domain (CPU, CPU)
1258 * flush_domains and invalidate_domains end up both zero
1259 * so no flushing/invalidating happens
1260 * 6. Freed
1261 * yay, done
1262 *
1263 * Case 2: The shared render buffer
1264 *
1265 * 1. Allocated
1266 * 2. Mapped to GTT
1267 * 3. Read/written by GPU
1268 * 4. set_domain to (CPU,CPU)
1269 * 5. Read/written by CPU
1270 * 6. Read/written by GPU
1271 *
1272 * 1. Allocated
1273 * Same as last example, (CPU, CPU)
1274 * 2. Mapped to GTT
1275 * Nothing changes (assertions find that it is not in the GPU)
1276 * 3. Read/written by GPU
1277 * execbuffer calls set_domain (RENDER, RENDER)
1278 * flush_domains gets CPU
1279 * invalidate_domains gets GPU
1280 * clflush (obj)
1281 * MI_FLUSH and drm_agp_chipset_flush
1282 * 4. set_domain (CPU, CPU)
1283 * flush_domains gets GPU
1284 * invalidate_domains gets CPU
1285 * wait_rendering (obj) to make sure all drawing is complete.
1286 * This will include an MI_FLUSH to get the data from GPU
1287 * to memory
1288 * clflush (obj) to invalidate the CPU cache
1289 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1290 * 5. Read/written by CPU
1291 * cache lines are loaded and dirtied
1292 * 6. Read written by GPU
1293 * Same as last GPU access
1294 *
1295 * Case 3: The constant buffer
1296 *
1297 * 1. Allocated
1298 * 2. Written by CPU
1299 * 3. Read by GPU
1300 * 4. Updated (written) by CPU again
1301 * 5. Read by GPU
1302 *
1303 * 1. Allocated
1304 * (CPU, CPU)
1305 * 2. Written by CPU
1306 * (CPU, CPU)
1307 * 3. Read by GPU
1308 * (CPU+RENDER, 0)
1309 * flush_domains = CPU
1310 * invalidate_domains = RENDER
1311 * clflush (obj)
1312 * MI_FLUSH
1313 * drm_agp_chipset_flush
1314 * 4. Updated (written) by CPU again
1315 * (CPU, CPU)
1316 * flush_domains = 0 (no previous write domain)
1317 * invalidate_domains = 0 (no new read domains)
1318 * 5. Read by GPU
1319 * (CPU+RENDER, 0)
1320 * flush_domains = CPU
1321 * invalidate_domains = RENDER
1322 * clflush (obj)
1323 * MI_FLUSH
1324 * drm_agp_chipset_flush
1325 */
1326static int
1327i915_gem_object_set_domain(struct drm_gem_object *obj,
1328 uint32_t read_domains,
1329 uint32_t write_domain)
1330{
1331 struct drm_device *dev = obj->dev;
1332 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1333 uint32_t invalidate_domains = 0;
1334 uint32_t flush_domains = 0;
1335 int ret;
1336
1337#if WATCH_BUF
1338 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
1339 __func__, obj,
1340 obj->read_domains, read_domains,
1341 obj->write_domain, write_domain);
1342#endif
1343 /*
1344 * If the object isn't moving to a new write domain,
1345 * let the object stay in multiple read domains
1346 */
1347 if (write_domain == 0)
1348 read_domains |= obj->read_domains;
1349 else
1350 obj_priv->dirty = 1;
1351
1352 /*
1353 * Flush the current write domain if
1354 * the new read domains don't match. Invalidate
1355 * any read domains which differ from the old
1356 * write domain
1357 */
1358 if (obj->write_domain && obj->write_domain != read_domains) {
1359 flush_domains |= obj->write_domain;
1360 invalidate_domains |= read_domains & ~obj->write_domain;
1361 }
1362 /*
1363 * Invalidate any read caches which may have
1364 * stale data. That is, any new read domains.
1365 */
1366 invalidate_domains |= read_domains & ~obj->read_domains;
1367 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
1368#if WATCH_BUF
1369 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
1370 __func__, flush_domains, invalidate_domains);
1371#endif
1372 /*
1373 * If we're invaliding the CPU cache and flushing a GPU cache,
1374 * then pause for rendering so that the GPU caches will be
1375 * flushed before the cpu cache is invalidated
1376 */
1377 if ((invalidate_domains & I915_GEM_DOMAIN_CPU) &&
1378 (flush_domains & ~(I915_GEM_DOMAIN_CPU |
1379 I915_GEM_DOMAIN_GTT))) {
1380 ret = i915_gem_object_wait_rendering(obj);
1381 if (ret)
1382 return ret;
1383 }
1384 i915_gem_clflush_object(obj);
1385 }
1386
1387 if ((write_domain | flush_domains) != 0)
1388 obj->write_domain = write_domain;
1389
1390 /* If we're invalidating the CPU domain, clear the per-page CPU
1391 * domain list as well.
1392 */
1393 if (obj_priv->page_cpu_valid != NULL &&
1394 (write_domain != 0 ||
1395 read_domains & I915_GEM_DOMAIN_CPU)) {
1396 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
1397 DRM_MEM_DRIVER);
1398 obj_priv->page_cpu_valid = NULL;
1399 }
1400 obj->read_domains = read_domains;
1401
1402 dev->invalidate_domains |= invalidate_domains;
1403 dev->flush_domains |= flush_domains;
1404#if WATCH_BUF
1405 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
1406 __func__,
1407 obj->read_domains, obj->write_domain,
1408 dev->invalidate_domains, dev->flush_domains);
1409#endif
1410 return 0;
1411}
1412
1413/**
1414 * Set the read/write domain on a range of the object.
1415 *
1416 * Currently only implemented for CPU reads, otherwise drops to normal
1417 * i915_gem_object_set_domain().
1418 */
1419static int
1420i915_gem_object_set_domain_range(struct drm_gem_object *obj,
1421 uint64_t offset,
1422 uint64_t size,
1423 uint32_t read_domains,
1424 uint32_t write_domain)
1425{
1426 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1427 int ret, i;
1428
1429 if (obj->read_domains & I915_GEM_DOMAIN_CPU)
1430 return 0;
1431
1432 if (read_domains != I915_GEM_DOMAIN_CPU ||
1433 write_domain != 0)
1434 return i915_gem_object_set_domain(obj,
1435 read_domains, write_domain);
1436
1437 /* Wait on any GPU rendering to the object to be flushed. */
1438 if (obj->write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT)) {
1439 ret = i915_gem_object_wait_rendering(obj);
1440 if (ret)
1441 return ret;
1442 }
1443
1444 if (obj_priv->page_cpu_valid == NULL) {
1445 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
1446 DRM_MEM_DRIVER);
1447 }
1448
1449 /* Flush the cache on any pages that are still invalid from the CPU's
1450 * perspective.
1451 */
1452 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE; i++) {
1453 if (obj_priv->page_cpu_valid[i])
1454 continue;
1455
1456 drm_clflush_pages(obj_priv->page_list + i, 1);
1457
1458 obj_priv->page_cpu_valid[i] = 1;
1459 }
1460
1461 return 0;
1462}
1463
1464/**
1465 * Once all of the objects have been set in the proper domain,
1466 * perform the necessary flush and invalidate operations.
1467 *
1468 * Returns the write domains flushed, for use in flush tracking.
1469 */
1470static uint32_t
1471i915_gem_dev_set_domain(struct drm_device *dev)
1472{
1473 uint32_t flush_domains = dev->flush_domains;
1474
1475 /*
1476 * Now that all the buffers are synced to the proper domains,
1477 * flush and invalidate the collected domains
1478 */
1479 if (dev->invalidate_domains | dev->flush_domains) {
1480#if WATCH_EXEC
1481 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
1482 __func__,
1483 dev->invalidate_domains,
1484 dev->flush_domains);
1485#endif
1486 i915_gem_flush(dev,
1487 dev->invalidate_domains,
1488 dev->flush_domains);
1489 dev->invalidate_domains = 0;
1490 dev->flush_domains = 0;
1491 }
1492
1493 return flush_domains;
1494}
1495
1496/**
1497 * Pin an object to the GTT and evaluate the relocations landing in it.
1498 */
1499static int
1500i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
1501 struct drm_file *file_priv,
1502 struct drm_i915_gem_exec_object *entry)
1503{
1504 struct drm_device *dev = obj->dev;
1505 struct drm_i915_gem_relocation_entry reloc;
1506 struct drm_i915_gem_relocation_entry __user *relocs;
1507 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1508 int i, ret;
1509 uint32_t last_reloc_offset = -1;
3043c60c 1510 void __iomem *reloc_page = NULL;
673a394b
EA
1511
1512 /* Choose the GTT offset for our buffer and put it there. */
1513 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
1514 if (ret)
1515 return ret;
1516
1517 entry->offset = obj_priv->gtt_offset;
1518
1519 relocs = (struct drm_i915_gem_relocation_entry __user *)
1520 (uintptr_t) entry->relocs_ptr;
1521 /* Apply the relocations, using the GTT aperture to avoid cache
1522 * flushing requirements.
1523 */
1524 for (i = 0; i < entry->relocation_count; i++) {
1525 struct drm_gem_object *target_obj;
1526 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
1527 uint32_t reloc_val, reloc_offset;
1528 uint32_t __iomem *reloc_entry;
673a394b
EA
1529
1530 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
1531 if (ret != 0) {
1532 i915_gem_object_unpin(obj);
1533 return ret;
1534 }
1535
1536 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
1537 reloc.target_handle);
1538 if (target_obj == NULL) {
1539 i915_gem_object_unpin(obj);
1540 return -EBADF;
1541 }
1542 target_obj_priv = target_obj->driver_private;
1543
1544 /* The target buffer should have appeared before us in the
1545 * exec_object list, so it should have a GTT space bound by now.
1546 */
1547 if (target_obj_priv->gtt_space == NULL) {
1548 DRM_ERROR("No GTT space found for object %d\n",
1549 reloc.target_handle);
1550 drm_gem_object_unreference(target_obj);
1551 i915_gem_object_unpin(obj);
1552 return -EINVAL;
1553 }
1554
1555 if (reloc.offset > obj->size - 4) {
1556 DRM_ERROR("Relocation beyond object bounds: "
1557 "obj %p target %d offset %d size %d.\n",
1558 obj, reloc.target_handle,
1559 (int) reloc.offset, (int) obj->size);
1560 drm_gem_object_unreference(target_obj);
1561 i915_gem_object_unpin(obj);
1562 return -EINVAL;
1563 }
1564 if (reloc.offset & 3) {
1565 DRM_ERROR("Relocation not 4-byte aligned: "
1566 "obj %p target %d offset %d.\n",
1567 obj, reloc.target_handle,
1568 (int) reloc.offset);
1569 drm_gem_object_unreference(target_obj);
1570 i915_gem_object_unpin(obj);
1571 return -EINVAL;
1572 }
1573
1574 if (reloc.write_domain && target_obj->pending_write_domain &&
1575 reloc.write_domain != target_obj->pending_write_domain) {
1576 DRM_ERROR("Write domain conflict: "
1577 "obj %p target %d offset %d "
1578 "new %08x old %08x\n",
1579 obj, reloc.target_handle,
1580 (int) reloc.offset,
1581 reloc.write_domain,
1582 target_obj->pending_write_domain);
1583 drm_gem_object_unreference(target_obj);
1584 i915_gem_object_unpin(obj);
1585 return -EINVAL;
1586 }
1587
1588#if WATCH_RELOC
1589 DRM_INFO("%s: obj %p offset %08x target %d "
1590 "read %08x write %08x gtt %08x "
1591 "presumed %08x delta %08x\n",
1592 __func__,
1593 obj,
1594 (int) reloc.offset,
1595 (int) reloc.target_handle,
1596 (int) reloc.read_domains,
1597 (int) reloc.write_domain,
1598 (int) target_obj_priv->gtt_offset,
1599 (int) reloc.presumed_offset,
1600 reloc.delta);
1601#endif
1602
1603 target_obj->pending_read_domains |= reloc.read_domains;
1604 target_obj->pending_write_domain |= reloc.write_domain;
1605
1606 /* If the relocation already has the right value in it, no
1607 * more work needs to be done.
1608 */
1609 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
1610 drm_gem_object_unreference(target_obj);
1611 continue;
1612 }
1613
1614 /* Now that we're going to actually write some data in,
1615 * make sure that any rendering using this buffer's contents
1616 * is completed.
1617 */
1618 i915_gem_object_wait_rendering(obj);
1619
1620 /* As we're writing through the gtt, flush
1621 * any CPU writes before we write the relocations
1622 */
1623 if (obj->write_domain & I915_GEM_DOMAIN_CPU) {
1624 i915_gem_clflush_object(obj);
1625 drm_agp_chipset_flush(dev);
1626 obj->write_domain = 0;
1627 }
1628
1629 /* Map the page containing the relocation we're going to
1630 * perform.
1631 */
1632 reloc_offset = obj_priv->gtt_offset + reloc.offset;
1633 if (reloc_page == NULL ||
1634 (last_reloc_offset & ~(PAGE_SIZE - 1)) !=
1635 (reloc_offset & ~(PAGE_SIZE - 1))) {
1636 if (reloc_page != NULL)
1637 iounmap(reloc_page);
1638
bd88ee4c
EA
1639 reloc_page = ioremap_wc(dev->agp->base +
1640 (reloc_offset &
1641 ~(PAGE_SIZE - 1)),
1642 PAGE_SIZE);
673a394b
EA
1643 last_reloc_offset = reloc_offset;
1644 if (reloc_page == NULL) {
1645 drm_gem_object_unreference(target_obj);
1646 i915_gem_object_unpin(obj);
1647 return -ENOMEM;
1648 }
1649 }
1650
3043c60c 1651 reloc_entry = (uint32_t __iomem *)(reloc_page +
673a394b
EA
1652 (reloc_offset & (PAGE_SIZE - 1)));
1653 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
1654
1655#if WATCH_BUF
1656 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
1657 obj, (unsigned int) reloc.offset,
1658 readl(reloc_entry), reloc_val);
1659#endif
1660 writel(reloc_val, reloc_entry);
1661
1662 /* Write the updated presumed offset for this entry back out
1663 * to the user.
1664 */
1665 reloc.presumed_offset = target_obj_priv->gtt_offset;
1666 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
1667 if (ret != 0) {
1668 drm_gem_object_unreference(target_obj);
1669 i915_gem_object_unpin(obj);
1670 return ret;
1671 }
1672
1673 drm_gem_object_unreference(target_obj);
1674 }
1675
1676 if (reloc_page != NULL)
1677 iounmap(reloc_page);
1678
1679#if WATCH_BUF
1680 if (0)
1681 i915_gem_dump_object(obj, 128, __func__, ~0);
1682#endif
1683 return 0;
1684}
1685
1686/** Dispatch a batchbuffer to the ring
1687 */
1688static int
1689i915_dispatch_gem_execbuffer(struct drm_device *dev,
1690 struct drm_i915_gem_execbuffer *exec,
1691 uint64_t exec_offset)
1692{
1693 drm_i915_private_t *dev_priv = dev->dev_private;
1694 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
1695 (uintptr_t) exec->cliprects_ptr;
1696 int nbox = exec->num_cliprects;
1697 int i = 0, count;
1698 uint32_t exec_start, exec_len;
1699 RING_LOCALS;
1700
1701 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
1702 exec_len = (uint32_t) exec->batch_len;
1703
1704 if ((exec_start | exec_len) & 0x7) {
1705 DRM_ERROR("alignment\n");
1706 return -EINVAL;
1707 }
1708
1709 if (!exec_start)
1710 return -EINVAL;
1711
1712 count = nbox ? nbox : 1;
1713
1714 for (i = 0; i < count; i++) {
1715 if (i < nbox) {
1716 int ret = i915_emit_box(dev, boxes, i,
1717 exec->DR1, exec->DR4);
1718 if (ret)
1719 return ret;
1720 }
1721
1722 if (IS_I830(dev) || IS_845G(dev)) {
1723 BEGIN_LP_RING(4);
1724 OUT_RING(MI_BATCH_BUFFER);
1725 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
1726 OUT_RING(exec_start + exec_len - 4);
1727 OUT_RING(0);
1728 ADVANCE_LP_RING();
1729 } else {
1730 BEGIN_LP_RING(2);
1731 if (IS_I965G(dev)) {
1732 OUT_RING(MI_BATCH_BUFFER_START |
1733 (2 << 6) |
1734 MI_BATCH_NON_SECURE_I965);
1735 OUT_RING(exec_start);
1736 } else {
1737 OUT_RING(MI_BATCH_BUFFER_START |
1738 (2 << 6));
1739 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
1740 }
1741 ADVANCE_LP_RING();
1742 }
1743 }
1744
1745 /* XXX breadcrumb */
1746 return 0;
1747}
1748
1749/* Throttle our rendering by waiting until the ring has completed our requests
1750 * emitted over 20 msec ago.
1751 *
1752 * This should get us reasonable parallelism between CPU and GPU but also
1753 * relatively low latency when blocking on a particular request to finish.
1754 */
1755static int
1756i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
1757{
1758 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
1759 int ret = 0;
1760 uint32_t seqno;
1761
1762 mutex_lock(&dev->struct_mutex);
1763 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
1764 i915_file_priv->mm.last_gem_throttle_seqno =
1765 i915_file_priv->mm.last_gem_seqno;
1766 if (seqno)
1767 ret = i915_wait_request(dev, seqno);
1768 mutex_unlock(&dev->struct_mutex);
1769 return ret;
1770}
1771
1772int
1773i915_gem_execbuffer(struct drm_device *dev, void *data,
1774 struct drm_file *file_priv)
1775{
1776 drm_i915_private_t *dev_priv = dev->dev_private;
1777 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
1778 struct drm_i915_gem_execbuffer *args = data;
1779 struct drm_i915_gem_exec_object *exec_list = NULL;
1780 struct drm_gem_object **object_list = NULL;
1781 struct drm_gem_object *batch_obj;
1782 int ret, i, pinned = 0;
1783 uint64_t exec_offset;
1784 uint32_t seqno, flush_domains;
1785
1786#if WATCH_EXEC
1787 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
1788 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1789#endif
1790
4f481ed2
EA
1791 if (args->buffer_count < 1) {
1792 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1793 return -EINVAL;
1794 }
673a394b
EA
1795 /* Copy in the exec list from userland */
1796 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
1797 DRM_MEM_DRIVER);
1798 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
1799 DRM_MEM_DRIVER);
1800 if (exec_list == NULL || object_list == NULL) {
1801 DRM_ERROR("Failed to allocate exec or object list "
1802 "for %d buffers\n",
1803 args->buffer_count);
1804 ret = -ENOMEM;
1805 goto pre_mutex_err;
1806 }
1807 ret = copy_from_user(exec_list,
1808 (struct drm_i915_relocation_entry __user *)
1809 (uintptr_t) args->buffers_ptr,
1810 sizeof(*exec_list) * args->buffer_count);
1811 if (ret != 0) {
1812 DRM_ERROR("copy %d exec entries failed %d\n",
1813 args->buffer_count, ret);
1814 goto pre_mutex_err;
1815 }
1816
1817 mutex_lock(&dev->struct_mutex);
1818
1819 i915_verify_inactive(dev, __FILE__, __LINE__);
1820
1821 if (dev_priv->mm.wedged) {
1822 DRM_ERROR("Execbuf while wedged\n");
1823 mutex_unlock(&dev->struct_mutex);
1824 return -EIO;
1825 }
1826
1827 if (dev_priv->mm.suspended) {
1828 DRM_ERROR("Execbuf while VT-switched.\n");
1829 mutex_unlock(&dev->struct_mutex);
1830 return -EBUSY;
1831 }
1832
1833 /* Zero the gloabl flush/invalidate flags. These
1834 * will be modified as each object is bound to the
1835 * gtt
1836 */
1837 dev->invalidate_domains = 0;
1838 dev->flush_domains = 0;
1839
1840 /* Look up object handles and perform the relocations */
1841 for (i = 0; i < args->buffer_count; i++) {
1842 object_list[i] = drm_gem_object_lookup(dev, file_priv,
1843 exec_list[i].handle);
1844 if (object_list[i] == NULL) {
1845 DRM_ERROR("Invalid object handle %d at index %d\n",
1846 exec_list[i].handle, i);
1847 ret = -EBADF;
1848 goto err;
1849 }
1850
1851 object_list[i]->pending_read_domains = 0;
1852 object_list[i]->pending_write_domain = 0;
1853 ret = i915_gem_object_pin_and_relocate(object_list[i],
1854 file_priv,
1855 &exec_list[i]);
1856 if (ret) {
1857 DRM_ERROR("object bind and relocate failed %d\n", ret);
1858 goto err;
1859 }
1860 pinned = i + 1;
1861 }
1862
1863 /* Set the pending read domains for the batch buffer to COMMAND */
1864 batch_obj = object_list[args->buffer_count-1];
1865 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
1866 batch_obj->pending_write_domain = 0;
1867
1868 i915_verify_inactive(dev, __FILE__, __LINE__);
1869
1870 for (i = 0; i < args->buffer_count; i++) {
1871 struct drm_gem_object *obj = object_list[i];
1872 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1873
1874 if (obj_priv->gtt_space == NULL) {
1875 /* We evicted the buffer in the process of validating
1876 * our set of buffers in. We could try to recover by
1877 * kicking them everything out and trying again from
1878 * the start.
1879 */
1880 ret = -ENOMEM;
1881 goto err;
1882 }
1883
1884 /* make sure all previous memory operations have passed */
1885 ret = i915_gem_object_set_domain(obj,
1886 obj->pending_read_domains,
1887 obj->pending_write_domain);
1888 if (ret)
1889 goto err;
1890 }
1891
1892 i915_verify_inactive(dev, __FILE__, __LINE__);
1893
1894 /* Flush/invalidate caches and chipset buffer */
1895 flush_domains = i915_gem_dev_set_domain(dev);
1896
1897 i915_verify_inactive(dev, __FILE__, __LINE__);
1898
1899#if WATCH_COHERENCY
1900 for (i = 0; i < args->buffer_count; i++) {
1901 i915_gem_object_check_coherency(object_list[i],
1902 exec_list[i].handle);
1903 }
1904#endif
1905
1906 exec_offset = exec_list[args->buffer_count - 1].offset;
1907
1908#if WATCH_EXEC
1909 i915_gem_dump_object(object_list[args->buffer_count - 1],
1910 args->batch_len,
1911 __func__,
1912 ~0);
1913#endif
1914
1915 (void)i915_add_request(dev, flush_domains);
1916
1917 /* Exec the batchbuffer */
1918 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
1919 if (ret) {
1920 DRM_ERROR("dispatch failed %d\n", ret);
1921 goto err;
1922 }
1923
1924 /*
1925 * Ensure that the commands in the batch buffer are
1926 * finished before the interrupt fires
1927 */
1928 flush_domains = i915_retire_commands(dev);
1929
1930 i915_verify_inactive(dev, __FILE__, __LINE__);
1931
1932 /*
1933 * Get a seqno representing the execution of the current buffer,
1934 * which we can wait on. We would like to mitigate these interrupts,
1935 * likely by only creating seqnos occasionally (so that we have
1936 * *some* interrupts representing completion of buffers that we can
1937 * wait on when trying to clear up gtt space).
1938 */
1939 seqno = i915_add_request(dev, flush_domains);
1940 BUG_ON(seqno == 0);
1941 i915_file_priv->mm.last_gem_seqno = seqno;
1942 for (i = 0; i < args->buffer_count; i++) {
1943 struct drm_gem_object *obj = object_list[i];
1944 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1945
1946 i915_gem_object_move_to_active(obj);
1947 obj_priv->last_rendering_seqno = seqno;
1948#if WATCH_LRU
1949 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
1950#endif
1951 }
1952#if WATCH_LRU
1953 i915_dump_lru(dev, __func__);
1954#endif
1955
1956 i915_verify_inactive(dev, __FILE__, __LINE__);
1957
1958 /* Copy the new buffer offsets back to the user's exec list. */
1959 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1960 (uintptr_t) args->buffers_ptr,
1961 exec_list,
1962 sizeof(*exec_list) * args->buffer_count);
1963 if (ret)
1964 DRM_ERROR("failed to copy %d exec entries "
1965 "back to user (%d)\n",
1966 args->buffer_count, ret);
1967err:
1968 if (object_list != NULL) {
1969 for (i = 0; i < pinned; i++)
1970 i915_gem_object_unpin(object_list[i]);
1971
1972 for (i = 0; i < args->buffer_count; i++)
1973 drm_gem_object_unreference(object_list[i]);
1974 }
1975 mutex_unlock(&dev->struct_mutex);
1976
1977pre_mutex_err:
1978 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
1979 DRM_MEM_DRIVER);
1980 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
1981 DRM_MEM_DRIVER);
1982
1983 return ret;
1984}
1985
1986int
1987i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
1988{
1989 struct drm_device *dev = obj->dev;
1990 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1991 int ret;
1992
1993 i915_verify_inactive(dev, __FILE__, __LINE__);
1994 if (obj_priv->gtt_space == NULL) {
1995 ret = i915_gem_object_bind_to_gtt(obj, alignment);
1996 if (ret != 0) {
1997 DRM_ERROR("Failure to bind: %d", ret);
1998 return ret;
1999 }
2000 }
2001 obj_priv->pin_count++;
2002
2003 /* If the object is not active and not pending a flush,
2004 * remove it from the inactive list
2005 */
2006 if (obj_priv->pin_count == 1) {
2007 atomic_inc(&dev->pin_count);
2008 atomic_add(obj->size, &dev->pin_memory);
2009 if (!obj_priv->active &&
2010 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2011 I915_GEM_DOMAIN_GTT)) == 0 &&
2012 !list_empty(&obj_priv->list))
2013 list_del_init(&obj_priv->list);
2014 }
2015 i915_verify_inactive(dev, __FILE__, __LINE__);
2016
2017 return 0;
2018}
2019
2020void
2021i915_gem_object_unpin(struct drm_gem_object *obj)
2022{
2023 struct drm_device *dev = obj->dev;
2024 drm_i915_private_t *dev_priv = dev->dev_private;
2025 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2026
2027 i915_verify_inactive(dev, __FILE__, __LINE__);
2028 obj_priv->pin_count--;
2029 BUG_ON(obj_priv->pin_count < 0);
2030 BUG_ON(obj_priv->gtt_space == NULL);
2031
2032 /* If the object is no longer pinned, and is
2033 * neither active nor being flushed, then stick it on
2034 * the inactive list
2035 */
2036 if (obj_priv->pin_count == 0) {
2037 if (!obj_priv->active &&
2038 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2039 I915_GEM_DOMAIN_GTT)) == 0)
2040 list_move_tail(&obj_priv->list,
2041 &dev_priv->mm.inactive_list);
2042 atomic_dec(&dev->pin_count);
2043 atomic_sub(obj->size, &dev->pin_memory);
2044 }
2045 i915_verify_inactive(dev, __FILE__, __LINE__);
2046}
2047
2048int
2049i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2050 struct drm_file *file_priv)
2051{
2052 struct drm_i915_gem_pin *args = data;
2053 struct drm_gem_object *obj;
2054 struct drm_i915_gem_object *obj_priv;
2055 int ret;
2056
2057 mutex_lock(&dev->struct_mutex);
2058
2059 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2060 if (obj == NULL) {
2061 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2062 args->handle);
2063 mutex_unlock(&dev->struct_mutex);
2064 return -EBADF;
2065 }
2066 obj_priv = obj->driver_private;
2067
2068 ret = i915_gem_object_pin(obj, args->alignment);
2069 if (ret != 0) {
2070 drm_gem_object_unreference(obj);
2071 mutex_unlock(&dev->struct_mutex);
2072 return ret;
2073 }
2074
2075 /* XXX - flush the CPU caches for pinned objects
2076 * as the X server doesn't manage domains yet
2077 */
2078 if (obj->write_domain & I915_GEM_DOMAIN_CPU) {
2079 i915_gem_clflush_object(obj);
2080 drm_agp_chipset_flush(dev);
2081 obj->write_domain = 0;
2082 }
2083 args->offset = obj_priv->gtt_offset;
2084 drm_gem_object_unreference(obj);
2085 mutex_unlock(&dev->struct_mutex);
2086
2087 return 0;
2088}
2089
2090int
2091i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2092 struct drm_file *file_priv)
2093{
2094 struct drm_i915_gem_pin *args = data;
2095 struct drm_gem_object *obj;
2096
2097 mutex_lock(&dev->struct_mutex);
2098
2099 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2100 if (obj == NULL) {
2101 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2102 args->handle);
2103 mutex_unlock(&dev->struct_mutex);
2104 return -EBADF;
2105 }
2106
2107 i915_gem_object_unpin(obj);
2108
2109 drm_gem_object_unreference(obj);
2110 mutex_unlock(&dev->struct_mutex);
2111 return 0;
2112}
2113
2114int
2115i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2116 struct drm_file *file_priv)
2117{
2118 struct drm_i915_gem_busy *args = data;
2119 struct drm_gem_object *obj;
2120 struct drm_i915_gem_object *obj_priv;
2121
2122 mutex_lock(&dev->struct_mutex);
2123 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2124 if (obj == NULL) {
2125 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2126 args->handle);
2127 mutex_unlock(&dev->struct_mutex);
2128 return -EBADF;
2129 }
2130
2131 obj_priv = obj->driver_private;
2132 args->busy = obj_priv->active;
2133
2134 drm_gem_object_unreference(obj);
2135 mutex_unlock(&dev->struct_mutex);
2136 return 0;
2137}
2138
2139int
2140i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2141 struct drm_file *file_priv)
2142{
2143 return i915_gem_ring_throttle(dev, file_priv);
2144}
2145
2146int i915_gem_init_object(struct drm_gem_object *obj)
2147{
2148 struct drm_i915_gem_object *obj_priv;
2149
2150 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2151 if (obj_priv == NULL)
2152 return -ENOMEM;
2153
2154 /*
2155 * We've just allocated pages from the kernel,
2156 * so they've just been written by the CPU with
2157 * zeros. They'll need to be clflushed before we
2158 * use them with the GPU.
2159 */
2160 obj->write_domain = I915_GEM_DOMAIN_CPU;
2161 obj->read_domains = I915_GEM_DOMAIN_CPU;
2162
ba1eb1d8
KP
2163 obj_priv->agp_type = AGP_USER_MEMORY;
2164
673a394b
EA
2165 obj->driver_private = obj_priv;
2166 obj_priv->obj = obj;
2167 INIT_LIST_HEAD(&obj_priv->list);
2168 return 0;
2169}
2170
2171void i915_gem_free_object(struct drm_gem_object *obj)
2172{
2173 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2174
2175 while (obj_priv->pin_count > 0)
2176 i915_gem_object_unpin(obj);
2177
2178 i915_gem_object_unbind(obj);
2179
2180 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2181 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2182}
2183
2184static int
2185i915_gem_set_domain(struct drm_gem_object *obj,
2186 struct drm_file *file_priv,
2187 uint32_t read_domains,
2188 uint32_t write_domain)
2189{
2190 struct drm_device *dev = obj->dev;
2191 int ret;
2192 uint32_t flush_domains;
2193
2194 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
2195
2196 ret = i915_gem_object_set_domain(obj, read_domains, write_domain);
2197 if (ret)
2198 return ret;
2199 flush_domains = i915_gem_dev_set_domain(obj->dev);
2200
2201 if (flush_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT))
2202 (void) i915_add_request(dev, flush_domains);
2203
2204 return 0;
2205}
2206
2207/** Unbinds all objects that are on the given buffer list. */
2208static int
2209i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2210{
2211 struct drm_gem_object *obj;
2212 struct drm_i915_gem_object *obj_priv;
2213 int ret;
2214
2215 while (!list_empty(head)) {
2216 obj_priv = list_first_entry(head,
2217 struct drm_i915_gem_object,
2218 list);
2219 obj = obj_priv->obj;
2220
2221 if (obj_priv->pin_count != 0) {
2222 DRM_ERROR("Pinned object in unbind list\n");
2223 mutex_unlock(&dev->struct_mutex);
2224 return -EINVAL;
2225 }
2226
2227 ret = i915_gem_object_unbind(obj);
2228 if (ret != 0) {
2229 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2230 ret);
2231 mutex_unlock(&dev->struct_mutex);
2232 return ret;
2233 }
2234 }
2235
2236
2237 return 0;
2238}
2239
2240static int
2241i915_gem_idle(struct drm_device *dev)
2242{
2243 drm_i915_private_t *dev_priv = dev->dev_private;
2244 uint32_t seqno, cur_seqno, last_seqno;
2245 int stuck, ret;
2246
6dbe2772
KP
2247 mutex_lock(&dev->struct_mutex);
2248
2249 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2250 mutex_unlock(&dev->struct_mutex);
673a394b 2251 return 0;
6dbe2772 2252 }
673a394b
EA
2253
2254 /* Hack! Don't let anybody do execbuf while we don't control the chip.
2255 * We need to replace this with a semaphore, or something.
2256 */
2257 dev_priv->mm.suspended = 1;
2258
6dbe2772
KP
2259 /* Cancel the retire work handler, wait for it to finish if running
2260 */
2261 mutex_unlock(&dev->struct_mutex);
2262 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2263 mutex_lock(&dev->struct_mutex);
2264
673a394b
EA
2265 i915_kernel_lost_context(dev);
2266
2267 /* Flush the GPU along with all non-CPU write domains
2268 */
2269 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
2270 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2271 seqno = i915_add_request(dev, ~(I915_GEM_DOMAIN_CPU |
2272 I915_GEM_DOMAIN_GTT));
2273
2274 if (seqno == 0) {
2275 mutex_unlock(&dev->struct_mutex);
2276 return -ENOMEM;
2277 }
2278
2279 dev_priv->mm.waiting_gem_seqno = seqno;
2280 last_seqno = 0;
2281 stuck = 0;
2282 for (;;) {
2283 cur_seqno = i915_get_gem_seqno(dev);
2284 if (i915_seqno_passed(cur_seqno, seqno))
2285 break;
2286 if (last_seqno == cur_seqno) {
2287 if (stuck++ > 100) {
2288 DRM_ERROR("hardware wedged\n");
2289 dev_priv->mm.wedged = 1;
2290 DRM_WAKEUP(&dev_priv->irq_queue);
2291 break;
2292 }
2293 }
2294 msleep(10);
2295 last_seqno = cur_seqno;
2296 }
2297 dev_priv->mm.waiting_gem_seqno = 0;
2298
2299 i915_gem_retire_requests(dev);
2300
2301 /* Active and flushing should now be empty as we've
2302 * waited for a sequence higher than any pending execbuffer
2303 */
2304 BUG_ON(!list_empty(&dev_priv->mm.active_list));
2305 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2306
2307 /* Request should now be empty as we've also waited
2308 * for the last request in the list
2309 */
2310 BUG_ON(!list_empty(&dev_priv->mm.request_list));
2311
2312 /* Move all buffers out of the GTT. */
2313 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
6dbe2772
KP
2314 if (ret) {
2315 mutex_unlock(&dev->struct_mutex);
673a394b 2316 return ret;
6dbe2772 2317 }
673a394b
EA
2318
2319 BUG_ON(!list_empty(&dev_priv->mm.active_list));
2320 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2321 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
2322 BUG_ON(!list_empty(&dev_priv->mm.request_list));
6dbe2772
KP
2323
2324 i915_gem_cleanup_ringbuffer(dev);
2325 mutex_unlock(&dev->struct_mutex);
2326
673a394b
EA
2327 return 0;
2328}
2329
2330static int
2331i915_gem_init_hws(struct drm_device *dev)
2332{
2333 drm_i915_private_t *dev_priv = dev->dev_private;
2334 struct drm_gem_object *obj;
2335 struct drm_i915_gem_object *obj_priv;
2336 int ret;
2337
2338 /* If we need a physical address for the status page, it's already
2339 * initialized at driver load time.
2340 */
2341 if (!I915_NEED_GFX_HWS(dev))
2342 return 0;
2343
2344 obj = drm_gem_object_alloc(dev, 4096);
2345 if (obj == NULL) {
2346 DRM_ERROR("Failed to allocate status page\n");
2347 return -ENOMEM;
2348 }
2349 obj_priv = obj->driver_private;
ba1eb1d8 2350 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
2351
2352 ret = i915_gem_object_pin(obj, 4096);
2353 if (ret != 0) {
2354 drm_gem_object_unreference(obj);
2355 return ret;
2356 }
2357
2358 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 2359
ba1eb1d8
KP
2360 dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
2361 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
2362 DRM_ERROR("Failed to map status page.\n");
2363 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
2364 drm_gem_object_unreference(obj);
2365 return -EINVAL;
2366 }
2367 dev_priv->hws_obj = obj;
673a394b
EA
2368 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
2369 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
ba1eb1d8 2370 I915_READ(HWS_PGA); /* posting read */
673a394b
EA
2371 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
2372
2373 return 0;
2374}
2375
2376static int
2377i915_gem_init_ringbuffer(struct drm_device *dev)
2378{
2379 drm_i915_private_t *dev_priv = dev->dev_private;
2380 struct drm_gem_object *obj;
2381 struct drm_i915_gem_object *obj_priv;
2382 int ret;
50aa253d 2383 u32 head;
673a394b
EA
2384
2385 ret = i915_gem_init_hws(dev);
2386 if (ret != 0)
2387 return ret;
2388
2389 obj = drm_gem_object_alloc(dev, 128 * 1024);
2390 if (obj == NULL) {
2391 DRM_ERROR("Failed to allocate ringbuffer\n");
2392 return -ENOMEM;
2393 }
2394 obj_priv = obj->driver_private;
2395
2396 ret = i915_gem_object_pin(obj, 4096);
2397 if (ret != 0) {
2398 drm_gem_object_unreference(obj);
2399 return ret;
2400 }
2401
2402 /* Set up the kernel mapping for the ring. */
2403 dev_priv->ring.Size = obj->size;
2404 dev_priv->ring.tail_mask = obj->size - 1;
2405
2406 dev_priv->ring.map.offset = dev->agp->base + obj_priv->gtt_offset;
2407 dev_priv->ring.map.size = obj->size;
2408 dev_priv->ring.map.type = 0;
2409 dev_priv->ring.map.flags = 0;
2410 dev_priv->ring.map.mtrr = 0;
2411
bd88ee4c 2412 drm_core_ioremap_wc(&dev_priv->ring.map, dev);
673a394b
EA
2413 if (dev_priv->ring.map.handle == NULL) {
2414 DRM_ERROR("Failed to map ringbuffer.\n");
2415 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
2416 drm_gem_object_unreference(obj);
2417 return -EINVAL;
2418 }
2419 dev_priv->ring.ring_obj = obj;
2420 dev_priv->ring.virtual_start = dev_priv->ring.map.handle;
2421
2422 /* Stop the ring if it's running. */
2423 I915_WRITE(PRB0_CTL, 0);
673a394b 2424 I915_WRITE(PRB0_TAIL, 0);
50aa253d 2425 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
2426
2427 /* Initialize the ring. */
2428 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
2429 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
2430
2431 /* G45 ring initialization fails to reset head to zero */
2432 if (head != 0) {
2433 DRM_ERROR("Ring head not reset to zero "
2434 "ctl %08x head %08x tail %08x start %08x\n",
2435 I915_READ(PRB0_CTL),
2436 I915_READ(PRB0_HEAD),
2437 I915_READ(PRB0_TAIL),
2438 I915_READ(PRB0_START));
2439 I915_WRITE(PRB0_HEAD, 0);
2440
2441 DRM_ERROR("Ring head forced to zero "
2442 "ctl %08x head %08x tail %08x start %08x\n",
2443 I915_READ(PRB0_CTL),
2444 I915_READ(PRB0_HEAD),
2445 I915_READ(PRB0_TAIL),
2446 I915_READ(PRB0_START));
2447 }
2448
673a394b
EA
2449 I915_WRITE(PRB0_CTL,
2450 ((obj->size - 4096) & RING_NR_PAGES) |
2451 RING_NO_REPORT |
2452 RING_VALID);
2453
50aa253d
KP
2454 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
2455
2456 /* If the head is still not zero, the ring is dead */
2457 if (head != 0) {
2458 DRM_ERROR("Ring initialization failed "
2459 "ctl %08x head %08x tail %08x start %08x\n",
2460 I915_READ(PRB0_CTL),
2461 I915_READ(PRB0_HEAD),
2462 I915_READ(PRB0_TAIL),
2463 I915_READ(PRB0_START));
2464 return -EIO;
2465 }
2466
673a394b
EA
2467 /* Update our cache of the ring state */
2468 i915_kernel_lost_context(dev);
2469
2470 return 0;
2471}
2472
2473static void
2474i915_gem_cleanup_ringbuffer(struct drm_device *dev)
2475{
2476 drm_i915_private_t *dev_priv = dev->dev_private;
2477
2478 if (dev_priv->ring.ring_obj == NULL)
2479 return;
2480
2481 drm_core_ioremapfree(&dev_priv->ring.map, dev);
2482
2483 i915_gem_object_unpin(dev_priv->ring.ring_obj);
2484 drm_gem_object_unreference(dev_priv->ring.ring_obj);
2485 dev_priv->ring.ring_obj = NULL;
2486 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
2487
2488 if (dev_priv->hws_obj != NULL) {
ba1eb1d8
KP
2489 struct drm_gem_object *obj = dev_priv->hws_obj;
2490 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2491
2492 kunmap(obj_priv->page_list[0]);
2493 i915_gem_object_unpin(obj);
2494 drm_gem_object_unreference(obj);
673a394b
EA
2495 dev_priv->hws_obj = NULL;
2496 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
ba1eb1d8 2497 dev_priv->hw_status_page = NULL;
673a394b
EA
2498
2499 /* Write high address into HWS_PGA when disabling. */
2500 I915_WRITE(HWS_PGA, 0x1ffff000);
2501 }
2502}
2503
2504int
2505i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
2506 struct drm_file *file_priv)
2507{
2508 drm_i915_private_t *dev_priv = dev->dev_private;
2509 int ret;
2510
2511 if (dev_priv->mm.wedged) {
2512 DRM_ERROR("Reenabling wedged hardware, good luck\n");
2513 dev_priv->mm.wedged = 0;
2514 }
2515
2516 ret = i915_gem_init_ringbuffer(dev);
2517 if (ret != 0)
2518 return ret;
2519
2520 mutex_lock(&dev->struct_mutex);
2521 BUG_ON(!list_empty(&dev_priv->mm.active_list));
2522 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2523 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
2524 BUG_ON(!list_empty(&dev_priv->mm.request_list));
2525 dev_priv->mm.suspended = 0;
2526 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
2527
2528 drm_irq_install(dev);
2529
673a394b
EA
2530 return 0;
2531}
2532
2533int
2534i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
2535 struct drm_file *file_priv)
2536{
2537 int ret;
2538
673a394b 2539 ret = i915_gem_idle(dev);
dbb19d30
KH
2540 drm_irq_uninstall(dev);
2541
6dbe2772 2542 return ret;
673a394b
EA
2543}
2544
2545void
2546i915_gem_lastclose(struct drm_device *dev)
2547{
2548 int ret;
673a394b 2549
6dbe2772
KP
2550 ret = i915_gem_idle(dev);
2551 if (ret)
2552 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
2553}
2554
2555void
2556i915_gem_load(struct drm_device *dev)
2557{
2558 drm_i915_private_t *dev_priv = dev->dev_private;
2559
2560 INIT_LIST_HEAD(&dev_priv->mm.active_list);
2561 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
2562 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
2563 INIT_LIST_HEAD(&dev_priv->mm.request_list);
2564 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
2565 i915_gem_retire_work_handler);
546b0974
EA
2566 INIT_WORK(&dev_priv->mm.vblank_work,
2567 i915_gem_vblank_work_handler);
673a394b
EA
2568 dev_priv->mm.next_gem_seqno = 1;
2569
2570 i915_gem_detect_bit_6_swizzle(dev);
2571}